
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Supervised Learning of Actino Selection in Cognitive Spiking Neoron Models

Permalink
https://escholarship.org/uc/item/4wf00586

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 40(0)

Authors
Stewart, Terrence C
Thorgeirsson, Sverrir
Eliasmith, Chris

Publication Date
2018

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4wf00586
https://escholarship.org
http://www.cdlib.org/

Supervised Learning of Action Selection in Cognitive Spiking Neuron Models

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Sverrir Thorgeirsson (sverrir.thorgeirsson@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

200 University Avenue West, Waterloo, ON, Canada, N2L 3G1

Abstract

We have previously shown that a biologically realistic spiking
neuron implementation of an action selection/execution
system (constrained by the neurological connectivity of the
cortex, basal ganglia, and thalamus) is capable of performing
complex tasks, such as the Tower of Hanoi, n-Back, and
semantic memory search. However, because the neural
implementation approximates a strict rule-based structure of a
production system, such models have involved hand-tweaking
of multiple parameters to get the desired behaviour. Here, we
show that a simple, local, online learning rule can be used to
learn these parameters, resulting in neural models of cognitive
behaviours that are more reliable and easier to construct than
with prior methods.

Keywords: neural engineering framework; neural production
systems; semantic pointer architecture; spiking neurons; basal
ganglia; neural cognitive architectures

Introduction
In previous work (Stewart & Eliasmith, 2009; Stewart,
Choo, & Eliasmith, 2010), we have shown how spiking
neurons can be used to build biologically plausible
approximations of traditional production systems, and that
these models also harness the sophisticated pattern matching
capabilities of neural networks, leading to novel capabilities.
This formed the core of Spaun (Eliasmith et al., 2012), the
first and so far only spiking neuron model capable of
performing multiple cognitive tasks, and is central to the
more general Semantic Pointer Architecture for building
neually plausible cognitive models (Eliasmith, 2013). Since
then, this system has formed an important part of biological
models of the Tower of Hanoi (Stewart & Eliasmith, 2011),
bandit tasks (Stewart, Bekolay, & Eliasmith, 2012),
command parsing (Stewart & Eliasmith, 2013), sentence
parsing (Stewart, Choo, & Eliasmith, 2014), the n-Back task
(Gosmann & Eliasmith, 2015), action planning (Blouw,
Eliasmith, & Tripp, 2016), speech production (Kröger,
Bekolay, & Blouw, 2016) and the effects of reduction of
dopamine on speech production (Senft et al., 2016),
hierarchical reinforcement learning of navigation and
abstract action rules (Rasmussen, Voelker, & Eliasmith,
2017), and semantic memory search (Kajić et al., 2017).

However, building neural implementations of these kinds
of cognitive tasks imposes new challenges on the
researcher. In particular, since the neurons approximate a
production system, they do not provide the same simple
algorithmic programmability that a production system
affords with its IF-THEN rules. This has meant that

creating the models listed above required careful hand-
tuning of some parameters.

In this paper, we present a method for automatically
learning these parameters such that the model's desired
overall overt behaviour is achieved. This greatly simplifies
the process of constructing neural models with complex
rule-like behaviour, and sheds light on potential
mechanisms for how neurobiological systems may learn to
perform such tasks.

Neural Action Selection and Execution
The generic form of our neural approximation of a
production system is shown in Figure 1. The neurons in
cortex represent state information, i.e., the set of
information that can be used for selecting which action to
perform next. This can consist of visual information, the
contents of working memory, the state of the motor system,
and so on. (These approximately correspond to Buffers in
ACT-R). We use the Neural Engineering Framework
(Eliasmith & Anderson, 2003) to organize spiking neurons
to form distributed representations of these values, which
can be scalars, vectors, or functions.

Figure 1: The cortex-basal ganglia-thalamus loop that forms
the neural action selection and execution system. Neurons
(dark circles) and connections are shown only for the inputs
to the action selection system. These connections compute

the utility (Ui) of each of the actions i, given the current
cortex state. The basal ganglia selects the action with the

highest utility, and the thalamus executes that action.

1086

The connections between cortex and the first stage of the
basal ganglia (the striatum) compute the utility of each
action. The basal ganglia determines the largest of these
utility values, which is the action that should be selected.
Connections via the thalamus execute the action, resulting in
changed cortical state.

