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ABSTRACT

Sorghum bicolor is a promising bioenergy feedstock with high
biomass production and unusual tolerance for stresses, such as
water and nutrient limitation. Although the membership of the
sorghum microbiome in response to stress has been explored,
relatively little is known about how microbe–microbe networks
change under water- or nutrient-limited conditions. This is
important because network changes can indicate impacts on the
functionality and stability of microbial communities. We
performed network-based analysis on the core bacterial and
archaeal community of an agronomically promising high
biomass bioenergy genotype, Grassl, grown under nitrogen and
water stress. Stress caused relatively minor changes in bacterial
abundances within soil, rhizosphere, and endosphere
communities but led to significant changes in bacterial network

structure and modularity. We found a complete reorganization of
network roles in all plant compartments, as well as an increase
in the modularity and proportion of positive associations, which
potentially could represent coexistence and cooperation in the
sorghum bacterial/archaeal community under stress. Although
stressors are often believed to be destabilizing, we found
stressed networks were as or more stable than non-stressed
networks, likely due to their redundancy and
compartmentalization. Together, these findings support the idea
that both sorghum and its bacterial/archaeal community can be
resilient to future environmental stressors.

Keywords: abiotic stress, bioenergy, drought, microbe–microbe
associations, nitrogen limitation, plant microbiome

Plants live in close association with microbes, many of which
can expand the functional capabilities of their plant hosts and aid in
their growth (Backer et al. 2018; Berendsen et al. 2012; Goh et al.
2013; Haney et al. 2015; Trivedi et al. 2020). For these reasons,
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plant-microbe symbioses are thought to be particularly important
under conditions of abiotic stress, such as nutrient deficiency (Alori
et al. 2017; Majeed et al. 2018) and water limitation (Armada et al.
2018; Chandra et al. 2021; Gontia-Mishra et al. 2016; Mayak et al.
2004). Stressful conditions are likely to increase due to climate
change (Cavicchioli et al. 2019; Classen et al. 2015; Compant et al.
2010) and will particularly affect bioenergy crops as marginal land
is pressed into production to meet energy demands without affecting
food supply (Fazio and Monti 2011; Kang et al. 2013; Langholtz
et al. 2016).

Sorghum (Sorghum bicolor [L.] Moench) is a promising cereal
grain feedstock for biofuel production on marginal lands due to
its high biomass yield, nitrogen-use efficiency, and drought toler-
ance (Boyles et al. 2019; Chai et al. 2021; Gelli et al. 2014; Mace
et al. 2013; Rooney et al. 2007). Previous studies have demon-
strated that sorghum responses to environmental stresses can influ-
ence the assembly of microbial taxa on their roots (Chai et al. 2021;
Lopes et al. 2021; Sheflin et al. 2019; P. Wang et al. 2021), but
none has characterized network relationships. While some micro-
bial taxa associated with cereal crops such as sorghum exhibit plant
growth-promoting effects (Carvalho et al. 2014; Hara et al. 2019;
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Kochar and Singh 2016; Xu et al. 2018), others potentially lead to
growth reductions (Chai et al. 2021; van der Heijden et al. 2008),
and most have no obvious phenotypic effects when added individ-
ually. Recent evidence suggests that the effect of microbial com-
munities, which can include thousands of individual strains, on
plant growth may be different than the sum of the effects of each
individual microbe due to the complexity of microbe–microbe in-
teractions (Sanchez-Gorostiaga et al. 2019). Thus, a better under-
standing of the interactions between the host, environment, and
microbiome will be important for the expansion of biofuel produc-
tion on marginal lands.

To date, most plant microbiome studies have focused on micro-
bial diversity (the number of species and their abundances) and
composition (the taxonomic or phylogenetic makeup of those com-
munities) as contributors to plant performance (Abdul Rahman et al.
2021; Banerjee et al. 2018; Edwards et al. 2018; Jones et al. 2019).
These findings have been useful in cases where shifts in microbial
composition are large or phenotypes can be attributed to a narrow
set of bacteria. However, it is also likely that differences in plant per-
formance can be caused by changes in large-scale root-associated
microbial interspecies associations, which become difficult to parse
from high-dimensional datasets such as microbiome profiles. In
these cases, network analysis can be a useful approach to explor-
ing the complex relationships among rhizosphere and endosphere
microbes. Although caution should be used when interpreting mi-
crobial networks (Faust 2021) (e.g., experimental validation is of-
ten needed to confirm true interactions between microbes), global
parameters such as connectivity and modularity (i.e., clustering)
can provide valuable insights into community stability under abi-
otic stresses (Lv et al. 2019; van der Heijden and Hartmann 2016).
For instance, networks inferred from microbial communities under
stress might be less clustered and have more positive edges than
networks from non-stressed communities (Hernandez et al. 2021).
Both of these traits have been linked to network destabilization
(Coyte et al. 2015), which can have profound consequences for
plant performance when keystone microbes that contribute to plant
growth become less abundant or absent.

Here, we performed a detailed network-based analysis on the core
bacterial community of the agronomically promising high biomass
bioenergy sorghum genotype, Grassl, under water and nutrient lim-
itation. Given the large role that plant compartment plays in micro-
bial diversity, we hypothesized that the core soil network would be
more complex (e.g., have more nodes and edges) than the rhizo-
sphere and root. Similarly, we hypothesized that core rhizosphere
and root networks would have denser connections and increased
modularity due to the selective pressure of a plant-associated habi-
tat. Finally, we hypothesized that stress (i.e., low nitrogen and water-
stressed conditions) would lead to a change in network hubs, as
well as lower modularity and more negative associations than seen
in non-stressed networks, leading to a decrease in their stability.

