
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Analytic and Combinatorial Features of Stable Polynomials

Permalink
https://escholarship.org/uc/item/4wh9v2j7

Author
Leake, Jonathan

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wh9v2j7
https://escholarship.org
http://www.cdlib.org/


Analytic and Combinatorial Features of Stable Polynomials

by

Jonathan Leake

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Olga Holtz, Chair
Assistant Professor Nikhil Srivastava

Professor Luca Trevisan

Spring 2019



Analytic and Combinatorial Features of Stable Polynomials

Copyright 2019
by

Jonathan Leake



1

Abstract

Analytic and Combinatorial Features of Stable Polynomials

by

Jonathan Leake

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Olga Holtz, Chair

We investigate two main overarching topics in the theory of stable polynomials.

1. Differential and Difference Operators. We first study root properties of differen-
tial and difference operators. This includes the location of roots, the spacing between
roots, and the effect of linear operators on the roots. Our results in this direction
are mainly for the purpose of theory, with motivation being derived from previous
applications which rely on such results.

2. Applications to Graphs. We next study some examples of the connection between
graphs and polynomials. This includes a study of polynomial capacity and its relation
to bipartite matchings, as well as a study of the roots of the independence polynomial
and implications of various properties. Our results in this direction are applications of
the theory of stable polynomials, and demonstrates their use in combinatorics.

In the vein of (1), we extend the root bound of [47] to demonstrate the submodular nature
of the roots of real-rooted polynomials. This natural extension leads to further questions
on generalizations to multivariate polynomials, which are important steps on the path to
understanding the barrier arguments of Marcus-Spielman-Srivastava. We further settle a
conjecture of Brändén-Krasikov-Shapiro on a finite difference convolution which preserves
the spacing of roots of real-rooted polynomials. This convolution generalizes the one studied
by Marcus-Spielman-Srivastava, and the connections between these results yield interesting
open problems which have not yet been fully explored.

Towards (2), we combine the Borcea-Brändén characterization of stability preservers with
Gurvits’ capacity results to produce a theory of capacity preservers. We use this to give a new
proof of Csikvári’s lower bound on the matchings of a biregular bipartite graph. In another
direction, we give a new proof of the Chudnovsky-Seymour result on the real-rootedness of
the independence polynomial of a claw-free graph. We also prove root bounds similar to that
of Heilmann-Lieb for a class of independence polynomials, using an interesting multivariate
extension of Godsil’s divisibility relations for the matching polynomial.



i

Contents

Contents i

1 Introduction 1
1.1 Two Classical Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Role of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Differential and Finite Difference Operators . . . . . . . . . . . . . . . . . . 3
1.4 Applications to Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Bibliographic Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 10
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Stable Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Stability Preservers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Classical Additive Convolution 23
3.1 The Univariate Additive Convolution . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Submodularity of the Largest Root . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 The Multivariate Additive Convolution . . . . . . . . . . . . . . . . . . . . . 34
3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Generalized Additive Convolution 40
4.1 Polynomial Mesh Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 First Proof Method: As a Limit of Generalized Multiplicative Convolutions . 43
4.3 Second Proof Method: A Direct Proof using Interlacing . . . . . . . . . . . . 56
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Polynomial Capacity and Bipartite Graphs 66
5.1 Capacity Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Bipartite Mathcings and Other Applications . . . . . . . . . . . . . . . . . . 72
5.3 The Main Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Continuity of Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



ii

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 The Independence Polynomial 91
6.1 Same-phase Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Multivariate Graph Polynomials and Stability . . . . . . . . . . . . . . . . . 95
6.3 Root Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Failure of the Root Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113



iii

Acknowledgments

A number of people have been crucial to my graduate studies. First, I want to thank my
advisor Olga Holtz. She was the one who introduced me to Sendov’s conjecture, which was
my first obsession in the geometry of polynomials. After that, she then let me wade on my
own, fidning problems and topics I found to be interesting. Without that first prodding and
the successive exploration encouragement, I probably would not have met the poeple I met
or done the math I have done. Her massive network was also extremely helpful to me as
someone young and new trying to get into the community.

Next, I want to thank Nikhil Srivastava, who is essentially another advisor to me. Nikhil
and I have rather different views on most every subject we share interest in, and this has
been fantastic as a graduate student trying to learn. There is no time that I would speak
to him without coming away with a new perspective, or at very least an important and
well-placed asking of ”why?”. Even comments and intuitions on the basics of polynomial
theory were always enlightening. The purpose and conceptual features of polynomials given
in the introduction of this thesis, and even the format of many of the sections, are highly
influenced by Nikhil.

Nick Ryder of course has been an important person in my life as a graduate student. Over
half of my papers are joint with Nick, and none of that research would be possible without
him. And even beyond that, so many of my math hours and my drinking hours have been
spent with Nick, and I cannot imagine what grad life would have looked like without him.
It will be a truly difficult task finding another work husband like Nick.

I also want to thank Leonid Gurvits. I don’t know if I have ever met anyone with as
much intuition about polynomials and their computer scientific applications. He is a well of
great ideas who holds to that true soul of academia: the ideas are what matter. He is not of
politics and titles; just of ideas. I feel lucky to have been able to interact with him and his
great intuitions as much as I have. And more practically, the main application of my most
recent paper (given in this thesis as well) would not exist without him.

I want to thank Mohan Ravichandran as well. We have spent many hours over the past
year or so discussing all sort of topics. We care about the same sorts of problems, and so
his advantage over me has been an excellent resource. His inviting me (a lowly graduate
student) to Istanbul, along with a generous invitation to co-author a paper consisting mainly
of his ideas, will forever be appreciated.

Finally, I want to thank Roger Smith, my masters advisor at Texas A&M University.
When I decided to leave the PhD program, Roger helped me to still finish with something to
show for my work. And a few years later when I decided to reapply for graduate school, he
helped me to decide what to do next, who to talk to, and all those other little (or big) things
that are hard to sort out when you feel like a fish out of water. I would not be finishing
graduate school here at Berkeley if it were not for him.



1

Chapter 1

Introduction

Polynomials are central objects of study in mathematics and other nearby subjects. They
are perhaps the simplest nice functions we can think of, and yet their properties give rise
to wide range of rich applications in almost every field that touches mathematics. What
allows for this is a large number of interpretations, each pointing to intuitions that have
developed over the history of the subject. We will mainly focus on the following three, under
the influence of a generally analytic mindset:

• Analytic: Can properties like convexity and positivity be used to obtain desirable
inequalities?

• Combinatorial : Can we count things in a graph (e.g.) by storing information in the
coefficients of a polynomial?

• Algebraic: Can we translate information about the zeros of polynomials into analytic
and combinatorial properties?

In what follows, the interplay of the analytic and the combinatorial will often be mediated
by the algebraic. In other words, in applications of our results we want to determine analytic
and combinatorial information, and we often use properties about the zeros of polynomials
to get it. This form is a deep thread in the analytic theory of polynomials, and the intuition
for the usefulness of this form comes from two classical observations: Newton’s identities
and Newton’s inequalities.

1.1 Two Classical Observations

First, suppose we have a univariate monic polynomial written in the following form:

p(x) =
d∏
i=1

(x− ri)
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If we wish to write this polynomial in terms of its coefficients, the process is easy via Newton’s
identities. The coefficients are in fact given by the elementary symmetric polynomials:

p(x) =
d∑

k=0

(−1)kek(r1, ..., rd)x
d−k where ek(r1, ..., rd) :=

∑
S⊂[d]
|S|=k

∏
i∈S

ri

The other direction—determining the roots from the coefficients—is a substantially harder
problem. In fact, there is an argument to be had that a big portion of the analytic theory of
polynomials is attempting to solve this reverse problem. The moral of the story: it is easier
to determine coefficient (combinatorial) information from root (algebraic) information than
the other way around.

Next, suppose we have a univariate real-rooted polynomial with non-negative coefficients:

p(x) =
d∑

k=0

ckx
k = cd

d∏
i=1

(x+ ri) where ri ≥ 0 and ck ≥ 0

Newton’s inequalities then tell us that the coefficients of p are ultra log-concave, and similarly
p itself is log-concave (as a function) on the set of positive reals. That is:(

ck(
d
k

))2

≥

(
ck−1(
d

k−1

))( ck+1(
d

k+1

)) and
d2

dx2
log(p)(x) ≤ 0 for x > 0

However, these properties do not characterize real-rooted polynomials. And so the same sort
of thing happens: it is easier to determine analytic information from algebraic information
than the other way around. (Of course, the recently developed theories of strongly log-
concave/completely log-concave/Lorentzian polynomials present a counterargument to this
point.)

1.2 The Role of Stability

The point is then to hold on to zero location information for as long as possible, before
transferring to the combinatorial or analytic information that we actually want. To do this,
we need some robust inductive structure around the notion of real-rootedness. That’s where
stable polynomials come in to play.

Stability is a multivariate generalization of real-rootedness, and one of the most interest-
ing conceptual ideas in the theory is the fact that more variables actually reduce complexity
and make computation and interpretation easier. Specifically, multivariate polynomials al-
low association of variables to elements of a given combinatorial object (e.g., to edges of a
graph). This yields a rich theory of stable polynomials, with strong connections to combina-
torics. Classic instances of stable polynomias include the multivariate matching polynomial
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and the spanning tree polynomial for any given graph. The role that polynomials often play
in these applications is that of conceptual unification: various natural operations that one
may apply to a given type of object can often be represented as natural operations applied to
associated polynomials. For the matching polynomial deletion and contraction correspond
to certain derivatives, and for the spanning tree polynomial this idea extends to the minors
of a matroid in general.

So certain linear operators correspond to combinatorial operations, but what about an-
alytic information? Is there some generalization of Newton’s inequalities to multivariate
stable polynomials? In fact, for real stable polynomials we have the strongly Rayleigh in-
equalities (Theorem 2.2.7, see also [9]) which more or less play this role. These inequalities
will be particularly important in Chapter 5 when we study the notion of polynomial capacity
(Definition 5.0.1).

That is: what makes stable polynomials so important is that they are at the intersection
of the three intuitions discussed in the introduction. First, they are defined via a condition on
their zeros. Second, the class of such polynomials is preserved by various operators with com-
binatorial interpretations (see Proposition 2.2.4 below). And finally, they are equivalently
defined via certain analytic log-concavity statements (see Theorem 2.2.7). This prompts a
general framework for solving problems with stable polynomials.

combinatorial objects→ simple polys→ stability preservers→ combinatorial/analytic info

In this thesis we will investigate various instances of the different pieces of this framework
and discuss their applications. The thesis itself is broken up into two main parts. The first
studies zero location properties of some specific preservers: differential and finite difference
operators. The second studies how to use zero location properties of polynomials to prove
combinatorial and analytic results on graphs. We now discuss these two parts in more detail.

1.3 Differential and Finite Difference Operators

In the first part of this thesis (Chapters 3 and 4), the central object of study is the additive
convolution (also called the Walsh convolution [64] and the finite free convolution [47]),
along with its generalizations. (There is also a Grace-Szegö multiplicative convolution [62]
which we will discuss in those chapters as well, but to a lesser extent.) Given two univariate
polynomials f and g of degree at most d, we will denote this bilinear function as follows:

f �d g :=
1

d!

d∑
k=0

∂kxf · (∂d−kx g)(0)

This notation is suggestive, as these convolutions can be thought of producing polynomials
whose roots are contained in the Minkowski sum of complex discs containing the roots of
the input polynomials. When the inputs have real roots, this fact also holds in terms of
real intervals containing the roots. This convolution also has a strong relation to differential
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operators: every constant coefficient differential operator on polynomials of bounded degree
can be written as f 7→ f �d g for some g.

There is a long history of studying differential operators that preserve the set of univariate
polynomials with only real roots. A classic result in this direction is: given a real-rooted
polynomial p(t), it is easy to see that p(∂t) preserves the set of real-rooted polynomials.
When one bounds the degree of the input polynomial though, the set of all differential
operators preserving real-rootedness is actually larger than just those of the above form.
The set of such differential operators in this case has connections to the classical Walsh [64]
additive convolution. Namely, if �d denotes the Walsh additive convolution for polynomials
of degree at most n (also recently known as the finite free convolution; e.g. see [48]) then
p(∂t) preserves the set of real-rooted polynomials of degree at most d if and only if there is
some real-rooted q such that p(∂t)r(t) = (r �d q)(t) for all r.

Recently, there has been interest in understanding how certain differential operators
preserving real-rootedness affect the roots of the input polynomial. Much of this interest
derives from the notion of interlacing families, heavily studied by Marcus, Spielman, and
Srivastava in their collection of papers ([52],[49],[51]) containing their celebrated resolution
of Kadison-Singer. Most uses of interlacing families share the same loose goal: to study
spectral properties of random combinatorial objects. To do this, one equates random com-
binatorial operations on the objects to differential operators on associated characteristic
polynomials. Then, understanding the spectrum of the random objects is reduced to under-
standing how the roots of certain polynomials are affected by differential operators preserving
real-rootedness.

The most robust way to study the effects of a differential operator on roots comes from
framework of Marcus, Spielman, and Srivastava. They associate an R-transform to polyno-
mials, inspired from free probability theory, which gives tight bounds on the movement of
the largest root via the additive convolution mentioned above. This framework was used
in particular in [52] to prove the existence of Ramanujan bipartite graphs. The strength of
their framework is that it gives tight largest root bounds for a general class of differential
operator preserving real-rootedness, replacing many of the ad hoc methods used before to
study specific desired operators.

Generalizing the MSS Root Bound

Some combinatorial objects require the use of multivariate methods to analyze. Here the
associated polynomials are real stable, and for these methods there is no general framework
in place to study the analytic effects of the linear operators on the roots. We consider
the following to be one of the large unanswered questions around the recent resurgence of
interest in finite free convolutions: How does the multivariate additive convolution affect
root information?

In an attempt to better understand the multivariate case, we expand upon the previous
results of Marcus-Spielman-Srivastava and provide more general results about how all roots
are of a given polynomial are affected by finite free convolutions. To do this, we first expand
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their bound on the movement of the largest root to all differential operators preserving real-
rootedness. Further, we utilize the theory of hyperbolic polynomials to give more interesting
root bounds on interior roots (other roots besides the largest).

With these results in hand, we state a number of conjectures (and some counterexamples)
in the direction of stronger univariate results on interior roots and of analogous multivariate
results. Proving similar multivariate results seems to be a hard problem in general. But the
hope is that by better fleshing out the details of the additive convolution in the univariate
case, one can better abstract to the multivariate case to handle problems such as Kadison-
Singer, the Paving conjecture, and Heilman-Lieb root bounds.

Finite Difference Convolution

In [10], the authors show an interesting property of the additive convolution which is outside
of the scope of the discussion thus far: it can only increase root mesh, which is defined as
the minimum absolute difference between any pair of roots of a given polynomial. That is,
the mesh of the output polynomial is at least as large as the mesh of either of the input
polynomials.

There are natural generalized convolution operators which also preserve root mesh, as
well as a multiplicative variant called logarithmic root mesh (minimum ratio between roots).
Lamprecht studied this q-multiplicative convolution (where the q- should give the connota-
tion of q-binomial coefficients), showing that it preserves logarithmic root mesh of at least q
[39]. That said, we will study a finite difference version of the additive convolution called the
b-additive convolution (or finite difference convolution), and in particular we will demonstrate
that it preserves root mesh of at least b. This resolves a conjecture of Brändén, Krasikov,
and Shapiro given in [10], where they investigated root mesh preservation properties of finite
difference operators on polynomials of all degrees.

The finite difference convolution is defined as follows.

p�nb r :=
1

n!

n∑
k=0

∆k
bp · (∆n−k

b r)(0)

Here, ∆b is a finite b-difference operator, defined as:

∆b : p 7→ p(x)− p(x− b)
b

By limiting b → 0, we recover the usual additive convolution. That is this convolution is
some discrete generalization of the additive convolution, which gives some motivation for
why it is interesting to study.

First, by generalizing in general one inevitably loses some structure of the original object.
This can help to focus one’s attention on the “right” properties in order to solve some
problem or prove some conjecture. For example some of the conjectures for the classical
additive convolution, mentioned above, might become easier if converted to conjectures for
the b-additive convolution and then observed in this new light.
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Second, root mesh properties and finite differences have more direct connections to certain
combinatorial objects. For instance, the identity element of the finite difference convolution
is the rising factorial polynomial, and the coefficients of this polynomial are the Stirling
numbers of the first kind. This suggests connection between mesh and counting permutations
and partitions.

That said, we do not explore these potential connections here. We only mention them
to motivate the study of these generalized convolutions. Instead we will discuss two very
different methods for resolving the conjecture of Brändén, Krasikov, and Shapiro. One
is analytic in nature, giving a way to transfer results from multiplicative convolutions to
additive ones; the second simply generalizes Lamprecht’s proof in the multiplicative case.
We direct the reader to Chapter 4 for further discussion.

1.4 Applications to Graph Theory

In the second part of this thesis (Chapters 5 and 6), we discuss ways in which stability and
related properties of polynomials can be used to prove graph-theoretic results. In Chapter 5,
we combine Gurvits’ notion of polynomial capacity with the Borcea-Brändén characterization
to achieve a theory of capacity preserving operators. Through one of Gurvits’ (many) ideas,
we use this theory to give a new proof of Csikvári’s strengthening of Friedland’s lower
matching conjecture. In Chapter 6, we then use a weaker multivariate notion of stability to
give a new simpler proof of Chudnovsky and Seymour’s famous result on the real-rootedness
of the independence polynomial of a claw-free graph. We then extend a matching polynomial
divisibility result of Godsil to multivariate matching polynomials and to a certain class of
claw-free independence polynomials.

Polynomial Capacity and Bipartite Matchings

The particular line into which Chapter 5 falls begins with the work of Gurvits, who in a
series of papers (e.g., see [35]) gave a vast generalization of the Van der Waerden lower bound
for permanents of doubly stochastic matrices and the Schrijver lower bound on the number
of perfect matchings of regular graphs. In particular, he showed that a related inequality
holds for real stable polynomials in general, and then derives each of the referenced results as
corollaries. His inequality describes how much the derivative can affect a particular analytic
quantity called the capacity of a polynomial. In fact, one should interpret his result is as a
statement about the capacity preservation properties of the derivative. We define α-capacity
here, but leave discussion of his result to Chapter5

Capα(p) := inf
x>0

p(x)

xα1
1 · · ·xαnn

For those familiar with the real stability literature, the concept of preservation properties
of a linear operator (specifically that of the derivative here) is not new. Perhaps the most
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essential result in the theory is the Borcea-Brändén characterization [7], which essentially
says that the symbol of a linear operator T holds the real stability preservation information
of T . In Chapter 5, we make use of this concept by showing that the symbol also holds the
capacity preservation information of T . That is, we combine the ideas of Gurvits and of
Borcea and Brändén to create a theory of capacity preserving operators. Our main result in
this direction says that the amount a stability preserver can affect the capacity of the input
polynomial is related to the capacity of its symbol. We delay the formal statement of this
result until Chapter 5.

Using this, we are able to reprove a few results. The first of these are essentially results
mentioned above that Gurvits was able to obtain using his theorem: the Van der Waerden
lower bound (see [21] and [20] for the original resolution of this conjecture) and Schrijver’s
inequality [57]. We also reprove Gurvits’ theorem using the capacity preservation theory,
which amounts to a very basic computation for the partial derivative.

The main application is a new proof of Csikvári’s bound on the number of k-matchings of
a biregular bipartite graph [17]. (This possibility was suggested to us by Gurvits.) This result
generalizes Schrijver’s inequality and is actually stronger than Friedland’s lower matching
conjecture (see [25]). The computations involved in this new proof never exceed the level of
basic calculus. This was one of the most remarkable features of Gurvits’ original result, and
this theme continues to play out here. We state Csikvári’s result now.

Theorem 5.2.6 (Csikvári). Let G be an (a, b)-biregular bipartite graph with (m,n)-bipartitioned
vertices (so that am = bn is the number of edges of G). Then the number of size-k matchings
of G is bounded as follows:

µk(G) ≥
(
n

k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k

Beyond these specific applications, one of the main purposes of this chapter is to unify
the various results that fit into the lineage of the concept of capacity. Some of these are
inequalities for specific combinatorial quantities ([35], [33], [34]), some are approximation
algorithms for those quantities ([2], [60]), and some are capacity preservation results similar
to those proven in this chapter (particularly [1]).

The Independence Polynomial

In Chapter 6, we study stability and root location properties of the independence polynomial
of a graph, especially as they relate to real-rootedness. Given a graph G, the independence
polynomial of G is a polynomial which encodes the independent sets (subsets of non-adjacent
vertices) of G. Root information for the independence polynomial is highly studied due to the
connection of stability regions to the Lovász local lemma (see, e.g., [19], [58]). Very generally
speaking, the Lovász local lemma can be used to construct probabilistic existence proofs in
various combinatorial settings, and the stability regions of the independence polynomial tell
you when the lemma can be applied.
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The matching polynomial of G encodes the matchings (sets of pairs of adjacent vertices)
of G. The real-rootedness of the matching polynomial and the Heilmann-Lieb root bound are
important results in the theory of undirected simple graphs. In particular, real-rootedness
implies log-concavity and unimodality of the matchings of a graph (as discussed above in
§1.1), and recently in [52] this root bound was used to show the existence of Ramanujan
graphs. Additionally, it is well-known that the matching polynomial of a graph G is equal to
the independence polynomial of the line graph of G. With this, one obtains the same results
for the independence polynomials of line graphs. This then leads to a natural question: what
properties extend to the independence polynomials of all graphs?

Generalization of these results to the independence polynomial has been partially suc-
cessful. About a decade ago, Chudnovsky and Seymour [15] established the real-rootedness
of the independence polynomial for claw-free graphs. A general root bound for the inde-
pendence polynomial was also given by [23], though it is weaker than that of Heilmann
and Lieb. As with the original results, these generalizations are proven using univariate
polynomial techniques.

That said, the first part of Chapter 6 is a partial generalization of this stability result
to the multivariate independence polynomial of claw-free graphs. In particular, we prove
a result related to the real-rootedness of certain weighted independence polynomials. This
result was originally proven by Engström in [18] by bootstrapping the Chudnovsky and
Seymour result for rational weights and using density arguments. The proof we give here is
completely self contained and implies both the original Chudnovsky and Seymour result as
well as the weighted generalization. By using a multivariate framework to directly prove the
more general result, we obtain a simple inductive proof which we believe better captures the
underlying structure.

In addition, the full importance of the claw (3-star) graph is not immediately clear from
the univariate framework. Since the result of Chudnovsky and Seymour, there have been at-
tempts to explain more conceptually why the claw-free premise is needed for real-rootedness.
In particular, some graphs containing claws actually have real-rooted independence polyno-
mials, disproving the converse to the univariate result. On the other hand, the stronger
stability-like property we use here turns out to be equivalent to claw-freeness, yielding a
satisfactory converse.

In the second part of Chapter 6, we then extend the Heilmann-Lieb root bound by gen-
eralizing some of Godsil’s work on the matching polynomial. In [29], Godsil demonstrated
the real-rootedness of the matching polynomial of a graph by showing that it divides the
matching polynomial of a related tree. (For a tree, root properties are more easily derived.)
We prove a similar result for the multivariate matching polynomial, and then we deter-
mine conditions for which these divisibility results extend to the multivariate independence
polynomial. Further, we prove the Heilmann-Lieb root bound for the independence polyno-
mial of a certain subclass of claw-free graphs. By considering a particular graph called the
Schläfli graph, we demonstrate that this root bound does not hold for all claw-free graphs
and provide a weaker bound in the general claw-free case.
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1.5 Bibliographic Note

Much of this is joint work with Nick Ryder, and all of it can be found in smaller pieces on
the arXiv. Specifically, Chapter 3 is joint with Nick from [46], Chapter 4 is joint with Nick
from [44], and Chapter 6 is joint with Nick from [45]. Finally, Chapter 5 is from [42].
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Chapter 2

Preliminaries

2.1 Notation

We will let C, H+, H−, R, R+, R++, Z, Z+, and N denote the complex numbers, the open
upper half-plane, the open lower half-plane, the reals, the non-negative reals, the positive
reals, the integers, the non-negative integers, and the positive integers respectively.

For vectors, we will utilize a number of shorthands. Given α, β of the same length, we
denote α+β as the entry-wise sum, αβ as the entry-wise product, etc.. For the dot product
of two vectors, we will usually use inner product notation 〈α, β〉. Similarly, we will write
αβ to denote

∏
i α

βi
i whenever β ∈ Rn

+. A specific use of this will be denote multivariate
monomials via xα when α ∈ Zn+. Additionally, we will write α ≤ β whenever the inequality
holds entry-wise. Sometimes, we will let 0 or (0n) and 1 or (1n) denote the vector of all
zeros and ones respectively, depending on the context. Finally, for µ, γ ∈ Zn+ we write

µ! :=
∏

k(µk!) and
(
γ
µ

)
:= γ!

µ!(γ−µ)!
.

The space of polynomials in n variables with complex coefficients will be denoted as it
usually is: C[x] = C[x1, ..., xn] (and we will very often use such shorthands for vectors of
variables). For any subset S ⊂ C, we will denote such polynomials with coefficients in S by
S[x]. Further, we will denote the subspace of polynomials which are of degree at most γk
in the variable xk by Sγ[x]. When γ = (1, ..., 1), we will call such polynomials multiaffine.
Also, we will often denote coefficients of polynomials we are considering via subscripts. E.g.,

p(x) ∈ Cd[x] with p(x) =
d∑

k=0

pkx
k

p(x) ∈ Cγ[x] = Cγ[x1, ..., xn] with p(x) =
∑

0≤µ≤γ

pµx
µ

On occasion we will include binomial or multinomial coefficients in the coefficient expansion,
but we will make this explicit. Finally, we will use the notation Hmgγ(p) to denote the
per-variable homogenization of p ∈ Cγ[x1, ..., xn], where xi is homogenized to degree γi via
a new variable yi.



CHAPTER 2. PRELIMINARIES 11

In a number of contexts, we will use λ to denote the non-increasing vector, counting
multiplicities, of something like roots. Some examples of this are as follows.

1. λ(f) denotes the roots of a univariate real-rooted polynomial f .

2. λ(A) denotes the eigenvalues of a Hermitian matrix A.

3. λ(x) denotes the roots of p(te+x) where p is hyperbolic with respect to e (see Definition
3.1.4).

Although is does not makes sense to list the roots of a multivariate polynomial in gen-
eral, we can generalize the notion of “largest root” to the notion of points above the roots.
Note that while we use notation similar to that of Marcus-Spielman-Srivastava in [49], our
definition differs slightly from the usual one in that a ∈ Ab(p) does not imply p(a) 6= 0.

Definition 2.1.1. For real stable p ∈ R[x1, ..., xn], we say that a ∈ Rn is above the roots of
p if p(a + y) 6= 0 for all y ∈ Rn

++. We also let Ab(p) denote the set of all points above the
roots of p. For the sake of simplicity, we say Ab(p) = Rn for p ≡ 0.

Note that in the univariate case, Ab(p) is the interval [λ1(p),∞). It is in this way that
Ab(p) generalizes the largest root of a polynomial. For more discussion on the relation
between points above the roots and differential operators, see §3.3.

Derivative-like Operators

The derivative with respect to a variable xi will be denoted ∂xi . We will also apply the
exponent shorthand above to derivatives, by writing ∂αx :=

∏
i ∂

αi
xi

whenever α ∈ Zn+. Further,
given v ∈ Rn we will let ∇v :=

∑
i vi∂xi denote the directional derivative in the direction v.

For univariate p, there will also be a number of special derivative-like operators we will
consider. Often these “derivatives” will be with respect to some parameters, and reference to
the variable of the polynomial will sometimes be suppressed. As a first important example
of this, we consider a polynomial p ∈ Cd[x]. We write:

∂xp(x) =
d

dx
p(x) =

d−1∑
k=0

(k + 1)pk+1x
k

∂∗xp(x) = d · p(x)− x · d
dx
p(x) =

d−1∑
k=0

(d− k)pkx
k

The operator ∂∗x is classically called the polar derivative with respect to 0, and can be
considered as the derivative (with respect to the new variable) of the homogenization of p.
Note that the operator ∂∗x actually depends on the degree d. In practice this d would need
to be specified, or at least understood in context. This will not be an issue here as we will
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never actually use the polar derivative. We only define it here to give context to the operator
∂∗q,d defined below, which should be seen as a q-generalization of the polar derivative.

In a similar vein, we define for q > 1:

(∂q,dp)(x) :=
p(qx)− p(x)

q1−d(qd − 1)x
(∂∗q,dp)(x) :=

p(qx)− qdp(x)

qd − 1

These operators are related to q-binomial coefficients and the notion of logarithmic mesh,
and we will explore these connections in Chapter 4. Morally, these operators limit to ∂x and
∂∗x as q → 1, but this is not technically true. In fact, ∂q,d → 1

d
∂x and ∂∗q,d → −1

d
∂∗d .

Finally, we define for b > 0:

(∆b,dp)(x) :=
p(x)− p(x− b)

b
(∆∗b,dp)(x) := d · p(x− b)− (x− b)∆bp(x)

For b = 1 this is a standard finite difference operator. These operators are related to
the distance between consecutive roots of polynomials (mesh), and we will discuss this in
Chapter 4. Notice that these finite difference operators literally limit to ∂x and ∂∗x as b→ 0,
in contrast to the case of ∂q,d and ∂∗q,d above.

Graphs

Let G = (V,E) be an undirected graph, which is simple unless otherwise specified. As usual,
V is the set of vertices and E is the set of edges. We employ standard notation surrounding
these first objects:

• {u, v} ∈ E iff there is an edge between vertices u and v.

• u ∈ e for e ∈ E iff u is a vertex of the edge e.

• NG[v] (resp. NG(v)) denotes the closed (resp. open) neighborhood of v. (Recall: closed
means it contains v itself, open means it does not.)

• H ⊆ G (resp. H ≤ G) iff H is a subgraph (resp. induced subgraph) of G.

We also generalize the definition of “claw” in the following standard way. As usual, let Km,n

denote the complete bipartite graph with m + n vertices. So, we refer to K1,3 as a claw or
as a 3-star. Generalizing, we refer to K1,n as an n-star. For any graph H, we say that G is
H-free if it does not contain H as an induced subgraph.

Finally, we denote the line graph of G by L(G). This is the graph formed by considering
the edges of G to be the vertices of L(G), with adjacency in L(G) determined by whether
or not the corresponding edges of G share a vertex in G.
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2.2 Stable Polynomials

In this section, we discuss all o the basic properties of stable polynomials which we will use
throughout. First, the definition.

Definition 2.2.1 (Stability and Bistability). Given a polynomial p ∈ C[x1, ..., xn], we say
that it is stable if it is Hn

+-stable as defined above. If p further has real coefficients, we say
that p is real stable. Additionally, given p ∈ C[x1, ..., xn, z1, ..., zm] = C[x, z], we say that it
is bistable if it is (Hn

+ ×Hm
− )-stable.

The motivation for this definition comes from the univariate case, where real stability is
equivalent to real-rootedness (since complex roots are symmetric about the real axis in the
case of real coefficients). The intuition that stability generalizes real-rootedness can also be
seen in the following.

Proposition 2.2.2. A polynomial p ∈ C[x1, ..., xn] is real stable iff for every e ∈ Rn
+ and

x ∈ Rn the univariate polynomial p(et+ x) is real-rooted.

The previous proposition also demonstrates a connection between stable polynomials
and hyperbolic polynomials. Hyperbolic polynomials have their origin in the PDE literature
([26]), but more recently have found connections to optimization ([30], [56]). We will mainly
make use of these polynomials in Chapter 3, where we define them explicitly (Definition
3.1.4).

The following classical result we will use often, often without even mentioning it.

Proposition 2.2.3 (Hurwitz). Fix a connected open set S ⊂ Cn. If pn ∈ C[x] is a sequence
of S-stable polynomials which limits to p, then p is also S-stable. (Recall that the 0 polynomial
is S-stable for any S.)