More specifically, the neurons in the different cortical
areas form a distributed representation of whatever state
information is needed for the model. This state is, in
general, a D-dimensional vector represented by the spiking
activity of N neurons (where N is generally much larger
than D). In Figure 1, we show three groups of four neurons
each, representing three different state variables. In a
typical model, these state variables would consist of
~25,000 neurons representing a ~500 dimensional value.
Given such a large state space, we can represent symbols by
using randomly chosen 500-dimensional vectors to
represent different concepts (A, B, C, ONE, TWO, THREE,
LETTERS, NUMBERS, etc.). Importantly, by using the
approach of Vector Symbolic Architectures (Gayler, 2003),
such a representation can also be generalized to represent
complex combinations of symbols, giving the
compositionality needed for cognitive models. The details
of the construction and deconstruction of symbol-like
structures in these systems are not needed for the purposes
of this paper, but see (Stewart, Choo, & Eliasmith, 2010)
and (Eliasmith, 2013) for further details.

The striatum neurons in the input to the basal ganglia
represent the utility of each action. In Figure 1, we show
four actions, and each action's utility is represented by three
neurons. In the real model, we use 100 neurons per action
(including both striatal D1 and D2 neurons). These 100
neurons again form a distributed representation of the utility
of the action given the current cortical state information.

To cause this to happen, we need to determine the
connection weights between the cortical neurons and the
striatal neurons such that when the cortical neurons fire with
a particular pattern, the striatal neurons will fire with the
pattern that represents the correct utility value.

For example, suppose we have an action that should occur
if the visual cortical neurons are representing the number
TWO. We might then say that we want the connections
from cortex to striatum to approximate the following
function, where s is the vector currently represented in
cortex:

However, neural firing patterns are never going to be exact,
so the cortical neurons will never (or very rarely) fire with
the exact ideal pattern that we have chosen to mean TWO.
This means the above function will, in practice, always
return 0 and so the connection weights that closely
approximate that function will be all zeros. Instead, we want
a function that will give a high utility if the represented
value is close to TWO, and a low utility if it is farther from
TWO. For this, we use the dot product:

We use the Neural Engineering Framework (NEF; Eliasmith
& Anderson, 2003) to directly solve for the ideal connection
weights that best approximate this function. Importantly,
the NEF demonstrates that linear functions are extremely
easy for neural connections to approximate, so we know that
this function will be well-approximated.

The above technique (using neurons to represent vectors,
and solving for connection weights that approximate
functions on those vectors) is used for all the neurons and
connections in the model. In previous work (e.g., Stewart,
Choo, & Eliasmith, 2010; Eliasmith, 2013) we have shown
how the basal ganglia model finds the largest of these utility
values and how the thalamus model is used to route
information between cortical areas to execute the actions.
However, in this paper we take a closer look at the problems
encountered when deciding upon the functions to be
approximated to compute these utilities.

Approximating AND and OR
Suppose we want an action that will only occur if the visual
cortex contains LETTER and the contents of working
memory are A. In a standard production system, this is
simple to specify, since AND is a primitive operation when
defining production rules. However, if we instead try to
specify this operation using neurons, it is difficult for the
neurons to be precise. Rather, we might get the neurons to
approximate this function:

Now, the utility will only be large (near 1) if both the visual
cortex v is near the pattern for LETTER and the working
memory neurons m are near the pattern for A. This seems
to be a good implementation of AND, but it is important to
note that if the memory contains B instead of A, this action
will still get chosen if no other actions have a utility higher
than 0.5. In other words, this attempt at implementing AND
is highly dependent on the definition of the other actions.
As the number of actions increases, the interaction between
the various actions becomes more complex.

A similar problem occurs with OR. If we want an action
that occurs if v is NUMBER or if m is C, we may compute
the utility with something like this:

This will produce a large value (near 1) if either case is true.
However, if it turns out that both v is near NUMBER and m
is near C, then this action will get an even higher utility
(near 2), causing it to overwhelm other actions that may also
have large utilities. Indeed, this action may be selected even
if v is only somewhat near NUMBER and m is only
somewhat near C.

These problems may be mitigated by adding scaling factors
to these equations. For example, we may do the following:

It is these scaling factors that are sometimes “hand-
tweaked” when making complex neural action selection

1087

models using our methods. We now present a method for
eliminating this hand-tweaking by having the neural
network learn the correct connection weights to perform the
task correctly.

Supervised Learning of Action Selection
Rather than hand-tweaking the scaling factors in the U
functions (that is, trying to find values that consistently
produce the desired behaviour in the context of all the other
U functions), we instead propose to use an online learning
rule. That is, we initialize the model with zero for these
parameters, and then adjust these values while the model is
running based on its performance.