MATERIALS AND METHODS

Study system and experimental design. At two field sites in
Nebraska in 2017, we grew the sorghum genotype Grassl under
conditions of full and low nitrogen (at Central City, NE), as well as
under well-watered and water-stressed conditions (at Scottsbluff,
NE). Details describing the experimental design and generation of
this dataset can be found in related manuscripts (Chai et al. 2024;
Qi et al. 2022). In short, the fields were “naturally” low N or low
water and were supplemented according to standard agricultural
practice for the local region. The level of organic matter was sim-
ilar and relatively low at both locations, and both locations were
irrigated with low levels of nitrate in the water. Both soils were

sandy, with the rest of the major chemical constituents of the soil
being similar but not identical between both locations. We sampled
the soil, rhizosphere, and endosphere at four time points in the nitro-
gen experiment and three timepoints in the water experiment using
a split-plot design with eight replicate blocks for each treatment,
resulting in a total of 336 samples.

DNA extraction, sequencing, and bioinformatics. After exca-
vation of the root ball, approximately 200 g of excess soil (bulk soil)
was shaken off and collected, and a representative sample of roots
was cut from the root ball. Roots were placed in 50-ml tubes with
phosphate buffer (6.3 g liter−1 NaH2PO4, 8.5 g liter−1 Na2HPO4

anhydrous) and vigorously shaken to release soil from the roots
(rhizosphere). The rhizosphere was further processed by filtering
with 100-μm mesh followed by pelleting at 3,000 × g for 10 min.
Roots were surface sterilized for 30 s with sodium hypochlorite
(5.25%) and then ethanol (70%), followed by three washes with
ultrapure water. Liquid N was then used to grind the roots to access
the endosphere microbial community.

Soil and rhizosphere DNA were extracted using the PowerSoil-
318 htp 96-well Soil DNA Isolation Kit (MoBio, Carlsbad, CA),
whereas endosphere DNA was extracted using the Applied Biosys-
tems MagMax Plant DNA isolation kit (Thermo Fisher Scientific,
Waltham, MA). All samples were quantified with the QuantiFluor
dsDNA reagent (Promega, Fitchburg, WI) following the manu-
facturers’ protocols. The V4 region of the 16S rRNA gene was
amplified following the Joint Genome Institute iTag amplicon se-
quencing protocol (available at https://jgi.doe.gov/user-programs/
pmo-overview/protocols-sample-preparation-information/) using
the 515F-806R primer pair and including chloroplast and mito-
chondrial peptide nucleic acid blockers (Lundberg et al. 2013).
Amplified samples were multiplexed at 184 samples per run and
sequenced on an Illumina MiSeq (paired end 2 × 300 bp) at the
DOE Joint Genome Institute (Berkeley, CA). Data are available at
NCBI under BioProject PRJNA945936.

Raw sequences (mean = 32,851 reads) from separate MiSeq runs
were demultiplexed and processed in QIIME2 v. 2020.2 (Bolyen
et al. 2019). Primers and adaptors were trimmed using cutadapt, and
low-quality reads were removed. Reads were denoised and assigned
to amplicon sequence variants (ASVs) at 100% sequence similarity
in DADA2 (Callahan et al. 2016). Taxonomy was assigned using the
SILVA database release 132 (Quast et al. 2013). Data were filtered
for ASVs identified as chloroplast, mitochondria, or those lacking
phylum assignment. After removing samples with poor extraction
or amplification (i.e., low-quality or very few reads), we were left
with our final dataset of 276 samples. All further analyses were
conducted in R v. 4.0.2 (R Core Team 2020). ASV and taxonomic
tables were merged using the phyloseq package (McMurdie and
Holmes 2013).

Diversity analyses. We adapted a persistence method developed
by Shade and Handelsman (2012) to identify core soil, rhizosphere,
and root bacterial communities for the genotype Grassl. Samples
from the nitrogen and water experiments were analyzed separately
due to differences in location and sampling dates. For each com-
partment (soil, rhizosphere, or root) and location, we have several
subsets of data, where each subset corresponds to a combination of
dates and growth conditions. Within each subset (i.e., location ×
compartment × time point × treatment), an ASV was counted to-
ward the core if it was present (with a positive count) in more
than 80% of samples in that subset (or 50% for the root to obtain
a roughly equal number of core ASVs while accounting for the
higher dissimilarity between samples; Supplementary Figure S1a).
By taking the union across all subsets encompassing various dates
and growth conditions, we obtained the core bacterial and archaeal
community for each of the six combinations of compartment and
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location (e.g., the Central City soil core is the union of all sub-
sets from both the full N and low N treatments for each sampling
date), resulting in six cores. With this approach, even if an ASV
is present in 80% of full-nitrogen rhizosphere samples at the first
time point but not in 80% of low-nitrogen rhizosphere samples at
that time point, it is still counted as part of the overall “nitrogen rhi-
zosphere core.” Unlike other core microbiome methods that only
consider the intersection of subsets, our method includes ASVs that
may only show up on some combinations of dates and treatments
but not on others, so the overall core (i.e., union of subsets) re-
flects ASVs that appeared and then disappeared over time or across
treatments but not those that stochastically appear in only some
replicate samples (Supplementary Figure S1b and c). We chose
this definition of the core because it allowed us to determine the
influence of stress on network structure while holding species rich-
ness (number of nodes) constant for each separate combination of
compartment and location. ASVs in each of these datasets were
then identified as putatively plant growth promoting through a Web
of Science literature search, in which the family or genus name was
searched alongside the terms “plant-growth promot*,” “nitrogen,”
and “drought,” and papers were screened for empirical evidence of
plant growth promoting traits. Although this was not an exhaustive
search, it provided information for more than 33% of taxa in all
core communities (Supplementary Data File S1).

