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Abstract 
 

First principles calculations and model Hamiltonian approaches 
to electronic and optical properties of defects, interfaces and nanostructures 

 
By 

 
Sangkook Choi 

 
Doctor of Philosophy in Physics 

 
University of California, Berkeley 

 
Professor Steven G. Louie, Chair 

 
 

The dynamics of electrons governed by the Coulomb interaction determines a large 
portion of the observed phenomena of condensed matter. Thus, the understanding of electronic 
structure has played a key role in predicting the electronic and optical properties of materials. 
In this dissertation, I present some important applications of electronic structure theories for the 
theoretical calculation of these properties. In the first chapter, I review the basics necessary for 
two complementary electronic structure theories: model Hamiltonian approaches and first 
principles calculation. In the subsequent chapters, I further discuss the applications of these 
approaches to nanostructures (chapter II), interfaces (chapter III), and defects (chapter IV).  

 

The abstract of each section is as follows. 
 

● Section II-1 
The sensitive structural dependence of the optical properties of single-walled carbon 

nanotubes, which are dominated by excitons and tunable by changing diameter and chirality, 
makes them excellent candidates for optical devices. Because of strong many-electron 
interaction effects, the detailed dependence of the optical oscillator strength Sf  of excitons on 

nanotube diameter d, chiral angle  , and electronic subband index P (the so-called family 
behavior) however has been unclear. In this study, based on results from an extended Hubbard 
Hamiltonian with parameters derived from ab initio GW-BSE calculations, we have obtained 
an explicit formula for the family behavior of the oscillator strengths of excitons in 
semiconducting single-walled carbon nanotubes (SWCNTs), incorporating environmental 
screening. The formula explains well recent measurements, and is expected to be useful in the 
understanding and design of possible SWCNT optical and optoelectronic devices. 

 

● Section II-2 
Wave supercollimation, in which a wavepacket is guided to move undistorted along a 

selected direction, is a highly desirable property that is difficult to achieve for photons and has 
yet to be experimentally seen for electrons. Disorder in a medium would inhibit 
supercollimation. Here, we report a counter-intuitive phenomenon of electron supercollimation 
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by disorder in graphene, made possible by its Dirac fermion states.  We show that one can use 
one-dimensional disorder potentials to control electron wavepacket transport along the potential 
fluctuation direction. This is distinct from all known systems where the wavepacket would be 
further spread by the disorder and hindered in the potential fluctuating direction. This 
phenomenon has significant implications in the understanding and applications of transport in 
graphene and other Dirac fermion materials. 

 

● Section III-1 
The origin of magnetic flux noise in superconducting quantum interference devices with 

a power spectrum scaling as 1/ f ( f  is frequency) has been a puzzle for over 20 years. This 
noise limits the decoherence time of superconducting qubits. A consensus has emerged that the 
noise arises from fluctuating spins of localized electrons with an areal density of 17 2105 m . 
We show that the physical origin of the phenomenon are localized metal-induced gap states at 
the interface.  In the presence of potential disorder at the metal-insulator interface, some of the 
metal-induced gap states become localized and produce local moments. A modest level of 
disorder yields the observed areal density. 

 

● Section III-2 
We present a microscopic theory of disorder-induced magnetic moment generation at 

nonmagnetic metal-insulator interfaces. Screened Hartree-Fock solution of a tight-binding 
Hamiltonian with electron-electron interaction, in which disorder is mimicked by the Anderson 
disorder model, shows that magnetic moments are originated from localized metal-induced gap 
states at the interface. Magnetic moment areal density becomes saturated at a maximum value 
of 17 2104 m  as the disorder magnitude increases, consistent with the observed universality of 
measured local magnetic moment areal density. Dielectric screening effect is found to be 
essential for understanding the relatively universal behavior of the observed value.  

