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ABSTRACT OF THE DISSERTATION

Image-to-image Translation by Deep Learning Model

by

Weinan Song

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Lei He, Chair

Image-to-image translation is a fascinating and rapidly evolving field in computer vision

and artificial intelligence. The problem involves transformation from an input image into

an output image, while preserving certain semantic or structural information. This tech-

nology enables machines to convert data from one domain into another, offering a wide

range of applications like artistic rendering and image restoration. In recent years, this

field has garnered significant attention and research efforts, motivated by its potential to

revolutionize various industries like entertainment and healthcare. In this dissertation, we

address image-to-image translation challenges through a dual lens: cross-domain transla-

tion and cross-dimension translation. To be more precise, we present efficient and scalable

approaches capable of accomplishing multi-domain translation within a unified framework.

Additionally, we introduce an innovative 3D reconstruction method capable of generating

three-dimensional representations from single 2D images. Through comprehensive experi-

mentation on diverse datasets spanning multiple modalities, our findings not only validate

the efficiency and effectiveness of our proposed methods but also signify a promising techno-

logical solution for facilitating efficient cross-domain and cross-dimension translation tasks.
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CHAPTER 1

Introduction

1.1 Background

Image-to-image translation stands as a pivotal task in the realm of computer vision and

image processing, striving to transform an input image from one domain to another while

preserving its intrinsic content and structural characteristics. This versatile problem has

garnered substantial attention across various industries, spanning medical imaging, artistic

expression, autonomous driving, augmented reality, and more. The advent of deep learning

models has ushered in a new era of possibilities for image-to-image translation, enabling

the development of sophisticated algorithms that exhibit the capacity to convert images

between different modalities, enhance their visual quality, or even generate entirely novel

visual content.

The essence of image-to-image translation lies in the profound ability to bridge the se-

mantic gap between different visual domains. This gap encompasses a multitude of scenarios,

such as converting satellite images to maps, transforming sketches into realistic images, or

changing day-time scenes into night-time renditions. The overarching goal is to facilitate

meaningful and coherent transformations that are not only visually appealing but also con-

textually relevant. Deep learning models, with their ability to learn intricate patterns and

representations from vast amounts of data, have proven to be formidable allies in achieving

these objectives.

Within this landscape, image-to-image translation has witnessed a remarkable evolution

1



over the past decade, driven by innovations in deep neural networks, architectures, and

training strategies. From the pioneering work of neural style transfer, generative adversarial

networks, and energy-based model, this field has witnessed the development of an array of

powerful tools and methodologies. These models have demonstrated exceptional prowess

in tasks like photo-to-caricature translation, super-resolution, domain adaptation, single-

image reconstruction, virtual try-on, photo inpainting, old picture restoration, and even the

creation of artistic masterpieces by transferring the style of one image to another.

1.2 Research Objective

This dissertation intend to tackle image-to-image translation challenges from two distinct

perspectives: cross-domain translation and cross-dimension translation: 1) Cross-domain

translation involves translating an image from one domain to another within the same di-

mension. Our goal here is to develop an efficient and scalable method capable of handling

multi-domain translation within a unified framework. 2) Cross-dimension translation, on

the other hand, focuses on generating or reconstructing high-dimensional images from a

lower-dimensional space, such as converting X-rays to CT images. In this context, we have

innovatively proposed two methods for reconstructing teeth or dental structures in density

from a single panoramic X-ray. These methods represent pioneering efforts in this specific

application.

1.3 Dissertation Outline

The rest of this dissertation is arranged as follows:

• Chapter 2 presents a multi-domain transfer model designed to overcome the chal-

lenges associated with domain shift in medical imaging, using perceptual supervision.

This innovative approach simplifies the process of translating images across multiple
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domains. Its effectiveness and efficiency are showcased in a specific application: fluid

segmentation in Optical Coherence Tomography (OCT) datasets, in the task of data

adaptation and augmentation.

• Chapter 3 studies a cutting-edge energy-based framework for multi-domain image-

to-image translation, characterized by four key components: a descriptor, a transla-

tor, a style encoder, and a style generator. The descriptor, an advanced multi-head

energy-based model, is adept at representing multi-domain image distributions. This

framework operates by taking an image from a specific source domain and using the

translator to produce a corresponding image in the target domain, guided by a style

code. This style code is either derived from a reference image via the style encoder

or created by the style generator from random noise. To enhance the efficiency and

scalability of our approach, we introduce a progressive cooperative learning strategy.

The framework’s effectiveness is underscored by robust empirical results, showcasing

high-resolution image generation capabilities for both human and animal faces within

our energy-based image translation framework.

• Chapter 4 delves into a groundbreaking method for 3D teeth reconstruction using just

a single 2D panoramic radiograph. This method stands apart from conventional single-

object reconstruction techniques due to its unique challenge: the need to construct

multiple objects at high resolution. This approach introduces an innovative framework

that splits the reconstruction process into stages of teeth localization and individual

tooth shape estimation. A key feature of this method is the implementation of a patch-

based training strategy, enabling efficient end-to-end optimization. Extensive testing

has demonstrated the method’s ability to accurately reconstruct the 3D structure of

dental cavities and capture intricate details for each tooth. These results indicate its

potential as an effective solution for other complex multi-anatomy 3D reconstruction

tasks. This work is a cooperation with Dr. Yuan Liang for the extension of [SLY21],

where I am the original proponent of the innovative concept of transforming 2D images
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into 3D space within the field of dental imaging in both works.

• Chapter 5 introduces an innovative method for reconstructing 3D medical images

from panoramic scans, marking a departure from previous techniques that depend

on learning from paired 2D and 3D images or individual prior information. This

novel approach utilizes an implicit representation model equipped with multi-head

prediction, dynamic sampling, and adaptive rendering. It is capable of accomplishing

detailed 3D dental reconstructions using only the projection data obtained during

panoramic scans, which includes imaging direction and the projection image itself. This

method, focused on reconstructing the 3D structure of the oral cavity, demonstrates

state-of-the-art performance. Notably, it achieves this high level of accuracy and detail

without the need for additional supervision or prior knowledge, setting it apart from

existing generative models based on adversarial learning.

• Chapter 6 concludes the dissertation, and discusses the current challenges and future

work of image-to-image translation by deep learning models.
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CHAPTER 2

Perceptual Learning for Multi-domain Translation

2.1 Domain Shift in Medical Image Analysis

Deep learning has proved effective in automating the diagnosis and quantification of various

diseases and conditions. These models, however, tend to underperform in the presence of

domain shifts, which commonly exist in medical imaging due to variance of scanner devices

[AMD20], diversity of imaging protocols [GMK17], or deviation between real and synthesized

data [SLY21]. In the absence of paired and labeled data, models based on cycle-consistent

loss [ZPI17][RDF21] could achieve the image-to-image translation by simply learning from

a cycle transfer process within two domains. However, such models are easy to lose the

content consistency on diseased images (as shown in our experiment) during the transfer.

Besides, the model can only learn a one-to-one domain transfer at one time, where the

model complexity grows geometrically with the number of domains. In comparison, neu-

ral style transfer [GEB16] provides a promising solution to keep the content consistency

by aligning the statistical distribution of medical images collected from different sources

[MJG19][CMY20][MG19], while the model complexity problem remains as the optimization

time increases linearly with the number of images in source domains.

To address the limitations above, we introduce MDT-Net, a multi-domain transfer model,

to decouple the feature representation of anatomy structures and domain deviation of medi-

cal images with an encoder-decoder network and multiple domain transfer modules. Inspired

by perceptual supervision [JAF16], MDT-Net preserves anatomical structures during trans-
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Figure 2.1: A figure illustration of our proposed model is shown in this picture. We use

different colors to represent features and images in different domains, i.e., blue for the source

domain, and orange and green for the two target domains.

lation by imposing content loss during the identical domain transfer and domain loss (some

may call style loss) in the diverse domain transfer. Therefore, it can directly translate images

into multiple target domains at one time without any reference images during the inference,

where the translation time is independent of the number of source images. Moreover, the

model complexity reduces from n(n−1)
2

to n when involving transfer among n domains com-

pared with cycle-consistent-based models. To demonstrate the translation performance, we

first compare the translated results in domain variance against the target domains and con-

tent similarity with the source content. Then we take these translated images as extra data to

boost existing segmentation models. Extensive results show that our model can significantly
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outperform other methods qualitatively and quantitatively.

2.2 Multi-domain Transfer by Perceptual Learning

2.2.1 Keeping Anatomy Consistency during Translation

As shown in Fig 2.1, MDT-Net consists of an encoder-decoder network (fe() and fd()) to learn

anatomy-consistent feature representation and multiple feature transfer modules (ti(), i =

1, 2 · · · , X) to learn domain transition, where each module learns feature translation to a

target domain. The training process during the translation is composed of two circumstances:

1) identical domain transfer, where the model generates an image I ′ by fd(fe(I)) from an

image I in the source domain, and 2) diverse domain transfer, where the model outputs a

translated image I ′X into the target domain X via fd(tX(fe(I))). Since the domain transfer

toward each target domain is learned explicitly by a feature transfer module, MDT-Net

can directly translate images into multiple target domains without any reference images

by forwarding deep features into different feature transfer modules respectively during the

inference.

2.2.2 Perceptual Supervision

Perceptual supervision is first proposed in [GEB16] and has been widely applied in style

transfer between paintings and photograph by capturing implicit content features and texture

statistics. Generally, the perceptual loss is calculated by a pre-trained feature extraction

network (FEN) F to compute the reconstruction loss over content and style features. In

our model, we define the loss function as a combination of Lcontent and Ldomain following the

perceptual loss as:

L = Lcontent(I, I
′) +

∑
X

αX · LX
domain(IX , I

′
X), (2.1)
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where IX is the image randomly sampled in a target domain X. The content loss Lcontent

and domain (style) loss Ldomain are defined as:

Lcontent =
1

Nc

lc1,··· ,lcNc∑
l

∥∥F l(I ′)−F l(I)
∥∥2

Ldomain =
1

Nd

ld1 ,··· ,ldNd∑
l

∥∥G(F l(I ′X))− G(F l(IX))
∥∥2

.

(2.2)

F l(·) denotes the features selected from the FEN and G(·) is a function to compute the Gram

matrix [GEB16], which has been widely used to compare the texture statistics in paintings.

2.2.3 Network Architecture

Our network architecture is developed based on StyleBank [CYL17]. We make several im-

provements to accommodate it to the domain transfer problem in medical images: 1) We

apply transfer modules on multi-level features generated by the encoding network to learn

feature translation. 2) The transfer modules of MDT-Net consist of multiple dense-connected

convolution layers instead of a single convolution layer. 3) The model is trained to predict

a residual image instead of the transfer result directly. Evaluation of these changes and

generation comparisons between StyleBank and MDT-Net can be seen in the ablation study

in section 2.4.