All subsequent analyses were carried out on the cores. Rela-
tive abundance plots were conducted in phyloseq. Comparisons of
community composition were calculated using Bray-Curtis dissim-
ilarities, as well as unweighted and weighted UniFrac distances
(Lozupone and Knight 2005). All metrics gave similar results, and
thus, only the results of analyses using weighted UniFrac distances
are presented. Comparisons of homogeneity of group dispersions
(with betadispers) and permutational multivariate analyses of vari-
ance were conducted using the vegan package (Oksanen et al. 2020),
and compositional patterns were visualized with principal coordi-
nate analysis. Finally, we performed differential abundance analysis
on ASVs using DESeq2 (Love et al. 2014) with false discovery rate
correction using the Benjamini-Hochberg procedure. Data visual-
izations were created using ggplot2 (Wickham 2016).

Network analysis. Networks were generated in SPIEC-EASI
(n = 24 for nitrogen experiment and 20 for water experiment) with
the Meinshausen Bühlmann neighborhood selection method (Kurtz
et al. 2015). Final networks and their covariance matrices represent-
ing the most stable edges were selected using StARS by assessing 20
values of lambda (lambda ratio = 0.01) for 50 sub-sampled gener-
ations. We chose to use SPIEC-EASI over direct correlation-based
network methods because its use of inverse covariances makes it
more robust to the compositionality and sparsity inherent to mi-
crobiome datasets—two issues that other inference methods fail
to address leading to spurious edges (Gloor et al. 2017). Ran-
domized benchmark networks (n = 999) were generated using the
rewire function in the igraph package (Csárdi and Nepusz 2006),
which randomizes the edges between nodes of the empirical net-
works while preserving their degree distribution. Attributes from
our empirical networks were compared with those of the random-
ized benchmark networks via Wilcoxon rank sum tests to confirm
that our networks significantly differ from those formed at random.

Network attributes (for definitions, see Supplementary Table S1),
such as clustering coefficient, path length, global efficiency, be-
tweenness centrality, and node degree, were calculated in igraph
and compared via Kruskal-Wallis test to assess the impact of abiotic
stress on microbial network clustering and stability. The rnetcarto
package (Doulcier and Stouffer 2023) was used to identify mod-
ules/clusters via simulated annealing and to calculate (i) network
modularity (i.e., a global measure of how clustered or compartmen-

talized a network is); (ii) each node’s within-module degree (z),
which measures how connected each node is to the others within
its module; and (iii) participation coefficient (P), which measures
how distributed a node’s associations are across all modules. The
latter two attributes were used to estimate the role of nodes in each
network following the procedure outlined by Guimerà and Nunes
Amaral (2005). In brief, nodes were defined by the region of the z-P
parameter space they occupied: hubs are nodes with z ≥ 2.5, ultra-
peripheral nodes with z < 2.5, P ≤ 0.05 (all associations within
their module), peripheral nodes with z < 2.5, 0.05 < P ≤ 0.62
(most of their associations within their module), connector nodes
with z < 2.5, 0.62 < P ≤ 0.80 (many associations outside their
module), and kinless nodes with z < 2.5, P > 0.80 (associations
homogeneously distributed across all modules). Finally, network
stability was measured by attack robustness: the relationship be-
tween node loss and network size, using the brainGraph package
(Watson 2019). In brief, we simulated the sequential loss of micro-
bial nodes based on various attributes and calculated the size of the
remaining network at each stage, with steeper slopes representing
less stable networks.

RESULTS

Sorghum soil, rhizosphere, and root networks are distinct.
Our core community analysis identified 507 core soil ASVs, 449
core rhizosphere ASVs, and 420 core root ASVs in the nitro-
gen experiment and 683 core soil ASVs, 588 core rhizosphere
ASVs, and 194 core root ASVs in the water experiment (Fig. 1).
Several core ASVs (soil, rhizosphere, or root) belonging to the
phyla Proteobacteria (with most ASVs in the families Burkholde-
riaceae, Pseudomonadaceae, and Sphingomonadaceae) and Bac-
teroidetes (with most ASVs in the family Chitinophagaceae) were
differentially abundant in the rhizosphere and root as compared
with the soil, regardless of experiment and time point (Supple-
mentary Figure S2a). Among plant-associated samples, several
core Gammaproteobacteria ASVs (e.g., family: Pseudomonadaceae
and Xanthomonadaceae) and Firmicute ASVs (family: Paenibacil-
laceae) were more abundant in the rhizosphere, whereas Alphapro-
teobacteria ASVs (e.g., family: Dongiaceae, Sphingomonadaceae,
and Xanthobacteraceae) were more abundant in the root (Supple-
mentary Figure S2b).

Composition of the Grassl rhizosphere and root microbial core
communities significantly changed over time, most notably with
a large increase in the order Pseudomonadales in the rhizosphere
midway through the growing season (P < 0.001; Fig. 2, Supple-
mentary Fig. S3). Despite a significant effect of growth condition
on Grassl harvest biomass (P < 0.001; Supplementary Fig. S4),
we did not identify any differentially abundant core ASVs between
growth conditions in the Grassl soil or rhizosphere but did in the
Grassl root. Pseudomonas was more abundant in the low N root
(log2 fold change [log2FC] = 22.9, padj < 0.001), whereas Acineto-
bacter, Herbaspirillum, Pantoea (all class: Gammaproteobacteria),
Rhizobium (class: Alphaproteobacteria), and Filimonas (phylum:
Bacteroidetes) were more abundant in the full N root (log2FC from
23.1 to 24.6, padj < 0.001). There was one ASV (Acidibacter, class:
Gammaproteobacteria; log2FC = 7.00, padj = 0.03) differentially
abundant in water-stressed roots.