The simplest online error-driven learning rule is the delta
rule (Widrow & Hoff, 1960):

This is meant for situations where the adjustable parameters
ωij are weights on values xi that produce the weighted sum yj

(i.e.). The desired target value is tj and the
learning rate is α. We have previously shown how this rule
can be adapted to distributed representations in spiking
neurons (Bekolay, Kolbeck, & Eliasmith, 2013), where we
refer to it as the PES rule.

Since this is exactly the right configuration for the
parameters in our utility equations U, we can directly apply
this learning rule, if we can determine a target value tj at
every point in time while the simulation is running.

Determining the error signal (tj - yj)
To apply the above rule, we need a measure of the error that
is currently being made. To get the target value, we need to
know what the utilities should be right now. However, this
is exactly what we don't know (since if we did know what
the utilities of each action should be, we would just use that
as the equation for U). However, what we can compute is
what would an ideal action selection system do in this case.
That is, we can use a standard production system (or any
other appropriate action selection system) given the current
state information and see what action it would take. This
standard production system is not constrained to be neurally
plausible, so it can do perfect AND and OR operations. We
then use this to form an estimate of tj:

For yj we have two options. The standard approach would
be to simply use (i.e. the utility values as
currently computed by the neural system). This is what this
learning rule was designed for. However, given our
estimate of tj, this may not be the right rule. For example, if
action 1 has a utility of 0.9 and all the other actions have a
utility smaller than 0.9, then action 1 will be selected, but
even if action 1 is supposed to be selected, this learning rule
would treat that as an error and try to adjust the parameters
such that the utility is larger. That is, even when the system
is producing the correct behaviour, the weights will still be
adjusted.

To avoid this, we can also estimate yj as the output of the
action selection system. That is,

This gives us two possible ways of measuring the error: we
can either use the input to the action selection system (Uj) or
we can use the output of the action selection system (yj,
above). Both cases are investigated here.

Determining the learning inputs xi

We must also determine what to use for xi. One
straightforward option is to use the base terms from the
equations used to generate the U functions. For example, if
one of our U functions is the above-mentioned utility
function , then we might
use and as x1 and x2. The learning
rule would then learn the weights ω1,3 and ω2,3. In a full
system with multiple utility functions, all of the different
terms would create a long list of x values.

However, since the cortical values are already stored in
terms of neurons, and those values such as
are being computed by connection weights from those
neurons, there is a second alternative. We can use the same
learning rule, with the same error signal, to directly adjust
the connection weights from the neurons themselves. That
is, we let xi be the neural activity of the cortical neurons, and
ωij is then the connection strength between the cortical
neurons and the striatal neurons.

By using the neurons themselves, we are increasing the
range of possible functions that the learning rule can find.
That is, when using the parameter-based approach, the U
functions are constrained to the linear weighted sums of the
particular terms that we have identified for xi. But, if we use
the neural activity for xi, then the learning rule has access to
the full space of possible functions that can be approximated
by connection weights out of those neurons. Interestingly,
using the learning rule in this way makes it mathematically
identical to the PES learning rule that we have previously
used to model reinforcement learning, and in that case it was
also used to learn the connections between cortex and
striatum (Stewart, Bekolay, & Eliasmith, 2012).

However, the drawback of using the neurons themselves
is that we greatly increase the number of parameters ωij to
learn. This makes the learning more computationally
intensive, and will likely require a lower learning rate. Both
options are investigated here.

Example Model
To test this approach to learning, we chose a simple
cognitive task with two cortical state variables and six
actions. If the visual system contains LETTER, then the
production system should cycle the working memory state
through A → B → C → A (and so on). If the visual system
contains NUMBER, then the working memory should cycle
through ONE → TWO → THREE → ONE (and so on).

1088

This can be thought of as the following set of production
rules:

IF THEN

v=LETTER AND m=A m=B

v=LETTER AND m=B m=C

v=LETTER AND m=C m=A

v=NUMBER AND m=ONE m=TWO

v=NUMBER AND m=TWO m=THREE

v=NUMBER AND m=THREE m=ONE

When the system is run, an external input to the visual
cortical neurons is set to change it from LETTER to
NUMBER (and back) every second.

To convert this into a neural model, we need to define the
utility functions for each action. If we were doing this by
hand using the typical approach, we might use the
following:

However, performance may improve if those parameters are
tweaked, and indeed if other terms are added.

Evaluation Metrics
To determine whether the optimization does, in fact,
improve performance, we define two separate measures to
characterize the quality of the model.

