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Abstract

Dynamic Facility Relocation and Inventory Management
for Disaster Relief

by

Amber Rae Richter

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Zuo-Jun (Max) Shen, Chair

Disasters strike suddenly and cause destruction which disrupts the availability of basic sur-
vival supplies for people living in affected areas. The efficiency of humanitarian organizations
in providing relief has a direct and crucial impact on the survival, health, and recovery of
affected people and their communities. To better prepare to respond to disasters, many
relief organizations use supply pre-positioning. However, the real and potential needs of
different locations change over time and when an organization uses traditional warehouse
pre-positioning, relief operations are limited by set inventory locations that are difficult to
alter. For this reason, a well known organization recently considered including a large supply
holding ship in its operations. By holding inventory on a ship, the organization would be
able to dynamically relocate its inventory over time in response to changing relief supply
demand forecasts.

To our knowledge, the research contained herein is the first to examine dynamic inventory
relocation for responding to disasters over time. Specifically, we examine how to optimally
relocate and manage inventory for a single mobile inventory to serve stochastic demand at a
number of potential disaster sites over time. While we keep in mind the motivating example
of a supply holding ship in the disaster relief setting throughout this dissertation, the model
and most of the results are applicable to any type of mobile inventory, facility, or server in
any setting.

We first examine the dynamic relocation problem. We model the problem using dynamic
programming and develop analytical and numerical results regarding optimal relocation poli-
cies, the optimal path and speed of relocation decisions, and the value of inventory mobility
over traditional warehouse pre-positioning. To help overcome the computational complexity
of the problem, we develop a heuristic which solves relatively large problem instances in our
numerical experiments within 0.5% of optimality in less than 0.1% of the time required by
an exact algorithm.

As it is suboptimal to consider relocation decisions and inventory management decisions
separately, we also examine the joint dynamic relocation and inventory management prob-
lem. To our knowledge, we are the first to examine the dynamic relocation and inventory
management problem with stochastic demand. Similarly to the dynamic relocation prob-
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lem, we model this problem using dynamic programming. We develop a number of analytical
results characterizing the optimal relocation and inventory management policies.

As the first to examine these problems, we hope this research serves as a catalyst for other
research in this area; accordingly, we conclude this dissertation by discussing a number of
areas for future research.
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1 Introduction

In 2014, there were 324 major natural disasters which left 140.7 million people in need
of relief in the form of basic survival supplies (e.g. food, water, and shelter) and basic
services (e.g. medical care) (Guha-Sapir et al. 2015). Natural and man-made disasters, such
as earthquakes, tropical cyclones, tsunamis, and some complex humanitarian emergencies,
strike suddenly and leave communities in a state of emergency. They cause destruction
which disrupts the availability of medical and basic survival supplies for people living in the
affected areas.

Humanitarian organizations, such as the National Red Cross and Red Crescent Societies,
World Vision International, and CARE International, work to provide relief to people af-
fected by disasters. Their efficiency in providing relief has a direct and crucial impact on the
survival, health, and recovery of affected people and their communities. Relief organizations
must respond as quickly and effectively as possible to minimize human suffering and loss of
life. Despite this, relief organizations have only relatively recently begun to view their logis-
tics as a strategic component of their relief efforts rather than simply as a necessary expense
(Beamon and Kotleba 2006). Accordingly, relief efforts often lack efficiency and effectiveness.
For example, Secretary of Homeland Security Michael Chertoff testified: “FEMA’s logistics
systems simply were not up to the task” of providing supplies to the tens of thousands of
people in need of relief from Hurricane Katrina (U.S. Senate 2006).

Planning relief operations when a disaster strikes without existing infrastructure or es-
tablished procedures is extremely time consuming. Furthermore, procuring supplies after
a disaster has occurred is often prohibitively expensive or impossible to organize in the
critically short relief period necessitated by major disasters due to stockouts or long lead
times. Thus, it is imperative for relief organizations to prepare to respond to disasters before
disasters happen.

One important strategy that many organizations use to prepare is procuring supplies
ahead of time and pre-positioning them in warehouses in areas which are close to or have
access to major disaster-prone regions. For example, World Vision International operates a
global pre-positioning system which pre-positions supplies in the US, Italy, Germany, and
Dubai and the World Food Programme manages the United Nations Humanitarian Response
Depot which is able to send supplies anywhere in the world within 24-48 hours (Balcik and
Beamon). Inventory pre-positioning allows organizations to potentially reduce the lead time
to affected individuals, spend less of their limited budgets on procuring and transporting
supplies, and have more control over the availability and quality of their supplies.

However, the real and potential needs of different locations change over time. For exam-
ple, hurricanes are more likely during hurricane season, complex emergencies are more likely
in a time of unrest rather than in a time of peace, and tsunamis are more likely following
major earthquakes. When an organization uses traditional pre-positioning, relief operations
are limited by set inventory locations that are difficult to alter. For this reason, a well known
organization recently considered including a large supply holding ship in its operations along
with smaller ships or helicopters to transport supplies to affected communities. By holding
inventory on a ship, the organization would be able to dynamically relocate its inventory
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over time in response to changing relief supply demand forecasts. For example,

• during hurricane season, the inventory could be moved closer to hurricane zones

• if there are rising tensions in a particular location, the inventory could be moved closer
to where conflict may erupt

• if a disaster just occurred and supplies will be needed over the next couple of periods,
the inventory could be moved closer to the ongoing relief operations

Inventory mobility can potentially decrease operational costs and response times over
traditional pre-positioning as the inventory may be closer to affected communities. Addi-
tionally, the flexibility afforded by inventory mobility may reduce the need for inventory
duplication in multiple locations as the same inventory may be able to serve a larger area or
different areas at different times. This would result in lower operational and holding costs
and less inventory lost to expiration. Furthermore, a supply holding ship does not require a
working airport to reach an affected community and may be more easily secured from theft
or disaster-related damage.

For these reasons, the organization motivating this work is not the first to consider using
a ship or other type of mobile unit for holding and delivering relief supplies and services. For
example, Floating Doctors, a nonprofit medical relief team, is primarily based on a ship which
provides medical relief to coastal regions worldwide and responded to the Haiti earthquake
in 2010. Project Hope, an international health care organization, received a retired U.S.
Navy Hospital ship as a donation in 1958 and used it for a number of years in providing
health care, education, and disaster relief. Many countries, including the US, Germany,
China, and Mexico, use hospital or military ships for disaster response. Additionally, several
organizations store hurricane relief supplies in containers which can be moved in response to
updated hurricane forecasts.

To our knowledge, this research is the first to examine mobile inventory supply chains for
disaster relief. As the first step to understanding and evaluating these systems, we examine
how to optimally relocate and manage inventory for a single mobile inventory, such as a
supply holding ship, to serve stochastic demand at a number of potential disaster sites over
time. While we keep in mind the motivating example of a supply holding ship in the disaster
relief setting throughout this research, the models and most of the results are applicable
to any type of mobile inventory, facility, or server in any setting. Especially relevant may
be the application to military sea basing (see Qiu and Sharkey (2013)) or to the Maritime
Administration’s National Defense Reserve Fleet as discussed in the next section. In the
disaster relief context, mobile inventory may take the form of a ship, trailer, container, or
mobile health clinic.

In Section 3, we examine the dynamic facility relocation decisions. We also examine the
value of inventory mobility over traditional warehouse pre-positioning to provide managerial
insights on when investing in or encouraging the donation of a mobile inventory aspect of a
supply chain may be worthwhile. While there are many areas in which inventory mobility
may provide value, such as decreased response time, we focus on potential operational cost
advantages resulting from decreased transportation distances to affected communities.
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It is suboptimal to consider relocation decisions and inventory management decisions
separately as the inventory location affects how much it costs to restock. For example, if the
inventory is far from a supplier, it will likely cost more to place and receive an order. Thus,
in Section 4, we consider making dynamic relocation and inventory management decisions
simultaneously by examining the joint relocation and inventory management problem.

The main contributions of this dissertation are as follows. Through examining the dy-
namic facility relocation problem in Section 3,

1. to our knowledge, we are the first in the literature to consider the dynamic alteration
of a disaster relief supply chain in response to changing demand patterns over time

2. to our knowledge, we are the first in the literature to examine mobile inventory supply
chains for disaster relief

3. to our knowledge, we are the first in the literature to study dynamic facility location
with demand which evolves according to a non-stationary discrete time Markov chain
(DTMC)

4. we develop a model to determine an optimal relocation plan for a single mobile inven-
tory to serve stochastic demand over time

5. we derive analytical results regarding optimal movement and relocation policies, in-
cluding results which allow us to reduce the size of some large problem instances

6. we develop analytical and numerical results regarding the value of inventory mobility
over traditional warehouse pre-positioning and extract managerial insights on when
investing in or encouraging the donation of a mobile inventory aspect of a supply chain
may be worthwhile

7. we design a heuristic which solves relatively large problem instances in our numerical
experiments within 0.5% of optimality in less than 0.1% of the time required by an
exact algorithm and is optimal when the demands are temporally independent

Through examining the joint dynamic facility relocation and inventory management prob-
lem in Section 4,

8. to our knowledge, we are the first in the literature to consider both dynamic relocation
and inventory management decisions with stochastic demand

9. we develop a model to determine an optimal relocation and inventory management
policy for a single mobile inventory to serve stochastic demand over time

10. we develop analytical results characterizing the optimal relocation and inventory man-
agement policies; specifically, we show that:

(a) a multiperiod (s, S) policy is optimal when we are restricted to movement policies
that do not depend on the inventory level
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(b) while a multiperiod (s, S) policy is not optimal for the general problem, in an
optimal policy we will either order nothing or order up to some sum of potential
future period demands

(c) counterintuitively, the optimal amount to order is not necessarily decreasing in
our initial inventory level

(d) in an optimal policy, we will not place an order if our initial inventory level is
weakly greater than the maximum possible demand for the rest of the horizon

(e) it is sufficient for optimality to consider a smaller feasible set of inventory loca-
tions, defined in Section 4.1.2 below, and thereby reduce the size of the problem

(f) in an optimal policy, we will not move the mobile inventory toward the supplier
at the expense of moving it farther from all potential disaster sites in a period in
which we do not place an order

(g) in an optimal policy, we will not place an order if the mobile inventory is in
a location farthest from the supplier and our current inventory level is weakly
greater than the maximum possible current period demand

This dissertation is organized as follows. Section 2 reviews the relevant literature. Section
3 examines the dynamic facility relocation problem and the value of inventory mobility in
disaster relief. Section 4 examines the joint dynamic relocation and inventory management
problem. Finally, Section 5 concludes the dissertation and suggests future research directions.
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2 Literature Review and Motivation

In this section, we review the literature relevant to the problem of managing mobile inventory
supply chains for disaster relief. The streams of literature most relevant to this research focus
on locating and managing pre-positioned inventory for disaster relief and the dynamic facility
location problem. Section 2.1 reviews the literature related to locating and managing pre-
positioned inventory and Section 2.2 reviews the literature related to the dynamic facility
location problem.

2.1 Pre-Positioning for Disaster Relief

When a disaster occurs, a relief organization needs to be able to quickly deliver relief supplies
to the area affected by the disaster. If there are no supply inventories near the location of
the disaster, or if these supplies are not well managed, it may be difficult for the relief
organization to respond to the disaster effectively. Thus, it is imperative for pre-positioned
inventories to be carefully positioned and managed. In this section, we review operations
research literature in strategic emergency supply pre-positioning. This stream of literature
can be further divided into that which focuses on location and stocking decisions and that
which focuses on inventory management decisions for pre-positioned supplies; we review
these focus areas in Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Location and Stocking Decisions for Pre-Positioned Supplies

Most of the emergency supply pre-positioning literature focuses on making one-time decisions
of supply locations and stocking levels to optimally respond to a single disaster period. Typ-
ically, papers in this stream model the pre-positioning problem as extensions of well known
facility location models and their novelty is in what types of complications or constraints
they consider. The theses of Akkihal (2006) and McCall (2006) appear to be among the
first operations research papers to look at disaster relief pre-positioning. Balcik and Beamon
(2008) use a maximal covering location model to determine the number, location, and stock-
ing levels of capacitated distribution centers to maximize the total expected demand covered
for one period. They consider several types of supplies with different levels of importance
and response time requirements and take into account transportation capacity restrictions
and pre- and post-disaster budgetary constraints. Their computational experiments point
out the importance of pre-disaster investments which they say have been underrated com-
pared to investments in post-disaster response activities. Verma and Gaukler (2011) develop
a two-stage stochastic programming model based on the capacitated facility location model
to determine the locations of warehouses with pre-determined capacities. Their model takes
into account uncertainties in the functioning of warehouses and the subsequent availability of
supplies following a disaster. They use a case study to show that their model places facilities
at a safer distance from disaster epicenters rather than directly on top of high-risk areas.

Ukkusuri and Yushimito (2008) were the first to take into account disruptions in the
transportation network. They develop a model to determine the locations of pre-positioned
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supplies to maximize the probability that demand points can be reached from at least one
supply holding site for one period. Rawls and Turnquist (2010) develop a two-stage stochastic
programming model which, in addition to determining the number, location and stocking
levels, determines the size of supply holding warehouses to minimize cost, including penalties
for unmet demand, for a single disaster period. Their model allows for uncertainties in
the survival of inventories and disruptions in the transportation network. They develop a
heuristic algorithm for solving their model using the Integer L-Shaped Method and test the
robustness and applicability of their model on a test case. Rawls and Turnquist (2011) extend
this model to account for service quality constraints. Noyan (2012) also extends the Rawls
and Turnquist (2010) model. Noyan notes that, like the Rawls and Turnquist (2010) model,
most two-stage stochastic programming models represent a risk neutral approach in that
they consider the expectation of an event occurring as the preference criterion of the decision
maker. Noyan thus extends the model by incorporating the conditional-value-at-risk (CVaR)
as the risk measure on the total cost for the reason that “Considering only the expected values
may not be good enough for rarely occurring disaster events.” Noyan reformulates the model
as a two-stage mean-risk stochastic programming model which incorporates the trade-off
between the expected total cost and a risk measure on the random total cost. Similarly
to Rawls and Turnquist (2010), Noyan develops a heuristic for solving the model using the
L-Shaped Method.

The majority of the stochastic facility location models related to the pre-positioning of
supplies for disaster response, including all those described above, involve a single echelon
network. Döyen et al. (2012) develop a two-echelon two-stage stochastic programming model
in which locations are determined for both regional rescue centers (RRCs) and local rescue
centers (LRCs) where RRCs (the first echelon facilities) are located before an event occurs
and LRCs (the second echelon facilities) are located after an event occurs and stocked by
the RRCs to serve end demand. They develop a solution heuristic based on Lagrangian
relaxation and augment it by local search to improve the efficiency of the solution technique.

Although most emergency supply pre-positioning papers take as inputs a set of scenarios
of possible events that could occur and probabilities on each scenario’s occurrence, not all do.
Campbell and Jones (2011) were the first to consider both risk and inventory levels related
to the pre-positioning of emergency supplies for disaster relief without the use of scenarios.
Their motivations are that it is not always possible to build these scenarios as this requires
having sufficient historical data and that a limited number of scenarios may not be sufficient
to represent the potential set of outcomes.

Most research in this literature stream uses historical disaster data as proxies for future
demand forecasts. Noting that historical data may not accurately represent expected effects
of disasters on areas which have expanded in population and infrastructure over the years,
Barzinpour and Esmaeili (2014) utilize software which predicts the impact of an earthquake
on Iran’s current infrastructure and population level to develop an earthquake pre-positioning
plan for Iran. They develop a multi-objective mixed integer linear programming model based
on the maximal covering model to locate warehouses and assign warehouses to urban regions.

Some models, like Barzinpour and Esmaeili (2014), are developed specifically for a par-
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ticular organization to solve a specific problem instance. These models tend to have more
assumptions and constraints which are specifically tailored to the situation in question. Du-
ran, Gutierrez, and Keskinocak (2011) develop a mixed integer program (MIP) for CARE
International, one of the world’s largest disaster relief organizations, to evaluate the effect of
pre-positioning on CARE’s average response time to disasters worldwide. Their model finds
the optimal number and location of pre-positioned warehouses while allowing for demand to
be met by both the pre-positioned supplies as well as outside suppliers; this is in contrast to
most other papers which assume that the pre-positioned supplies will be the only source of
supplies when a disaster hits. The model takes as input a given specific initial investment,
in terms of the maximum number of warehouses and total inventory to allocate, with an
objective of minimizing CARE’s average response time over a number of demand scenarios.
Their results allowed CARE to determine their desired pre-positioning network and a plan
for how to construct it as they acquired more funds. As an example outside of the disaster
relief context, Amouzegar et. al (2006) and McGarvey et. al (2010) examine the optimal
pre-positioning of war reserve material resources for the U.S. Air Force using an MIP model.

Bozkurt and Duran (2012) extend the work of Duran, Gutierrez, and Keskinocak (2011)
by examining the expansion plan of CARE’s pre-positioning network. They argue that pre-
positioned inventory locations should be robust to changes in disaster types, locations, and
magnitudes over the years in which they are in use. For this reason, in contrast to Duran,
Gutierrez, and Keskinocak (2011) which uses historical disaster data from 1997-2006, the
authors use historical disaster data from 1977-2006. They run the Duran et. al (2011)
model separately with data from each of these three decades and show that differences
in disaster occurrences between the three decades suggest different pre-positioned inventory
locations. With these changing location recommendations over the decades, they infer trends
in disaster occurrences and subsequently recommend a new location for CARE to add to its
pre-positioning network.

Bozkurt and Duran (2012) is the first study, to our knowledge, which notes that the
optimal configuration of a pre-positioned network may change over time. This suggests a long
term view of the advantage of having a flexible, mobile inventory system for disaster relief
as its configuration can be directly altered over time. Bozkurt and Duran (2012) approach
this issue by considering one-time alterations of an existing network. To our knowledge, no
existing work considers the design or dynamic alteration beyond a single change of a disaster
relief inventory supply chain. This research on mobility inventory supply chains for disaster
relief addresses this literature gap.

2.1.2 Inventory Management Decisions for Pre-Positioned Supplies

While most emergency supply pre-positioning literature focuses on making one-time deci-
sions of warehouse locations and stocking levels, another stream of the literature focuses on
inventory management decisions for pre-positioned emergency supplies. Ozbay and Ozguven
(2007) consider the deliveries and demand of a certain type of supply at one distribution
center designated as a gathering center for evacuees following a major disaster. They de-
velop a two-stage stochastic programming model to determine the initial amount of safety
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stock of the supply needed so that the chance of a stock-out during response to a disaster is
less than or equal to some given probability. The objective is to minimize inventory holding
costs, shortage costs, surplus inventory costs, and the costs of adjusting the safety stock level
after one or more periods of demand is realized. Ozbay and Ozguven (2013) extended this
model as part of a complex humanitarian inventory management system and control model.
They developed a stochastic programming model to serve as the off-line planning strategy
which is called multiple times by the on-line inventory management system which uses Radio
Frequency Identification Device (RFID) technology for commodity tracking and logistics to
manage the coordination of relief activities before and after an event occurs. The stochastic
programming model from their previous paper is extended to account for multiple supply
types, where some supplies are substitutable for others, and multiple suppliers, where multi-
ple suppliers may be needed for the same supply type. In this case, the desired safety stock
levels of the different supply types are dependent on each other due to capacity constraints.
As actual inventory levels can deviate from optimal levels during response to a disaster due
to stochastic disruptions, the on-line inventory management system is developed using the
stochastic programming model described to minimize the impacts of these disruptions.

Beamon and Kotleba (2006-1) develop a stochastic inventory management model that
determines optimal order quantities and reorder points for long-term emergency relief re-
sponse in complex humanitarian emergencies which have unpredictable demand patterns
and long durations. They focus their paper on the second civil war in south Sudan (1983-
2005). They consider a continuous review inventory management system under a (Q, r)-type
policy. There are two options for re-supply, one a normal reorder option and the other an
emergency reorder option, each with a constant lead time. They also note the need for a
more thorough study on the implications of back order costs as the corresponding commer-
cial logistics interpretation of lost sales is not appropriate in the context of humanitarian
logistics where the implications of unmet demand may be the suffering or even the death of
the “customer.” Beamon and Kotleba (2006-2) further studies inventory management strate-
gies for pre-positioned stocks of supplies intended to support relief related to the civil war in
south Sudan. They compare the mathematical model developed in the paper just described
to a heuristic model, which may be preferable due to computational time limitations, and to
a simple ‘naive’ model whose advantage is its ease of implementation. They test the three
strategies using a simulation to be able to analyze the affects of back order costs, service
levels, and the demand distribution on total cost, response time, and flexibility and develop
a performance measurement system to compare the strategies.

Rottkemper et al. (2011) focus on inventory management during on ongoing long-term
humanitarian relief operation taking into account the possibility of overlapping disasters,
such as an epidemic outbreak or warehouse fire, which could cause a sudden increase in
demand or decrease in supply. In their linear multi-period MIP, established regional depots
are served from a central depot which is, in turn, served by a global depot and inventory
management decisions are made for each level. They consider a single type of supply and
allow for the option of moving inventory between regional depots. The objective function
is to minimize costs including penalty costs for unsatisfied demand. The model assumes
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that there is a deterministic portion of demand associated with the ongoing humanitarian
operation as well as a stochastic future demand to allow for possible future disruptions.
Penalty costs for the deterministic demand are higher than those for the stochastic demand
and demand is backlogged. They develop a rolling horizon solution approach as well as an
alternative solution approach based on a simple decision tree heuristic. Additionally, they
present a number of numerical experiments including those which they used to determine
the appropriate value for penalty costs.

As weather forecasts allow decision makers to predict the onset of hurricanes, and weather
patterns during the pre-hurricane season allow for updates of these forecasts, there exists
a subset of disaster response literature related to preparedness specifically for hurricanes.
For example, Davis et al. (2013) examine reallocating inventory among open, capacitated
relief supply warehouses to prepare for an impending hurricane using a two-stage stochastic
programming model. This work utilizes short-term hurricane path forecasts to predict which
warehouses and which populations will be most affected by the storm. It takes into account
potential loss of supplies at warehouses and road congestion before and after the storm
due to evacuations and storm related road damage. Taskin and Lodree (2010) develop a
model which determines an inventory management policy for manufacturing and retail firms
for the pre-hurricane season and the beginning of the hurricane season. Their stochastic
programming methodologies allow inventory managers to alter inventory decisions as new
information regarding the incoming hurricane season comes to view. The methodologies are
designed in this way in hopes of reducing the amount of stock outs and thus improving the
ability of people in the community to acquire the supplies they need in the pre-hurricane and
hurricane seasons. The model divides the pre-hurricane season into several periods in which
the inventory manager has the ability to determine inventory levels that account for demands
in the subsequent periods and at the beginning of the hurricane season. They formulate the
problem as a multi-stage stochastic programming model with recourse to determine order
or production quantities which minimize total cost. They note that their research could be
useful for not-for-profit disaster relief operations as well.

Rawls and Turnquist (2012) is unique in that it considers both warehouse location and
short term inventory management. They develop a two-stage stochastic model which extends
the models they developed in their works described above (Rawls and Turnquist (2010),
Rawls and Turnquist (2012)) to also make inventory management decisions for meeting
short term demands similar to those made in the model developed by Ozbay and Ozguven
(2007). Their potential stocking locations include both potential warehouse locations as well
as gathering centers, or shelters, for evacuees. Their model determines the location and size
of warehouses, pre-positioned stocking quantities of various types of emergency supplies at
these warehouses and at the shelters, and an inventory management policy for each shelter
in response to potential events including a distribution plan from which warehouses will
meet orders from that shelter over a finite number of time periods. Their model allows for
differentiation between supplies for which demand is dependent on the duration of time for
which evacuees reside in a shelter and supplies for which demand is not and requires that all
demands be met in scenarios comprising a certain percentage of all outcomes. Their model
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takes into account limited shelter storage capacity, limited capacity of shipment travel nodes,
transportation network availability, supply survival uncertainties, and the rate at which each
warehouse can process and satisfy orders which is dependent on the warehouse’s size. They
test their model on a case study of hurricane preparedness in North Carolina and note the
need for the development of a specialized algorithm to solve some instances of the problem.

Despite the growing number of papers on strategic decision making in emergency supply
pre-positioning for disaster relief, to our knowledge, no existing work considers the design
or dynamic alteration beyond a single change of a disaster relief inventory supply chain.
Furthermore, to our knowledge, there does not exist any research on the operations of mobile
inventory supply chains for disaster relief. With this work, we seek to address these literature
gaps by examining how to optimally manage a mobile supply inventory to prepare for and
respond to disasters over time.

2.2 Dynamic Facility Location Problem

Closely related to the problem of relocating a mobile inventory for responding to disasters
over time is the stream of literature on the dynamic facility location problem. The dynamic
facility location problem is the problem of locating, and possibly relocating, facilities over
time in response to changing system parameters, such as demand or distribution costs.
Finding an optimal solution to this problem requires finding a balance between the costs
of establishing new facilities or changing existing ones and the benefits gained from making
these decisions. Rather than finding decisions which are optimal for only the current state
of the system, these models seek to find optimal decisions which are robust to changes in
parameters over time. For more comprehensive reviews of dynamic facility location literature,
the reader is referred to Arabani and Farahani (2012), Farahani et al. (2009-2), Snyder
(2006), and Owen and Daskin (1998).

For our purposes, research on the dynamic facility location problem can be divided into
two categories: that which considers relocation and that which does not.

There are many papers in the dynamic facility location literature that do not consider
the possibility of relocating facilities. Among these are papers which only consider when and
where to open facilities and do not allow for the closing or relocating of facilities (e.g. Ghaderi
and Jabalameli (2013), Current et al. (1997), Melachrinoudis et al. (1995), Jornsten and
Bjorndal (1994), Shulman (1991), and Erlenkotter (1981)). These models typically assume
that once a facility is opened at a particular location, it remains open for the duration
of the planning horizon. Also among the papers which do not consider the possibility of
relocating are those which consider when and where to both open and close facilities but do
not model these decisions in a way that can represent relocation. Some of these papers either
require that once a facility is established, it cannot be removed, or once a facility that was
established previous to the planning horizon is closed, it cannot be reopened, and thus the
models described in these papers clearly cannot apply to relocation decisions (e.g. Hinojosa
et al. (2008) and de Gama and Captivo (1998)). Other papers in this area use binary
variables to model the capacity levels or operating status of each potential facility for each
time period (e.g. Jean et al. (2015), Thanh et al. (2008), Dias et al. (2007), Romauch and
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Hartl (2005), Canel et al. (2001), Melachrinoudis and Min (2000), and Sweeney and Tatham
(1976)). The models considered in these papers do not connect the decisions of closing and
opening facilities at different sites sufficiently to be able to represent facility relocation.