To explore community structure, we began by assessing global
network attributes for each of the networks and comparing these
attributes to those of random benchmark networks (Supplemen-
tary Table S1). We found that our empirical networks had average
clustering coefficients and global efficiencies higher than those of
the random benchmark networks (P < 0.01) but that they did not
significantly differ in average path length or modularity. These re-
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sults confirmed that our empirical networks were likely composed
of non-random clusters of bacterial ASVs and warranted further
investigation.

Multiple network attributes showed that bacterial co-association
patterns differed by sample type. Root networks were more mod-
ular and less efficient and had higher clustering coefficients and
longer average path lengths than soil and rhizosphere networks

(P = 0.02; Supplementary Table S1). This might be in part due
to a decrease in nodes (i.e., core size) and edges connecting those
nodes from the soil to the root (Supplementary Table S2). Initially,
we calculated all of the cores using an 80% threshold, but this re-
sulted in endosphere cores that were much smaller (e.g., 68 and 52
taxa) than the soil or rhizosphere cores, exacerbating the effects on
modularity, efficiency, and clustering. Likely related, nodes in root

Fig. 1. Core sorghum bacterial and
archaeal communities as identified via
persistence method across timepoints
and growth conditions. A, Relative
read abundance of the 10 most abun-
dant phyla for each growth condition
in the six cores. B, Venn diagram de-
picting the number of shared amplicon
sequence variants (ASVs) in the soil,
rhizosphere, and root cores for the
nitrogen experiment at Central City,
NE (top), and the water experiment
at Scottsbluff, NE (bottom). Numbers
in parentheses represent the total
number of ASVs in that core.

Fig. 2. Principal coordinate analy-
ses of Grassl rhizosphere and root
community composition measured by
weighted UniFrac over multiple time-
points in the A and C, nitrogen and
B and D, water experiment, colored
by A and B, sample type or C and D,
growth condition.
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networks formed the fewest associations (5.8 ± 0.07), followed by
rhizosphere nodes (10.5 ± 0.07) and then soil nodes (12.6 ± 0.07;
F(2, 5664) = 2741.6, P < 0.001; Fig. 3A). Rhizosphere and root net-
works also had a higher percentage of positive associations (except
in the well-watered rhizosphere) and within-phylum associations
than soil networks (Supplementary Table S2).

We also found significant effects of stress and growth condition
on node degree (stress: F(3, 5664) = 38.2, P < 0.001, growth condi-
tion: F(6, 5664) = 501.7, P < 0.001; Fig. 3A). Soils under stress had
a lower average node degree than non-stressed soils (stress: 12.1
± 0.1; non-stress: 13.0 ± 0.11), but rhizospheres under stress had
a higher node degree than non-stressed rhizospheres (stress: 10.8
± 0.09; non-stress: 10.2 ± 0.11). There was no difference between
the average degree of stressed and non-stressed root communities.

Rearrangement of rhizosphere and root network structure
under abiotic stress. Next, we used each ASV’s participation co-
efficient (P) and within-module degree (z) to identify its role in the
network as either a hub (highly connected within/across modules),
connector (many associations outside module), kinless (associa-
tions homogeneously distributed across all modules), peripheral
(most of their associations within module), or ultraperipheral node
(all associations within module), following Guimerà and Nunes
Amaral (2005) (Fig. 3B to E; Supplementary Fig. S5). In general,
soil networks had a greater proportion of connector nodes, with
high participation coefficients (P) and moderate within-module de-
gree (z), suggesting they tend to bridge multiple modules (meansoil

= 50.5%, meanrhizosphere = 41.5%, meanroot = 15.5%). Rhizo-
sphere and root networks had greater proportions of hub (high z,
moderate P; meansoil = 1.1%, meanrhizosphere = 1.5%, meanroot =
1.4%) and peripheral nodes (moderate P and z; meansoil = 46.5%,
meanrhizosphere = 53.8%, meanroot = 57.3%; Supplementary Table
S3). When we looked at the identity of connector nodes, we found
a higher proportion of connector nodes from the phyla Chloroflexi
and Gemmatimonadota in the soil as compared with the rhizo-
sphere and root and a higher proportion of connector nodes in the
phylum Proteobacteria in the rhizosphere and root (Supplementary
Fig. S7).

Within the rhizosphere, we found that the water experiment hubs
had higher average node degrees than the nitrogen experiment hubs
(with full N hubs having the lowest average node degrees; Supple-
mentary Table S4). Whereas root networks in general had very few
hubs, the water experiment root networks (well-watered and water-
stressed) had slightly fewer hubs than the nitrogen experiment root
networks, and their hubs had lower average node degrees. We also
found that soil hubs had higher participation coefficients (P) than
rhizosphere and root hubs (F(2,54) = 4.7, P = 0.01), but there was no
significant difference in within-module degree (z) between sample
types (Supplementary Fig. S6). When we looked at the identity of
the hubs, we found that there were no hubs shared between any
of the growth conditions (Fig. 3B to E; Supplementary Fig. S5)
but that they all were low abundance taxa (mean = 0.34% of ASV
reads; Supplementary Table S4). Even in cases where hubs shared
taxonomic identities, they represented different ASVs (e.g., both
full and low N rhizosphere networks had a Massilia sp. hub). In
plots of across-module (P) and within-module connections (z), we
see that network roles of many ASVs are different under stress and
non-stress for all sample types. Many of the hubs under non-stress
were characterized as peripheral, and connector nodes under stress
with alternative ASVs arising as hub nodes (Fig. 3B to E; Supple-
mentary Fig. S5). For example, a Bacillus sp. arose as a hub under
low N, whereas it was a peripheral node under full N. Instead, the
hub for this same module under full N was a Xanthobacteraceae. In
comparing those two modules (both modules = 6; Supplementary
Fig. S8), the low N Bacillus hub was much more connected to all

other Bacillus ASVs (which were more abundant under low N) and
N-fixing taxa in other modules than the full N Xanthobacteraceae
hub.

