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Abstract
Knowledge distillation is a form of model compression that allows artificial neural networks of
different sizes to learn from one another. Its main application is the compactification of large deep
neural networks to free up computational resources, in particular on edge devices. In this article,
we consider proton-proton collisions at the High-Luminosity Large Hadron Collider (HL-LHC)
and demonstrate a successful knowledge transfer from an event-level graph neural network (GNN)
to a particle-level small deep neural network (DNN). Our algorithm, DISTILLNET, is a DNN that is
trained to learn about the provenance of particles, as provided by the soft labels that are the GNN
outputs, to predict whether or not a particle originates from the primary interaction vertex. The
results indicate that for this problem, which is one of the main challenges at the HL-LHC, there is
minimal loss during the transfer of knowledge to the small student network, while improving
significantly the computational resource needs compared to the teacher. This is demonstrated for
the distilled student network on a CPU, as well as for a quantized and pruned student network
deployed on an field programmable gate array. Our study proves that knowledge transfer between
networks of different complexity can be used for fast artificial intelligence (AI) in high-energy
physics that improves the expressiveness of observables over non-AI-based reconstruction
algorithms. Such an approach can become essential at the HL-LHC experiments, e.g. to comply
with the resource budget of their trigger stages.

1. Introduction

The Large Hadron Collider (LHC) produces complex data that requires high-energy physics (HEP)
experiments like ATLAS [1] or CMS [2] to employ sophisticated models and simulation tools in order to
understand the fundamental constituents of the Universe and their interactions. Over the past years,
state-of-the-art machine learning solutions have found their way into the data analysis workflows because of
their ability to map the data into a set of latent features, a so-called representation, with favorable properties
for tasks such as reconstruction, classification, or regression. Best representation learning capabilities in HEP
data have been demonstrated by large-scale models based on graph neural networks (GNN) and
transformers, for instance, for the canonical task of jet characterization [3–7] and for the reconstruction of
the entire collision event [8–11]. These models, however, often have millions of parameters, and a forward
pass can produce latencies of several seconds per event. This makes them a realistic option only in the offline
processing of large recorded and simulated datasets, where massive parallelization is possible on distributed
computing resources.

Especially for the online selection steps of the analysis chain, but in extreme cases also for the offline
processing of data, such models can quickly become impractical or even impossible to deploy. In an effort to
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make data processing more efficient, researchers in other fields have turned to knowledge distillation (KD),
first introduced in [12] as a form of model compression. It allows the extraction of valuable insights from
complex models and represents them in a more compact form. A typical application of KD is the transfer of
knowledge from a large, complicated model, referred to as teacher model, to a simpler neural network, called
student model, which fits the resource budget of the specific computing environment consisting of processors
and/or co-processors.

A generic loss function used for the KD process can be formulated as

L= αS(ŷ,y)+β S(ŷ,y ′)+ γT(y,y ′) , (1)

with ŷ being the ground truth, y the output of the teacher (e.g. class logits or regressed quantities), and y′ the
student output. Accordingly, S(ŷ,y) is a supervised criterion for aligning the teacher output with the ground
truth, similarly for the student output through S(ŷ,y ′). The core knowledge transfer term T(y,y ′)makes the
student mimic the behavior of the teacher. The latter term can, for instance, be a mean squared error
between the student and teacher outputs, or the Kullback–Leibler divergence [13] between their
distributions. The parameters α, β, and γ are relative, tunable weights.

A first successful demonstration of KD in HEP for streamlining data analysis and reducing
computational requirements has been performed in [14], where a large convolutional neural network (CNN)
was compressed into a smaller CNN able to identify muons by energy deposits in resistive plate chambers. A
second application improves the jet tagging capability of lightweight networks [15].

In our specific case, we consider the problem of pileup mitigation, which is one of the main challenges of
future data taking periods at the LHC. It is the identification of particles erroneously attributed to the
collision of interest when colliding bunches containing 1011 of protons. Being one of the key challenges at the
LHC, earlier studies have demonstrated that GNNs and attention mechanisms can quite accurately deduce
the provenance of the reconstructed particle [10, 11, 16]. They achieve their performance by considering the
neighborhood of a particle and learning from shower shapes a soft label that indicates if the particle comes
from a pileup collision (soft label∼0) or the primary collision (soft label∼1). These labels can then be used
to construct precise high-level observables describing the primary collision. However, this comes at a
significant computational cost due to inference times of O(s), rendering the application of such algorithms
and their practicality quite limited.