Basic Closure Properties

To make their combinatorial nature clear, we now give some basic operators which preserve
the class of stable polynomials. Afterwards, we will discuss how these operators can have
conceptual interpretations in certain contexts.

Proposition 2.2.4 (Closure Properties). Let p, q ∈ Cγ[x1, ..., xn] be stable (resp. real stable)
polynomials, and fix k ∈ [n]. Then the following are also stable (resp. real stable).

1. p · q (product)

2. ∂xkp (differentiation)

3. xk∂xkp (degree-preserving differentiation)

4. p(x1, ..., xk−1, r, xk+1, ..., xn), for r ∈ R (real evaluation)
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5. p(x1, ..., xk−1, x1, xk+1, ..., xn) (projection)

6. xγkk p(x1, ..., xk−1,−x−1
k , xk+1, ..., xn) (inversion)

Proof. (1), (5), (6) are obvious, and (2), (3) follow from Gauss-Lucas. (4) then follows by
plugging in r + εi for ε > 0, limiting ε→ 0, and applying Hurwitz’ theorem.

A classical but more interesting real stability preserver is polarization. Polarization plays
a crucial role in the theory of real stability preservers, as it allows one to restrict to polyno-
mials of degree at most 1 in every variable. We will see later that polarization also plays a
crucial role in the theory of capacity preservers (Chapter 5).

Definition 2.2.5. Given q ∈ Rd[x], we define Pold(q) to be the unique symmetric f ∈
R(1d)[x1, ..., xd] such that f(x, ..., x) = q(x). Given p ∈ Rλ[x1, ..., xn], we define Polλ(p) :=
(Polλ1 ◦ · · · ◦ Polλn)(p), where Polλk acts on the variable xk for each k. Note that Polλ(p) ∈
R(1λ1+···+λn )[x1,1, ..., xn,λn ].

Proposition 2.2.6 ([64]). Given p ∈ Rλ[x1, ..., xn], we have that p is real-stable iff Polλ(p)
is real stable.

As an example of the combinatorial content of some basic stability preservers, let G =
(V,E) be a graph on edges labeled {1, ..., n}. To this graph, we can associate the spanning

tree polynomial in R(1,...,1)
+ [x1, ..., xn] = R1

+[x]:

fG(x) :=
∑
T

xT =
∑

T∈{spanning trees}

∏
i∈T

xi

It turns out that this polynomial is real stable for any graph (via, e.g., the matrix-tree
theorem). So, we can apply the operations of the previous proposition. In particular, consider
differentiation and evaluation:

∂xifG(x) =
∑

T, xi∈T

xT−i fG(x)|xi=0 =
∑

T, xi 6∈T

xT

That is, ∂xifG(x) is precisely the spanning tree polynomial of the graph G/i where the edge
i has been contracted, and fG(x)|xi=0 is precisely the spanning tree polynomial of the graph
G\i where the edge i has been deleted. And from this we recover the standard deletion-
contraction relation:

fG(x) = xifG/i(x) + fG\i(x)

The purpose of this is to demonstrate that certain combinatorial operations preserve real
stability, opening the possibility to various potential induction strategies. Notice though
that the other operators from 2.2.4 may not have such clean combinatorial interpretations,
and yet they still preserve stability. And the Borcea-Brändén characterization shows even
more stability preservers which are even less combinatorial. This will open up new avenues
for induction, beyond the realm of graphs.
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This is one of the big reasons why stability theory is so important. One maps a whole class
of interesting combinatorial objects (e.g. graphs) into some space of polynomials (perhaps
real stable polynomials), but this map is usually very far from being surjective. This allows
one to consider the space of polynomials to be a continuous generalization of the space of
graphs. What is crucial about this map is mainly the fact that various graph operations
translate to polynomial operations which preserve certain nice properties, like stability. The
Borcea-Brändén characterization then allows us to generalize even the notion of “graph
operation” to that of “polynomial operation”. From there we try to answer our questions
about graphs by forgetting the original object and working solely with polynomials. We then
utilize the analytic intuitions and results we have for polynomials to say something desirable
about graphs.

Log-concavity via the Strongly Rayleigh Inequalities

One of the most important features of real stable polynomials is their connection to log-
concavity. This is summed up in the following.

Theorem 2.2.7 (Brändén, [9]). Fix p ∈ R(1,...,1)[x1, ..., xn]. Then p is real stable iff for all
i 6= j we have

∂xip · ∂xjp− p · ∂xi∂xjp ≥ 0

everywhere in Rn. That is, iff the Hessian of log(p) is entrywise non-positive.

Any combinatorial bound which can be proven via the theory of stable polynomials
eventually runs through this result. We will see this at play in particular in the results of
Chapter 5 regarding polynomial capacity. This result also gives a good way of proving or
disproving the stability properties of specific polynomials.

This result is also easily extended beyond multiaffine polynomials, but an extra condition
is acquired a long the way.

Corollary 2.2.8. Fix p ∈ Rγ[x]. Then p is real stable iff for all i 6= j we have

∂xip · ∂xjp− p · ∂xi∂xjp ≥ 0

and for all i we have
(1− γ−1

i )(∂xip)
2 − p · ∂2

xi
p ≥ 0

everywhere in Rn.

Proof. The proof of this essentially comes from the fact that polarization preserves real
stability. One can then pass Brändén’s result through the polarization operator. Another
similar proof could be given using certain invariance properties of the Wronskian.

Finally, this gives an interesting characterization of univariate real-rooted polynomials.
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Corollary 2.2.9. Fix univariate p ∈ Rd[x]. Then p is real-rooted iff

(1− d−1)(p′)2 − p · p′′ ≥ 0

everywhere in R.

Interlacing Roots and Proper Position

The connection between the symbol of an operator and its stability preservation properties is
algebraic, or perhaps even linear algebraic (see [41] for a more detailed discussion). Because
of this, the BB characterization is easier to prove for stability, and then the result for real
stability follows as a corollary. To make this method of proof work, one needs a linear
algebraic way to connect stable and real stable polynomials. (Of course we have the analytic
connection via limits of stable polynomials, but this does not always help us as much as we’d
like.)

This connection can be found in the notion of interlacing polynomials, which sometimes
goes by the name proper position for multivariate polynomials. First we give the univariate
definition.

Definition 2.2.10. Let p, q ∈ R[x] be univariate real-rooted monic polynomials with roots
λ(p), λ(q) (recall that λ(p) is in non-increasing order) and leading coefficients cp, cq respec-
tively. Then we say that q interlaces p and write q � p if cp · cq > 0 and:

λ1(p) ≥ λ1(q) ≥ λ2(p) ≥ λ2(q) ≥ · · ·

If the inequalities are all strict, we say that q strictly interlaces p. And if cp · cq < 0, then
we reverse the relation (i.e. p� q).

Notice in the above definition that the connotation of “�” as an order symbol presents
itself in the fact that the “larger” polynomial has a larger maximum root (when c1 · c2 > 0).
However, � is not a partial order.

Remark 2.2.11. For a real-rooted polynomial f , we write mesh(f) ≥ b if the distance
between any pair of roots is at least b. For a positive-rooted polynomial f , we write
lmesh(f) ≥ q ≥ 1 (for “log-mesh”) if the ratio of any pair of roots is at least q. Notice
that mesh(f) ≥ b iff f � f(x − b), and lmesh(f) ≥ q iff f � f(q−1x). This gives a strong
relationship between the mesh/log-mesh of a polynomial and interlacing, and we will make
use of this in Chapter 4.

We now state a few important properties of interlacing polynomials, which demonstrate
the connection between interlacing, (complex) stability, linear algebra, and convexity. Note
that much of the notation for these results was taken from [63]. In what follows we define
the Wronskian of p, q as usual: W [p, q] := p′q − pq′.
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Proposition 2.2.12 (Hermite-Biehler). For real-rooted p, q ∈ R[x], we have that q � p iff
p+ iq is stable.

Proposition 2.2.13 (Hermite-Kakeya-Obreschkoff). For real-rooted p, q ∈ R[x], we have
that q � p or p � q iff p, q span a real subspace of real-rooted polynomials. When these
equivalent conditions hold, we further have either W [p, q] ≥ 0 (> 0), in which case q � p
(strictly) or W [p, q] ≤ 0 (< 0), in which case p� q (strictly).

The following result requires the notion of common interlacer of p, q, which is a polyno-
mial f such that f � p and f � q. It is a statement that has been proven many times, and
we refer the reader to [52] for discussion of this.

Proposition 2.2.14. For real-rooted p, q ∈ R[x] with positive leading coefficients, p, q have
a common interlacer iff every convex combination of p, q is real-rooted.

The previous theorem can in fact be generalized to many polynomials with a single
common interlacer. We quote here the following definition and result of Chudnovsky and
Seymour, who use it in their proof that the independence polynomial of a claw-free graph is
real-rooted (see Chapter 6).

Definition 2.2.15. We say that p1, ..., pm ∈ R[x] are compatible if all convex combinations
are real rooted.

Theorem 2.2.16 ([15]). Let p1, ..., pm ∈ R[x] be univariate polynomials with positive leading
coefficients. The following are equivalent.

1. pi and pj are compatible for all i 6= j.

2. pi and pj have a common interlacer for all i 6= j.

3. p1, ..., pm are compatible.

4. p1, ..., pm have a common interlacer.

These last few results lead us to a sort of useful interlacing calculus, which we describe
a bit here. If f � g and f � h, then f � ag + bh for any a, b ∈ R+. A similar result holds
if g � f and h� f . Note also that f � g iff g � −f , and that af � bf for all a, b ∈ R.

Borcea and Brändén further generalize most of this to multivariate polynomials. Multi-
variate interlacing can be defined in the obvious way (recall the equivalent definition of real
stability in terms of linear restrictions, Proposition 2.2.2).

Definition 2.2.17. Let p, q ∈ R[x1, ..., xn] be real stable polynomials. We say that p, q are in
proper position and write q � p if for all e ∈ Rn

+ and x ∈ Rn we have that q(te+x)� p(te+x).
We also sometimes say that q interlaces p. The notions of common interlacer and compatible
can also be defined analogously to the univariate case.
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Proposition 2.2.18 ([7],[63]). Let p, q ∈ R[x1, ..., xn] be real stable polynomials. We have:

1. (Hermite-Biehler) q � p iff p+ iq is stable.

2. (Hermite-Kakeya-Obreschkoff) q � p or p � q iff p, q span a real subspace of real
stable polynomials.

3. p, q have a common interlacer iff every convex combination of p, q is real stable.

Borcea and Brändén actually prove a few more equivalences, but we omit these here.

2.3 Stability Preservers

We saw in Proposition 2.2.4 a number of basic linear operations that preserve the property
of being stable or real stable. We also saw how some of these basic operations have clean
combinatorial interpretations, which makes stability an interesting property to study when it
comes to polynomials associated to graphs and other combinatorial objects. If we could find
stability-preserving operators which do not have such a clean interpretation, then perhaps
we could use such operators to say more interesting and/or analytic things about our favorite
objects of study.

The Borcea-Brändén Characterization

The Borcea-Brändén characterization gives a complete classification of linear operators which
preserve stability and real stability. Their results break into two categories: operators which
depend on the degree of the input polynomial, and operators which have no such dependence.
The reason for this is that there are some linear operators which only preserve stability when
restricted to input polynomials of some fixed bounded degree.

We state their results here, leaving out a degeneracy case in order to make the results
more readable. One can also look at [7] and [8] to see the results in full. To state these
results we also need the concept of the symbol of a linear operator, which we define now.

Definition 2.3.1. Let T : Cγ[x1, ..., xn]→ C[x1, ..., xm] be a linear operator on polynomials
of bounded degree. Then the (Borcea-Brändén) symbol of T is defined as

Symb(T )(x, z) := T [(z + x)γ] =
∑

0≤µ≤γ

(
γ

µ

)
zγ−µT (xµ)

where T only acts on the x variables. Similarly if T : C[x1, ..., xn]→ C[x1, ..., xm] is a linear
operator on polynomials of any degree, we write:

Symb(T )(x, z) := T [exp(−xz)] =
∑
0≤µ

1

µ!
(−1)µzµT (xµ)
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Remark 2.3.2. When discussing the notion of polynomial capacity in Chapter 5, we will
need to use a different symbol in our computations. Because T only acts on the x variables
in the above expressions, these different symbols can be expressed as a certain twist of the
ones defined above. First, for bounded degree inputs:

Symb+(T )(x, z) := T [(1 + xz)γ] = zγ Symb(T )(x, z−1)

And then, for unbounded degree inputs:

Symb+(T )(x, z) := T [exp(xz)] = Symb(T )(x,−z)

The use of the + subscript is meant to suggest the connection of this symbol to a positive
definite inner product on polynomials. We will discuss this further in Chapter 5.

We are now ready to state the BB characterization, with one caveat. Note that in the
unbounded degree case, Symb(T ) is defined to be an entire function rather than a polynomial.
In order to handle this, we will need a definition of (real) stability for entrie functions. This
is where the Laguerre-Pólya class comes in, and such fucntions have been classically studied
in the univariate case.

Definition 2.3.3. A function f is said to be in the LP (Laguerre-Pólya) class in the
variables x1, ..., xn, if f is the limit (uniformly on compact sets) of real stable polynomials
in R[x1, ..., xn]. If f is the limit of real stable polynomials in R+[x1, ..., xn], then we say f
is in the LP+ class. In these cases, we write f ∈ LP [x1, ..., xn] and f ∈ LP+[x1, ..., xn]
respectively. Similar definitions can also be given for a bistable Laguerre-Pólya class (see
Definition 2.2.1).

There are interesting equivalent definitions for this class of entire functions (e.g., see [16]),
but we omit them here. Additionally, we refer the reader to [7] for more information in the
multivariate case. We now state the BB characterization.

Theorem 2.3.4 (Borcea-Brändén, [7]). Excluding a degeneracy case, a linear operator T
on polynomials preserves stability (i.e., Hn

+-stability) iff Symb(T ) is stable. As a note, all of
the degenerate operators T are of rank at most 1.

Theorem 2.3.5 (Borcea-Brändén, [7]). Excluding a degeneracy case, a linear operator T on
polynomials preserves real stability iff Symb(T )(x, z) is either real stable or real bistable. As
a note, all of the degenerate operators T are of rank at most 2.

One important example of such an operator is the additive convolution. This convolution
was originally studied by Walsh in the univariate case, and also goes by the names Walsh
convolution and finite free convolution (see [47] and [48] for recent developments). We will
discuss this convolution in further detail throughout this paper (e.g., in Chapter 3), and so
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we now demonstrate its stability-preservation properties. The multivariate convolution is
defined as follows for p, q ∈ Rγ[x]:

(p�γ q)(x) :=
1

γ!

∑
0≤µ≤γ

(∂µxp)(x) · (∂γ−µx p)(0)

To see that this operator preserves stability, we first prove something more general. Let
T : R(γ,γ)[x, y]→ Rγ[x] be a linear operator defined as follows on the monomial basis:

T (xµyν) := xµ �γ xν

That is, T (p(x)q(y)) = (p�γ q)(x). In this case Symb(T ) will be a polynomial in three sets
of variables z, w, x, and can be computed as:

Symb(T )(x, z, y) = T ((x+ z)γ(y + w)γ) = (x+ z + w)γ

This is obviously real stable, and so the BB characterization applies. Therefore p�γ q is real
stable whenever p, q are.

Interlacing Preserving Operators

Fix univariate f ∈ Rd[x] with d simple real roots, r1, ..., rd, and fix univariate g ∈ Rd+1[x].
By partial fraction decomposition, we have:

g(x)

f(x)
= (bx+ a) +

d∑
k=1

crk
x− rk

Denoting frk(x) := f(x)
x−rk

, this implies:

g(x) = (bx+ a)f(x) +
d∑

k=1

crkfrk(x)

If g(rk) = 0, then crk = 0. Otherwise we compute:

cαk = lim
x→αk

(x− αk)g(x)

f(x)
=

[
f ′(αk)

g(αk)

]−1

=

[(
f

g

)′
(αk)

]−1

For monic f , we then further compute:

b = lim
x→∞

f(x)g′(x)− f ′(x)g(x)

f(x)2
= lim

x→∞

(
g

f

)′
(x)

This leads to the following classical result.
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Proposition 2.3.6 (see [63]). Fix f ∈ Rd[x] and g ∈ Rd+1[x]. Suppose f is monic and
has d simple real roots, r1, ..., rd, and suppose g is of degree at most d + 1. Consider the
decomposition:

g(x) = (bx+ a)f(x) +
d∑

k=1

crkfrk(x)

Then, g � f iff b ≤ 0 and crk ≥ 0 for all k, and f � g iff b ≥ 0 and crk ≤ 0 for all k.

Proof. (⇒). If f � g, then
(
f
g

)′
≤ 0 and

(
g
f

)′
≥ 0. This implies crk ≤ 0 for all k and b ≥ 0.

If g � f , then f � −g. The same argument implies crk ≥ 0 for all k and b ≤ 0.
(⇐). Supposing b ≥ 0 and ck ≤ 0 for all k, we write:

R(x) :=
g(x)

f(x)
= (bx+ a) +

d∑
k=1

crk
x− rk

Note that this implies R(rk + ε) < 0 and R(rk − ε) > 0 for small enough ε > 0 and for all
k. This implies that g has at least one root between each pair of adjacent asymptotes of f .
Note that this demonstrates interlacing up to a few missing roots of g.

To show f � g we just need to prove that the remaining roots of g do not disrupt this
interlacing property, and that the leading coefficient of g is the correct sign. Casework on
the possible values of a, b then implies the result. Finally, the result for b ≤ 0 and ck ≥ 0 for
all k follows similarly.

There is actually another way to state this result, in terms of cones of polynomials.
Let cone(f1, ..., fm) denote the closure of the positive cone generated by the polynomials
f1, ..., fm.

Corollary 2.3.7. Let f ∈ R[x] be a monic polynomial with d distinct (not necessarily simple)
roots, r1, ..., rd. Then:

{g ∈ R[x] : g � f} = cone(−xf,−f, f, fr1 , ..., frd)

{g ∈ R[x] : f � g} = cone(xf, f,−f,−fr1 , ...,−frd)

Here we define frk := f(x)
x−rk

even when rk is not a simple root of f .

Proof. First suppose that f has degree exactly d (all roots simple). If the roots of f, g
interlace, then g is of degree at most d + 1. Since any such g can be written as a linear
combination of xf, f, fr1 , ..., frd , the result follows from the previous proposition.

Now if f has a root rk of multiplicity m ≥ 2, then any polynomial g for which f � g or
g � f must have a root at rk of multiplicity at least m− 1. In this case we have:

{g ∈ R[x] : g � f} = (x− rk)m−1 ·
{
h ∈ R[x] : h� f(x)

(x− rk)m−1

}
Inducting on this idea then implies the result.
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This immediately yields the following result concerning linear operators preserving certain
interlacing relations. Notice that here we restrict to only considering polynomials g of degree
at most d, where d is the degree of f .

Definition 2.3.8. Given a real linear operator T : Rd[x]→ R[x], and a real-rooted polyno-
mial f , we say that T preserves interlacing with respect to f if g � f implies T [g] � T [f ]
and f � g implies T [f ]� T [g] for all g ∈ Rd[x]

Corollary 2.3.9. Fix a real linear operator T : Rd[x]→ R[x], and fix f ∈ Rd[x]. Suppose f
is monic with d simple roots, r1, ..., rn, and that T [frk ]� T [f ] for all k. Then, T preserves
interlacing with respect to f .

This is a generalization of the notion of real-rootedness preserver, as some operators which
preserve interlacing with respect to certain polynomials will not preserve real-rootedness
(see Chapter 4 for some interesting examples). On the other hand, every linear operator
which preserves real-rootedness will also have certain interlacing-preservations properties by
Hermite-Kakeya-Obreschkoff (Proposition 2.2.13).
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Chapter 3

Classical Additive Convolution

The Walsh additive ([64]) and Grace-Szegö multiplicative ([62]) polynomial convolutions on
f, g ∈ Cd[x] have been denoted �d and �d respectively (e.g., in [47]):

f �d g :=
1

d!

d∑
k=0

∂kxf · (∂d−kx g)(0)

f �d g :=
d∑

k=0

(
d

k

)−1

(−1)kfkgkx
k

These convolutions can be thought of producing polynomials whose roots are contained in the
(Minkowski) sum and product of complex discs containing the roots of the input polynomials.
When the inputs have real roots (additive) or non-negative roots (multiplicative), this fact
also holds in terms of real intervals containing the roots.

Recent interest in understanding how certain differential operators preserving the set of
real-rooted polynomials affect the roots of the input polynomial derives from the notion of
interlacing families (see the papers of Marcus-Spielman-Srivastava on Ramanujan graphs
and the Kadison-Singer problem: [52],[49],[51]). Most uses of interlacing families share the
same loose goal: to study spectral properties of random combinatorial objects. To do this,
one equates random combinatorial operations on the objects to differential operators on
associated characteristic polynomials. Then, understanding the spectrum of the random
objects is reduced to understanding how the roots of certain polynomials are affected by
differential operators preserving real-rootedness.

The most robust way to study the effects of a differential operator on roots comes from
the framework of Marcus, Spielman, and Srivastava. It gives tight largest root bounds for
a general class of differential operator preserving real-rootedness, replacing many of the ad
hoc methods used before to study specific desired operators. That said, some combinatorial
objects require the use of multivariate methods to analyze. Here the associated polynomials
are real stable, and for these methods there is no general framework in place to study the
analytic effects of the linear operators on the roots. We consider the following to be one of the
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big open conceptual questions in this area: How does the multivariate additive convolution
affect root information?

In an attempt to better understand the multivariate case, we expand upon the previous
results of Marcus-Spielman-Srivastava and provide more general results about how all roots
are of a given polynomial are affected by finite free convolutions. To do this, we first expand
their bound on the movement of the largest root to all differential operators preserving real-
rootedness. Further, we utilize the theory of hyperbolic polynomials to give more interesting
root bounds on interior roots (other roots besides the largest).

We then state a number of conjectures (and some counterexamples) in the direction of
stronger univariate results on interior roots and of analogous multivariate results. Proving
similar multivariate results seems to be a hard problem in general. But the hope is that
by better fleshing out the details of the additive convolution in the univariate case, one
can better abstract to the multivariate case to handle problems such as Kadison-Singer, the
Paving conjecture, and Heilman-Lieb root bounds.

3.1 The Univariate Additive Convolution

Recall the definition of the additive convolution for p, q ∈ Rd[t]:

p�d q =
1

d!

d∑
k=0

∂kt p(t)∂
d−k
t q(0)

Notice we get a differential operator if we fix a polynomial q and view the additive convolution
as a linear operator p 7→ p�dq, and we can obtain all constant coefficient differential operators
in this fashion. Some well known properties of the additive convolution are given as follows.
Recall that we let λ(p) denote the non-increasing vector of roots of p counting multiplicities.

Proposition 3.1.1. For p, q ∈ Rd[t], we have the following:

1. (Symmetry) p�d q = q �d p

2. (Shift-invariance) (p(t+ a)�d q)(t) = (p�d q)(t+ a) = (p�d q(t+ a))(t) for a ∈ R

3. (Scale-invariance) (p(at)�d q(at)) = ad · (p�d q)(at) for a ∈ R

4. (Derivative-invariance) (∂tp)�d q = ∂t(p�d q) = p�d (∂tq) for all k ∈ [d]

5. (Stability-preserving) p�d q is real rooted

6. (Triangle inequality) λ1(p�d q) ≤ λ1(p) + λ1(q)

Finally, the additive convolution can be used to characterize differential operators which
preserve real-rootedness.
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Proposition 3.1.2. A linear operator T : Rd[t] → Rd[t] is a differential operator which
preserves real-rootedness if and only if it can be written in the form T (p) = p�d q for some
real-rooted q ∈ Rd[t].

We now discuss a number of stronger properties one can achieve for the additive convolu-
tion, using hyperbolicity. Then in §3.2, we state and discuss the main result of this chapter:
a generalization of the main result from [47] with a simplified and more intuitive proof.

Interior Roots

The triangle inequality above gives the most basic bound on the largest root of the convo-
lution to two polynomials. The first main collection of interior root bounds can be stated
in terms of majorization. The majorization order is a partial order on vectors in Rd which
can be thought of morally as saying that the coordinates of one vector are more spread out
than the coordinates of the other. Formally, majorization is defined as follows. We refer the
reader to [53] for more discussion on the following equivalent definitions.

Definition 3.1.3. Given x, y ∈ Rd, we say that x majorizes y and write y ≺ x if one of
the following equivalent conditions holds. We let x↓ = (x↓1, ..., x

↓
d) denote the ordering of the

entries x in non-increasing order.

1.
∑k

i=1 y
↓
i ≤

∑k
i=1 x

↓
i for all k, with equality for k = d.

2. y is contained in the convex hull of {(xσ(1), ..., xσ(d)) | σ ∈ Sd} ⊂ Rd.

3. There exists a doubly stochastic matrix D (each row and column sum is 1) such that
Dx = y.

4. There is a sequence of pinches, of the form x 7→ (x1, ..., xj + α, ..., xk − α, ..., xd) such
that the jth and kth coordinates are getting closer together (without crossing), which
takes x to y.

This makes ≺ a partial order on Rd for all d.

Note that condition (1) applied to the vectors of roots of two polynomials can be inter-
preted as root bounds involving interior roots. What we need then is some way to prove
majorization results about the additive convolution. One way to do this is via hyperbolic
polynomials, which enables us to convert inequalities regarding matrix eigenvalues into in-
equalities regarding roots of polynomials.

Definition 3.1.4. Given a homogeneous polynomial p ∈ R[x1, ..., xn] and a vector e ∈ Rn,
we say that p is hyperbolic with respect to e if p(e) > 0 and p(et+ x) ∈ R[t] is real-rooted for
all x ∈ Rn. Whenever p and e are assumed, we let λ(x) to denote the vector of roots of the
polynomial p(et+ x) in nonincreasing order.
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Hyperbolic polynomials have been heavily studied over the past few decades, starting
with [26]. There are a number of standard results regarding certain convexity properties of
such polynomials, but we omit these here (a good reference is [56]).

The intuition that one should have when considering hyperbolic polynomials and λ(x)
is that of the determinant of a matrix and its eigenvalues. This is formalized in the fact
that det(X) (where X is a symmetric matrix of variables) is hyperbolic with respect to the
identity matrix, and in this case λ(X) is the vector of eigenvalues of X. This intuition
is further justified by the fact that many properties of the eigenvalues of real symmetric
matrices seamlessly transfer over to properties about λ(x) for any hyperbolic polynomial p.
In fact, by exploiting the Helton-Vinnikov theorem (which says that all 3-variable hyperbolic
polynomials are determinants involving real symmetric matrices; see [37], [37]) one can obtain
all of Horn’s inequalities (see [38]) for any hyperbolic polynomial. That is, any inequality that
holds between λ(X), λ(Y ), and λ(X + Y ) for any X, Y real symmetric with p(X) = det(X)
(see Definition 3.2.3) will also hold for any hyperbolic p(x) and any vectors x, y. We state
this formally as follows.

Theorem 3.1.5 ([4], [31]). Fix a hyperbolic polynomial p with respect to e. For v, w ∈
Rn, Horn’s inequalities hold for λ(v + w), λ(v), and λ(w). In particular, the following
majorization relation holds:

λ(v + w) ≺ λ(v) + λ(w)

To apply this result, we need to view the additive convolution as a hyperbolic polynomial.
We do this in the following.

Proposition 3.1.6. Consider the following, where � only acts on the x variables.

p(x, a1, ..., ad, b1, ..., bd) :=

(
d∏

k=1

(x− ak)

)
�d
(

d∏
k=1

(x− bk)

)

Then p is hyperbolic with respect to e = (1, 0, ..., 0).

Proof. For q(t) :=
∏

k(t−ak), r(t) :=
∏

k(t−bk), and y = (c, a1, ..., ad, b1, ..., bd) we compute:

p(et+ y) = p(t+ c, a1, ..., ad, b1, ..., bd) = (q �d r)(t+ 2c)

So p(et + y) is real-rooted since q and r are and � preserves real-rootedness. Also, p(e) =
1 > 0.

This fact allows us to immediately apply the previous theorem to the additive convolution
as follows.

Corollary 3.1.7. Let p, q ∈ Rd[x] be real-rooted and of degree exactly d. Then:

λ(p�d q) ≺ λ(p) + λ(q)
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Proof. Let v = (0, a1, ..., ad, 0, ..., 0) and w = (0, 0, ..., 0, b1, ..., bd), where the ak and bk are
the roots of p and q, respectively. Then λ(v) = λ(p) and λ(w) = λ(q). Further, λ(v + w) =
λ(p�d q). The result then follows from the previous theorem.

Note that this immediately gives us interior root inequalities of the following form:

k∑
i=1

λi(p�
d q) ≤

k∑
i=1

λi(p) +
k∑
i=1

λi(q)

Using the same proof as in the corollary, we can similarly obtain all of Horn’s inequalities
for the roots of p, q, and p �d q. For instance, we obtain the Weyl inequalities (for all i, j)
which more directly bound the interior roots:

λi+j−1(p�d q) ≤ λi(p) + λj(q)

Whenever i = j = 1, this boils down to the triangle inequality:

λ1(p�d q) ≤ λ1(p) + λ1(q)

As it turns out, Theorem 3.1.5 above also yields an important majorization preserva-
tion result regarding the additive convolution. In [6], Borcea and Brändén give a complete
characterization of linear operators which preserve majorization of roots. Roughly speaking,
the result says that a linear operator T (with certain degree restrictions) which preserves
real-rootedness has the following property:

λ(p) ≺ λ(q) =⇒ λ(T (p)) ≺ λ(T (q))

Their result then applies to the operator Tq(p) := p �d q for any fixed real-rooted q. This
result also has a nice proof via hyperbolicity, and we demonstrate this now. As a note, the
following proof immediately generalizes to any degree-preserving linear operator preserving
real-rootedness. It is likely that one could generalize it further to the full Borcea-Brändén
result, using some of the results regarding polynomial degree from [6].

Corollary 3.1.8. Let p, q, r ∈ Rd[x] be real-rooted polynomials of degree exactly d such that
λ(p) ≺ λ(q). Then:

λ(p�d r) ≺ λ(q �d r)

Proof. Let ak, bk, and ck be the roots of p, q, and r, respectively. By Definition 3.1.3 and
the fact that λ(p) ≺ λ(q), we have that (ak) is in the convex hull of the permutations of (bk).
That is,

(a1, ..., ad) =
∑
σ∈Sd

βσ · (bσ(1), ..., bσ(d))

where βσ ≥ 0 and
∑

σ βσ = 1. With this, we use the following notation:

v := (0, a1, ..., ad, c1, ..., cd) wσ := (0, bσ(1), ..., bσ(d), c1, ..., cd)
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And so we also have that v =
∑

σ∈Sd βσwσ.
Since ≺ is a partial order, we can induct on the majorization relation of Theorem 3.1.5,

using the hyperbolic polynomial from Proposition 3.1.6:

λ(v) = λ

(∑
σ∈Sd

βσwσ

)
≺
∑
σ∈Sd

λ(βσwσ)

By the scale-invariance property of � (see Proposition 3.1.1), we have that λ(βσwσ) =
βσ · λ(wσ). This implies:

λ(p�d r) = λ(v) ≺
∑
σ∈Sd

βσ · λ(wσ) =
∑
σ∈Sd

βσ · λ(q �d r) = λ(q �d r)

3.2 Submodularity of the Largest Root

In [47], the authors consider the effects of a certain class of differential operators on the
largest root of a given real-rooted polynomial:

Uα := 1− α∂t

This differential operator is inspired by the Cauchy transform, via the following equivalence:

Uαp(t) = 0 ⇐⇒ p(t)− αp′(t) = 0 ⇐⇒ p′(t)

p(t)
=

1

α
=: ω

Restricting to points larger than the largest root of p, we have that p′

p
is a bijection between

(λ1(p),∞) and (0,∞). Let Kω(p) denote the inverse of ω. Note that as ω → 0 our inverse
tends to infinity, while as ω →∞ our inverse tends to λ1(p). Furthermore, λ1(Uαp) = Kω(p).
This definition is inspired by similar objects from free probability, as discussed in [47]. The
main result from [47] regarding these Uα is given as follows:

Theorem 3.2.1 ([47]). Let p, q ∈ Rd[t] be real-rooted polynomials of degree d. For any α > 0
we have:

λ1(Uα(p�d q)) + dα ≤ λ1(Uα(p)) + λ1(Uα(q))

As discussed above, every differential operator on polynomials in Rd[t] can be represented
as T (p) = p�d q for some polynomial q ∈ Rd[t]. In particular we can represent Uα via

Uα(p) = p�d uα

where uα(t) := td − dα · td−1. Notice that here we have λ1(uα) = dα, which means that the
above result can be restated as follows:

λ1(p�d q �d uα) + λ1(uα) ≤ λ1(p�d uα) + λ1(q �d uα)
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This is a submodularity relation for the additive convolution. Further, by rearranging this
result, it can also be seen as a diminishing returns property of the convolution:

λ1(p�d q �d uα)− λ1(q �d uα) ≤ λ1(p�d uα)− λ1(uα)

The operation p 7→ p�dq can be interpreted as spreading out the roots of p (see the discussion
at the beginning of §3.1). The above expression then says that, as the roots of a polynomial
become more spread out, the operation of convolving by p has less of an effect on the largest
root.