There are, however, many papers which do consider the relocation of facilities. As many
authors have noted (e.g. Farahani et al. (2009-2), Owen and Daskin (1998), and Current
et al. (1997)), dynamic facility location problems are computationally complex and thus
most research in this area has been limited to deterministic problems. Thus, among the
dynamic facility location papers which consider facility relocation, most assume demand is
deterministic or that it is appropriate to use a deterministic proxy for uncertain demand
(e.g. Qiu and Sharkey (2013), Halper and Raghavan (2011), Farahani et al. (2009-1), Melo
et al. (2005), Gue (2003), Drezner and Wesolowsky (1991), Campbell (1990), Chand (1988),
Wesolowsky and Truscott (1975), Wesolowsky (1973), Ballou (1968)). However, for our
purposes, a deterministic proxy for uncertain demand is not appropriate as disasters and
subsequent demand for relief supplies are far too unpredictable. A useful model must take
into account uncertainties in when, where, and in what amounts demand for supplies will
occur.

Qiu and Sharkey (2013) analyze a problem similar to those we consider in this dissertation
in the military logistics setting. Motivated by recent military interest in the capability of
sea basing to serve as the logistical hub during military operations, they develop a dynamic
programming (DP) model for finding the optimal location plan and inventory plan for a
single mobile facility to satisfy demand over a finite horizon. They propose algorithms for
solving their model with the objective of minimizing costs with and without capacity and
service constraints. However, they do not consider stochastic demand and thus their model
is not applicable to the disaster relief setting. This paper does, though, point out another
relevant application area of the models presented in this dissertation: the operations of sea
bases for military operations. The reader is refereed to Qiu and Sharkey (2013) for further
information regarding this application. A related application is to the operations of reserve
military equipment between deployments such as the National Defense Reserve Fleet which
serves as a reserve of ships for national defense and national emergencies.

A few papers in the dynamic facility location literature which consider relocation con-
sider stochastic demand, however, to our knowledge, no paper models demand as evolving
according to a non-stationary discrete time Markov chain (DTMC).

Berman and Odoni (1982) study a single-facility location problem similar to the p-median
problem where travel times are stochastic and described by the state of the network at any
given time and the facilities (e.g., an ambulance) can be relocated as travel times change.
The state of the network changes according to a stationary ergodic Markov chain. Their
model seeks to find the optimal set of server locations for each network state. They develop
a heuristic to solve the problem which, in each iteration, goes through each system state
and tries to improve the decision for this state while keeping all others unchanged. The
heuristic terminates when the decisions do not change during an iteration. They assume
that the relocation cost function is nondecreasing and concave and that demand occurs in
each period at a certain location according to a Bernoulli distribution. For reasons noted
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above, this simple way of modeling potential demand does not fully represent the complexity
of the problem at hand.

Chow and Regan (2011) study the dynamic facility location problem applied to air tanker
response to wildland fires. They minimize the cost and time of deploying the tankers to
fires. They assume that simultaneously occurring fires are unlikely but that a single fire may
require multiple air tankers and thus their model requires that a certain number of the closest
facilities be able to cover a demand node. They assume demand follows an autoregressive
process and that demand for different nodes are independent of each other. They simplify
the problem by making relocation decisions independent of future relocation decisions as the
model would otherwise be “too complex” and require DP to solve. Thus, each relocation
decision is modeled by a separate MIP p-median-type model that determines the optimal
single relocation of the servers to serve at least 90% of the expected demand over a short
rolling horizon and use branch and bound to solve it. Thus, their approach finds a myopic
policy and does not consider the full complexity of the problem at hand.

Rosenthal et al. (1978) study the relocation over an infinite horizon and discrete set
of locations of a facility which serves customers that relocate and change cost parameters
according to a stationary Markov chain. They claim to be the first paper to introduce
methods of stochastic decision processes into location analysis. They develop heuristics for
finding the pure stationary policy for both the single-customer and the multi-customer cases.

As we discuss in Section 3.1, it is most appropriate in the disaster relief setting to model
demand as evolving according to a non-stationary DTMC. To our knowledge, no paper on
dynamic facility location models demand as evolving according to a non-stationary DTMC,
nor has dynamic facility location with relocation been studied in the disaster relief setting.
Furthermore, to our knowledge, no paper considers dynamic facility relocation and inventory
management with stochastic demand. This work seeks to address these literature gaps as
well as those described in Section 2.1.
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3 Dynamic Facility Relocation and the Value of

Inventory Mobility in Disaster Relief

In this section, we examine the dynamic facility relocation problem and the value of inventory
mobility in disaster relief. This section is organized as follows. Section 3.1 presents the model
and analytical results on optimal relocation policies and the value of inventory mobility.
Section 3.2 presents results on the optimal path and speed of relocation decisions using a
special case of the model. Section 3.3 describes the Base State Heuristic (BSH) designed to
solve the problem as modeled in Section 3.1. Section 3.4 presents numerical results regarding
the problem as modeled in Section 3.1. The proofs of the results in this section can be found
in Section 3.5.

3.1 Dynamic Relocation Model

In relocating a mobile inventory, we make sequential decisions over time in response to
changing disaster forecasts. Specifically, in each period we observe demand which informs
our next period forecast and decide where to move the inventory for the following period.
We model this sequential decision making problem using dynamic programming (DP). As
noted in Section 1, the real and potential needs of different locations may change over time
and thus are non-stationary. Furthermore, demand forecasts may depend on current demand
realizations and thus exhibit the Markovian property. For example, tsunamis are more likely
following a large earthquake, the current weather and weather forecast gives information
on whether or not there will be a hurricane in the next period, and demand in a period
immediately following a disaster and subsequent demand spike will likely also be high due
to ongoing relief operations. Thus, it is most appropriate to model potential disaster site
demands as evolving according to a non-stationary discrete time Markov chain (DTMC). We
assume a finite horizon of T time periods as it unrealistic to forecast disasters infinitely into
the future or to assume that forecast evolution will be stationary. Additionally, we assume
that the inventory has infinite capacity, all demand must be satisfied, and our objective is
to minimize cost. Let d(·, ·) be the Euclidean distance metric. Our notation is as follows:

J : set of potential disaster sites

I : set of potential inventory locations

Dj : finite set of possible demand levels at site j ∈ J
D : set of possible demand vectors d = (d1, ..., d|J |), where dj ∈ Dj ∀j ∈ J ,

describing the demand at all |J | potential disaster sites

lj : location of site j ∈ J
f(d(i, i′)) : cost to move the inventory from i ∈ I to i′ ∈ I in one period

gj(d(i, lj), d
j) : cost to serve dj ∈ Dj units of demand at site j ∈ J from i ∈ I

pjt(d
j
t , d

j
t+1) : probability site j ∈ J demand will transition from djt ∈ Dj to djt+1 ∈ Dj

after period t ∈ {0, ..., T − 1}
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pt(dt, dt+1) : probability the demand vector will transition from dt ∈ D to dt+1 ∈ D
after period t ∈ {0, ..., T − 1}

While a few of our results specify specific forms of I, in general, I may be continuous
or discrete. Let G(i, d) =

∑
j∈J gj(d(i, lj), d

j) be the cost to serve the demand described by
demand vector d ∈ D from i ∈ I. Note that each demand vector d ∈ D describes the demand
at all |J | potential disaster sites in a potential demand realization, D = D1×D2× ...×D|J |,
and f may include maintenance or operational costs. Assume that gj(·, 0) = 0 ∀j ∈ J
and

∑
dt+1∈D pt(dt, dt+1) = 1 ∀ dt ∈ D and t ∈ {0, ..., T − 1}. Furthermore, assume that

pt(dt, dt+1) is some function q of the individual transition probabilities, i.e. pt(dt, dt+1) =

q
(
p1
t (d

1
t , d

1
t+1), ..., p

|J |
t (d

|J |
t , d

|J |
t+1)
)
∀ dt, dt+1 ∈ D and t ∈ {0, ..., T−1}; while not necessary for

the results presented in this dissertation, this assumption makes the problem more tractable
by allowing solution algorithm implementations to store only a subset of the T × |D| × |D|
transition probabilities.

We can find the minimum cost-to-go of being in location it when the demand vector is
dt in time period t ∀ (it, dt) ∈ I ×D, t ∈ {0, 1, ..., T} using the following DP equations:

Vt(it, dt) = G(it, dt) + min
it+1∈I

{
f(d(it, it+1)) +

∑
dt+1∈D

pt(dt, dt+1)Vt+1(it+1, dt+1)

}
(3.1)

VT (iT , dT ) = G(iT , dT )

The cost-to-go is the cost to serve the current period demand plus the cost to relocate
the inventory for the following period plus the expected future period cost. To find the value
of inventory mobility in disaster relief in terms of cost savings, we also need to define the
cost of the traditional warehouse pre-positioning system. The DP equations to represent the
total cost of responding to disasters over time using a traditional warehouse pre-positioning
system with a single inventory are as follows:

V̄t(̄i, dt) = G(̄i, dt) +
∑

dt+1∈D

pt(dt, dt+1)V̄t+1(̄i, dt+1) (3.2)

V̄T (̄i, dT ) = G(̄i, dT )

Note that in most cases, ī will be chosen as the optimal stationary position, i.e. ī =
arg mini∈I V̄0(i, d0). Note that if ī is subject to optimization in this way in the traditional in-
ventory system, it may be most appropriate when calculating the value of inventory mobility
to allow i0 to be subject to optimization in the mobile inventory system as well. If we define
some additional notation, we can express the expected cost of responding to disasters over
time using a traditional warehouse pre-positioning system represented by the DP equations
3.2 using a single equation. Let P t be the full transition matrix between demand states
in period t and let P t

i be the ith row of P t. Without loss of generality, let d0 be the first
demand state, that is, the demand state that has its probabilities of transitioning to other
demand states specified by the first row of P t ∀t. Furthermore, let d̂ be a column vector
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representing all possible demand states with elements in the same order as the rows and
columns of P t and G(i, d̂) be the column vector for which each element is G(i, d) where d is
the corresponding element of d̂. Furthermore, define pt(d0, d) to be the probability that the
demand vector is d ∈ D in period t ∈ {1, ..., T} given that the demand vector in period 0 is
d0, i.e. p1(d0, d) = P 0

1,d and pt(d0, d) = [P 0
∏t−1

k=1 P
k]1,d where Qij is the (i, j)th entry of the

matrix Q.

Theorem 1. The expected cost of responding to disasters over time using a traditional
warehouse pre-positioning system with a single inventory located at ī ∈ I represented by the
DP equations 3.2 can be written as one equation as follows:

V̄0(̄i, d0) = G(̄i, d0) + P 0
1

[
I +

T∑
t=2

t−1∏
k=1

P k

]
G(̄i, d̂) (3.3)

= G(̄i, d0) +
∑
d∈D

[
G(̄i, d)

T∑
t=1

pt(d0, d)

]
(3.4)

Note that this is a simple linear function of problem parameters. Also note that equation
3.4 gives an intuitive view of the expected cost of responding to disasters over time using
traditional, non-mobile inventory. That is, the cost is simply the sum over all possible
demand vectors of the cost to serve that demand vector from the stationary inventory location
ī times the expected amount of time that the demand will be as described by that demand
vector.

Recall that we focus on the value of inventory mobility associated with the change in cost
resulting from decreased transportation distances to affected communities in using mobile
rather than traditional pre-positioned inventory. That is, we define the value of inventory
mobility as the optimal cost of responding to disasters over time using a traditional pre-
positioned inventory minus the optimal cost using a mobile inventory:

min
ī∈Is

V̄0(̄i, d0)−min
i0∈I

V0(i0, d0)

where Is ⊆ I; for example, for a supply holding ship, I may be a large body of water while
Is is the coastline, or parts of the coastline, where a stationary warehouse can be located.
The value we have defined here is the operating cost savings over T time periods; this value
can be used to determine the payback period of a mobile inventory system investment. We
can prove the following:

Theorem 2. If the cost to allow the mobile inventory to remain in the same location is 0,
i.e. f(0) = 0, then the value of inventory mobility is greater than or equal to 0.

We can also prove the following regarding the optimal stationary position:

Theorem 3. Assume I = R, lj ∈ R ∀j ∈ J , and gj(d(·, ·), dj) is linear and non-decreasing
in d(·, ·) ∀ j ∈ J . Then ∃ an optimal solution ī∗ minimizing V̄0(̄i, d0) such that ī∗ = lj for
some j ∈ J .
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Figure 1: Example network satisfying Assump-
tion 1. I consists of the shaded regions, the white
regions A1, A2, and A3 are infeasible regions, B̂
is A1 ∪ A2 ∪ A3, and Î is the dark gray shaded
region. Under Assumption 1, Theorem 5 assures
that there exists an optimal solutions to the relo-
cation problem such that the inventory is always
located within Î.

In other words, in the case described, Theorem 3 assures that the stationary inventory will
be optimally located at one of the potential disaster sites. Thus, the optimal location can
be found by simply enumerating the cost for each potential disaster site and choosing the
location with the smallest cost. In this way, Theorem 3 allows us to reduce the size of the
stationary problem in the one-dimensional case.

Typically, realistic instances of the dynamic relocation problem will exist in R2 and have
a large state space; thus, they will take a long time to solve. Under a few basic assumptions,
we can show that it is sufficient to consider a smaller feasible set of inventory locations and
thereby reduce the size of the stationary problem and the dynamic relocation problem. Let
conv(C) and Int(C) denote the convex hull and interior of a set C, respectively, and define
the following:

Assumption 1. Assume I ⊆ R2 is connected and closed and gj(y, d
j) is non-decreasing in

the distance y ∀j ∈ J . Let B = {A1, ..., Al} be a set of finitely many mutually disjoint,
connected, closed, and bounded subsets of R2 such that i 6∈ I ∀ i ∈ Int(An) and An ∈ B,
conv(I ∪ {lj|j ∈ J}) ⊆ I ∪B, and I ∪B is convex.

Furthermore, let B̂ = {An ∈ B|{An ∩ conv({lj|j ∈ J}) 6= ∅} ∨ {An ∩ conv(B̂ \An) 6= ∅}}
and Î = I∩conv(B̂∪{lj|j ∈ J}). See Figure 1 for an example network satisfying Assumption
1. Assumption 1 defines the set B of all infeasible regions for the mobile inventory, or areas
where the inventory cannot be located (e.g. land in the case of inventory on a ship). We
prove that it is sufficient for both the stationary and mobile inventory problems to consider
only inventory locations within Î, the feasible inventory locations within the convex hull of
the potential disaster sites extended to include any overlapping infeasible regions (see the
dark gray shaded region in Figure 1 for an example). Let projC(x) be the projection of a
point x onto a closed set C and note the following lemma:

Lemma 1. Let C ⊂ R2 be a closed, convex set and x ∈ R2. Then d(projC(x), z) ≤
d(x, z) ∀z ∈ C.

Using Lemma 1, we can prove the following which details the result for the stationary system:

Theorem 4. Under Assumption 1, ∃ an ī∗ ∈ Î minimizing V̄0(̄i, d0).
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Thus, under the assumptions listed, Theorem 4 allows us to reduce the size of the sta-
tionary problem by reducing the number of inventory locations that we must consider. If I
is convex, then Theorem 4 assures that there exists an optimal stationary inventory location
within the convex hull of the potential disaster sites.

Note that in the dynamic relocation problem, the state space is all possible inventory
locations cross all possible demand vectors, I × D. Even relatively small problem sizes
have a large state space and thus take a long time to solve to optimality. For this reason,
reducing the size of this state space for the dynamic relocation problem is worthwhile. Using
the following lemma, we can prove a similar result to Theorem 4 for the mobile inventory
system.

Lemma 2. Let C ⊂ R2 be a closed, convex set and x, y ∈ R2. Then d(projC(x), projC(y)) ≤
d(x, y).

We also need some additional notation. Let π = {iπ0 , ..., iπT} ∈ Π be a policy consisting of
an initial location iπ0 and a sequence of functions iπt+1 that map states (it, dt) into the decision
of where to move the mobile inventory for the following period, Π be the set of all feasible
policies for 3.1, and the cost of the mobile inventory system under policy π be represented
by V π

0 (iπ0 , d0) where

V π
t (it, dt) = G(it, dt) + f(d(it, i

π
t+1(it, dt))) +

∑
dt+1∈D

pt(dt, dt+1)V π
t+1

(
iπt+1(it, dt), dt+1

)
V π
T (iT , dT ) = G(iT , dT )

With this notation and Lemma 2, we can prove the following:

Theorem 5. Assume the cost to move f(y) is non-decreasing in the distance y. Under
Assumption 1, ∃ an optimal policy π∗ = {iπ∗0 , ..., i

π∗
T } ∈ Π such that iπ

∗
0 ∈ Î and iπ

∗
t+1(it, dt) ∈

Î ∀ it ∈ Î, dt ∈ D, and t ∈ {0, ..., T − 1}.

Theorem 5 assures that, under the assumptions listed, there exists an optimal policy such
that the mobile inventory will always remain within Î. If I is convex, then Theorem 5 assures
that there exists an optimal policy such that the mobile inventory will always remain within
the convex hull of the potential disaster sites.

We now characterize the value of inventory mobility to provide managerial insights on
when implementing a mobile inventory system is worthwhile. The following result concerns
the effect of the movement cost function f on the value:

Theorem 6. Assume f̂(y) ≥ f(y) ∀y ≥ 0. Then the value of inventory mobility is weakly
greater in a system with movement cost f than in the same system with movement cost f̂ .

Theorem 6 states that the value is greater when the movement cost is lower. This is intuitive
as the cost of moving is lower while the benefit of moving remains the same. Thus, a mobile
inventory system with high movement costs will likely not be worthwhile. Using similar logic,
we may expect that the value is greater when the cost to serve function, G, is greater as this
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may increase the benefit of moving closer to potential disaster sites. However, Example 1
shows that even in comparing identical systems where one has a cost to serve function which
is an increasing monotonic transformation of the other (meaning that ordering is preserved),
the value of inventory mobility may be lower with a greater cost to serve function.

Example 1. Consider two potential disaster sites with locations l1 and l2, respectively, and
deterministic demand dt, t ∈ {0, 1}. Let T = 1, I = Is = {l1, l2}, f(y) = 1 ∀y, and G and
Ĝ be as follows:

G(i, dt) i = l1 i = l2
t = 0 0 3
t = 1 3 0

Ĝ(i, dt) i = l1 i = l2
t = 0 1 3
t = 1 3 1

With cost to serve G, a stationary inventory will be located at either l1 or l2 at cost 3
and a mobile inventory will be located at l1 for t = 0 and l2 for t = 1 at cost 1. The value of
inventory mobility is 3−1 = 2. With movement cost Ĝ, the stationary and mobile inventory
policies are the same, but the value is now 4− 3 = 1 < 2.

Example 1 suggests that for the value of inventory mobility to be greater when G is
greater, G must be greater in a sense which not only preserves order but which also ensures
relative differences between two function evaluations weakly increase. Theorem 7 character-
izes such a transformation.

Theorem 7. Assume G(i, d) ≥ 0 ∀i ∈ I and d ∈ D, f(0) = 0, and f(y) ≥ 0 ∀y ≥ 0. Let
Ĝ(i, d) = aG(i, d) + b where a ≥ 1, b ≥ 0. Then the value of inventory mobility is weakly
greater in a system with cost to serve Ĝ than in the same system with cost to serve G.

Thus, if it is possible to decrease the cost to serve demand from a stationary inventory,
then a mobile inventory system is less worthwhile; on the other hand, as the cost to serve
increases, a mobile inventory system may become a more worthwhile investment as long as
relocation costs are not similarly affected. We further explore the sensitivity of the value of
inventory mobility to other parameters in Section 3.4.

We can also find bounds on the value of inventory mobility. Using equations 3.1, 3.3,
and 3.4 we arrive at the following result.

Theorem 8. Assuming i∗(d) = arg mini∈I G(i, d) exists ∀ d ∈ D, the value of inventory
mobility in disaster relief when the disaster relief system is as represented in 3.1 is bounded
above by

G(̄i, d0)−G(i∗(d0), d0) + P 0
1

[
I +

T∑
t=2

t−1∏
k=1

P k

] [
G(̄i, d̂)−G(i∗(d̂), d̂)

]
= G(̄i, d0)−G(i∗(d0), d0) +

∑
d∈D

[
[G(̄i, d)−G(i∗(d), d)]

T∑
t=1

pt(d0, d)

]
(3.5)
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where i∗(d̂) is the column vector for which each element is the value of i∗ evaluated at the
corresponding element of d̂ and G(i∗(d̂), d̂) is the column vector for which each element is
G(i∗(d), d) where d is the corresponding element of d̂.

This result is due to the fact that the value of inventory mobility is bounded above by the
difference between the cost when using traditional warehousing and the cost of being able to
be in the best position possible in each period. This bound will be tighter when movement
costs are relatively low and when demands are relatively easier to predict. If the bound is
less than or equal to the cost of investing in inventory mobility, then this bound can be used
to justify the use of traditional warehousing over mobile inventory for disaster relief. Bound
3.5 has a similar interpretation to equation 3.4. That is, the value if inventory mobility is
bounded above by the sum over all possible demand states of the difference in cost to serve
that demand state from the stationary inventory position and the cost to serve that demand
state from the best position possible times the expected proportion of time that the demand
will be in that particular state.

We can also find a lower bound on the value of inventory mobility in disaster relief. We
note that any policy feasible for the DP equations 3.1 will provide an upper bound on the
optimal minimum cost for those DP equations. Since the value of inventory mobility is
calculated by subtracting the optimal cost of the mobile inventory system (equations 3.1)
from the optimal cost of the traditional inventory system (equations 3.3), any feasible policy
will give us a lower bound on the value of inventory mobility. With this logic, we find the
following theorem.

Theorem 9. The value of inventory mobility in disaster relief when the disaster relief system
is as represented in 3.1 is bounded below by

V̄0(̄i, d0)− V π
0 (i0, d0) (3.6)

where π = {iπ0 , ..., iπT} ∈ Π.
If π ∈ Π̂ where Π̂ is the set of all feasible policies for 3.1 that specify a single path which is

independent of demand realizations and îπt is the position of the inventory in period t under
policy π then 3.6 can be written explicitly as

V̄0(̄i, d0)−G(̂iπ0 , d0)− P 0
1G(̂iπ1 , d̂)− P 0

1

T−1∑
t=1

t−1∏
k=1

P kG(̂iπt+1, d̂)−
T−1∑
t=0

f(d(̂iπt , î
π
t+1)) (3.7)

= V̄0(̄i, d0)−G(̂iπ0 , d0)−
T−1∑
t=0

∑
d∈D

pt(d0, d)G(̂iπt , d)−
T−1∑
t=0

f (̂iπt , î
π
t+1)

where V̄0(̄i, d0) is given by equations 3.3 or 3.4.

For an example of a feasible policy for 3.1 that specifies a single path which is independent
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of demand realizations, consider the open-loop myopic policy π defined as

îπ0 = arg min
i0∈I

G(i0, d0) (3.8)

îπt+1 = arg min
it+1∈I

{
f(d(̂iπt , it+1)) +

∑
d∈D

pt(d0, d)G(it+1, d)

}
, t = 0, ..., T − 1

Bound 3.6 will be tight if π is a policy which is close to optimal. Bound 3.7 will be
tight when it is not especially beneficial to take into account future period costs when
making movement decisions, for example, when movement costs are relatively low or when
the demand forecasts do not have a lot of variation. If the lower bound found in Theorem 9
is greater than or equal to the cost of investing in inventory mobility, then this bound can
be used to justify such an investment.

Recognizing that i∗(d0) = arg mini∈I G(i, d) = îπ0 , the gap between the upper bound given
by equation 3.5 and the lower bound given by equation 3.7 is

T∑
t=1

∑
d∈D

[
pt(d0, d)

[
G(̂iπt , d)−G(̂i∗(d), d)

]]
+

T−1∑
t=1

f (̂iπt , î
π
t+1)

This optimality gap will be tight when movement costs are relatively low or when future
demand states are relatively easy to predict.

3.2 Path and Speed of Relocation Decisions

In Section 3.1, we introduced our model for optimally relocating a mobile inventory over time
in response to changing demand forecasts. This model focuses on the high level decisions
of where to locate the mobile inventory over time; also important in managing a mobile
inventory are the lower level decisions of what path and at what speed to move the inventory
between those locations. The general model does not address these decisions directly but
rather assumes a given value of the cost to move function which depends on these decisions. In
this section, we analyze these path and speed decisions using a special case of the relocation
model. The results of this section can be used to define the cost to move function f in
the general model. Furthermore, as we see at the end of the section, this special case also
provides some intuition on the optimal relocation decisions.

Given a relocation policy and assuming an adequate stock of fuel, the path and speed
decisions for how to move between a pair of sites can be determined independently from the
corresponding decisions for another pair of sites. Thus, consider the problem of determining
the best path and speed for moving between two particular sites. Let T be the length of a
single period in the original relocation problem, let the inventory be located at the first site
of the pair of sites in period ‘0,’ fix the location to the second site in period ‘T ,’ and let f
be the cost to move the inventory in the corresponding smaller increments of time. With
this set up, the optimal path and speed decisions can be determined by a special case of the
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model described by the DP equations

Vt(it) = min
it+1∈I

[ f(d(it, it+1)) + Vt+1(it+1)]

VT−1(iT−1) = f(d(iT−1, iT )) + VT (iT )

VT (iT ) =
∑
j∈J

pjgj(d(iT , lj))

For simplicity, we let pj be the probability a disaster will occur at site j ∈ J at time T and let
each potential disaster location have only one possible demand level. Accordingly, we omitted
the demand level argument of the cost to serve functions gj. These simplifications have
no affect on the intermediate movement decisions. When f is convex and non-decreasing,
assumptions that hold in most applications of the problem, we can prove the following:

Theorem 10. If f is convex and non-decreasing in the distance moved and I is convex, then
the minimum cost to move the inventory from i0 to iT in T periods is Tf (d(i0, iT )/T ) and
it is optimal to move 1

T
d(i0, iT ) toward iT in each period.

Given the final location of the inventory iT , Theorem 10 states that the optimal movement
plan is to move the inventory as slowly as possible along the direct path from i0 to iT . In
relocating the inventory between two locations in any time period, it is optimal to move the
inventory at the slowest speed possible along the direct path between the two locations.