In this article, we study if the soft labels provided by a large, pre-trained GNN as featured in [16] can be
used as regression targets for a simple deep neural network, DISTILLNET, to achieve good physics performance
at lower computational cost. The fact the teacher is pre-trained implies that α of equation (1) is set to 0.
Likewise, the parameter β is 0, because hard labels ŷ do not exist, as discussed in the following. The term T
denoting the transfer of knowledge between the algorithms is given by the mean absolute error loss,

T(y,y ′)≡ LMAE =
1

N

N∑
i=1

|yi − y ′i | , (2)

where N denotes the batch size given by the number of particles, yi is the soft truth label from the GNN for
particle i, and y ′i is the prediction by DISTILLNET for the same particle.

What makes the problem of pileup mitigation an ideal use case for studying knowledge transfer from a
GNN to a DNN is the intractability of hard labels (called ŷ in equation (1)) for the particles that a DNN
could be trained on directly. This is due to the complexities of the simulation, the detector response, and the
reconstruction, all of which break the unique correspondence between reconstructed particle candidates and
incident truth particles, rendering any plausible ground truth that could be obtained through a human
annotation process insufficiently sharp (see [16] for a more detailed discussion). Moreover, no truth labels
are available in real data. The GNN in [16] sidesteps this problem with a self-supervised training procedure,
comparing samples with different pileup levels to deduce soft labels for the reconstructed particle candidates.
Through a series of nearest-neighbor graph convolutions, the GNN output is a set of soft labels {y} enriched
with message-passing information, representing the full knowledge of the GNN about the origin of the
particle candidates. Being the only available labels, our aim is to use a per-particle DNN to regress these
targets, using the information about particle neighborhood implicitly through the targets that are the GNN
output {y}. That is, we distill the GNN knowledge about the particles into a small DNN. For illustration
purposes, figure 1 depicts the process of obtaining the GNN and DNN outputs.

The following sections contain a description of the GNN and, respectively, DNN, as well as a comparison
of their performance in terms of physics and resource requirements. We present two different variants of the
network, one optimized for performance that can be deployed on a CPU, and one tailored to fit on field
programmable gate arrays (FPGAs) to operate at real-time in the first online selection stage (‘Level-1
trigger’) of the High-Luminosity Large Hadron Collider (HL-LHC) experiments.
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Figure 1. The process of obtaining soft labels y with a GNN making use of kNN edge convolutions (in this illustration k= 5, in
the actual GNN k= 20). A label yi reflects the GNN knowledge about the provenance of particle i. DISTILLNET regresses this label
with a simple DNN architecture such that the mean absolute error between {y} and {y ′} is minimized.

2. Algorithm

In the spirit of a simple student network, DISTILLNET is a feed-forward regression neural network tasked to
regress a per-particle pileup weight based on the input particle features. It is composed of an input layer with
16 nodes, two hidden layers with 128 and 64 neurons, respectively, and an output layer with a single neuron.
The connections between the input layer and the first and second hidden layers use the Rectified Linear Unit
activation function. The output neuron is finally transformed with a sigmoid activation function. In
addition, a batch normalization layer is incorporated between the second hidden layer and the output node.
After conducting initial tests employing 128 nodes for both hidden layers, a subsequent hyperparameter scan
revealed that reducing the size of the second hidden layer results in more consistent outcomes, and that
increasing the layer size beyond 128 nodes does not yield a significant improvement. The algorithm
description of the model is described in algorithm 1.

Algorithm 1. DISTILLNET Training.

Require: Data setD, teacher model GNNθ , distillation model DNNϕ

while not converged do
x∼D ▷Sample event-level inputs from data set
y= GNNθ(x) ▷Evaluate teacher GNN to get soft labels
x→ x, y→ y ▷Flatten particle inputs and soft label outputs
y ′ = DNNϕ(x) ▷Evaluate the distillation model on single particles
Lϕ = LMAE(y,y

′) ▷Calculate the distillation loss
ϕ ← ϕ − γ∇ϕ Lϕ ▷Update distillation model parameters

end while

The training data are composed of individual particles sampled fromW(ℓν)+jets events. The events have
been generated with the PYTHIA v8.244 event generator [17, 18] and reconstructed with the DELPHES

v3.4.3pre01 simulation [19] of the Phase-II CMS detector that includes a highly granular forward
calorimeter and extended tracker coverage compared to the CMS Run-2 detector. This detector simulation
gives us so called E-Flow particle candidates that are the result of combining and linking the information
from the various subdetectors. The center-of-mass energy of the collisions is 14 TeV. On average, 140 pileup
collisions have been added to the primary collision, with tails reaching 200 simultaneous collisions.
DISTILLNET is trained on 15 million particles for 40 epochs. Each particle is characterized by 16 features, a
description of which can be found in table 1. These features are identical to the ones used in the training of
the teacher GNN. After training to convergence, the physics performance of DISTILLNET is evaluated on an
independent set of particles fromW(ℓν)+jets events and on particles from another physics process, the

3
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Table 1. Particle features used as input for DISTILLNET.