The natural next question is: can uα be replaced by a larger class of real-rooted polyno-
mials in the above expression? The answer is encapsulated in our main result, which says
that it can be replaced by any real-rooted polynomial.

Theorem 3.2.2. Let p, q, r ∈ Rd[t] be real-rooted polynomials of degree d. We have:

λ1(p�d q �d r) + λ1(r) ≤ λ1(p�d r) + λ1(q �d r)

To prove this, we adapt and simplify the proof of the original MSS result above. We
leave this proof to §3.2, where we actually prove slightly more general results.

It is important to note that we were unable to prove this result using the hyperbolicity
properties of the additive convolution. This should not be surprising, as morally anything
provable for hyperbolic polynomials should come from properties of the eigenvalues of a
Hermitian matrix (and this submodularity relation does not hold for matrices in general).
We discuss this further in the next section.

Submodularity Conjectures

Our main result gives an inequality relating the largest (or smallest) roots of additive con-
volutions of three polynomials, as is done in the MSS paper. The root bound achieved by
MSS is crucial to their proof of the paving conjecture, but it is not strong enough to obtain
optimal bounds for the paving conjecture. That said, it is believed that root bounds for the
interior roots will help to obtain optimal paving bounds. More generally, such root bounds
would further clarify how differential operators affect the roots of polynomials.

As we saw in §3.2, their result can be extended to 3 polynomials in the form of Theorem
3.2.1:

λ1(p�d q �d r) + λ1(r) ≤ λ1(p�d r) + λ1(q �d r)

A natural next question becomes: what other inequalities on roots can we achieve in the
3 polynomial case. With this, we arrive at our submodularity conjectures. To simplify the
notation, we first make the following definitions.

Definition 3.2.3. Fix d ∈ N and let I, J,K ⊂ [d]. We call (I, J,K) a Horn’s triple if for all
Hermitian d× d matrices A,B we have:∑

i∈I

λi(A+B) ≤
∑
j∈J

λj(A) +
∑
k∈K

λk(B)
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That is, if (I, J,K) give rise to one of Horn’s inequalties.

Definition 3.2.4. Fix d ∈ N and let I, L, J,K ⊂ [d]. We call (I, L, J,K) a valid 4-tuple if
for all real-rooted p, q, r of degree d we have:∑

i∈I

λi(p�
d q �d r) +

∑
l∈L

λl(r) ≤
∑
j∈J

λj(p�
d r) +

∑
k∈K

λk(q �
d r)

We want to determine all of the valid 4-tuples. It is worth noting that the method of
hyperbolic polynomials (which worked for inequalities relating the roots of 2 polynomials)
does not work for determining valid 4-tuples. In fact we have the following, even for diagonal
matrices:

λ1(A+B + C) + λ1(C) 6≤ λ1(A+ C) + λ1(B + C)

For example, let A = B = diag(2, 0) and C = diag(0, 2).
With these notions in hand, we can now succinctly state our conjectures. The first is a

natural generalization of Horn’s inequalities for two polynomials.

Conjecture 3.2.5. Let p, q, r ∈ Rd[x] be real-rooted and of degree exactly d, and let (I, J,K)
be a Horn’s triple. Then (I, I, J,K) is a valid 4-tuple.

Note that the indices of the left-hand side of the inequality are the same for both poly-
nomials. But perhaps this does not have to be the case here? That is, can we pick L 6= I
such that the inequality for (I, L, J,K) is stronger than the inequality for (I, I, J,K), and
yet it is still a valid 4-tuple? This turns out to be a difficult question in general.

Of course you can make the set L a “weaker” set of indices than I (meaning that the
inequality for (I, L, J,K) is logically weaker than the inequality for (I, I, J,K)) to get a new
valid 4-tuple. Since such inequalities follow from the conjecture given above, we will ignore
these 4-tuples. That said, the only question left is just how much “stronger” the set L can
be. We give yet another conjecture regarding this question, albeit only in the case where
|I| = |L| = |J | = |K| = 1. To ease notation, we say that (i, j, k) and (i, l, j, k) are a Horn’s
triple and a valid 4-tuple, respectively (replace singleton sets with the single index).

Conjecture 3.2.6. Let p, q, r ∈ Rd[x] be real-rooted and of degree exactly d, and let (i, j, k)
be a Horn’s triple. Note that this is equivalent to i ≥ j + k − 1 (see the Weyl inequalities
above, which are strongest Horn’s triples of this form). Then (i,max(j, k), j, k) and (i, d +
1−max(j, k), j, k) are valid 4-tuples.

Notice that for small j, k the first 4-tuple given in the above conjecture is stronger, and
for large j, k the second 4-tuple given in above conjecture is stronger.

Submodularity Proof

We now set out to prove Theorem 3.2.1. First we need a basic lemma, which we will use
throughout this section. It essentially follows from Hermite-Kakeya-Obreschkoff (Proposition
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2.2.13), with a little bit of care about the direction of interlacing. One might also be able to
use Hermite-Biehler (Proposition 2.2.12).

Lemma 3.2.7. Fix real-rooted p, q, r ∈ Rn[x] with positive leading coefficients. If q � p,
then:

q �n r � p�n r

Now we introduce the notation used in [47]. Given a monic polynomial p of degree d
with at least 2 distinct roots, we write:

p(x) =
d∏
i=1

(x− λi)

Order the roots λ1 ≥ · · · ≥ λd, and let k be minimal such that λ1 6= λk. Define µ0 := λ1+λk
2

and µ1 := λ1. Further, for µ ∈ [µ0, µ1] we define:

p̃µ(x) := (x− µ)2
∏
i 6=1,k

(x− λi)

We then define:

p̂µ(x) := p(x)− p̃µ(x) = ((2µ− (λ1 + λk))x− (µ2 − λ1λk))
∏
i 6=1,k

(x− λi)

For µ > µ0, we have that p̂µ is of degree d− 1 with positive leading coefficient and the extra
root is at least λ1. (Note that when µ = µ0, we have that p̂µ is of degree d− 2 with negative
leading coefficient.) To see this, notice:

ρ :=
µ2 − λ1λk

2µ− (λ1 + λk)
≥ λ1 ⇐⇒ µ2 − 2µλ1 + λ2

1 = (µ− λ1)2 ≥ 0

This then implies that for fµ(x) := (x − µ)
∏

i 6=1,k(x − λi), we have fµ � p̃µ, fµ � p̂µ, and
fµ � p. In Figure ??, we illustrate one possibility for the largest roots of these polynomials.

In what follows, we additionally fix a real-rooted r ∈ R[x] of degree d.

Lemma 3.2.8. Fix any µ, µ′ with µ0 ≤ µ ≤ µ′ ≤ µ1 where µ0, µ1 are defined as above. We
have:

λ1(p̃µ0 �
d r) ≤ λ1(p�d r) ≤ λ1(p̃µ1 �

d r)

λ1(p̃µ �
d r) ≤ λ1(p̃µ′ �

d r)

Proof. The first inequality of the first line follows from the fact that the roots of p̃µ0 are
majorized by that of p (this is because p̃µ0 can obtained via a “pinch” of the roots of p; see
property 4 of Definition 3.1.3). The second inequality of the first line follows from Lemma
3.2.7 and the fact that p� p̃µ1 . The second line follows from Lemma 3.2.7 and the fact that
p̃µ � g � p̃µ′ for g(x) := (x− µ)(x− µ′)

∏
i 6=1,k(x− λi).
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Figure 3.1: Illustration of larger roots of pinched polynomials, with multiplicities.

Corollary 3.2.9. There exists µ ∈ [µ0, µ1] such that λ1(p̃µ �d r) = λ1(p�d r).

Proof. The above lemma and continuity.

Now, let µ∗ denote the maximal µ ∈ [µ0, µ1] such that the previous corollary holds. For
simplicity, we will denote p̃ := p̃µ∗ and p̂ := p̂µ∗ .

Proposition 3.2.10. For µ∗ defined as above, we have that µ∗ > µ0 and:

λ1(p̂�d r) = λ1(p�d r) = λ1(p̃�d r)

Proof. The second equality follows from the definition of µ∗. So we only need to prove the
first equality. By linearity p̂ �d r has a root at λ1(p �d r), and so λ1(p̂ �d r) ≥ λ1(p �d r).
So in fact we only need to show that λ1(p̂�d r) ≤ λ1(p�d r).

If µ∗ = µ1, then λ1(p̂) = λ1(p) and p̂ � p. This implies λ1(p̂ �d r) ≤ λ1(p �d r).
Otherwise µ0 ≤ µ∗ < µ1. Then for µ > µ∗, we have λ1(p̃µ �d r) > λ1(p �d r) by Lemma
3.2.8 which implies p̂µ�d r > 0 at λ1(p̃µ�d r). Recalling the definition of fµ above, fµ � p̃µ
implies λ1(fµ �d r) ≤ λ1(p̃µ �d r), and fµ � p̂µ implies p̂µ �d r has at most one root
greater than λ1(fµ �d r). Combining all this with the fact that p̂µ �d r has positive leading
coefficient gives λ1(p̂µ �d r) < λ1(p̃µ �d r). Limiting µ → µ∗ from above then implies
λ1(p̂�d r) ≤ λ1(p̃�d r) = λ1(p�d r).

Now suppose that µ∗ = µ0, so as to get a contradiction. As µ→ µ∗ from above, p̂µ�dr has
positive leading coefficient limiting to zero. So p̂�d r then has one less root, and has negative
leading coefficient as discussed above. However, since λ1(p̂µ�dr) < λ1(p̃µ�dr) ≤ λ1(p̃µ1�

dr)
for all µ > µ∗ (as noted earlier in this proof), p̂µ �d r must have a root limiting to −∞ as
µ→ µ∗. Therefore the second-from-leading coefficient of p̂µ �d r (the sum of negated roots
scaled by the leading coefficient) is eventually non-negative as µ→ µ∗. This contradicts the
fact that p̂�d r has negative leading coefficient. (Note that this crucially uses the fact that
µ∗ is maximal.)
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The next lemma provides the base case to a more streamlined induction for the proof.
In fact, it may even lead to a proof of some sort of majorization relation.

Definition 3.2.11. For real-rooted p ∈ Rd[x] not necessarily of degree d, let λd(p) ∈ Rd be
the list of roots of p, padded with the mean of the roots, and then ordered in non-increasing
order.

Lemma 3.2.12. Fix real-rooted p, q, r ∈ Rd[x] such that deg(q) = deg(r) = d and deg(p) =
1. Then:

λd(p�d q �d r) + λd(r) ≺ λd(p�d r) + λd(q �d r)

Proof. By shifting, we may assume WLOG that p, q, r all have have roots which sum to 0.
Since deg(p) = 1, the result is then equivalent to the following:

λd(∂d−1
x (q �d r)) + λd(r) ≺ λd(∂d−1

x r) + λd(q �d r)

Since � preserves the set of polynomials whose roots sum to 0, this is equivalent to:

λd(r) ≺ λd(q �d r)

Since r = xd �d r and λ(xd) ≺ λ(q), the result follows from Corollary 3.1.8.

The following is an immediate corollary of the previous lemma.

Corollary 3.2.13. Fix real-rooted p, q, r ∈ Rd[x] such that deg(q) = deg(r) = d and deg(p) =
1. Then:

λ1(p�d q �d r) + λ1(r) ≤ λ1(p�d r) + λ1(q �d r)

We now prove the main result.

Theorem 3.2.14. Fix real-rooted p, q, r ∈ Rd[x] such that deg(q) = deg(r) = d and deg(p) =
k ≤ d. Then:

λ1(p�d q �d r) + λ1(r) ≤ λ1(p�d r) + λ1(q �d r)

Proof. We induct on k, using the previous corollary as the base case. Let p be a polynomial
of degree k with roots in [−R,R] (for any fixed R) which maximizes (by compactness):

β(p) := λ1(p�d q �d r) + λ1(r)− λ1(p�d r)− λ1(q �d r)

To get a contradiction, we assume β(p) > 0. In particular this implies p has at least 2
distinct roots, allowing us to apply the above discussion, notation, and results. By induction
we have β(p̂) ≤ 0, which implies:

λ1(p̂�d q �d r) ≤ λ1(p̂�d r) + λ1(q �d r)− λ1(r)

= λ1(p�d r) + λ1(q �d r)− λ1(r)

= λ1(p�d q �d r)− β(p)
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Since µ∗ > µ0 by the previous proposition, p̂ has positive leading coefficient. This implies
p̃�d q �d r = (p− p̂)�d q �d r < 0 when evaluated at λ1(p�d q �d r). Since p̃ has positive
leading coefficient, this gives:

β(p̃)− β(p) = λ1(p̃�d q �d r)− λ1(p�d q �d r) > 0

This contradicts the maximality of β(p), since all of the roots of p̃ are contained in [−R,R].

Corollary 3.2.15. Fix real-rooted p, q, r ∈ Rd[x]. If all polynomials involved are of degree
at least 1, then:

λ1(p�d q �d r) + λ1(r) ≤ λ1(p�d r) + λ1(q �d r)

Note that the following condition is equivalent to the degree restriction:

2d < deg(p) + deg(q) + deg(r)⇐⇒ (d− deg(p)) + (d− deg(q)) + (d− deg(r)) < d

Proof. Consider polynomials of degree d whose roots limit to the roots of p, q, r and extra
roots limit to −∞. The previous theorem and continuity (and use of Lemma 3.2.7 to bound
the largest roots away from +∞) then imply the result.

3.3 The Multivariate Additive Convolution

All of the root bounds and conjectures discussed in this chapter thus far have been for
univariate polynomials. However, in their resolution of Kadison-Singer, Marcus-Spielman-
Srivastava give bounds on how the points above the roots of a given multivariate polynomial
change under the action of differential operators. This prompts an obvious question: are
there multivariate generalizations of the root bounds discussed in this chapter?

To attempt to answer this, we will give the natural multivariate generalization of the
additive convolution, along with some basic analogous results. Recall the definition of Ab(p),
the points above the roots of p (Definition 2.1.1), as well as the following classic fact coming
from the theory of hyperbolic polynomials.

Proposition 3.3.1. Let p ∈ R[x1, ..., xn] be real stable. Then Ab(p) is convex and is the
closure of a connected component of the non-vanishing set of p.

Now the multivariate convolution and its basic properties.

Definition 3.3.2. For p, q ∈ Rγ[x1, ..., xn] we define the bilinear function:

(p�γ q)(x) :=
∑

0≤µ≤γ

∂µxp(x) · ∂γ−µx q(0)

Proposition 3.3.3. Let p, q ∈ Rγ[x1, ..., xn] be real stable polynomials. We have the follow-
ing:
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1. (Symmetry) p�γ q = q �γ p

2. (Shift-invariance) (p(x+ a)�γ q)(x) = (p�γ q)(x+ a) = (p�γ q(x+ a))(x) for a ∈ Rn

3. (Scale-invariance) (p(ax)�γ q(ax))(x) = aγ · (p�γ q)(ax) for a ∈ Rn

4. (Derivative-invariance) (∂xkp)�
γ q = ∂xk(p�

γ q) = p�γ (∂xkq) for all k ∈ [n]

5. (Stability-preserving) p�γ q is real stable

6. (Triangle inequaltiy) Ab(p�γ q) ⊇ Ab(p) + Ab(q), where + is Minkowski sum

Proof. (1), (2), (3) and (4) are straightforward. To prove (5), one can consider the Borcea-
Brändén symbol (see [7]) of the operator

�γ : R(γ,γ)[x1, ..., xn, z1, ..., zn]→ Rγ[x1, ..., xn]

which is defined on products of polynomials (i.e., simple tensors) via

�γ(p(x)q(z)) := (p�γ q)(x)

and linearly extended. Note that if �γ preserves stability, then (5) follows as a corollary.
That said, the symbol of �γ takes on a very nice form, using property (2):

Symb(�γ) = �γ((x+ y)γ(z + w)γ) = (x+ y)γ �γ (x+ w)γ = (x+ y + w)γ

This polynomial is obviously real stable, and (5) follows.
To prove (6), we first assume 0 ∈ Ab(p) ∩ Ab(q) by shifting, since Ab(p(x + a)) =

Ab(p) + {−a}. Note also that 0 ∈ Ab(p) if and only if p has coefficients all of the same sign.
(One direction is easy, the other follows by induction and the fact that Ab(p) ⊆ Ab(∂xip)
by a standard argument.) In this case, p and q have coefficients all of the same sign, and
therefore so does p�γ q. That is, in this case 0 ∈ Ab(p�γ q).

To complete the proof, we utilize this case to show that a ∈ Ab(p) and b ∈ Ab(q) implies
a + b ∈ Ab(p �γ q). Note that by shifting we have that 0 ∈ Ab(p(x + a)) ∩ Ab(q(x + b)),
which implies 0 ∈ Ab((p �γ q)(x + a + b)) by the previous paragraph. This in turn implies
a+ b ∈ Ab(p�γ q).

In the univariate case Ab(p) is literally the interval [λ1(p),∞). The triangle inequality
stated above then is equivalent to the classical version: λ1(p �d q) ≤ λ1(p) + λ1(q). This is
what justifies our calling it “the triangle inequality”.

The upshot of the previous proposition is that many of the nice classical properties of the
univariate convolution are shared with the multivariate additive convolution. That said, it
becomes natural to ask a similar question for the stronger results discussed in this chapter;
that is: what more can we say about how the multivariate additive convolution relates to
points above the roots?

Our first conjecture in this direction is a combining of the main theorem (3.2.1) and the
multivariate triangle inequality.
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Conjecture 3.3.4. Let p, q, r ∈ Rγ[x1, ..., xn] be real stable. Then:

Ab(p�γ q �γ r) + Ab(r) ⊇ Ab(p�γ r) + Ab(q �γ r)

In a (as of yet unpublished) paper of Brändén and Marcus, a multivariate analogue of
the Marcus-Spielman-Srivastava root bound is given. We believe that this result should
follow from the previous conjecture, but it is currently unclear whether or not the methods
of Brändén-Marcus can be adapted to prove the conjecture itself.

A Natural (But False) Conjecture

It can be shown that the previous conjecture is not enough to prove optimal bounds for
the paving conjecture. For this we need something a bit more refined, which we give in
the following. This conjecture represents the most natural generalization of the univariate
root bound, and the fact that it precisely implies optimal paving bounds only increases its
importance. In addition it has been considered independently of the authors by Mohan
Ravichandran (personal correspondence; also see [43]) in attempt to prove optimal paving
bounds, and this even further suggests its centrality.

Unfortunately though, the conjecture is false in general. We will state it in two equivalent
forms, and provide a counterexample.

To do this, we first must relate the notion of Ab(p) to the notion of potential in the
multiaffine case. Potential was used by Marcus-Spielman-Srivastava to delicately keep track
of root bounds, and so this connection comes at no surprise. We will use the standard
definition of potential in what follows:

Φi
p(a) :=

∂xip

p
(a)

Corollary 3.3.5. Let p ∈ R(1n)[x1, ..., xn] be real stable and multiaffine with p(0) > 0 and
0 ∈ Ab(p). Then:

Φi
p(0) ≤ 1 ⇐⇒ −ei ∈ Ab(p)

Proof. Since p(x) > 0 for x ∈ Rn
+ and p is multiaffine we have:

Φi
p(c · ei) < 1 ⇐⇒ 0 < p(c · ei)− ∂xip(c · ei) = p(0) + (c− 1)∂xip(0) = p((c− 1) · ei)

It is straightforward that Φi
p(c · ei) is strictly decreasing in c (or else identically zero) for

c ≥ 0, and therefore:

Φi
p(0) ≤ 1 ⇐⇒ Φi

p(c · ei) < 1 for all c > 0

Combining these gives:

Φi
p(0) ≤ 1 ⇐⇒ p((c− 1) · ei) > 0 for all c > 0

Note now that p((c − 1) · ei) is linear in c, and that (c − 1) · ei = 0 ∈ Ab(p) for c = 1.
Therefore Proposition 3.3.1 implies Φi

p(0) ≤ 1 iff −ei ∈ Ab(p).
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We now state the false conjecture, once in terms of potential and once in terms of points
above the roots.

Conjecture 3.3.6 (Strong conjecture, first form (see [43])). Let p, q ∈ R(1n)[x1, ..., xn] be
real stable multiaffine polynomials, and let a and b be above the roots of p and q respectively.
Suppose for some ϕ ∈ Rn

++, we have the following for all i ∈ [n]:

Φi
p(a) ≤ ϕi, Φi

q(b) ≤ ϕi

Then for all i ∈ [n] we have:

Φi
p�q

(
a+ b− 1

ϕ

)
≤ ϕi

Conjecture 3.3.7 (Strong conjecture, second form). Let p, q ∈ R(1n)[x1, ..., xn] be real stable
multiaffine polynomials. Suppose for all i ∈ [n] we have:

−ei ∈ Ab(p), −ei ∈ Ab(q)

The for all i ∈ [n] we have:
−1− ei ∈ Ab

(
p�(1n) q

)
Proof of equivalence. By the previous corollary −ei ∈ Ab(p) is equivalent to Φi

p(0) ≤ 1. The
conclusion of the above conjecture is that Φi

p�q(−1) ≤ 1. Again by the previous corollary,
this is equivalent to −ei ∈ Ab((p�q)(x−1)). This in turn is equivalent to −1−ei ∈ Ab(p�q).

As a final note, we can restrict to this seemingly less general case (i.e., Φi
p(0) ≤ 1 instead

of Φi
p(a) ≤ ϕi) via shifting and scaling, which completes the proof.

To disprove this, we give a counterexample to the second formulation. The key idea is
to use a polynomial which is extremal with respect to the strongly Rayleigh conditions, see
Theorem 2.2.7. We recall the conditions for real stable multiaffine p ∈ R(1n)[x1, ..., xn] here:

∂xip(x) · ∂xjp(x)− p(x) · ∂xi∂xjp(x) ≥ 0

Note that the left-hand side of the above inequality does not depend on xi or xj. One can see
this by taking the partial derivative of the above expression with respect to xi or xj, recalling
that p is multiaffine (this expression will be 0). This makes it relatively easy to determine
whether or not 3-variable multiaffine polynomials are real stable, as in the following example.

Counterexample 3.3.8. The polynomial

p = q =
8

21
x1x2x3 +

80

21
x1x2 +

27

7
x1x3 + x2x3 + 4x1 + 4x2 + 4x3 + 4

provides a counterexample to the above conjectures.
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Proof. First we prove that p = q is real stable. By the above comment, we obtain simple
expressions for the strongly Rayleigh conditions:

∂x1p(x) · ∂x2p(x)− p(x) · ∂x1∂x2p(x) =
1

21
(7x3 + 4)2

∂x1p(x) · ∂x3p(x)− p(x) · ∂x1∂x3p(x) =
4

7
(2x2 + 1)2

∂x2p(x) · ∂x3p(x)− p(x) · ∂x2∂x3p(x) =
4

147
(22x1 + 21)2

Notice that all of these expressions are nonnegative for all x, which means that p = q is real
stable. Also, notice that these polynomials are on the boundary of the set of nonnegative
polynomials, and so in some sense p = q is on the boundary of the set of real stable polyno-
mials. Note that this polynomial has 0 above its roots (with p(0) > 0), and it is easy to see
that −ei ∈ Ab(p) for all i ∈ [n].

We now compute p� q = p� p as follows:

p� q =
64

441
x1x2x3 +

1280

441
x1x2 +

144

49
x1x3 +

16

21
x2x3 +

4768

147
x1 +

32

3
x2 +

226

21
x3 +

1520

21

Since � preserves real stability, this polynomial is real stable. Further, we have 0 ∈ Ab(p�q)
and (p � q)(0) > 0, and so (p � q)(x) ≥ 0 for all x ∈ Ab(p � q). With this, we show that
(p� q)(−1− e1) < 0 which contradicts the above conjecture:

(p� q)(−1− e1) = −1450

441

3.4 Concluding Remarks

Despite its connections to important problems like the paving conjecture and the entropy
conjecture, it is still not fully understood how the additive convolution affects the roots of
real-rooted polynomials. In [47], Marcus, Spielman, and Srivastava began the study of root
movement by investigating the effect of differential operators of the form 1 − α∂t on the
largest root. In this chapter, we extended their result to all differential operators which
preserve real-rootedness. This extension alone doesn’t have any immediate applications we
are aware of.

The resolution of Horn’s conjecture by Knutson and Tao (see [38]) gave a full charac-
terization of the eigenvalues of the sum of two Hermitian matrices. We were able to obtain
Horn’s inequalities for the additive convolution as well via hyperbolicity, but understanding
the full effect of the additive convolution on roots remains a mystery. The entropy conjecture,
which quantifies the effect of the additive convolution on the discriminant of a polynomial,
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is one approach to understanding the effect of the roots holistically. Our submodular ma-
jorization (and generalized Horn’s inequalities) conjectures provide another insight into the
workings of the inner roots. Because submodularity is unique to the additive convolution,
we believe it will require a new framework (beyond traditional hyperbolicity tools) to tackle
these conjectures.

Another possible future direction is extending submodularity results to the b-additive
convolution, in which derivatives are replaced by certain finite differences. Such convolu-
tions have an intimate connection to the mesh of a real-rooted polynomial, which is the
minimal distance between any two roots (e.g., see [10] and [44]). In our testing we found
several submodularity relations among such b-additive convolutions. The additive convolu-
tion can be obtained by limiting b → 0, and so any results for the b-additive convolution
are strictly stronger than the conjectures in this chapter. The advantage of trying to prove
these statements in the finite difference case comes in the limited structures available: fewer
operations interact nicely with the mesh of a polynomial compared to those operations which
preserve real-rootedness, and this may better direct the study of the roots. We discuss this
generalized convolution and root mesh properties in the next chapter.

Finally in the multivariate realm, little is known. And, many of the natural extensions
of these results seem to fail in the multivariate case. The state of the art in this direction is
currently the ad hoc barrier function arguments used by MSS in their resolution of Kadison-
Singer. That said, an important next step for their work is to encapsulate their techniques
in a more coherent theory. We believe that our results and conjectures are a step in the right
direction.
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Chapter 4

Generalized Additive Convolution

In [10], Brändén, Krasikov, and Shapiro show that the classical additive convolution (see
the definition at the beginning of Chapter 3) can only increase root mesh, which is defined
as the minimum absolute difference between any pair of roots of a given polynomial (see
Remark 2.2.11 above, Definition 4.1.1 below). That is, the mesh of the output polynomial is
at least as large as the mesh of either of the input polynomials. They use similar arguments
to show that, for polynomials with non-negative roots, the multiplicative convolution can
only increase logarithmic root mesh. This is similarly defined as the minimum ratio (greater
than 1) between any pair of positive roots of a given polynomial.

Regarding mesh and logarithmic mesh, there are natural generalized convolution oper-
ators which also preserve such properties. The first is be called the q-multiplicative con-
volution, and it was shown to preserve logarithmic root mesh of at least q in [39]. This
convolution is defined as follows, where pk an rk are the coefficients of p and r, respectively.
(Note that as q → 1 this limits to the classical multiplicative convolution.)

p�dq r :=
d∑

k=0

(
d

k

)−1

q

q−(k2)(−1)kpkrkx
k

Here,
(
d
k

)
q

denotes the q-binomial coefficients, seen in Definition 4.2.9.

The second generalized convolution is called the b-additive convolution (or finite difference
convolution), and the main concern of this chapter is to demonstrate that it preserves root
mesh of at least b. This convolution is defined as follows. (Note that as b→ 0 this limits to
the classical additive convolution.)

p�db r :=
1

d!

d∑
k=0

∆k
bp · (∆d−k

b r)(0)

Here, ∆b is a finite b-difference operator, defined as:

∆b : p 7→ p(x)− p(x− b)
b
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Note that this generalizes the classical additive convolution in the following conceptual sense:
all constant coefficient differential operators on polynomials of degree at most d can be
written as convolutions with one fixed input polynomial.

The main goal of this chapter is to settle a conjecture of Brändén, Krasikov, and Shapiro
regarding mesh and the b-additive convolution, using two different proof methods. The
first method (see §4.1) uses a general result which allows one to transfer results on roots of
the q-multiplicative convolution to the b-additive convolution (via Hurwitz’s theorem; see
Proposition 2.2.3). The second method (see §4.1) simply adapts Lamprecht’s proof in the
q-multiplicative case to the b-additive case.

4.1 Polynomial Mesh Results

Recall from Remark 2.2.11 the definitions of mesh and log mesh, and the fact that mesh
properties are equivalent to certain interlacing properties.

Definition 4.1.1. For a real-rooted polynomial f , we write mesh(f) ≥ b if the distance
between any pair of roots is at least b. For a positive-rooted polynomial f , we write
lmesh(f) ≥ q ≥ 1 if the ratio of any pair of roots is at least q. We say that f is b-mesh and
is q-log mesh respectively, and we say strictly here if the inequalities are strict.

The q-Multiplicative Convolution

In [39], Lamprecht proves logarithmic mesh preservation properties of the q-multiplicative
convolution. We state his result formally as follows.

Theorem 4.1.2 (Lamprecht). Let p and r be polynomials of degree at most n such that
lmesh(p) ≥ q and lmesh(r) ≥ q, for some q ∈ (1,∞). Then, lmesh(p�nq r) ≥ q.

This result is actually an analogue to an earlier result of Suffridge [61] regarding poly-
nomials with roots on the unit circle. In Suffridge’s result, q is taken to be an element of
the unit circle, and log mesh translates to mean that the roots are pairwise separated by at
least the argument of q. Roughly speaking, he obtains the same result for the corresponding
q-multiplicative convolution. Remarkably, the known proofs of his result (even a proof of
Lamprecht) differ fairly substantially from Lamprecht’s proof of the above theorem.

Additionally, we note here that Lamprecht uses different notation and conventions in
[39]. In particular, he uses q ∈ (0, 1), considers polynomials p with all non-positive roots,
and his definition of �nq does not include the (−1)k factor. These differences are generally
speaking unsubstantial, but it is worth noting that the arguments of §4.2 seem to require
the (−1)k factor.
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The b-Additive Convolution

In this chapter, we show the b-additive convolution (or, finite difference convolution) pre-
serves the space of polynomials with root mesh at least b. Our result then solves the first
(and second) conjecture stated in [10]. We state it formally here.

Theorem 4.1.3. Let p and r be polynomials of degree at most n such that mesh(p) ≥ b and
mesh(r) ≥ b, for some b ∈ (0,∞). Then, mesh(p�nb r) ≥ b.

As a note, Brändén, Krasikov, and Shapiro actually use the forward finite difference
operator in their definition of the convolution. This is not a problem as our result then
differs from their conjecture by a shift of the input polynomials.