In some applications, there may be a fixed cost f̄ (e.g. truck rental cost, operator wages,
etc.) to move the inventory which is incurred only if the inventory is moved a positive
distance. With a fixed cost, it is no longer necessarily optimal to move in every period; there
is a trade off between moving as slowly as possible and not moving in every period to avoid
the fixed cost. However, we can prove that once the number of periods in which to move
is determined, the inventory will be moved as slowly as possible over that number of time
periods. We will use the following lemma in the proofs of Theorems 11 and 13.

Lemma 3. h(τ) := τf
(
d̄
τ

)
is convex in τ

Theorem 11. If f is convex and non-decreasing in the distance moved, I is convex, and
there is a fixed cost f̄ to move the inventory a positive distance in a given period, then the
minimum cost to move the inventory from i0 to iT in T periods is

Cf (τ
∗) := τ ∗f̄ + τ ∗f (d(i0, iT )/τ ∗) + (T − τ ∗)f(0)

where τ ∗ is the minimum between T and the smallest τ ∈ Z+ such that

Cf (τ) ≤ Cf (τ + 1) (3.9)

and it is optimal to move 1
τ∗
d(i0, iT ) towards iT in τ ∗ of the periods and to not move in the

other periods.
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For example, if f(d(i, i′)) = a1(d(i, i′))2 +a3 where a1 > 0 and I = R2, then the cost to move
is Cf (τ

∗) = τ ∗f̄ + a1[(xT − x0)2 + (yT − y0)2]/τ ∗ + Ta3 where τ ∗ is the smallest τ ∈ Z+ such
that 1

τ(τ+1)
≤ f̄/[(xT − x0)2 + (yT − y0)2].

Theorems 10 and 11 state that, under a few basic assumptions, it is optimal to move
the inventory as slowly as possible along the direct path from i0 to iT and that a fixed cost
shortens the amount of time over which to move the inventory at a constant, slow rate.
The following Theorems 12 and 13 state that these results also hold in the continuous time
setting, the most appropriate setting for the operational level path and speed decisions.
Define the variable cost to move the inventory at a rate of r for one unit of time to be fc(r)
and the fixed cost per unit of time of moving the inventory at a positive rate to be f̄c. The
following theorems are the continuous analogs of Theorems 10 and 11, respectively.

Theorem 12. If fc is convex and non-decreasing in the movement rate and I is convex, then
the minimum cost to move the inventory from i0 to iT in T time units is Tfc (d(i0, iT )/T )
and it is optimal to move directly toward iT at a rate of d(i0, iT )/T ∀t ∈ [0, T ].

That is, given the final location of the inventory at the end of the planning horizon and a
convex cost to move function, it is optimal to move the inventory as slowly as possible along
the direct path from i0 to iT . Considering the fixed cost,

Theorem 13. If fc is convex and non-decreasing in the movement rate, I is convex, and
there is a fixed cost f̄c per unit of time of moving the inventory at a positive rate, then the
minimum cost to move the inventory from i0 to iT in T time units is

Cfc(t
∗) := t∗f̄c + t∗fc (d(i0, iT )/t∗) + (T − t∗)fc(0)

where t∗ is the minimum of Cfc(t) over [0, T ] and it is optimal to move directly toward iT at
a rate of d(i0, iT )/t∗ ∀t ∈ [0, t∗].

As in the discrete time setting, due to the fixed cost, it is no longer necessarily optimal to
move continuously throughout the planning horizon; that is, the fixed cost introduces a trade
off between moving as slowly as possible and not moving constantly to avoid the fixed cost.
Once the length of time in which to move, t∗, is determined, however, the inventory will be
moved as slowly as possible over t∗ time units and remain stationary for the remaining T − t∗
time units.

To gain some intuition on the optimal relocation decisions of the original problem, let us
further explore the utility of Theorem 10 through a few examples where we no longer fix the
location of the mobile inventory in period T . First, consider the case where I = R, that is,
when the mobile inventory’s movement is restricted to one dimension, and the |J | potential
disaster sites are also in one dimension. In this case, it = xt ∈ R and li ∈ R and the distance
measure is d(x, x′) = |x′ − x|. Furthermore, let us assume that the cost functions f and gj
take the following form:

f(d(x, x′)) = a1(d(x, x′))2 + a3 (3.10)

gj(d(x, lj)) = b1j(d(x, lj))
2 + b3j ∀ j ∈ J (3.11)
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where a1 > 0 and 1
T
a1 +

∑
j∈J pjb1j > 0. We assume f and gj are quadratic in the distance

to reflect possible nonlinear fuel costs or penalties for serving demand from long distances
due to lead time considerations. The DP equations can be rewritten as follows,

Vt(xt) = min
xt+1∈R

[
a1(xt+1 − xt)2 + a3 + Vt+1(xt+1)

]
(3.12)

VT (xT ) =
∑
j∈J

pj
[
b1j(xT − lj)2 + b3j

]
(3.13)

It is cumbersome to solve these DP equations directly using the DP algorithm. However,
noting that there are only inventory movement costs until the end of the horizon, the problem
can be simplified by Theorem 10:

Corollary 1. If the cost function f takes the form of 3.10 where a1 > 0 and I = R, then
the minimum cost to get from a position x0 to a position xT in T periods is

1

T
a1(xT − x0)2 + Ta3

and it is optimal to move 1
T

th
of the total distance |xT − x0| in each period.

Using Corollary 1 and DP equations 3.12 and 3.13, the optimal cost of this one dimen-
sional version of the model can be written as

V0(x0) = min
xT∈R

[
1

T
a1(xT − x0)2 + Ta3 +

∑
j∈J

pj
[
b1j(xT − lj)2 + b3j

]]

Note that the problem has been reduced to the minimization of a quadratic function over a
single variable, xT . Solving the first and second order conditions, we arrive at the following
result regarding the optimal ending position of the inventory, x∗T . Note that together with

the specification stated in Corollary 1 that it is optimal to move 1
T

th
of the total distance

|x∗T − x0| in each period, the specification of x∗T will sufficiently describe the optimal policy
for this one dimensional version of the model.

Theorem 14. If the cost functions f and gj take the form of 3.10 and 3.11 where a1 > 0
and 1

T
a1 +

∑
j∈M pjb1j > 0 and I = R, then the optimal ending position of the inventory for

period T is

x∗T =
1
T
a1x0 +

∑
j∈J pjb1jlj

1
T
a1 +

∑
j∈J pjb1j

and it is optimal to move 1
T

th
of the total distance |x∗T − x0| towards x∗T in each period.

Note that the optimal ending position x∗T is a weighted average of the starting position
x0 and the |J | potential disaster site locations lj where the weight on x0 is the quadratic
coefficient term of the cost to move divided by the number of periods and the weight on lj
is the quadratic coefficient term of the cost to serve demand. If pj or b1j increases while all
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other problem parameters remain constant, then the weights on potential disaster site j will
increase causing the optimal ending location to be closer to potential disaster site j as the
coefficient on distance of the expected cost to serve demand at potential disaster site j will
increase. Similarly, if T decreases or a1 increases, then the cost to move increases and thus
the optimal ending location will be closer to x0; there is less incentive to move as the benefit
from moving remains the same while the cost to move increases.

Let us now consider slightly more general cost functions. Consider the case where the
cost functions f and gj take the following form, where we now have included a linear cost
term:

f(d(x, xt)) = a1(d(x, xt))
2 + a2d(x, xt) + a3 (3.14)

gj(d(x, lj)) = b1j(d(x, lj))
2 + b2jd(x, lj) + b3j ∀ j ∈ J (3.15)

where a1 > 0, a2 > 0, and 1
T
a1 +

∑
j∈J pjb1j > 0. Assuming that the cost functions f

and gj take the form of 3.14 and 3.15, the DP equations can be rewritten as follows:

Vt(xt) = min
xt+1

[
a1(xt+1 − xt)2 + a2|xt−1 − xt|+ a3 + Vt+1(xt+1)

]
(3.16)

VT (xT ) =
∑
j∈J

pj
[
b1j(xT − lj)2 + b2j|xT − lj|+ b3j

]
(3.17)

The functions over which these DP equations minimize are not everywhere differentiable as
DP equations 3.12 and 3.13 are. Thus, approaching the DP equations directly to solve the
problem would be even more cumbersome. However, again by Theorem 10,

Corollary 2. If the cost function f takes the form of 3.14 where a1 > 0 and a2 > 0 and
I = R, then the minimum cost to move the inventory from a position x0 to a position xT in
T periods is

1

T
a1(xT − x0)2 + a2|xT − x0|+ Ta3

and it is optimal to move 1
T

th
of the total distance |xT − x0| in each period.

Using Corollary 2 and DP equations 3.16 and 3.17, the optimal cost of this one-dimensional
version of the model can be written as

V0(x0) = min
xT

[
1

T
a1(xT − x0)2 + a2|xT − x0|+ Ta3

+
∑
j∈J

pj[b1j(xT − lj)2 + b2j|xT − lj|+ b3j]

]

Note that, just as before, the problem has been reduced to the minimization of a continuous
and convex function over the single variable xT ; however, due to the many linear absolute
value terms, it is no longer possible to find the analytical solution for the minimizing x∗T .
It is possible, however, to solve this problem efficiently using one of the many numerical
algorithms designed to efficiently find the minimum of a convex function.
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We can find similar results to Corollary 1 and Theorem 14 for the two-dimensional case
where I = R2, lj ∈ R2 ∀j ∈ J , and it = (xt, yt). For each of the |J | potential disaster sites,
let lj = (x̄j, ȳj). Consider the case where the cost functions f and gj take the form of 3.10
and 3.11, respectively, where a1 > 0 and 1

T
a1 +

∑
j∈J pjb1j > 0. The DP equations can be

rewritten as follows:

Vt(xt, yt) = min
xt+1,yt+1

[
a1

[
(xt+1 − xt)2 + (yt+1 − yt)2

]
+ a3 + Vt+1(xt+1, yt+1)

]
(3.18)

VT (xT , yT ) =
∑
j∈J

pj
[
b1j

[
(xT − x̄j)2 + (yT − ȳj)2

]
+ b3j

]
Notice that the cost-to-go functions are separable in the xt and yt variables. By Theorem

10,

Corollary 3. If the cost function f takes the form of 3.10 where a1 > 0 and I = R2, then
the minimum cost to move the inventory from a position (x0, y0) to a position (xT , yT ) in T
periods is

1

T
a1

[
(xT − x0)2 + (yT − y0)2

]
+ Ta3

and it is optimal to move 1
T

th
of the total distance

√
(xT − x0)2 + (yT − y0)2 in each period.

Using Corollary 3, the optimal cost of the model can be written as follows:

V0(x0, y0) = min
xT ,yT

[
1

T
a1

[
(xT − x0)2 + (yT − y0)2

]
+ Ta3

+
∑
j∈J

pj
[
b1j

[
(xT − x̄j)2 + (yT − ȳj)2

]
+ b3j

] ]
(3.19)

Note that the problem has been simplified to the minimization of a separable quadratic
function of two variables. The separability is due to the simple quadratic structure of f and
gj which squares the Euclidean distance argument so that the resulting total cost function
3.19 is convex in xT and yT . Solving first and second order conditions, we arrive at the
following result.

Theorem 15. If the cost functions f and gj take the form of 3.10 and 3.11 where a1 > 0
and 1

T
a1 +

∑
j∈J pjb1j > 0 and I = R2, then the optimal ending position of the inventory for

period T is

(x∗T , y
∗
T ) =

(
1
T
a1x0 +

∑
j∈J pjb1jx̄j

1
T
a1 +

∑
j∈J pjb1j

,
1
T
a1y0 +

∑
j∈J pjb1j ȳj

1
T
a1 +

∑
j∈J pjb1j

)
and it is optimal to move 1

T

√
(x0 − x∗T )2 + (y0 − y∗T )2 towards (x∗T , y

∗
T ) in each period.
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Theorems 10 and 15 fully describe the optimal policy for this simple case. The optimal
final location is a weighted average of the starting location and the |J | potential disaster
sites. If T decreases or a1 (the scalable portion of the cost to move) increases while all other
parameters remain constant, then the cost to move the same distance over the planning
horizon increases and the optimal ending location will be closer to the starting position.
Thus, if there is little time between relatively high expected demand periods or if the cost
to move is high, we expect that the inventory may not cover as much distance in an optimal
policy for the general problem as it would otherwise. If pj or b1j (the scalable portion of the
expected cost to serve demand at site j) increase, then the expected cost to serve demand
at site j increases causing the optimal ending location to be closer to site j. Thus, if the
expected cost to serve demand at a particular site is high, the inventory will likely move
closer or remain close to that site.

3.3 Base State Heuristic

In this section, we describe a solution heuristic for the general problem described in Section
3.1. We assume we have discretized I so that it is a finite set. It is reasonable to assume
that the cost considerations of the problem will still be sufficiently captured as service and
relocation costs do not change significantly with small changes in location.

The backwards DP algorithm can be used to calculate the cost-to-go value Vt(it, dt)
exactly for all states and time periods. In this algorithm, one starts in period T and calculates
the value of being in each state (iT , dT ), for iT ∈ I and dT ∈ D, using DP equations 3.1.
Then one does the same for period T − 1 and continues in this manner until one reaches the
initial period. The DP equations 3.1 can then be used to find the optimal solution for any
state and time period of where to relocate the inventory for the following period. However,
the demand transition probabilities must be developed based on incomplete information and
can be updated as new information becomes available; accordingly, a solution should only
be used for the period in which the model was solved and the model should be re-solved
each period using updated parameters. Recognizing that time periods may be relatively
short, it is imperative to be able to solve the problem quickly. As we show in Section
3.4.1, however, calculating the cost-to-go values exactly using the backwards DP algorithm
is prohibitively time consuming for large problem instances. Accordingly, we develop the
Base State Heuristic (BSH) to estimate the cost-to-go values in a more appropriate amount
of time.

Several factors are behind the excessive computational time required by the backward DP
algorithm. In this algorithm, for every time period one must calculate the exact cost-to-go
for every possible state (it, dt). Calculating this value exactly is time consuming as it requires
calculating a computationally expensive expected value over all possible transitions of the
demand. Furthermore, calculating the expected value requires the transition probabilities
pt(dt, dt+1) for all dt+1 ∈ D. Since the |D| × |D| full transition matrix P t is too big to store
for any realistic problem sizes (about 34 GB of space is required to store P t in MATLAB
for a problem with 16 potential disaster sites with 2 possible demand levels each), one must
calculate the transition probabilities for each cost-to-go calculation one at a time as they are

26



needed.
The BSH is similar to the backwards DP algorithm in that it starts at the end of the

horizon, estimates the cost-to-go for each state, and then steps back in time until it reaches
the beginning of the horizon. However, instead of using the DP equations, which include
computationally expensive expected value calculations, to calculate each cost-to-go exactly,
the heuristic uses them to estimate the cost-to-go for only a subset of states, the “Base
States.” The heuristic then estimates the cost-to-go of the remaining states, or “non-Base
States,” using a function of the costs estimated for the Base States. Specifically, the BSH
estimates the cost-to-go of each non-Base State (it, dt) using some function Ψ of the estimated
cost-to-go of some subset S(it,dt) of the Base States which are deemed “similar” the non-Base
State. Psudocode for the BSH can be found in the following algorithm.

for all (iT , dT ) ∈ I ×D do

Initialize V̂T (iT , dT ) = G(iT , dT )
end
for t = T − 1, ..., 0 do

Calculate costs for Base States:
for all (it, dt) ∈ Base States do

for all dt+1 ∈ D do

Calculate pt(dt, dt+1) = q(p1
t (d

1
t , d

1
t+1), ..., p

|J |
t (d

|J |
t , d

|J |
t+1))

end

Set V̂t(it, dt) =

G(it, dt) +minit+1

{
f(d(it, it+1)) +

∑
dt+1∈D pt(dt, dt+1)V̂t+1(it+1, dt+1)

}
end
Estimate costs for non-Base States:
for all (it, dt) ∈ non-Base States do

Set V̂t(it, dt) = Ψ(S(it,dt))
end

end

Return V̂t(it, dt) ∀ (it, dt) ∈ I ×D, t ∈ {0, 1, ..., T}
Algorithm: Base State Heuristic

We now further describe which states are Base States and Ψ and the subsets S(it,dt) over
which Ψ operates. For the Base States, we choose a constant k as the maximum number of
disasters (sites with positive demand) possible at the same time in a Base State. A given
state is a Base State if the number of sites that are experiencing demand are less than or
equal to k. If k is small, the number of Base States is a small percentage of the total number
of states. The total number of Base States in the general case and for two specific examples
are given in Table 1. If |I| is large and contributing significantly to the computational time,
then the number of Base States could be reduced by only including a subset of the potential
inventory locations. Let S(it,dt) be all of the Base States (it, d

′
t) for which d′t has k of the
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k General Case |J | = 16, 2 possible
demand levels each
(% of total states)

|J | = 8, 4 possible
demand levels each
(% of total states)

1 (1 +
∑|J |

i=1(|Di| − 1))|I| 17|I| (0.0259%) 25|I| (0.0381%)

2 (1 +
∑|J |

i=1(|Di| − 1) 137|I| (0.209%) 277|I| (0.423%)
+
∑

i<j((|Di| − 1)(|Dj| − 1)))|I|
3 (1 +

∑|J |
i=1(|Di| − 1) 697|I| (1.06%) 1789|I| (2.73%)

+
∑

i<j((|Di| − 1)(|Dj| − 1))

+
∑

i<j<l((|Di| − 1)(|Dj| − 1)(|Dl| − 1)))|I|

Table 1: Total number of Base States for the general case and two examples. In parenthesis are the
percentages of the total number of states.

same positive levels of demand as dt. For example, in a case with |J | = 3 and k = 1,

S(it,(1,2,1)) = {(it, (1, 0, 0)), (it, (0, 2, 0)), (it, (0, 0, 1))}

Finally, define Ψ to be the maximum of the costs-to-go calculated for the base states in
S(it,dt) plus the cost to serve positive demand of the non-Base State not represented in the
Base State. In our example, the estimate of the cost-to-go is then

V̂t(it, (1, 2, 1)) = Ψ(S(it,(1,2,1)))

= max{ V̂t(it, (1, 0, 0)) +G(it, (0, 2, 1)), V̂t(it, (0, 2, 0)) +G(it, (1, 0, 1)),

V̂t(it, (0, 0, 1)) +G(it, (1, 2, 0))}

These specifications, which we will refer to as Specification 1, were chosen because
they are relatively easy to implement and perform well as it is likely that not many sites
will experience demand at the same time. Another possible way to specify the Base States
(Specification 2) is to choose the maximum number NB of states to include in the Base States
and then to choose the Base States as the NB states (Xt, dt) with the largest probabilities
pt(d0, dt) of occurring for each time period. However, while upon first thought it seems that
choosing Base States to be the most likely states will perform better than Specification 1,
using this method does not guarantee that you will have useful states with which to estimate
the non-Base States. Thus, it seems that the advantage gained out of more accurately
estimating the most-likely states is outweighed by being unable to use these estimates to
accurately estimate the non-Base States. Furthermore, since in each stage even the Base
States’ costs-to-go are calculated using the expected value of all future states (Base States and
non-Base States), the inaccuracies in the non-Base State values are propagated throughout.

Furthermore, Specification 1 gives a concrete and straight forward way of choosing which
Base States are used to estimate each non-Base State. On the contrary, Specification 2 has
many decisions associated with its implementation. Specifically, one must choose whether to
use different Base States for each time period or the same Base States for each time period
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(in our computational experiments, we found that implementations using the same Base
States for each time period tended to perform better). Once the Base States are defined, one
must choose which Base States should be used to estimate each non-Base State. One must
either specify this one non-Base State at a time or come up with a general rule. We have yet
to find another implementation which performs better than Specification 1. Furthermore,
the following result holds:

Theorem 16. Under Specification 1, the policy suggested by the BSH is optimal when the
demands are temporally independent, i.e. when pt(dt, dt+1) = pt(d

′
t, dt+1) ∀ dt, d′t, dt+1 ∈ D,

and t ∈ {0, 1, ..., T − 1}.

Theorem 16 states that the policy suggested by the BSH is optimal when the demand
realization in one period gives no additional information regarding the next period’s demand.
We describe performance results of the BSH under Specification 1 in Section 3.4.

3.4 Numerical Results

In this section, we present performance results of the BSH as well as numerical experiments
and managerial insights on the model described in Section 3.1. We do not seek to estimate
the value or simulate true operations for a specific case study. Rather, as the first to study
inventory mobility for disaster relief, we seek to understand how the cost and value of inven-
tory mobility depend on the parameter values and demand characteristics to gain insights on
when mobile inventory systems are worthwhile. Accordingly, we consider a network which
can be easily modified to represent different settings and solved to optimality quickly to
enable running many test cases. A real potential disaster network is too complex and large
to be modified for the purpose of our experiments. Furthermore, as we see in Section 3.4.1,
large instances of the problem take a prohibitive amount of time to solve to optimality. Thus,
we consider a simple and small generic network. We keep in mind the motivating example of
a mobile inventory kept on a ship. The potential disaster sites are located randomly (except
where otherwise noted) on one of two parallel coasts which are 2000 miles apart and 2000
miles long each; this network is illustrated in Figure 2. The ship’s potential locations are
restricted to points within these two coasts defined by a discrete grid with 200 mile spacing
for a total of 121 nodes. We assume T = 30 and each time period is two days.

We utilize historical data from EM-DAT (Guha-Sapir et al. 2014), a database containing
statistics on the occurrence and effects of major disasters, to generate the simple demand
levels and transition probabilities of our experiments. We utilize data on earthquakes and
tropical cyclones (e.g. hurricanes) which occurred in the years 1990 to 2014 in North and
South America, Europe, and Africa. To be able to consider response to tropical cyclones
and use historical data to generate problem parameters in a realistic manner, we assume our
planning horizon is the 30 time periods from August 15 to October 13 which is during the
Atlantic hurricane season. As detailed in Table 2, we identified five geographically compact
regions which were active areas for earthquakes in the years considered and five which were
active areas for cyclones in August 15 through September 13 of the years considered. Tables
3 and 4 contain summary statistics for each of these regions. For each region and each type
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Figure 2: The network considered in our
numerical experiments. Potential disaster
sites are on one of the two coasts (the ver-
tical black lines) and the potential inven-
tory locations are the blue points between the
coasts.

of disaster, we aggregated data points of disasters which occurred on the same day. We
only considered disasters which affected at least 100 people and considered each disaster
a “small” disaster if it affected between 100 and 30,000 people and a “large” disaster if it
affected at least 30,000 people. In the database, affected people are those requiring basic
survival supplies such as food, water, and shelter or immediate medical assistance.

The transition probabilities and demand levels for each test case were randomly generated
to be in ranges similar to the statistics displayed in Tables 3 and 4. Except where otherwise
noted, our numerical set up is as follows. Each potential disaster site has two potential
demand levels (for tractability): 0 and a realization of an exponential random variable with
distribution fitted to the average number of people affected by all disasters for the 10 regions
using the method of moments (i.e. 1/λ = 227, 092, the average value over the 10 regions). For
each potential disaster site and time period, the probability of transitioning from 0 demand to
positive demand is a realization of a random variable which is distributed Uniform(0.002849,
0.052); the range of the distribution is the range of the single period disaster probabilities for
the 10 regions. Once a disaster occurs, a relief organization will typically provide supplies
for some period of time; here we assume that the pre-positioned inventory is used to provide
supplies for an average of 3 periods while permanent supply lines are established. Thus, for
each potential disaster site and each time period, the probability of remaining in the same
level of positive demand is 2/3 ≈ 0.6667. We assume that demands are independent across
sites (we relax this assumption in the correlation experiment of Section 3.4.2) and that all
sites have zero demand at the start of the horizon.

The cost to move between nodes is determined by a function of the distance traveled. The
function used is roughly based on a fuel consumption model for container ships developed
by Notteboom and Cariou (2009) and is as follows:

Costf (x) =

600
(

20.5
24

) (
x/ψ
14

)
if x <= 672ψ

600 ∗ 260
(

x/ψ
48∗24.5

)3.3

if x > 672ψ
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Active earthquake regions Active tropical cyclone regions

E1: Guatemala, Honduras, El Salvador C1: Haiti, the Dominican Republic, Puerto
Rico

E2: Greece, Albania C2: Florida
E3: Southwestern Peru (Lima Province,

regions of Ica, Ayacucho, Apuŕımac,
Cuzco, Arequipa)

C3: Southeastern Mexico (states of
Veracruz, Tabasco, and Compeche)

E4: Northern and western Columbia
(departments of Nariño, Cauca,
Valle del Cauca, Chocó, Risaralda,
Antioquia, Cundinamarca, Boyacá,
Arauca)

C4: Eastern Caribbean islands (St Kitts
and Nevis, Antigua and Barbuda,
Dominica, Martinique, St Lucia, St
Vincent and the Grenadines, Barbados,
Grenada)

E5: Nicaragua (west of Matagalpa), Costa
Rica, Panama (west of Santiago)

C5: Louisiana, southern Mississippi,
southern Alabama

Table 2: Active regions for earthquakes and tropical cyclones.