2.3 Experiment of Multi-domain Transfer on RETOUCH Dataset

2.3.1 Dataset

We use RETOUCH [BVK19] to validate the domain transfer capability of MDT-Net. The

dataset contains 70 OCT scans taken by three different vendors (domains): 1) 24 from Cirrus,

2) 24 from Spectralis, and 3) 22 from Topcon. Each image is annotated with three kinds

of pathological annotations i.e., intraretinal fluid, subretinal fluid and pigment epithelial
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detachment for segmentation. We use C, S, T to represent each domain and randomly select

5 cases from each domain as test data for both domain transfer and segmentation tasks. To

be noted, annotations are only used in segmentation models.

2.3.2 Evaluation

We use Fréchet Inception Distance (FID) [HRU17] and Learned Perceptual Image Patch

Similarity (LPIPS) [ZIE18] to compare the domain similarity and content inconsistency of

generated images. We also propose Domain Perceptual Distance (DPD), a combination of

FID and LPIPS, as an overall evaluation metric to indicate the distance to the optimal

results by:

DPD = FID + λ · (1− LPIPS)× 100%, (2.3)

where we set λ = 1 in this work. For data adaptation and augmentation, we use averaged

dice scores of the three segmentation targets as the evaluation metric. For comparison,

we train four other unsupervised domain transfer models that are either based on cycle-

consistent learning, i.e., CycleGAN [ZPI17] and StarGAN2 [CUY20], or perceptual learning,

i.e., AdaIN [HB17] and StyleBank.

2.3.3 Training

Due to the various number of slices in three domains, we train the model for 32, 80, and 40

epochs for C, S, and T . The learning rate starts from 10−3 and decays by 0.1 in the middle.

We use αX = 10 in Lpercep and select the same layers as in [GEB16] from VGG-16 [SZ14] to

obtain Lcontent and Ldomain.
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Figure 2.2: Example translated images from different models among domain C, S, and T

are shown in this figure. We also place some real images in target domains (not used as

reference) in the bottom-left of source images to facilitate comparison.
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Method CycleGAN StarGAN2 AdaIN StyleBank Ours

FID↓ 47.62 276.45 126.51 129.47 56.23

LPIPS↑ 62.72 43.48 53.88 86.85 75.67

DPD↓ 84.91 332.96 172.62 142.62 80.56

Table 2.1: Quantitative comparison of transfer results averaged in six types of domain trans-

fer by FID, LPIPS and DPD.

Figure 2.3: Details of the FID and LPIPS in 6 types of domain transfer.

2.4 Results of Domain Translation on OCT scans

2.4.1 Multi-domain Transfer

We first directly compare the translated images under the transfer among the three domains

and show the results in Figure 2.4 and Table 2.4.1. Our proposed method can achieve

the best balance between domain shift and content consistency. Compared with MDT-Net,

CycleGAN can get excellent performance on domain shift but fails to keep the anatomical

structure of the retina. StyleBank preserves the content during transformation but can not

reasonably match the textures of target domains. As StarGAN2 fails to retain the content,

we exclude its results in the latter experiments.
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Method
C S T

Avg
S T C T C S

- 59.5 70.0 59.1 64.8 54.8 72.1 63.4

CycleGAN 53.1 55.9 52.2 60.8 58.2 71.8 58.7

AdaIN 67.2 77.6 56.4 65.9 77.5 77.3 70.3

StyleBank 76.0 83.4 62.5 84.4 74.2 86.4 77.8

Ours 84.5 76.9 67.5 83.0 77.3 85.5 79.1

Table 2.2: Evaluating translated images by DeeplabV3+ in model adaptation.

2.4.2 Data Adaptation

In this experiment, we assume that only images in one domain are provided with annotations,

while the segmentation model is expected to accommodate to the test data in the other

two domains. This is a very common situation in clinical applications where the inference

data could be collected from other sources (domains). We use DeeplabV3+ [CZP18] as the

baseline segmentation model. We first train the model with images from one domain, then

add translated images that share the same annotations with the source images. Therefore,

the improved performance brought by these additional images can indicate the quality of

domain transfer results. For example, for domain C, the gap between dice scores of the

models trained with 1) C only and 2) C, C → S, and C → T can indicate the improved

adaptation ability in unseen domains, i.e., S and T. As shown in Table 2.4.2, MDT-Net

brings the biggest improvement and demonstrate the best transfer results.

2.4.3 Data Augmentation

Unlike the adaptation task where images from other domains are unseen during training, we

take all images, including both original images from three domains and the transfer results

generated by the six kinds of domain transfer within these three domains, as the training data
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Segmentation

Model

Method C S T Avg

U-Net

- 76.64 78.36 67.02 74.01

CycleGAN 68.24 74.71 77.64 73.53

AdaIn 69.55 73.78 78.18 73.84

StyleBank 72.05 74.40 79.77 75.41

Ours 83.97 71.74 73.35 76.35

Deeplab

- 83.37 78.91 87.85 83.38

CycleGAN 79.73 88.90 85.53 84.72

AdaIn 80.66 87.59 85.86 84.70

StyleBank 83.44 88.83 80.52 84.13

Ours 81.61 89.16 87.63 86.13

HR-Net

- 80.07 87.26 87.53 84.95

CycleGAN 82.08 87.56 84.89 84.84

AdaIn 82.20 80.58 87.97 83.58

StyleBank 81.92 87.36 81.26 83.51

Ours 81.46 89.87 87.42 86.25

Table 2.3: Evaluating translated images by multiple segmentation models in dice score for

data augmentation.

for segmentation in this experiment. Similarly, we use improvements in segmentation accu-

racy to indicate the domain transfer performance. To avoid influence brought by variation

in segmentation models, we introduce U-Net [RFB15] and HR-Net [WSC20] as additional

baseline models. As shown in Table 2.4.3, our method can still best boost all three existing

segmentation models, bringing about +2% in dice scores.
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Method MDT-Net D MDT-Net S MDT-Net 19 Baseline

FID↓ 60.95 125.46 57.45 56.23

LPIPS↑ 76.05 67.63 74.98 75.67

DPD↓ 84.90 157.83 82.47 80.56

Table 2.4: Evaluation of translated images in the ablation study.

Figure 2.4: Change of the training loss in the ablation study.

2.4.4 Ablation Study

In this experiment, we change the architecture of MDT-Net for ablation study. MDT-Net D

removes the residual learning at the output, where the decoder directly generates the trans-

lated result. MDT-Net S replaces the feature transfer module with the style bank structure

as proposed in [CYL17]. MDT-Net 19 replaces VGG-16 with VGG-19 as FEN. From Table.

2.4.3 we can find that our proposed feature transfer modules play the most important role

during the domain transfer. Combined with Figure 2.4, we can see that changing FEN does

not affect the result while removing the residual structure mainly increases the converging

time.
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CHAPTER 3

Progressive Energy-based Model for High-resolution

Image Translation

3.1 Motivation

The task of image-to-image translation primarily involves the learning of mappings between

different visual domains. This learning framework carries immense application value in the

field of generative artificial intelligence, facilitating the development of various creative prod-

ucts for artificial intelligence-generated contents (AIGC). In this context, a “domain” refers

to a collection of images belonging to a visually distinctive category such as the gender

of a person and animal species. Within each domain, every image exhibits a unique ap-

pearance, encompassing image-specific elements such as hairstyle and makeup, commonly

referred to as its “style”. An ideal image-to-image translation framework should possess the

ability to handle multiple domains, efficiently process high-resolution images, and provide

diverse synthesis (i.e., one-to-many mapping) when translating to each target domain. By

leveraging the representation power of an energy-based model and the sampling efficiency

of a latent variable model, the Generative Cooperative Network [XLG18], also known as

CoopNets, and its variants [XZL21, XZL22], have achieved impressive results in numerous

computer vision tasks, such as image generation [XLG18, XZL21, XZL22], visual salient

object detection[ZXZ22], supervised image-to-image translation [XZF22], and unsupervised

image-to-image translation [XZF21]. However, while the cross-domain translation frame-

work, CycleCoopNets [XZF21], has demonstrated success in unpaired image-to-image trans-
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lation, it is only capable of learning the relation between two different domains at a time.

Such an approach has a limited scalability to deal with multiple domains, as a separate model

must be trained for each pair of domains. Besides, cooperative learning still faces challenges

when it comes to translating high-resolution images. This is because the translation process

involves sampling from the energy-based model via Langevin dynamics, which can be dif-

ficult to apply to high-resolution image spaces. To tackle the aforementioned challenges in

the current cooperative learning (or more generally, energy-based learning) for multi-domain

unsupervised image-to-image translation, this chapter proposes a novel cooperative learning

framework, PMD-CoopNets, to ensure scalability, flexibility, stability and efficiency

for applying energy-based framework to image-to-image translation.

To be specific, the PMD-CoopNets consists of four components: descriptor, translator,

style generator and style encoder. (1) The descriptor is a multi-head energy-based model

that represents a multi-domain image distribution, where each head of the energy function

corresponds to one image domain. (2) The style generator is a multi-head latent variable

model responsible for generating domain-specific style codes. It achieves this by transforming

a Gaussian latent code into style codes. Each head in the style generator corresponds to one

specific domain. (3) The style encoder extracts domain-specific style codes from an input

image using a multi-head encoder. Each head of the encoder corresponds to a specific domain.

(4) The translator is a style-controlled mapping, which takes an image and a style code as

input, and then transforms the image into a translated image that reflects the desired style

indicated by the style code. The style code can be obtained either from the style generator

or the style extractor. The style generator, style encoder, and style-controlled translator can

constitute a diversified image generator.

As to the learning, the multi-domain descriptor and the diversified image generator en-

gage in a cooperative game, where the multi-domain descriptor guides the diversified image

generator in aligning its mapping towards the target domains using MCMC teaching, while

the image generator assists in expediting the descriptor’s MCMC teaching process by provid-
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ing a good initialization. Specifically, to enforce a meaningful latent space of style codes, we

train the style-controlled translator and style encoder by reconstructing style codes that are

randomly generated from the style generator. To enforce translated image to preserve the

domain-invariant property of the input reference image, we train the translator with a cycle

consistency loss. To enforce the one-to-many translation output, we regularize the transla-

tor via a diversity sensitive loss, such that, given an identical reference image, different style

codes can lead to sufficiently diversified translated outputs.

Additionally, we propose to improve the cooperative learning algorithm by incorporating

some loss terms to regularize the behaviors of the components in our framework. Firstly, we

put an l2 regularization on the output of the energy function of the descriptor to limit the

magnitude of the energy values. To accelerate and stabilize the teaching process provided

by the descriptor’s MCMC, we propose to use the energy function to regularize the output

of the translator. These regularization techniques significantly improve the performance of

the cooperative learning.