Remark 4.1.4. Although the q-multiplicative and b-additive convolutions preserve q-log
mesh and b-mesh respectively, they do not preserve real-rootedness. To see this we compute
the following example: x2�2

1x
2 = 1

2
(2x2−2x+1). This polynomial has discriminant −4 and

hence is not real rooted. Similarly simple examples demonstrate this for the q-multiplicative
convolution.

Proof Methods: An Analytic Connection

Our first method of proof of Theorem 4.1.3 will demonstrate a way to pass root properties
of the q-multiplicative convolution to the b-additive convolution. As this is interesting in its
own right, we state the most general version of this result here.

Theorem 4.1.5. Fix b ≥ 0 and let p, r be polynomials of degree d. We have the following,
where convergence is uniform on compact sets.

lim
q→1

(1− q)d
[
Eq,b(p)�

d
qb Eq,b(r)

]
(qx) = p�db r

Where Eq,b is defined in 4.2.11. Note that for b = 0, this result pertains to the classical
convolutions.

Here, the Eq,b are certain linear isomorphisms of C[x] (univariate polynomials), to be
explicitly defined below. Notice that uniform convergence allows us to use Hurwitz’ theorem
to obtain root properties in the limit of the left-hand side. That is, any information about
how the q-multiplicative convolution acts on roots will transfer to some statement about how
the b-additive convolution acts on roots. As it turns out, a special case of Lamprecht’s result
(Theorem 3 from [39]) will become our result (Theorem 4.1.3) in the limit. We discuss this
transfer process in more detail in §4.2.



CHAPTER 4. GENERALIZED ADDITIVE CONVOLUTION 43

Proof Methods: Extending Lamprecht’s Method

Our second method of proof of Theorem 4.1.3 is an extension of the method used by Lam-
precht to prove the log mesh result for the q-multiplicative convolution. Specifically, he
demonstrates that the q-multiplicative convolution preserves a root-interlacing property for
q-log mesh polynomials. More formally he proves the following result which gives Theorem
4.1.3 as a corollary.

Theorem 4.1.6 (Lamprecht Interlacing-Preserving). Let f, g ∈ Rd[x] be q-log mesh polyno-
mials of degree d with only negative roots. Let Tg : Rd[x]→ Rd[x] be the real linear operator
defined by Tg : r 7→ r �dq g. Then, Tg preserves the set of polynomials whose roots interlace
the roots of f .

We achieve an analogous result for the b-additive convolution using techniques similar to
those found in Lamprecht’s paper. We state it formally here.

Theorem 4.1.7. Let f, g ∈ Rd[x] be b-mesh polynomials of degree d. Let Tg : Rd[x]→ Rd[x]
be the real linear operator defined by Tg : r 7→ r�dbg. Then, Tg preserves the set of polynomials
whose roots interlace the roots of f .

In both cases, mesh and log mesh properties can be shown to be equivalent to root
interlacing properties (f(x) interlaces f(x − b) for b-mesh, and f(x) interlaces f(q−1x) for
q-log mesh). The above theorems then immediately imply the desired mesh preservation
properties for the respective convolutions. We discuss this further in §4.3.

4.2 First Proof Method: As a Limit of Generalized

Multiplicative Convolutions

In what follows we establish a general analytic connection between the multiplicative and
additive convolutions on polynomials of degree at most d. We then extend this connection
to the q-multiplicative convolution and the b-additive convolution (Theorem 4.1.5). Using
this connection, we transfer root information results of the multiplicative convolution (q or
classical) to the additive convolution (b or classical). Specifically, we use this connection to
prove Theorem 4.1.3, which is the conjecture of Brändén, Krasikov, and Shapiro discussed
above.

To begin we state an observation of Vadim Gorin demonstrating an analytic connection
in the classical case using matrix formulations of the classical convolutions given in [47]:

χ(A)�d χ(B) = EP
[
χ(APBP T )

]
χ(A)�d χ(B) = EP

[
χ(A+ PBP T )

]
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Here, A and B are real symmetric matrices, χ denotes the characteristic polynomial, and
the expectations are taken over all permutation matrices. We then write:

lim
t→0

t−d
[
χ(etA)�n χ(etB)

]
(tx+ 1) = lim

t→0
t−dEP

[
det
(
txI + I − etAPetBP T

)]
= lim

t→0
t−dEP

[
det
(
txI − t(APP T + PBP T ) +O(t2)

)]
= lim

t→0
EP
[
χ
(
A+ PBP T +O(t)

)]
= χ(A)�d χ(B)

This connection is suggestive and straightforward, but seemingly confined to the classical
case. Therefore, we instead state below a slightly modified (but equivalent) version of this ob-
servation for the classical convolutions (Theorem 4.2.2) which we are able to then generalize
to the q-multiplicative and b-additive convolutions.

The Classical Convolutions

We begin by sketching the proof of the connection between the classical additive and multi-
plicative convolutions. We then state rigorously the more general result for the q-multiplicative
and b-additive convolutions. In this section, many quantities will be defined with b = 0 in
mind (this corresponds to the classical additive convolution), with the more general quan-
tities given in subsequent sections. Further, we will leave the proofs of the lemmas to the
generic b case, omitting them here.

To go from the multiplicative world to the additive world, we use a linear map which
acts as an exponentiation on roots, and a limiting process which acts as a logarithm. In
particular, we will refer to the following algebra endomorphism on C[x] as our “exponential
map”:

Eq,0 : x 7→ 1− x
1− q

In what follows, any limiting process will mean uniform convergence on compact sets in C,
unless otherwise specified. This will allow us to extract analytic information about roots
using the classical Hurwitz’ theorem. In particular, the following result hints at the analytic
information provided by the exponential map Eq,0.

Proposition 4.2.1. We have the following for any p ∈ C[x].

lim
q→1

[Eq,0(p)](qx) = p

Proof. We first consider [Eq,0(x)](qx) = 1−qx
1−q , for which we obtain the following by the

generalized binomial theorem:

lim
q→1

[Eq,0(x)](qx) = lim
q→1

1− qx

1− q
= lim

q→1

∞∑
m=1

(
x

m

)
(q − 1)m−1 =

(
x

1

)
= x
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To show that convergence here is uniform on compact sets, consider the tail for |x| ≤M :∣∣∣∣∣
∞∑
m=2

(
x

m

)
(q − 1)m−1

∣∣∣∣∣ ≤
∞∑
m=0

∣∣∣∣(q − 1)m+1 · x(x− 1) · · · (x−m− 1)

(m+ 2)!

∣∣∣∣
≤ |q − 1|

∞∑
m=0

|q − 1|m
m+2∏
k=1

(
1 +
|x|
k

)
≤ |q − 1|(1 +M)2

∞∑
m=0

(|q − 1|(1 +M))m

=
|q − 1|(1 +M)2

1− |q − 1|(1 +M)

This limits to zero as q → 1, which proves the desired convergence.
Since Eq,0 is an algebra morphism, we can use the fundamental theorem of algebra to

complete the proof. Specifically, letting p(x) = c0

∏
k(x− αk) we have:

lim
q→1

[
Eq,0

(
c0

∏
k

(x− αk)

)]
(qx) = c0

∏
k

(
lim
q→1

[Eq,0(x)](qx)− αk
)

= c0

∏
k

(x− αk)

We now state our result in the classical case, which gives an analytic connection between
the additive and multiplicative convolutions. As a note, many of the analytic arguments
used in the proof of this result will have a flavor similar to that of the proof of Proposition
4.2.1.

Theorem 4.2.2. For p, r ∈ Cd[x] we have the following.

lim
q→1

(1− q)d
[
Eq,0(p)�d Eq,0(r)

]
(qx) = p�d r

Proof Sketch

We will establish the above identity by calculating it on basis elements. Specifically, we will
expand everything into powers of (1 − q). To prove the theorem, it then suffices to show
that: (1) the negative degree coefficients are all zero, (2) the series has the desired constant
term, and (3) the tail of the series converges to zero uniformly on compact sets. Our first
step towards establishing this is expanding qkx in terms of powers of (1− q).

Remark 4.2.3. Since we will only be considered with behavior for q near 1, we will use
the notation q ≈ 1 to indicate there exists some ε > 0 such that the statement holds for
q ∈ (1− ε, 1 + ε).
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Definition 4.2.4. We define a constant, which will help us to simplify the following com-
putations.

αq,0 :=
ln q

1− q
Note that limq→1 αq,0 = −1.

Lemma 4.2.5. Fix k ∈ N0. For q ≈ 1, we have the following.

qkx =
∞∑
m=0

xm

m!
αmq,0k

m(1− q)m

For fixed q ≈ 1, this series has a finite radius of convergence, and this radius approaches
infinity as q → 1.

Notice that this is not a true power series in (1 − q), as αq,0 depends on q. Using this,
we can calculate the series obtained after plugging in specific basis elements.

Lemma 4.2.6. Fix q ≈ 1 in R+ and j, k, d ∈ N0 such that 0 ≤ j ≤ k ≤ d. We have the
following.

(1− q)d
[
(1− x)j �d (1− x)k

]
(qx) =

∞∑
m=0

xm

m!
αmq,0(1− q)d+m−j−k

j∑
i=0

(
j
i

)(
k
i

)(
d
i

) (−1)iim

We use interpolation arguments to handle the terms of this series, which are combinatorial
in nature. In particular we show that this series has no nonzero negative degree terms, as
seen in the following.

Proposition 4.2.7. Fix j, k,m, d ∈ N0 such that j ≤ k and d + m − j − k ≤ 0. We have
the following identity.

j∑
i=0

(
j
i

)(
k
i

)(
d
i

) (−1)iim =

{
(−1)d−j−k j!k!

d!
m = j + k − d

0 m < j + k − d

To deal with the tail of the series, we then use crude bounds to get uniform convergence
on compact sets.

Lemma 4.2.8. Fix M > 0, and j, k, d ∈ N0 such that j ≤ k ≤ d. For |x| ≤M , there exists
γ > 0 such that the following bound holds for q ∈ (1− γ, 1 + γ).∣∣∣∣∣ ∑

m>j+k−d

xm

m!
αmq,0(1− q)d+m−j−k

j∑
i=0

(
j
i

)(
k
i

)(
d
i

) (−1)iim

∣∣∣∣∣ ≤ c0c1

∞∑
m=1

cm2 |1− q|m

Here, c0, c1, c2 are independent of q.
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With this, we can now complete the proof of the theorem by comparing the desired
quantity to the constant term in our series in (1− q).

Proof of Theorem 4.2.2. For j, k, d ∈ N0 such that 0 ≤ j ≤ k ≤ d, we can combine the above
results to obtain the following. Recall that limq→1 αq,0 = −1.

lim
q→1

(1− q)d
[

(1− x)j

(1− q)j
�d

(1− x)k

(1− q)k

]
(qx) =

j!k!

d!(j + k − d)!
xj+k−d = xj �d xk

By symmetry, this demonstrates the desired result on a basis. Therefore, the proof is com-
plete.

General Connection Preliminaries

We now prove the previous results in more generality, which allows for extension to these
generalized convolutions. First though, we give some preliminary notation.

Definition 4.2.9. Fix q ∈ R+ and x ∈ C. We define (x)q := 1−qx
1−q . Note that limq→1(x)q = x,

using the generalized binomial theorem on qx = (1 + (q − 1))x.

Specifically, for any d ∈ Z, we have:

(d)q :=
1− qd

1− q
= 1 + q + q2 + · · ·+ qd−1

We then extend this notation to (d)q! := (d)q(d− 1)q · · · (2)q(1)q and
(
d
k

)
q

:= (d)q !

(k)q !(d−k)q !
. We

also define a system of bases of C[x] which will help us to understand the mesh convolutions.

Definition 4.2.10. For b ≥ 0 and q ∈ R+, we define the following bases of C[x].

vkq,b :=
(1− x)(1− qbx) · · · (1− q(k−1)bx)

(1− q)k

νkb := x(x+ b)(x+ 2b) · · · (x+ (k − 1)b)

We demonstrate the relevance of these bases to the generalized convolutions by giving
alternate definitions. Consider a linear map Ab on C[x] defined via Ab : νk0 7→ νkb . That
is, Ab : xk 7→ x(x + b) . . . (x + (k − 1)b). We can then define the b-additive convolution as
follows:

p�db r := Ab(A
−1
b (p)�n A−1

b (r))

That is, the b-additive convolution is essentially a change of basis of the classical additive
convolution. Note that equivalently, one can conjugate ∂x by Ab to obtain ∆b : p 7→ p(x)−p(x−b)

b

which demonstrates the definition of �db in terms of finite difference operators.
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Similarly, the q-multiplicative convolution can be seen as a change of basis of the classical
multiplicative convolution. Consider a linear map M

(d)
q on C[x] defined via M

(d)
q :

(
d
k

)
xk 7→(

d
k

)
q
q(

k
2)xk, which has the property that M

(d)

qb
: (1 − x)d 7→ (1 − q)dvdq,b. We can then define

the q-multiplicative convolution as follows:

p�dq r := M (d)
q

(
(M (d)

q )−1(p)�d (M (d)
q )−1(r)

)
These bases will be used to simplify the proof of the general analytic connection for the

mesh (non-classical) convolutions. In what follows they will play the role that the basis
elements xk and (1− x)k did in the classical proof sketch above.

Analytic Connection for Generalized Convolutions

We now generalize the results from the classical (b = 0) setting.

Definition 4.2.11. Consider the following generalized “exponential map” using the basis
elements defined above:

Eq,b : νkb 7→ vkq,b

Note for b > 0 these are no longer algebra morphisms. Specialization to b = 0 recovers the
original “exponential map”. Also notice that for any p, the roots of Eq,b(p) approach 1 as
q → 1 (multiply the output polynomial by (1−q)deg(p)). In all that follows, previously stated
results can be immediately recovered by setting b = 0.

Proposition 4.2.12. We obtain the same key relation for the generalized exponential maps:

lim
q→1

[Eq,b(p)](q
x) = p

Proof. We compute on basis elements, using Proposition 4.2.1 in the process:

lim
q→1

[Eq,b(ν
k
b )](qx) = lim

q→1
[vkq,b](q

x)

= lim
q→1

(1− qx)(1− qx+b) · · · (1− qx+(k−1))

(1− q)k

=
k−1∏
j=0

lim
q→1

1− qx+jb

1− q
=

k−1∏
j=0

(x+ jb) = νkb

As in Proposition 4.2.1, one can interpret the Eq,b maps as a way to exponentiate the
roots of a polynomial. The inverse to these maps is given in the previous proposition by
plugging in an exponential and limiting, which corresponds to taking the logarithm of the
roots. This discussion will be made more precise in §4.2.

We now state and prove the main result, which gives an analytic link between the b-
additive and q-multiplicative convolutions. We follow the proof sketch of the classical result
given above, breaking the following full proof up into more manageable sections.
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Theorem 4.1.5. Fix b ≥ 0 and let p, r be polynomials of degree d. We have the following.

lim
q→1

(1− q)d
[
Eq,b(p)�

d
qb Eq,b(r)

]
(qx) = p�db r

Series Expansion

In order to prove this theorem, we first expand the left-hand side of the expression in a series
in (1 − q)m. As above, this is not quite a power series in (1 − q)m as αq,b (which we now
define) depends on q.

Definition 4.2.13. We define the b-version of the αq,0 constants as follows.

αq,b :=

{
−(b)q−1

qb
b > 0

ln q
1−q b = 0

Note that limb→0 αq,b = αq,0 for q ∈ R+, and limq→1 αq,b = −1 for fixed b ≥ 0.

We now need to understand how exponential polynomials in q relate to our basis elements.

Lemma 4.2.14. Fix b ≥ 0, and k ∈ N0. For q ≈ 1 in R+, we have the following.

qkx =
∞∑
m=0

νmb
m!
αmq,b(k)mq−b(1− q)

m

For fixed q ≈ 1, this series has a finite radius of convergence, and this radius approaches
infinity as q → 1.

Proof. For b > 0, we use the generalized binomial theorem to compute:

qkx = (q−bk − 1 + 1)−x/b =
∞∑
m=0

(−b)−m

m!
x(x+ b) · · · (x+ b(m− 1))(q−bk − 1)m

=
∞∑
m=0

(−b)−mνmb
m!

(k)mq−b(b)
m
q−1(q−1 − 1)m

=
∞∑
m=0

νmb
m!

(
−

(b)q−1

qb

)m
(k)mq−b(1− q)

m

For b = 0, manipulating the Taylor series of qkx = ekx ln q gives the result.
For fixed q ≈ 1, let δ > 0 be small enough such that |αq,b| < 1+δ

q
and (k)q−b < k + δ.

Consider:
|νmb | = |x(x+ b) · · · (x+ (m− 1)b)| ≤ m!(|x|+ b)m

From this, we obtain:

|qkx| ≤
∞∑
m=0

(
(|x|+ b)(1 + δ)(k + δ)

q

)m
|1− q|m



CHAPTER 4. GENERALIZED ADDITIVE CONVOLUTION 50

It is then easy to see that the radius of convergence of this series limits to infinity as q →
1.

We will now proceed by proving the main result on a basis. To that end, we will prove
a number of results related to basis element computations. Most of these are rather tedious
and not very illuminating. Perhaps this can be simplified through some more detailed and
generalized theory of q- and b-polynomial operators.

Lemma 4.2.15. Fix q ≈ 1 in R+, b ≥ 0, and j, k, d ∈ N0 such that 0 ≤ j ≤ k ≤ d. We
have the following.

(1− q)d
[
vjq,b �

d
qb v

k
q,b

]
(qx) =

∞∑
m=0

νmb
m!
αmq,b(1− q)d+m−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

Proof. We compute:

(1− q)d
[
vjq,b �

d
qb v

k
q,b

]
(qx) = (1− q)d−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)iqix

=

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i
∞∑
m=0

νmb
m!
αmq,b(1− q)d+m−j−k(i)mq−b

=
∞∑
m=0

νmb
m!
αmq,b(1− q)d+m−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

Q-Lagrange Interpolation

To prove convergence in Theorem 4.1.5, we break up the infinite sum of Lemma 4.2.15 into
two pieces. For d+m− j− k ≤ 0, we use an interpolation argument to obtain the following
identity. Note that this generalizes a similar identity (for q = 1) found in [55].

Proposition 4.2.16. Fix q ≈ 1, b ≥ 0, and j, k,m, d ∈ N0 such that j ≤ k and d+m−k ≤ j.
We have the following identity.

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b =

{
(−1)d−j−kqb(

d
2)−b(

j
2)−b(

k
2) (j)

qb
!(k)

qb
!

(d)
qb

!
m = j + k − d

0 m < j + k − d

We first give a lemma (see Lemma 4.5.1 for a proof), and then the proof of the proposition
will follow. Let [tj]p(t) denote the coefficient of p corresponding to the monomial tj.
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Lemma 4.2.17. Fix p ∈ Cj[x]. We have the following identity:

(−1)jq−(j2) · [tj]p(t) =

j∑
i=0

p((i)q−1)
(−1)i

(i)q!(j − i)q!
q(

i
2)

Proof of Proposition 4.2.16. Consider the polynomial p(t) = tm((d)q−b − t)((d − 1)q−b −
t) · · · ((k+ 1)q−b− t), which is of degree m+d−k ≤ j. So, [tj]p(t) = (−1)d−kδm=j+k−d. Also,

recall the identity (i)q−b ! = q−b(
i
2)(i)qb !. Using the previous lemma and replacing q by qb, we

obtain:

(−1)jq−b(
j
2) · (−1)d−kδm=j+k−d =

j∑
i=0

p((i)q−b)
(−1)i

(i)qb !(j − i)qb !
qb(

i
2)

=

j∑
i=0

q−bi(d−k) (d− i)q−b !
(k − i)q−b !

(−1)i

(i)qb !(j − i)qb !
qb(

i
2)(i)mq−b

=

j∑
i=0

qb(
k
2)q−b(

d
2)

(d− i)qb !
(k − i)qb !

(−1)i

(i)qb !(j − i)qb !
qb(

i
2)(i)mq−b

=

j∑
i=0

qb(
k
2)q−b(

d
2)

(d)qb

(j)qb(k)qb
·

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qb(
i
2)(−1)i(i)mq−b

The result follows.

Tail of the Series

For d+m− j−k > 0, we show that the tail of the infinite series in Lemma 4.2.15 is bounded
by a geometric series in ε→ 0 as q → 1. The proof, is somewhat similar to the discussion of
convergence in the proof of Lemma 4.2.14.

Lemma 4.2.18. Fix b ≥ 0, M > 0, and j, k, d ∈ N0 such that j ≤ k ≤ d. For |x| ≤ M ,
there exists γ > 0 such that the following bound holds for q ∈ (1− γ, 1 + γ).∣∣∣∣∣ ∑

m>j+k−d

νmb
m!
αmq,b(1− q)d+m−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

∣∣∣∣∣ ≤ c0c1

∞∑
m=1

cm2 |1− q|m

Here, c0, c1, c2 are independent of q.

Proof. Fix d + m − j − k > 0 with j ≤ k ≤ d and q ≈ 1. We have the following bound,
where c0 is some positive constant independent of q:∣∣∣∣∣

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

∣∣∣∣∣ ≤
j∑
i=0

c0(i+ δ)m ≤ c0(d+ δ)m+1
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For |x| ≤M , we have:

|νmb | = |x(x+ b) · · · (x+ (m− 1)b)| ≤ |M(M + b) · · · (M + (m− 1)b)| ≤ m!(M + b)m

This then implies the following bound on the tail. Let c1 := (d+δ)
[
(1+δ)(M+b)(d+δ)

]j+k−d
and c2 := (1 + δ)(M + b)(d+ δ), where small δ > 0 is needed to deal with limiting details.∣∣∣∣∣

∞∑
m=j+k+1−d

νmb
m!
αmq,b(1− q)d+m−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

d
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

∣∣∣∣∣
≤

∞∑
m=j+k+1−d

∣∣∣∣νmbm!
αmq,b(1− q)d+m−j−k

∣∣∣∣ c0(d+ δ)m+1

≤ c0

∞∑
m=j+k+1−d

(1 + δ)m(M + b)m|1− q|d+m−j−k(d+ δ)m+1

≤ c0c1

∞∑
m=j+k+1−d

[
(1 + δ)(M + b)(d+ δ)|1− q|

]d+m−j−k

= c0c1

∞∑
m=1

cm2 |1− q|m

So, for any ε > 0 we can select q close enough to 1 such that |1− q| < ε
c2

. This implies the
above series is geometric with terms bounded by εm.

The above lemma in particular demonstrates that the tail of the series in Lemma 4.2.15
converges to 0 uniformly on compact sets. With this, we can now complete the proof of the
theorem.

Proof of Theorem 4.1.5. For j, k, d ∈ N0 such that 0 ≤ j ≤ k ≤ d, we can combine the
above results. When we expand our limit as a sum of powers of (1− q), we have shown that
everything limits to zero except for the constant term. Recall that limq→1 αq,b = −1.

lim
q→1

(1− q)d
[
vjq,b �

d
qb v

k
q,b

]
(qx) = lim

q→1

νj+k−db αj+k−dq,b

(j + k − d)!
(−1)j+k−dqb(

d
2)−b(

j
2)−b(

k
2)

(j)qb !(k)qb !

(d)qb !

=
j!k!

d!(j + k − n)!
νj+k−db

= νjb �
d
b ν

k
b

By symmetry, this demonstrates the desired result on a basis. Therefore, the proof is com-
plete.
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Applications To Previous Results

The main motivation for the multiplicative to additive convolution connection was to be
able to relate seemingly analogous root information results. The following table outlines the
results we proceed to connect.

Additive Convolution Multiplicative Convolution
Preserves Real Rooted Polynomials Preserves Positive Rooted Polynomials

Additive Max Root Triangle Inequality Multiplicative Max Root Triangle Inequality
Preserves b−Mesh Preserves q−Logarithmic Mesh

All of these connections have a similar flavor, and rely on the following elementary facts
about exponential polynomials. We say f(x) =

∑d
k=0 ckq

kx is an exponential polynomial of

degree d with base q. A real number x is a root of f if and only if qx is a root of
∑d

k=0 ckx
k.

Because of this we can bootstrap the fundamental theorem of algebra.

Definition 4.2.19. We call
{
x ∈ C : −π

| ln(q)| < =(x) < π
| ln(q)|

}
the principal strip (with respect

to q). Let p(qx) be an exponential polynomial of degree n with base q. The number of roots
of p(qx) in the principal strip is the same as the number of roots of p in C \ (−∞, 0]. We
call the roots in the principal strip the principal roots.

Lemma 4.2.20. The principal roots of Eq,b(p)[q
x] converge to the roots of p as q → 1. In

particular, Eq,b(p)[q
x] has deg(p) principal roots for q ≈ 1.

Proof. This follows from the fact that, as q → 1, Eq,b(p)[q
x] converges uniformly on compact

sets to p and the principal strip grows towards the whole plane.

We can analyze the behavior of this convergence when p is real rooted with distinct roots.

Lemma 4.2.21. Suppose p is real with real distinct roots. For q ≈ 1, we have that Eq,b(p)[q
x]

has principal roots which are real and distinct (and converging to the roots of p).

Proof. Since p has real coefficients, the roots of Eq,b(p)[q
x] are either real or come in conjugate

pairs. (Consider the fact that qx = qx.) If p has real distinct roots, the previous lemma
implies the principal roots of Eq,b(p)[q

x] have distinct real part for q close enough to 1.
Therefore, the principal roots of Eq,b(p)[q

x] must all be real.

If we exponentiate (with base q) the principal roots of Eq,b(p)[q
x], we get the roots of

Eq,b(p). So if the principal roots of Eq,b(p)[q
x] are real, then the roots of Eq,b(p) are positive.

Considering the above results, this means that Eq,b maps polynomials with distinct real roots
to polynomials with distinct positive roots for q ≈ 1. (In fact, the roots will be near 1.)
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Root Preservation

The most classical results about the roots are the following:

Theorem (Root Preservation).

• If p, r ∈ Rd[x] have positive roots, then p�d r has positive roots.

• If p, r ∈ Rd[x] have real roots, then p�d r has real roots.

Neither of these results are particularly hard to prove, but showing how the additive result
follows from the multiplicative serves as a prime example of how our theorem connects results
on the roots.

Proof of Additive from Multiplicative. We can reduce to showing that the additive convolu-
tion preserves real rooted polynomials with distinct roots since the closure of polynomials
with distinct real roots is all real rooted polynomials.

By Lemma 4.2.21, the roots of Eq,0(p) are real, distinct, and exponentials of the principal
roots of Eq,0[p](qx) for q ≈ 1. This implies that Eq,0(p) has positive real roots. By the
multiplicative result, Eq,0(p) �d Eq,0(r) has positive real roots, and therefore [Eq,0(p) �d

Eq,0(r)](qx) has real principal roots. By the main result of this section, (1 − q)d[Eq,0(p) �d

Eq,0(r)](qx) converges to p�d r. The real-rootedness of [Eq,0(p)�dEq,0(r)](qx) for q ≈ 1 then
implies p�d r is real-rooted.

Triangle Inequality

The next classical theorem relates to the max root of a given polynomial. Given an expo-
nential polynomial f with principal roots all real, let λ1(f) denote the largest principal root
of f . Also, denote expq(α) := qα.

Theorem (Triangle Inequalities).

• Given positive-rooted polynomials p, r we have λ1(p�d r) ≤ λ1(p) · λ1(r)

• Given real-rooted polynomials p, r we have λ1(p�d r) ≤ λ1(p) + λ1(r)

As before, neither of these have particularly complicated proofs, but we can use the multi-
plicative result to deduce the additive result in the following.

Proof of Additive from Multiplicative. As in the previous proof, we can reduce to showing
that the result holds for p, r with distinct roots. For this proof, we only consider q > 1.

By Lemma 4.2.21, we have that the roots of Eq,0(p) are real, distinct, and exponentials of
the principal roots of Eq,0[p](qx) for q ≈ 1. This implies the roots of Eq,0(p) are positive for
q ≈ 1. Additionally, notice that expq(λ1(f(qx))) = λ1(f(p)) whenever f is positive-rooted.
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From the multiplicative result and the fact that �d preserves positive-rootednes, we have
the following for q ≈ 1:

expq(λ([Eq,0(p)�d Eq,0(r)](qx))) = λ(Eq,0(p)�d Eq,0(r))

≤ λ(Eq,0(p)) · λ(Eq,0(r))

= expq(λ(Eq,0[p](qx)) + λ(Eq,0[r](qx)))

Therefore, λ([Eq,0(p)�dEq,0(r)](qx)) ≤ λ(Eq,0[p](qx)) +λ(Eq,0[r](qx)). By the main result of
this section, (1− q)d[Eq,0(p)�d Eq,0(r)](qx) converges to p�d r, and therefore λ([Eq,0(p)�d

Eq,0(r)](qx)) converges to λ(p�d r). Similarly λ(Eq,0[p](qx)) converges to λ(p), and the result
follows.

Application to Mesh Preservation Conjecture

Recall the log mesh result of Lamprecht in [39] regarding the q-multiplicative convolution.

Theorem 4.1.2. Fix q > 1. Given positive-rooted polynomials p, r ∈ Rd[x] with lmesh(p), lmesh(r) ≥
q, we have:

lmesh(p�dq r) ≥ q

In [10], Brändén, Krasikov, and Shapiro conjectured the analogous result for the b-
additive convolution (for b = 1). Using our connection we will confirm this conjecture:

Theorem 4.1.3. Given real-rooted polynomials p, r ∈ Rd[x] with mesh(p),mesh(r) ≥ b, we
have:

mesh(p�db r) ≥ b

Proof. We will prove this claim for polynomials p, r with mesh(p),mesh(r) > b. Since we
can approximate any polynomial with mesh(p) = b by polynomials with larger mesh, the
result then follows.

By Lemma 4.2.21, Eq,b[p](q
x) has real roots which converge to the roots of p for q ≈ 1.

Since the roots of p satisfy mesh(p) > b, the principal roots of Eq,b[p](q
x) will have mesh

greater than b for q ≈ 1. Further, lmesh(Eq,b(p)) = expq(mesh(Eq,b[p](q
x))) > qb. (All of this

discussion holds for r as well.) By the main result of this section, we have:

lim
q→1

(1− q)d
[
Eq,b(p)�

d
qb Eq,b(r)

]
(qx) = p�db r

By the previous theorem, the qb-multiplicative convolution of Eq,b(p) and Eq,b(r) has loga-
rithmic mesh at least qb. Precomposition by qx then yields an exponential polynomial with
mesh (of the principal roots) at least b. The principal roots of this exponential polynomial
then converge to p�db r, and hence p�db r has mesh at least b.
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4.3 Second Proof Method: A Direct Proof using

Interlacing

While the previous framework generically transferred Lamprecht’s multiplicative result to
prove the conjectured result in the additive realm, one might desire a direct proof to gain
insight on the underlying structure of the convolution. In what follows, we first outline the
preliminary knowledge required to understand a special case of Lamprecht’s argument. Then
we outline his approach in the multiplicative case and extend this approach to the additive
realm to prove the desired conjecture. Recall the equivalence between mesh and interlacing,
as discussed in Remark 2.2.11.

Remark 4.3.1. A polynomial f with non-negative roots is q-log mesh if and only if f �
f(q−1x) and strictly q-log mesh if and only if f � f(q−1x) strictly (for q > 1). Similarly, a
polynomial f with real roots is b-mesh if and only if f � f(x− b) and strictly b-mesh if and
only if f � f(x− b) strictly (for b > 0).

Lamprecht’s Approach

In what follows, we follow Lamprecht’s approach to proving that the space of q-log mesh
polynomials is preserved by the q-mutliplicative convolution. Here, we are only interested in
proving this result for q-log mesh polynomials with non-negative roots, which simplifies the
proof. (Lamprecht demonstrates this result for a more general class of polynomials.) The
main structure of the proof is: (1) establish properties of two distinguished polar derivatives,
(2) show how these derivatives relate to the q-multiplicative convolution, and (3) use this
to prove that the q-multiplicative convolution preserves certain interlacing properties. In
the next section, we will emulate this method for b-mesh polynomials and the b-additive
convolution.

q-Polar Derivatives

In [39], Lamprecht defines q-derivative operators, which generalize the operators 1
d
∂x and

−1
d
∂∗x as discussed in §2.1. (As a note, Lamprecht uses the ∆ symbol for these derivatives,

and actually gives different definitions as his convention is q ∈ (0, 1).) Recall these operations
from §2.1, where q > 1 is always assumed.