Region
Average # of people affected by Single period

disaster probability
% of disasters that
were “small”all “small” “large”

E1 236204 5550 605251 0.0028 0.6154
E2 16555 3469 95071 0.0031 0.8571
E3 85616 2873 361426 0.0028 0.7692
E4 91570 3220 621675 0.0031 0.8571
E5 12057 4287 128618 0.0035 0.9375
C1 89106 7449 221799
C2 1196227 2764 1673613
C3 204127 6415 327696
C4 8718 3885 61884
C5 330738 4832 548009

Table 3: Regional summary statistics including the average number of people affected by various
disaster sizes. To calculate the single period disaster probability, we divided the total number of
disasters that occurred by 25 years and divided the result by 365/2 = 182.5, the total number of
time periods per year. Additional cyclone region statistics are detailed in Table 4.
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Region
Single period disaster probability % of disasters that were “small”

8/15-9/3 9/4-9/23 9/24-10/13 8/15-9/3 9/4-9/23 9/24-10/13

C1 0.0520 0.0240 0.0080 0.6154 0.5000 1.0000
C2 0.0080 0.0120 0.0080 0.5000 0.3333 0.0000
C3 0.0160 0.0120 0.0240 0.5000 0.0000 0.5000
C4 0.0160 0.0160 0.0160 1.0000 0.7500 1.0000
C5 0.0200 0.0120 0.0080 0.2000 0.6667 0.5000

Table 4: Additional summary statistics for the tropical cyclones regions. To calculate the single
period disaster probability, we divided the total number of disasters that occurred in the specified
range of time by 25 and divided the result by 10, the number of time periods in each range of time.

where ψ ≈ 1.150779 is the number of miles in a nautical mile and the cut off point, 672ψ, is
approximately the number of miles that can be traveled in 48 hours at a speed of 14 knots.
The function is of this form to model the fact that at a certain speed, less fuel efficiencies can
be gained by traveling at lower speeds. $600 is the price per ton of fuel. In the definition of

the case where x <= 672ψ,
(

20.5
24

)
is the tons of fuel used per hour and

(
x/ψ
14

)
is the number

of hours to travel at 14 knots. In the definition of the case where x > 672ψ, 260
(

x/ψ
48∗24.5

)3.3

is roughly the fuel consumption for the two-day time period. Thus, the cost of relocating
the ship from position (x1, y1) to position (x2, y2) is

f(d((x1, y1), (x2, y2))) = Costf

(√
(x2 − x1)2 + (y2 − y1)2

)
Following Rawls and Turnquist (2012), we assume the cost to serve demand at a potential
disaster site is $0.0015 per unit of demand per mile between the ship and the potential
disaster site. All numerical experiments were performed on a 3.07GHz Windows 7 x64
laptop computer using MATLAB.

3.4.1 Base State Heuristic Numerical Results

Table 5 shows numerical results on the performance of the BSH for k ∈ {1, 2, 3} for cases
with different numbers of potential disaster sites, |J | ∈ {3, 4, ..., 16}. The optimal CPU
time is the amount of time it takes to solve the model exactly using the backwards DP
algorithm. Table 5 shows that the time it takes to solve the problem to optimality increases
dramatically as |J | increases. However, it also shows that the BSH, even with k = 1, solves
the problem to near optimality in a small fraction of the time. For example, the case with
16 sites took over 31 hours to solve to optimality and only 86.06 seconds, or 0.08% of the
time, to solve to within 0.21% of optimality using the BSH with k = 1. For all test cases,
the BSH found a solution within 0.43% of optimality in less than 87 seconds. It appears that
Ψ is a good estimate of the cost-to-go for the non-Base States; it is such that the resulting
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Optimal BSH, k = 1 BSH, k = 2 BSH, k = 3

|J | n time time % error time % error time % error

3 10 0.07 0.03 0.0967% 0.05 0.0008% N/A N/A
4 10 0.12 0.04 0.0560% 0.08 0.0001% 0.11 0.0000%
5 10 0.28 0.06 0.1760% 0.15 0.0009% 0.23 0.0000%
6 10 0.62 0.08 0.1913% 0.23 0.0007% 0.42 0.0000%
7 10 1.40 0.12 0.1974% 0.36 0.0011% 0.73 0.0000%
8 10 3.33 0.20 0.1999% 0.59 0.0011% 1.30 0.0000%
9 10 9.25 0.35 0.2286% 1.07 0.0021% 2.60 0.0001%

10 10 26.28 0.69 0.2487% 2.06 0.0025% 5.25 0.0001%
11 10 91.81 1.43 0.1915% 4.46 0.0031% 12.29 0.0001%
12 10 353.76 3.43 0.2620% 11.44 0.0038% 32.74 0.0001%
13 10 1700.27 7.73 0.2011% 29.54 0.0041% 95.63 0.0002%
14 5 6901.68 17.02 0.2688% 71.05 0.0037% 246.57 0.0002%
15 2 27819.90 36.82 0.2411% 164.41 0.0035% 611.58 0.0002%
16 1 112043.30 86.06 0.2144% 376.55 0.0029% 1487.37 0.0002%

Table 5: BSH performance for a varying number of potential disaster sites |J |. n is the number
of runs, times are CPU times (in seconds), and CPU times and percent errors (percent deviations
from optimal) are the average over the n runs.

V̂t(it, dt) ∀it ∈ I are in relatively the right order for each time period such that optimal, or
close to optimal, decisions of where to relocate the inventory are made.

Table 5 also shows that increasing k weakly decreases the percent within optimality
slightly at the expense of increased computation time. From this perspective, for large |J |,
the percent error is likely low enough with k = 1 that using a larger k is not worth the
additional computation time. However, Table 6 suggests another advantage of using a larger
k. In using the BSH, we obtain an estimate of the true expected cost of the policy suggested
by the BSH, V̂0(i0, d0), rather than the true expected cost itself. For planning purposes, it
may be worthwhile to have a more accurate estimate of the expected cost of using the policy.
Table 6 shows that increasing k improves our estimate of the cost for all |J | tested.

3.4.2 Managerial Insights

In this section, we present numerical experiments from which we extract further managerial
insights. The numerical set up is as described above except where otherwise noted. We first
sought to get a sense of how the concentration of risk, or the location configuration of the
potential disaster sites, affects the value of inventory mobility. We ran 1000 test cases each
of two different potential disaster site location configurations with six sites each: less con-
centrated risk with sites in the distant locations (−1000,−1000), (−1000, 0), (−1000, 1000),
(1000, 1000), (1000, 0), and (1000,−1000), and more concentrated risk with sites in the
nearby locations (−1000,−200), (−1000,−120), (−1000,−40), (−1000, 40), (−1000, 120),
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|J | n k = 1 k = 2 k = 3 |J | n k = 1 k = 2 k = 3

3 10 5.5% 0.2% N/A 10 10 17.2% 2.5% 0.3%
4 10 5.5% 0.2% 0.0% 11 10 17.8% 3.1% 0.4%
5 10 10.7% 0.8% 0.0% 12 10 19.8% 3.8% 0.5%
6 10 12.5% 1.1% 0.1% 13 10 21.1% 4.5% 0.8%
7 10 12.6% 1.1% 0.1% 14 5 20.7% 4.4% 0.7%
8 10 14.2% 1.5% 0.1% 15 2 21.3% 4.6% 0.8%
9 10 16.4% 2.2% 0.2% 16 1 22.4% 4.7% 0.8%

Table 6: BSH expected cost estimate deviation from true expected cost of the policy suggested by
the BSH for a varying number of potential disaster sites |J |. n is the number of runs. The percent
deviation for each k is the average over these n runs. Note that, for all runs, the BSH cost estimate
was below the true cost and thus the deviation shown is the percent below the true cost.

and (−1000, 200). The results are displayed as box plots in Figure 3. Furthermore, a test
with all potential disaster sites located at a single point resulted in a zero value of inventory
mobility. From the figure, it appears that the value of inventory mobility is on average greater
when the risk is less concentrated or when the potential disaster sites are farther from each
other. When the risk is less concentrated, the optimal stationary inventory position, which
must compromise between different optimal locations throughout the planning horizon, is
farther from each potential disaster site. Thus, there is more value in being able to move
closer, or shorten the large distance, to individual sites as demand states are realized. In
this case, the cost to move the inventory is outweighed by the benefit of getting closer to
potential disaster sites that are either experiencing or are likely to soon experience a disaster.

Especially when they are located near each other, the demand of two potential disaster
sites may be correlated. To test the effect of varying levels of correlation on the value of
inventory mobility, we ran 1000 test cases with two sites located at (−1000, 0) and (1000, 0),
respectively. As each site has two potential demand levels, in a given period, the demand
vector realization for the next period can be represented by a bivariate binomial random
variable and a specific correlation between the sites can be easily incorporated. For each test
case, we varied the correlation coefficient ρ between −1 and 1 in increments of 0.2. Figure 4
displays the value of inventory mobility for a random five of these test cases. We see that the
value is greater when the demands are less correlated. This holds in the weak sense for all
test cases and in the strong sense for all test cases with non-zero values of inventory mobility
for all values of ρ. This is intuitive; if two potential disaster sites are perfectly correlated,
then they both experience demand at the same time and there is less value in being able to
move closer to one over the other. In this case, it may be worthwhile to establish duplicate
stationary inventories near each site rather than invest in a mobile inventory system. On
the other hand, when the demands are not correlated or are negatively correlated, then one
site may experience demand while the other does not, adding value to the ability to move.
This experiment suggests that the value will be greater for systems in which sites that are
relatively far from each other have demands which are less correlated.
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Figure 3: Value of inventory mobility for six
potential disaster sites for varying risk concen-
trations.

Figure 4: Value of inventory mobility for two
potential disaster sites for varying levels of cor-
relation. Each symbol represents a different test
case.

Demands in disaster relief and other settings have varying levels of frequency and mag-
nitudes. For example, most demands in the disaster relief setting occur rarely but are of
high magnitude whereas demands in most other settings are frequent but of relatively low
magnitude. To test the effect of demand frequency and magnitude on the value of inventory
mobility, we ran 1000 test cases with six potential disaster sites each for each of two different
settings: rare and high magnitude demand, with demand parameters assigned as described
at the beginning of this section, and frequent and low magnitude demands, with parameters
assigned similarly to as we described at the beginning of this section but with the exponen-
tial demand generation random variable parameter, λ, and the min and max of the uniform
probability generation random variable multiplied by 10. Figure 5 displays the value for
these two settings; it appears that the value is on average greater when demands are rare
and of high magnitude rather than frequent and of low magnitude. When demands are rare
and of high magnitude, when there is positive demand at a particular location, it is likely
that no other or very few other sites also have positive demand. Thus, the mobile inventory
will likely be used to serve only one or a small number of high demand sites at a time and
can alter its location accordingly. When demands are frequent and of low magnitude, how-
ever, many sites will experience low levels of demand often. Thus, the mobile inventory will
likely not deviate much from the optimal stationary position which is a compromise between
serving all demand sites over the planning horizon. In this case, it may be worthwhile to
establish duplicate stationary inventories rather than invest in a mobile inventory system.

In the following experiment, we further explore how the value depends on various demand
characteristics by examining the value associated with serving different types of disasters.
We focus on earthquakes and tropical cyclones and define the demand parameters differently
than we have thus far to more accurately represent earthquake- and cyclone-related demand
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Figure 5: Value of inventory mobility for six
potential disaster sites for varying demand fre-
quencies and magnitudes.

Figure 6: Value of inventory mobility for five
potential disaster sites associated with different
types and variations of disasters.

characteristics. Each test case has five potential disaster sites where all of the sites are active
regions for earthquakes or all are active regions for cyclones. In each test case, the five sites
are assigned demand parameters to be similar to the five regions associated with the same
type of disaster. We define demand parameters for the regions using the statistics displayed
in Tables 3 and 4. We assume that earthquake transition probabilities do not change over
time while cyclone probabilities do. In addition, weather forecasts enable better predictions
of when cyclones will occur. Thus, instead of a single zero-demand state, cyclones have two
zero-demand states, one where a cyclone is likely to happen in the next period (“0-Likely”
or “0-L”) and one where a cyclone is not likely (“0-Unlikely” or “0-U”). For each disaster
region, two positive demand levels were assigned to match the average number of people
affected by “small” and “large” disasters, respectively. As above, we assume the probability
of transitioning from positive demand to the same level of positive demand is ≈ 0.6667. For
simplicity, we assume that the probability of transitioning from one level of positive demand
to a different level is 0. For earthquake regions, the probability of transitioning from 0 to
the “small” level of demand is the single period disaster probability times the percentage of
disasters that are “small.” Similarly, the probability of transitioning from 0 to the “large”
level of demand is the single period disaster probability times the percentage of disasters that
are “large.” To ensure robustness, in each test case we assign the probabilities of transitioning
to positive demand in this way with the single period disaster probability uniformly varied
between +/− 10% of the value listed in Table 3. As an example, the matrix describing the
demand transition probabilities for earthquake region E1 is shown in Table 7a.

For cyclone regions, we assume the transition probabilities change over time. Specif-
ically, we assign different probabilities for each of the 10-period time ranges August 15 -
September 3, September 4 - September 23, and September 24 - October 13. On its website,
the National Hurricane Center shows that from 2009 to 2013, its 48 hour forecasts of the
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(a) Earthquake region E1

0 5,550 605,251
0 0.9972 0.0018 0.0011

5,550 0.3333 0.6667 0.0000
605,251 0.3333 0.0000 0.6667

(b) Cyclone region C1

0-U 0-L 7,449 221,799
0-U 0.9257 0.0743 0 0
0-L 0.3 0 0.4308 0.2692

7,449 0.3333 0 0.6667 0
221,799 0.3333 0 0 0.6667

Table 7: Demand transition probabilities for regions E1 and C1 from August 15 - September 3 where
we use the single period disaster probability listed in Tables 3 and 4 without variation for clarity.

tracks of tropical cyclones in the Atlantic Basin were accurate to within 100 miles about
70% of the time (National Hurricane Center, 2015). Thus, we assume that the probability
of transitioning from the 0-Likely demand state to a positive level of demand is 0.7. To
calculate the probability of transitioning to each specific level of positive demand for each
region in each of the time ranges, we multiply 0.7 times the percentage of disasters of that
size for the region in that time range as listed in Table 4. Then, to calculate the probability
of transitioning from 0-Unlikely to 0-Likely, we take the single period disaster probability
for that time range and divide by 0.7. To ensure robustness, in each test case we assign the
probability of transitioning from 0-Unlikely to 0-Likely in this way with the single period
disaster probability uniformly varied between +/ − 10% of the value listed in Table 4. As
an example, the matrix describing the transition probabilities for cyclone region C1 from
August 15 - September 3 is shown in Table 7b.

In each test case, the five sites are distributed among the five locations (−1000,−1000),
(−1000, 0), (−1000, 1000), (1000,−500), and (1000, 500); since each site is associated with
one region, there are 5! = 120 possible configurations. For each type of disaster and each
of the 120 configurations, we ran 100 test cases. For further comparison, we also ran 100
test cases for each of the 120 configurations for tropical cyclones without weather forecasts
predictions; that is, each potential disaster site has only one zero-demand state and we gen-
erated the demand transition probabilities using the same method we used for earthquakes.
Figure 6 suggests that there is a greater value of inventory mobility when serving tropical
cyclones compared to earthquakes. This observation may be explained by several factors.
The first is that cyclones are easier to predict due to weather forecasts; from the figure,
we see that the value is on average greater when we are able to predict one period ahead
of time when a cyclone is likely to occur. Another possible factor may be our assumption
that the cyclone demand transition probabilities change throughout the planning horizon;
however, in the setting we consider here, similar experiments reveal that the value is on
average only slightly greater (about 0.04% greater) when we use non-stationary probabilities
throughout the planning horizon for cyclones rather than stationary probabilities as we do
for earthquakes. Lastly, in this experiment, cyclone sites tend to have greater probabili-
ties of positive demand and on average greater demand levels; this factor likely explains
the differences in value between serving cyclones without weather forecast predictions and
earthquakes. Thus, while mobile inventory has value in serving all types of disasters, the
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value is greater when it is used to provide relief to disasters which are easier to forecast
accurately and which have relatively greater demand frequency and magnitude. Note that
this experiment is a snapshot of the value in the middle of a cyclone season. In a time
window outside of their cyclone season, cyclone sites will likely have a very small chance
of experiencing positive demand and thus there may be little value associated with serving
these sites. While this may be true, there is likely significant value in being able to change
the location of the inventory as changes in demand forecasts such as these occur over time.

3.5 Proofs

3.5.1 Proof of Theorem 1

Proof. The DP equations 3.2 can be written as one equation as follows:

V̄0(̄i, d0) = G(̄i, d0) + P 0
1

[
G(̄i, d̂) + P 1

[
G(̄i, d̂) + P 2

[
G(̄i, d̂) + P 3

[
...+ P T−1

[
G(̄i, d̂)

]]]]]
= G(̄i, d0) + P 0

1 [I + P 1 + P 1P 2 + ...+ P 1P 2 · · · P T−1]G(̄i, d̂)

= G(̄i, d0) + P 0
1

[
I +

T∑
t=2

t−1∏
k=1

P k

]
G(̄i, d̂)

= G(̄i, d0) +
T∑
t=1

∑
d∈D

pt(d0, d)G(̄i, d)

= G(̄i, d0) +
∑
d∈D

G(̄i, d)

[
T∑
t=1

pt(d0, d)

]

=
∑
d∈D

G(̄i, d)

[
T∑
t=1

pt(d0, d) + I{d = d0}

]

3.5.2 Proof of Theorem 2

Proof. Let ī∗ = arg minī∈Is V̄0(̄i, d0). Consider the feasible policy π for the mobile inventory
system represented by DP equations 3.1 in which the stationary inventory is kept at ī∗

for the length of the planning horizon. In this policy, movement costs are zero since the
inventory never moves and f(0) = 0. Thus, π is feasible for the mobile inventory system and
V π

0 (̄i∗, d0) = V̄0(̄i∗, d0). Thus,

min
i0∈I

V0(i0, d0) ≤ V̄0(̄i∗, d0) = min
ī∈Is

V̄0(̄i, d0)

≡ min
ī∈Is

V̄0(̄i, d0)−min
i0∈I

V0(i0, d0) ≥ 0

3.5.3 Proof of Theorem 3

Proof. Let J = {1, ..., |J |} and gj(|x−lj|, dj) = b2j|x−lj|+b3j where b2j and b3j are functions
of dj. Without loss of generality, let lj > 0 ∀j ∈ J and lj < lj+1 ∀j ∈ J \ |J |. By Theorem
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4, an optimal solution x∗ exists such that x∗ ∈ [l1, l|J |]. Assume ¬∃ an optimal solution x∗

minimizing V̄0(x, d0) such that x∗ = lj for some j ∈ J . Then, for an optimal solution x∗,
∃i ∈ J \ |J | such that li < x∗ < li+1. The cost at this optimal solution is

V̄0(x∗, d0) =
∑
d∈D

 |J |∑
j=1

(b2j|x∗ − lj|+ b3j)

[ T∑
t=1

pt(d0, d) + I{d = d0}

]

=
∑
d∈D

Kd

 i∑
j=1

(b2j(x
∗ − lj) + b3j) +

|J |∑
j=i+1

(b2j(lj − x∗) + b3j)


=

i∑
j=1

(x∗ − lj)
∑
d∈D

Kdb2j +

|J |∑
j=i+1

(lj − x∗)
∑
d∈D

Kdb2j +

|J |∑
j=1

∑
d∈D

Kdb3j

where the constant Kd =
∑T

t=1 p
t(d0, d) + I{d = d0} where I{·} is the indicator function.

Consider first the case where

i∑
j=1

∑
d∈D

Kdb2j ≥
|J |∑

j=i+1

∑
d∈D

Kdb2j

Then

V̄0(li, d0) = V̄0(x∗ − (x∗ − li), d0)

=
i∑

j=1

(x∗ − (x∗ − li)− lj)
∑
d∈D

Kdb2j +

|J |∑
j=i+1

(lj − (x∗ − (x∗ − li)))
∑
d∈D

Kdb2j

+

|J |∑
j=1

∑
d∈D

Kdb3j

=

 |J |∑
j=i+1

∑
d∈D

Kdb2j −
i∑

j=1

∑
d∈D

Kdb2j

 (x∗ − li) + V̄0(x∗, d0)

≤ J̄0(x∗, d0) (3.20)

If we are instead in the case where

i∑
j=1

∑
d∈D

Kdb2j <

|J |∑
j=i+1

∑
d∈D

Kdb2j

then it can be similarly shown that V̄0(li+1, d0) ≤ V̄0(x∗, d0). Thus we have contradicted our
assumption that ¬∃ an optimal solution x∗ minimizing V̄0(x, d0) such that x∗ = lj for some
j ∈ J .
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Figure 7

3.5.4 Proof of Lemma 1

Proof. Suppose x ∈ C. Then projC(x) = x and thus d(projC(x), z) = d(x, z). Assume
x 6∈ C. Consider Figure 7. Consider some point z ∈ C and the line Q passing through z and
projC(x). By definition, projC(x) = arg minz∈C d(x, z), that is, projC(x) is the closest point
in C to x. Additionally, the line segment [projC(x), z] ⊆ C. Since the Euclidean distance
metric is continuous, the projection of x on Q, projQ(x), must lie on Q such that projC(x)
lies between z and projQ(x). Thus,

d(projC(x), z) ≤ d(projQ(x), z) (3.21)

By definition of a projection, the line segment [x, projQ(x)] is orthogonal to Q. Thus, the
triangle formed by the points x, projQ(x), and z is a right triangle. By equation 3.21 and
the triangle inequality,

d(projC(x), z) ≤ d(projQ(x), z)

< d(x, z)

3.5.5 Proof of Theorem 4

Proof. Let L = conv(B̂ ∪ {lj|j ∈ J}). Assume ∃ some ĩ ∈ I minimizing V̄0(i, d0) such that

ĩ 6∈ Î = I ∩ L. Note that B̂ ∪ {lj|j ∈ J} is a closed and bounded subset of R2 and thus is
compact by the Heine-Borel Theorem. Thus, L is closed since the convex hull of a compact
set in R2 is compact and every compact set is closed. Note that lj ∈ L ∀j ∈ J . By Lemma
1, ī = projL(̃i) ∈ L is such that d(̄i, lj) ≤ d(̃i, lj) ∀j ∈ J . Thus, V̄0(̄i, d0) ≤ V̄0(̃i, d0) since
gj(d(·, ·), dj) is non-decreasing in d(·, ·) ∀j ∈ J . By construction, the boundary L\Int(L) ∈ I
and thus ī = projL(̃i) ∈ I. Also ī ∈ L and ī ∈ I ⇒ ī ∈ Î. Thus, ī ∈ Î is also a minimizer of
V̄0(i, d0) and satisfies the conditions of the theorem.

3.5.6 Proof of Lemma 2

Proof. Suppose x, y ∈ C. Then projC(x) = x and projC(y) = y and thus
d(projC(x), projC(y)) = d(x, y). Without loss of generality, suppose x ∈ C and y 6∈ C. Then,
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Figure 8

by Lemma 1,

d(projC(x), projC(y)) = d(x, projC(y))

≤ d(x, y)

Assume x, y 6∈ C. If projC(x) = projC(y), then

d(projC(x), projC(y)) = 0

≤ d(x, y)

Assume projC(x) 6= projC(y). Let Q be the line through projC(x) and projC(y). Con-
sider Figure 8. The line segment [projC(x), projC(y)] ⊆ C since C is convex and projC(x),
projC(y) ∈ C. Since the Euclidean distance function is continuous, the projection of x on
Q, projQ(x), must lie on Q such that projC(x) lies between projQ(x) and projC(y) and the
projection of y on Q, projQ(y), must lie on Q such that projC(y) lies between projQ(y) and
projC(x), as shown in Figure 8. Thus,

d(projC(x), projC(y)) ≤ d(projQ(x), projQ(y)) (3.22)

By definition, the line connecting x and projQ(x), R, and the line connecting y and projQ(y),
S, are orthogonal to Q. Thus, R||S and d(projQ(x), projQ(y)) ≤ d(a, b) ∀a ∈ R and b ∈ S.
Thus, using equation 3.22 and noting that x ∈ R and y ∈ S,

d(projC(x), projC(y)) ≤ d(projQ(x), projQ(y))

≤ d(x, y)

3.5.7 Proof of Theorem 5

Proof. Let L = conv(B̂ ∪ {lj|j ∈ J}). Note that B̂ ∪ {lj|j ∈ J} is a closed and bounded
subset of R2 and thus is compact by the Heine-Borel Theorem. Thus, L is closed since the
convex hull of a compact set in R2 is compact and every compact set is closed.
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For i ∈ I, suppose projL(i) 6∈ I. Thus, d(i, projL(i)) > 0. By definition of the projection,
projL(i) ∈ L. Consider the line segment R joining i and projL(i). Let q ∈ R ∩ L be such
that q is on the boundary of L (q exists since L is closed). Then, since B̂ ⊆ B, by the
definitions of B and B̂, q ∈ I. Thus, q 6= projL(i) and q ∈ R⇒ d(i, q) < d(i, projL(i)) which
is a contradiction since q ∈ L. Thus, projL(i) ∈ I ∀i ∈ I ⇒ projL(i) ∈ I ∩ L = Î ∀i ∈ I.

Let π ∈ Π be an optimal policy such that iπ0 6∈ Î or iπt+1(it, dt) 6∈ Î for some it ∈ Î, dt ∈ D,
and t ∈ {0, ..., T − 1}. Let

Zt(it, dt, it+1) = f(d(it, it+1)) +
∑

dt+1∈D

pt(dt, dt+1)Vt+1(it+1, dt+1)

Then iπt+1(it, dt) = arg minit+1∈I Zt(it, dt, it+1). Consider the policy πp = {iπp0 , ..., i
πp
T } such

that

i
πp
0 = projL(iπ0 )

i
πp
t+1(it, dt) = projL(iπt+1(it, dt)) ∀ it ∈ Î , dt ∈ D, t ∈ {0, ..., T − 1}
i
πp
t+1(it, dt) = iπt+1(it, dt) ∀ it ∈ I \ Î , dt ∈ D, t ∈ {0, ..., T − 1}

By the argument above, πp is a feasible policy such that i
πp
0 ∈ Î and i

πp
t+1(it, dt) ∈ Î ∀ it ∈ Î,

dt ∈ D, and t ∈ {0, ..., T − 1}. Note that lj ∈ L ∀j ∈ J . By Lemma 1 and the assumption
that gj(d(·, ·), dj) is non-decreasing in d(·, ·) ∀j ∈ J , for it ∈ I and dt ∈ D,

VT (iT , dT ) = G(iT , dT )

=
∑
j∈J

gj(d(iT , lj), d
j
T )

≥
∑
j∈J

gj(d(projL(iT ), lj), d
j
T )

= G(projL(iT ), dT )

= VT (projL(iT ), dT )

Assume Vt+1(it+1, dt+1) ≥ Vt+1(projL(it+1), dt+1) ∀ it+1 ∈ I and dt+1 ∈ D. Consider period
t. For it ∈ I \ Î and dt ∈ D, Zt(it, dt, i

π
t+1(it, dt)) = Zt(it, dt, i

πp
t+1(it, dt)). By Lemma 1 and

the assumption that f is non-decreasing, for it ∈ Î and dt ∈ D,

Zt(it, dt, i
π
t+1(it, dt)) = f(d(it, i

π
t+1(it, dt))) +

∑
dt+1∈D

pt(dt, dt+1)Vt+1(iπt+1(it, dt), dt+1)

≥ f(d(it, projL(iπt+1(it, dt))))

+
∑

dt+1∈D

pt(dt, dt+1)Vt+1(projL(iπt+1(it, dt)), dt+1)

= Zt(it, dt, i
πp
t+1(it, dt))
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Thus, i
πp
t+1 is also an optimal policy function for period t. By Lemmas 1 and 2 and the

assumption that f(d(·, ·)) and gj(d(·, ·), ·) are non-decreasing in d(·, ·) ∀j ∈ J , for it ∈ I and
dt ∈ D,

Vt(it, dt) = G(it, dt) + f(d(it, i
π
t+1(it, dt))) +

∑
dt+1∈D

pt(dt, dt+1)Vt+1(iπt+1(it, dt), dt+1)

≥ G(projL(it), dt) + f(d(projL(it), projL(iπt+1(it, dt))))

+
∑

dt+1∈D

pt(dt, dt+1)Vt+1(projL(iπt+1(it, dt)), dt+1)

= G(projL(it), dt) + Zt(projL(it), dt, projL(iπt+1(it, dt)))

≥ G(projL(it), dt) + Zt(projL(it), dt, i
π
t+1(projL(it), dt)) (3.23)

= Vt(projL(it), dt)

where line 3.23 follows from the fact that

iπt+1(projL(it), dt) = arg min
it+1∈I

Zt(projL(it), dt, it+1)

By mathematical induction, i
πp
t+1 is an optimal policy function for t ∈ {0, ..., T − 1} and

Vt(it, dt) ≥ Vt(projL(it), dt) ∀ it ∈ I, dt ∈ D, and t ∈ {0, ..., T}. Thus,

V0(iπ0 , d0) ≥ V0(projL(iπ0 ), d0)

= V0(i
πp
0 , d0)

and πp = {iπp0 , ..., i
πp
T } is an optimal policy satisfying the conditions of the theorem.