Variable Description

η Particle pseudorapidity
ϕ Particle azimuthal angle
logpT Log of the particle transverse momentum
logE Log of the particle energy
Q Particle charge
wPuppi Weight assigned by PUPPI algorithm
pid One-hot particle ID (8 in total)
d0 Transverse impact parameter
dz Longitudinal impact parameter

production of a top quark pair with dileptonic decays of the top quarks. We find consistent behavior for the
different processes and therefore only present results for top quark pair production.

3. Physics performance

To quantify the loss in knowledge of the student compared to the teacher, we look at the experimental
resolution in observables that are highly sensitive to contamination from pileup. These are the momentum
missing from the event in the transverse detector plane, pmiss

T , and the transverse momentum of hadronic
particle jets clustered with the anti-kt algorithm [20] using a distance parameter of 0.4 and applying a pT cut
of 15GeV. In reference [16], a sizable improvement in the resolutions for the teacher network compared to a
classical pileup mitigation algorithm, PUPPI [21], has been demonstrated. Additionally, the teacher yielded
identical performance to another ML-based pileup mitigation algorithm, PUMA. A loss in knowledge during
the transfer from the teacher to the student network should yield less precise labels {y ′}, which will translate
into inferior pileup mitigation and thus a poorer experimental resolution in said quantities. We define the
resolution in observable X as (q75% − q25%)/2 in its response distribution, which in turn is given by
(X−Xgen)/Xgen. Here, qn%, is the nth percentile, and Xgen is the observable calculated in a sample without
pileup and with no detector effects.

Figure 2 shows the distributions for pmiss
T and jet energy after the per-particle weights have been

propagated to the pmiss
T computation and, respectively, the jet clustering. The pmiss

T shape for
DISTILLNET follows closely the GNN and overall exhibits a sound behavior, with large pmiss

T tails completely
absent. Their presence would be a smoking gun for pathological events from the generation of sizable fake
pmiss
T . The resolutions in pmiss

T for the teacher GNN are also presented. While the GNN yields a 10% inclusive
improvement in resolution for pmiss

T over PUPPI, DISTILLNET shows a 6%–7% improvement over the
benchmark. For jets, the improvement over PUPPI achieved with the GNN and with DISTILLNET are 18% and
12%, respectively. This means that DISTILLNET is able to retain most of the information contained in the
GNN and thus most of the improvement over PUPPI. At the same time, the per-particle PUPPI weight is the
most important input feature for the KD process, as it carries the most domain knowledge for the problem of
pileup mitigation. In fact, knowledge transfer was found to be minimal when omitting this variable from the
list of input features, as particle inter-relations are only represented through this feature.

The similarity in observables between GNN and DISTILLNET prompts us to compare the actual
distributions of the per-particle weights for the different algorithms in figure 3. As expected, the distributions
for the teacher and student network, y and y′ in equation (2) are very similar, with DISTILLNET also being able
to mimic the GNN behavior for particle candidates whose reconstruction is driven by neutral towers with
merged energy deposits from pileup particles and particles from the hard interaction in the area 0< w< 1.
We furthermore study the weights differentially in the detector η-ϕ plane. As shown in figure 4,
DISTILLNET faithfully reproduces the behavior of the GNN, with problems already present in the teacher like
in transition regions and at tracker edges slightly more accentuated. PUPPI on the other hand appears to be
quite aggressive in the high-η region of the detector.

Overall, we find the performance of DISTILLNET to be in between the two benchmarks given by the GNN
and PUPPI.

4. Latency studies

An improvement over a classical benchmark as presented in section 3 is one of the requirements to consider
KD. The primary motivation, however, is to find a compromise between the optimal physics performance
provided by the teacher and significantly reduced latencies. A smaller inference time and reduced memory
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Figure 2. Upper row: distributions for pmiss
T (left) and the pmiss

T response (right). The resolution for the three algorithms is given in
the legend of the response distributions. Bottom row: same for jet energy.