(∂q,df)(x) :=
f(qx)− f(x)

q1−d(qd − 1)x
(∂∗q,df)(x) :=

f(qx)− qdf(x)

qd − 1

He then goes on to show that these “derivative” operators have similar preservation proper-
ties to that of the usual derivatives. In particular, he obtains the following.

Proposition 4.3.2. The operators ∂q,d : Rd[x] → Rd−1[x] and ∂∗q,d : Rd[x] → Rd−1[x] pre-
serve the space of q-log mesh polynomials and the space of strictly q-log mesh polynomials.
Further, we have that ∂q,df � f and ∂∗q,df � ∂q,df .
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The above result is actually spread across a number of results in Lamprecht’s paper. We
omit the proof for now, referring the reader to Section 6 in [39], mainly Theorems 25 and
28 (in the arXiv version). Note also that our definitions of ∂q,d and ∂∗q,d are slightly different
than that of Lamprecht.

Recursive Identities

Lamprecht then determines the following identities, which are crucial to his inductive proof
of the main result of this section. Fix f ∈ Rd−1[x] and g ∈ Rd[x].

f �dq g = f �d−1
q ∂∗q,dg (xf)�dq g = x(f �d−1

q ∂q,dg)

Lamprecht’s Proof

With this, we now state an interesting result about interlacing preservation of the q-convolution
operator. We will then derive the main result as a corollary.

Theorem 4.1.6 (Lamprecht Interlacing-Preserving). Let f, g ∈ Rd[x] be q-log mesh polyno-
mials of degree d with only positive roots. Let Tg : Rd[x]→ Rd[x] be the real linear operator
defined by Tg : r 7→ r �dq g. Then, Tg preserves interlacing with respect to f .

Proof. We prove the theorem by induction. For d = 1 the result is straightforward, as
�1
q ≡ �1. For m > 1, we inductively assume that the result holds for d = m−1. By Corollary

2.3.9 and the fact that f has d simple roots, we only need to show that Tg[fαk ]� Tg[f ] for
all roots αk of f . That is, we want to show fαk �

m
q g � f �mq g for all k.

By Proposition 4.3.2, we have that ∂q,mg and ∂∗q,mg are q-log mesh and ∂∗q,mg � ∂q,mg.
Further, ∂q,mg and ∂∗q,mg are of degree m−1 and have no roots at 0. The inductive hypothesis
and symmetry of �dq then imply:

fαk �
m−1
q ∂∗q,mg � fαk �

m−1
q ∂q,mg

The fact that these polynomials have leading coefficients with the same sign means that the
max root of fαk �

m−1
q ∂q,mg is larger than that of fαk �

m−1
q ∂∗q,mg. Further, since all roots are

positive we obtain:
fαk �

m−1
q ∂∗q,mg � x(fαk �

m−1
q ∂q,mg)

By properties of �, this gives:

fαk �
m−1
q ∂∗q,mg � x(fαk �

m−1
q ∂q,mg)− αk(fαk �m−1

q ∂∗q,mg)

By the above identities and the fact that f(x) = (x − αk)fαk(x), this is equivalent to
fαk �

m
q g � f �mq g.

Corollary 4.1.2. Let f, g ∈ Rd[x] be q-log mesh polynomials (with non-negative roots), not
necessarily of degree d. Then, f �dq g is q-log mesh.
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Proof. First suppose f, g are of degree d with only positive roots. Since f � f(q−1x), the
previous theorem implies:

f �dq g � f(q−1x)�dq g = (f �dq g)(q−1x)

That is, f �dq g is q-log mesh.
Otherwise, suppose f is of degree mf ≤ d with zf roots at 0 and g is of degree mg ≤ d

with zg roots at zero. Intuitively, we now add roots “near 0 and ∞” and limit. Let new
polynomials F and G be given as follows:

F (x) := f(x) · x−zf
zf∏
j=1

(
x− 1

αj

)
·

d∏
j=mf+1

(
x

αj
− 1

)

G(x) := g(x) · x−zg
zg∏
j=1

(
x− 1

βj

)
·

d∏
j=mg+1

(
x

βj
− 1

)
Here, αj and βj are any large positive numbers such that F and G are q-log mesh polynomials
of degree d. By the previous argument, F �dq G is q-log mesh. Letting αj and βj limit to ∞
(while preserving q-log mesh) implies F �dq G → f �dq g root-wise, which implies f �dq g is
q-log mesh.

Lamprecht is actually able to remove the degree d with positive roots restriction earlier
in the line of argument, albeit at the cost of a more complicated proof. We have elected here
to take the simpler route. He also proves similar results for a class of q-log mesh polynomials
with possibly negative roots, which we omit here.

b-Additive Convolution

The main structure of Lamprecht’s argument revolves around the two “polar” q-derivatives,
∂q,d and ∂∗q,d. The key properties of these derivatives are: (1) they preserve the space of
q-log mesh polynomials, and (2) they recursively work well with the definition of the q-
multiplicative convolution. So, when extending this argument to the b-additive convolution
we face an immediate problem: there is only one natural derivative which preserves the
space of b-mesh polynomials. This stems from the fact that 0 and ∞ have special roles in
the q-multiplicative world, whereas only ∞ is special in the b-additive world. The key idea
we introduce then is that given a fixed b-mesh polynomial f , we can pick a polar derivative
with pole “close enough to ∞” so that it maps f to a b-mesh polynomial. The fact that we
use a different polar derivative for each fixed input f does not affect the proof method.

We now give a few facts about the finite difference operator ∆b, which plays a crucial
role in the definition of the b-additive convolution. Recall its definition:

(∆b,df)(x) ≡ (∆bf)(x) :=
f(x)− f(x− b)

b
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(We use the notation ∆b,d when we want to restrict the domain to Rd[x], as in Proposition
4.3.3 below.) This operator acts on rising factorial polynomials as the usual derivative acts
on monomials. That is, for all k:

∆bx(x+ b) · · · (x+ (k − 1)b) = kx(x+ b) · · · (x+ (k − 2)b)

This operator has preservation properties similar to that of the usual derivative and the
q-derivatives. The following result, along with many others regarding mesh and log-mesh
polynomials, can be found in Chapter 8 of [24].

Proposition 4.3.3 ([24], Lemma 8.8). The operator ∆b,d : Rd[x] → Rd−1[x] preserves the
space of b-mesh polynomials, and the space of strictly b-mesh polynomials. Further, we have
∆bf � f and ∆bf � f(x− b). If f is strictly b-mesh, then these interlacings are strict.

Finding Another Polar Derivative

We now define another “derivative-like” operator that is meant to generalize ∂∗d and ∂∗q,d (see
§2.1). Notice that unlike ∆b, this operation depends on d.

(∆∗b,df)(x) := df(x− b)− (x− b)∆bf(x)

Unfortunately, this operator does not preserve b-mesh. However, it does generalize other
important properties of ∂∗d = ∂∗1,d. In particular, it maps Rd[x] to Rd−1[x], and as b → 0 it
limits to ∂∗df , the polar derivative of f with respect to 0. Further, we have the following
results.

Lemma 4.3.4. Fix f ∈ Rd[x] and write f =
∑d

k=0 akx(x+ b) · · · (x+ (k − 1)b). Then:

(∆∗b,df)(x+ b) =
d−1∑
k=0

(d− k)akx(x+ b) · · · (x+ (k − 1)b)

This next lemma is a generalization of the corollary following it.

Lemma 4.3.5. Fix monic polynomials f, g ∈ R[x] of degree m and m− 1, respectively, such
that g is strictly b-mesh and g � f strictly. Denote ha,t(x) := af(x)− (x− t)g(x) for a ≥ 1
and t > 0. For all t large enough, we have g � ha,t strictly, ha,t � f strictly, and ha,t is
strictly b-mesh.

Proof. Denote ha,t(x) := af(x) − (x − t)g(x). Since f, g are monic, we have that ha,t is
of degree at most m with positive leading coefficient (for large t if a = 1). Further, if
α1 < · · · < αm−1 are the roots of g and β1 < · · · < βm are the roots of f , then g � f strictly
and t large implies:

ha,t(αm−1) = af(αm−1) < 0 ha,t(βm) = −(βm − t)g(βm) > 0
ha,t(αm−2) = af(αm−2) > 0 ha,t(βm−1) = −(βm−1 − t)g(βm−1) < 0
ha,t(αm−3) = af(αm−3) < 0 ha,t(βm−2) = −(βm−2 − t)g(βm−2) > 0

...
...
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The alternating signs imply ha,t has an odd number of roots in the interval (αk, βk+1) and
an even number of roots in the interval (βk, αk) for all 1 ≤ k ≤ m − 1. Since the degree
of ha,t is at most m, each of these intervals must contain exactly one root and zero roots,
respectively. If ha,t is of degree m, then it has one more root which must be real since
ha,t ∈ R[x]. Additionally, since ha,t has positive leading coefficient, this last root must lie
in the interval (−∞, β1) (and not in (βm,∞)). Therefore, g � ha,t strictly and ha,t � f
strictly.

Finally, ha,t → g as t → ∞ coefficient-wise, and so therefore also in terms of the zeros.
This means that the root in the interval (αk, βk+1) will limit to αk from above (for all k).
Further, the possible root in the interval (−∞, β1) will then limit to −∞, as g is of degree
m − 1. Since g is strictly b-mesh, this implies ha,t is also strictly b-mesh for large enough
t.

Corollary 4.3.6. Let f ∈ Rd[x] be strictly b-mesh. Then for all t > 0 large enough, we have
that (t∆b,d + ∆∗b,d)f is strictly b-mesh and ∆b,df � (t∆b,d + ∆∗b,d)f strictly.

Proof. Consider (t∆b,d + ∆∗b,d)f = df(x− b)− (x− b− t)∆b,df . Note that ∆b,df ∈ Rd−1[x] is
strictly b-mesh and of degree one less than f , and ∆b,df � f(x− b) strictly by Proposition
4.3.3. Now assume WLOG that f is monic and of degree at least 1. Letting c denote the
leading coefficient of ∆b,df , we have 1 ≤ c ≤ d. We can then write:

1

c
(t∆b,d + ∆∗b,d)f =

d

c
f(x− b)− (x− b− t)∆b,df

c

Applying the previous lemma to f(x− b) and
∆b,df

c
with a = d

c
gives the result.

This corollary says that t∆b,d + ∆∗b,d preserves b-mesh, even though ∆∗b,d does not. The
operator t∆b,d + ∆∗b,d can be thought of as the polar derivative with respect to t, since by
limiting b→ 0 we obtain the classical polar derivative.

Recursive Identities

The ∆∗b,d operator is also required to obtain b-additive convolution identities similar to Lam-
precht’s given above.

Lemma 4.3.7. Fix f ∈ Rd−1[x] and g ∈ Rd[x]. We have:

f �db g = f �d−1
b ∆b,dg (xf)�db g = x(f �d−1

b ∆b,dg) + f �d−1
b ∆∗b,dg

Proof. The first identity is straightforward from the definition of �db . As for the second, we
compute:

∆k
b (xf) = ∆k−1

b (x∆bf + f(x− b)) = · · · = x∆k
bf + k∆k−1

b f(x− b)
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Notice that ∆b commutes with shifting, so this is unambiguous. This implies:

(xf)�db g =
d∑

k=0

(x∆k
bf + k∆k−1

b f(x− b)) · (∆d−k
b g)(0)

= x(f �d−1
b ∆b,dg) +

d∑
k=1

k∆k−1
b f(x− b) · (∆d−k

b g)(0)

= x(f �d−1
b ∆b,dg) +

d−1∑
k=0

∆d−1−k
b f(x− b) · ((d− k)∆k

bg)(0)

= x(f �d−1
b ∆b,dg) + f(x− b)�d−1

b (∆∗b,dg)(x+ b)

The last step of the above computation uses Lemma 4.3.4 and the fact that (∆k
bg)(0) picks

out the coefficient corresponding to the kth rising factorial term. Finally:

f(x− b)�d−1
b (∆∗b,dg)(x+ b) = (f �d−1

b (∆∗b,dg)(x+ b))(x− b) = f �d−1
b ∆∗b,dg

This implies the second identity.

With this we can now emulate Lamprecht’s proof to prove interlacing preserving proper-
ties of the b-additive convolution.

Lamprecht-Style Proof

Theorem 4.1.7. Let f, g ∈ Rd[x] be strictly b-mesh polynomials of degree d. Let Tg : Rd[x]→
Rd[x] be the real linear operator defined by Tg : r 7→ r �db g. Then, Tg preserves interlacing
with respect to f .

Proof. We prove the theorem by induction. For d = 1 the result is straightforward, as
�1
b ≡ �1. For m > 1, we inductively assume that the result holds for d = m − 1. By

Corollary 2.3.9, we only need to show that Tg[fαk ]� Tg[f ] for all roots αk of f . That is, we
want to show fαk �

m
b g � f �mb g for all k.

By Proposition 4.3.3 and Corollary 4.3.6, we have that ∆b,mg and (t∆b,m + ∆∗b,m)g are
strictly b-mesh and ∆b,mg � (t∆b,m + ∆∗b,m)g strictly for large enough t. Further, ∆b,mg and

(t∆b,m + ∆∗b,m)g are of degree m − 1. The inductive hypothesis and symmetry of �db then
imply:

fαk �
m−1
b ∆b,mg � fαk �

m−1
b (t∆b,m + ∆∗b,m)g

It is easy to see, (e.g. from 2.3.7)

fαk �
m−1
b ∆b,mg � (x− αk − t)(fαk �m−1

b ∆b,mg)

By properties of �, this gives:

fαk �
m−1
b ∆b,mg � (x− αk − t)(fαk �m−1

b ∆b,mg) + fαk �
m−1
b (t∆b,m + ∆∗b,m)g

= (x− αk)(fαk �m−1
b ∆b,mg) + fαk �

m−1
b ∆∗b,mg
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By the above identities and the fact that f(x) = (x − αk)fαk(x), this is equivalent to
fαk �

m
b g � f �mb g.

Corollary 4.1.3. Let f, g ∈ Rd[x] be strictly b-mesh polynomials. Then, f �db g is b-mesh.

Proof. First suppose f, g are of degree d. Since f � f(x− b) strictly, the previous theorem
implies the following:

f �db g � f(x− b)�db g = (f �db g)(x− b)

That is, f �db g is b-mesh.
If f, g are not of degree d, then the result follows by adding new roots and limiting them

to ∞, in a fashion similar to the proof of Corollary 4.1.2 given above.

4.4 Concluding Remarks

Extensions of other classical convolution results

In this chapter we investigated connections between the additive and multiplicative convolu-
tions and their mesh generalizations. Looking forward, it is natural to look at other results in
the classical case and ask for mesh generalizations. To our knowledge, there are two classical
results which have been extended to mesh analogues: in [10], the authors explore extensions
of the Hermite-Poulain theorem to the 1-mesh world, and in [39], Lamprecht extends classical
results for the multiplicative convolution to the q-log mesh world.

An important related result in the classical case is the triangle inequality, which we discuss
in §4.2 and in the previous chapter. To our knowledge, there is not a known generalization of
the triangle inequality to the mesh and log mesh cases. If one could establish such a result for
the q-multiplicative convolution, it would automatically extend to the b-additive convolution
using our analytic connection. Establishing this is the first step towards potentially getting
a grasp on b-additive submodularity.

Extensions of other q-multiplicative convolution results

In addition to log mesh preservation, Lamprecht proves other results about the q-multiplicative
convolution. Here we comment on these and their relation to the mesh world.

Beyond the finite degree case, Lamprecht discusses the extension of Laguerre-Polya func-
tions to the q-multiplicative world, and then establishes a q-version of Polya-Schur multiplier
sequences via a power series convolution. Since we are not aware of analogous power series
results for the classical additive convolution, we have not explored the connections to the
b-additive case.

Additionally, Lamprecht classifies log-concave sequences in terms of q-log mesh polyno-
mials using the Hadamard product and a limiting argument. There might be an analogue
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result in the mesh world for concave sequences, but it is unclear what would take the place
of the Hadamard product.

Lamprecht details the classes of polynomials that the q-multiplicative convolution pre-
serves. Most of these results come from the presence of two poles in the q-multiplicative case,
yielding derivative operators which preserve negative- and positive-rootedness respectively.
The b-additive case does not have such complications. In our simplification of Lamprecht’s
argument, we assume the input polynomials to be generic (strictly b-mesh), and then limit
to obtain the result for all b-mesh polynomials. By keeping track of boundary case informa-
tion, Lamprecht is able to get more precise results about boundary elements of the space of
b-mesh polynomials. We believe it is likely possible to emulate this in the above proof with
more bookkeeping.

The analytic connection applied to other known classical results

There are other results known about the classical multiplicative convolution which we believe
could be transferred to the additive convolution using our generic framework. Specifically
in [47], Marcus, Spielman, and Srivastava establish a refinement of the triangle inequality
for both the additive and multiplicative convolutions. These refinements parallel the well
studied transforms from free probability theory. We have not yet worked out the details of
this connection.

Further directions for the generic analytic connection

Finally, it is worth nothing that our analytic connection can only transfer results about the
multiplicative convolution to the additive convolution. The main obstruction is finding the
appropriate analogue to the exponential map. The following limiting connection between
exponential polynomials and polynomials motivated our investigation:

lim
q→1

1− qx

1− q
= x

Finding the appropriate “logarithmic analogue” could yield a way to pass results from the
additive convolution to the multiplicative convolution. That said, some heuristic evidence
suggests that such an analogue might not exist.

Above all, our analytic connection still remains rather mysterious. We suspect that there
exists a more general theory which provides better intuition for this multiplicative-to-additive
connection. While developing this connection, we found multiple candidate exponential maps
which experimentally worked. We settled on the ones introduced in this chapter due to their
relatively nice combinatorial properties. Ideally, an alternative approach would avoid proving
the result on a basis and better explain the role of these “exponential maps”.
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4.5 Computations

Bounding

Fix n+m− j − k > 0 with j ≤ k ≤ n and q ≈ 1. We have the following bound, where c0 is
some positive constant independent of q:∣∣∣∣∣

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

n
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

∣∣∣∣∣ ≤
j∑
i=0

c0(i+ δ)m ≤ c0(n+ δ)m+1

For |x| ≤M , we have:

|νmb | = |x(x+ b) · · · (x+ (m− 1)b)| ≤ |M(M + b) · · · (M + (m− 1)b)| ≤ m!(M + b)m

This then implies the following bound on the tail. Let c1 := (n+δ)
[
(1+δ)(M+b)(n+δ)

]j+k−n
and c2 := (1 + δ)(M + b)(n+ δ), where small δ > 0 is needed to deal with limiting details.∣∣∣∣∣

∞∑
m=j+k+1−n

νmb
m!
αmq,b(1− q)n+m−j−k

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

n
i

)
qb

qbi(i−1)/2(−1)i(i)mq−b

∣∣∣∣∣
≤

∞∑
m=j+k+1−n

∣∣∣∣νmbm!
αmq,b(1− q)n+m−j−k

∣∣∣∣ c0(n+ δ)m+1

≤ c0

∞∑
m=j+k+1−n

(1 + δ)m(M + b)m|1− q|n+m−j−k(n+ δ)m+1

≤ c0c1

∞∑
m=j+k+1−n

[
(1 + δ)(M + b)(n+ δ)|1− q|

]n+m−j−k

= c0c1

∞∑
m=1

cm2 |1− q|m

So, for any ε > 0 we can select q close enough to 1 such that |1− q| < ε
c2

. This implies the
above series is geometric with max term εm.

Q-Lagrange Interpolation

Let [tj]p(t) denote the coefficient of p corresponding to the monomial tj.

Lemma 4.5.1. Fix p ∈ Cj[x]. We have the following identity:

(−1)jq−(j2) · [tj]p(t) =

j∑
i=0

p((i)q−1)
(−1)i

(i)q!(j − i)q!
q(

i
2)
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Proof. Using Lagrange interpolation, the following holds for any polynomial of degree at
most j:

[tj]p(t) =

j∑
i=0

p((i)q)
(−1)j−i

(i)q!(j − i)q!
q−(i2)q−i(j−i)

Using the identity (i)q−1 ! = q−(i2)(i)q! (via (i)q−1 = q−i+1(i)q) and replacing q by q−1 gives:

[tj]p(t) =

j∑
i=0

p((i)q−1)
(−1)j−i

(i)q!(j − i)q!
q2(i2)qi(j−i)q(

j−i
2 )

=

j∑
i=0

p((i)q−1)
(−1)j−i

(i)q!(j − i)q!
q(

i
2)q(

j
2)

The result follows.

Corollary 4.5.2. Fix j, k,m ∈ {0, 1, ..., n} such that j ≤ k and m + n − k ≤ j. We have
the following identity:

(−1)n−j−kqb(
n
2)−b(

j
2)−b(

k
2)δm+n−k=j

(j)qb(k)qb

(n)qb
=

j∑
i=0

(
j
i

)
qb

(
k
i

)
qb(

n
i

)
qb

qb(
i
2)(−1)i(i)mq−b

Proof. Consider the polynomial p(t) = tm((n)q−b − t)((n − 1)q−b − t) · · · ((k + 1)q−b − t),
which is of degree m + n − k. So, [tj]p(t) = (−1)n−kδm+n−k=j. Also, recall the identity

(i)q−b ! = q−b(
i
2)(i)qb !. Using the previous lemma and replacing q by qb, we obtain:

(−1)jq−b(
j
2) · (−1)n−kδm+n−k=j =

j∑
i=0

p((i)q−b)
(−1)i

(i)qb !(j − i)qb !
qb(

i
2)

=

j∑
i=0

q−bi(n−k) (n− i)q−b !
(k − i)q−b !

(−1)i

(i)qb !(j − i)qb !
qb(

i
2)(i)mq−b

=

j∑
i=0

qb(
k
2)q−b(

n
2)

(n− i)qb !
(k − i)qb !

(−1)i

(i)qb !(j − i)qb !
qb(

i
2)(i)mq−b

=

j∑
i=0

qb(
k
2)q−b(

n
2)

(n)qb

(j)qb(k)qb
·

(
j
i

)
qb

(
k
i

)
qb(

n
i

)
qb

qb(
i
2)(−1)i(i)mq−b

The result follows.
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Chapter 5

Polynomial Capacity and Bipartite
Graphs

In a series of papers (e.g., see [35]), Gurvits gave a vast generalization of the Van der Waerden
lower bound for permanents of doubly stochastic matrices and the Schrijver lower bound on
the number of perfect matchings of regular graphs. In particular, he proved an inequality
on how much the derivative can affect a particular analytic quantity called the capacity of a
polynomial, and we now state it formally. Recall the notation xα :=

∏
k x

αk
k , which will be

heavily used here.

Definition 5.0.1 (Gurvits). Given a polynomial p ∈ R[x1, ..., xn] with non-negative coeffi-
cients and a vector α ∈ Rn with non-negative entries, we define the α-capacity of p as:

Capα(p) := inf
x>0

p(x)

xα

Theorem 5.2.1 (Gurvits). For real stable p ∈ Rγ
+[x1, ..., xn] we have:

Cap(1n−1)

(
∂xkp|xk=0

)
Cap(1n)(p)

≥
(
γk − 1

γk

)γk−1

Recall (1j) denotes the all-ones vector of length j.

This is as a statement about the capacity preservation properties of the derivative. That
is, taking a partial derivative of a real stable polynomial (and then evaluating to 0) can only
decrease the capacity of that polynomial by at most the stated multiplicative factor.

To generalize such capacity preservation properties to other real stability preservers, we
combine Gurvits’ ideas with the Borcea-Brändén characterization (see §2.3). Specifically, we
show that the symbol of an operator holds not only the stability preservation information of
the operator, but also the capacity preservation information of T . Our main results in this
direction are stated as follows. Recall the definitions of Symb and Symb+ (Definition 2.3.1),
and of the Laguerre-Pólya class (Definition 2.3.3).
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Theorem 5.3.10 (Bounded degree). Let T be a linear operator taking input in Rγ
+[x1, ..., xn],

such that Symb+(T ) is real stable or bistable (recall Definition 2.2.1) with non-negative co-
efficients. For any real stable p ∈ Rγ

+[x] and any sensible α, β ∈ Rn
+, we have:

Capβ(T (p))

Capα(p)
≥ αα(λ− α)λ−α

λλ
Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T, α, β.

Theorem 5.3.11 (Unbounded degree). Let T be a linear operator on polynomials of any
degree, such that Symb+(T ) is in the Laguerre-Pólya class or the bistable equivalent (see
Definition 2.3.3) with non-negative coefficients. For any real stable p ∈ R+[x1, ..., xn] and
any sensible α, β ∈ Rn

+, we have:

Capβ(T (p))

Capα(p)
≥ e−ααα Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T, α, β.

Our main application of the theory is a new proof of Csikvári’s bound on the number of
k-matchings of a biregular bipartite graph [17]. This result generalizes Schrijver’s inequality
and is actually stronger than Friedland’s lower matching conjecture (see [25]). The compu-
tations involved in this new proof never exceed the level of basic calculus. This was one of
the most remarkable features of Gurvits’ original result, and this theme continues to play
out here. We state Csikvári’s result now.

Theorem 5.2.6 (Csikvári). Let G be an (a, b)-biregular bipartite graph with vertices which
are (m,n)-bipartitioned (so that am = bn is the number of edges of G). Then the number of
size-k matchings of G is bounded as follows:

µk(G) ≥
(
n

k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k

Beyond these specific applications, one of the main purposes of this chapter is to unify
the various results that fit into the lineage of the concept of capacity. Some of these are
inequalities for specific combinatorial quantities ([35], [33], [34]), some are approximation
algorithms for those quantities ([2], [60]), and some are capacity preservation results similar
to those in this chapter (particularly [1]).

The rest of this chapter is outlined as follows. In §5.2, we discuss applications of the
capacity preservation theory. In §5.3, we prove the main inequalities. In §5.4, we discuss
some continuity properties of capacity.
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5.1 Capacity Basics

Recall the definition of capacity:

Capα(p) := inf
x>0

p(x)

xα

In general, the conceptual meaning of capacity is not completely understood. However, in
this section we hope to illuminate some of its basic features. This will include its connections
to the coefficients of a polynomial, to probabilistic interpretations of polynomials, to the AM-
GM inequality, and to the Legendre (Fenchel) transformation.

As discussed at the beginning of this chapter, the sort of capacity results we will be in-
terested in are those of capacity preservation (that is, bounds on how much the capacity can
change under various operations). In fact, our use of the Borcea-Brändén characterization
consists in combining it with capacity bounds in order to give something like a characteri-
zation of capacity preservers. In a sense, this can be seen as an analytic refinement of the
characterization: not only do such operators preserve stability, but they also preserve capac-
ity. That said, we now state a few basic properties and interpretations of capacity that will
be needed to state and discuss this analytic refinement. First recall the definitions of the
Newton polytope and the support of a polynomial.

Definition 5.1.1. Given p ∈ R[x1, ..., xn], the Newton polytope of p, denoted Newt(p), is the
convex hull of the support of p. The support of p, denoted supp(p), is the set of all µ ∈ Zn+
such that xµ has a non-zero coefficient in p.

Capacity is perhaps most basically understood as a quantity which mediates between the
coefficients of p and the evaluations of p. For example, if µ ∈ supp(p) then:

pµ ≤ Capµ(p) ≤ p(1, ..., 1)

Capacity can also be understood probabilistically. If p ∈ R(1n)
+ [x1, ..., xn] and p(1, ..., 1) = 1,

then p can be considered as the probability generating function for some discrete distribution
on supp(p). In this case, a simple proof demonstrates:

Fact 5.1.2. Let p ∈ R(1n)
+ [x1, ..., xn] be the probability generating function for some distribu-

tion ν. Then:

1. 0 ≤ Capα(p) ≤ 1 for all α ∈ Rn
+.

2. Capα(p) = 1 if and only if α is the vector of marginal probabilities of ν.

Proof. (1) is straightforward, and (2) follows from concavity of log (e.g., see [35], Fact 2.2)

and the fact that Capα(p) = 1 implies p(x)
xα

is minimized at the all-ones vector.
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The following “log-exponential polynomial” associated to p has some nice properties
which often makes it convenient to use in the context of capacity. These properties also shed
light on the potential connection between capacity, convexity, and the Legendre/Fenchel
transformation (consider the expressions which show up in Fact 5.1.4 below).

Definition 5.1.3. Given a polynomial p ∈ R+[x1, ..., xn], we let capitalized P denote the
following function:

P (x) := log(p(exp(x))) = log
∑
µ

pµe
µ·x

Fact 5.1.4. Given p ∈ R+[x1, ..., xn], consider P as defined above. We have:

1. Capα(p) = exp infx∈Rn(P (x)− α · x)

2. P (x)− α · x is convex in Rn for any α ∈ Rn.

The next result is essentially a corollary of the (weighted) AM-GM inequality. In a sense,
this inequality is the foundational result that makes the notion of capacity so useful. Because
of this we provide a partial proof of the following result, taken from [1].

Fact 5.1.5. For p ∈ R+[x1, ..., xn], P defined as above, and α ∈ Rn
+, the following are

equivalent.

1. α ∈ Newt(p)

2. Capα(p) > 0

3. P (x)− α · x is bounded below.

Proof. That (2) ⇔ (3) follows from the previous fact. We now prove (1) ⇒ (2). The
(2) ⇒ (1) direction also has a short proof, based on a separating hyperplane for α and
Newt(p) whenever α 6∈ Newt(p). The details can be found in Fact 2.18 of [1].

Suppose that α ∈ Newt(p). So, α =
∑

µ∈S cµµ, where S ⊂ supp(p), cµ > 0, and∑
µ∈S cµ = 1. Using the AM-GM inequality and the fact that the coefficients of p are

non-negative, we have the following for x ∈ Rn
+:

p(x) ≥
∑
µ∈S

pµx
µ =

∑
µ∈S

cµ
pµx

µ

cµ
≥
∏
µ∈S

(
pµx

µ

cµ

)cµ
= xα

∏
µ∈S

(
pµ
cµ

)cµ
This then implies:

Capα(p) = inf
x>0

p(x)

xα
≥
∏
µ∈S

(
pµ
cµ

)cµ
> 0
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Due to the previous result, we will only ever consider values of α which are in the Newton
polytope of the relevant polynomials. In a sense, other α can be considered (even negative
α) as most results will then become trivial. That said, we will often make this assumption
about α without explicitly stating it.

The next result emulates Proposition 2.2.4 by giving a collection of basic capacity pre-
serving operators. Note that these results are either equalities, or give something of the form
Cap(T (p)) ≥ cT · Cap(p) for various operators T .

Proposition 5.1.6 (Basic capacity preservers). For p, q ∈ Rγ
+[x] and α, β ∈ Rn

+, we have:

1. Scaling: Capα(bp) = b · Capα(p) for b ∈ R+

2. Product: Capα+β(pq) ≥ Capα(p) Capβ(q)

3. Disjoint product: Cap(α,β)(p(x)q(z)) = Capα(p) Capβ(q)

4. Evaluation: Cap(α1,...,αn−1)(p(x1, ..., xn−1, yn)) ≥ yαnn Capα(p) for yn ∈ R+

5. External field: Capα(p(cx)) = cα Capα(p) for c ∈ Rn
+

6. Inversion: Cap(γ−α)(x
γp(x−1

1 , ..., x−1
n )) = Capα(p)

7. Concavity: Capα(bp+ cq) ≥ b · Capα(p) + c · Capα(q) for b, c ∈ R+

8. Diagonalization: Cap∑
αk

(p(x, ..., x)) ≥ Capα(p)

9. Symmetric diagonalization: Capn·α0
(p(x, ..., x)) = Capα(p) if α = (α0, ..., α0) and p is

symmetric

10. Homogenization: Cap(α,γ−α)(Hmgγ(p)) = Capα(p)

Proof. Symmetric diagonalization is the only nontrivial property, and it is a consequence of
the AM-GM inequality. First of all, we automatically have (the diagonalization inequality):

Capn·α0
(p(x, ..., x)) = inf

x>0

p(x, ..., x)

xα0 · · · xα0
≥ inf

x>0

p(x1, ..., xn)

xα0
1 · · ·xα0

n
= Capα(p)

For the other direction, fix x ∈ Rn
+ and let y := (x1 · · ·xn)1/n. Further, let S(p) denote the

symmetrization of p. For any µ ∈ Zn+, the AM-GM inequality gives:

S(xµ) =
1

n!