3.5.8 Proof of Theorem 6

Proof. Let Vt(it, dt), t ∈ {0, ..., T}, be as in equations 3.1 for the system with movement cost
f and let V̂t(it, dt), t ∈ {0, ..., T}, be the corresponding cost-to-go functions for the same
system with movement cost f̂ . Then,

VT (iT , dT ) = G(iT , dT ) = V̂T (iT , dT ) ∀iT ∈ I, dT ∈ D

Thus, VT (iT , dT ) ≤ V̂T (iT , dT ) ∀iT ∈ I, dT ∈ D. Assume Vt(it, dt) ≤ V̂t(it, dt) ∀it ∈ I, dt ∈ D.
Then,

f(d(it−1, it)) +
∑
dt∈D

pt−1(dt−1, dt)Vt(it, dt)

≤ f̂(d(it−1, it)) +
∑
dt∈D

pt−1(dt−1, dt)V̂t(it, dt) ∀it−1, it ∈ I, dt−1 ∈ D
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and

Vt−1(it−1, dt−1) = G(it−1, dt−1) + min
it∈I

{
f(d(it−1, it)) +

∑
dt∈D

pt−1(dt−1, dt)Vt(it, dt)

}

≤ G(it−1, dt−1) + min
it∈I

{
f̂(d(it−1, it)) +

∑
dt∈D

pt−1(dt−1, dt)V̂t(it, dt)

}
= V̂t−1(it−1, dt−1) ∀it−1, it ∈ I, dt−1 ∈ D

Thus, by induction,

V0(i0, d0) ≤ V̂0(i0, d0) ∀i0 ∈ I, d0 ∈ D
⇒ min

i0∈I
V0(i0, d0) ≤ min

i0∈I
V̂0(i0, d0) ∀d0 ∈ D

Thus,
min
ī∈Is

V̄0(̄i, d0)−min
i0∈I

V0(i0, d0) ≥ min
ī∈Is

V̄0(̄i, d0)−min
i0∈I

V̂0(i0, d0) ∀d0 ∈ D

3.5.9 Proof of Theorem 7

Proof. Let V̄0(̄i, d0) be as in equation 3.4 for the stationary system with cost to serve G

and let ˆ̄V0(̄i, d0) be the corresponding cost of the same system with cost to serve Ĝ. Let
ī∗ = arg minī∈Is V̄0(̄i, d0). Then,

V̄0(̄i∗, d0) = G(̄i∗, d0) +
∑
d∈D

[
G(̄i∗, d)

T∑
t=1

pt(d0, d)

]

≤ G(̄i, d0) +
∑
d∈D

[
G(̄i, d)

T∑
t=1

pt(d0, d)

]
∀ī ∈ Is

Multiplying by a and adding (T + 1)b to each side,

aG(̄i∗, d0) + b+
∑
d∈D

[
(aG(̄i∗, d) + b)

T∑
t=1

pt(d0, d)

]

≤ aG(̄i, d0) + b+
∑
d∈D

[
(aG(̄i, d) + b)

T∑
t=1

pt(d0, d)

]
∀ī ∈ Is

≡ ˆ̄V0(̄i∗, d0) ≤ ˆ̄V0(̄i, d0) ∀ī ∈ Is

Thus, ī∗ is also optimal for the stationary system with cost to serve Ĝ and the difference in
cost between the two stationary systems is

ˆ̄V0(̄i∗, d0)− V̄0(̄i∗, d0) = (a− 1)G(̄i∗, d0) + b+
∑
d∈D

[
((a− 1)G(̄i∗, d) + b)

T∑
t=1

pt(d0, d)

]
(3.24)
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We now introduce some additional notation. Let d = (d1, ..., dT ) ∈ D × .... × D = D
so that d is a string of demand realizations for time periods 1 through T , D be the set of
all possible strings of demand realizations d, the probability of seeing the string of demand
realizations d ∈D be

p(d) =
T−1∏
t=0

pt(dt, dt+1),

and the location of the mobile inventory at time t ∈ {1, ..., T − 1} under policy π ∈ Π and
string of demand realizations d ∈D be represented using the more compact notation:

iπ1,d = iπ1 (iπ0 , d0)

iπt+1,d = iπt+1(iπt,d, dt)

The cost of responding to disasters over time using the mobile inventory system under policy
π ∈ Π can be written as

V π
0 = G(iπ0 , d0) + f(d(iπ0 , i

π
1,d′)) +

∑
d∈D

p(d)
T−1∑
t=1

[
G(iπt,d, dt) + f(d(iπt,d, i

π
t+1,d))

]
+G(iπT,d, dT )

where d′ ∈ D. This formulation calculates the probability weighted average cost of all
potential strings of demand realizations. Equation 3.24 can be rewritten as

ˆ̄V0(̄i∗, d0)− V̄0(̄i∗, d0) = (a− 1)G(̄i∗, d0) + b+
∑
d∈D

p(d)
T∑
t=1

[(a− 1)G(̄i∗, dt) + b]

Let V π
0 be the cost of the mobile inventory system with cost to serve G under policy π and

V̂ π
0 be the corresponding cost of the same system with cost to serve Ĝ. Let π∗ = minπ∈Π V

π
0 .

By Theorem 2,
V π∗

0 ≤ V̄0(̄i∗, d0)

Using this and the assumption f(y) ≥ 0 ∀y ≥ 0,

G(iπ
∗

0 , d0) +
∑
d∈D

p(d)
T∑
t=1

G(iπ
∗

t,d, dt) ≤ V̄0(̄i∗, d0) = G(̄i∗, d0) +
∑
d∈D

p(d)
T∑
t=1

G(̄i∗, dt)

Multiplying by (a− 1) and adding (T + 1)b to each side,

(a− 1)G(iπ
∗

0 , d0) + b+
∑
d∈D

p(d)
T∑
t=1

[
(a− 1)G(iπ

∗

t,d, dt) + b
]

≤ (a− 1)G(̄i∗, d0) + b+
∑
d∈D

p(d)
T∑
t=1

[(a− 1)G(̄i∗, dt) + b]
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≡ V̂ π∗

0 − V π∗

0 ≤ ˆ̄V0(̄i∗, d0)− V̄0(̄i∗, d0)

= min
ī′∈Is

ˆ̄V0(̄i′, d0)−min
ī∈Is

V̄0(̄i, d0)

Furthermore, π∗ is feasible, though not necessarily optimal, for the mobile inventory system
with cost to serve Ĝ and thus, recalling that V π∗

0 = minπ∈Π V
π

0 ,

min
π′∈Π

V̂ π′

0 −min
π∈Π

V π
0 ≤ min

ī′∈Is

ˆ̄V0(̄i′, d0)−min
ī∈Is

V̄0(̄i, d0)

≡ min
ī∈Is

V̄0(̄i, d0)−min
π∈Π

V π
0 ≤ min

ī′∈Is

ˆ̄V0(̄i′, d0)−min
π′∈Π

V̂ π′

0

3.5.10 Proof of Theorem 10

Proof. Since f is non-decreasing in the distance moved, the optimal path will be to move
directly from i0 to iT . It is sufficient to show that there exists an optimal solution in which
the inventory is moved the same distance in each period. Suppose there is no such optimal
solution. Then in an optimal solution there is some period t when the inventory moves a
distance b and some period t′ when the inventory moves a distance a < b. The slope of the
line through a point f(x) and f(a+b

2
) is

f(a+b
2

)− f(x)
a+b

2
− x

which is monotonically non-decreasing in x given the convexity of f . Thus,

f
(
a+b

2

)
− f(a)

a+b
2
− a

≤
f
(
a+b

2

)
− f(b)

a+b
2
− b

≡
f
(
a+b

2

)
− f(a)

b−a
2

≤
f(b)− f

(
a+b

2

)
b−a

2

≡ f

(
a+ b

2

)
+ f

(
a+ b

2

)
≤ f(a) + f(b)

Thus, we can decrease the cost (or keep the same cost) by instead moving the same distance
f
(
a+b

2

)
in periods t and t′. This argument holds for all differences in movement distances

across periods, contradicting our assumption that there is no optimal solution in which the
inventory is moved the same distance in each period.
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3.5.11 Proof of Lemma 3

Proof. By assumption, f(·) is convex.

h(λτ1 + (1− λ)τ2) = (λτ1 + (1− λ)τ2)f

(
d̄

λτ1 + (1− λ)τ2

)
= (λτ1 + (1− λ)τ2)f

(
λτ1

λτ1 + (1− λ)τ2

d̄

τ1

+
(1− λ)τ2

λτ1 + (1− λ)τ2

d̄

τ2

)
≤ (λτ1 + (1− λ)τ2)

(
λτ1

λτ1 + (1− λ)τ2

f

(
d̄

τ1

)
+

(1− λ)τ2

λτ1 + (1− λ)τ2

f

(
d̄

τ2

))
= λτ1f

(
d̄

τ1

)
+ (1− λ)τ2f

(
d̄

τ2

)
= λh(τ1) + (1− λ)h(τ2)

3.5.12 Proof of Theorem 11

Proof. By Theorem 10, the optimal path will be to move directly from i0 to iT and there
exists an optimal solution in which the distance moved in all periods in which there is non-
zero movement will be the same. Since the cost to move function is the same in all periods,
the problem becomes determining the number of periods τ in which the inventory should
experience non-zero movement. The cost to move as a function of τ is

Cf (τ) := τ f̄ + τf

(
d(i0, iT )

τ

)
+ (T − τ)f(0)

Cf (τ) is convex in τ since τf
(
d(i0,iT )

τ

)
is convex by Lemma 3 and sums of convex functions

are convex. Thus, the integer τ ∗ that minimizes Cf (τ) is the smallest τ ∈ Z+ such that
Cf (τ) ≤ Cf (τ + 1).

3.5.13 Proof of Theorem 12

Proof. Since fc(r) is non-decreasing in r, the optimal path will be to move directly from
i0 to iT . Thus, this theorem considers the problem of moving the inventory from some
starting location on a line, say x(0), to some ending location on the line, x(T ), where
x(T ) ≥ x(0) without loss of generality and the distance between x(0) and x(T ) is d(i0, iT ).
Using continuous-time optimal control theory, the problem can be written as

min
r(t)

∫ T

0

fc(r(t))dt

where ẋ(t) = r(t) and x(0) and x(T ) are given. The Hamiltonian is

H = fc(r) + pr
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The adjoint equation is ṗ(t) = −5xH = 0⇒ p(t) is constant ∀t ∈ [0, t]. By the Pontryagin
Minimum Principle,

r∗(t) = arg min
r

H = arg min
r

fc(r) + p(t)r

Since p(t) is constant, fc is convex and non-decreasing, and r(t) ≥ 0 ∀t ∈ [0, T ], an optimal
solution r∗(t) exists in which r∗(t) is constant ∀t ∈ [0, T ]. Since x(0) and x(T ) are fixed,
r∗(t) = d(i0, iT )/T ∀t ∈ [0, T ].

3.5.14 Proof of Theorem 13

Proof. Since fc(r) is non-decreasing in r, the optimal path will be to move directly from i0
to iT . By Theorem 12, there exists an optimal solution in which the rate of movement at
all times in which there is non-zero movement will be constant. Thus, the problem becomes
determining the amount of time t out of T to spend moving the inventory. The cost to move
as a function of t is

Cf (t) := tf̄c + tfc

(
d(i0, iT )

t

)
+ (T − t)fc(0)

Cfc(t) is convex in t since tfc

(
d(i0,iT )

t

)
is convex by Lemma 3 and sums of convex functions

are convex. Thus, there exists a minimum t∗ of Cfc(t) over [0, T ].

3.5.15 Proof of Theorem 16

Proof. Assume the demands are temporally independent. Let

pt(dt+1) = pt(dt, dt+1) ∀ dt ∈ D, t ∈ {0, 1, ..., T − 1}

It is sufficient to show that

V̂t(it, dt) = Vt(it, dt) ∀ (it, dt) ∈ I ×D, t ∈ {0, 1, ..., T}

By definition,

V̂T (iT , dT ) = VT (iT , dT ) ∀ (iT , dT ) ∈ I ×D

Assume

V̂t+1(it+1, dt+1) = Vt+1(it+1, dt+1) ∀ (it+1, dt+1) ∈ I ×D

Then, for all Base States (it, dt), V̂t(it, dt) = Vt(it, dt). Let (it, d
′∗
t ) =

arg max(it,d′t)∈S(it,dt)
ν(it, d

′
t) where

ν(it, d
′
t) = G(it, d

′
t) + min

it+1∈I

{
f(d(it, it+1)) +

∑
dt+1∈D

pt(d
′
t, dt+1)V̂t+1(it+1, dt+1)

}
= G(it, d

′
t) + min

it+1∈I

{
f(d(it, it+1)) +

∑
dt+1∈D

pt(dt+1)Vt+1(it+1, dt+1)

}
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For all non-Base States (it, dt),

V̂t(it, dt) = Ψ(S(it,dt))

= G(it, dt) + max
(it,d′t)∈S(it,dt)

ν(it, d
′
t)−G(it, d

′∗
t )

= G(it, dt) + min
it+1∈I

{
f(d(it, it+1)) +

∑
dt+1∈D

pt(dt+1)Vt+1(it+1, dt+1)

}
= Vt(it, dt)

Thus, by induction, V̂t(it, dt) = Vt(it, dt) ∀ (it, dt) ∈ I ×D, t ∈ {0, 1, ..., T}.
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4 Joint Dynamic Facility Relocation and Inventory

Management

An important consideration which has been disregarded thus far is inventory management.
As discussed in Section 1, it is suboptimal to consider relocation decisions and inventory
management decisions separately. Thus, in this section, we consider making dynamic re-
location and inventory management decisions simultaneously. This section is organized as
follows. Section 4.1 details the model and analytical results. In Section 4.1.1, we develop
intuition on optimal relocation and inventory management policies by considering a special
case of the problem. In Section 4.1.2, we return to the general dynamic relocation and inven-
tory management problem and develop results regarding optimal relocation and inventory
management policies. The proofs of the results in this section can be found in Section 4.2.

4.1 Model and Results

In this section we describe our model and analytical results for relocating a mobile inventory
and managing inventory ordering decisions to respond to disasters over time. This problem
is called the dynamic relocation and inventory management problem. It is a sequential
decision making problem and we model it using DP. The timing of the problem is as follows:
at the beginning of each period, the location of the inventory and the initial inventory level
are known and a decision is made on where to move the inventory and how much, if any,
new inventory to order from the new location. Relocation and order lead time is considered
instantaneous and demand is realized throughout the rest of the time period. See Figure 9 for
a visualization of the timing of the problem. We assume a finite horizon with T time periods
as it is unrealistic to forecast disasters infinitely into the future and that our objective is to
minimize cost.

Figure 9: The decision making timeline

For reasons of tractability, we assume that at most one potential disaster site may ex-
perience demand in each period. This assumption allows us to disregard allocation issues
when demand exceeds supply, simplifying the problem. This is a reasonable assumption as,
in most applications, the mobile inventory will serve a particular geographic region which
will likely not experience more than one disaster in a given period. Unlike most retail inven-
tory management models, we assume that it is not possible to backlog demand as demand
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satisfaction is urgent in the disaster relief setting. Instead, unsatisfied demand is considered
lost or is served from an outside supplier through a rush order and incurs a corresponding
shortage cost penalty. Let d(·, ·) be the Euclidean distance metric. Our notation is as follows:

I : set of potential inventory locations

J : set of potential disaster sites

S : set of suppliers

lj : location of potential disaster site j ∈ J
ls : location of supplier s ∈ S
pjt : probability potential disaster site j ∈ J will experience demand in

period t ∈ {0, ..., T − 1} where
∑
j∈J

pjt = 1 ∀t ∈ {0, ..., T − 1}

djt : demand level of potential disaster site j ∈ J if it experiences demand

in period t ∈ {0, ..., T − 1}
bj : unit shortage cost for potential disaster site j ∈ J
h : unit holding cost per period

i00 : initial inventory location, i00 ∈ I
x0 : initial inventory on hand, x0 ≥ 0

f(d(i, i′)) : cost to move the inventory from i ∈ I to i′ ∈ I in one period

gj(d(i, lj)) : unit cost to serve demand at potential disaster site j ∈ J from i ∈ I

K

(
min
s∈S

d(i, ls)

)
: fixed cost to order from i ∈ I

c

(
min
s∈S

d(i, ls)

)
: unit purchase cost from i ∈ I

I may be continuous or discrete (though a few of our results specify specific forms).
Assume that J contains a dummy site j′ with dj′t = 0 ∀t, bj′ = 0, and gj′(·) = 0; then
pj′t is the probability that no potential disaster sites experience demand in period t. Note
that f may include maintenance or operational costs. Also note that a stationary warehouse
owned by the organization could be considered a supplier in S; in this case, the penalty
costs bj could be the cost to serve potential disaster site j from the warehouse rather than
the mobile inventory. We assume all costs are greater than or equal to zero. For notational
simplicity, we will write fii′ = f(d(i, i′)), gij = gj(d(i, lj)), Ki = K(mins∈S d(i, ls)) and
ci = c(mins∈S d(i, ls)). We can find the minimum cost-to-go when the inventory is located
at site i0t ∈ I with inventory level xt ≥ 0 at the beginning of period t ∈ {0, ..., T − 1} using
the following DP equations; these DP equations describe the dynamic relocation and
inventory management (DRIM) problem:

Vt(i
0
t , xt) = min

it∈I,yt≥xt
{fi0t it +Kitδ(yt − xt) +Gt(it, yt)− citxt} (4.1)
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where

Gt(i, y) =ciy +
∑
j∈J

pjt
[
gij min(y, djt) + hmax(0, y − djt)

+ bj max(0, djt − y) + Vt+1(i,max(0, y − djt))
]

and VT (i0T , xT ) = 0. The cost-to-go is the cost to relocate and possibly order new inventory
plus the expected cost to serve demand and hold remaining inventory or pay for a shortage
of inventory plus the expected future period cost. Note that min(y, d) = d − max(0, d −
y) ∀y, d ∈ R and thus we can re-write Gt(i, y) as

Gt(i, y) =ciy +
∑
j∈J

pjt

[
hmax(0, y − djt) + gijdjt

+ (bj − gij) max(0, djt − y) + Vt+1(i,max(0, y − djt))
]

We can also write the DRIM problem in terms of policies; this notation will help us
describe our results below. Let π = {πi, πy} ∈ Π, where πi = {iπ0 , ..., iπT−1} and πy =
{yπ0 , ..., yπT−1}, be a policy consisting of sequences of functions iπt and yπt that map states
(i0t , xt) into decisions of where to move the inventory, iπt (i0t , xt), and the order-up-to level,
yπt (i0t , xt), for period t. Let Π be the set of all feasible policies for the DRIM problem
described by the DP equations 4.1 and the cost of the mobile inventory system under policy
π be represented by V π

0 (i00, x0) where V π
T (i0T , xT ) = 0,

V π
t (i0t , xt) = fi0t iπt (i0t ,xt)

+Kiπt (i0t ,xt)
δ(yπt (i0t , xt)− xt) +Gπ

t (iπt (i0t , xt), y
π
t (i0t , xt))− ciπt (i0t ,xt)

xt

and

Gπ
t (i, y) =ciy +

∑
j∈J

pjt

[
hmax(0, y − djt) + gijdjt

+ (bj − gij) max(0, djt − y) + V π
t+1(i,max(0, y − djt))

]
The DRIM problem can then be written minπ∈ΠV

π
0 (i00, x0).

The need to make both dynamic relocation and inventory management decisions makes
the DRIM problem very complex. We first gain some intuition by examining a special case
of the problem in Section 4.1.1. In Section 4.1.2, we return to the general DRIM problem
and develop results characterizing the optimal relocation and inventory management policies
with the help of the intuition and results developed in Section 4.1.1.

4.1.1 Special Case

In this section, we develop intuition on optimal relocation and inventory management policies
by considering a special case of the DRIM problem. We consider a one-dimensional setting
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in which we have one supplier and one potential disaster site located L units apart, as
illustrated in Figure 10. The set of potential inventory locations is all locations on the line
between the supplier and the potential disaster site, i.e. I = [0, L]. As there is only one
potential disaster site, throughout this section, we will drop the subscript j on pjt, djt, bj,
and gj(·). This special case is more tractable than the general DRIM problem and elucidates
an important trade-off which is difficult to tease out in the general two-dimensional setting:
when is it advantageous to move toward a supplier at the expense of moving farther from
potential disaster sites and vice versa.

Figure 10: Network of the special case
The DP equations can be written as:

Vt(i
0
t , xt) = min

it∈I,yt≥xt

{
f(|it − i0t |) +K(it)δ(yt − xt) + c(it)(yt − xt)

+ pt
[
g(L− it) min(yt, dt) + hmax(0, yt − dt)

+ bmax(0, dt − yt) + Vt+1(it,max(0, yt − dt))
]

+ (1− pt)
[
hyt + Vt+1(it, yt)

]}
where VT (i0T , xT ) = 0.

If we assume that f(·) is concave, a reasonable assumption given that greater fuel effi-
ciencies are generally reached at higher speeds, we can prove that there exists an optimal
policy such that we will only move toward the supplier in a period in which we also place
an order. We use the following Lemma in the proofs of Theorems 17 and 22:

Lemma 4. If f is a concave function, then f(y1) + f(y2) ≥ f(y1 + y2) for y1, y2 ∈ R

Theorem 17. Assume g(·) is non-decreasing, f(·) is concave and non-decreasing over
(0,∞), and f(0) ≤ limd→0+ f(d). ∃ an optimal policy π∗ = {πi, πy} ∈ Π, where πi =
{iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, such that if yπt (i0t , xt) = xt then iπt (i0t , xt) ∈ [i0t , L] ∀
i0t ∈ I, xt ≥ 0, and t ∈ {0, ..., T − 1}.

By admitting a discontinuity in f(·) at 0, the conditions of Theorem 17 allow for a
fixed cost to move. Theorem 17 assures that there will not be a period in which we move
the inventory towards the supplier (and away form the potential disaster site) without also
placing an order. If f is not concave, this result does not necessarily hold as cost savings may
be achieved by moving towards a better ordering position over several periods rather than
all at once when placing an order. If we also assume that K(·), c(·), and g(·) are concave,
a reasonable assumption due to ordering and shipping economies of scale, we can also prove
the following:
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Theorem 18. Assume K(·), c(·), and g(·) are concave and non-decreasing, f(·) is con-
cave and non-decreasing over (0,∞), and f(0) ≤ limd→0+ f(d). ∃ an optimal policy π∗ =
{πi, πy} ∈ Π, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, such that ∀ i0t ∈ I, xt ≥ 0,
and t ∈ {0, ..., T − 1}:

1. iπt (i0t , xt) ∈ {0, i0t , L}

2. if iπt (i0t , xt) = L and xt ≥ dt then yπt (i0t , xt) = xt

3. if yπt (i0t , xt) = xt and

pt
(
g(L− i0t )− g(0)

)
min(xt, dt) ≥ f(L− i0t ) + f(L) (4.2)

then iπt (i0t , xt) = L

4. if yπt (i0t , xt) > xt and

K(i)−K(0) + (c(i)− c(0))
(
yπt (i0t , xt)− xt

)
≥ pt (g(L)− g(L− i)) min

(
yπt (i0t , xt), dt

)
+ f(i0t ) + f(L) (4.3)

for i ∈ {i0t , L}, then iπt (i0t , xt) = 0

Theorem 18.1 assures that there exists on optimal policy such that the inventory is always
located at 0, i00, or L; even more, once the inventory moves to 0 or L, it will in all periods
afterward only be located at either 0 or L. Due to the concavity of the cost functions, there
is no additional value in considering any other inventory location; for any ordering decision,
the cost of a decision to move the inventory in one direction can always be improved upon
by moving the inventory completely to the endpoint of I = [0, L] in that direction. Corollary
4 follows directly from Theorems 17 and 18.1:

Corollary 4. Assume K(·), c(·), and g(·) are concave and non-decreasing, f(·) is con-
cave and non-decreasing over (0,∞), and f(0) ≤ limd→0+ f(d). ∃ an optimal policy π∗ =
{πi, πy} ∈ Π, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, such that if yπt (i0t , xt) = xt
then iπt (i0t , xt) ∈ {i0t , L} ∀ i0t ∈ I, xt ≥ 0, and t ∈ {0, ..., T − 1}.

By Corollary 4, if we do not place an order in a given period, we will either keep the
inventory in the same location or move it to L, the location of the potential disaster site;
if the initial inventory location is L and we do not place an order, we will not move the
inventory.