The ratios of positive to negative associations in our networks
(sometimes referred to as negative-positive cohesion) revealed pos-
itive associations to dominate in all sample types and growth con-
ditions (Supplementary Table S1). Similarly, most associations
were between taxa from different phyla (i.e., across-phylum as-
sociations). Overall, root networks had more positive and within-
phylum associations than either soil or rhizosphere networks.
However, the ratio of positive to negative associations in each
growth condition varied with node taxonomic identity (phylum)
and the type of association (within- vs. across-phylum connec-
tions). For example, there was a higher proportion of positive
within-phylum associations between Firmicutes and Actinobac-
teria ASVs under stress (meanFirmicutes = 80.5% of 27 associ-
ations, meanActinobacteria = 73.5% of 162 associations) as com-
pared with non-stress (meanFirmicutes = 37.5% of 14 associations,
meanActinobacteria = 55% of 128 associations) in the rhizosphere.
Most of the associations involving Nitrospirae were negative under
full N (53% of 17 associations negative), whereas 38% of 34 asso-
ciations were negative under low N. Finally, most Verrucomicrobia
nodes were positively associated with taxa from other phyla (mean
= 63.3% of 825 associations), but of their few within-phylum as-
sociations, most were negative (mean = 70.3% of 20 associations).

To further compare the influence of hub nodes on surrounding
network structure, we created subsets of each network containing
the hub nodes and their first-degree neighbors (Fig. 4). These net-
works revealed that both stress rhizosphere networks (low N and
water-stressed) had more nodes and edges between them than non-
stress rhizosphere networks despite little difference in the number
of hub nodes and a difference in experimental location. Stress rhizo-
sphere network hubs also had more connections to putatively plant
growth-promoting taxa on average compared with non-stress rhi-
zosphere hubs (Supplementary Table S3), and overall, there were
more associations between plant growth-promoting nodes (Fig. 4B
and D; Supplementary Fig. S8). When we examined shared mem-
bership between these first-degree neighbor networks, we found
33 ASVs shared between the full N and low N rhizosphere net-
works (i.e., 30% of low N first-degree neighbor network taxa) and
20 ASVs shared between well-watered and water-stressed rhizo-
sphere networks (i.e., 18% of drought first-degree neighbor net-
work taxa). Most shared taxa belonged to the phylum Proteobacte-
ria in the orders Rhizobiales and Betaproteobacteriales, which were
proportionally more abundant among shared taxa (e.g., Betapro-
teobacteriales represented 44% of shared vs. 18% of non-shared
Proteobacteria) than among non-shared taxa. We also identified a
single ASV (Massilia sp.) shared across all first-degree neighbor
networks.

Rhizosphere networks show significant stability despite abi-
otic stress. To examine the stability of each network, we sequen-
tially removed nodes from each network based on one of three con-
nectivity attributes (decreasing betweenness centrality, degree, or
at random) and measured the size of the remaining largest group-
ing of connected nodes (Supplementary Fig. S9). Overall, these
attacks revealed that soil networks were the most stable to node
loss, followed by rhizosphere networks and then root networks.
Additionally, networks from the nitrogen experiment (conducted
in Central City) were the least stable and networks from the water
experiment (conducted in Scottsbluff) the most stable for both the
soil and rhizosphere, which likely reflects the increased size of the
water experiment core. Even though soil and rhizosphere drought
networks were less stable than watered networks, this difference
only manifested when more than 60% of the nodes were removed.
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Fig. 3. Connectivity in soil, rhizosphere, and root samples. A, Node degree by sample type and growth condition (FN = Full N, LN = Low N, WW =
Well-watered, WS = Water-stressed). B to E, Network roles of each node in the sorghum rhizosphere under B, full N; C, low N; D, well-watered;
and E, water-stressed conditions. The node location in each plot is based on its participation coefficient (across-module connectivity) and z-score
within-module degree. Node color represents each node’s network role in the experiment-associated non-stressed treatment. Hubs in each network
are labeled with the lowest taxonomic designation available. Network roles in soil and root are in Supplementary Figure S5.
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To explore how our choice of core threshold (80%) influenced
stability, we recalculated network stability for the rhizosphere us-
ing a relaxed threshold (50%). While increasing the size of the core
increased network stability overall, it also confirmed our finding
that stressed networks were as or more stable than non-stressed
networks (Supplementary Fig. S10). In the root, the well-watered
network was the least stable and the full N network the most sta-
ble, although it is worth noting that the water experiment root core

community had fewer ASVs (nodes) than all other core bacterial
communities, which can affect stability.