To enhance efficiency, stability, and scalability, we present a progressive cooperative learn-

ing algorithm for our model. Our approach involves gradual expansion of all four components,

initially operating on simpler low-resolution images. As the cooperative training proceeds,

new layers are added to each component, enabling the model to handle more challenging

high-resolution images. This progressive growth strategy significantly accelerates and sta-

bilizes both training and sampling processes at higher resolutions. Moreover, it offers the

flexibility and convenience to scale up the resolution of any pre-trained PMD-CoopNets.

We demonstrate the effectiveness of our proposed multi-domain translation model on the

CelebA-HQ [KAL17] and AFHQ [CUY20] dataset. The translated examples exhibit high

fidelity and are comparable to GAN-based multi-domain translation models. Furthermore,

our progressive learning strategy improves the efficiency and stability of the original training

process, particularly when it comes to translating high-resolution images. Our contributions

are listed below:
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• We propose a novel energy-based cooperative learning framework for multi-domain

image-to-image translation. We build a single multi-head energy-based model to rep-

resent probability distributions of multiple domains, and train it with a translator, a

style encoder, and a style generator using a cooperative manner.

• We present a novel progressive learning algorithm to optimize the training efficiency

of our framework. Our approach adopts a progressive growth strategy, advancing all

components from low resolution to high resolution. It yields a significant reduction in

the total number of MCMC steps required for training and sampling from the high-

resolution model.

• We propose regularization strategies to stabilize the cooperative learning, which include

an energy-based regularization loss for the translator and a l2 regularization loss for

limiting the magnitude of the energy values of the descriptor. Significant performance

gain are obtained from these regularization.

• We demonstrate strong empirical results on CelebA-HQ and AFHQ datasets to verify

the proposed energy-based framework. Our method obtains state-of-the-art perfor-

mance among existing energy-based image translation models.

3.2 Related Work

Energy-based Learning Training energy-based models (EBMs) [ZWM98, LCH06, Hin12]

involves maximizing the likelihood of the observed data by adjusting the model’s energy

function parameters, which typically requires Markov chain Monte Carlo (MCMC) sampling

to evaluate the intractable gradient [XLZ16, NHZ19, DM19]. Contrastive divergence (CD)

[Hin02, DLT21] is an efficient approximation algorithm for training energy-based models

by initializing the MCMC chains with observed data. [NHZ19] uses a noise-initialized non-

convergent short-run MCMC to train an EBM, and obtains a valid flow-like generator trained
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with moment matching estimation. [GSP21] defines a sequence of conditional EBMs and

forms a denoising diffusion process. To avoid MCMC, [GNK20] brings in normalizing flow

and trains an EBM by flow contrastive estimation. Learning an amortized sampler [KB16,

XLG18, HNF19, KOG19, XKK21, GKH21] for EBMs is also an alternative strategy. Our

method has a single multi-head EBM to represent multi-domain data distribution, and the

image-to-image translator serves as a multi-domain amortized sampler for the EBMs.

Cooperative Learning Cooperative learning for energy-based models with MCMC teach-

ing is first proposed in [XLG18], where the authors utilize an energy-based model as the

descriptor and a latent variable model as the generator to speed up the learning of each

other by maximum likelihood algorithms. During each training iteration, the descriptor gen-

erates samples by finite-step MCMC sampling with initialization by the generation from the

generator for maximum likelihood estimation. Simultaneously, the sampling results from

descriptor are used to directly supervise the generator, which is called MCMC teaching.

Further research in [ZXL23] shows that this cooperative learning method could also provide

a good start point for adversarial models with small computation overhead. Additionally,

the model could also be extended for image-to-image translation [XZF21] with two pairs of

descriptor and generator or used in saliency prediction [ZXZ22] by introducing a conditional

latent variable model.

Progressive Learning The proposed idea of progressive cooperative learning is closely

connected to the research conducted by [ZXL21], which involves the incremental growth of a

single EBM. The multi-grid EBM framework [GLZ18], trains a series of EBMs simultaneously

at various resolutions. The sampling process is conducted sequentially, starting from low-

resolution and gradually progressing to higher resolutions, leveraging the lower resolution

as a foundation for subsequent higher-resolution sampling. In contrast, our method, which

combines the growth of an EBM with three mapping networks, introduces a more challenging

and complex progressive learning strategy. It is important to note that while there are
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several progressive learning frameworks based on Generative Adversarial Networks (GANs),

our approach falls within the domain of energy-based learning. We need to carefully consider

MCMC sampling when progressively expanding the energy function, as it plays a crucial role

in both bottom-up energy mapping and top-down image generation.

3.3 Proposed Framework

Suppose we have unpaired images from multiple domains A, B, C, · · · with some shared

high-level features, such as expressions in face images, our target is to learn a conditional

generative model that maps an image into a target domain, which could be same as the

source domain, with specific features. To achieve this, we propose a generative model that

consists of four components, i.e., descriptor, style encoder, style generator, and translator.

The latter three can form a diversified translator, which is trained with the descriptor in a

cooperative learning manner. Let x be an observed image and y be its domain label. We

also use y′ to denote the label of target domain.

3.3.1 Multi-Domain Descriptor

The multi-domain descriptor is a multi-head energy-based model that specifies the proba-

bility distribution of each domain by

py(x; θ) ∝ exp[Dy(x; θ)], (3.1)

where θ are parameters of the multi-head energy function D. For notation simplicity, we use

Dy(·) to denote the negative energy for domain y. The descriptor are learned by multi-domain

maximum likelihood estimation, which is equivalent to minimizing the Kullback-Leibler (KL)

divergence between the data distribution pdata(x, y) and the model py(x; θ). The gradient of

the objective for learning the descriptor is given by

∇θLebm(θ) = −Epdata(x,y){∇θDy(x; θ)− Epy(x′;θ) [∇θDy (x′; θ)]}, (3.2)
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Figure 3.1: Diagram of energy-based cooperative learning for multi-domain image-to-image

translation. The framework consists of a style generator, a style encoder, a translator and a

descriptor. The first three components (i.e., style generator, style encoder, and translator)

form a diversified image generator. Given a input source image, the translator can transform

it into a target domain, which is specified by a style code. The style code can be obtained by

sampling from the domain-specific style generator or extracted from a reference image by the

style encoder. The descriptor is a multi-domain image distribution, which plays the role of

guiding the translation such that the translated images can match the observed images in the

target domain in terms of statistical property. All components are trained simultaneously in

a cooperative learning scheme. The descriptor learns from the multi-domain training images

by maximizing the data likelihood, while utilizing MCMC teaching to guide the training of

the diversified image generator, which consists of a translator, a style encoder, and a style

generator.
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where Epy(x′;θ) denotes the expectation with respect to the EBM and we use x′ in order to

distinguish the random variable x in Epdata(x,y) in the same equation. Suppose we observe a

batch of training examples {(xi, yi)}ni , which is assumed to be from pdata(x, y). The gradient

in Eq.(3.3.1) can be approximated by

∇θLebm(θ) ≈ ∇θ

[
1

n

n∑
i=1

Dyi(xi; θ)− 1

n

n∑
i=1

Dyi(x̃i; θ)

]
, (3.3)

where for each observed domain yi, we use Langevin dynamics to obtain the corresponding

synthesized example x̃i as a sample from pyi(x; θ). With a specified step size δ, Langevin

dynamics is performed by iterating the follow step:

x̃τ+1 = x̃τ + δ∇xDy (x̃τ ; θ) +
√

2δUτ , Uτ ∼ N (0, I), (3.4)

where τ indexes time step and x̃τ=0 is initialized by the output of a style-controlled image-

to-image translator, which is presented in Section 3.3.2. A good initialization improves

the efficiency of Langevin dynamics. To stabilize the EBM training, we also add an l2

regularization on the energy outputs of both training examples and synthesized examples,

which is

Lenergy(θ) =
1

n

n∑
i=1

∥Dyi(xi; θ)∥2 +
1

n

n∑
i=1

∥Dyi(x̃i; θ)∥2. (3.5)

3.3.2 Diversified Image Generator

Multi-Domain Style Generator Given a latent variables z and a domain label y, the

multi-domain style generator can produce a domain-specific style code c by

cy = Gy(z; β) + ϵ, ϵ ∼ N (0, I), z ∼ N (0, I), (3.6)

where ϵ is an observation residual and z follows a Gaussian prior distribution. G is a

multilayer perceptron (MLP) with multiple output branches to produce style codes for mul-

tiple domains. The distribution of style code c conditioned on a domain y is given by

py(c; β) =
∫
py(c|z; β)p(z)dz, which is more informative than the prior distribution p(z) to
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Figure 3.2: An illustration of the progressive strategy for the style encoder E, translator T ,

and descriptor D. Boxes in dark grey represent well-trained modules at resolution level s−1,

while blocks in light gray represent the newly added parameters at the current resolution level

s. The expansion of the model involves removing some incompatible parameters (depicted as

dark grey boxes with dashed boundaries) and adding new parameters (depicted as light grey

boxes). The output of the module that needs to be removed and the output of the module

that needs to be added are fused using a transition factor ω, This factor starts from 0 and

gradually increases to 1, controlling the percentage of contribution from the old and new

modules. Left: style encoder. Middle: style-controlled image-to-image translator. Right:

descriptor.
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capture the underlying style space. The domain-specific style code cy is directly used in the

translator, which is presented in Section 3.3.2, for specifying the style and the target domain

of the translated image.

Style Encoder The style encoder E is a multi-head bottom-up network that takes as

input an image x and its corresponding domain label y and then outputs a domain-specific

style code c = Ey(x;ϕ), where ϕ are parameters and Ey(·) denotes the output of E that

corresponds to domain y.