Theorem 18.2 assures that in period t we will only possibly order from position L if our
initial inventory level is less than dt; that is, we will not place an order from position L if
our initial inventory level is greater than or equal to dt. This makes intuitive sense; if the
inventory is located at L, it is as far as possible from the supplier and ordering costs will
only possible decrease due to changes in location in the next period. Any inventory ordered
in excess of dt in that period is not needed for that period and can be ordered in the next
period instead for potentially a lower cost.
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Theorem 18.3 gives a condition under which we move the inventory to L when we do not
place an order. It assures that in a given period if we do not place an order and 4.2 holds,
we will move the inventory to L. Condition 4.2 holds when the expected difference in cost
between serving demand from the starting location i0t and serving demand from L is greater
than or equal to the cost to move from i0t to L plus the maximum cost to move from L to
another location in the network. That is, if the expected savings in serving demand from L
exceeds the cost to move to L plus the cost to move to potentially another location in the
next period, we will move the inventory to L.

Theorem 18.4 further characterizes optimal relocation and inventory management policies
for the special case by giving a condition under which we move the inventory to 0, the location
of the supplier, when placing an order. It assures that in a given period if we place an order
and 4.3 holds for i ∈ {i0t , L}, we will move the inventory to 0. For i ∈ {i0t , L}, condition
4.3 holds when the difference in cost between ordering from i and ordering from 0 is greater
than or equal to the expected increase in cost between serving demand from 0 and serving
demand from i plus the cost to move from i0t to 0 plus the maximum cost to move from 0
to another location in the network. That is, if the savings from ordering from 0 exceeds the
expected increase in cost from serving demand from 0 plus the cost to move to 0 plus the
cost to move to potentially another location in the next period, we will move the inventory
to 0.

Theorems 17 and 18.1 through 18.4 and Corollary 4 help to characterize optimal inventory
relocation and ordering policies in this special case. In Section 4.1.2, we extend a few of these
results to the general case of the DRIM problem and develop other results regarding optimal
relocation and inventory management policies.

4.1.2 Dynamic Relocation and Inventory Management Problem

In this section, we return to the general DRIM problem described by the DP equations 4.1
and develop results regarding optimal relocation and inventory management policies.

We first examine characteristics of optimal inventory management decisions. Consider
the case where, for staffing or other planning reasons, we are restricted to movement policies
that do not depend on the inventory level. In this case, our movement policy consists of
a sequence of locations {i0, ..., iT−1} detailing the path for the mobile inventory to follow
throughout the horizon. With the following result, we show that a multiperiod (s,S ) policy
is optimal in this special case. A multiperiod (s, S) policy is a policy consisting of scalars
st and St ∀t ∈ {0, ..., T − 1}; in each period t if the initial inventory on hand is less than
or equal to st, we place an order to bring the inventory up to St, and do not place an order
otherwise. Define the following:

Assumption 2. Assume we are restricted to movement policies that do not depend on the
inventory level. Additionally, assume bj − gij > ci′ ∀i, i′ ∈ I and j ∈ J , Ki = K ∀i ∈ I for
some K ≥ 0, and ci + h > 0 ∀i ∈ I.

Assumption 2 requires that our movement policies do not depend on the inventory level,
the effective penalty cost is greater than the purchase cost for all locations, the fixed order
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cost is the same for all locations, and the purchase and holding cost is greater than 0 for all
locations. We can prove the following:

Theorem 19. Under Assumption 2, a multiperiod (s, S) policy is optimal.

The proof of Theorem 19 requires showing certain convexity properties of the cost-to-
go functions (specifically K-convexity; see, for example, Snyder and Shen (2011) for the
definition and some basic properties of K-convex functions) so that a simple (s, S) policy
is optimal. When considering the general case of the DRIM problem, represented by DP
equations 4.1, however, these convexity properties no longer hold. In an (s, S) policy, in
each period t, the inventory management policy always remains the same no matter what
the initial inventory level: if the inventory level is less than st, order up to St, and do not
order otherwise. However, in the DRIM problem, different initial inventory levels affect our
movement decisions and different movement decisions correspond to different ordering costs
and thus different ordering policies. Example 2 illustrates this.

Example 2. Consider an instance of the DRIM problem in which there are two potential
inventory locations (I = {1, 2}), two potential disaster sites (J = {1, 2}), and two periods in
the planning horizon (T = 2). Assume i00 = 1, f1,2 = f2,1 = 16, f1,1 = f2,2 = 0, K1 = K2 = 0,
c1 = 1.5 and c2 = 0.5, h = 1, b1 = b2 = 4, and the remaining parameters are as follows:

gij 1 2
1 1 2.5
2 2 0.5

pjt 0 1
1 0.5 0.5
2 0.5 0.5

djt 0 1
1 25 5
2 5 20

Figure 11 shows the optimal amount to order and minimum cost by location decision and
the overall optimal inventory policy for varying inventory levels for periods t ∈ {0, 1}. The
first column shows the figures relevant to starting in period 0 in location 1. From the first
graph, we see that if we remain in location 1, the optimal ordering policy is to order up to
5 if the inventory is less than 5, not place an order if the inventory is between 5 and 5.5,
order up to 10 if the inventory is between 5.5 and 10, and not place an order otherwise. If
we move to location 2, the optimal ordering policy is to order up to 25 if the inventory is
less than 25 and to not order otherwise. From the second graph, we see that our optimal
movement policy is to move to location 2 if the initial inventory level is less than or equal
to 14.1 and to remain in location 1 otherwise. The third graph gives the resultant optimal
inventory management policy: order up to 25 if the inventory is less than or equal to 14.1
and do not place an order otherwise.

The second and third columns show the same graphs for period t = 1 for the two possible
starting locations. From the first graph for starting in location 1, we see that if we remain
in location 1, the optimal ordering policy is to order up to 5 if the inventory is less than 5
and to not order otherwise. If we move to location 2, the optimal ordering policy is to order
up to 20 if the inventory is less than 20 and to not order otherwise. From the second graph,
we see that our optimal movement policy is to remain in location 1 if the initial inventory
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level is between 2.8 and 14 and to move to location 2 otherwise. The third graph gives the
resultant optimal inventory management policy: order up to 20 if the inventory is less than
or equal to 2.8, order up to 5 if the inventory is between 2.8 and 5, do not place an order if
the inventory is between 5 and 14, order up to 20 if the inventory is between 14 and 20, and
do not place an order otherwise. Thus, an (s, S) policy is not optimal in period 1 if we start
in location 1.

Example 2 also illustrates a counter-intuitive managerial insight. One may expect that
the lower our initial inventory level, the more we will want to order. However, the dynamic
location decision makes this not true. Consider starting in period 1 in location 1 with starting
inventory level x and reference again the optimal ordering policy displayed in the third graph
in column 2 of Figure 11. We see that if 2.8 ≤ x < 5 we order 5 − x, if 5 ≤ x < 14 we
order 0, and if 14 ≤ x < 20 we order 20 − x. This is because if 2.8 ≤ x < 14, we remain
in location 1 and we move to location 2 otherwise and each location has it’s own ordering
costs and expected future period costs resulting in different optimal ordering decisions. In
this case, these differences in optimal ordering decisions create a counterintuitive optimal
ordering policy in which we do not necessarily order less with a greater initial inventory level.

While an (s, S) policy is not necessarily optimal for the general case of the DRIM problem
as illustrated by Example 2, we can prove a few results regarding the structure of optimal
inventory management policies. Theorem 20 assures that there exists an optimal policy such
that, in any state, we either order nothing or order up to some sum of potential future
period demands. Corollary 5 follows directly from Theorem 20 and assures that if our initial
inventory level is weakly greater than the maximum possible demand for the rest of the
horizon, we do not place an order.

Theorem 20. ∃ an optimal policy π∗ = {πi, πy} ∈ Π, where πy = {yπ0 , ..., yπT−1}, such that

yπt (i0t , xt) = xt or yπt (i0t , xt) =
∑T−1

τ=t djτ τ , for some jτ ∈ J ∀τ ∈ {t, ..., T −1}, ∀i0t ∈ I, xt ≥ 0,
and t ∈ {0, ..., T − 1}.

Corollary 5. Let dmt = maxj djt. ∃ an optimal policy π∗ = {πi, πy} ∈ Π, where πy =

{yπ0 , ..., yπT−1}, such that yπt (i0t , xt) = xt ∀ xt ≥
∑T−1

τ=t d
m
τ , i0t ∈ I, and t ∈ {0, ..., T − 1}.

Theorem 20 and Corollary 5 allow us to consider a smaller set of possible ordering deci-
sions when determining the optimal policy which may reduce the computation time required
to solve the problem. That is, for each period t and each starting inventory location it and
level xt, we only need to consider ordering nothing and ordering up to the |J |T−t possi-
ble sums of potential future period demands instead of considering the infinite number of
possible decisions yt ≥ xt.

We can also develop a result analogous to Theorem 5 in Section 3.1 for the dynamic
relocation problem that helps to characterize the optimal relocation policy for the DRIM
problem. Under a few basic assumptions, this result states that it is sufficient to consider a
smaller feasible set of inventory locations. This allows us to reduce the size of the problem
and thus the time it takes to solve the problem which is worthwhile as realistic instances will
have a large state space and thus will take a long time to solve. Let conv(C) and Int(C)
denote the convex hull and interior of a set C, respectively, and define the following:
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Figure 11: Example 2 amount to order and minimum cost by location and overall optimal inventory
policy for varying starting inventory levels for periods t ∈ {0, 1}. From the graph of the overall
optimal inventory policy (third row), we see that an (s, S) policy is not optimal in period 1 if we
start in location 1.

Figure 12: Example network satisfying Assump-
tion 3. I consists of the shaded regions, the white
regions A1, A2, and A3 are infeasible regions, B̂s
is A1 ∪ A2 ∪ A3, and Î ′ is the dark gray shaded
region. Under Assumption 3, Theorem 21 as-
sures that there exists an optimal solution to the
dynamic relocation-inventory problem such that
the inventory is always located within Î ′.
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Assumption 3. Assume I ⊆ R2 is connected and closed and f(·), gj(·), K(·), and c(·) are
non-decreasing ∀j ∈ J . Let B = {A1, ..., Al} be a set of finitely many mutually disjoint,
connected, closed, and bounded subsets of R2 such that i 6∈ I ∀ i ∈ Int(An) and An ∈ B,
conv(I ∪ {lj|j ∈ J ∪ S} ∪ i00) ⊆ I ∪B, and I ∪B is convex.

Furthermore, let B̂s = {An ∈ B|{An∩conv({lj|j ∈ J∪S}∪i00) 6= ∅}∨{An∩conv(B̂s\An) 6=
∅}} and Î ′ = I ∩ conv(B̂s∪{lj|j ∈ J ∪S}∪ i00). See Figure 12 for an illustration of a network
satisfying Assumption 3. Assumption 3 defines the set B of all infeasible regions for the
mobile inventory, or areas where the inventory cannot be located (e.g. land in the case
of inventory on a ship). Theorem 21 assures that it is sufficient for the DRIM problem to
consider only inventory locations within Î ′, the feasible inventory locations within the convex
hull of the potential disaster sites, the supplier locations, and the initial inventory location
extended to include any overlapping infeasible regions (see the dark gray shaded region in
Figure 12 for an example):

Theorem 21. Under Assumption 3, ∃ an optimal policy π∗ = {πi, πy} ∈ Π, where πi =

{iπ0 , ..., iπT−1}, such that iπt (i0t , xt) ∈ Î ′ ∀ i0t ∈ Î ′, xt ≥ 0, and t ∈ {0, ..., T − 1}.

Theorems 19 and 20 and Corollary 5 help to characterize the optimal ordering policy
and Theorem 21 helps to characterize the optimal relocation policy. It is also worthwhile
to understand how the optimal relocation and ordering policies relate to each other. To
this end, we extend a few of the results of Section 4.1.1 to the general DRIM problem.
Specifically, we extend Theorems 17 and 18.2 to Theorems 22 and 23, respectively, below.

Theorem 17 assures that in the special case there exists an optimal policy such that we
will not move the mobile inventory toward the supplier, and away from the potential disaster
site, in a period in which we do not place an order. We can extend this result to the general
case of the DRIM problem. The analogous result states that we will not move the mobile
inventory toward the supplier at the expense of moving it farther from all potential disaster
sites in a period in which we do not place an order. Figure 13 illustrates this result.

Theorem 22. Assume g(·) is non-decreasing, f(·) is concave and non-decreasing over
(0,∞), and f(0) ≤ limd→0+ f(d). ∃ an optimal policy π∗ = {πi, πy} ∈ Π, where πi =
{iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, such that if yπt (i0t , xt) = xt then ∃j ∈ J such that
d(iπt (i0t , xt), lj) ≤ d(i0t , lj) ∀ i0t ∈ I, xt ≥ 0, and t ∈ {0, ..., T − 1}.

Recall that Theorem 20 and Corollary 5 allow us to consider a smaller set of possible
ordering actions which may reduce the computation time required to solve the problem; we
can further reduce the set of possible ordering decisions by extending Theorem 18.2 from
the special case to the general case of the DRIM problem. In the special case, this result
assures that we will not place an order from position L if our initial inventory is greater
than or equal to dt; this is because we do not need any more inventory to satisfy the current
period’s demand and our ordering costs will only possibly decrease in the next period as
we are currently located as far as possible from the supplier. To extend this result to the
general case of the DRIM problem, we need to classify which potential inventory locations
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Figure 13: Example network illustrating Theo-
rem 22. The triangle represents the initial mobile
inventory location i0t and the black dots represent
the potential disaster sites and the supplier loca-
tion. Each potential disaster site has a dark gray
circle around it indicating all locations at least as
close to it as i0t . Theorem 22 assures that in this
example network there exists an optimal solution
such that we will not move anywhere within the
light gray area if we do not place an order.

are farthest from a supplier. Let Im = {i|i ∈ I,mins∈S d(i, ls) = maxi′∈I(mins∈S d(i′, ls))}.
Im is the set of all potential inventory locations farthest from a supplier. Theorem 23 assures
that there exists an optimal policy such that we will not place an order from position i ∈ Im
if our current inventory level is weakly greater than the maximum possible current period
demand.

Theorem 23. Assume K(·) and c(·) are non-decreasing. ∃ an optimal policy π∗ = {πi, πy} ∈
Π, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, such that if iπt (i0t , xt) ∈ Im then
yπt (i0t , xt) = xt ∀ xt ≥ maxj∈J djt, i

0
t ∈ I, and t ∈ {0, ..., T − 1}.

Thus, from a position i ∈ Im, we will only possibly place an order if the current inventory
level is not enough to satisfy the current period’s potential demand. This makes intuitive
sense; if the inventory is located in Im, it is as far as possible from a supplier and ordering
costs will only possibly decrease due to changes in location in subsequent periods. Any order
placed when the initial inventory is greater than maxj∈J djt is not needed for that period
and can be postponed resulting in potential holding cost and ordering cost savings.

4.2 Proofs

4.2.1 Relevant Notation and Concepts

We will use aspects of the following in the proofs of Theorems 17, 18, and 20 through 23.

Zt(i
0
t , xt, it, yt) = fi0t it +Kitδ(yt − xt) +Gt(it, yt)− citxt

Then,

Vt(i
0
t , xt) = min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

and relocation and order policies iπt and yπt are optimal for period t if they satisfy(
iπt (i0t , xt), y

π
t (i0t , xt)

)
= arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt) ∀i0t ∈ I, xt ≥ 0
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Let

Dt =
{
d = (djtt, ..., djT−1T−1) | jτ ∈ J ∀τ ∈ {t, ..., T − 1}

}
be the set of all possible strings of future demand realizations starting in period t. Let the
probability of seeing the vector of demand realizations d ∈Dt be

p(d) =
T−1∏
τ=t

pjτ τ

Let i∗t be some predefined location for the inventory in period t. Let the inventory level
at the beginning of the period, the location of the mobile inventory throughout the period,
and the order up to level of the period under policy π ∈ Π and vector of demand realizations
d ∈Dt for periods τ ∈ {t+ 1, ..., T − 1} be denoted xπτd, iπτd, and yπτd, respectively, where

iπtd = i∗t
xπt+1d = max(0, y∗t − djt)
iπτd = iπτ (iπτ−1d, x

π
τd)

yπτd = yπτ (iπτ−1d, x
π
τd)

xπτd = max(yπτ−1d − djτ−1τ−1, 0)

4.2.2 Proof of Lemma 4

Proof. Since f is concave,

y2

y1 + y2

f(0) +
y1

y1 + y2

f(y1 + y2) ≤ f

(
y2

y1 + y2

(0) +
y1

y1 + y2

(y1 + y2)

)
⇒ y1

y1 + y2

f(y1 + y2) ≤ f(y1) (4.4)

Similarly,

y2

y1 + y2

f(y1 + y2) ≤ f(y2) (4.5)

By 4.4 and 4.5,

y1

y1 + y2

f(y1 + y2) +
y2

y1 + y2

f(y1 + y2) ≤ f(y1) + f(y2)

≡ f(y1 + y2) ≤ f(y1) + f(y2)
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4.2.3 Proof of Theorem 17

Proof. Consider period T − 1. For i0T−1 ∈ I and xT−1 ≥ 0, let

(i∗T−1, y
∗
T−1) = arg min

iT−1∈I,yT−1≥xT−1

ZT−1(i0T−1, xT−1, iT−1, yT−1)

Set yπT−1(i0T−1, xT−1) = y∗T−1. If yπT−1(i0T−1, xT−1) > xT−1 or yπT−1(i0T−1, xT−1) = xT−1 and
i∗T−1 ≥ i0T−1, set iπT−1(i0T−1, xT−1) = i∗T−1. Otherwise, yπT−1(i0T−1, xT−1) = y∗T−1 = xT−1 and
i∗T−1 < i0T−1; for i ≤ i0T−1, let

F (i) =f(i0T−1 − i) + pT−1[g(L− i) min(y∗T−1, dT−1) + hmax(0, y∗T−1 − dT−1)

+ bmax(0, dT−1 − y∗T−1)] + (1− pT−1)hy∗T−1

Note that F (i∗T−1) = ZT−1(i0T−1, xT−1, i
∗
T−1, y

∗
T−1) and F (i) is weakly decreasing over [0, i0T−1].

Thus,

ZT−1(i0T−1, xT−1, i
∗
T−1, y

∗
T−1) = F (i∗T−1) ≥ F (i0T−1) = ZT−1(i0T−1, xT−1, i

0
T−1, y

∗
T−1)

Set iπT−1(i0T−1, xT−1) = i0T−1. Defined in this way, iπT−1 and yπT−1 are optimal policies for period
T − 1 such that if yπT−1(i0T−1, xT−1) = xT−1, then iπT−1(i0T−1, xT−1) ∈ [i0T−1, L] ∀ i0T−1 ∈ I and
xT−1 ≥ 0.

Assume iπτ and yπτ are optimal policies for periods τ ∈ {t + 1, ..., T − 1} such that if
yπτ (i0τ , xτ ) = xτ then iπτ (i0τ , xτ ) ∈ [i0τ , L] ∀ i0τ ∈ I, xτ ≥ 0, and τ ∈ {t+ 1, ..., T − 1}.

Consider period t. For i0t ∈ I and xt ≥ 0, let

(i∗t , y
∗
t ) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

Set yπt (i0t , xt) = y∗t . If yπt (i0t , xt) > xt or yπt (i0t , xt) = xt and i∗t ≥ i0t , set iπt (i0t , xt) = i∗t .
Otherwise, yπt (i0t , xt) = y∗t = xt and i∗t < i0t ; let

īπt+1,1 = iπt+1(i∗t ,max(0, y∗t − dt))
īπt+1,0 = iπt+1(i∗t , y

∗
t )

ȳπt+1,1 = yπt+1(i∗t ,max(0, y∗t − dt))
ȳπt+1,0 = yπt+1(i∗t , y

∗
t )

and, for i ≤ i0t ,

F (i) =f(i0t − i) + pt[g(L− i) min(y∗t , dt) + hmax(0, y∗t − dt) + bmax(0, dt − y∗t )
+ f(|̄iπt+1,1 − i|) +K (̄iπt+1,1)δ(ȳπt+1,1 −max(0, y∗t − dt))
+Gt+1(̄iπt+1,1, ȳ

π
t+1,1)− c(̄iπt+1,1) max(0, y∗t − dt)]

+ (1− pt)[hy∗t + f(|̄iπt+1,0 − i|) +K (̄iπt+1,0)δ(ȳπt+1,0 − y∗t ) +Gt+1(̄iπt+1,0, ȳ
π
t+1,0)

− c(̄iπt+1,0)y∗t ]
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Note that F (i) ≥ Zt(i
0
t , xt, i, y

∗
t ) and F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t ) and

F (i∗t )− F (i0t ) =pt[f(i0t − i∗t )− f(0) + (g(L− i∗t )− g(L− i0t )) min(y∗t , dt)

+ f(|̄iπt+1,1 − i∗t |)− f(|̄iπt+1,1 − i0t |)]
+ (1− pt)[f(i0t − i∗t )− f(0) + f(|̄iπt+1,0 − i∗t |)− f(|̄iπt+1,0 − i0t |)]

We will show that

f(i0t − i∗t ) + f(|̄iπt+1,1 − i∗t |) ≥ f(0) + f(|̄iπt+1,1 − i0t |)

It will follow similarly that

f(i0t − i∗t ) + f(|̄iπt+1,0 − i∗t |) ≥ f(0) + f(|̄iπt+1,0 − i0t |)

and together with the assumption that g(·) is non-decreasing, it will follow that F (i0t ) ≤
F (i∗t ).

Let f 0 = limd→0+ f(d) and f+(d) = f(d)− f 0 for d ≥ 0. Note that i∗t 6= i0t . If i∗t = īπt+1,1,

f(i0t − i∗t ) + f(|̄iπt+1,1 − i∗t |) = f(0) + f(|̄iπt+1,1 − i0t |)

If i0t = īπt+1,1,

f(i0t − i∗t ) + f(|̄iπt+1,1 − i∗t |) ≥ 2f(0)

= f(0) + f(|̄iπt+1,1 − i0t |)

Assume i∗t 6= īπt+1,1 and i0t 6= īπt+1,1. Note that f+(·) is non-decreasing and, since sums of
concave functions are concave, f+(·) is concave over (0,∞). Then,

f(i0t − i∗t ) + f(|̄iπt+1,1 − i∗t |) = 2f 0 + f+(|i∗t − i0t |) + f+(|̄iπt+1,1 − i∗t |)
≥ 2f 0 + f+(|i∗t − i0t |+ |̄iπt+1,1 − i∗t |) (4.6)

≥ 2f 0 + f+(|̄iπt+1,1 − i0t |) (4.7)

= f 0 + f(|̄iπt+1,1 − i0t |)
≥ f(0) + f(|̄iπt+1,1 − i0t |) (4.8)

Where 4.6 follows from Lemma 4, 4.7 follows from the triangle inequality, and 4.8 follows
from the assumption f(0) ≤ limd→0+ f(d) = f 0. Thus, F (i0t ) ≤ F (i∗t )

⇒ Zt(i
0
t , xt, i

0
t , y
∗
t ) ≤ F (i0t ) ≤ F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set iπt (i0t , xt) = i0t . Defined in this way, iπt and yπt are optimal policies for period t such that
if yπt (i0t , xt) = xt then iπt (i0t , xt) ∈ [i0t , L] ∀ i0t ∈ I and xt ≥ 0.

By induction, iπt and yπt are optimal policy functions for t ∈ {0, ..., T − 1} and π∗ =
{πi, πy}, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, is an optimal policy satisfying the
conditions of the theorem.
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4.2.4 Proof of Theorem 18

Proof. Consider period T − 1. For i0T−1 ∈ I and xT−1 ≥ 0, let

(i∗T−1, y
∗
T−1) = arg min

iT−1∈I,yT−1≥xT−1

ZT−1(i0T−1, xT−1, iT−1, yT−1)

Let

F (i) =f(|i− i0T−1|) +K(i)δ(y∗T−1 − xT−1) + c(i)(y∗T−1 − xT−1)

+ pT−1[g(L− i) min(y∗T−1, dT−1) + hmax(0, y∗T−1 − dT−1) + bmax(0, dT−1 − y∗T−1)]

+ (1− pT−1)hy∗T−1

and note that F (i) = ZT−1(i0T−1, xT−1, i, y
∗
T−1)

1. If i∗T−1 6∈ {0, i0T−1, L}: because a concave, monotonic transformation of a concave
function is concave function is concave and a positive linear combination of con-
cave functions is concave, F (i) is concave over [0, i0T−1) and (i0T−1, L]. Furthermore,
F (i0T−1) ≤ limi→i0−T−1

F (i) and F (i0T−1) ≤ limi→i0+T−1
F (i). Thus, F (i∗∗T−1) ≤ F (i∗T−1)

where i∗∗T−1 = arg mini∈{0,i0T−1,L}
F (i). Then,

ZT−1(i0T−1, xT−1, i
∗∗
T−1, y

∗
T−1) = F (i∗∗T−1) ≤ F (i∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set i∗T−1 = i∗∗T−1.

2. If i∗T−1 = L, xT−1 ≥ dT−1, and y∗T−1 > xT−1: For y ≥ xT−1 ≥ dT−1, let

Q(y) =f(|i∗T−1 − i0T−1|) +K(i∗T−1)δ(y − xT−1) + c(i∗T−1)(y − xT−1)

pT−1[g(L− i∗T−1)dT−1 + h(y − dT−1)] + (1− pT−1)hy

Note that Q(y) = ZT−1(i0T−1, xT−1, i
∗
T−1, y). Q(y) is increasing over [xT−1,∞). Thus,

ZT−1(i0T−1, xT−1, i
∗
T−1, xT−1) = Q(xT−1) ≤ Q(y∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set y∗T−1 = xT−1.

3. If y∗T−1 = xT−1,

pT−1(g(L− i0T−1)− g(0)) min(xT−1, dT−1) ≥ f(L− i0T−1) + f(L) (4.9)

and i∗T−1 6= L: i∗T−1 6= L ⇒ i∗T−1 ∈ {0, i0T−1}. Thus, by 4.9 and the assumption that
g(·) is non-decreasing,

pT−1(g(L− i∗T−1)− g(0)) min(xT−1, dT−1) ≥ pT−1(g(L− i0T−1)− g(0)) min(xT−1, dT−1)

≥ f(L− i0T−1) + f(L)
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Thus,

F (i∗T−1)− F (L) = f(|i∗T−1 − i0T−1|)− f(L− i0T−1)

+ pT−1(g(L− i∗T−1)− g(0)) min(xT−1, dT−1)

≥ 0

⇒ ZT−1(i0T−1, xT−1, L, y
∗
T−1) = F (L) ≤ F (i∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set i∗T−1 = L.