DISCUSSION

In this study, we explored the diversity, composition, and struc-
ture of bacterial communities around Sorghum bicolor roots,
with a focus on the bioenergy genotype Grassl. In line with our

Fig. 4. Hubs and first-degree neighbors of rhizosphere networks. A, Full N; B, low N; C, well-watered; and D, water-stressed conditions. Node (N)
shape denotes network role, node size corresponds to connectivity, and node color identifies phylum. Edge (E) thickness corresponds to the effect
size of covariance for each association, and edge color identifies the direction of the association: positive or negative. Boxes below each network give
the total number of N and E for each network, as well as N and E exclusively between putatively plant-growth promoting (PGP) taxa in parentheses.
A bright green node outline indicates Massilia amplicon sequence variants (ASVs), with the single Massilia ASV shared across all networks indicated
by “SM.”
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hypotheses, our analysis revealed that both plant compartment
(soil, rhizosphere, or root) and abiotic stress are important predic-
tors of bacterial network structure, especially regarding complex-
ity and modularity. We found that abiotic stress can lead to sub-
stantial reorganization of microbial associations with consequences
for network stability. Below, we discuss the potential ecological
mechanisms responsible for these relationships and their implica-
tions for plant-microbe symbioses under increased environmental
stress.

Differences between soil, rhizosphere, and root bacterial
communities. Despite their proximity, we found several differ-
ences between the core communities of soil, rhizosphere, and roots.
The rhizosphere and root core bacterial communities had fewer
ASVs than the soil core community, which likely reflects the chem-
ically modified niche space available to colonizing soil microbes in
the presence of plant cells or root metabolites (Bakker et al. 2014;
Nuccio et al. 2020; Whalley et al. 2005) (Fig. 1; Supplementary
Table S1). Although it is difficult to compare cores across experi-
ments because they were conducted at different locations, we also
found that the root core bacterial community in the water experi-
ment was smaller than that for the nitrogen experiment. A smaller
root core is representative of (i) fewer overall reads detected in
the root, (ii) lower diversity (although not significantly different
between experiments; Supplementary Fig. S1d), and (iii) higher
dissimilarity between samples (i.e., there are fewer taxa that are
present in at least 50% of samples; Fig. 2B and D; Supplementary
Fig. S3). One possible reason that the water root core is proportion-
ally smaller than the nitrogen root core is that water stress was not
only more selective (e.g., lower ASV richness and increased relative
abundance of specific taxonomic groups such as Actinobacteria) but
also resulted in highly dissimilar bacterial communities at the ASV
level.

In agreement with studies conducted across plant species, we
found that most differentially abundant taxa in the rhizosphere and
root cores were from the phyla Proteobacteria and Bacteroidetes,
especially several genera known to have plant growth-promoting
traits (Fitzpatrick et al. 2018; Ling et al. 2022) (Fig. 1A; Sup-
plementary Fig. S2; Supplementary Data File S1). For example,
we found that ASVs from the family Pseudomonadaceae were
highly abundant in the rhizosphere, especially midway through the
growing season (Supplementary Fig. S3). The association of pseu-
domonads with the rhizosphere has been well documented (García-
Salamanca et al. 2013; Haney et al. 2015; Lugtenberg and Kamilova
2009; Lugtenberg et al. 2001; Melnyk et al. 2019). Our previous
experiments in sorghum suggest that the abundant Pseudomonas
population in the rhizosphere consists of a taxonomically broad
group of lineages that are enriched by specific plant-derived car-
bon sources (Chiniquy et al. 2021). Given the strong influence of
time on the composition of the rhizosphere and root, we built our
networks to reflect a consensus of microbe–microbe relationships
across the sorghum growth cycle rather than at a single point in
time.

In line with our hypothesis that plant compartment influences not
only microbial diversity but also network structure, we found that
soil nodes were on average more connected than rhizosphere and
root nodes (Fig. 3A), which is likely due to the higher diversity of
bacterial taxa in the soil core community leading to an increased
probability for potential associations (Fan et al. 2018; Mendes et al.
2014). The higher diversity and efficiency of soil networks may ex-
plain why they were more robust to both targeted (i.e., nodes are
removed in order from most to least connected) and at-random at-
tacks than rhizosphere and root networks, even when a comparable
fraction of the total nodes was removed. Our observation that soil
networks had more associations than rhizosphere and root networks

is in agreement with some studies (Fan et al. 2018; Mendes et al.
2014) and in disagreement with others (Shi et al. 2016; Yan et al.
2017). This may be due to our use of the core community rather
than all ASVs to generate consensus networks that represent the net-
associations between taxa across several time points. Many studies
sample only at a single time point later in plant development and
so may be able to capture temporally-specific patterns in network
structure with an increased sample size. Unfortunately, our sample
size was not large enough to further divide our dataset to generate
networks for each timepoint via SPIEC-EASI, but we recommend
exploring temporal dynamics in network structure in future studies.
Differences between studies could also be associated with the plant
species used.

Additionally, the lower connectivity in the rhizosphere and root
observed here (despite lowering the threshold to 50% to include a
comparable number of root taxa in the core) could at least par-
tially be attributed to their greater modularity (i.e., denser con-
nections between taxa within the same module rather than spread
evenly across the network) compared with the soil (Supplementary
Table S1). Greater modularity of rhizosphere and root networks
is likely related to the greater compositional heterogeneity we ob-
served in plant-associated habitats. As seen in microbial metabolic
networks (Parter et al. 2007), modularity might arise as a benefi-
cial network trait in variable environments, such as plant-associated
habitats, where bacteria are responding to abiotic and biotic changes
as the host develops. Increased modularity may reflect the plant’s
influence over their bacterial community favoring more specialized,
compartmentalized microbe–microbe associations (Chomicki et al.
2020) that consequently prevent the proliferation of disturbances
throughout the network.