Style-Controlled Image-to-Image Translator To achieve a one-to-many translation

between domains, we build a style-controlled image-to-image translator. It is a conditioned

encoder-decoder T that takes as input a source reference image x and a domain-specific style

code cy and outputs a translated image in target domain y, which is given by

xy = T (x, cy;α) + ϵ, ϵ ∼ N (0, I), cy ∼ py(c; β), (3.7)

where α is the parameters of the neural network T . The randomness in the translated image,

when given a reference image and the target domain, arises from the stochastic nature of

the style codes, which follows a distribution defined by the style generator py(c; β). The

translator T and the style generator G forms a diversified translator. They are trained by

the MCMC teaching loss [XLG18], which is

Lteach(α, β) = Ez,y,x[∥x̃z,y,x − T (x,Gy(z; β);α)∥2], (3.8)

where x̃z,y,x denotes the Langevin synthesis from the descriptor, which is initialized by the

output of T (x,Gy(z; β);α). That is, we set x̃z,x,y,τ=0 ← T (x,Gy(z; β) for Langevin dynamics

in Eq.(3.4) to revolve x̃z,y,x. Let Mθqα,β(x) be the marginal distribution obtained by running

Markov transition Mθ from q(x;α, β). At learning step t + 1, the gradient of the MCMC

teaching loss in Eq.(3.8) is the gradient of KL(Mθ(t)qα(t),β(t)||qα,β), where qα,β seeks to be

the stationary distribution of Mθ, i.e., minimizing KL(pθ||qα,β). The effects of the MCMC
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teaching loss include: (i) q can chase p toward pdata for MLE; (ii) q can serve as a good

MCMC initializer for p for efficient MCMC sampling. To ensure diverse translator outputs,

we regularize T by minimizing the negative diversity sensitive

Ldiverse(α) = −Ez1,z2,y,x[∥T (x,Gy(z1; β);α)− T (x,Gy(z2; β);α)∥1]. (3.9)

Since the translator is learned from unpaired data domains, to ensure the translated image

T (x, c;α) to preserve the domain-invariant features of the source image x, we adopt the cycle

consistency loss:

Lcycle(α) = Ez,y,x,y′ [∥x− xcycle∥1], (3.10)

where xcycle = T (T (x,Gy′(z; β);α), Ey(x;ϕ);α). To ensure any style code that is applied to

the translated image can be retrieved back from the translated image by the style encoder,

we also have a style code reconstruction loss

Lstyle(α, ϕ) = Ez,y′,x[∥Gy′(z; β)− Ey′(T (x,Gy′(z; β);α);ϕ)∥1]. (3.11)

To further stabilize the cooperative training and accelerate the MCMC teaching effect, we

propose to add the following energy-based regularization on the translator,

Lmode(α, β) = Ez,y′,x[Dy′(T (x,Gy′(z; β);α); θ)], (3.12)

which can shift the translator mapping toward the low energy modes of the energy function.

3.3.3 Cooperative Learning of Descriptor and Translator

Our full objective function of the descriptor is Ldescriptor = Lebm + λenergyLenergy and the

full objective function of the translator is Ltranslator = Lteach + λdiverseLdiverse + λcycleLcycle +

λstyleLstyle + λmodeLmode, where λenergy, λdiverse, λcycle, λstyle, and λmode are hyperparameters.

At each learning iteration, the cooperative learning algorithm alternates the following steps:

(1) Generate an initial translated image via x̂ = T (x,Gy(z)); (2) Revise x̂ by Langevin

dynamics in Eq.3.4 to obtain x̃; (3) Update the parameters θ of descriptor by minimizing

Ldescriptor; (4) Update the parameters α, ϕ, β of translator by minimizing Ltranslator.
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Algorithm 1 Progressive Cooperative Learning

Input: Multi-resolution data {(x(s)
i , y

(s)
i ), i = 1, ..., N ; s = 1, ..., S} Output: Model

E(S), T (S), D(S), G

E(0) ← ∅, D(0) ← ∅, T (0) ← ∅

for s = 1, · · · , S do

m← 0

if s = 1 then ω ← 1 else ω ← 0

E(s,ω) ← expand(E(s−1))

D(s,ω) ← expand(D(s−1))

T (s,ω) ← expand(T (s−1))

while (m ≤ N) do

Sample (x, y) and y′

Sample z ∼ N (0, I)

c← E
(s,ω)
y (x) or c← Gy′(z)

x̂← T (s,ω)(x, c)

Revise x̂ to obtain x̃ by a K-step Langevin dynamics in Eq. (3.4).

Update descriptor D(s,ω) with Ldescriptor

Update translator {E(s,ω), T (s,ω), G} with Ltranslator

m← m + n(s)

if s ̸= 1 then ω ← min(1,m/N) else 1

end while

end for

3.3.4 Progressive Cooperative Learning

The update of both descriptor and translator relies on the cooperative generation of MCMC

synthesized examples, denoted as x̃. To significantly improve training efficiency, we propose
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a progressive learning strategy for our cooperative learning framework. The algorithm grad-

ually enhances the model resolution from low to high, while maintaining cooperative learning

across all components at each resolution. The underlying motivation behind this strategy is

that learning and sampling from a low resolution data domain is much more efficient. By

leveraging a pre-trained low resolution model as a foundation, we can efficiently learn the

next scale of the model, rather than starting from scratch. When expanding the current

model to the next scale, each component’s network structure undergoes modifications. New

layers are added to handle higher resolution image inputs or outputs, while incompatible

old layers are removed. The newly added layers are trained together with the remaining

parameters. To ensure a smooth transition and prevent gradient exposure due to the ad-

dition of expanding blocks in each component, we propose to retain partial effects of the

parameters that need to be removed while incorporating the effects of the newly added pa-

rameters. Throughout each resolution of learning, the impact of the removed parameters

gradually diminishes until it becomes zero. Figure 3.2 illustrates the expanding strategy

of each component at every level of resolution. Here, ω represents a transition factor that

starts from 0 and increase to 1, controlling the percentage of effects from the parameters to

be removed (depicted as dark grey boxes with dashed boundaries) and the parameters to be

added (depicted as light grey boxes). For a complete description of the proposed progressive

cooperative learning algorithm, please refer to Algorithm 1.

3.4 Experiment

3.4.1 Experiment Settings

Dataset and Evaluation Metrics To demonstrate the performance of our proposed

multi-domain image-to-image translation framework, we test it on the CelebA-HQ [KAL17]

and AFHQ [CUY20] datasets and compare it with several baselines. We use M and F to refer

the domains of male and female in CelebA-HQ, and C, D and W to refer to the domains of
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cat, dog, and wild animals in AFHQ. We only use the images and the corresponding domain

labels from the datasets in our experiments. We evaluate the quality of translated images

using the Fréchet Inception Distance (FID) [HRU17] and the Kernel Inception Distance

(KID) [BSA18], which are widely used to measure the distance between the population of

translated images and the population of original images in the target domain. A small FID

or KID is desired to indicate that the translated distribution is very close to the target

distribution.

Training and Network Architecture We use bottom-up convolution neural networks

for the Descriptor and Style Encoder and a 8-layer MLP for the Style Generator. The

Translator utilizes an encoder-decoder architecture with AdaIN [HB17] for style control in

the decoding network. We start training our model with a resolution of 64×64, and then

scale it up to 128×128 and 256×256. We step for 16 iterations for MCMC sampling in the

beginning, decreasing by 4 steps after each progression. The hyper-parameters of λenergy,

λdiverse, λcycle, λstyle, and λmode are set to be 1.

3.4.2 Diverse Image Generation

In this experiment, we use style codes that are randomly sampled from the style generator

to generate diverse translated images. Examples of generation results for human face on

the CelebA-HQ dataset and animal face on the AFHQ dataset can be seen in Figure 3.3.

For each source image shown in the first row, we generate multiple outputs using random

Gaussian noise. The qualitative results verify the diversity of the translated results from

a source input image. We observe that, given a source image, our model can not only

generate diverse translated images but also produce high-quality images that obtain the

same attribute (e.g., expression) from the source image.
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Figure 3.3: Qualitative results of diverse image generation for human face on CelebA-HQ

dataset (left) and animal face on AFHQ dataset (right) are shown in this figure. Each column

displays one example of one-to-many image generation. The first row displays source images.

The rest four rows show different translated images, which are obtained by using four style

codes randomly generated by the style generator. The style generator produces style codes

by randomly sampling from Gaussian distribution.

Figure 3.4: We show the translated images with style codes generated from the Style Encoder

and reference images for human (left) and animal (right) face in this picture. The source

images and reference images are put in the first row and first column. We could see that the

face has successfully translated into target domains with consistency in expression.
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Table 3.1: Evaluation on CelebA-HQ dataset for two-domain human face generation and

AFHQ dataset dataset for three-domain animal face generation.

Method

Reference Diverse

CeleA-HQ AFHQ CeleA-HQ AFHQ

FID KID FID KID FID KID FID KID

MUNIT[HLB18] 107.1 - 223.9 - 31.4 - 41.5 -

DRIT[LTH18] 53.3 - 114.8 - 52.1 - 95.6 -

MSGAN[MLT19] 39.6 - 69.8 - 33.1 - 61.4 -

StarGAN2[CUY20] 23.8 12.1 19.8 6.1 13.7 4.1 16.2 9.1

Liu[LSC21] 26.7 16.8 51.7 28.6 17.8 11.0 26.0 7.0

TUNIT[BCU21] 173.7 187.7 223.0 187.7 128.0 122.0 116.1 99.7

SwapAE[PZW20] 25.4 17.8 61.2 28.8 - - - -

CLUIT[LSL21] 28.9 18.1 22.6 10.5 - - - -

SMGAN[KCK21] 28.8 25.1 64.3 51.3 24.3 15.2 32.8 18.7

CycleCoop[XZF21] - - - - 131.0 124.7 - -

EM-LAST[HMH22] - - - - 48.8 22.9 41.5 17.0

Ours 21.0 7.7 19.0 6.1 32.9 21.9 31.8 16.9
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Table 3.2: Evaluation on specific domain translations by FID score.

Method C→D W→D M→F

ILVR[CKJ21] 74.4 75.3 46.1

SDEdit[MHS21] 74.2 68.5 49.4

CUT[PEZ20] 76.2 92.9 31.9

C2F-EBM[ZXL21] 55.1 - -

EM-LAST[HMH22] 69.4 72.5 47.8

EGSDE[ZBL22] 51.0 50.4 30.6

Ours (Diverse) 53.4 54.3 26.8

Ours(Reference) 36.2 36.1 16.1

3.4.3 Translation with Reference Image

We perform image-to-image translation by providing a reference image. We first adopt the

style encoder to extract the style code from the provided reference image, and the apply the

style code to the translator. Figure 3.4 show some qualitative results, where we take images

in the first row as source images and images in the first column as reference images. The

translation results are shown in the middle. Comparing results displayed in each row, we

can observe that the human face in the source image can be clearly changed into the same

gender and appearance of the face in the reference image, while keeping the facial expression

consistent with that in the source domain.

3.4.4 Quantitative Comparison

We also compare the results of our translation results quantitatively by using style codes

from Style Encoder by randomly selecting reference image in different domains or from Style

Generator through sampling from Gaussian distribution with other baseline methods based
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Table 3.3: Ablation Study on CelebA-HQ and AFHQ datasets in 64×64 resolution.

Removed Item
CelebA AFHQ

Avg
Reference Diverse Reference Diverse

baseline 15.1 14.3 12.4 19.6 15.4

Remove Ldiverse 16.3 17.1 36.4 35.2 26.3

Remove Lcycle 111.0 127.3 NA NA 119.2

Remove Lenergy 134.5 40.7 208.5 97.6 120.3

Remove Lmode NA NA 277.2 217.6 247.4

on adversarial learning, score matching, or EBMs quantitatively. For each source image in

the validation dataset, we obtain ten translated images for each target domain to compute

the FID. Results for both human and animal face translation are shown in Table3.1. We

also compare our results with some pair-wise translation models on specific domain transfer

and summarize the results in Table 3.2. We could see that our model could significantly

out perform existing cooperative learning methods with additional ability of guidance by

reference images and reach comparable performance with GAN-based methods.