 

● Section IV-1 
Optical initialization of the negatively charged nitrogen-vacancy (NV-) center in 

diamond makes it one of the best candidates for realization of addressable spins in the solid 
state for quantum computing and other studies. However, its exact mechanism was not clear. 
We show that exact diagonalization of a many-electron Hamiltonian with parameters derived 
from ab initio GW calculations puts strong constraints on the mechanism. The energy surfaces 
of the low-energy many-body states and the relaxation processes of photo-excitation 
responsible for the optical initialization are calculated.  Intersystem crossings are shown to be 
essential 

 

● Section IV-2 
Graphene has been predicted to be a good test material for atomic collapse theory due 

to its linear band structure with a Fermi velocity 300 times slower than the speed of light. The 
Crommie group at UC Berkeley measured, using scanning tunneling microscopy, electrons 
bound to the positively charged calcium dimers on graphene, which corresponds to electrons 
collapsed to the super-heavy nucleus in artificial atoms. To compare measured bound states to 
atomic collapse theory in an artificial atom on graphene, the net charges associated with calcium 
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dimers should be quantified. Here, we quantified the net charges associated with a calcium 
dimer using density function theory.  
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 Theoretical methods 
The electronic and optical properties of a condensed matter system are dictated by the 

electrons in the system. Understanding materials properties involves solving quantum many-
electron problems with the Hamiltonian: 

 0 intH H H     (I-1) 

with  

 
2

0 ( )
2

i
ext i

ei i

p
H H

m
  r   (I-2) 

and  

 
2

int |i ji j

e
H






| r r
,  (I-3) 

where ( )i ip r denotes momentum (position) operators of i th electron and ( )em e  represents the 

mass (charge) of the electron. The term extH  represents the interaction of electrons and external 

potentials such as potentials from nuclei.  
Due to the huge number of particles in the system on the macroscopic scale, it is almost 

impossible to study the materials properties within many-body Schrodinger equation 
approaches. We should have an alternative theory which can handle many-electrons and their 
creation and annihilation in the system. Density functional theory and many-body theory 
provide an efficient and accurate means to study the ground and excited state properties of 
interacting electron system. Within these first principles approaches, it is feasible to determine 
many properties of materials directly from the fundamental Hamiltonian without empirical 
parameters. 

However, due to its heavy computational cost, it is not always feasible to apply the 
above mentioned first principle approaches. For some complex systems, the number of degrees 
of freedom is so large that one will not be able to make theoretical progress by an approaches 
that treat all microscopic constituents as equally relevant degrees of freedom. In the majority 
of condensed matter applications, one is interested not so much in the full spectrum of a given 
system, but rather in its energetically low-lying dynamics. By constructing low energy effective 
Hamiltonian (which is mimicking the Hamiltonian in Eq. (I-1) in the low energy range) in the 
wisely-chosen restricted Hilbert space, we can calculate measurable quantities quantitatively. 
In addition, one can determine, from first principles, interaction parameters which are needed 
in model studies of condensed matter systems.  
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In this chapter, we review the basics of these complementary theoretical methods (first 
principles calculations and model Hamiltonian approaches): density functional theory, many-
body theory, and model Hamiltonian approaches. 

1. Density functional theory 

(a) Hohenberg-Kohn theorem.  

According to the first theorem of Hohenberg and Kohn [1,2], external potential ( )extV r  

is determined uniquely, except for a constant shift, by the ground state density 0 ( )n r , for any 

system of interacting particles in ( )extV r . A corollary of this theorem is as follow. Since 

Hamiltonian is determined by 0 ( )n r  except for a constant shift, the many-body wavefunctions 

for ground and excited states are also determined by 0 ( )n r . Therefore, the properties of the 

system are completely determined by 0 ( )n r . 

The second theorem states that a universal functional for the total energy [ ]E n  can be 

defined. For any ( )extV r , 0 ( )n r  minimizes [ ]E n  at the exact ground state energy of the system. 

A direct consequence of the second theorem is that [ ]E n  is sufficient to determine the exact 

ground state energy and 0 ( )n r .  