∑
σ∈Sn

xµ1σ(1) · · ·x
µn
σ(n) ≥

(∏
σ∈Sn

xµ1σ(1) · · ·x
µn
σ(n)

)1/n!

=

(∏
j,k

xµkj

)1/n

= yµ1 · · · yµn

Additionally, xα = xα0
1 · · ·xα0

n = yn·α0 . Since p is symmetric, we then have the following:

p(x)

xα
=
S(p)(x)

xα
=

∑
µ∈supp(p)

pµ
S(xµ)

xα
≥

∑
µ∈supp(p)

pµ
yµ1 · · · yµn
yn·α0

=
p(y, ..., y)

yn·α0
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That is, for any x ∈ Rn
+, there is a y ∈ R+ such that p(x)

xα
≥ p(y,...,y)

yn·α0
. Therefore:

Capα(p) ≥ Capn·α0
(p(x, ..., x))

This completes the proof.

Many of these operations are similar to those that preserve real stability. This is to be
expected, as we hope to combine the two theories. In this vein, we now discuss the capacity
preservation properties of the polarization operator. As it does for real stability preservers,
polarization will play a crucial role in working out the theory of capacity preservers. To
state this result, we define a sort of polarization of the vector α as follows, where each value
αk
γk

shows up γk times:

Polγ(α) :=

(
α1

γ1

, ...,
α1

γ1

,
α2

γ2

, ...,
α2

γ2

, ...,
αn
γn
, ...,

αn
γn

)
Proposition 5.1.7. Given p ∈ Rγ

+[x1, ..., xn] and α ∈ Rn
+, we have that CapPolγ(α)(Polγ(p)) =

Capα(p).

Proof. We essentially apply the diagonalization property to each variable in succession.
Specifically, we have:

Capα(p) = inf
y1,...,yn−1>0

1

yα1
1 · · · y

αn−1

n−1

inf
xn>0

p(y1, ..., yn−1, xn)

xαnn

= inf
y1,...,yn−1>0

1

yα1
1 · · · y

αn−1

n−1

Capαn(p(y1, ..., yn−1, xn))

= inf
y1,...,yn−1>0

1

yα1
1 · · · y

αn−1

n−1

CapPolγn (αn)(Polγn(p(y1, ..., yn−1, ·)))

By now rearranging the inf’s in the last expression above, we can let infyn−1>0 be the inner-
most inf. We can then apply the above argument again, and this will work for every yk in
succession. At the end of this process, we obtain:

Capα(p) = Cap(Polγ1 (α1),...,Polγn (αn))(Polγ1 ◦ · · · ◦ Polγn(p)) = CapPolγ(α)(Polγ(p))

Note that the two main results on polarization—capacity preservation and real stability
preservation—imply that we only really need to prove our results in the multiaffine case
(i.e., where polynomials are of degree at most 1 in each variable). We will make use of this
reduction when we prove our technical results in §5.3.

Finally before moving on, we give one basic capacity calculation which will prove ex-
tremely useful to us almost every time we want to compute capacity.
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Lemma 5.1.8. For c, α ∈ Rn
+ and m :=

∑
k αk, we have the following:

Capα((c · x)m) =
(mc
α

)α
Proof. Note first that:

Capα((c · x)m) =
(

Cap α
m

(c · x)
)m

To compute Cap α
m

(c · x), we use calculus. Let β := α
m

, and for now we assume that β > 0
and c > 0 strictly.

∂xk

(c · x
xβ

)
=
xβck − βkxβ−δk(c · x)

x2β
=
xkck − βk(c · x)

xβ+δk

That is, the gradient of c·x
xβ

is the 0 vector whenever ck
βk
xk = c · x for all k. And in fact, any

vector satifying those conditions should minimize c·x
xβ

, by homogeneity. Since
∑

k βk = 1, the

vector xk := βk
ck

satisfies the conditions. This implies:

Capβ(c · x) =
c · (β/c)
(β/c)β

=

(
c

β

)β
Therefore:

Capα((c · x)m) =

(
c

β

)mβ
=
(mc
α

)α

5.2 Bipartite Mathcings and Other Applications

We now formally state and discuss our main results and their applications. As mentioned
above, we will emulate the Borcea-Brändén characterization for capacity preservers. Further,
we will also demonstrate how our results encapsulate many of the previous results regarding
capacity. With this in mind, we first give our main capacity preservation results: one
for bounded degree operators and one for unbounded degree operators. Notice that the
unbounded degree case is something like a limit of the bounded degree case: the scalar
αα(γ−α)γ−α

γγ
is approximately

(
α
γ

)α
e−α as γ → ∞. (The proof of Theorem 5.3.8 shows why

the extra γ−α factor disappears.)

Theorem 5.3.10 (Bounded degree). Let T : Rγ
+[x1, ..., xn] → R+[x1, ..., xm] be a linear

operator with real stable (or bistable) symbol. Then for any α ∈ Rn
+, any β ∈ Rm

+ , and any
real stable p ∈ Rγ

+[x1, ..., xn] we have:

Capβ(T (p))

Capα(p)
≥ αα(γ − α)γ−α

γγ
Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T , α, and β.
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Theorem 5.3.11 (Unbounded degree). Let T : R+[x1, ..., xn] → R+[x1, ..., xm] be a linear
operator with real stable (or bistable) symbol. Then for any α ∈ Rn

+, any β ∈ Rm
+ , and any

real stable p ∈ R+[x1, ..., xn] we have:

Capβ(T (p))

Capα(p)
≥ ααe−α Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T , α, and β.

Note that by Theorem 2.3.5, the above theorems apply to real stability preservers of rank
greater than 2 (see Corollaries 5.3.12 and 5.3.13).

Gurvits’ Theorem and its Corollaries

With these results in hand, we now reprove Gurvits’ theorem and discuss its importance.
Gurvits’ original proof of this fact was not very complicated, and our proof will be similar
in this regard. This is of course what makes capacity and real stability more generally so
intriguing: answers to seemingly hard questions follow from a few basic computations on
polynomials.

Theorem 5.2.1 (Gurvits). For real stable p ∈ Rγ
+[x1, ..., xn] we have:

Cap(1n−1)

(
∂xkp|xk=0

)
Cap(1n)(p)

≥
(
γk − 1

γk

)γk−1

Proof. We apply Theorem 5.3.10 above for T := ∂xk |xk=0, α := (1n), and β := (1n−1). To
do this we need to compute the right-hand side of the expression in Theorem 5.3.10, making
use of properties from Proposition 5.1.6.

αα(γ − α)γ−α

γγ
Cap(α,β)(Symb+(T )) =

(γ − 1)γ−1

γγ
Cap(1n,1n−1)

(
∂xk(1 + xz)γ|xk=0

)
=

(γ − 1)γ−1

γγ
Cap(1n,1n−1)

(
γkzk

∏
j 6=k

(1 + xjzj)
γj

)

=
(γ − 1)γ−1

γγ
γk
∏
j 6=k

Cap(1,1) ((1 + xjzj)
γj)

Note that Cap(1,1)((1 + xjzj)
γj) = Cap1((1 + xj)

γj). Using the homogenization property and
Lemma 5.1.8, we then have:

Cap1((1 + xj)
γj) = Cap(1,γj−1)((xj + yj)

γj) = γj

(
γj

γj − 1

)γj−1
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Therefore:

αα(γ − α)γ−α

γγ
Cap(α,β)(Symbγ+(T )) =

(γ − 1)γ−1

γγ
γk
∏
j 6=k

Cap(1,1) ((1 + xjzj)
γj)

=
(γ − 1)γ−1

γγ
γk
∏
j 6=k

γj

(
γj

γj − 1

)γj−1

=

(
γk − 1

γk

)γk−1

This proof will serve as a good baseline for other applications of our main theorems.
Roughly speaking, most applications will make use of Lemma 5.1.8 and the properties of
Proposition 5.1.6 in interesting ways. And often, the inequalities obtained will directly
translate to various combinatorial statements.

Specifically, what sorts of combinatorial statements can be derived from Gurvits’ theo-
rem? The most well known are perhaps Schrijver’s theorem and the Van der Waerden bound
on the permanent. We explicitly go through these and other examples now, noting that this
material has essentially been taken from [35]. Our purpose for doing this is to give a few
simpler examples of the use of Theorem 5.3.10 before using it to prove Csikvári’s results.

To make the link between capacity and the combinatorial objects we care about, we
define the following for a given matrix M :

pM(x) :=
∏
i

∑
j

mijxj

Note that this polynomial is real stable whenever the entries of M are nonnegative. The
following is then quite suggestive.

Lemma 5.2.2 (Gurvits). If M is a doubly stochastic matrix, then Cap(1n)(pM) = 1.

With this, we are ready to prove the corollaries of Gurvits’ thoerem.

Corollary 5.2.3 (Schrijver). Let G be a d-regular bipartite graph with 2n vertices. Then the
number of perfect matchings of G is bounded below by:

µn(G) ≥
(

(d− 1)d−1

dd−2

)n
Proof. We apply Theorem 5.3.10 directly, but one could iteratively use Gurvits’ theorem as
well. Let M be the bipartite adjacency matrix for G. Note that d-regularity then implies that
1
d
M is doubly stochastic. Further, the number of perfect matchings of G can be computed

via:
µn(G) = ∂x1 · · · ∂xn|x1=···=xn=0 pM = Cap∅(∂x1 · · · ∂xn|x1=···=xn=0 pM)
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To apply the main theorem to the linear operator T := ∂x1 · · · ∂xn|x1=···=xn=0, we compute:

Cap(1n,∅)(Symb+(T )) = inf
z>0

T [
∏

k(1 + xkzk)
γk ]∏

k zk
= inf

z>0

∏
k γkzk∏
k zk

=
∏
k

γk = γ1

Since pM ∈ R(d,...,d)
+ [x1, ..., xn], we apply the main theorem to obtain:

1

dn
µn(G) = Cap∅(T [pM/d]) ≥

11(γ − 1)γ−1

γγ
· Cap(1n)(pM/d) · Cap(1n,∅)(Symb+(T ))

=
(d− 1)n(d−1)

dnd
· 1 · dn

Rearranging implies the result.

We were able to apply Theorem 5.3.10 directly to the operator T = ∂x1 · · · ∂xn|x1=···=xn=0

because we did not try to take into account the effect of each operator ∂xi |xi=0 individually.
That said, we will need to be more careful for the next corollary.

Corollary 5.2.4 (Falikman, Erorychev). The permanent of a doubly stochastic n×n matrix
is at least n!

nn
.

Proof. We consider pM ∈ R(n,...,n)
+ [x1, ..., xn] as before. Note that the permanent of M can

be computed via:

per(M) = ∂x1|x1=0 · · · ∂xn|xn=0 pM = Cap∅(∂x1|x1=0 · · · ∂xn|xn=0 pM)

A direct application of Gurvits’ theorem gives:

Cap(1n−1)(∂xn|xn=0 pM) ≥ Cap(1n)(pM)

(
n− 1

n

)n−1

=

(
n− 1

n

)n−1

The key observation now is that ∂xn|xn=0 pM is of degree at most n−1 in each of its variables,
by homogeneity. We inductively combine this with Gurvits’ theorem to obtain (here 00 = 1):

per(M) = Cap∅(∂x1|x1=0 · · · ∂xn|xn=0 pM) ≥
n∏
k=1

(
k − 1

k

)k−1

=
n!

nn

Notice that if we had more information about the number and location of nonzero entries
of M , we could potentially strengthen the previous corollary to account for this. In fact, this
can be done and the result is a strengthening of another theorem of Schrijver [57]. Again,
this corollary is already proven by Gurvits in [35].
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Corollary 5.2.5 (Schrijver, Gurvits). Let M be a matrix with nonnegative integer entries
and row sums and column sums all equal to m. We have:

per(M) ≥ m!

(
(m− 1)m−1

mm−2

)n−m
>

(
(m− 1)m−1

mm−2

)n
Proof. We apply a similar argument to that of the previous corollary to obtain the result.
As above:

per(M) = ∂x1|x1=0 · · · ∂xn|xn=0 pM = Cap∅(∂x1|x1=0 · · · ∂xn|xn=0 pM)

Note also that the restriction on the row and column sums implies pM ∈ R(m,...,m)
+ [x1, ..., xn]

and that 1
m
M is doubly stochastic. For the first n−m applications of Gurvits’ theorem, we

do not consider how ∂xi |xi=0 affects the degree:

Cap(1m)(∂xm+1

∣∣
xm+1=0

· · · ∂xn|xn=0 pM/m) ≥ Cap(1n)(pM/m)
n∏

k=m+1

(
m− 1

m

)m−1

=

(
m− 1

m

)(n−m)(m−1)

Since ∂xm+1

∣∣
xm+1=0

· · · ∂xn|xn=0 pM/m ∈ R(m,...,m)
+ [x1, ..., xn], we can then apply the arguments

to Corollary 5.2.4 to obtain:

1

mn
per(M) = Cap∅(∂x1|x1=0 · · · ∂xn|xn=0 pM/m)

≥ Cap(1m)(∂xm+1

∣∣
xm+1=0

· · · ∂xn|xn=0 pM/m)
m!

mm

Combining these inequalities gives:

1

mn
per(M) ≥ m!

mm

(
m− 1

m

)(n−m)(m−1)

=
m!

mm

(
(m− 1)m−1

mm−1

)n−m
Rearranging implies the result.

Notice that this result immediately strengthens Corollary 5.2.3 when M is the bipartite
adjacency matrix of G and m = d. Considering the ideas used here, it is also apparent that
even more specific information about M could lead to further strengthenings of these results.

In addition to these types of inequalities, Gurvits also demonstrates how his theorem
implies similar results for “doubly stochastic” n-tuples of matrices (a conjecture due to
Bapat [3]). In fact, this notion of doubly stochastic aligns with a generalized notion used
recently in [27],[13]. In those papers, doubly stochastic matrices and other similar objects
play a crucial role in defining certain important orbits of actions on tuples of matrices.
Specifically in [27] (or [28]), a version of this idea was used to produce a polynomial time
algorithm for the noncommutative polynomial identity testing problem. A certain notion of
capacity for matrices was quite important in the analysis of their algorithms.
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Imperfect Matchings and Biregular Graphs

The most important application of our results is a new proof of a bound on size-k matchings of
a biregular bipartite graph, due to Csikvári [17]. This result is a generalization of Schrijver’s
bound (Corollary 5.2.3 above), and it also settled and strengthened the Friedland macthing
conjecture [25]. We first state Csikvári’s results, in a form more amenable to the notation
of this thesis.

Theorem 5.2.6 (Csikvári). Let G be an (a, b)-biregular bipartite graph with vertices which
are (m,n)-bipartitioned (so that am = bn is the number of edges of G). Then the number of
size-k matchings of G is bounded as follows:

µk(G) ≥
(
n

k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k

Notice that this immediately implies the following bound for regular bipartite graphs.

Corollary 5.2.7 (Csikvári). Let G be a d-regular bipartite graph with 2n vertices. Then:

µk(G) ≥
(
n

k

)
dk
(
nd− k
nd

)nd−k (
n

n− k

)n−k
To prove these results, we first need to generalize Gurvits’ capacity lemma for doubly

stochastic matrices. Specifically we want to be able to handle (a, b)-stochastic matrices,
which are matrices with row sums equal to a and columns sums equal to b. We care about
such matrices, because the bipartite adjacency matrix of a (a, b)-biregular graph is (a, b)-
stochastic. Note that if M is an (a, b)-stochastic matrix which is of size m×n, then am = bn.

Lemma 5.2.8. If M is an (a, b)-stochastic matrix, then Cap(m
n
,...,m

n
)(pM) = am.

We also need a linear operator which computes the number of size-k matchings of an
(a, b)-biregular bipartite graph. In fact when M is the bipartite adjacency matrix of G, we
have the following:

am−kµk(G) =
∑

S∈([n]
k )

∂Sx pM(1) = Cap∅

 ∑
S∈([n]

k )

∂Sx pM(1)


Note that each differential operator in the sum picks out a disjoint collection of k × k
subpermutations of the matrix M . After applying each differential operator, we are left with
terms which are products of m−k remaining linear forms from pM . Plugging in 1 then gives
am−k (since row sums are a), and this is why that factor appears above.

Next, we need to prove that we can apply Theorem 5.3.10 to the linear operator T :=∑
S∈([n]

k ) ∂
S
x

∣∣
x=1

.
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Lemma 5.2.9. The operator T :=
∑

S∈([n]
k ) ∂

S
x

∣∣
x=1

acting on Rγ[x1, ..., xn] has real stable

symbol.

Proof. Here the input polynomial space is R
(b,...,b)
+ [x1, ..., xn], since degree is determined by

the column sums. Denoting γ := (b, ..., b), we compute Symb+(T ):

T [(1 + xz)γ] =
∑

S∈([n]
k )

∂Sx
∣∣
x=1

(1 + xz)γ

=
∑

S∈([n]
k )

bkzS(1 + z)γ−S

= bk(1 + z)γ−1
∑

S∈([n]
k )

zS(1 + z)1−S

Notice that
∑

S∈([n]
k ) z

S(1+z)1−S =
(
n
k

)
Poln(xk(1+x)n−k), which is real stable by Proposition

2.2.6.

Applying Theorem 5.3.10 now shows us the way toward the rest of the proof. Denoting
γ := (b, ..., b) and α := (m

n
, ..., m

n
), we now have:

am−kµk(G) =
∑

S∈([n]
k )

∂Sx pM(1) ≥ αα(γ − α)γ−α

γγ
Capα(pM) Cap(α,∅)(Symb+(T ))

=

(
(m
n

)
m
n (b− m

n
)b−

m
n

bb

)n

am Capα(Symb+(T ))

=
(ma)m(nb−m)nb−m

(nb)nb
Capα(Symb+(T ))

So the last computation we need to make is that of Capα(Symb+(T )). Fortunately since
Symb+(T ) is symmetric and α = (m

n
, ..., m

n
), we can apply the symmetric diagonalization

property to simplify this computation. Using our previous computation of Symb+(T ), this
gives:

Cap(m
n
,...,m

n
)(Symb+(T )) = Capm

(
bk
(
n

k

)
zk(1 + z)nb−k

)
= bk

(
n

k

)
Capm(zk(1 + z)nb−k)

The remaining capacity computation then follows from homogenization and Lemma 5.1.8:

Capm(zk(1 + z)nb−k) = inf
z>0

zk(1 + z)nb−k

zm

= Capm−k((1 + z)nb−k)

=

(
nb− k
m− k

)m−k (
nb− k
nb−m

)nb−m
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Putting all of these computations together and recalling ma = nb gives:

µk(G) ≥ ak−m
(ma)m(nb−m)nb−m

(nb)nb
bk
(
n

k

)(
nb− k
m− k

)m−k (
nb− k
nb−m

)nb−m
=

(
n

k

)
ak−mbk

(ma)m(nb− k)nb−k

(nb)nb(m− k)m−k

=

(
n

k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k

This is precisely the desired inequality.

Differential Operators in General

We now give general capacity preservation bounds for stability preservers which are differ-
ential operators. This was done in [1] for differential operators which preserve real stability
on input polynomials of all degrees. Here, we restrict to those operators which only preserve
real stability for polynomials of some fixed bounded degree. That said, consider the following
bilinear operator:

(p�γ q)(x) :=
∑

0≤µ≤γ

(∂µxp)(x)(∂γ−µx q)(0)

It is straightforward to see that by fixing q, one can construct any constant coefficient
differential operator on Rγ[x1, ..., xn]. And it turns out that if q is real stable, then (·�γ q)(x)
is a real stability preserver.

It turns out that more is true, however. The operator �γ can actually be applied to
polynomials in R(γ,γ)[x1, ..., xn, y1, ..., yn] by considering this polynomial space as a tensor
product of polynomial spaces. More concretely, we specify how this operator acts on the
monomial basis:

�γ : xµyν 7→ xµ �γ xν

We can then compute the symbol of this operator:

Symb+[�γ] = (1 + xz)γ �γ (1 + xw)γ = (z + w + zwx)γ = (zw)γ(x+ z−1 + w−1)γ

Note that Symb+[�γ](z, w,−x) is real stable, and so �γ preserves real stability by Theorem
2.3.5.

With this, we compute the capacity for γ = (1, 0, ..., 0):

Cap(α,β,δ)(z + t+ ztx) = inf
x,z,t>0

z + t+ ztx

xαzβtδ
= inf

x,z,t>0

t−1 + z−1 + x

xαzβ−1tδ−1
= inf

x,z,t>0

t+ z + x

xαz1−βt1−δ

Note that (α, β, δ) is in the Newton polytope of (z + t+ ztx) iff α = β + δ − 1. By Lemma
5.1.8, we have:

Cap(α,β,δ)(z + t+ ztx) =
1

αα(1− β)1−β(1− δ)1−δ
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We now generalize this to general γ, supposing α = β + δ − γ:

Cap(α,β,δ)((z + t+ ztx)γ) =
n∏
j=1

(
(αj/γj)

αj/γj(1− βj/γj)1−βj/γj(1− δj/γj)1−δj/γj
)−γj

=
n∏
j=1

(αj/γj)
−αj(1− βj/γj)βj−γj(1− δj/γj)δj−γj

= α−α(γ − β)β−γ(γ − δ)δ−γγα−β−δ+2γ

=
γγ

αα(γ − β)γ−β(γ − δ)γ−δ

Applying Theorem 5.3.10, we get:

Capα(p�γ q) ≥ ββδδ(γ − β)γ−β(γ − δ)γ−δ

γγγγ
· γγ

αα(γ − β)γ−β(γ − δ)γ−δ
· Capβ(p) Capδ(q)

=
ββδδ

ααγγ
Capβ(p) Capδ(q)

Again, this is all under the assumption that α = β + δ− γ. (We will be outside the Newton
polytope otherwise, and so the result in that case will be trivial.) We state the result of this
discussion as follows. Note that is can be seen as a sort of multiplicative reverse triangle
inequality for capacity of differential operators.

Corollary 5.2.10. Let p, r be two real stable polynomials of degree γ with positive coefficients.
We have:

(αα Capα(p�γ q)) ≥ 1

γγ
(ββ Capβ(p))(δδ Capδ(q))

With this, we have given tight capacity bounds for all differential operators on polyno-
mials of at most some fixed bounded degree. Note that root bounds of this form are given
in [47] by Marcus, Spielman, and Srivastava, and these bounds are related to those obtained
in their proof of Kadison-Singer in [50]. It is an open and interesting question whether or
not capacity can be utilized to bound the roots of polynomials.

5.3 The Main Inequalities

We now discuss our main results and the inequalities we use to obtain them. These inequali-
ties are bounds on certain inner products applied to polynomials. The most basic of these is
the main result from [1], which applies to multiaffine polynomials. We extend their methods
to obtain bounds on polynomials of all degrees. Finally, a limiting argument implies bounds
for the LP+ class. This last bound can also be found in [1], but the proof we give here is
simpler and makes clearer the connection between these inequalities and the Borcea-Brändén
characterization.
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Inner Product Bounds, Bounded Degree

For polynomials of some fixed bounded degree, we consider the following inner product.

Definition 5.3.1. For fixed γ ∈ Zn+ and p, q ∈ Rγ[x1, ..., xn], define:

〈p, q〉γ :=
∑

0≤µ≤γ

(
γ

µ

)−1

pµqµ

As mentioned above, Anari and Gharan prove a bound on the above inner product for
multiaffine polynomials in [1], and we state their result here without proof. We note though
that the proof is essentially a consequence of the strongly Rayleigh inequalities for real
stable polynomials, which we now state. These fundamental inequalities (due to Brändén)
should be seen as log-concavity conditions, and this intuition extends to all the inner product
bounds we state here. And this intuition is not without evidence: the connection of capacity
to the Alexandrov-Fenchel inequalities (see [32]), as well as to matroids and log-concave
polynomials (see [2]), has been previously noted.

Proposition 5.3.2 (Strongly Rayleigh inequalities [9]). For any real stable p ∈ R(1n) and
any i, j ∈ [n], we have the following inequality pointwise on all of Rn:

(∂xip) · (∂xjp) ≥ p · (∂xi∂xjp)

We now state the Anari-Gharan bound for multiaffine polynomials. They also prove a
weaker bound on polynomials of any degree, but we will discuss this later.

Theorem 5.3.3 (Anari-Gharan). Let p, q ∈ R(1n)
+ [x1, ..., xn] be real stable. Then for any

α ∈ Rn
+ we have:

〈p, q〉(1n) ≥ αα(1− α)1−α Capα(p) Capα(q)

In this chapter, we generalize this to polynomials of degree γ as follows. Note that this
result is strictly stronger than the bound obtained in [1] for the non-multiaffine case.

Theorem 5.3.4. Let p, q ∈ Rγ
+[x1, ..., xn] be real stable. Then for any α ∈ Rn

+ we have:

〈p, q〉γ ≥ αα(γ − α)γ−α

γγ
Capα(p) Capα(q)

The proof of this fact is essentially due to the fact that both 〈·, ·〉γ and capacity interact
nicely with polarization. We have already explicated the connection between capacity and
polarization (see Proposition 5.1.7), and we now demonstrate how these inner products fit
in.

Lemma 5.3.5. Given p, q ∈ Rγ[x1, ..., xn], we have:

〈p, q〉γ = 〈Polγ(p),Polγ(q)〉(1
γ)
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Proof. We compute this equality on a basis in the univariate case. The result then follows
since Polγ is a composition of polarizations on each variable of p. For 0 ≤ k ≤ m we have:〈

Polm(xk),Polm(xk)
〉(1m)

=

(
m

k

)−2 ∑
S∈([m]

k )

〈xS, xS〉(1m) =

(
m

k

)−1

= 〈xk, xk〉m

The proof of Theorem 5.3.4 then essentially follows from this algebraic identity.

Proof of Theorem 5.3.4. Suppose that p, q ∈ Rγ
+[x1, ..., xn] are real stable polynomials. Then

Polγ(p) and Polγ(q) are real stable multiaffine polynomials by Proposition 2.2.6. We now use
the multiaffine bound to prove the result for any α ∈ Rn

+. For simplicity, let β := Polγ(α),
where Polγ(α) is originally defined in §5.1.

〈p, q〉γ = 〈Polγ(p),Polγ(q)〉(1
γ) ≥ ββ(1− β)1−β Capβ(Polγ(p)) Capβ(Polγ(q))

By Proposition 5.1.7, we have that Capβ(Polγ(p)) = Capα(p). So to complete the proof, we
compute:

ββ(1− β)1−β =
n∏
k=1

γk∏
j=1

(
αk
γk

)αk/γk (
1− αk

γk

)1−αk/γk
=

n∏
k=1

(
αk
γk

)αk (γk − αk
γk

)γk−αk
This is precisely αα(γ−α)γ−α

γγ
, which is what was claimed.

Inner Product Bounds, Unbounded Degree

For general polynomials and power series in the LP+ class, we consider the following inner
product.

Definition 5.3.6. For p, q ∈ R[x1, ..., xn] or power series in x1, ..., xn, define:

〈p, q〉∞ :=
∑
0≤µ

µ!pµqµ

Note that this may not be well-defined for some power series.

Consider the following power series in x1, ..., xn, where cµ ≥ 0:

f(x1, ..., xn) =
∑
0≤µ

1

µ!
cµx

µ

Next consider the following weighted truncations of f :

fγ(x) :=
∑

0≤µ≤γ

(
γ

µ

)
cµx

µ
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If f ∈ LP+[x1, ..., xn], then fγ is real stable for all γ and fγ(x/γ) → f(x) uniformly on
compact sets in Cn (see Theorem 5.1 in [7]). The idea then is to limit capacity bounds
for polynomials of some bounded degree to capacity bounds for general polynomials and
functions in the LP+ class.

To do this, we need some kind of continuity result for capacity. Note that Fact 5.1.5 im-
plies Capα(p) is not continuous in α at the boundary of the Newton polytope of p. However,
it turns out Capα(p) is continuous in p, for the topology of uniform convergence on compact
sets. This is discussed in §5.4 more thoroughly, and we now state the main result from that
section.

Corollary 5.4.8. Let pn be polynomials with nonnegative coefficients and p analytic such
that pn → p uniformly on compact sets. For α ∈ Newt(p), we have:

lim
n→∞

Capα pn = Capα p

We now demonstrate the link between the bounded and unbounded degree inner products,
and we will use this to obtain bounds on the latter via limiting.

Lemma 5.3.7. Let f and fγ be defined as above. For any p ∈ R+[x1, ..., xn] we have:

lim
γ→∞
〈fγ, p〉γ = 〈f, p〉∞

Proof. Letting cµ denote the weighted coefficients of f and fγ as above, we compute:

lim
γ→∞
〈fγ, p〉γ = lim

γ→∞

∑
0≤µ≤γ

cµpµ =
∑
0≤µ

cµpµ = 〈f, p〉∞

Notice that the limit here is guaranteed to exist, since p has finite support.

With this, we can bootstrap our capacity bound on 〈·, ·〉γ to get a bound on 〈·, ·〉∞. Notice
here that we achieve the same bound as Anari and Gharan in [1], albeit with a simpler proof.

Theorem 5.3.8 (Anari-Gharan). Fix f ∈ LP+[x1, ..., xn] and any real stable p ∈ R+[x1, ..., xn].
Then for any α ∈ Rn

+ we have:

〈f, p〉∞ ≥ ααe−α Capα(f) Capα(p)

Proof. As above, we write:

f(x) =
∑
0≤µ

1

µ!
cµx

µ fγ(x) =
∑

0≤µ≤γ

(
γ

µ

)
cµx

µ
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By the previous lemma, we have:

〈f, p〉∞ = lim
γ→∞
〈fγ, p〉γ ≥ lim

γ→∞

[
αα(γ − α)γ−α

γγ
Capα(fγ) Capα(p)

]
= αα Capα(p) · lim

γ→∞

[
(γ − α)γ−α

γγ
· inf
x>0

fγ(x/γ)

(x/γ)α

]
= αα Capα(p) · lim

γ→∞

[
(γ − α)γ−α

γγ−α
· Capα(fγ(x/γ))

]
Notice that limγ→∞Capα(fγ(x/γ)) = Capα(f) by Corollary 5.4.8. So we just need to com-
pute the limit of the scaling factor:

lim
γ→∞

(
γ − α
γ

)γ−α
= lim

γ→∞

n∏
k=1

(
1− αk

γk

)γk−αk
=

n∏
k=1

e−αk = e−α

This completes the proof.

From Inner Products to Linear Operators

The main purpose of this section, aside from proving the main technical result of the chapter,
is to demonstrate the power of a certain interpretation of the symbol of a linear operator. We
will show that a simple observation regarding the symbol (which is explicated in more detail
in [41]) will immediately enable us to transfer inner product bounds to bounds on linear
operators. We now state this observation, which could be considered as a more algebraic
definition of the symbol.

Lemma 5.3.9. Let 〈·, ·〉 be either 〈·, ·〉γ or 〈·, ·〉∞, and let Symb+ denote the respective symbol
(see Definition 2.3.1). Let T be a linear operator on polynomials of appropriate degree, and
let p, q ∈ R+[x1, ..., xn] be polynomials of appropriate degree. Then we have the following,
where the inner product acts on the z variables:

T [p](x) = 〈Symb+[T ](z, x), p(z)〉

Proof. Straightforward, as the scalars present in the expressions of 〈·, ·〉 and Symb+ were
chosen such that they cancel out in the above expression. One could compute this on the
monomial basis, for example.