Figure 3. Per-particle weight distributions of the GNN, DISTILLNET, and PUPPI. Particles from the hard interaction should receive a
weight of∼1, while pileup particles should get w∼ 0.

requirements can be useful in offline scenarios like large-scale processing and simulation campaigns, where a
pragmatic choice in this two-dimensional plane can yield faster turnaround times and significantly reduced
incurred costs. At the same time, an ultra-fast neural network algorithm can be deployed on FPGAs in the
online selection stage for a more informed decision on whether to keep or discard a collision event. For
instance, a better pmiss

T estimate will help to be more efficient at rejecting background events with fake pmiss
T

and result in a higher yield for events involving electroweak processes or potential dark matter particles. To
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Figure 4. Ratio between the per particle pT of the GNN, DISTILLNET, and, respectively, PUPPI and the pT of the corresponding no
pileup sample in the η -ϕ space of a 2D histogram. The blue bins indicate an overestimation of activity, while the red bins indicate
an underestimation.

Table 2. Parameter comparison between teacher (GNN) and student (DISTILLNET). The number of floating point operations is provided
for an event with 9000 particle candidates.

Trainable Params. MFLOPs

GNN 270 k 6590
DISTILLNET 10 k 0.0209 · 9000∼ 188

that end, we perform timing studies on a high-performance computing CPU as well as on an FPGA as
foreseen for the trigger stages at the HL-LHC experiments.

4.1. On CPU
The CPU timing studies are performed on a single core of an Intel® Xeon® CPU E5-2650 v4 with an x86-64
architecture, operating with an enabled frequency boost to a maximum turbo clock speed of 2.90GHz. The
timing script itself does not employ hyper-threading and only uses a single thread. When comparing the raw
numbers of the networks in table 2, their size difference becomes apparent: the teacher GNN exceeds
DISTILLNET in the number of trainable parameters by a factor 27, and a forward pass consists of 35 times as
many floating point operations. One of the key differences between the GNN and DISTILLNET is the hierarchy
at which they operate. A single sample passed to the GNN comprises an entire event, which has up to 9000
(zero-padded) reconstructed particle candidates. On the other hand, DISTILLNET works with single particles
and thus breaks the event correspondence between them. For a fair comparison, a single forward pass
through the GNN therefore corresponds to 9000 forward passes for DISTILLNET, whose latencies have to be
summed.

However, the vectorization capabilities of modern machine learning frameworks like PyTorch [22]
utilizing the Single Instruction, Multiple Data paradigm will make operations much more efficient, thereby
saving dramatically in inference time. This is shown in figure 5. Scanning the batch size that corresponds to
the number of particles, we first measure the latency of the GNN when processing the content of one event.
For the GNN, since one sample comprises one event, the timing measurements correspond to multiples of
9000 particles. It can be seen that the inference time per event is about 3 s for the GNN and stays constant for
batch sizes of 1 to 10 events, i.e. of 9000 to 90 000 particles6. The nature of graph-based data involves varying
graph sizes, connectivity, and structure, making it challenging to effectively parallelize across the entire batch.
On the other hand, DISTILLNET exhibits remarkable performance advantages, particularly when handling
larger numbers of particles per batch, with improvements in latency up to almost three orders of magnitude
due to the easily vectorizable calculations executed by the deployed linear layers. Specifically, in DISTILLNET’s
matrix-vector product, only the matrices undergo an increase in size as the batch sizes increases.
Consequently, larger matrices contribute to reduced inference times, provided they fit within the CPU cache.

The primary constraints impacting performance on the CPU are twofold: the cache size of the CPU
becomes a bottleneck as batch sizes grow substantially (beyondO(10.000) particles). Conversely, the
maximum clock speed becomes a limiting factor at smaller batch sizes.

6 Our specific GNN implementation uses a constant number of FLOPs, as zero-padded particles are added to the input data up to a
fixed-length input of 9000. In theory, the number of FLOPs and thus the evaluation time scales linearly with the number of particles.
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Figure 5. Per-event inference time of DISTILLNET and the GNN as a function of batch size on CPU.

4.2. FPGA implementation
Pileup removal will be a crucial component of the hardware event filtering systems of particle detectors
during the HL-LHC phase. These Level-1 trigger systems, so-called will consist ofO(1000) FPGAs tasked
with reducing the data rate driven by the bunch collision frequency of 40MHz to 750 kHz in real-time. In
particular for the CMS experiment upgrade, charged tracks will be processed and reconstructed in this
system [23]. This will allow for information to be combined with data from the calorimeters and muon
chambers, in order to reconstruct ‘Particle Flow’ (PF) [24] particle candidates resembling the input we
obtain from the Delphes E-Flow reconstruction. After reconstruction of the particle candidates, they are
passed to a modified PUPPI algorithm where pileup removal is performed. For simplicity reasons, we perform
our latency studies with the dataset consisting of the E-Flow candidates used in the earlier section, even
though a degradation in the accuracy and expressiveness of particle attributes is to be expected due to coarser
information available to online algorithms. The total allocated latency to perform both PF reconstruction
and PUPPI pileup removal is 1.5µs according to [23]. The PUPPI hardware implementation has a latency of
O(100 ns). Since PUPPI is an inherently local algorithm, it can be parallelized. It is foreseen that O(10) copies
of the algorithm are running in parallel, each receiving a particle on every clock tick.