3.4.5 Ablation Study

We conduct an ablation study to evaluate the importance of each individual component

proposed in our paper. In Table 3.3, we report the model performance in terms of FID by

removing different key loss term (including Ldiverse,Lcycle,Lenergy,Lmode) from our objective

function in our framework. We train our model in a 64×64 resolution setting on datasets

CelebA-HQ and AFHQ without using the progressive learning strategy. We show results

of image translation using style codes obtained from both style encoder and style generator

and report average performance. NA means that the model fails in learning and can not

generate meaningful results. We can see that the newly added regularization strategies for
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the descriptor and the translator, i.e., Lenergy and Lmode, are essential for stabilizing the co-

operative training. Especially, the energy-based regularization loss Lmode plays an important

role to ensure that the translator can quickly catch up with the descriptor toward the data

distribution during the cooperative training. The Lenergy is useful to obtain performance

gain by limiting the magnitude of the energy values. Also, we can find that the performance

drops significantly when removing the cycle-consistency loss Lcycle, which proves to be a key

objective for unpaired cross-domain image translation task.
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CHAPTER 4

3D Teeth Reconstruction from a Single Panoramic

Radiograph

4.1 Motivation

X-ray imaging is a vital tool in dental diagnosis and surgical procedures due to its cost-

effectiveness and lower radiation dose compared to Cone Beam Computed Tomography

(CBCT). However, unlike CBCT, X-ray images cannot provide three-dimensional (3D) de-

tails about tooth volumes or spatial localization, limiting their use in several dental ap-

plications [BOP04, RKB05] such as micro-screw planning, root alignment assessment, and

treatment simulations. Additionally, the interpretation of X-ray images, particularly involv-

ing volumetric radiation transport, typically requires experienced experts, as discussed in

the work of [HRR18]. Therefore, enhancing X-ray images with 3D visualization could be

immensely beneficial not only for clinical applications but also for patient education and

physician training.

There have been several researches on the 3D reconstruction of a single tooth from its 2D

scanning. For example, [MCR13] models the volume of a tooth from X-rays by deforming

the corresponding tooth atlas according to landmark aligning. [AEF12, AFS14] reconstruct

a tooth from its crown photo by utilizing the surface reflectance model with shape priors.

Despite those work, no one has explored the 3D teeth reconstruction of a whole cavity

from a single panoramic radiograph. This task is more challenging than the single tooth

reconstruction, since not only tooth shapes but also spatial localization of teeth should be
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estimated from their 2D representation. Moreover, all the existing methods of tooth recon-

struction [AEF12, AFS14, MCR13] utilize ad-hoc image processing steps and handcrafted

shape features. Currently, Convolutional Neural Networks (ConvNet) provide an accurate

solution for single-view 3D reconstruction by discriminative learning, and have become the

state-of-the-art for many photo-based benchmarks [CXG16, HRR18, TDB17]. However, the

application of ConvNet on the teeth reconstruction has not yet been explored.

In this work, we pioneer the study of 3D teeth reconstruction of the whole cavity from a

single panoramic radiograph with ConvNet. Different from most 3D reconstruction bench-

marks [CFG15, SWZ18], which target at estimating a single volume per low-resolution photo,

our task has the unique challenge to estimate the shapes and localization of multiple objects

at high resolutions. As such, we propose X2Teeth, an end-to-end trainable ConvNet that

is compact for multi-object 3D reconstruction. Specifically, X2Teeth decomposes the recon-

struction of teeth for a whole cavity into two sub-tasks of teeth localization and patch-wise

tooth reconstruction. Moreover, we employ the random sampling of tooth patches during

training guided by teeth localization to reduce the computational cost, which enables the

end-to-end optimization of the whole network. According to experiments, our method can

successfully reconstruct the 3D structure of the cavity, as well as restore the teeth with

details at high resolutions. Moreover, we show X2Teeth achieves the reconstruction Intersec-

tion over Union (IoU) of 0.6817, outperforming the state-of-the-art encoder-decoder method

by 1.71× and retrieval-based method by 1.52×, which demonstrates the effectiveness of our

method.

4.2 Methodologies

Figure 4.1 shows the overall architecture of our X2Teeth. We define the input of X2Teeth as

a 2D panoramic radiograph (Figure 4.1(1)), and the output as a 3D occupancy grid (Figure

4.1(5)) of multiple categories for indicating different teeth. Different from the existing single-
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Figure 4.1: Overall architecture of X2Teeth. X2Teeth consists of three subnets: (a) ExtNet,

(b) SegNet and (c) ReconNet. ExtNet captures deep representations of teeth from the input

panoramic radiograph. Based on the representations, SegNet performs pixel-wise classifica-

tion followed by segmentation map denoising for localizing teeth. ReconNet samples tooth

patches from the derived feature map and performs single-shape reconstruction. The final

reconstruction of the whole cavity is the assembling of the reconstructed teeth according to

the teeth localization and arch curve that estimated via β function model. The whole model

can be end-to-end trained.
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shape estimations [CXG16, TDB17] that mostly employ a single encoder-decoder structure

for mapping the input image to one reconstructed object, X2Teeth decomposes the task

into object localization (Figure 4.1(b)) and patch-wise single tooth reconstruction (Figure

4.1(c)). As such, the reconstruction can be carried out at high resolutions for giving more 3D

details under the computational constraint, since tensor dimensions within the network can

be largely reduced compared to directly reconstructing the whole cavity volume. Moreover,

both sub-tasks share a feature extraction subnet (Figure 4.1(a)), and the whole model can

be end-to-end optimized by employing a sampling-based training strategy for the optimal

performance. With the derived teeth localization and tooth volumes, the final reconstruction

of the cavity is derived by assembling different objects along the dental arch that is estimated

via a β function model.

4.2.1 Model Architecture

Given the panoramic radiograph, our X2Teeth consists of three components: (1) a feature

extracting subnet ExtNet for capturing teeth representations, (2) a segmentation subnet

SegNet for estimating teeth localization, and (3) a patch-wise reconstruction subnet ReconNet

for estimating the volume of a single tooth from the corresponding feature map patch. The

detailed model configuration can be seen from the Figure 4.1.

4.2.1.1 ExtNet

As shown in Figure 4.1(a), ExtNet has an encoder-decoder structure consisting of 2D con-

volutions for capturing contexture features from the input panoramic radiograph (Figure

4.1(1)). The extracted features are at high resolutions as the input image, and are trained

to be discriminative for both SegNet and ReconNet to increase the compactness of the net-

work. ExtNet utilizes strided convolutions for down-sampling and transpose convolutions for

up-sampling, as well as channel concatenations between different layers for feature fusion.
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4.2.1.2 SegNet

Given the feature map of ExtNet, SegNet maps it into a categorical mask Yseg ∈ ZH×W×C ,

where H and W are image height and width, while C denotes the number of categories of

teeth. Especially, a categorical vector y ∈ Ymask is multi-hot encoded, since nearby teeth can

overlap in a panoramic radiograph because of the 2D projecting. With the categorical mask,

SegNet further performs denoising by keeping the largest island of segmentation per tooth

type, and localizes teeth by deriving their bounding boxes as shown in Figure 4.1(2). As

indicated in Figure 4.1(b), SegNet consists of 2D convolutional layers followed by a Sigmoid

transfer in order to perform the multi-label prediction. In our experiments, we set C = 32

for modeling the full set of teeth of an adult, including the four wisdom teeth that possibly

exist for some individuals.

4.2.1.3 ReconNet

ReconNet samples the feature patch of a tooth, and maps the 2D patch into the 3D occupancy

probability map Yrecon ∈ RHp×Wp×Dp×2 of that tooth, where Hp, Wp, Dp are patch height,

width and depth, respectively. The 2D feature patch is cropped from the feature map

derived from ExtNet, while the cropping is guided by the tooth localization derived from

SegNet. Similar to [CXG16, HRR18], ReconNet has an encoder-decoder structure consisting

of both 2D and 3D convolutions. The encoder employs 2D convolutions, and its output

is flattened into a 1D feature vector for the fully connected operation; while the decoder

employs 3D convolutions to map this feature vector into the target dimension. Since our

ReconNet operates on small image patches rather than the whole x-ray, the reconstruction

can be done at high resolutions for restoring the details of teeth. In this work, we set

Hp = 120, Wp = 60, Dp = 60 since all teeth fit into this dimension.
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4.2.1.4 Teeth Assembling

By assembling the predicted tooth volumes according to their estimated localization from

x-ray segmentation, we can achieve the 3D reconstruction of the cavity as a flat plane with-

out the depth information about the cavity. This reconstruction is an estimation for the

real cavity that is projected along the dental arch. Many previous work has investigated the

modeling and prediction of the dental arch curve [NHS01]. In this work, we employ the β

function model introduced by [BHF98], which estimates the curve by fitting the measure-

ments of cavity depth and width (Figure 4.1(4)). As the final step, our prediction of teeth

for the whole cavity (Figure 4.1(5)) can be simply achieved by bending the assembled flat

reconstruction along the estimated arch curve.

4.2.2 Training Strategy

The loss function of X2Teeth is composed of two parts: segmentation loss Lseg and patch-wise

reconstruction loss Lrecon. For Lseg, considering that a pixel can be of multiple categories

because of teeth overlaps on X-rays, we define the segmentation loss as the average of dice

loss across all categories. Denote the segmentation output Yseg at a pixel (i, j) to be a vector

Yseg(i, j) of length C, where C is the number of possible categories, then

Lseg(Yseg, Ygt) = 1− 1

C

∑
C

∑
i,j 2Yseg(i, j)Ygt(i, j)∑

i,j (Yseg(i, j) + Ygt(i, j))
, (4.1)

where Ygt is the multi-hot encoded segmentation ground-truth. For Lrecon, we employ the

3D dice loss for defining the difference between the target and the predicted volumes. Let

the reconstruction output Yrecon at a pixel (i, j, k) be a Bernoulli distribution Yrecon(i, j, k),

then

Lrecon(Yrecon, Ygt) = 1− 2

∑2
c=1

∑
i,j,k Yrecon(i, j, k)Ygt(i, j, k)∑2

c=1

∑
i,j,k (Yrecon(i, j, k) + Ygt(i, j, k))

, (4.2)

where Ygt is the reconstruction ground-truth.

We employ a two-stage training paradigm. In the first stage, we train ExtNet and SegNet
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for the teeth localization by optimizing Lseg, such that the model can achieve an acceptable

tooth patch sampling accuracy. In the second stage, we train the whole X2Teeth including

ReconNet by optimizing the loss sum L = Lseg +Lrecon for both localization and reconstruc-

tion. Note that Adam optimizer is used for optimization. For each GPU, we set the batch

size of panoramic radiograph as 1, and the batch size of tooth patches as 10. Besides, stan-

dard augmentations are employed for images, including random shifting, scaling, rotating

and adding Gaussian noise. Finally, we implement our framework in Pytorch, and trained

for the experiments on three NVidia Titan Xp GPUs.