(b) The Kohn-Sham equations 

The Kohn-Sham approach [2,3] is based on an ansatz: to mimic the original interacting 
many-body problem by an auxiliary independent-particle problem. The Kohn–Sham 
construction of an auxiliary system relies on two assumptions. First, the exact ground state 
density of the interacting system can be represented by the ground state density of an auxiliary 
non-interacting system. Second, the auxiliary Hamiltonian is chosen to have the usual kinetic 
operator and an effective local potential ( )effV  r  acting on an electron of spin   at position r . 

This approach leads to exact calculations of properties of many-body systems using 
independent-particle methods and has made possible approximate formulations that have 
proved to be remarkably successful for the properties of the ground state in practice. 

The Kohn–Sham approach is to write the ground state energy functional in the form  

 [ ] ( ) ( )[ ] [ ] [ ] [ ]s ext hartree I I xKS cE n T nn d V n E E n nE    r r r   (I-4) 

with 

 
2

1

N

i
in









 ,  (I-5) 
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2

1 2
i i

N

i
sT


 



 




  ,  (I-6) 

and 

 
1 ( ) ( )

2 | |hartree

n n
E d d





r r

r r
r r

 . (I-7) 

Here, I IE   is the interaction energy between nuclei and xcE  is exchange correlation functional. 

 From variational method which minimize the energy functional in Eq. (I-4), we can 
derive the Kohn-Sham equation of the auxiliary independent-particle system:  
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with 
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]
(

[xc
xc

E n
V

n







r
r

.  (I-9) 

Eq. (I-8) is solved self-consistently to find the ground state density ( )n r  and the total energy. 

Although the exact form of [ ]xcE n  is not known, it can reasonably be approximated in many 

cases within a local density approximation or generalized-gradient approximations for the 
properties of ground states. 

2. Many-body theory 

To study excited state properties of materials, we need to go beyond ground-state 
theories such as density function theory. Within many-body theory or quantum field theory, 
excited state properties of materials are understood in terms of the elementary excitation. To 
illustrate, photo-emission, transport, or tunneling technique, in general, yield the information 
on the quasi-electrons and quasi-holes. In an optical experiments, one can create an exciton, 
which is correlated electron-hole pair excitation. In this section, I would review single and two 
particle Greens function which yields the dynamics of quasiparticles and excitons, respectively.  

(a) Field operators and second quantization 

In quantum mechanics, the wave function is a complex-valued function of coordinates 
and time, which is "classical number" in Dirac's terminology. On the other hand, in quantum 
field theory, wave function is regarded as a field operator in the Fock-space satisfying certain 
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commutation relations. For a non-relativistic electron of which dynamics is governed by 
Schrodinger equation in Eq. (I-1), field operator for electrons satisfies anti-commutation 
relation of   

 †( ), ( ') ( )x x x x  


    .  (I-10) 

and 

   † †( ), ( ') ( ), ( ) 0'x x x x   
 

    ,  (I-11) 

where    is anti-commutator. If the wave function ( )x  is expanded in terms of a basis set 

such that ( ) ( )n n
n

x c x  , the creation and annihilation operator of nc  and †
nc  must satisfy 

their own anti-commutation relations of  

 †
, ', nn nnc c  

      (I-12) 

and 

   † †, , 0n n n nc c c c  
    .  (I-13) 

For any one body operator of )(
i

iA r in many-body quantum mechanics, 

corresponding second-quantized operator is given by 

 † †( ) ( )ˆ ( ) n mAA d n A m c c   r r r r .  (I-14) 

For any two body operator of ( )i j
i j

B B


  r r in many-body quantum mechanics, 

corresponding second-quantized operator is given by 

  
† †

† †
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2)

)

m n p q

B d d

mn B pq c c
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c c

    


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  (I-15) 
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(b) Single-particle Green’s function  

Single-particle Green’s function (1,2)G  describes how a quasiparticle propagates from 

coordinates 2r  at time 2t  to coordinates 1r  at time 1t  with a boundary condition of 1 2( ) r r  at 

time 2t . In the non-relativistic quantum mechanics, 0 (1,2)G  of  

 
2
1

0 1( )
2 extV

m

p
H  r   (I-16) 

satisfies 

 
1 0 1 2 1 2(1, 2) (1) (1, ( ) ( )2)t r r t ti G H G      .  (I-17) 