To estimate whether DISTILLNET is suitable for pileup removal in the Level-1 trigger, the model is
compressed at training time. First, the architecture is reduced to 64 and 32 neurons in each hidden layer,
respectively. Secondly, the model is trained quantization-aware using QKeras [25] to a bitwidth of 8,
meaning each weight in the network can only take on one of 28 = 256 discrete values. To further reduce the
model resource consumption, small weights that do not contribute much to the overall decision are removed
in an iterative procedure referred to as pruning. This is achieved using the TensorFlow Model Optimization
toolkit. The model is pruned to 75% sparsity, meaning 75% of the weights are removed from the network.
The final accuracy of this compressed model is 97.7%, and is hereby referred to as QDISTILLNET. This presents
a minor performance loss compared to DISTILLNET, which has an accuracy of 98.9%, but still improves upon
the 96.6% accuracy of PUPPI. In our case, we define the accuracy as the mean of the per bin ratio of predicted
weights to the total number of GNN weights of the per-particle weight distribution shown in figure 3.

This model is translated into FPGA firmware using the synthesis framework hls4ml [26]. Due to the
small network size, a fully parallel implementation is used. The target FPGA is a Xilinx Virtex Ultrascale 13+
with a clock frequency of 240MHz (part xcvu13p-flga2577-2-e). This is the same hardware and clock
frequency that is foreseen for the upgraded CMS Level-1 trigger at HL-LHC. The resources at disposal on the
FPGA are digital signal processors (DSPs), lookup tables (LUTs), memory (BRAM) and flip-flops (FF). The
BRAM is only used as a look-up table read-only memory for calculating the final sigmoid output.

The final latency and resource utilization report for QDISTILLNET is shown in table 3. The latency of one
single-particle inference is measured as 25 ns, which is smaller or comparable to the foreseen implementation
of the PUPPI algorithm and could be deployed consecutively with PUPPI in order to utilize the PUPPI weight as

7
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Table 3. Accuracy, latency and resource utilization for QDISTILLNET. Resources are expressed as a percentage of those available on a
Xilinx VU 13+ (part xcvu13p-flga2577-2-e).

Acc. Latency [ns] II [cc] BRAM LUT FF DSP

QDISTILLNET 97.7% 25 1 1 (0.02%) 2.379 (0.2%) 441 (0.01%) 6 (0.05%)

a powerful input variable. The initiation interval (II), the number of clock cycles between when the algorithm
is ready to receive new data inputs, is 1. That means QDISTILLNET can continuously receive new particle
input. The resource consumption of a single instance of QDISTILLNET is minimal, using<0.5% of the FPGA
resources. It would therefore be feasible to run several of these networks in parallel at very low resource cost.
Assuming ten copies of QDISTILLNET, the total resource consumption would still be below 2% of the
resources available on the FPGA.

5. Discussion

We have presented a successful KD from a GNN to a deep neural network (DNN) to solve the challenging
task of pileup mitigation at greatly reduced computational cost at the HL-LHC. Starting from a pre-trained
teacher operating at the event level, the DNN, which works with particle-level input, learns to approximate
the teacher output, yielding an improvement in resolution in key experimental quantities. This holds true
both for an offline scenario, where large-scale data processing campaigns could profit from a reduction in
latencies compared to the GNN of up to 3 orders of magnitude, as well as in real-time with an
implementation of a quantized and pruned algorithm on FPGAs. Our study marks the first time that the
information encoded in a GNN is distilled into a small deep neural network to solve reconstruction tasks at
HEP experiments, specifically, the problem of particle provenance in extreme environments such as at the
HL-LHC.

If implemented at LHC experiments, either in the trigger stages or for offline analysis, DistillNet will
improve the selection efficiency for scenarios of physics beyond the standard model involving invisible
particles and significant hadronic activity, while keeping computational costs at a minimum compared to
alternative machine learning algorithms. Especially when operating at real time in the trigger, its limitation
are primarily the constraints (e.g. the number of parallel processing units) of the hardware system and the
degree domain-specific information is available through the input features. Future research should explore
other applications of KD such as the compression of powerful jet tagging algorithms, or the extension of
target architectures beyond DNNs, such as CNNs or, more generally, architectures that lie between GNNs
and DNNs in terms of their complexity.
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