First, we report the number of correct transitions over 2.0
seconds (1.0 seconds with the input to visual being
LETTER, and 1.0 with it being NUMBER). However, we
have to be careful as to how to define a correct transition,
since neurons are being used to represent the contents of
working memory, and those contents are a numerical vector,
not an abstract symbol. There is, however, an ideal
(randomly chosen) vector for each of the basic terms (ONE,
TWO, THREE, A, B, C, LETTER, NUMBER).
Furthermore, given the neural activity of the working
memory neurons, we can compute the vector they are
currently representing (using the NEF). This numerical
vector can then be compared to the ideal vectors. Here, we
use the dot product for this comparison. We define a correct
transition as going from a previous time point where, for
example, the vector is closest to A, and at the next time
point it is closest to B. If LETTER is currently in visual,
then the correct transitions are A→B, B→C, and C→A. For
NUMBER they are ONE→TWO, TWO→THREE, and
THREE→ONE. For this metric, we simply count the
number of times this correct transitioning occurs.

For the second metric, we determine the proportion of
time that the working memory contains the correct type of
value. That is, if the visual cortex neurons are representing
LETTER, then the vector in working memory should be
closer to A, B, or C than it is to ONE, TWO, or THREE
(and vice-versa for NUMBER). This second metric is
simply the proportion of time this is true.

When computing the metrics, we always measure when
learning is off. That is, we perform one cycle with learning
on, and then one cycle with learning off where we actually
compute the metrics. With this approach, we ensure that the
measured performance is based on the system actually
learning to respond correctly to the input, rather than
responding based on the training signal itself.

Results
We start by learning using the input to the action selection
system to compute the error, and using the separate
mathematical terms to provide a small set of parameters ωij

to learn. This is shown in Figure 2.
We note that slower learning rates lead to improved

performance on the first metric (number of correct
transitions), but worse performance on the second metric
(percentage of time spent in the correct states).
Furthermore, the model reaches a peak performance of
around 20 transitions per cycle, and does not improve with
more training.

Figure 2: Effects of different learning rates when learning
from the base terms and the action selection input. Shaded

areas are 95% bootstrap confidence intervals.

1089

Figure 3 shows the model when we use neurons for learning
and the action selection input for the error value. Here we
find a marked improvement in both metrics, although with
too low a learning rate the system does not improve.

Figure 3: Effects of different learning rates when learning
from the base terms and the action selection input. Shaded

areas are 95% bootstrap confidence intervals.

Figures 4 and 5 show the same systems as 2 and 3, but with
the output of the action selection system as the source of the
error in the training signal. Both of these show extremely
poor performance, including effects where performance
increases temporarily, but then decreases back down to the
(poor) baseline performance.

Conclusions and Future Work
The presented results indicate that we can use online
supervised learning to learn the utility functions needed for
cognitive models that use neural action selection.

Interestingly, we found the best performance when
learning directly off of the neurons themselves. This makes
the learning process harder (in terms of computational
power requirements and the number of ωij terms that must
be learned), but it also greatly reduces the effort required by
the modeller. In particular, rather than having to define the
basic terms in the utility functions (e.g.),
the learning system will directly deal with the neural
representations, allowing it to find much more complex
functions that produce the desired behaviour more reliably.

Oddly, using the output from the action selection system
for training does not work at all. This is somewhat
surprising, and more work is needed to investigate this.

Figure 4: Effects of different learning rates when learning
from the base terms and the action selection output. Shaded

areas are 95% bootstrap confidence intervals.

Figure 5: Effects of different learning rates when learning
from the base terms and the action selection output. Shaded

areas are 95% bootstrap confidence intervals.

1090

It should also be noted that, as in many learning systems,
the learning rate itself is extremely important. Too small a
learning rate leads to systems that take long amounts of time
(and computational power) to learn (or do not learn at all).
Too high a learning rate and the system does not reliably
improve. Fortunately, there are numerous techniques in the
machine learning literature for dealing with this difficulty,
(e.g., changing learning rates based on performance).

More importantly, however, we next need to evaluate this
learning system on more complex cognitive tasks, such as
our existing the Tower of Hanoi and left-corner parser
models. This will provide a more robust test of the practical
benefits of the learning system.

Finally, there is a deeper theoretical question and
possibility that needs to be examined further. In particular,
can the supervised learning system presented here be
considered of a model of how people learn complex
cognitive tasks? All we have shown so far is that this
learning system is a useful tool for constructing neural
cognitive models. We could simply treat it as such a
technical tool that provides a novel way of more easily
generating neural cognitive models that perform desired
tasks. However, the fact that this learning system applies
directly to the very same neural connections between the
cortex and striatum that are used in models of reinforcement
learning, and the fact that the learning rule itself is one that
is local and biologically plausible, suggests that perhaps the
technique we have presented here could be biologically
implemented. That is, rather than treating the resulting
model as a simulation of someone who has previously
learned the task (as is common in both our neural models
and in non-neural cognitive modelling), we can treat this
supervised learning system as a model of the process of
learning the task. However, in order to do this, we would
need to tackle one significant question: where does this ideal
target value tj come from? That is, what neural mechanism
provides an indication of what action ought to be performed
next? It seems possible that some combination of mental
models and learning by instruction may be able to provide
such a training signal, but more research must be done to
investigate this possibility.