There are many different kinds of time-dependent Green’s functions, but two of the most 
important one is retarded and advanced Green’s function. Retarded and advanced Green’s 
function is defined by  

 (
1

(1,2) (1,2 ))G U t
i

  


,  (I-18) 

where (1,2)U  is electron propagator. The upper and lower sign in Eq. (I-18) refers to retarded 
and advanced Green’s function, respectively. In the energy space, Green’s function in operator 
form 0G  of 0H  is  

 
0

0 01
0 0( )

nn

n n
G E H

E E i
  

  ,  (I-19) 

where 0n  and 
0nE  represent an eigenstate of 0H  and its energy, and    is a tiny positive 

(negative) real number for retarded (advanced) Green’s function. As shown in Eq. (I-19), 
Green’s function in the energy space shows eigenstate spectrum of 0H .  

 Using time-dependent perturbation theory which describes how propagator changes by 
perturbing Hamiltonian 1H , we can show that  

 0 3 3 0 1(1,2) (1,2) (1,3) (3) (3,2)G G d dt G H G   r   (I-20) 

In energy space, Green’s function (in operator form G ) of a Hamiltonian (in operator form 

0 1H H H  ) satisfies 

 1 1
0 1G G H   .  (I-21) 
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 Eq. (I-21) shows how much eigenenergy changes due to 1H : 

0

0

2

0 1n n
n

E HE n n n n ,  (I-22) 

where n  and nE  represent an eigenstate of 0 1H HH   and its eigenenergy.  

In quantum field theory, time-ordered Green’s function is important. In the coordinate 
space, time ordered Green’s function of the Hamiltonian in Eq. (I-1) is 

 
†

0 0

0 0

(1) (2)1
(1, 2)

T
G

i

 


   


 
.  (I-23) 

where  T

 denotes time ordered product operator and 0  is interacting ground state. From 

functional integration formalism as well as the formalism of canonically quantized field 
operators, the single-particle Green’s function can be shown to satisfy 

1 2 0 1 2 3 4 0 1 3 4 43 2G( , , ) G ( , , ) G ( , , ) ( , , )G( , , )E E d d E E E  r r r r r r r r r r r r  (I-24) 

in the energy space, where ( , , )E r r  is electron self-energy due to electron-electron 
interaction in Eq. (I-3). There are various kinds of approximation to ( , , )E r r  such as Hartree-
Fock approximation and GW approximation. In the following subsection, I will review GW 
approximation. 

(c) GW approximation to electron self-energy  

Electron self-energy due to electron-electron interaction is composed of two different 
contributions from Hartree interaction and exchange-correlation. Electron self-energy due to 
Hartree interaction is originated from classical electrostatic interaction and can be represented 
by  

 
2

1 2 3 3
1 3

( , , )
| |

( )H

e
E d 

 r r
r r

r r .  (I-25) 

Within GW approximation, electron self-energy due to exchange correlation is approximated 
by  

 1 2 1 2 1 2( , , ) ( , , ) ( , , )GW E iG E W E r r r r r r   (I-26) 

with 
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 1
1 2 3 1 3 3 2( , , ) ( , , ) ( , )W E d E V r r r r r r r ,  (I-27) 

where ( )W V  is screened (bare) Coulomb interaction and 1 is inverse dielectric function.  