4.3 Experiments

In this section, we validate and demonstrate the capability of our method for the teeth

reconstruction from the panoramic radiograph. First, we introduce our in-house dataset

of X-ray and panoramic radiograph pairs with teeth annotations from experts. Second,

we validate X2Teeth by comparing with two state-of-the-art single view 3D reconstruction

methods. Finally, we look into the performance of X2Teeth on the two sub-tasks of teeth

localization and single tooth reconstruction.

4.3.1 Dataset

Ideally, we need paired data of the panoramic radiographs and CBCT scans captured from

the same subject to train and validate X2Teeth. However, in order to control the radiation

absorbed by subjects, such data pairs can rarely be collected in clinical settings. Therefore,

we take an alternative approach by collecting high resolution CBCT scans and synthesize

their corresponding panoramic radiographs. Such synthesis is valid since CBCT scans contain

full 3D information of cavity, while panoramic radiographs are the 2D projections of them.

Several previous work has demonstrated promising results for high quality synthesis, and in

our work, we employ the method of Yun et al. [YYH19] for building our dataset. Our in-
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Method IoU DA DF

3D-R2N2 0.398 ± 0.183 0.498 ± 0.101 0.592 ± 0.257

DeepRetrieval 0.448 ± 0.116 0.594 ± 0.088 0.503 ± 0.119

X2Teeth (ours) 0.682 ± 0.030 0.702 ± 0.042 0.747 ± 0.038

Table 4.1: Comparison of reconstruction accuracy between X2Teeth and general purpose

reconstruction methods in terms of IoU, detection accuracy (DA) and identification accuracy

(FA). We report each metric in the format of mean ± std.

X2Teeth (ours)
3D-R2N2

DeepRetriveral

Figure 4.2: IoU comparison of different tooth types between X2Teeth, 3D-R2N2, and Deep-

Retrieval.

house dataset contains 23 pairs of 3D CBCT scans and panoramic radiographs, each with a

resolution ranging form 0.250 mm to 0.434 mm. All CBCT scans and panoramic radiographs

are first labeled with pixel-wise tooth masks by 3 annotators, and then reviewed by 2 board-

certificated dentists. Finally, we randomly split the dataset into 15 pairs for training, 1 pair

for validation, and 7 pairs for testing.

4.3.2 Overall Evaluation of Teeth Reconstruction

We compare our X2Teeth with two general purpose reconstruction methods that have achieved

state-of-the-art performance as baselines: 3D-R2N2 [CXG16] and DeepRetrieval [TRR19].
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3D-R2N2 employs an encoder-decoder network to map the input image to a latent represen-

tation, and reasons about the 3D structure upon it. To adapt 3D-R2N2 for high resolution

X-rays in our tasks, we follow [TRR19] by designing the output of the model to be 1283

voxel grids, and up-sampling the prediction to the original resolution for evaluation. Deep-

Retrieval is a retrieval-based method that reconstructs images by deep feature recognition.

Specifically, 2D images are embedded into a discriminative descriptor by using a ConvNet

[KSH12] as its representation. The corresponding 3D shape of a known image that shares

the smallest Euclidean distance with the query image according to the representation is then

retrieved as the prediction.

Quantitative Comparison. We evaluate the performance of models with intersection

over union (IoU) between the predicted and the ground-truth voxels, as well as detection

accuracy (DA) and identification accuracy (FA) [CLW19]. The formulations of the metrics

are:

IoU =
|D ∩G|
|D ∪G|

, DA =
|D|
|D ∩G|

and FA =
|D ∩G|
|D|

, (4.3)

where G is the set of all teeth in ground-truth data, and D is the set of predicted teeth.

As shown in Table 4.1, X2Teeth outperforms both baseline models significantly in terms of

all three metrics. Specifically, X2Teeth achieves a mean IoU of 0.682, which outperforms

3D-R2N2 by 1.71×, and DeepRetrieval 1.52×. Similarly, Figure 4.2 reveals IoUs for all the

32 types of tooth among the three methods, where our method has the highest median and

the smallest likely range of variation (IQR) for all tooth types, which shows the consistent

accuracy of X2Teeth. Yet, we also find that all algorithms have a lower accuracy for wisdom

teeth (numbering 18, 28, 38, and 48) than the other teeth, indicating that the wisdom teeth

are more subject-dependent, and thus difficult to predict.

Qualitative Comparison. Figure 4.3 visualizes the 3D reconstructions of a panoramic

radiograph (Figure 4.3(a)) from the testing set, which clearly shows our X2Teeth can achieve

more appealing results than the other two methods. As for 3D-R2N2, its reconstruction

(Figure 4.3(e)) misses several teeth in the prediction as circled with green boxes, possibly
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Figure 4.3: Comparison of the reconstruction between (d) X2Teeth (ours), (e) 3D-R2N2,

and (f) DeepRetrieval. (a) shows the input panoramic radiograph from the testing set, (c)

shows the ground-truth of reconstruction, and (b) is the teeth numbering rule.

because spatially small teeth can lose their representations within the deep feature map

during the deep encoding process. The similar issue of missing tooth in predictions has

also been previously reported in some teeth segmentation work [CLW19]. Moreover, the

reconstruction of 3D-R2N2 has coarse object surfaces that lack details about each tooth.

This is because 3D-R2N2 is not compact enough and can only operate at the compressed

resolution. As for DeepRetrieval, although the construction (Figure 4.3(f)) has adequate

details of teeth since its retrieved from high-resolution dataset, it fails to reflect the unique

structure of individual cavity. The red boxes in Figure 4.3(f) point out the significant

differences in wisdom teeth, tooth root shapes, and teeth occlusion between the retrieved

teeth and the ground-truth. Comparing to these two methods, X2Teeth has achieved a

reconstruction (Figure 4.3(d)) that can reflects both the unique structure of cavity and the

details of each tooth, by formulating the task as the optimization of two sub-tasks for teeth

localization and single tooth reconstruction.
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4.3.3 Sub-task Evaluations

X2Teeth (ours)

X2Teeth (ours)

a

b

Figure 4.4: (a) Segmentation IoUs of various teeth for the teeth localization sub-task. (b)

Reconstruction IoUs of various teeth for the single tooth reconstruction sub-task.

For better understanding the performance of X2Teeth, we evaluate its accuracy on the

two sub-tasks of teeth localization and single tooth reconstruction. Figure 4.4(a) shows the

IoUs of different teeth for the 2D segmentation, where our method achieves an average IoU of

0.847±0.071. The results validate that X2Teeth can accurately localize teeth, which enables

the further sampling of tooth patches for the patch-based reconstruction. We also observe

that the mean segmentation IoU for the 4 wisdom teeth (numbering X8) is 0.705±0.056,

which is lower than the other teeth. This is possibly because they have lower contrasts

with surrounded bone structures, such that are more challenging to segment. Figure 4.4(b)
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demonstrates the IoUs of different types of teeth for the single tooth reconstruction, where our

method achieves a mean IoU of 0.707±0.044. Still, wisdom teeth have the significantly lower

mean IoU of 0.668±0.050, which can be contributed by the lower contrast with surroundings,

less accurate localization, and the subject-dependent nature of their shapes. Moreover,

incisor teeth (numbering X1 and X2) are observed to have less accurate reconstructions with

the mean IoU of 0.661±0.031. We argue the reason can be their feature vanishing in the

deep feature maps considering their small spatial size.
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CHAPTER 5

3D Reconstruction from Single Image with Implicit

Neural Representation

Radiological 3D reconstruction from limited 2D images has attracted increasing attention

with the development of deep generative models in the past few years. Recent works like

[SLY21, YGM19, HRR18, KLL19] have shown the feasibility of 3D reconstruction from only

one or two X-ray images, which provides an alternative solution to 3D imaging where only

2D imaging equipment is available. Due to the low radiation generated by 2D imaging equip-

ment, these methods also bring a new choice in radiological examination for patients who

are sensitive to radiation. For example, research in [Bro09] shows that the X-ray imaging

method could take as much as 200 less radiation than Cone Beam Computed Tomogra-

phy (CBCT), a fast and low-radiation type of Computed Tomography (CT) and is widely

used in dental radiology. Therefore, developing fast and accurate translation models could

potentially bring great progress in medical imaging.

However, most of these cross-dimension translation models learn to explicitly generate a

3D image by auto-encoding and adversarial learning from paired X-ray images and CT scans.

Consequently, the reconstruction quality is sensitive to the diversity and scale of training

data. In dental imaging, restoring curved mandibular shapes brings additional challenges

as only a single panoramic X-ray (PX) image is available. To solve this problem, recent

studies like Oral-3D [SLY21] and X2Teeth [LSY20] utilize individual prior knowledge when

training the model, i.e., dental arch shape extracted from buccal images or instance annota-

tions of teeth at the pixel level. Yet these complicated operations could bring conspicuous
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Figure 5.1: We compare our new model (blue) and Oral-3D (green) in this picture. Oral-3D

first learns a back-projection model with paired images to generate a flattened 3D oral struc-

ture. Then it deforms the flattened image into a curved shape according to the individual

dental arch shape acquired from the patient. In our model, we learn an implicit 3D represen-

tation of the oral structure only from the projection information, i.e., projection image and

X-ray tube trajectory that is pre-defined by the equipment manufacturer and independent of

individuality. After the model is well-trained, the 3D object is reconstructed by inferring the

density distribution in 3D space from the implicit representation model and 2D coordinates.
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Figure 5.2: We show the comparison of imaging process of general CT (including CBCT)

and PX in this picture. In CT, the X-ray tube and the film moves together around a fixed

rotation center for 360 degrees, where the film receives all X-rays sent from the tube. In PX

imaging, the X-ray tube and the film rotates around a moving center, whose trajectory fits

the curve of the mandible. Therefore, points that are around and away from the trajectory

receive different levels of radiation during the imaging. For example, when the tube and

the film moves from A to B in the right picture, the red point is projected twice while the

green point is only projected once. This could make the image show more information of

the imaging target at the red point over the green point.
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miss alignment during reconstruction, thus greatly hindering clinical applications in dental

examinations. As a comparison, implicit representation models [MST21, MES22] provide a

new solution in 3D reconstruction from 2D images. But these models rely on learning from

abundant images viewed from various directions, which is hard to apply in radiology due to

differences in imaging principles and inflexibility in imaging angles.

To address these limitations, we propose a new framework for 3D oral reconstruction

from a single 2D panoramic X-ray (PX) image. Different from previous work like Oral-3D,

which learns a back projection function to explicitly predict the reconstruction result by

learning from paired images and prior knowledge of the individual dental arch shape, our

model could learn 3D reconstruction simply from a single X-ray image with the projection

settings from the imaging equipment. A comparison between Oral-3D and our method can

be seen in Figure 5.1, where only projection data is required during the reconstruction in

our method.