As we will see very shortly, this will make for quick proofs of the main results given the
inner product bounds we have already achieved. Before doing this though, let us discuss
some of the linear operator bounds that Anari and Gharan achieved in [1]. Note the following
differential operator form of 〈·, ·〉∞:

〈p, q〉∞ = q(∂x)q(x)|x=0
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Anari and Gharan then use use their inner product bound to essentially give capacity
preservation results for certain differential operators. Similarly, for multiaffine polynomi-
als 〈p, q〉(1n) = q(∂x)q(x)|x=0, which gives a better bound in the multiaffine case. We now
vastly generalize this idea, with a rather short proof.

Theorem 5.3.10. Let T : Rγ
+[x1, ..., xn] → R+[x1, ..., xm] be a linear operator such that

Symb+(T ) is real stable in z for every x ∈ Rm
+ . Then for any real stable p ∈ Rγ

+[x1, ..., xn],
any α ∈ Rn

+, and any β ∈ Rm
+ we have:

Capβ(T (p))

Capα(p)
≥ αα(γ − α)γ−α

γγ
Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T , α, and β.

Proof. In the proof, let 〈·, ·〉 := 〈·, ·〉γ. By the previous lemma, we have the following for any
fixed x0 ∈ Rn

+. (Here, the inner product acts on the z variables.)

T (p)(x0) = 〈Symb+(T )(z, x0), p(z)〉

Theorem 5.3.4 then implies:

T (p)(x0) = 〈Symb+(T )(z, x0), p(z)〉 ≥ αα(γ − α)γ−α

γγ
Capα(p) · Capα(Symb+(T )(·, x0))

Dividing by xβ0 on both sides and taking inf gives:

inf
x0>0

T (p)(x0)

xβ0
≥ αα(γ − α)γ−α

γγ
Capα(p) · inf

x0>0
inf
z>0

Symb+(T )(z, x0)

zαxβ0

This is the desired result. Tightness then follows from considering input polynomials of the
form p(x) =

∏
k(1 + xkyk) for fixed y ∈ Rn

+, and then taking inf over y.

As stated in the introduction, this is our main technical result, and we have already
discussed some of its applications in §5.2. We give a similar result for linear operators on
polynomials of any degree.

Theorem 5.3.11. Let T : R+[x1, ..., xn] → R+[x1, ..., xm] be a linear operator such that
Symb+(T ) is in LP+[z1, ..., zn] for every x ∈ Rm

+ . Then for any p ∈ R+[x1, ..., xn], any
α ∈ Rn

+, and any β ∈ Rm
+ we have:

Capβ(T (p))

Capα(p)
≥ e−ααα Cap(α,β)(Symb+(T ))

Further, this bound is tight for fixed T , α, and β.

Proof. The proof given above for Theorem 5.3.10 can be essentially copied verbatim.
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We now combine these results with the Borcea-Brändén characterization results (Theorem
2.3.5) to give concrete corollaries which directly relate to stability preservers.

Corollary 5.3.12. Suppose T : Rγ
+[x1, ..., xn] → R+[x1, ..., xm] is a linear operator of rank

greater than 2, such that T preserves real stability. Then Theorem 5.3.10 applies to T .

Proof. Since the image of T is of dimension greater than 2, Theorem 2.3.5 implies one of
two possibilities:

1. Symb+[T ] is real stable.

2. Symb+[T ](z1, ..., zn,−x1, ...,−xn) is real stable.

In either case, we have that Symb+[T ] is real stable in z for every fixed x ∈ Rm
+ (see

Proposition 2.2.4). Therefore Theorem 5.3.10 applies.

Corollary 5.3.13. Suppose T : R+[x1, ..., xm] → R+[x1, ..., xm] is a linear operator of rank
greater than 2, such that T preserves real stability. Then Theorem 5.3.11 applies to T .

Proof. The same proof works, using the BB characterization for linear operators on polyno-
mials of all degrees.

5.4 Continuity of Capacity

In this section, we discuss the continuity of capacity as a function of the the input polynomial
p. The main result of this section allows us to limit inner product bounds from 〈·, ·〉γ to
〈·, ·〉∞, which is exactly how we proved Theorem 5.3.8.

Given a (positive) discrete measure µ on Rn, we define its generating function as:

pµ(x) :=
∑

κ∈supp(µ)

µ(κ)xκ

We further define the log-generating function of µ as:

Pµ(x) := log(pµ(exp(x))) = log
∑

κ∈supp(µ)

µ(κ) exp(x · κ)

More generally for such a function p(x), we will write:

p(x) :=
∑
κ

pκx
κ

P (x) := log(p(exp(x))) = log
∑
κ

pκ exp(x · κ)
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We care about discrete measures (with not necessarily finite support) whose generating
functions are convergent and continuous on Rn

+. This is equivalent to the log-generating
function being continuous on Rn. Note that an important example of such a measure is
one which has finite support entirely in Zn+. The generating functions of such measures are
polynomials.

From now on we will write supp(p) = supp(P ) to denote the support of µ and Newt(p) =
Newt(P ) to denote the polytope generated by its support. We first give a few basic results.

Fact 5.1.5. For p a continuous generating function, the following are equivalent.

1. α ∈ Newt(p)

2. Capα p(x) > 0

3. P (x)− α · x is bounded below.

Lemma 5.4.1. Any continuous log-generating function Q(x) is convex in Rn.

Proof. Hölder’s inequality.

Note that proving statements for p is essentially the same as proving for P , as suggested
in the following lemma.

Lemma 5.4.2. Let p, pn be continuous generating functions. Then pn → p uniformly on
compact sets of Rn

+ iff Pn → P uniformly on compact sets of Rn.

Proof. Equivalence of pn → p and exp(Pn)→ exp(P ) follows form the fact that exp : Rn
+ →

Rn is a homeomorphism (and so gives a bijection of compact sets). The fact that exp and
log are (uniformly) continuous on every compact set in their domains then completes the
proof.

We now get the first half of the desired equality, which is the easier half.

Lemma 5.4.3. With p, pn continuous generating functions and pn → p uniformly on compact
sets, we have:

lim
n→∞

inf pn ≤ inf p

Proof. Let (xm) ⊂ Rn
+ be a sequence such that p(xm) → inf p. For each m we have that

pn(xm) is eventually near to p(xm). So for any fixed ε > 0, we have the following for m = m(ε)
and n ≥ N(ε,m):

inf pn ≤ pn(xm) ≤ p(xm) + ε ≤ inf p+ 2ε

The result follows by sending ε→ 0.

We now set out to prove the second half of the desired equality, the difficulty for which
arises whenever α is on the boundary of Newt(p).



CHAPTER 5. POLYNOMIAL CAPACITY AND BIPARTITE GRAPHS 88

Lemma 5.4.4. Suppose 0 is in the interior of Newt(p). Then inf P is attained precisely on
some compact convex subset K of Rn.

Proof. By a previous lemma, inf P is finite. Suppose xn is an unbounded sequence (with
monotonically increasing norm) such that P (xn) limits to inf P . By compactness of the n-
dimensional sphere, we can assume by restricting to a subsequence that xn

||xn|| limits to some

u. Pick ε > 0 small enough such that εu ∈ Newt(p), and consider P (x) − εu · x. We then
have:

lim
n→∞

P (xn)− εu · xn = lim
n→∞

P (xn)− ε||xn||
(
u · xn
||xn||

)
= −∞

However, since εu ∈ Newt(p) we have that P (x)− εu · x is bounded below, a contradiction.
So, every sequence limiting to inf P is bounded, and therefore inf P is attained on a bounded
set. By convexity of P , this set is convex.

The next few results then finish the proof of continuity of Capα(·) under certain support
conditions.

Proposition 5.4.5. Let p and pn be continuous generating functions such that pn → p, with
0 in the interior of Newt(p). Then:

lim
n→∞

inf pn = inf p

Proof. Given the above lemma, we only have the ≥ direction left to prove. Since 0 is in the
interior of Newt(p), there is some compact convex K ⊂ Rn such that P (x) = inf P iff x ∈ K.
Further, this implies that for any compact set K ′ whose interior contains K, there exists
c0 > 0 such that P (x) > inf P + c0 on the boundary of K ′. For any fixed positive ε < c0

2
and

large enough n, we then have:

|Pn − P | < ε <
c0

2
in K ′ =⇒ |Pn − inf P | < ε <

c0

2
in K

Pn > inf P + (c0 − ε) > inf P +
c0

2
on the boundary of K ′

Convexity of Pn then implies Pn(x) > inf P + c0
2

outside of K ′. Therefore for any ε and large
enough n:

inf Pn = inf
x∈K′

Pn ≥ inf P − ε

Letting ε→ 0 gives the result.

We now set out to prove a similar statement whenever 0 is on the boundary on Newt(p).
This ends up needing a bit more restriction.

Lemma 5.4.6. Suppose 0 is on the boundary on Newt(P ). Then there exists A ∈ SOn(R)
such that:

Newt(A · P ) ⊂ {κ : κn ≥ 0}
inf (A · P )|xn=−∞ = inf P
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Proof. Since 0 is on the boundary of the convex set Newt(P ), a separating hyperplane gives
a unit vector c such that (c|µ) ≥ 0 for all µ ∈ Newt(P ). Let A ∈ SOn(R) be such that
Ac = en. We first have:

inf A · P = inf P (A−1x) = inf P

Since Newt(A · P ) = A · Newt(P ) and (en|Aµ) = (c|µ) ≥ 0 for every µ ∈ Newt(P ), we have
that Newt(A · P ) ⊂ {κ : κn ≥ 0}. Therefore:

inf (A · P )|xn=−∞ = inf A · P = inf P

Note that (A · P )|xn=−∞ denotes the continuous log-generating function given by the terms
κ of the support of A · P for which κn = 0. This is justified, as Newt(A · P ) ⊂ {κ : κn ≥ 0}
implies that A · P decreases as xn decreases (and we care about inf).

Theorem 5.4.7. Let p and pm be continuous generating functions such that pm → p, with
0 ∈ Newt(p). Suppose further that eventually Newt(pm) ⊆ Newt(p). Then:

lim
m→∞

inf pm = inf p

Proof. Given the above proposition, we only need to prove this in the case where 0 is on
the boundary of Newt(p). In that case, the previous lemma gives an A ∈ SOn(R) such that
Newt(A ·P ) ⊂ {κ : κn ≥ 0} and inf (A · P )|xn=−∞ = inf P . Since Pm → P implies A ·Pm →
A · P , we now relax to proving limm→∞ inf A · Pm = inf A · P . By assumption, eventually
Newt(Pm) ⊆ Newt(P ) which implies Newt(A ·Pm) ⊆ Newt(A ·P ) ⊂ {κ : κn ≥ 0}. So, even-
tually Newt((A · Pm)|xn=−∞) ⊆ Newt((A · P )|xn=−∞) and inf A · Pm = inf (A · Pm)|xn=−∞.
By induction on the number of variables, we then have:

lim
m→∞

inf A · Pm = lim
m→∞

inf (A · Pm)|xn=−∞ = inf (A · P )|xn=−∞ = inf A · P

For the base case, pm and p are scalars and the result is trivial.

Corollary 5.4.8. Let pn be polynomials with nonnegative coefficients and p analytic such
that pn → p, with α ∈ Newt(p). Then:

lim
n→∞

Capα pn = Capα p

Proof. As in the previous proposition, we only have the ≥ direction to prove. Let qn be
defined as the sum of the terms of pn which appear in the support of p. Since the pn are
polynomials with nonnegative coefficients, we have that qn → p. By the previous theorem,
we then have:

lim
n→∞

Capα pn ≥ lim
n→∞

Capα qn = Capα p

Note that the fact that qn → p holds after restricting to the support of p relies on the
fact that pn and qn are polynomials with positive coefficients. This is the main barrier to
generalizing this corollary to all continuous generating functions.
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5.5 Concluding Remarks

We have given here tight bounds on capacity preserving operators related to real stable
polynomials. These results are essentially corollaries of inner product bounds, extended
from bounds of Anari and Gharan, all eventually based on the strong Rayleigh inequalities.
That said, there are a number of pieces of this that may be able to be altered or generalized,
and this raises new questions.

The first is that of the inner product: are there other inner products for which we can
obtain bounds? The main conjecture in this direction is that of Gurvits in [33].

Conjecture 5.5.1 (Gurvits). Let p, q ∈ R+[x1, ..., xn] be homogeneous real stable polynomials
of total degree d. Then:

∑
|µ|=d

(
d

µ

)−1

pµqµ ≥
αα

dd
Capα(p) Capα(q)

The main difference here is that we use multinomial coefficients rather than products of
binomial coefficients. Note that the symbol operator associated to this inner product is given
by T [(z · x)d] (dot product of z and x). It is not immediately clear how this inner product
relates to real stable polynomials, as the link to stability preservers is less clear than in the
Borcea-Brändén case.

The next is the class of polynomials: are there more general classes of polynomials for
which weaker capacity bounds can be achieved? One such bound is achieved for completely
log-concave polynomials in [2], and this class contains basis generating polynomials of ma-
troids. This bound relies on a weakened version of the strong Rayleigh inequalities, where a
factor of 2 is introduced. It is unclear what applications such a bound has beyond those of
[2].

The last is a question about the further applicability of the main results of this chapter. In
particular, all of the operators studied here are differential operators. Are there applications
of non-differential operators? Also, are there ways to get a handle on the location of the
roots of a polynomial via capacity? This second question is of particular interest, as it may
lead to a more unified and a direct approach to various root bounding results. For example,
the root bounds of [47] are at the heart of the proof of Kadison-Singer in [50]. Can capacity
be used to achieve those bounds?
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Chapter 6

The Independence Polynomial

Given a graph G = (V,E), the matching polynomial of G and the independence polynomial
of G are defined as follows.

µ(G) :=
∑
M⊂E

M,matching

(
−x2

)|M |
I(G) :=

∑
S⊂V

S,independent

x|S|

The real-rootedness of the matching polynomial and the Heilmann-Lieb root bound are im-
portant results in the theory of undirected simple graphs. In particular, real-rootedness
implies log-concavity and unimodality of the matchings of a graph, and recently in [52] the
root bound was used to show the existence of Ramanujan graphs. Additionally, it is well-
known that the matching polynomial of a graph G is equal to the independence polynomial
of the line graph of G. With this, one obtains the same results for the independence poly-
nomials of line graphs. This then leads to a natural question: what properties extend to the
independence polynomials of all graphs?

About a decade ago, Chudnovsky and Seymour [15] established the real-rootedness of the
independence polynomial for claw-free graphs. (The independence polynomial of the claw is
not real-rooted.) A general root bound for the independence polynomial was also given by
[23], though it is weaker than the Heilmann-Lieb bound. As with the original results, these
generalizations are proven using univariate polynomial techniques.

In this chapter, we prove a result related to the real-rootedness of certain weighted inde-
pendence polynomials. This result was originally proven by Engström in [18] by bootstrap-
ping the Chudnovsky and Seymour result for rational weights and using density arguments.
Further, we then extend the Heilmann-Lieb root bound by generalizing some of Godsil’s
work on the matching polynomial. In particular his arguments extend to the multivariate
matching polynomial, and we determine conditions for which these divisibility results ex-
tend to the multivariate independence polynomial. We also prove the Heilmann-Lieb bound
for the independence polynomial of a certain subclass of claw-free graphs, and also give a
claw-free counterexample (Schläfli graph) to this bound.
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6.1 Same-phase Stability

We now introduce a new notion of stability. Notice that the connection between the following
conditions is somewhat similar to that which is given by Proposition 2.2.2.

Definition 6.1.1. A polynomial p ∈ R[z1, ..., zn] is said to be same-phase stable if one of
the following equivalent conditions is satisfied.

(i) For every α ∈ Rn
+, the univariate restriction p(αz) is stable (and therefore real rooted).

(ii) If arg(z1) = arg(z2) = · · · = arg(zn), then p(z1, ..., zn) = 0 implies zk 6∈ H+ for some k.

We will primarily make use of condition (i).

This notion is strictly weaker than that of “stable”, and it will serve as the basic concept
in what follows (as stability and real stability did in the previous section). Next, we define
a notion of compatibility for real same-phase stable polynomials, which is similar to that of
Chudnovsky and Seymour in [15].

Definition 6.1.2. Polynomials p1, ..., pm ∈ R+[z1, ..., zn] with non-negative coefficients are
said to be same-phase compatible if pk is same-phase stable for all k, and the polynomials
{pk(αz)}mk=1 are compatible for each α ∈ Rn

+. Note that by Theorem 2.2.16, we could instead
require {pk(αz)}mk=1 have a common interlacing for each α ∈ Rn

+.

Remark 6.1.3. In order to utilize the theory of interlacing and compatible polynomials,
we need to assume that the polynomials we are using have nonnegative coefficients. This
is because results like Theorem 2.2.16 no longer hold if negative or complex coefficients are
allowed. That said, this restriction is not required to define same-phase stable polynomials,
and many other properties also hold without it.

We now can apply Chudnovsky and Seymour’s equivalence result (Theorem 2.2.16) to
get the following:

Corollary 6.1.4. Let p1, . . . , pk ∈ R+[z1, ..., zn] be polynomials with nonnegative coefficients.
The following are equivalent.

1. pi and pj are same-phase compatible for all i 6= j.

2. p1, ..., pk are same-phase compatible.

Same-phase Stability for Multi-affine Polynomials

We now begin to develop a general theory of same-phase stability for multi-affine real polyno-
mials. This class of polynomials is of particular importance here, as most multivariate graph
polynomials are real and multi-affine. We start by giving some basic closure properties, in
the vein of Proposition 2.2.4.
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Proposition 6.1.5 (Closure Properties). Let p ∈ R[z1, ..., zn] and q ∈ R[w1, ..., wm] be multi-
affine same-phase stable polynomials, and fix k ∈ [n]. Then the following are also multi-affine
same-phase stable. Note that if in addition p and q have nonnegative coefficients, then the
following do as well.

(i) p · q (disjoint product)

(ii) ∂zkp (differentiation)

(iii) zk∂zkp (variable selection)

(iv) p(z1, ..., zk−1, 0, zk+1, ..., zn) (variable deselection)

(v) z1z2 · · · znp(z−1
1 , ..., z−1

n ) (selection inversion)

Proof. (i) Straightforward.
(ii) Fix α ∈ Rn

+, letting αk vary. Also, define α′ := (α1, ..., α̂k, ..., αn). So, p(αz) is
real-rooted for any αk ∈ R+. By Hurwitz’s theorem,

(∂zkp)(α
′z) = lim

αk→∞
α−1
k p(αz)

is also real-rooted. So, ∂zkp is same-phase stable.
(iii) This follows from (i), since (zk∂zkp)(αz) = αkz(∂zkp)(α

′z) is real-rooted iff (∂zkp)(α
′z)

is.
(iv) For any α ∈ Rn

+ with αk = 0, we have that p(α1z, ..., αk−1z, 0, αk+1z, ..., αnz) = p(αz)
is real-rooted by definition of same-phase stability.

(v) Given α ∈ Rn
+ with strictly positive entries, we have that p(α−1z) has real roots,

say at γ1, . . . , γm. So, znp(α−1z−1) = α1z . . . αnz · p((α1z)−1, . . . , (αnz)−1) has real roots at
γ−1

1 , . . . , γ−1
m . Of course, some of these inverse zeros may be missing when some γj = 0, and

there may be extra zeros at z = 0. However, this will not affect the real-rootedness of the
inverted polynomial. Hurwitz’s theorem then allows us to limit to all α ∈ Rn

+.

The names given to some of the closure properties are specific to multi-affine polynomials.
In particular, “variable selection” (resp. “variable deselection”) refers to the fact that the
associated actions will pick out the terms of p which contain (resp. do not contain) a
particular variable. Then, “selection inversion” inverts which terms contain which variables.
The idea here is to give a combinatorial interpretation to these actions. For example, if the
variables correspond to vertices on some graph, then variable deselection might correspond
to removal of some vertex.

The next definition is inspired by p+ zn+1q used in [7], Lemma 1.8. The proposition that
follows then relates this definition to multi-affine polynomials.
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Definition 6.1.6. Let p, f0, f1, ..., fm ∈ R[z1, ..., zn] be polynomials, not necessarily multi-
affine, such that

p = f0 + zi1f1 + · · ·+ zimfm.

We call such an expression a proper splitting of p (with respect to {zij}j) if none of the fk’s
depend on any of the zij ’s. We also say that {zij}mj=1 splits p.

Proposition 6.1.7. Let p ∈ K[z1, ..., zn] be a multi-affine polynomial, and suppose {zij}mj=1

splits p. Then p has a unique proper splitting with respect to {zij}j, expressed as

p = p0 +
m∑
j=1

zij∂zij p,

where p0 is the polynomial p with the variables {zij}j evaluated at 0.

Another way to think about this proposition is as follows. For a multi-affine polynomial
p ∈ K[z1, ..., zn], we have that {zij}mj=1 splits p iff no term of p contains more than one
variable from {zij}mj=1. This naturally leads to the use of “variable selection” (zij∂zij p) and

“variable deselection” (p0) in the decomposition of p into the above sum of polynomials.
We now reach the main theorem of this section. As mentioned before, this can be seen

as a loose analogue of the stability equivalence theorem of Borcea and Brändén in [7].

Theorem 6.1.8. Let p ∈ R+[z1, ..., zn] be a multi-affine polynomial with nonnegative coeffi-
cients. The following are equivalent.

(i) The polynomial p is same-phase stable.

(ii) Given any proper splitting

p = f0 +
m∑
j=1

zijfj

we have that f0, zi1f1, ..., and zimfm are same-phase compatible.

(iii) There exists some proper splitting

p = f0 +
m∑
j=1

zijfj

such that f0, zi1f1, ..., and zimfm are same-phase compatible.

Proof. (i) ⇒ (ii) Let p = f0 +
∑m

j=1 zijfj be a proper splitting of p. By uniqueness of
the proper splitting, f0 is the polynomial p with variables {zij} evaluated at 0, and zijfj =
zij∂zij p. So, by closure properties, each of f0, zi1f1, ..., and zimfm is same-phase stable. Now,
fix α ∈ Rn

+ and β ∈ Rm
+ , and let βα be defined as:

(αβ)i :=

{
βjαij , i = ij
αi, i 6∈ {ij}mj=1
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That is, βα is obtained by multiplying the ij’th entry of α by βj for all j ∈ [m]. With this,
same-phase stability of p implies

(
1 +

∑
j

βj
)−1

p(βαz) =
f0(αz) +

∑
j βj[αijzfj(αz)]

1 +
∑

j βj

is real-rooted for every choice of β, which means every convex combination of f0(αz),
αi1zf1(αz), ..., and αimzfm(αz) is real-rooted. So, f0(αz), αi1zf1(αz), ..., and αimzfm(αz)
have a common interlacing. Since α was arbitrary, this implies f0, zi1f1, ..., and zimfm are
same-phase compatible.

(ii) ⇒ (iii) This is trivial, given the existence of some proper splitting. In particular,
p = p(0, z2, ..., zn) + z1∂z1p is always a proper splitting for multi-affine p.

(iii) ⇒ (i) Fix α ∈ Rn
+. Same-phase compatibility of f0, zi1f1, ..., and zimfm implies

f0(αz), zf1(αz), ..., and zfm(αz) have a common interlacing. So,

(
1 +

∑
j

αij
)−1

p(αz) =
f0(αz) +

∑
j αijzfj(αz)

1 +
∑

j αij

is real-rooted. Since α was arbitrary, this implies p is same-phase stable.

The power of this statement comes from the fact that same-phase compatibility of any
particular splitting implies same-phase compatibility of every possible splitting. We will use
this to our advantage in an inductive argument to follow.

6.2 Multivariate Graph Polynomials and Stability

In this section, we discuss the multivariate analogues of the independence and matching
polynomials. Though somewhat counterintuitive, considering the multivariate versions of
these polynomials actually simplifies the situation. In the multivariate world, one can directly
manipulate how particular vertices and edges influence the polynomial by manipulating the
associated variable. And further, these polynomials are multiaffine: important operations
like differentiation and evaluation at 0 have intuitive interpretations.

Notions like real-rootedness and root bounds become trickier in the multivariate world,
but real stability and similar notions can often play the analogous parts. This is true for
the multivariate matching polynomial and somewhat true for the multivariate independence
polynomial, as we will see below. But first, let’s set up some notation.

The Matching Polynomial

The univariate and multivariate matching polynomials have been well studied. In 1972,
Heilmann and Lieb proved that for any graph the multivariate matching polynomial is real-
stable. This implies the real-rootedness of the univariate matching polynomial, and in fact
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Heilmann and Lieb gave bounds on its largest root. More recently, Choe, Oxley, Sokal, and
Wagner [14] gave a simpler proof of this fact using a special linear operator on polynomials,
called the “multi-affine part”. We their proof below.

First though, we define and discuss a few multivariate matching polynomials. The reader
should be aware that our notation will be slightly different from that which is standard; we
do this to emphasize the connection between the matching and independence polynomials.
We give examples of all these polynomials in Figure 6.1.

Given any graph G, we define the multi-affine vertex matching polynomial of G as follows.

µV (G) ≡ µV (G)(x) :=
∑
M⊂E

M,matching

∏
{u,v}∈M

−xuxv

Notice that the univariate restriction of µV (G) is the univariate matching polynomial used
by Godsil and Heilmann-Lieb, but with the degrees inverted. So, for instance, Heilmann and
Lieb’s upper bound on the absolute value of the roots of the matching polynomial would
translate to a bound away from zero for this inverted polynomial. We will discuss this further
later. We also define the multiaffine edge matching polynomial of G as follows.

µE(G) ≡ µE(G)(x) :=
∑
M⊂E

M,matching

∏
e∈M

xe

We now give the proof of real stability of the vertex matching polynomial, and show its
connection to the edge matching polynomial.

Theorem 6.2.1 ([36], [14], [8]). For any graph G, the vertex matching polynomial µV (G) is
real stable.

Proof. Let MAP (“Multi-Affine Part”) denote the linear operator on multivariate polynomi-
als which removes any terms which are not multi-affine. By [8], this operator preserves real
stability. We then have the following.

µV (G)(x) = MAP

 ∏
{u,v}∈E

(1− xuxv)


Since (1− xuxv) is real stable and the product of real stable polynomials is real stable, this
implies the result.

This then implies real-rootedness of the univariate matching polynomial via univariate
restriction. As for the edge matching polynomial, we don’t quite have real stability. How-
ever, we do have same-phase stability, which still implies real-rootedness of the univariate
restriction.

Corollary 6.2.2. For any graph G, the edge matching polynomial µE(G) is same-phase
stable.



CHAPTER 6. THE INDEPENDENCE POLYNOMIAL 97

Proof. Let Π↓ be the projection operator, which sends all variables xv to a single variable x.
Fixing (αe)e∈E ∈ R|E|+ , we have the following.

µE(G)(−αx2) =
∑
M⊂E

M,matching

∏
e∈M

−αex2 = (Π↓ ◦MAP)

 ∏
{u,v}∈E

(1− αexuxv)


By closure properties of real stability and the fact that αe > 0 implies (1 − αexuxv) is real
stable, the right-hand side of the above equation is real-rooted. So, µE(G)(−αx2) is real-
rooted, which implies µE(G)(αx) is real-rooted. (In fact, it has all its roots on the negative
part of the real line.) Since α was arbitrary, this implies the result.

It’s well-known that matchings of graphs are related to independent sets of line graphs.
This connection is made particularly clear by considering the (multivariate) edge matching
polynomial, as we will see in the next section.

The Independence Polynomial

The univariate independence polynomial of a graph is another well-studied graph polyno-
mial. However, consideration of its roots has proven a bit more difficult. For example,
the independence polynomial of a graph is not real-rooted in general, and it has only been
about a decade since the first proof of real-rootedness for claw-free graphs was published in
[15]. Since then a number of proofs of real-rootedness have appeared, along with interesting
results about location and modulus of certain roots ([22], [12], [40], [5]).

Here, we give another proof of real-rootedness for claw-free graphs by proving something
stronger: namely, that the multivariate independence polynomial of a graph is same-phase
stable if and only if the graph is claw-free. In their original proof, Chudnovsky and Seymour
show real-rootedness using an intricate recursion based on a combinatorial structure known
as a “simplicial clique”. By encoding the recursive compatibility using our notion of same-
phase stability, we are able to avoid the introduction of simplicial cliques and use simpler
graph structures in the recursion. Same-phase stability of the edge matching polynomial
then serves as the base case.

Before giving this proof, we need to set up the relevant notation. Given any graph G, we
define the multi-affine independence polynomial of G as follows.

I(G) ≡ I(G)(x) :=
∑
S⊂V

S,independent

∏
v∈S

xv

Stability properties of the multivariate independence polynomial have been previously
studied by Scott and Sokal. In [59], they observe this polynomial as a specific case of a more
general statistical-mechanical partition function, and generic lower bounds on the modulus
of the roots are studied. In particular, the Lovász local lemma is used to give a universal
lower bound of 1

e·∆ , where ∆ is the maximum degree of G.
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ab
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d e
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µE(C6, x) = 1 + xab + xbc + xcd + xde + xef + xfa +
xabxcd + xabxde + xabxef + xbcxde + xbcxef + xbcxfa +
xcdxef + xcdxfa + xdexfa + xabxcdxef + xbcxdexfa

µV (C6, x) = 1− xaxb − xbxc − xcxd − xdxe − xexf −
xfxa +xaxbxcxd +xaxbxdxe +xaxbxexf +xbxcxdxe +
xbxcxexf + xbxcxfxa + xcxdxexf + xcxdxfxa +
xdxexfxa − xaxbxcxdxexf − xbxcxdxexfxa

I(C6, x) = 1 + xa + xb + xc + xd + xe + xf + xaxc +
xaxd + xaxe + xbxd + xbxe + xbxf + xcxe + xcxf +
xdxf + xaxcxe + xbxdxf

Figure 6.1: A small graph C6 with associated independence polynomial, vertex/edge matching poly-
nomials.

As discussed in the notation above, for a given graph G we denote the line graph of G
by L(G). Since line graphs are claw-free, we have the following first step toward the desired
result.

Corollary 6.2.3. For any graph G, the independence polynomial I(L(G)) of the line graph
of G is same-phase stable.

Proof. By considering the fact that the operator L maps edges to vertices and shared vertices
to edges, we actually have the following identity.

µE(G) = I(L(G))

The previous corollary gives the desired result.

Of course, this is quite far from the claim that all claw-free graphs are same-phase stable.
However, as it turns out, line graphs will serve a base case in our induction on general claw-
free graphs. To illustrate this, we first give the following lemma.

Lemma 6.2.4. Let G be a connected claw-free graph which is also triangle-free. Then, G is
either a path or a cycle. In particular, G is a line graph.

Proof. Given a vertex v ∈ G, if the degree of v is greater than 2 then we get either a claw
with v as the base or a triangle. We conclude that a graph which is connected, claw-free,
and triangle-free is equivalent to being connected and triangle-free with all vertices degree 1
or 2.

With this, we now give the proof of same-phase stability for claw-free graphs, using the
theory of same-phase compatibility developed above. As mentioned in the introduction, this
result is a reformulation of a theorem of Engström given in [18].
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Theorem 6.2.5 (Engström). For any claw-free graph G, the independence polynomial I(G)
is same-phase stable.

Proof. We induct on the number of vertices. If G is disconnected, then its independence
polynomial is the product of the independence polynomials of its connected components. The
inductive hypothesis on components of G (along with the disjoint product closure property
for same-phase stable polynomials) then implies the result for G. If G is connected and
contains no 3-cliques (triangles), then G is a line graph by the previous lemma. The line
graph corollary then implies the result for G. If neither of these conditions is satisfied, then
G is a connected graph with at least one 3-clique. Let u, v, w denote the vertices of this
3-clique.