4. If y∗T−1 > xT−1,

K(i)−K(0) + (c(i)− c(0))
(
y∗T−1 − xT−1

)
≥ pT−1 (g(L)− g(L− i)) min

(
y∗T−1, dT−1

)
+ f(i0T−1) + f(L)

for i ∈ {i0T−1, L}, and i∗T−1 6= 0: i∗T−1 6= 0 ⇒ i∗T−1 ∈ {i0T−1, L}. Thus,

F (i∗T−1)− F (0) = f(|i∗T−1 − i0T−1|)− f(|0− i0T−1|) +K(i∗T−1)−K(0)

+ (c(i∗T−1)− c(0))(y∗T−1 − xT−1)

+ pT−1(g(L− i∗T−1)− g(L)) min(y∗T−1, dT−1)

≥ K(i∗T−1)−K(0) + (c(i∗T−1)− c(0))(y∗T−1 − xT−1)

− pT−1(g(L)− g(L− i∗T−1)) min(y∗T−1, dT−1)− f(i0T−1)

≥ 0

⇒ ZT−1(i0T−1, xT−1, 0, y
∗
T−1) = F (0) ≤ F (i∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set i∗T−1 = 0.

Set iπT−1(i0T−1, xT−1) = i∗T−1 and yπT−1(i0T−1, xT−1) = y∗T−1. Defined in this way, iπT−1 and yπT−1

are optimal policies for period T − 1 satisfying the conditions of the Theorem.
Consider period t. Assume iπτ and yπτ are optimal policies for periods τ ∈ {t+1, ..., T −1}

satisfying the conditions of the Theorem. For i0t ∈ I and xt ≥ 0, let

(i∗t , y
∗
t ) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

1. If i∗t 6∈ {0, i0t , L}: Let

D̂∗ = {(d, τ) | d ∈ Dt, t ∈ {t+ 1, ..., T − 1}, iπιd = i∗t ∀ι ∈ {t+ 1, ..., τ}},
D̂∗+ = {(d, τ) | d ∈ Dt, t ∈ {t+ 1, ..., T − 1}, iπιd = i∗t ∀ι ∈ {t+ 1, ..., τ − 1}, iπτd 6= i∗t}
D̂∗C = {(d, τ) | d ∈ Dt, t ∈ {t+ 1, ..., T − 1}} \ (D̂∗ ∪ D̂∗+)
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Furthermore, for i ∈ I, let

F (i) =f(|i− i0t |) +K(i)δ(y∗t − xt) + c(i)(y∗t − xt)
+ pt[g(L− i) min(y∗t , dt) + hmax(0, y∗t − dt) + bmax(0, dt − y∗t )] + (1− pt)hy∗t
+

∑
(d,τ)∈D̂∗

p(d)[K(i)δ(yπτd − xπτd) + c(i)(yπτd − xπτd) + g(L− i) min(yπτd, djτ τ )

+ hmax(0, yπτd − djτ τ ) + bmax(0, djτ τ − yπτd)]

+
∑

(d,τ)∈D̂∗+

p(d)f(|iπτd − i|) +
∑

(d,τ)∈D̂∗C

p(d)f(|iπτd − iπτ−1d|)

+
∑

(d,τ)∈D̂∗+∪D̂∗C

p(d)[K(iπτd)δ(yπτd − xπτd) + c(iπτd)(yπτd − xπτd)

+ g(L− iπτd) min(yπτd, djτ τ ) + hmax(0, yπτd − djτ τ )
+ bmax(0, djτ τ − yπτd)]

Note that F (i) ≥ Zt(i
0
t , xt, i, y

∗
t ) and F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t ). Because a concave,

monotonic transformation of a concave function is concave and a positive linear com-
bination of concave functions is concave, F (i) is concave over (0, i0t ) and (i0t , L). Fur-
thermore, F (0) ≤ limi→0+ F (i), F (i0t ) ≤ limi→i0−t

F (i), F (i0t ) ≤ limi→i0+t
F (i), and

F (L) ≤ limi→L− F (i). Thus, F (i∗∗t ) ≤ F (i∗t ) where i∗∗t = arg mini∈{0,i0t ,L} F (i). Then,

Zt(i
0
t , xt, i

∗∗
t , y

∗
t ) ≤ F (i∗∗t ) ≤ F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set i∗t = i∗∗t .

2. If i∗t = L, xt ≥ dt, and y∗t > xt: Let

īπt+1,1 = iπt+1(i∗t , y
∗
t − dt)

īπt+1,0 = iπt+1(i∗t , y
∗
t )

ȳπt+1,1 = yπt+1(i∗t , y
∗
t − dt)

ȳπt+1,0 = yπt+1(i∗t , y
∗
t )

and, for y ≥ xt ≥ dt,

Q(y) =f(|i∗t − i0t |) +K(i∗t )δ(y − xt) + c(i∗t )(y − xt)
+ pt[g(L− i∗t )dt + h(y − dt) + f(|̄iπt+1,1 − i∗t |) +K (̄iπt+1,1)δ(ȳπt+1,1 − (y − dt))

+Gt+1(̄iπt+1,1, ȳ
π
t+1,1)− c(̄iπt+1,1)(y − dt)]

+ (1− pt)[hy + f(|̄iπt+1,0 − i∗t |) +K (̄iπt+1,0)δ(ȳπt+1,0 − y) +Gt+1(̄iπt+1,0, ȳ
π
t+1,0)

− c(̄iπt+1,0)y]
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Note that Q(y) ≥ Zt(i
0
t , xt, i

∗
t , y) and Q(y∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t ). By the assumption that

K(·) and c(·) are non-decreasing, c(i∗t ) ≥ c(i) ∀i ∈ I; thus,

Q(y∗t )−Q(xt) = K(i∗t ) + c(i∗t )(y
∗
t − xt)

+ pt[h(y∗t − xt) +K (̄iπt+1,1)[δ(ȳπt+1,1 − (y∗t − dt))− δ(ȳπt+1,1 − (xt − dt))]
− c(̄iπt+1,1)(y∗t − xt)]

+ (1− pt)[h(y∗t − xt) +K (̄iπt+1,0)[δ(ȳπt+1,0 − y∗)− δ(ȳπt+1,0 − xt)]
− c(̄iπt+1,0)(y∗t − xt)]

≥ K(i∗t ) + c(i∗t )(y
∗
t − xt) + pt[−K (̄iπt+1,1)− c(̄iπt+1,1)(y∗t − xt)]

+ (1− pt)[−K (̄iπt+1,0)− c(̄iπt+1,0)(y∗t − xt)]
= K(i∗t )− ptK (̄iπt+1,1)− (1− pt)K (̄iπt+1,0)

+ [c(i∗t )− ptc(̄iπt+1,1)− (1− pt)c(̄iπt+1,0)](y∗t − xt)
≥ 0

Thus,

Zt(i
0
t , xt, i

∗
t , xt) ≤ Q(xt) ≤ Q(y∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set y∗t = xt.

Let

īπt+1,1 = iπt+1(i∗t ,max(0, y∗t − dt))
īπt+1,0 = iπt+1(i∗t , y

∗
t )

ȳπt+1,1 = yπt+1(i∗t ,max(0, y∗t − dt))
ȳπt+1,0 = yπt+1(i∗t , y

∗
t )

and, for i ∈ I,

F (i) =f(|i− i0t |) +K(i)δ(y∗t − xt) + c(i)(y∗t − xt)
+ pt[g(L− i) min(y∗t , dt) + hmax(0, y∗t − dt) + bmax(0, dt − y∗t ) + f(|̄iπt+1,1 − i|)

+K (̄iπt+1,1)δ(ȳπt+1,1 −max(0, y∗t − dt)) +Gt+1(̄iπt+1,1, ȳ
π
t+1,1)

− c(̄iπt+1,1) max(0, y∗t − dt)]
+ (1− pt)[hy∗t + f(|̄iπt+1,0 − i|) +K (̄iπt+1,0)δ(ȳπt+1,0 − y∗t ) +Gt+1(̄iπt+1,0, ȳ

π
t+1,0)

− c(̄iπt+1,0)y∗t ]

Note that F (i) ≥ Zt(i
0
t , xt, i, y

∗
t ).

3. If y∗t = xt,

pt(g(L− i0t )− g(0)) min(xt, dt) ≥ f(L− i0t ) + f(L) (4.10)
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and i∗t 6= L: i∗t 6= L ⇒ i∗t ∈ {0, i0t}. Thus, by 4.10 and the assumption that g(·) is
non-decreasing,

pt(g(L− i∗t )− g(0)) min(xt, dt) ≥ pt(g(L− i0t )− g(0)) min(xt, dt)

≥ f(L− i0t ) + f(L)

Thus,

F (i∗t )− F (L) = f(|i∗t − i0t |)− f(|L− i0t |)
+ pt[(g(L− i∗t )− g(0)) min(xt, dt) + f(|̄iπt+1,1 − i∗t |)− f(|̄iπt+1,1 − L|)]
+ (1− pt)[f(|̄iπt+1,0 − i∗t |)− f(|̄iπt+1,0 − L|)]
≥ pt(g(L− i∗t )− g(0)) min(xt, dt) + f(L− i0t )− f(L)

≥ 0

⇒ Zt(i
0
t , xt, L, y

∗
t ) ≤ F (L) ≤ F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set i∗t = L.

4. If y∗t > xt,

K(i)−K(0) + (c(i)− c(0)) (y∗t − xt)
≥ pt (g(L)− g(L− i)) min (y∗t , dt) + f(i0t ) + f(L)

for i ∈ {i0t , L}, and i∗t 6= 0: i∗t 6= 0 ⇒ i∗t ∈ {i0t , L}. Thus,

F (i∗t )− F (0) = f(|i∗t − i0t |)− f(|0− i0t |) +K(i∗t )−K(0) + (c(i∗t )− c(0))(y∗t − xt)
+ pt[(g(L− i∗t )− g(L)) min(y∗t , dt) + f(|̄iπt+1,1 − i∗t |)− f(|̄iπt+1,1 − 0|)]
+ (1− pt)[f(|̄iπt+1,0 − i∗t |)− f(|̄iπt+1,0 − 0|)]
≥ K(i∗t )−K(0) + (c(i∗t )− c(0))(y∗t − xt)
− pt(g(L)− g(L− i∗t )) min(y∗t , dt)− f(i0t )− f(L)

≥ 0

⇒ Zt(i
0
t , xt, 0, y

∗
t ) ≤ F (0) ≤ F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set i∗t = 0.

Set iπt (i0t , xt) = i∗t and yπt (i0t , xt) = y∗t . Defined in this way, iπt and yπt are optimal policies for
period t satisfying the conditions of the Theorem.

By induction, iπt and yπt are optimal policy functions for t ∈ {0, ..., T − 1} and π∗ =
{πi, πy}, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, is an optimal policy satisfying the
conditions of the theorem.
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4.2.5 Proof of Theorem 19

Proof. Let i−1 = i00 and Πi = {{i0, ..., iT−1}|it ∈ I ∀t}. The problem can be written
minπi∈Πi V̄

πi
0 (x0) where

V̄ πi
t (xt) = min

yt≥xt

{
fit−1it +Kδ(yt − xt) + Ḡt(yt)− citxt)

}
V̄ πi
T (xT ) = 0 and

Ḡt(y) =city +
∑
j∈J

pjt

[
hmax(0, y − djt) + gitjdjt + (bj − gitj) max(0, djt − y)

+ V̄ πi
t+1(max(0, y − djt))

]
Consider a specific movement policy πi = {i0, ..., iT−1} ∈ Πi and let us optimize over the
inventory decisions. We will show that under πi, a multiperiod (s, S) policy is optimal.
Thus, taking the minimization over all πi ∈ Πi, a multiperiod (s, S) policy is optimal for the
problem and the result will be proved.

Under πi, we can disregard the fixed cost terms fit−1it and gitjdjt in optimizing over the
inventory decisions:

V̄ πi
t (xt) = min

yt≥xt

{
Kδ(yt − xt) + Ḡt(yt)− citxt)

}
(4.11)

Ḡt(y) = city +
∑
j∈J

pjt

[
hmax(0, y − djt) + (bj − gitj) max(0, djt − y) + V̄ πi

t+1(max(0, y − djt))
]

Suppose for t ∈ {0, ..., T − 1} Ḡt(y) is K-convex and has unconstrained minimum St =
miny Ḡt(y). Let st be the largest y such that Ḡt(y) = K + Ḡt(St). In the case where K = 0,
st = St ∀ t ∈ {0, ..., T − 1}. By well known properties of K-convex functions, the optimal yt
in 4.11 is (for details, see Snyder and Shen (2011) Lemma 4.4 (b)):

y∗t =

{
St if xt ≤ st

xt if xt > st

which is equivalent to an (s, S) policy. Thus, the result will be proved if we can show
the functions Ḡt(y) are K-convex and continuous and lim|y|→∞ Ḡt(y) = ∞, so that the
minimizing scalar St exists, ∀t ∈ {0, ..., T − 1}. Similarly to Shreve (2005), let

Htj(y) = (bj − gitj) max(0,−y) + V̄ π
t+1(max(0, y))

Note that max(0, y−d) and max(0, d− y) are convex ∀d ∈ R and that bj− gij > ci′ ∀i, i′ ∈ I
and j ∈ J by assumption ⇒ bj − gitj > 0 ∀j ∈ J since ci ≥ 0 ∀i ∈ I. If Htj(y) is K-convex
and continuous ∀j ∈ J , then Ḡt(y) is K-convex and continuous since non-negative multiples
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of convex functions are convex, α1f1(x) + α2f2(x) is (α1K1 + α2K2)-convex for f1(x) and
f2(x) K1- and K2-convex functions, respectively, and α1, α2 ≥ 0, and sums of continuous
functions are continuous. Furthermore,

lim
|y|→∞

city +
∑
j∈J

pjt[hmax(0, y − djt) + (bj − gitj) max(0, djt − y)] =∞ (4.12)

since its derivative tends to cit + h as y → ∞ which is positive by assumption and cit −∑
j∈J pjt(bj − gitj) as y → −∞ which is negative by the assumption bj − gij > ci′ ∀i, i′ ∈ I

and j ∈ J . Thus, if

lim
|y|→∞

V̄ πi
t+1(max(0, y − d)) ≥ 0 ∀d ∈ R

then lim|y|→∞ Ḡt(y) =∞. Accordingly, the result will be proved if we can show that Htj(y)
is K-convex and continuous and

lim
|y|→∞

V̄ πi
t+1(max(0, y − d)) ≥ 0 ∀t ∈ {0, ..., T − 1}, j ∈ J, d ∈ R

V̄ πi
T (max(0, y − d)) = 0 ∀d ∈ R and is thus K-convex and

lim
|y|→∞

V̄ πi
T (max(0, y − d)) = 0 ≥ 0 ∀d ∈ R

Additionally, HT−1j(y) is convex and thus is K-convex and continuous ∀j ∈ J . Assume

lim
|y|→∞

V̄ πi
t+2(max(0, y − d)) ≥ 0 ∀d ∈ R

and Ht+1j(y) is K-convex and continuous ∀j ∈ J . Then, an (s, S) policy is optimal in period
t+ 1 and V̄ πi

t+1(y) = Qt+1(y)− cit+1y where

Qt+1(y) =

{
K + Ḡt+1(St+1) if y < st+1

Ḡt+1(y) if y ≥ st+1

From this equation together with 4.12 and the assumption

lim
|y|→∞

V̄ πi
t+2(max(0, y − d)) ≥ 0 ∀d ∈ R

we see that

lim
|y|→∞

V̄ πi
t+1(max(0, y − d)) ≥ 0 ∀d ∈ R

Each piece of V̄ πi
t+1(y) is continuous and at the break point y = st+1, Ḡt+1(y) = K+Ḡt+1(St+1)

by definition of st+1. Thus, V̄ πi
t+1(y) is continuous and, since sums of continuous functions

are continuous, Htj(y) is continuous ∀j ∈ J . Since Ht+1j(y) is K-convex ∀j ∈ J , Ḡt+1(y)
is K-convex and thus V̄ πi

t+1(y) is K-convex (see Snyder and Shen (2011) Lemma 4.4 (c) for
details). All that is left to prove is that Htj(y) is K-convex ∀j ∈ J and the result will follow
from induction. By Shreve (2005) together with the assumption bj − gij > ci′ ∀i, i′ ∈ I and
j ∈ J and K-convexity of V̄ πi

t+1(y), Htj(y) is K-convex ∀j ∈ J .

70



4.2.6 Proof of Theorem 20

Proof. Recall that J contains a dummy site J with djt = 0 ∀t. Consider period T − 1, the
last decision making period. For i0T−1 ∈ I and xT−1 ≥ 0, let

(i∗T−1, y
∗
T−1) = arg min

iT−1∈I,yT−1≥xT−1

ZT−1(i0T−1, xT−1, iT−1, yT−1)

Set iπT−1(i0T−1, xT−1) = i∗T−1. If y∗T−1 = xT−1 or y∗T−1 = djT−1 for some j ∈ J , set
yπT−1(i0T−1, xT−1) = y∗T−1. Otherwise, let J∗T−1 = {j|j ∈ J, djT−1 < y∗T−1},

l =

{
max

(
maxj∈J∗T−1

djT−1, xT−1

)
, if J∗T−1 6= ∅

xT−1, otherwise

and

u =

{
minj∈J\J∗T−1

djT−1, if J \ J∗T−1 6= ∅
∞, otherwise

Keeping i0T−1, xT−1, and i∗T−1 constant, we can rewrite ZT−1(i0T−1, xT−1, i
∗
T−1, y) over y ∈ [l, u]

if u 6=∞ and y ∈ [l, u) if u =∞ as

ZT−1(i0T−1, xT−1, i
∗
T−1, y) =fi0T−1i

∗
T−1

+Ki∗T−1
δ(y − xT−1) + ci∗T−1

(y − xT−1)

+
∑

j∈J∗T−1

pjT−1

[
gi∗T−1j

djT−1 + h(y − djT−1)
]

+
∑

j∈J\J∗T−1

pjT−1

[
gi∗T−1j

y + bj(djT−1 − y)
]

Suppose u 6=∞. If l = xT−1, then ZT−1(i0T−1, xT−1, i
∗
T−1, y) is linear in y over (l, u], holding

all else constant, and

ZT−1(i0T−1, xT−1, i
∗
T−1, l) = lim

y→l+
ZT−1(i0T−1, xT−1, i

∗
T−1, y)−Ki∗T−1

⇒ZT−1(i0T−1, xT−1, i
∗
T−1, l) ≤ lim

y→l+
ZT−1(i0T−1, xT−1, i

∗
T−1, y)

If l 6= xT−1, then ZT−1(i0T−1, xT−1, i
∗
T−1, y) is linear in y over [l, u], holding all else constant.

Thus, in either case,

ZT−1(i0T−1, xT−1, i
∗
T−1, l) ≤ ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

or

ZT−1(i0T−1, xT−1, i
∗
T−1, u) ≤ ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)
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Set

yπT−1(i0T−1, xT−1) = arg min
y∈{l,u}

ZT−1(i0T−1, xT−1, i
∗
T−1, y)

Suppose u =∞. Then

ZT−1(i0T−1, xT−1, i
∗
T−1, l) ≤ ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

since ci∗T−1
and h are non-negative; set yπT−1(i0T−1, xT−1) = l. Defined in this way, iπT−1 and

yπT−1 are optimal policies for period T − 1 and yπT−1 is such that yπT−1(i0T−1, xT−1) = xT−1 or
yπT−1(i0T−1, xT−1) = djT−1 for some j ∈ J ∀i0T−1 ∈ I and xT−1 ≥ 0.

Assume iπτ and yπτ are optimal policies for periods τ ∈ {t + 1, ..., T − 1} and yπτ is such
that yπτ (i0τ , xτ ) = xτ or yπτ (i0τ , xτ ) =

∑T−1
ι=τ djιι, for some jι ∈ J ∀ι ∈ {τ, ..., T − 1}, ∀i0τ ∈ I,

xτ ≥ 0, and τ ∈ {t+ 1, ..., T − 1}. Consider period t. We prove this induction step similarly
to the period T −1 base case, however, this step is more complicated as changing an ordering
decision in period t may affect ordering decisions in future periods. For i0t ∈ I and xt ≥ 0,
let

(i∗t , y
∗
t ) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

Set iπt (i0t , xt) = i∗t . If y∗t = xt or y∗t =
∑T−1

τ=t djτ τ , for some jτ ∈ J ∀τ ∈ {t, ..., T − 1}, set
yπt (i0t , xt) = y∗t . Otherwise, let J∗t = {j | j ∈ J, djt < y∗t } and

īπt+1j = iπt+1(i∗t ,max(0, y∗t − djt)) ∀j ∈ J
ȳπt+1j = yπt+1(i∗t ,max(0, y∗t − djt)) ∀j ∈ J

Note that

Zt(i
0
t , xt, i

∗
t , y
∗
t ) =fi0t i∗t +Ki∗t

δ(y∗t − xt) + ci∗t (y
∗
t − xt)

+
∑
j∈J∗t

pjt

[
gi∗t jdjt + h(y∗t − djt) + fi∗t īπt+1j

+Kīπt+1j
δ(ȳπt+1j − (y∗t − djt))

+Gt+1(̄iπt+1j, ȳ
π
t+1j)− cīπt+1j

(y∗t − djt)
]

+
∑

j∈J\J∗t

pjt

[
gi∗t jy

∗
t + bj(djt − y∗t ) + fi∗t īπt+1j

+Kīπt+1j
δ(ȳπt+1j)

+Gt+1(̄iπt+1j, ȳ
π
t+1j)

]
Lets consider changing the ordering decision y∗t while keeping i∗t constant and the decisions
in future periods as constant as possible. Let

Ĵ∗t = {j | j ∈ J∗t , ȳπt+1j = y∗t − djt}
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Then {djt | j ∈ Ĵ∗t } is the collection of period t demand realizations for which the associated
period t+1 ordering decision is to set the order up to level to the initial inventory level or, in
other words, to not order anything. Thus, keeping these ordering decisions unchanged, if we
decrease y∗t slightly we introduce a new fixed ordering cost and if we increase y∗t slightly these
ordering decisions become infeasible. In changing y∗t , lets also change the ordering decisions
{ȳπt+1j | j ∈ Ĵ∗t }, and the future period ordering decisions which are similarly affected, in the
corresponding way. We introduce some new notation. Let

Dt∗ =
{
d = (djtt, ..., djT−1T−1) | d ∈Dt, jt ∈ Ĵ∗t

}
be the set of all possible strings of future demand realizations starting with djtt for jt ∈ Ĵ∗t .
Let Σdτ =

∑τ
ι=t djιι and

D̂∗ =
{

(d, τ) | d ∈Dt, τ ∈ {t+ 1, ..., T − 1}, yπτd = y∗t − Σdτ−1

}
D̂∗c =

{
(d, τ) | d ∈Dt, τ ∈ {t+ 1, ..., T − 1}, yπτd 6= y∗t − Σdτ−1

}
DΣ =

{
T−1∑
τ=t

djτ τ | jτ ∈ J ∀τ ∈ {t, ..., T − 1}

}
Let

l = max ({z | z ∈ DΣ, z < y∗t }, xt)
u = min ({z | z ∈ DΣ, z > y∗t },∞)

and, for y ∈ [l, u] ([l, u) if u =∞),

F (y) =fi0t i∗t +Ki∗t
δ(y − xt) + ci∗t (y − xt)

+
∑

j∈J∗t \Ĵ∗t

pjt

[
gi∗t jdjt + h(y − djt) + fi∗t īπt+1j

+Kīπt+1j
δ(ȳπt+1j − (y − djt))

+Gt+1(̄iπt+1j, ȳ
π
t+1j)− cīπt+1j

(y − djt)
]

+
∑

j∈J\J∗t

pjt

[
gi∗t jy + bj(djt − y) + fi∗t īπt+1j

+Kīπt+1j
δ(ȳπt+1j)

+Gt+1(̄iπt+1j, ȳ
π
t+1j)

]
+
∑
j∈Ĵ∗t

pjt[gi∗t jdjt + h(y − djt)]

+
∑

(d,τ)∈D̂∗

p(d)
[
fiπτ−1di

π
τd

+ giπτdjτ min(y − Σdτ−1, djτ τ ) + hmax(0, y − Σdτ−1 − djτ τ )

+ bjτ max(0, djτ τ − (y − Σdτ−1))
]

+
∑

(d,τ)∈D̂∗c

p(d)
[
fiπτ−1di

π
τd

+Kiπτd
δ(yπτd − xπτd) + ciπτd(yπτd − xπτd) + giπτdjτ min(yπτd, djτ τ )
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+ hmax(0, yπτd − djτ τ ) + bjτ max(0, djτ τ − yπτd)
]

Note that F (y∗t ) = Zt(i
0
t , xt, i

∗
t , y
∗
t ). F (y) is linear over (l, u) and f(l) ≤ limy→l+ F (y).

Suppose u 6= ∞. Then F (u) ≤ limy→u− F (y). Thus, miny∈{l,u} F (y) ≤ F (y∗t ). Set y∗∗t =
arg miny∈{l,u} F (y). Alternatively, suppose u = ∞. Then F (l) ≤ F (y∗t ) since ci∗t and h are
non-negative. Set y∗∗t = l. Then, in both cases,

Zt(i
0
t , xt, it, y

∗
t ) = F (y∗t ) ≥ F (y∗∗t ) ≥ Zt(i

0
t , xt, it, y

∗∗
t )

Set yπt (i0t , xt) = y∗∗t . Defined in this way, iπt and yπt are optimal policies for period t such that
yπt (i0t , xt) = xt or yπt (i0t , xt) =

∑T−1
τ=t djτ τ , for some jτ ∈ J ∀τ ∈ {t, ..., T − 1}, ∀i0t ∈ I and

xt ≥ 0.
By induction, iπt and yπt are optimal policy functions for t ∈ {0, ..., T − 1} and π∗ =

{πi, πy}, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, is an optimal policy satisfying the
conditions of the theorem.