Bacterial hub identity is influenced by environmental stress.
Highly connected taxa, known as hubs, have been proposed to repre-
sent putative keystone taxa in the community and have been iden-
tified in a variety of microbial systems (Berry and Widder 2014;
Costello et al. 2012; Herren and McMahon 2018; Trosvik and de
Muinck 2015; van der Heijden and Hartmann 2016). Unlike dom-
inant taxa whose influence on community function is exclusively
tied to their abundance, keystone taxa can be rare but are defined
by their outsized influence on community function based on their
unique roles (Banerjee et al. 2018; Power et al. 1996). In agreement
with this concept, we found a negative relationship between node
degree and an ASV’s average relative abundance (Supplementary
Fig. S11). Additionally, all bacterial taxa nodes identified as hubs
had low relative abundances (mean = 0.34%; Supplementary Table
S3). It was only when we considered within-module degree that we
saw a weak positive correlation between abundance and connectiv-
ity, suggesting that high abundance taxa may have limited influence
beyond their module. Overall, this provides further evidence sug-
gesting that less abundant taxa can be as or more important for
network structure as more abundant taxa (Herren and McMahon
2018; Lyons and Schwartz 2001; Shi et al. 2016; Wang et al. 2020).

Interestingly, the stressed and non-stressed networks for each
experiment, built from the same core ASVs, exhibited no shared
hubs (Fig. 3B to E; Supplementary Fig. S5). This finding agrees
with our hypothesis that stress would lead to shifts in the taxo-
nomic identity of network hubs. It suggests that putative keystone
taxa in this system are context-dependent, playing a central role
only under certain environmental conditions or locations (Lu et al.
2013; Lupatini et al. 2019; Shi et al. 2016). In fact, this shift in
hub identity also influenced the composition of hub first-degree
neighbors in the rhizosphere, with little shared membership be-
tween stress and non-stress first-degree neighbor networks (Fig. 4).
These sub-networks represent the most central and interconnected
parts of the rhizosphere core community. Keystone taxa and their
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accompanying biotic interactions with other organisms have been
identified as important predictors for community stability (Herren
and McMahon 2018); thus, a change in keystone ASVs and their
first-degree neighbors could indicate a shift in whole-community
function between conditions even if changes in composition are
subtle (Banerjee et al. 2016). It is worth mentioning that the only
ASV shared across all our networks was identified as a Massilia
sp., which dominated the rhizosphere during early plant develop-
ment but was at much lower abundance at all other time points.
Previous research in a variety of plant species suggests that this fast-
growing, copiotrophic genus, as well as various other genera within
the Oxalobacteraceae families, are strongly tied to early plant de-
velopmental stages, likely due to the exudates released during that
time (Green et al. 2007; Li et al. 2014; Ofek et al. 2012; Xiong
et al. 2021). Although the high connectivity of Massilia ASVs in
the rhizosphere core does not appear to be directly influenced by
environmental conditions, their role is still context-dependent with
respect to time; they likely play a critical role in initial rhizosphere
assembly.

None of the hubs identified in our soil, rhizosphere, or root net-
works was a kinless or network-wide hub (represented by z ≥ 2.5,
P ≤ 0.62; Fig. 3B to E; Supplementary Fig. S5), defined by ho-
mogenous distribution of links among all modules (Guimerà and
Nunes Amaral 2005). This suggests that hubs in the sorghum bacte-
rial community influence narrow biological processes within their
module (Banerjee et al. 2018). For example, both the full N and
low N networks have many putatively nitrogen-fixing taxa (Sup-
plementary Fig. S8) associated within module #6 with a hub iden-
tified as a Xanthobacteraceae under full N and a Bacillus sp. under
low N. In this instance, differences in the identity of hubs between
environmental conditions may simply result from functional redun-
dancy in the community, as the two ASVs seemed to co-occur in
a compositionally similar module regardless of growth condition.
However, under low N, this module was much more connected to
all other Bacillus ASVs (which were also more abundant under low
N) and N-fixing taxa in other modules. Bacillus sp. have been iden-
tified to have many plant growth-promoting functions, of which at
least some species are capable of enhancing plant nitrogen acqui-
sition and growth under low N (Huang et al. 2015; Mania et al.
2016; J. Wang et al. 2021; Zhang et al. 2017), and their role as
a hub/connector, increased abundance, and increased association
under low N suggest that, as in other plant species, they play an
important role in sorghum’s ability to deal with abiotic stress.

Generalist-specialist shifts in the presence of a host and under
stress. Previous studies suggest that connector nodes are more con-
served than peripheral nodes given their role in inter-module com-
munication and thus overall network stability (Guimerà and Nunes
Amaral 2005). Additionally, connectors have been seen as analo-
gous to generalists and peripherals as specialists (Montoya et al.
2006; Zhou et al. 2011). A greater proportion of rhizosphere and
root ASVs were identified as peripheral nodes, whereas a greater
proportion of soil ASVs were identified as connector nodes (Sup-
plementary Table S2). Overall, the increase in modularity and pe-
ripheral nodes in the rhizosphere and root could signify that taxa
are more functionally, spatially, or temporally compartmentalized,
which could lead to fewer, but more specialized, associations be-
tween ASVs (Hernandez et al. 2021; Li et al. 2021; Zhang et al.
2018).