Acknowledgments
This work was supported by AFOSR grant FA9550-17-1-
0026, NSERC Discovery grant 261453, and the Canada
Research Chairs program.

References
Bekolay, T., Kolbeck, C., and Eliasmith, C. (2013).

Simultaneous unsupervised and supervised learning of
cognitive functions in biologically plausible spiking
neural networks. 35th Annual Conference of the
Cognitive Science Society, 169–174.

Blouw, P., Eliasmith, C, and Tripp, B. (2016). A scaleable
spiking neural model of action planning. 38th Annual
Conference of the Cognitive Science Society

Eliasmith, C. (2013). How to build a brain: A neural
architecture for biological cognition. Oxford University
Press, New York, NY.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in
neurobiological systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T.,
DeWolf, T, Tang, Y., Rasmussen, D. (2012). A large-
scale model of the functioning brain. Science, 388:6111,
1202-1205.

Gayler, R. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience.
International Conference on Cognitive Science.

Gosmann, J. and Eliasmith, C. (2015). A spiking neural
model of the n-back task. 37th Annual Meeting of the
Cognitive Science Society.

Kajic, I., Gosmann, J., Komer, B., Orr, R., Stewart, T.C.,
and Eliasmith, C. (2017). A Biologically Constrained
Model of Semantic Memory Search. Annual Meeting of
the Cognitive Science Society.

Kröger, B.J., Bekolay, T., and Blouw, P. (2016). Modeling
motor planning in speech production using the neural
engineering framework. Electronic Speech Signal
Processing (ESSV), 15–22.

Rasmussen, D., Voelker, A.R., and Eliasmith, C. (2017). A
neural model of hierarchical reinforcement learning.
PLoS ONE, 12:7, 1–39.

Senft, V., Stewart, T.C., Bekolay, T., Eliasmith, C., and
Kröger, B.J. (2015). Reduction of dopamine in basal
ganglia and its effects on syllable sequencing in speech: a
computer simulation study. Basal Ganglia 6:1, 7-17.

Stewart, T.C., Bekolay, T., and Eliasmith, C. (2012)
Learning to select actions with spiking neurons in the
basal ganglia. Frontiers in Neuroscience, 6:2, 1-14.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010).
Symbolic reasoning in spiking neurons: A model of the
cortex/basal ganglia/thalamus loop. Annual Meeting of
the Cognitive Science Society.

Stewart, T.C., Choo, X., and Eliasmith, C. (2014). Sentence
processing in spiking neurons: A biologically plausible
left-corner parser. Annual Meeting of the Cognitive
Science Society.

Stewart, T.C. and Eliasmith, C. (2009) Spiking neurons and
central executive control: The origin of the 50-
millisecond cognitive cycle. International Conference on
Cognitive Modelling.

Stewart, T.C. and Eliasmith, C. (2011) Neural cognitive
modelling: A biologically constrained spiking neuron
model of the Tower of Hanoi task. 33rd Annual Meeting
of the Cognitive Science Society.

Stewart, T.C. and Eliasmith, C. (2013). Parsing Sequentially
Presented Commands in a Large-Scale Biologically
Realistic Brain Model. 35th Meeting of the Cognitive
Science Society.

Widrow, B. and Hoff, M. E. Jr. (1960). Adaptive switching
circuits. IRE Western Electric Show and Convention
Record, Part 4, 96-104.

1091

	Supervised Learning of Action Selection in Cognitive Spiking Neuron Models
	Terrence C. Stewart (tcstewar@uwaterloo.ca) Sverrir Thorgeirsson (sverrir.thorgeirsson@uwaterloo.ca) Chris Eliasmith (celiasmith@uwaterloo.ca)
	Centre for Theoretical Neuroscience, University of Waterloo 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
	Introduction
	Neural Action Selection and Execution
	Approximating AND and OR

	Supervised Learning of Action Selection
	Determining the error signal (tj - yj)
	Determining the learning inputs xi

	Example Model
	Evaluation Metrics

	Results
	Conclusions and Future Work
	Acknowledgments
	References