4.2.7 Proof of Theorem 21

Proof. Note that B̂s ∪ {lj|j ∈ J} ∪ S ∪ i00 is a closed and bounded subset of R2 and thus

is compact by the Heine-Borel Theorem. Thus, conv(B̂s ∪ {lj|j ∈ J} ∪ S ∪ i00) is closed
since the convex hull of a compact set in R2 is compact and every compact set is closed.
Similarly, since I is closed by assumption and the intersection of closed sets is closed, Î ′ =
I ∩ conv(B̂s ∪ {lj|j ∈ J} ∪ S ∪ i00) and conv(Î ′) are closed. Furthermore, by construction,

the boundary of conv(B̂s ∪ {lj|j ∈ J} ∪ S ∪ i00) is contained in I and thus is also contained

in Î ′ and L = conv(Î ′) = conv(B̂s ∪ {lj|j ∈ J} ∪ S ∪ i00). Thus, L is convex and closed, its

boundary is contained in Î ′, projL(i) ∈ Î ′ ∀i ∈ R2, and Î ′ ⊆ L.
Let π ∈ Π be an optimal policy such that iπt (i0t , xt) 6∈ Î ′ for some i0t ∈ Î ′, xt ≥ 0, and

t ∈ {0, ..., T − 1}. Let

Zt(i
0
t , xt, it, yt) = fi0t it +Kitδ(yt − xt) +Gt(it, yt)− citxt

Then

(iπt (i0t , xt), y
π
t (i0t , xt)) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

Consider the policy πp = {iπp0 , ..., i
πp
T−1} such that

i
πp
t (i0t , xt) = projL(iπt (i0t , xt)) ∀ i0t ∈ Î ′, xt ≥ 0, t ∈ {0, ..., T − 1}
i
πp
t (i0t , xt) = iπt (i0t , xt) ∀ i0t ∈ I \ Î ′, xt ≥ 0, t ∈ {0, ..., T − 1}
y
πp
t (i0t , xt) = yπt (i0t , xt) ∀ i0t ∈ I, xt ≥ 0, t ∈ {0, ..., T − 1}

πp is a feasible policy such that

i
πp
t (i0t , xt) ∈ Î ′ ∀i0t ∈ Î ′, xt ≥ 0, t ∈ {0, ..., T − 1}
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Note that lj ∈ L ∀j ∈ J ∪ S. By Lemma 1,

d(i, i′) ≥ d(i, projL(i′)) ∀i ∈ Î ′, i′ ∈ R2

and

d(i, lj) ≥ d(projL(i), lj) ∀i ∈ R2, j ∈ J ∪ S

By Lemma 2,

d(i, i′) ≥ d(projL(i), projL(i′)) ∀i, i′ ∈ R2

Thus,

min
s∈S

d(i, ls) ≥ min
s∈S

d(projL(i), ls)

Since f(·), gj(·), K(·), and c(·) are non-decreasing ∀j ∈ J ,

f(d(i, i′)) ≥ f(d(i, projL(i′))) ≡ fii′ ≥ fiprojL(i′) ∀i ∈ Î ′, i′ ∈ R2

f(d(i, i′)) ≥ f(d(projL(i), projL(i′))) ≡ fii′ ≥ fprojL(i)projL(i′) ∀i, i′ ∈ R2

gj(d(i, lj)) ≥ gj(d(projL(i), lj)) ≡ gij ≥ gprojL(i)j ∀i ∈ R2, j ∈ J

K

(
min
s∈S

d(i, ls)

)
≥ K

(
min
s∈S

d(projL(i), ls)

)
≡ Ki ≥ KprojL(i) ∀i ∈ R2

c

(
min
s∈S

d(i, ls)

)
≥ c

(
min
s∈S

d(projL(i), ls)

)
≡ ci ≥ cprojL(i) ∀i ∈ R2

We will use these relations throughout the rest of the proof.
Note that

VT (i0T , xT ) = 0 = VT (projL(i0T ), xT ) ∀i0T ∈ I, xT ≥ 0

Assume

Vt+1(i0t+1, xt+1) ≥ Vt+1(projL(i0t+1), xt+1) ∀i0t+1 ∈ I, xt+1 ≥ 0

Consider period t. For i0t ∈ I \ Î ′ and xt ≥ 0,

Zt(i
0
t , xt, i

π
t (i0t , xt), y

π
t (i0t , xt)) = Zt(i

0
t , xt, i

πp
t (i0t , xt), y

πp
t (i0t , xt))

For i0t ∈ Î ′ and xt ≥ 0,

Gt(i
π
t (i0t , xt), y

π
t (i0t , xt))− ciπt (i0t ,xt)

≥ Gt(projL(iπt (i0t , xt)), y
π
t (i0t , xt))− cprojL(iπt (i0t ,xt))

= Gt(i
πp
t (i0t , xt), y

πp
t (i0t , xt))− ciπpt (i0t ,xt)
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and thus

Zt(i
0
t , xt, i

π
t (i0t , xt), y

π
t (i0t , xt)) ≥ Zt(i

0
t , xt, projL(iπt (i0t , xt)), y

π
t (i0t , xt))

= Zt(i
0
t , xt, i

πp
t (i0t , xt), y

πp
t (i0t , xt))

Thus, i
πp
t and y

πp
t must also be optimal policy functions for period t. Furthermore, for i0t ∈ I

and xt ≥ 0,

Vt(i
0
t , xt) = Zt(i

0
t , xt, i

π
t (i0t , xt), y

π
t (i0t , xt))

≥ Zt(projL(i0t ), xt, projL(iπt (i0t , xt)), y
π
t (i0t , xt))

≥ Zt(projL(i0t ), xt, i
π
t (projL(i0t ), xt), y

π
t (projL(i0t ), xt)) (4.13)

= Vt(projL(i0t ), xt)

where 4.13 follows from the fact that(
iπt (projL(i0t ), xt), y

π
t (projL(i0t ), xt)

)
= arg min

it∈I,yt≥xt
Zt(projL(i0t ), xt, it, yt)

By induction, i
πp
t and y

πp
t are optimal policy functions for t ∈ {0, ..., T − 1} and

Vt(i
0
t , xt) ≥ Vt(projL(i0t ), xt) ∀i0t ∈ I, xt ≥ 0, t ∈ {0, ..., T}

Thus, π∗ = {πpi , πpy}, where πpi = {iπp0 , ..., i
πp
T−1} and πpy = {yπp0 , ..., y

πp
T−1}, is an optimal policy

satisfying the conditions of the theorem.

4.2.8 Proof of Theorem 22

Proof. Consider period T − 1. For i0T−1 ∈ I and xT−1 ≥ 0, let

(i∗T−1, y
∗
T−1) = arg min

iT−1∈I,yT−1≥xT−1

ZT−1(i0T−1, xT−1, iT−1, yT−1)

Set yπT−1(i0T−1, xT−1) = y∗T−1. If yπT−1(i0T−1, xT−1) > xT−1 or yπT−1(i0T−1, xT−1) = xT−1

and ∃j ∈ J such that d(i∗T−1, lj) ≤ d(i0T−1, lj), set iπT−1(i0T−1, xT−1) = i∗T−1. Otherwise,
yπT−1(i0T−1, xT−1) = y∗T−1 = xT−1 and d(i∗T−1, lj) > d(i0T−1, lj) ∀j ∈ J ; for i ∈ I, let

F (i) =fi0T−1i
+
∑
j∈J

pjT−1[gij min(y∗T−1, djT−1) + hmax(0, y∗T−1 − djT−1)

+ bj max(0, djT−1 − y∗T−1)]

Note that F (i) = ZT−1(i0T−1, xT−1, i, y
∗
T−1),

fi0T−1i
0
T−1

= f(0) ≤ f(d(i0T−1, i
∗
T−1)) = fi0T−1i

∗
T−1

and

gi0T−1j
= gj(d(i0T−1, lj)) ≤ gj(d(i∗T−1, lj)) = gi∗T−1j

∀j ∈ J
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Thus,

ZT−1(i0T−1, xT−1, i
0
T−1, y

∗
T−1) = F (i0T−1) ≤ F (i∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set iπT−1(i0T−1, xT−1) = i0T−1. Defined in this way, iπT−1 and yπT−1 are optimal policies for period
T − 1 such that if yπT−1(i0T−1, xT−1) = xT−1, then ∃j ∈ J such that d(iπT−1(i0T−1, xT−1), lj) ≤
d(i0T−1, lj) ∀ i0T−1 ∈ I and xT−1 ≥ 0.

Assume iπτ and yπτ are optimal policies for periods τ ∈ {t + 1, ..., T − 1} such that if
yπτ (i0τ , xτ ) = xτ then ∃j ∈ J such that d(iπτ (i0τ , xτ ), lj) ≤ d(i0τ , lj) ∀ i0τ ∈ I, xτ ≥ 0, and
τ ∈ {t+ 1, ..., T − 1}.

Consider period t. For i0t ∈ I and xt ≥ 0, let

(i∗t , y
∗
t ) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

Set yπt (i0t , xt) = y∗t . If yπt (i0t , xt) > xt or yπt (i0t , xt) = xt and ∃j ∈ J such that d(i∗t , lj) ≤
d(i0t , lj), set iπt (i0t , xt) = i∗t . Otherwise, yπt (i0t , xt) = y∗t = xt and d(i∗t , lj) > d(i0t , lj) ∀j ∈ J ; let

īπt+1j = iπt+1(i∗t ,max(0, y∗t − djt))
ȳπt+1j = yπt+1(i∗t ,max(0, y∗t − djt))

and, for i ∈ I,

F (i) =fi0t i +
∑
j∈J

pjt[gij min(y∗t , djt) + hmax(0, y∗t − djt) + bj max(0, djt − y∗t )

+ fīiπt+1j
+Kīπt+1j

δ(ȳπt+1j −max(0, y∗t − djt))
+Gt+1(̄iπt+1j, ȳ

π
t+1j)− cīπt+1j

max(0, y∗t − djt)]

Note that F (i) ≥ Zt(i
0
t , xt, i, y

∗
t ) and F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t ) and

F (i∗t )− F (i0t ) =
∑
j∈J

pjt[fi0t i∗t − fi0t i0t + (gi∗t j − gi0t j) min(y∗t , djt)

+ fi∗t īπt+1j
− fi0t īπt+1j

]

Let f 0 = limd→0+ f(d) and f+(d) = f(d)− f 0 for d ≥ 0. Note that i∗t 6= i0t . If i∗t = īπt+1j,

fi0t i∗t + fi∗t īπt+1j
= fi0t īπt+1j

+ f(0) = fi0t i0t + fi0t īπt+1j

If i0t = īπt+1j, then i∗t 6= i0t ⇒ i∗t 6= īπt+1j

⇒ fi0t i∗t + fi∗t īπt+1j
≥ 2f(0) = fi0t i0t + fi0t īπt+1j
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Assume i∗t 6= īπt+1j and i0t 6= īπt+1j. Note that f+(·) is non-decreasing and, since sums of
concave functions are concave, f+(·) is concave over (0,∞). Then,

fi0t i∗t + fi∗t īπt+1j
= f(d(i0t , i

∗
t )) + f(d(i∗t , ī

π
t+1j))

= 2f 0 + f+(d(i0t , i
∗
t )) + f+(d(i∗t , ī

π
t+1j))

≥ 2f 0 + f+(d(i0t , i
∗
t ) + d(i∗t , ī

π
t+1j)) (4.14)

≥ 2f 0 + f+(d(i0t , ī
π
t+1j)) (4.15)

= f 0 + f(d(i0t , ī
π
t+1j))

≥ f(0) + f(d(i0t , ī
π
t+1j)) (4.16)

= fi0t i0t + fi0t īπt+1j

Where 4.14 follows from Lemma 4, 4.15 follows from the triangle inequality, and 4.16
follows from the assumption f(0) ≤ limd→0+ f(d) = f 0. Furthermore, note that

gi∗t j − gi0t j = gj(d(i∗t , lj))− gj(d(i0t , lj)) ≥ 0 ∀j ∈ J

by the assumption that g(·) is non-decreasing and d(i∗t , lj) > d(i0t , lj) ∀j ∈ J . Thus,

F (i∗t )− F (i0t ) ≥ 0

⇒ Zt(i
0
t , xt, i

0
t , y
∗
t ) ≤ F (i0t ) ≤ F (i∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set iπt (i0t , xt) = i0t . Defined in this way, iπt and yπt are optimal policies for period t such that
if yπt (i0t , xt) = xt then ∃j ∈ J such that d(iπt (i0t , xt), lj) ≤ d(i0t , lj) ∀ i0t ∈ I and xt ≥ 0.

By induction, iπt and yπt are optimal policy functions for t ∈ {0, ..., T − 1} and π∗ =
{πi, πy}, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, is an optimal policy satisfying the
conditions of the theorem.

4.2.9 Proof of Theorem 23

Proof. Consider period T − 1. For i0T−1 ∈ I and xT−1 ≥ 0, let

(i∗T−1, y
∗
T−1) = arg min

iT−1∈I,yT−1≥xT−1

ZT−1(i0T−1, xT−1, iT−1, yT−1)

Set iπT−1(i0T−1, xT−1) = i∗T−1. If i∗T−1 6∈ Im or i∗T−1 ∈ Im and y∗T−1 = xT−1 or xT−1 <
maxj∈J djT−1, set yπT−1(i0T−1, xT−1) = y∗T−1. Otherwise, i∗T−1 ∈ Im, y∗T−1 > xT−1, and xT−1 ≥
maxj∈J djT−1; for y ≥ xT−1 ≥ maxj∈J djT−1, let

F (y) =fi0T−1i
∗
T−1

+Ki∗T−1
δ(y − xT−1) + ci∗T−1

(y − xT−1)

+
∑
j∈J

pjT−1[gi∗T−1j
djT−1 + h(y − djT−1)]

78



Note that F (y∗T−1) = ZT−1(i0T−1, xT−1, i
∗
T−1, y

∗
T−1). F (y) is increasing in y over [xT−1,∞).

Thus,

ZT−1(i0T−1, xT−1, i
∗
T−1, xT−1) = F (xT−1) ≤ F (y∗T−1) = ZT−1(i0T−1, xT−1, i

∗
T−1, y

∗
T−1)

Set yπT−1(i0T−1, xT−1) = xT−1. Defined in this way, iπT−1 and yπT−1 are optimal policies for pe-
riod T−1 such that if iπT−1(i0T−1, xT−1) ∈ Im and xT−1 ≥ maxj∈J djT−1 then yπT−1(i0T−1, xT−1) =
xT−1 ∀ i0T−1 ∈ I, xT−1 ≥ 0.

Assume iπτ and yπτ are optimal policies for periods τ ∈ {t + 1, ..., T − 1} such that if
iπτ (i0τ , xτ ) ∈ Im and xτ ≥ maxj∈J djτ then yπτ (i0τ , xτ ) = xτ ∀ i0τ ∈ I, xτ ≥ 0, and τ ∈
{t+ 1, ..., T − 1}.

Consider period t. For i0t ∈ I and xt ≥ 0, let

(i∗t , y
∗
t ) = arg min

it∈I,yt≥xt
Zt(i

0
t , xt, it, yt)

Set iπt (i0t , xt) = i∗t . If i∗t 6∈ Im or i∗t ∈ Im and y∗t = xt or xt < maxj∈J djt, set yπt (i0t , xt) = y∗t .
Otherwise, i∗t ∈ Im, y∗t > xt, and xt ≥ maxj∈J djt; let

īπt+1,j = iπt+1(i∗t , y
∗
t − djt)

ȳπt+1,j = yπt+1(i∗t , y
∗
t − djt)

and, for y ≥ xt ≥ maxj∈J djt,

F (y) =fi0t i∗t +Ki∗t
δ(y − xt) + ci∗t (y − xt)

+
∑
j∈J

pjt[gi∗t jdjt + h(y − djt) + fi∗t īπt+1,j
+Kīπt+1,j

δ(ȳπt+1,j − (y − djt))

+Gt+1(̄iπt+1,j, ȳ
π
t+1,j)− cīπt+1,j

(y − djt)]

Note that F (y∗t ) = Zt(i
0
t , xt, i

∗
t , y
∗
t ). By the assumption that K(·) and c(·) are non-decreasing,

i∗t ∈ Im ⇒ Ki∗t
≥ Ki and ci∗t ≥ ci ∀i ∈ I; thus,

F (y∗t )− F (xt) = Ki∗t
+ ci∗t (y

∗
t − xt)

+
∑
j∈J

pjt[h(y∗t − xt) +Kīπt+1,j
[δ(ȳπt+1,j − (y∗t − dt))− δ(ȳπt+1,j − (xt − djt))]

− cīπt+1,j
(y∗t − xt)]

≥ Ki∗t
+ ci∗t (y

∗
t − xt) +

∑
j∈J

pjt[−Kīπt+1,j
− cīπt+1,j

(y∗t − xt)]

= Ki∗t
−
∑
j∈J

pjtKīπt+1,j
+ (ci∗t −

∑
j∈J

pjtcīπt+1,j
)(y∗t − xt)

≥ 0
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Thus,

Zt(i
0
t , xt, i

∗
t , xt) ≤ F (xt) ≤ F (y∗t ) = Zt(i

0
t , xt, i

∗
t , y
∗
t )

Set yπt (i0t , xt) = xt. Defined in this way, iπt and yπt are optimal policies for period t such that
if iπt (i0t , xt) ∈ Im and xt ≥ maxj∈J djt then yπt (i0t , xt) = xt ∀ i0t ∈ I, xt ≥ 0.

By induction, iπt and yπt are optimal policy functions for t ∈ {0, ..., T − 1} and π∗ =
{πi, πy}, where πi = {iπ0 , ..., iπT−1} and πy = {yπ0 , ..., yπT−1}, is an optimal policy satisfying the
conditions of the theorem.
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5 Conclusion and Areas for Future Research

In this dissertation, we examined how to make optimal relocation and inventory management
decisions for a mobile inventory in response to changing demand forecasts.

We first analyzed the dynamic relocation problem. We modeled it using dynamic pro-
graming. As large instances of the problem take a long time to solve to optimality, we
presented conditions under which it is sufficient for both the stationary and dynamic relo-
cation problems to consider a subset of the potential inventory locations and thereby reduce
the size of the problems. On the operational level, we showed that under certain conditions,
it is optimal in relocating the mobile inventory to move the inventory as slowly as possible
along the direct path between the two locations. We proved that a similar result holds in
the case of a fixed cost but that the fixed cost shortens the amount of time over which it is
optimal to move the inventory at a constant, slow rate. We proved each of these results in
both discrete and continuous time.

Additionally, we examined the value of inventory mobility over traditional warehouse pre-
positioning in the context of the dynamic relocation problem. We proved analytically that
the value is weakly greater in systems which have lower movement costs and in systems which
have costs to serve that are greater in a positive linear transformation sense. Our numerical
results suggest that the value is greater in systems 1) that have less concentrated risk,
meaning that the potential disaster sites are farther from each other, 2) in which potential
disaster sites that are relatively far from each other have demands that are less correlated, 3)
that have demands which are relatively rare and of high magnitude rather than frequent and
of low magnitude, and 4) that serve sites which have demand characteristics more similar
to tropical cyclones rather than earthquakes. The experiment that suggests this last result
shows that certain potential disaster site demand characteristics lead to a greater value of
inventory mobility, specifically, site demands that are easier to predict (e.g. cyclone-related
demand with weather forecasts) and sites that have greater probabilities of positive demand
and greater potential demand levels. Furthermore, as large problem instances take a long
time to solve to optimality, we developed the Base State Heuristic (BSH) which is optimal
when the demands are temporally independent. The BSH solved the cases we tested in our
numerical experiments within 0.5% of optimality in a small fraction of the time required by
an exact algorithm.

We also examined the joint dynamic facility relocation and inventory management (DRIM)
problem. As we did for the dynamic relocation problem, we modeled the DRIM problem
using dynamic programming. We first examined a special case of the problem to develop
intuition on optimal relocation and inventory management policies and specifically on the
trade-off of when it is advantageous to move toward a supplier at the expense of moving
away from potential disaster sites and vice versa. We then returned to the general DRIM
problem and developed a number of analytical results characterizing the optimal relocation
and inventory management policies. Research analyzing dynamic inventory management
problems often prove that multiperiod (s, S) policies are optimal; similarly, we proved that
such a policy is optimal when we are restricted to movement policies that do not depend on
the starting inventory level. However, we also show that because optimal relocation decisions
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vary with starting inventory levels and different relocation decisions affect ordering prices,
a multiperiod (s, S) policy is not necessarily optimal for the problem when our movement
policy can depend on the starting inventory level. Despite this, we proved that, in an opti-
mal policy, we will either order nothing or order up to some sum of potential future period
demands. A corollary to this result is that, in an optimal policy, we will not place an order
if our initial inventory level is weakly greater than the maximum possible demand for the
rest of the horizon.

In the context of the optimal relocation decisions, similar to the result we proved for
the dynamic relocation problem, we proved that it is sufficient for optimality to consider a
smaller feasible set of inventory locations and thereby reduce the size of the problem. We
were also interested in developing results which help us understand how the optimal dynamic
relocation and inventory management policies relate to each other. Along these lines, we
proved that, in an optimal policy, we will not move the mobile inventory toward the supplier
at the expense of moving farther from all potential disaster sites in a period in which we do
not place an order. We also proved that, in an optimal policy, we will not place an order
if we are in a location farthest from the supplier and our current inventory level is weakly
greater than the maximum possible current period demand.

To our knowledge, we are the first in the literature to 1) consider the dynamic alteration
of a disaster relief supply chain in response to changing demand patterns over time, 2)
examine mobile inventory systems for disaster relief, 3) study dynamic facility location with
demand which evolves according to a non-stationary DTMC, and 4) consider both dynamic
relocation and inventory management decisions with stochastic demand. We hope there will
be future work in these areas considering some of the many important extensions of this
research.

For the dynamic relocation problem, as large problem instances take a long time to
solve to optimality, we developed the BSH which is able to solve the cases we tested to
near optimality in a small fraction of the time required by an exact algorithm. As the
joint dynamic relocation and inventory management problem is even more complex than
the dynamic relocation problem, it will be important for future work to develop specialized
heuristics capable of solving the problem more quickly than exact solution methods.

Another area for further research is the analysis of the value of inventory mobility in
disaster relief. Theorems 8 and 9 provide bounds on the value of inventory mobility; it
may be worthwhile to find tighter bounds as well as simpler bounds which can be computed
without solving optimization problems and to quantify when the bounds are tight. It also will
be important to consider the other ways in which inventory mobility may provide value, such
as decreased response times, lower total inventory levels and inventory costs, less dependency
on surviving infrastructure, and increased inventory security, and to develop a more general
definition of the value of inventory mobility in disaster relief.

In this research, we examined problems in which the length of the planning horizon is
pre-determined and known. An area for future research is to analyze how to optimally set
the length of the planning horizon. Alternatively, it may be interesting to explore a model
in which the end of the horizon is unknown and determined by the stochastic occurrence of
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a disaster.
Note that forecasts on potential locations and severity of disasters can be continually

updated since worldwide seismic, political, weather, and other data is constantly updated
and available. Another interesting extension would thus be to include forecast updating.
For this extension it would be useful to find some daily managerial insights such as: When
is it necessary to re-run the model and when is it appropriate to stick with the current
plan? Can some kind of confidence level for disaster updates be found for this trade-off?
Perhaps there is a cost to change the plan due to the need to re-coordinate entities such as
the ship operator, decision makers at headquarters, and relief operations the ship is already
supporting elsewhere. Can an appropriate trade-off be found in this case?

All models discussed in this dissertation are limited to considering the optimal movement
of a single mobile inventory. However, in a real disaster relief system, organizations may opt
for using multiple supply holding ships, hurricane relief supply holding containers, or mobile
health clinics in their operations rather than just a single mobile inventory or facility. Thus,
the models should be extended to consider the optimal management of a system of mobile
inventories or facilities. However, this would require us to greatly expand our state space
to include the locations of each of the ships and the dimension of the control, making the
problem much more complicated and difficult to analyze and solve. For this reason, it may
be most important in this case to focus on finding heuristics which find close to optimal
solutions more quickly than exact solution algorithms.

It may also be important for the optimal management of a mobile inventory system for
disaster relief to consider refueling policies. The state and control spaces would need to be
further expanded to include fuel levels and decisions on when to refuel. A further extension
that would make the models more realistic would be to consider the fact that fuel levels may
affect ship performance and thus movement costs.

A ship’s movement is subject to both the control of the ship operator as well as ocean
currents. Thus, the models discussed in this dissertation could be extended to allow for
probabilistic movement of the ship with the currents. In this case, the state transition
function will no longer be a deterministic function of the control and the DP equations will
need to be updated accordingly. There may also be additional control options. As in the
models presented, it will be possible to choose to have the ship remain in the same location;
however, there may also be either the option of turning off the engines and letting the ship
be subject to the currents at little to no cost and thus allowing the next period location of
the ship to be stochastic or the option of expending fuel to keep the ship in the exact current
location. If the network is large enough, however, considering probabilistic movement may
not be worthwhile.

It is also of interest to consider other possible objective functions and relevant costs.
For example, disaster relief organizations have severely limited budgets. Thus, it may be
appropriate to set the objective to maximizing the expected demand covered or minimizing
the expected losses/shortfall subject to a set budget constraint. Furthermore, the current
models minimize expected costs; it may be more appropriate to minimize expected cost plus
a risk measure like CVaR (see, e.g., Noyan (2012)) or some kind of worst-case-type measure.
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As suggested in Section 4.1, we may interpret the shortage cost as the cost to serve a
potential disaster site from an outside supplier or a stationary warehouse rather than the
mobile inventory. However, if we are unable to meet demand in a reasonable amount of
time through these means, it is very difficult to interpret or quantify a “shortage cost” as
the “customers” in the disaster relief context are people who may suffer or lose their lives if
they do not receive the supplies. Thus, it would be useful for future work to consider how
to calibrate the shortage cost appropriately in the joint dynamic relocation and inventory
management model.

With the joint dynamic relocation and inventory management model, it may be worth-
while for future work to allow for more than one disaster to occur in a given time period and
to consider more realistic ways of modeling demand. Furthermore, it will be important for
future work to remove the assumption that relocation and order lead times are instantaneous.

Other decisions which will be important to consider include modes and speeds of trans-
portation. For example, ships can move at different speeds at different costs. Additionally,
the cost to provide relief to a disaster at a certain location i is currently governed according
to the deterministic cost function gij. However, this cost may be stochastic or there may be
several options. For example, the relief organization may have the choice between using a
small ship to transport the supplies to the disaster site or using a helicopter, at a significant
cost increase, to get the supplies to the disaster site much more quickly.

This brings up a further need for extension as the models described in this dissertation do
not directly model the lead time of getting supplies from the mobile inventory to the disaster
sites and the effects of the length of this lead time. The length of this lead time has a direct
impact on an organization’s ability to serve affected communities and on the survival, health,
and recovery of these communities and its consideration will be an important extension area
for future research.
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