Unlike models in [CFB22, ZDW23] that utilize a single X-ray or two orthogonal X-ray

images, our method could utilize the rich projection information during a panoramic scan

with our advanced architecture. Specifically, we use a deep learning network to learn a

mapping function between coordinates and density values of voxels in the 3D space, i.e.,

Hounsfield Unit (HU). To take advantage of the imaging process in panoramic imaging,

we propose a multi-head model that outputs a bunch of voxel values at the same time

given a 2D coordinate, which proves to be both efficient and effective over existing implicit

representation models. Furthermore, to accommodate the imaging object in radiology, we

utilize a dynamic sampling strategy to improve the reconstruction quality by acquiring points

along radiation rays in random resolutions. Extensive experiments show that our model could

significantly outperform state-of-the-art methods in 3D oral reconstruction both qualitatively

and quantitatively. In conclusion, we summarize our contribution as follows:

• Different from previous approaches in 3D oral reconstruction, such as Oral-3D[SLY21]

and X2Teeth[LSY20], our model could achieve superior performance without training
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from any paired data, individual prior knowledge, or annotations.

• We propose an efficient implicit 3D representation model that maps a 2D coordinate

into a bunch of 3D density values. This could reduce the computation complexity from

O(N3) to O(N2) when reconstructing a N ×N ×N object during both training and

inference.

• We also propose a dynamic sampling strategy when sampling points from radiation

rays with an adaptive projection method. This could encourage the model for higher

reconstruction quality by learning a smooth density distribution in the 3D space .

5.1 Background and Related Works

5.1.1 Radiology in dental imaging

There are mainly two radiological imaging methods in dental health, i.e., CBCT and PX.

CBCT generates a 3D image of the oral cavity with rich spatial information of teeth, thus

widely used in orthodontics and tumor surgery. As a comparison, PX is a faster and

lightweight method used in the examination before pulling or planting teeth, where a 2D

panoramic picture is taken of all the teeth along the mandibular curve. We show illustrations

of these two imaging methods viewed in the axial plane in Figure 5.2. In CBCT, as shown

in the left image, the X-ray tube and the film moves around a fixed center for 360◦. The 3D

image is then reconstructed from sinogram signals in 2D space [Her09], which is feasible as

each point is projected from different directions during the imaging. In PX, the X-ray tube

and the film move around a moving center from one side to the other. The trajectory, also

named the focal plane, generally fits the curved shape of the mandible, leading to different

projection levels for tissues at various locations. For example, as shown in the right picture,

the red point at O1 located on the moving trajectory is projected twice while the green point

at Q1 off the moving trajectory is projected only once when the X-ray tube and the film
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move from A to B. Therefore, the image shows stronger signals for tissues at O1 than Q1,

thus generating a clear picture of objects around the focal plane. Like CBCT, points around

the focal plane also receive multiple projections in PX but are not used to recover any 3D

information during imaging. This feature is taken advantage of our proposed model for 3D

oral reconstruction.

5.1.2 Implicit representation in 3D reconstruction

Implicit representation has been demonstrated to be a promising method in the task of 3D

reconstruction since the work of neural radiance field (NeRF) [MST21], where the researchers

use the deep neural network to map 5D coordinates of spatial location and viewing direction

into the density and emitted radiance of a voxel. During the inference, the model could

generate images from any position by rendering along the rays sent from the observation

point. Based on this framework, D-NeRF [PCP21] takes time as additional input to the sys-

tem for the reconstruction of dynamic scenes. Nerfies [PSB21] use an additional continuous

volumetric deformation field to generate deformable photo-like scenes. Although our method

also utilizes implicit 3D representation, there are still big differences due to the characteristic

of the imaging process in radiology: 1) The movement of an X-ray tube has less degree of

freedom (DoF) than a camera, thus leading to limited projection rays in both directions and

origins. 2) The predicted density distribution represents the values of HU instead of the

differential probability. 3) The reconstruction object should be view-independent.

5.1.3 Cross-dimension translation in radiology

Cross-dimension translation in radiology images between 2D and 3D by deep neural networks

starts from the work of [HRR18], where the authors use an encoding-decoding network to

learn a back projection function that maps a 2D projection image into 3D density volumes

for the skull of mammals. Following this work, [YGM19, KDK20] improve the reconstruc-

51



tion quality for the abdomen and knees by utilizing bi-planar X-ray images and adversarial

networks. In dental healthcare, Oral-3D [SLY21] first uses a single panoramic X-ray image

to reconstruct the 3D oral structure. X2Teeth [LSY20] trains three networks to reconstruct

and segment the teeth in 3D space with annotated X-ray images. Our model can be seen as

an extension of these works that focus on the same problem but with a different technical

solution: 1) In contrast to learning explicitly by auto encoding or adversarial learning, our

method learns the representation of the 3D object in an implicit way. 2) Our model relies no

more on paired 2D and 3D images or individual prior knowledge to restore the mandibular

curve.

5.2 Methodologies

5.2.1 Problem Definition

Given a pair of projection image I and the trajectory of the rotation center O during the

PX imaging, the object is to find an implicit 3D representation V : p → h that maps 3D

coordinates p into HU values h and minimizes the mean square error against the projection

image given the imaging function F (·). The problem can be defined as:

arg min
V (·)

||F (V,O)− I||2. (5.1)

With the sampled rotation center point at Oi and the corresponding projection image Ii,

the reconstruction problem in Eq (5.1) could be solved by optimizing the below objective

function:

Lobj =
N∑
i=1

||f(V (p1), V (p2), · · · , V (pm))− Ii||2, (5.2)

where p1, · · · ,pm are the coordinates of points sampled along the radiation ray sent from

the X-ray tube, and f is the projection function that maps multiple voxel values into a

single one. To distinguish with existing NeRF-like models VNeRF , we refer to our implicit

representation model as VNeXF (short for neural X-ray field) to represent the field function
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Figure 5.3: This image provides an overview of our model, i.e., Oral-3Dv2. Starting with

radiation rays, we use a dynamic sampler to acquire sample points on each ray at random

sampling rates. Then, we employ our proposed multi-head neural X-ray field (NeXF) with

a positional encoder to predict densities in the 3D space. The NeXF outputs a bunch of HU

values from a single 2D coordinate. Next, we generate a projection image adapting to the

dynamic resolution during sampling. Finally, we calculate the MSE loss between the projec-

tion slice and the ground-truth image to update parameters of our implicit representation

model.
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in X-ray imaging.

5.2.2 Overview

We show an overview of our proposed model in Figure 5.3, where paired rays and rendering

results are taken as input to train the implicit representation model VNeXF . Given the

direction and origin of the projection ray inferred from the moving trajectory T (O) of the

X-ray tube, we first generate points along the radiation ray at a random sampling rate. The

sampled coordinates are then taken as the input of a positional encoding module, followed

by our proposed NeXF model, to generate the projection results. The model is updated

according to Eq. 5.2 until converge. Although our framework looks similar to NeRF-like

models, we have three major differences due to the feature of PX imaging, where the radiation

rays are almost parallel to the axial plane. First, our NeXF has a multi-head structure,

whose input is a 2D coordinate and output is a bunch of voxel values in the same axial

location. Second, we use a dynamic sampling strategy instead of a pair of coarse and fine

networks to improve the reconstruction quality. Third, our model is view-independent as it

is unreasonable for various density values for the same voxel in radiology.

5.2.3 Dynamic Sampling

NeRF-based models generally utilize a pair of coarse and fine networks to determine the

sampling rate along the rays due to multiple free spaces and occluded regions in their 3D

objects viewed from the outside. However, this is not applicable to radiology as the aim

of imaging is to observe the inside structure of the object. Therefore, points along the

radiation rays should be evenly sampled to evenly indicate the density variance in 3D space.

To accommodate this, we propose a dynamic sampling strategy that acquires points from

radiation rays in a random resolution to improve spatial smoothness without introducing

additional new networks. As shown in Figure 5.3, radiation rays sent from different directions
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(represented by the red, blue, and purple arrows) acquire different numbers of sampling

points when generating projection images. We show that the variance in sampling rate

during projection in training could significantly improve the reconstruction quality in the

ablation experiments.

5.2.4 Positional Encoding

Positional encoding has been widely used in implicit 3D representation models due to the ten-

dency of learning low-frequency details as revealed in recent research like [RBA19, TSM20].

To solve this spectral bias problem, frequency encoding is introduced in [MST21, BMT21]

to encourage the model to exploit high-dimension spatial information during reconstruction.

We follow the same way as in [VSP17] that utilizes multi-resolution sequence to encode the

coordinate value p from p into L levels of embedding as:

Enc(p) =(sin
(
20p

)
, sin

(
21p

)
, · · · , sin

(
2L−1p

cos
(
20p

)
, cos

(
21p

)
, · · · , cos

(
2L−1p

)) (5.3)

5.2.5 Multi-head Neural X-ray Field

Different from NeRF-based models, where the camera has more freedom in position and

angle, the X-ray tube in radiological scans generally moves in a fixed trajectory, leading to

a limited direction and origin of radiation rays during the imaging. For example, radiation

rays that pass through the oral cavity are approximately parallel to the axial plane. Taking

advantage of this feature, we propose a different radiance field model that predicts a bunch

of voxel values in the 3D space from a 2D coordinate. Given that the 3D object in radiology

should be view-independent, our implicit representation model VNeXF can be defined as:

VNeXF : (x, y)→ (vx,y,1, vx,y,2, · · · , vx,y,zn), (5.4)
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Figure 5.4: We show the comparison of implicit representation model between NeXF and

NeRF models in this picture. The NeRF-like models have a single-head structure that

outputs the specific voxel value of the given input. However, in NeXF the model only takes

in a 2D coordinate by predicts a bunch of voxel values with its multi-head architecture.

This architecture could best fit the imaging process of PX and significantly decrease the

computation complexity during both training and inference.

in comparison to VNeRF defined as:

VNeRF : (x, y, z, θ, ϕ)→ vx,y,z. (5.5)

We compare the difference between VNeXF and VNeRF in Figure 5.4. VNeXF uses a multi-head

architecture that takes in a 2D coordinate as input and outputs zn number of voxel values,

where zn is the same as the resolution of reconstruction object in z axis. In contrast, VNeRF

only predicts a single value per 5D coordinate. Therefore, VNeXF can reduce the computa-

tional complexity from O(N3) to O(N2) compared with VNeRF during the reconstruction of

N ×N ×N object.

5.2.6 Adaptive Projection

Following Beer-Lambert absorption-only model [Dri03], the fraction α of radiation arriving at

the film after traveling volumes with spatially-varying density µ(t) along a ray parameterized

with variable t within [tn, tf ] could be expressed as:

α = exp

∫ tf

tn

µ(t)dt, (5.6)
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Figure 5.5: Comparison of different rendering methods in PX imaging. We can see that

with soft rendering the generated PX image has a closer contrast with the real PX image

(obtained from Internet). The real PX image looks more clear due to the high resolution of

the PX machine.