We also found that connector and peripheral roles were signifi-
cantly reorganized under abiotic stress, with many ASVs switching
from peripherals to connectors and vice versa (Supplementary Fig.
S7). Generalist-specialist shifts have been rarely reported in mi-
crobial network-based studies (Lu et al. 2013), but their presence
here under stress further suggests the context-dependent nature of

network roles. These shifts may reflect the flexibility and diversity
of metabolic functions that individual microbial taxa can exhibit
to be more competitive for either environmental resources or host
habitat under stressful conditions such as nutrient and water limi-
tation (Chen et al. 2021; Grimbergen et al. 2015). Interestingly, we
did not find a clear pattern in the percentage of nodes identified as
connectors under stress (i.e., the percentage of nodes identified as
connectors did not always shift in the same direction under stress;
Supplementary Table S2). It seems that stress played a more impor-
tant role in determining the identity of generalist (connectors) and
specialist (peripheral) nodes rather than their overall percentages in
the bacterial network.

The role of increased positive associations under stress. In ad-
dition to the reorganization of network roles under stress, we found
differences in the type and number of associations between taxa in
those networks. First, we found that networks under stress had more
associations between taxa overall and between those taxa identified
as putatively plant growth promoting (Fig. 4; Supplementary Fig.
S8). However, contrary to what we hypothesized, network associ-
ations were more likely to be positive under stress than non-stress
(Supplementary Table S2). Although previous research suggests
that negative associations should dominate microbial networks, es-
pecially when species are more similar (Berry and Widder 2014;
Nemergut et al. 2013; Verster and Borenstein 2018), we found many
instances in which species from the same phylum were more likely
to share positive associations with one another. These associations
could be driven by environmental filtering, which is not mutually
exclusive from their interactions with other microbes. Studies have
shown that rhizosphere microbes often exhibit strong positive as-
sociations because they are ecologically or functionally similar and
thus share niche space (Chaffron et al. 2010; Edwards et al. 2015;
Mendes et al. 2014). As Loftus et al. (2021) pointed out, the increase
in positive associations found in our and other recent studies (Kurtz
et al. 2015; Shi et al. 2016) may be due to our use of network meth-
ods that are robust to the compositionality (i.e., many zeroes in the
abundance matrix) inherent in microbiome data. Failing to account
for compositionality (which naturally exhibits a negative correla-
tion bias), may lead researchers to infer more negative associations
than actually exist (Gloor et al. 2017).

Experimental studies have shown that like many macro-
organisms, microbes may switch from competitive to facilitative
interactions when exposed to stress (Michalet and Pugnaire 2016;
Piccardi et al. 2019; Stachowicz 2001; Zhou et al. 2021). For ex-
ample, some groups of microbes may engage in metabolic cross-
feeding and/or biofilm formation to more efficiently use resources
and energy under stress—a theory that has been substantially em-
braced within the last decade (Ebrahimi et al. 2019; Goldford et al.
2018; Hallam and McCutcheon 2015; Pacheco et al. 2019; Ren et al.
2014; Shank et al. 2011). In studies of plant-plant interactions and,
more recently, microbe–microbe interactions, this phenomenon has
been referred to as the Stress Gradient Hypothesis (Bertness and
Callaway 1994; Hernandez et al. 2021). Still, it is important to re-
member that our networks are undirected, and their connections
represent the net association between taxa; thus, positive associa-
tions may not always indicate cooperation. For instance, positive
associations could indicate parasitism or commensalism between
taxa or could simply reflect coexistence despite shared niche pref-
erences by partitioning niche space or tolerating low resource levels
(Kehe et al. 2021; Loftus et al. 2021).

Although increased positive interactions have been suggested to
enhance diversity and productivity, they also may decrease stabil-
ity (Allesina and Tang 2012; Hernandez et al. 2021; Kehe et al.
2021). This is because they can create positive feedback loops, or
interdependence, between taxa—when one community member’s
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abundance is negatively impacted, so are the abundances of the
taxa reliant on them (Coyte et al. 2015). Interestingly, although
our stressed networks had more positive associations, they were
not necessarily less stable than their respective non-stressed net-
works (Supplementary Fig. S9). This is likely to be due to the
high modularity/compartmentalization inferred in the stressed net-
works, which, as mentioned earlier, can prevent the proliferation of
positive feedback loops throughout the entire network (Guimerà
et al. 2004; Loftus et al. 2021). Additionally, as seen in the soil net-
works, networks under stress were more connected, which could
signal more redundancy in their network connections and act as
“insurance” against network collapse. Finally, some research sug-
gests that high levels of nitrogen fertilizers could negatively af-
fect microbial community stability (Kavamura et al. 2018), but
more research is needed to confirm if that is the case in our
system.

CONCLUSION

Environmental stressors, such as nutrient and water limitation,
do not seem to have pronounced effects on overall sorghum core
soil, rhizosphere, or root community composition, but there were
significant changes in select Gamma- and Alphaproteobacteria.
Despite similar composition, communities associated with plants
undergoing nitrogen or water stress did exhibit notable changes
in network structure, particularly substantial changes in the iden-
tity of network hub (putative keystones), connector (generalists),
and peripheral (specialists) taxa. Stressed networks also showed
an increased proportion of positive associations, which could rep-
resent coexistence despite shared niche preferences or even co-
operation (e.g., metabolic cross-feeding), but mechanistic studies
are needed to parse these specific relationships. Although an in-
crease in the proportion of positive associations has been shown
to be destabilizing, we did not find that stressed networks were
less stable than non-stressed networks, likely due to their in-
crease in connectivity (i.e., redundancy) and compartmentaliza-
tion. Together, these findings support the idea that both sorghum
and its bacterial community can be resilient to environmental
stressors.

Data availability. All sequence data used in this study are avail-
able at NCBI under BioProject PRJNA945936.
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