In the independence polynomial I(G), let the variables zu, zv, zw represent the vertices
u, v, w, respectively. Consider the following expressions, which are all equal to I(G).

I(G)|u=v=w=0 + zu∂zuI(G) + zv∂zvI(G) + zw∂zwI(G)

I(G \ {u, v, w}) + zuI(G \N [u]) + zvI(G \N [v]) + zwI(G \N [w])

[I((G \ {u}) \ {v, w}) + zvI((G \ {u}) \N [v]) + zwI((G \ {u}) \N [w])] + zuI(G \N [u])

[I((G \ {v}) \ {u,w}) + zuI((G \ {v}) \N [u]) + zwI((G \ {v}) \N [w])] + zvI(G \N [v])

[I((G \ {w}) \ {u, v}) + zuI((G \ {w}) \N [u]) + zvI((G \ {w}) \N [v])] + zwI(G \N [w])

The square-bracketed sections of the last three expressions are proper splittings of I(G\{u}),
I(G \ {v}), and I(G \ {w}), respectively. By the inductive hypothesis and the same-phase
stability theorem, these proper splittings have terms which are same-phase compatible. So,
the terms of the first expression of I(G) are pairwise same-phase compatible. By Corollary
6.1.4, we have that all the terms of the first expression are same-phase compatible. These
terms give a proper splitting of I(G), and so Theorem 6.1.8 implies I(G) is same-phase
stable.

An interesting feature of the above proof is the fact that the inductive step did not use
the fact that G is claw-free. This suggests that perhaps the theorem can be extended to
certain clawed graphs. However, the following corollary shows that this is not the case.

Corollary 6.2.6. For any graph G, the independence polynomial I(G) is same-phase stable
if and only if G is claw-free (3-star-free).

Proof. By the above theorem, we only need to show that the independence polynomial of a
graph with a claw is not same-phase stable. To get a contradiction, let G be a graph such
that the vertices u, v, w, x form a claw, and yet I(G) is same-phase stable. Let p(zu, zv, zw, zx)
be the polynomial obtained by evaluating I(G) at zero for all other variables (besides zu, zv,
zw, and zx). By closure properties, p is also same-phase stable. With this we compute p(αz)
for α = (1, 1, 1, 1):

p(z, z, z, z) = 1 + 4z + 3z2 + z3

This polynomial is not real-rooted, which gives the desired contradiction.
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With this equivalence in mind, one might wonder for what smaller class of graphs the
independence polynomial is actually real stable. A somewhat surprising result is the follow-
ing.

Proposition 6.2.7. For any connected graph G, the independence polynomial I(G) is real
stable if and only if G is complete (2-star-free).

Proof. If G is a complete graph, then the independence polynomial of G is 1 +
∑

v∈V xv,
which is real stable. On the other hand, suppose G is some connected incomplete graph such
that I(G) is real stable. By incompleteness and connectedness, G contains an induced path
P of length at least 2. (E.g., consider the shortest path between two non-adjacent vertices.)
In fact, we can assume P is of length exactly 2 by removing all but 3 consecutive vertices.
Notice that P is now an induced 2-star. Evaluating I(G) at 0 the variables xv for which
v 6∈ P , we obtain I(P ), the independence polynomial of P . Closure properties imply I(P )
is real stable.

Labeling the vertices of P as u, v, w, we then have

I(P )(x) = 1 + xu + xv + xw + xuxw,

which, for x′ = (−1, 1,−1), gives

∂xuI(P )(x′) · ∂xwI(P )(x′) = 0 < 1 = ∂xuxwI(P )(x′) · I(P )(x′).

That is, I(P ) is not strongly Rayleigh. So, I(P ) is not real stable, which is the desired
contradiction.

6.3 Root Bounds

In addition to proving real rootedness of the matching polynomial, Heilmann and Lieb
established bounds on the modulus of roots of the matching polynomial. Since we use the
inverted matching polynomial, this result bounds the roots, λ, of µV (G) away from zero:

|λ| ≥ 1

2
√

∆− 1

Since µV (G)(x) = I(L(G))(−x2) this result can be stated equivalently as a bound on the
root closest to zero, λ1, for the independence polynomial of line graphs. To do this note that
the maximum degree, ∆, of a graph is equal to the clique size, ω, of its line graph.

λ1(I(L(G))) ≤ 1

4(ω − 1)

Since all line graphs are claw-free graphs, we can seek out similar bounds for the inde-
pendence polynomial of claw-free graphs. In what follows, we adapt the methods of Godsil
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to determine such root bounds for a certain subclass of claw-free graphs, namely those which
contain a simplicial clique. (Although we were able to avoid simplicial cliques in the proof of
real-rootedness, they turn out to be crucial to generalizing the Heilmann-Lieb root bound.)
We then discuss how the bound does not extend to all claw-free graphs.

To this end, we first discuss Godsil’s original divisibility result which was key to his proof
of the Hielmann-Lieb root bound. We do this in the multivariate world, though, so as to
provide context for the later results on the independence polynomial.

Path Trees

A basic element of Godsil’s proof of the root bound is the notion of a path tree of a graph.
We now define this notion as he did, and subsequently discuss what needs to be altered in
order to apply it to the multivariate matching polynomial.

Definition 6.3.1. Given a graph G and vertex v, we define the (labeled) path tree Tv(G) of
G with respect to v recursively as follows. If G is a tree, we define Tv(G) = G, and we say
that v is the root of Tv(G). We also label the vertices of Tv(G) using the vertices of G. (In
the recursive step, we will continue to label using vertices of G.)

For an arbitrary graph G, we first consider the forest which is the disjoint union of the
labeled trees Tw(G \ {v}) for each w ∈ N(v). We then define Tv(G) by appending a vertex
(the root) labeled v and connecting it to the roots of each of these trees.

Remark 6.3.2. Figure 6.2 gives an example of a path tree. Note that it is defined in such
a way that the paths stemming from v in G and from the root, v in Tv(G), are in order
preserving bijection (where the order on paths is the subpath ordering).

In Godsil’s proof of the root bound for the matching polynomial, he shows that the uni-
variate vertex matching polynomial of G divides that of Tv(G) for any v. In the multivariate
world, this divisibility relation won’t be possible, a priori, since there are potentially far
more vertices (and hence, variables) in Tv(G) than in G. However, using the labeling of the
vertices described above, we can in fact extend this divisibility result. We now formalize this
notion of labeling, so as to easily generalize it to all relevant multivariate graph polynomials.

Let G,H be two graphs, and let φ : G → H be a graph homomorphism. We call this
homomorphism a labeling of G by H. For a graph G, we define the relative vertex matching
polynomial (with respect to φ) as follows.

µφV (G) ≡ µφV (G)(x) :=
∑

M⊂E(G)
M,matching

∏
{u,v}∈M

−xφ(u)xφ(v)

We define the relative edge matching polynomial and the relative independence polynomial
(with respect to φ) analogously. When unambiguous, we will remove the φ superscript from
the notation. Notice that the univariate specialization of each of the normal matching and
independence polynomials is the same as that of the relative matching and independence
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polynomials, for any φ. This notion then gives us a way to compare multivariate match-
ing and independence polynomials from different graphs without destroying any univariate
information.

Now, consider the labeling of vertices described in the construction of Tv(G) above. This
can extended to a graph homomorphism, φv : Tv(G)→ G in a unique way. Specifically, the
vertices of Tv(G) are mapped to the vertices of G via the labeling given above (e.g., the root
of Tv(G) maps to v ∈ G, the neighbors of the root are mapped to the neighbors of v ∈ G,
etc.). An edge {u,w} of Tv(G) is then mapped to the edge {Tv(u), Tv(w)} in G, which exists
by the inductive construction given above.

In what follows, we will consider the graph polynomials µφvV (Tv(G)) and µφvE (Tv(G)).
For simplicity of notation, we will from now on denote these polynomials µV (Tv(G)) and
µE(Tv(G)), respectively. That is, reference to φv will be dropped.

With this, we now state the generalization of Godsil’s divisibility theorem for the vertex
matching polynomial. We omit the proof, as this theorem turns out to be a corollary of a
more general result related to independence polynomials.

Theorem 6.3.3 (Godsil). Let v be a vertex of the graph G = (V,E), and let T ≡ Tv(G) be
the path tree of G with respect to v. Further, let µV (T ) ≡ µφvV (T ) denote the relative vertex
matching polynomial. We then have the following.

µV (G)

µV (G \ v)
=

µV (T )

µV (T \ v)

Further, µV (G) divides µV (T ).

By univariate specialization, this gives us the first step toward the well-known Heilmann
and Lieb root bound (up to inversion of the input variable). We now attempt to generalize
this divisibility to independence polynomials. First, however, we will need to develop some
path tree analogues.

Path Tree Analogues

Induced Path Trees

Given a graph G and a vertex v, the induced path tree T∠v (G) of G with respect to v is
intuitively defined as follows: it is the path tree that is constructed when only induced paths
are considered. That is, we use the recursive process of creating the usual path tree, only we
forbid traversal of vertices which are neighbors of previously traversed vertices. So, another
name that could be used for this tree is the “neighbor-avoiding” path tree.

We now give an explicit definition of the induced path tree. The crucial difference between
this definition and the definition of the path tree given above is that neighbors of a vertex
are excluded in the recursive step.
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Definition 6.3.4. Given a graph G and vertex v, we define the induced path tree T∠v (G) of
G with respect to v recursively as follows. If G is a tree, we define T∠v (G) = G, and we say
that v is the root of T∠v (G).

For an arbitrary graph G, we first consider the forest which is the disjoint union of the
trees T∠w (G \N [v] ∪ {w}) for each w ∈ N(v). We then define T∠v (G) by appending a vertex
corresponding to v (the root) and connecting it to the roots of each of these trees.

We also define a slightly different version of the induced path tree. As will be seen, this
adjusted definition is more appropriate for our purposes.

Definition 6.3.5. Given a graph G and a clique K, the induced path tree T∠K(G) of G with
respect to K is defined as follows. Construct a new graph G∗ by attaching a new vertex ∗
to G, with the property that {∗, u} ∈ E(G∗) iff u ∈ K. Then, define T∠K(G) := T∠{∗}(G

∗).

Remark 6.3.6. As with the path tree, we can label the vertices of the induced path tree in
a natural way. This gives rise to graph homomorphisms φv : T∠v (G)→ G and φK : T∠K(G)→
G∗.

Simplicial Clique Trees

We need two graph theoretic concepts before defining our final path tree analogue. Given
a graph G, let K ≤ G be an induced clique. Then, K is called a simplicial clique if for
all u ∈ K, N [u] ∩ (G \ K) is a clique as an induced subgraph of G (or equivalently, as an
induced subgraph of G \K). Intuitively, this means that neighborhoods of each u ∈ K are
two cliques joined at u: one is K itself, and the other consists of the remaining neighbors of
u. Simplicial cliques have been studied frequently in relation to the independence polynomial
of a graph, and in particular, they were used in Chudnovsky and Seymour’s original proof
of real-rootedness for claw-free graphs.

We further say that a graph G is simplicial if it is claw-free and contains a simplicial
clique. It may at first seem strange as to why “claw-free” is included in this definition. The
main reason is the useful recursive structure that can be extracted from the following lemma.

Lemma 6.3.7 ([15]). Let G be claw-free, and let K ≤ G be a simplicial clique in G. For
any u ∈ K, N [u] ∩ (G \K) is a simplicial clique in G \K.

Remark 6.3.8. One can easily check that our definition of a simplicial graph is equivalent
to having a recursive structure of simplicial cliques as indicated in the previous lemma.

A block graph (or clique tree) is a graph in which every maximal 2-connected subgraph
is a clique [54]. As it turns out, block graphs are precisely the line graphs of trees. From
this observation we note that there is a natural tree-like recursive structure on block graphs.
Specifically, let B be a block graph, and let K be a clique in B. Then, B \K is a “forest of
block graphs”. That is, if we refer to K as the “root clique” in B, then each “root clique”
in the forest B \K is connected to some vertex of K in B.



CHAPTER 6. THE INDEPENDENCE POLYNOMIAL 104

We now define a special kind of clique tree. Notice that while the term “tree” is used,
the graphs defined here are not actually trees in the usual sense.

Definition 6.3.9. Given a simplicial graph G and simplicial clique K ≤ G, we define the
(simplicial) clique tree T�K(G) of G with respect to K recursively as follows. If G = K, we
define T�K(G) = G, and we say that K is the “root clique” of T�K(G).

For an arbitrary graph G, we first consider the “forest of simplicial clique trees” which is
the disjoint union of T�Ju(G\K) for each u ∈ K. (Here, we define Ju := N [u]∩(G\K).) Note
that this is valid, since the previous lemma implies Ju is a simplicial clique for all u ∈ K. We
then define T�K(G) by appending the clique K (the root clique) and connecting each vertex
u ∈ K to each vertex of the root clique of T�Ju(G \K).

Remark 6.3.10. We can label the vertices of the (simplicial) clique tree in the usual way,
and this gives rise to a natural graph homomorphism φK : T�K(G)→ G.

For examples of the induced path tree and the simplicial clique tree, see Figures 6.2 and
6.3.

Divisibility Relations

Given the above definitions, the main goal of this section is to demonstrate the following
theorem. Here, for v ∈ G we define Kv ≤ L(G) via Kv := L({e ∈ E(G) : v ∈ e}). That is,
Kv can be thought of as “the clique in L(G) associated to N [v]”.

Theorem 6.3.11. Let L be the line graph operator, Tv the path tree operator with respect to
v, T∠K the induced path tree operator with respect to K, and T�K the clique tree operator with
respect to K. Then the following diagram commutes up to isomorphism.

{graphs} {trees}

{simplicial graphs} {simpl. block graphs}

Tv

L L

T∠K

T�K

In the upper left triangle, commutativity is achieved for K = Kv.

This can be broken down into a few results, which we give now.

Lemma 6.3.12. For any graph G and any v ∈ G, Kv is a simplicial clique of L(G). In
particular, L(G) is simplicial.

Proof. It is easy to see that Kv is a clique. If we consider w ∈ Kv, this corresponds to an
edge ew ∈ E(G) that has v as an endpoint. Then given any two neighbors of w that are not
in Kv, we know they correspond to two edges which share an endpoint with ew but do not
have v as an endpoint. Hence they both share the other endpoint of ew and are therefore
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connected in the line graph. This shows that N [w] \ Kv is a clique, so Kv is a simplicial
clique.

It is well known that line graphs are claw-free, so all line graphs are simplicial.

Proposition 6.3.13. For any (nonempty) graph G and any v ∈ V , the induced path tree
of L(G) with respect to Kv is isomorphic to the path tree of G with respect to v. That is,
T∠Kv(L(G)) ∼= Tv(G).

Proof. First, let G be the graph with one vertex, v. Then, L(G) is the empty graph and
T∠Kv ◦ L(G) is also the graph with one vertex (recall that the operator T∠Kv adds an extra
vertex to the input graph). On the other hand, Tv(G) is the graph with one vertex, and the
result holds in this case.

Now, let G be a connected graph consisting of two or more vertices, and let v be some
vertex of G. (We can assume WLOG that G is connected, since Tv and T∠Kv only deal with
connected components of v and Kv, respectively.) We proceed inductively, adopting the
convention that Ku ≤ L(G) and K ′u ≤ L(G \ {v}) are the cliques associated to N [u] in the
respective line graphs.

We first consider Tv(G). For each u ∈ N(v), we have that Tu(G \ {v}) is naturally a
subtree of Tv(G). In fact, Tv(G) can be viewed as the disjoint union of Tu(G \ {v}) for all
u ∈ N(v), connected to a single vertex corresponding to v.

We next consider T∠Kv ◦ L(G). Notice that L(G \ {v}) ∼= L(G) \Kv. For any u ∈ N(v),
this implies T∠K′u ◦ L(G \ {v}) ∼= T∠Ju(L(G) \ Kv), where Ju := Ku ∩ (L(G) \ Kv). Recall

that the T∠K operator adds an extra vertex attached to each vertex of K. So, we can view
T∠Kv ◦ L(G) as the disjoint union of T∠Ju(L(G) \ Kv) for all u ∈ N(v), along with an extra
vertex connected to each of the added extra vertices in the disjoint union.

By the induction hypothesis, we have Tu(G \ {v}) ∼= T∠K′u ◦ L(G \ {v}) for all u ∈ N(v).

This implies that the two descriptions given above of Tv(G) and T∠Kv ◦ L(G), respectively,
are equivalent. Therefore, Tv(G) ∼= T∠Kv ◦ L(G).

Proposition 6.3.14. For any simplicial graph G and any simplicial clique K ≤ G, the line
graph of the induced path tree of G with respect to K is isomorphic to the clique tree of G
with respect to K. That is, L(T∠K(G)) ∼= T�K(G).

Proof. There is a natural grading on the edges of T∠K(G), where the edges from ∗ to vertices
in K have grading 1, and edges from vertices v ∈ K to vertices in N [v] \ K have grading
2, and so forth. Then under the line graph operation we get a grading on the vertices of
L ◦ T∠K(G).

Similarly T�K(G) has a natural grading on the vertices by grading K as grade 1, and for
every vertex v ∈ K, grading the clique N [v] \K as grade 2, and so forth.

Now we can induct on the number of vertices in G. The result is obviously true for the
graph with one vertex. It is then clear that the first grades of L ◦ T∠K(G) and T�K(G) are
isomorphic: they are both cliques of size K. We then label the vertices of the first grade in
L ◦ T∠K(G) by vertices in K as follows. Each vertex of the first grade comes from an edge in
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Figure 6.2: An example of a graph and its line graph, induced path tree and simplicial clique tree.

T∠K(G) of the form {∗, v}, for some v ∈ K. So, we label this first-grade vertex in L ◦ T∠K(G)
by “v”.

In L◦T∠K(G), this vertex labeled “v” connects to edges in G from v to vertices in N [v]\K
in T∠K(G). In this way we see viewing the sub-clique tree (obtained by looking at v and all of
the grades below it) rooted at the vertex labeled v in L ◦ T∠K(G) is L ◦ T∠N [v]\K(G). Likewise

by looking at the vertex labeled v in T�K(G) we see the sub-clique tree obtained by looking
at v and all grades below it is exactly T�N [v]\K(G), by definition of the simplicial clique tree.
By induction our claim is proved.

There are two comments to be made about this diagram. First, we can consider the
induced path tree operator as some sort of “inverse” or “adjoint” to the line graph operator.
In fact, for G ∈ {trees} (resp. G ∈ {simpl. block graphs}) we have that T∠K is the left (resp.
right) inverse of L.

Second, consider the outer rectangle of the diagram. We see that the line graph operator
“passes” the path tree operator to the clique tree operator. So, if Godsil’s divisibility relation
can be shown to hold between a simplicial graph and its clique tree, we will be able to derive
the same relation between a graph and its path tree as a corollary. (The corollary will
actually be for the edge matching polynomial. A simple argument then gives the result for
the vertex matching polynomial, as we will see below.)

We now generalize Godsil’s theorem.
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Figure 6.3: An example of a non-line graph W6, its induced path tree and simplicial clique tree.

Theorem 6.3.15. Let K be a simplicial clique of the simplicial graph G = (V,E), and let
T ≡ T�K(G) be the clique tree of G with respect to K. Further, let I(T ) ≡ IφK (T ) denote the
relative independence polynomial. We then have the following.

I(G)

I(G \K)
=

I(T )

I(T \K)

Proof. We induct on |V (G)|. Note that if G is a simplicial block graph, then T = G, and so
the result is true.
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For the general case we get:

I(G)

I(G \K)
=
I(G \K) +

∑
v∈K xvI(G \N [v])

I(G \K)

= 1 +
∑
v∈K

xvI(T�N [v](G \K) \N [v])

I(T�N [v](G \K))

= 1 +
∑
v∈K

xvI(T�N [v](G \K) \N [v])
∏

w∈K,w 6=v I(T�N [w](G \K))

I(T�K(G) \K)

= 1 +
∑
v∈K

xvI(T�K(G) \N [v])

I(T�K(G) \K)

=
I(T�K(G) \K) +

∑
v∈K xvI(T�K(G) \N [v])

I(T�K(G) \K)

=
I(T�K(G))

I(T�K(G) \K)

In the above we use the recursion formula for the independence polynomial expanding at
a clique and the fact that N [v] is a simplicial clique in G \K when K is a simplicial clique.
Notice also that the relative independence polynomial I ≡ IφK is needed in order for the
last equality to hold.

Remark 6.3.16. We compute the independence polynomials of the appropriate graphs
from Figure 6.2 to illustrate the divisibility relations proved in the preceding theorem:
I(L(P ), x) = 1 + xs + xy + xz + xw + xsxw, I(T�{s}(L(P ))) = (1 + xs + xy + xz + xw +

xsxw) · (1 + xw) = I(L(P ), x) · (1 + xw)

The proof we gave for the previous theorem is essentially the one Godsil gives for his
original theorem, except that we deal with simplicial cliques rather than vertices. The
previous theorem now yields the following corollaries.

Corollary 6.3.17. I(G) divides I(T�K(G)) for any simplicial graph G with simplicial clique
K.

Proof. We have seen that G \K is a simplicial graph. The previous theorem can be written
as:

I(T�K(G))

I(G)
=
I(T�K(G) \K)

I(G \K)
=

∏
v∈K I(T�N [v]\K(G \K))

I(G \K)

Then since N [v] \K is a simplicial clique in G \K, by induction we have the denominator
divides any term in the numerator, so the right hand side is a polynomial, as desired.

Corollary 6.3.18. Given a simplicial graph G, we have that λ1(G) ≤ −1
4(ω−1)

.
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Proof. By the previous corollary we have λ1(G) ≤ λ1(T�K(G)). Then by the commutativity
of the diagram, we have seen T�K(G) = L(T∠K(G)). Hence we have λ1(T�K(G)) ≤ −1

4(ω−1)
is

equivalent to the identical root bound on µE(T∠K(G)). Godsil provides bounds on this root
by relating the matching polynomial of a tree to its characteristic polynomial, and then
bounding the roots of the characteristic polynomial by its maximal degree ∆. Since the
maximum degree of the vertices in T∠K(G) is ω, we get our desired bound.

Remark 6.3.19. In their original paper, Heilmann and Lieb prove a root bound for weighted
matching polynomials, where one puts weights on the vertices. Since the previous corollary
works in the multivariate case, one could use this framework to derive similar results for
weighted independence polynomials.

Other Bound on λ1

Briefly we mention some easy lower bounds on λ1(G). In what follows we let G be any graph.
First we note how modifying our graph by removing edges or removing vertices affects λ1(G).

Proposition 6.3.20. Let G be any graph, v a vertex in that graph, and e = {u,w} an edge
in the graph.

1. λ1(G \ v) ≤ λ1(G)

2. λ1(G \ e) ≤ λ1(G)

Proof. To prove these we need the following recurrences:

I(G) = I(G \ v) + xI(G \N [v])

I(G) = I(G \ e)− x2I(G \ (N [u] ∪N [w]))

To prove the first statement we prove the following statement by induction: Given any
H ⊂ V (G), we have I(G \H) is nonnegative on the interval [λ1(G),∞). If G \H is not the
empty graph, then I(G\H) is not the zero polynomial so this implies that λ1(G\H) ≤ λ1(G).
If G \H is the empty graph it is trivially true.

For |V (G)| = 1, it is easily checked to be true. Assuming this to be true for |V (G)| ≤ n−1,
let G be a graph with |V (G)| = n. Then if H = G, we noted this is trivially true. Then it
suffices to show that λ1(G \ v) ≤ λ1(G). By induction we know I(G \N [v]) is nonnegative
on [λ1(G \ v),∞). Then we know xI(G \N [v]) is nonpositive on [λ1(G \ v), 0) (all the roots
of independence polynomials are negative). By the recurrence relation, I(G) at λ1(G \ v)
is nonpositive, so by the intermediate value theorem I(G) has a root in [λ1(G \ v), 0), as
desired.

To prove the second claim, since G \ (N [u] ∪ N [w]) is a induced subgraph of G \ e, we
have I(G \ (N [u]∪N [w])) is nonnegative on [λ1(G \ e),∞). By the recurrence, we have that
I(G) evaluated at λ1(G \ e) is nonpositive, and so by the intermediate value theorem we see
λ1(G \ e) ≤ λ1(G).
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Using this we can get the following simple lower bound on λ1:

Proposition 6.3.21. −1
ω
≤ λ1(G)

Proof. Let Kω ≤ G be the largest clique in G. Then by our previous proposition we have
λ1(Kω) ≤ λ1(G). We have I(Kω) = 1 + ωx, so λ1(Kω) = −1

ω
.

These results hold for all graphs, but combining these with our previous results for
simplicial graphs G, we see:

−1

ω
≤ λ1(G) ≤ −1

4(ω − 1)

6.4 Failure of the Root Bounds

Recall we have the following inclusions of types of graphs:

{Line Graphs} ⊂ {Simplicial Graphs} ⊂ {Claw-Free Graphs}

The root bounds for the matching polynomial carry over to the independence polyno-
mial for line graphs. And by extending the proof method of Godsil, we demonstrated the
equivalent root bounds for simplicial graphs. The natural next question is: how general can
the graphs get before the root bound fails?

In what follows we provide a claw-free graph (which is not simplicial) for which the root
bound fails. We then provide a much weaker root bound for claw-free graphs. It is unknown
whether this weaker root bound is tight due to our lack of examples of claw-free graphs
which are not simplicial.

Schläfli Graph

The Schläfli graph is the unique strongly regular graph with parameters 27, 16, 10, 8. It
is the complement of the Clebsch graph, the intersection graph of the 27 lines on a cubic
surface. The Clebsch graph is triangle free, and hence the Schläfli graph is claw-free. We
refer the reader to [11] for a comprehensive reference on the Schläfli graph and related graphs.

Keeping in mind that our root bound is equivalent to the statement λ1(G)·4·(ω−1) ≤ −1,
we calculate the following.

Lemma 6.4.1. We have the following:

(i) The independence polynomial of the Schläfli graph is 45t3 + 135t2 + 27t+ 1.

(ii) The clique size of the Schläfli graph is 6.

(iii) λ1(Schläfli graph) · 4 · (ω − 1) > −1
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Proof. One can calculate the independence polynomial and clique size using any computer
algebra system; we used Sage.

To show our graph breaks the root bound it suffices to show that I(G)(t/20) has a root
in (−1, 0). In fact we can easily calculate that I(G)(−1/20) = −29/1600 while I(G)(0) = 1,
so there is a root in (−1, 0).

Weaker Root Bounds for Claw-free Graphs

Given any claw-free graph G, we can introduce a simplicial clique by modifying the graph
as follows:

Lemma 6.4.2. Let G be a claw-free graph. Given any vertex v ∈ G, we can form a new
graph Sv(G) by connecting all of N [v] together to form a clique. Then, Sv(G) is claw-free
and {v} is a simplicial clique in Sv(G).

Proof. It is clear that {v} will be a simplicial clique in Sv(G). To see that Sv(G) is claw-free,
suppose one of the added edges creates a claw. Then we have u,w ∈ N(v) and a claw with
some u as the internal node and w as a leaf. Since we have connected all of the neighbors of
v together, we must have the other two leaves of the claw outside of N [v]. However these two
vertices therefore are not connected to v or each other, and hence form a claw with u as the
internal node and v as the other leaf. This provides a contradiction since G is claw-free.

When analyzing the clique tree of Sv(G) starting at the newly formed simplicial clique
{v}, we notice that the first rung of the clique tree is {v}, the second rung is N(v), and
beyond that are clique trees that live in G \N [v]. This observation immediately yields the
following:

Proposition 6.4.3. Given any claw-free graph G and a vertex v ∈ G, we have:

λ1(Sv(G)) ≤ −1

4 ·max{ω − 1, deg(v)}

This yields the following root bound for G:

λ1(G) ≤ −1

4 ·max{ω − 1, δ}

Proof. By Proposition 6.3.20, we have λ1(G) ≤ λ1(Sv(G)). To optimize the bound we pick
the vertex v which has minimal degree in the graph, δ.

In the Schläfli graph we have a large gap between the clique size of 6 and minimal degree
of 16. We think that other non-simplicial claw-free graphs with a large gap between clique
size and minimal degree may provide good candidates for studying this root bound. Further,
finding a family of graphs which require this looser bound could assist in showing how optimal
this bound is for non-simplicial claw-free graphs.
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6.5 Concluding Remarks

Above, we presented independence polynomials analogues to the real-rootedness (subse-
quently real stability) and the root bounds of the matching polynomial. We expect other
results about the matching polynomial to be generalizable to the independence polynomial.
In what follows we list a few examples and comment on these.

In [23], Fisher and Solow remark that I(G)−1 can be viewed as a generating function
which enumerates the number of n letter words, where the letters are the vertices of the
graph and two letters commute iff they have an edge between them on the graph. Similarly

in [29], Godsil shows that x(x2nµV (G,x−1))′

x2nµV (G,x−1)
is a generating function in x−1 for closed tree-like

walks in G. We believe that there is a multivariate generalization of Fisher and Solow’s
remark by working in the ring Z[x1, . . . , xn] where variables commute if and only if they
correspond to vertices in the graph G which share an edge. Godsil’s tree-like result should
be a combinatorial consequence of the more general Fisher and Solow result.

In a previous paper of Bencs, Christoffel-Darboux like identities are established for the
independence polynomial [5]. One can similarly establish multivariate generalizations of
these identities. By generalizing in this way, one can give a single identity that implies all
the others through simple multivariate operations.

Another area of interest is studying independent sets in hypergraphs. One can naturally
define the multivariate independence polynomial of a hypergraph. Namely given a hyper
graph G = (V,E) a set S ⊂ V is independent if e 6⊂ S for all edges e ∈ E. If two edges
are comparible in G (e ⊂ f), then we note that by removing f from the edge set we do
not change the independent sets of G. If G contains any edges of size one, then that vertex
never shows up in the independence polynomial so we can further reduce G by removing
that vertex. Thus we can do this to obtain the reduction, G̃, of G which has the same
multivariate independence polynomial and has no comparable edges and no edges of size 1.

Proposition 6.5.1. Given a hypergraph G, I(G, x) is same-phase stable if and only if G̃ is
a 2-uniform claw-free graph.

Proof. As noted, I(G, x) = I(G̃, x), so if G̃ is 2-uniform and claw-free we see I(G, x) is
same-phase stable by previous results. If G̃ is not 2-uniform, then we have some edge e
with |e| > 2. If I(G̃, x) were same-phase stable then we could restrict to the subgraph of
vertices in e and obtain a same-phase stable independence polynomial. Since no other edges
are comparable to e by construction of G̃, we have this subgraph only contains the edge e.
Then we can diagonalize to get the independence polynomial (1 + x)n − xn. If I(G̃, x) were
same-phase stable, this polynomial would be real rooted. However this would imply that its
derivatives were real rooted, namely (1 + x)3 − x3 = 1 + 3x + 3x2 would be real rooted, a
contradiction.
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the Finite Difference Setting”. In: Proceedings of the American Mathematical Society
144, 11 (2016), pp. 4831–4843.

[11] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance Regular Graphs. New York:
Springer-Verlag, 1989, pp. 103–104, 312.

[12] J. I. Brown and R. Nowakowski. “Bounding the roots of the independence polynomi-
als”. In: Ars Combin. 58 (2001), pp. 113–120.



BIBLIOGRAPHY 114

[13] Peter Bürgisser et al. “Alternating minimization, scaling algorithms, and the null-cone
problem from invariant theory”. In: arXiv preprint arXiv:1711.08039 (2017).

[14] Young-Bin Choe et al. “Homogeneous multivariate polynomials with the half-plane
property”. In: Advances in Applied Mathematics 32.1-2 (2004), pp. 88–187.

[15] Maria Chudnovsky and Paul Seymour. “The roots of the independence polynomial of a
clawfree graph”. In: Journal of Combinatorial Theory. B (87 May 2007), pp. 350–357.

[16] Thomas Craven and George Csordas. “Jensen polynomials and the Turán and Laguerre
inequalities”. In: Pacific Journal of Mathematics 136.2 (1989), pp. 241–260.
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