Method PSNR Dice SSIM Overall

NAF [ZZL22] 18.35±0.86 57.20±3.94 60.69±2.69 65.93

GAN [GPM20] 16.71±0.89 75.10±1.46 63.96±7.03 76.93

ResEncoder [HRR18] 18.26±0.50 72.67±1.56 62.52±5.56 75.49

Oral-3D [SLY21] 18.59±0.70 76.88±1.26 65.94±4.24 78.60

Ours 20.34±0.62 75.34±3.95 81.06±1.61 86.04

Table 5.1: Evaluation of 3D oral reconstruction by PSNR, SSIM(%), and Dice.

where µ(t) is the attenuation coefficient and could be converted into a HU value by:

H(µ) = 1000× µ− µwater

µwater − µair

, (5.7)

where µwater and water are constant values and µ is the accumulated attenuation coefficient

along the ray path. By sampling along the radiation ray, Eq. (5.6) can be converted into:

α = exp(

⌊tf−tn⌋∑
i

µi). (5.8)

Therefore, the projection function f(·) in Eq. (5.2) can be adaptively expressed with our

proposed implicit representation model V and the dynamic sampling rate Ns as:

f(·) = H(

∑⌊Ns(tf−tn)⌋
i µi

Ns

) = H(

∑⌊Ns(tf−tn)⌋
i H−1(V (pi)

Ns

)), (5.9)

where pi is the i-th sample point within [tn, tf ].
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5.3 Experiments

5.3.1 Dataset

We collect a dataset consisting of 80 CBCT dental scans as groundtruth of the 3D oral

structure and source images to simulate PX imaging. We divide the model into two groups:

1) 60 cases used for training models based on auto-encoding and adversarial learning, and

2) 20 cases used for inference and validation for all models. The CBCT scan is resized into a

size of 288×256×160 using trilinear interpolation to minimize influence brought by imaging

machines.

5.3.2 PX Imaging Simulation from CBCT

The moving trajectory of rotation center in PX imaging is fitted by the beta function as:

y = 256− beta(x/288, 3.6, 3.6) ∗ 100− 25. (5.10)

We split the trajectory curve equally into 576 pieces and assume the radiation rays evenly

cross each small curve in angles between −π/4 and π/4. Research in [SS06][Arm06] show

that HU is unreliable in CBCT scans due to variations in gray-scale values for different

areas in the scan, especially when the imaging areas have the same density but different

relative positions. Therefore, we follow the same method proposed in [YYH19, SLY21]

during projection to get realistic PX images from CBCT. Then the projection function f(·)

in Eq. (5.9) can be rewritten into f̂(·):

f̂(·) = S · log(

⌊Ns(tf−tn)⌋∑
i

e
V (pi)+C

S )− logNs − C, (5.11)

where C = H(µair). Comparisons among real PX image and simulated images generated by

f(·) and f̂(·) can be seen in Fig 5.5, where PX images simulated by f̂(·) has a more closer

contrast as real images.
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5.3.3 Hyper-parameters and Network Architecture

We select S = 1200 in Equation (5.11) to distinguish air and soft tissues in HU. The sampling

rate Ns for each radiation ray during training follows a uniform distribution in [0.25, 1, 25].

The level L used in positional encoding is selected to be 16 with the normalizaton of co-

ordinates into [−1, 1]. For the multi-head NeXF, we use a 12-layer fully-connected neural

network with residual connections and set the number of heads as 160, which is consistent

with the CBCT data.

5.3.4 Training and Evaluation

The model is trained for 20k iterations with a batch size of 64. The model is optimized by

Adam with a learning rate of 0.0001. We use structural similarity index measure (SSIM)

[WBS04], dice coefficient (DC), and peak signal-to-noise ratio (PSNR) to evaluate the re-

construction results. We also use the averaged score proposed in [SLY21] as the overall

metric.

5.3.5 Baseline Models

We compare our method with baseline models that can be grouped into two categories. The

first group including GAN [GPM20], Oral-3D [SLY21], and Res-Encoder [HRR18]. These

models are trained with the 60 paired simulated X-ray images and CBCT images and learn

the prediction of explicit 3D representation with either adversarial learning or auto-encoding.

We put our model in the second group with NAF [ZZL22], another implicit representation

with the same framework attenuation coefficients in 3D space.
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Figure 5.6: Comparison of 3D oral reconstruction by different methods from PX imaging.

The reconstruction results are shown by maximum projection to compare density details.

We could easily find that our method show the best performance with clear density density

distributions and teeth boundaries.

M D P PSNR SSIM(%) Dice(%) Overall Drop

✗ ✓ ✓ 16.68±0.74 73.62±5.49 61.25±4.57 72.76 -13.28

✓ ✗ ✓ 16.80±0.71 61.44±5.87 73.29±3.24 72.91 -13.13

✓ ✓ ✗ 16.57±1.08 63.63±3.07 70.28±3.28 72.25 -13.79

Table 5.2: Ablation study by removing each component in our proposed method. M: Mul-

ti-head Prediction, D: Dynamic Sampling, P: Change f̂(·) to f(·) in training
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5.4 Results

5.4.1 Qualitative Comparison

We first show qualitative comparison in Figure 5.6 to compare the reconstruction results

of baseline models. More results for Oral-3D and our model can be seen in supplemental

materials. We can see that although ResEncoder and GAN could restore the curved shape

of mandible without any prior knowledge, these models fail to recover the detail density

distribution in the reconstruction results. For NAF, the model could recover the curved

shape and density variance. But the results contain too much noise and is hard to identify

the teeth shape. For Oral-3D, the model could restore both shape and teeth details with

the help of individual dental arch shape. However, its reconstruction quality is obviously

lower than our method, especially for the details of density change between teeth root and

the mandible.

5.4.2 Quantitative Comparison

We then show the quantitative comparison by the proposed metrics in Table 5.2.5. The dice

score is computed by setting a threshold at 500 HU to extract the bone from soft tissues. We

could see our model could significantly outperform other models, with improvement of +5

in SSIM and +7.5 in the overall score against the state-of-the-art method without training

on paired images or deformation by individual prior knowledge. To be noted, Oral-3D has

a better Dice score but lower performance in PSNR and SSIM. This is consistent with the

visualized results shown in Figure 5.6, where Oral-3D restores less density details.

5.4.3 Ablation Study

We conduct an ablation study to evaluate the contribution of each component in our model:

1) replace the multi-head field function with a single-head predictor and taking in 3D co-
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ordinates as input for the positional encoder; 2) use a fixed sampling rate of Ns = 1 to

generate sample points on projection rays; 3) change the rendering function in Eq. (5.11)

to Eq. (5.9) when training the model. We use the letters M, D, and P to represent these

changes. Results are shown in Table 5.4, where the performance drops significantly (about

-13 in Overall) when changing any module. We could see the dynamic sampling strategy can

greatly improve the reconstruction quality without introducing additional models. And the

multi-head architecture has stronger ability in implicit representation in radiation imaging.
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CHAPTER 6

Conclusion and Future Work

6.1 Research Summary

In this dissertation, we have delved into the realm of image-to-image translation from two

distinct angles: cross-domain translation and cross-dimension translation. We succinctly

conclude the four innovative methods as following:

6.1.1 Perceptual Learning for Multi-domain Translation

We introduce MDT-Net to achieve multi-domain transfer within one single model trained

by unpaired and unlabeled images with perceptual supervision. We disentangle the anatomy

content and domain variance by an encoder-decoder network and multiple domain-specific

transfer modules. Furthermore, extensive experiments on the task of transfer among three

domains of OCT images have validated the advantage of MDT-Net qualitatively and quan-

titatively.

6.1.2 Progressive Energy-based Model for High-resolution Image Translation

We present a novel approach that combines energy-based learning, MCMC sampling, coop-

erative learning, and progressive learning for unpaired multi-domain image-to-image transla-

tion in this chapter. Our method includes a multi-head energy-based model as a descriptor,

capturing the multi-domain image distribution, and a diversified image-to-image translator

for cross-domain one-to-many mapping. To train both the descriptor and translator, we
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introduce a multi-domain MCMC teaching algorithm. Additionally, we propose progressive

learning to enhance the scalability and efficiency. Experimental results demonstrate that

our approach achieves comparable performance to adversarial learning frameworks and sets

a new benchmark in energy-based image-to-image translation methods.

6.1.3 3D Teeth Reconstruction from a Single Panoramic Radiograph

We initialize the study of 3D teeth reconstruction of the whole cavity from a single panoramic

radiograph. In order to solve the challenges posed by the high resolution of images and multi-

object reconstruction, we propose X2Teeth to decompose the task into teeth localization and

single tooth reconstruction. Our X2Teeth is compact and employs sampling-based training

strategy, which enables the end-to-end optimization of the whole model. Our experiments

qualitatively and quantitatively demonstrate that X2Teeth achieves accurate reconstruction

with tooth details. Moreover, our method can also be promising for other multi-anatomy

3D reconstruction tasks.

6.1.4 3D Reconstruction from Single Image with Implicit Neural Representa-

tion

we propose a new method for reconstructing the 3D oral structure from projection informa-

tion in panoramic X-ray imaging. We utilize an implicit representation model with multi-

head architecture to accommodate the imaging process of PX and a dynamic sampling

strategy to refine the reconstruction results. Unlike existing deep learning models like Oral-

3D, our method does not require extensive patient data or dense annotations to reconstruct

the complicated structure of oral cavity. Extensive experiments show that our model signif-

icantly outperforms state-of-the-art models both qualitatively and quantitatively with clear

density details of teeth and the mandible in the reconstructed oral structure. Furthermore,

the complexity analysis show that our method has great potential in clinical applications
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with the low radiation and comparable reconstruction speed.

6.2 Conclusion and Future Work

Within this thesis, we present a comprehensive array of methodologies and strategies de-

signed to advance the field of image-to-image translation, with a focus on both cross-domain

and cross-dimension perspectives. Our extensive experimentation across the four chapters

demonstrates the remarkable efficiency and effectiveness of our proposed approaches in suc-

cessfully addressing the inherent challenges of image-to-image translation tasks.

Nonetheless, significant challenges persist. For instance, within the domain of multi-

domain translation, the task of domain transfer, especially in the context of super-resolution,

such as with 4K images, continues to pose formidable challenges in terms of achieving sta-

bility and efficiency with energy-based models. Furthermore, in the arena of cross-domain

translation, bridging the performance gap arising from disparities between simulated and

real images remains an ongoing area of concern. Moreover, the enticing prospect of applying

reconstruction techniques to decode magnetic signals in MRI imaging represents uncharted

territory in this field. These captivating opportunities for further exploration will be deferred

to future research endeavors.
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