(d) Two particle correlation function and GW-BSE equation 

The physical properties of excitons, correlated quasielectron-quasihole pair excitation, 
can be understood using two-particle correlation function:  

 2 1 1(1,2,1'2 ') (1, 2,1'2 ') (1,1') (2, 2 ')L G G G     (I-28) 

where 

 
† †

0 0
2 2

0 0

(1) (2)[ ]1
(1,2,
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1'2 ')

(

(1')

)

T
G

i

     


 
  (I-29) 

is two particle Green’s function and 1G  is single particle Green’s function. From the “equation 

of motion method” [4], we can show that two particle correlation function satisfies  

1 1(1,2,1'2 ') (1,2 ')G (2,1') 3456 (1,3) (4,1 (3,5,4,6) (6,2,5,2 ')')L G d G LG    (I-30) 

in the coordinate space. The effective two particle interaction kernel   is  

 
1

(3
(3

, 4
,5, 4,

)

(6,5)
6)

G







 .  (I-31) 

Within GW approximation to the electron self-energy,  

 (3, 4) (5 6) (3,6) (3,6) (4,5) (3 , 4(3,5 , ) ), 4 6 V i Wi       ,  (I-32) 

which is GW-BSE interaction kernel. If an exciton is assumed to be represented as
†| |S

cv c v
cv

S A c c   k k k
k

, we can determine the excitation energy spectrum of excitons by 

solving the GW-BSE equation (from the inversion of two particle correlation function in the 
energy space):  

  
 ' '

' ' '

( ) ( )) | |( S S S
c v cv c v cv

S

c v

A c vE v c AE A       k k k
k

k k k k ,  (I-33) 
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where S
 
is the exciton excitation energy, and ( )cE k  and ( )vE k  is quasiparticle energy.  

 

3. Model Hamiltonian approach 

(a) Extended Hubbard model 

In solving Eq. (I-1), we don’t need to treat all microscopic constituents as equally 
relevant degrees of freedom to predict the properties of low energy excitation. We may restrict 
our Hilbert space to a finite size which is spanning low energy electronic excitation such as 
quasi-particles and quasi-hole. In most materials, a few localized orbitals at each atomic sites 
are enough to evaluate electronic and optical properties of materials in the low energy-scale. In 
that case, Hamiltonian can be approximated by  

 † 1ˆ t c c
2i i ij i j ij i j

i i j ij

H E n V n n


     ,  (I-34) 

where i  is the index indicating localized orbitals and †
i i in c c  is number operator on the i  th 

orbital. Interaction parameters of iE , ijt , and ijV  are effective parameters with renormalized 

values due to the restriction of Hilbert space to a finite size. 

(b) Anderson impurity model 

Anderson impurity model [5] explains the occurrence of localized magnetic moments 
on strongly-localized orbitals dissolved in nonmagnetic metals by writing down the 
Hamiltonian:  

 † †
, ,

( )d d d dd d d
H E n E n V c c c c Un n     

  
       k k k k k

k k

,  (I-35) 

where k  indicates a free-electron state at crystal momentum k  and d  indicates localized 
impurity orbital. The last term in Eq. (I-35) is the repulsive energy among the d  orbital due to 
Coulomb interaction. Electron in this Hamiltonian is allowed to hop between metal orbital and 
impurity d  orbital. Within self-consistent Hartree-Fock approximation in which many-body 
ground states are represented by a single Slater-determinant, the expectation value of electron 
density associated with the impurity d  orbital is given by 

  , 2 2
,

1

( )

FE
d

d
d d

n dE
E E

 





 , (I-36) 
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where , ,d d dEE U n  , 
2

,d k dV NV  , N  is metal electron density of state and V  

is the volumes of the system. 
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 Nanostructures 

1. Optical oscillator strength of excitons in semiconducting single-
walled carbon nanotubes 

(a) Introduction 

A single-walled carbon nanotube (SWCNT) is a graphene strip of nanometer width rolled 
width-wise into a seamless cylinder [6,7]. The optical properties of SWCNTs have attracted 
much attention since they are tunable by changing the SWCNT’s geometrical structure (i.e., the 
width and orientation of the graphene strip) [8] and are of significant potential in applications 
such as light-emitting diodes  [9], photo-detectors [10] and other optoelectronic devices. 
Because of strong many-electron interactions in reduced dimensional system, the dominant 
features of the optical properties of SWCNTs can only be understood in terms of exciton 
excitations (as opposed to interband transitions)  [11–13].  For one-particle (quasiparticle) 
excitations in SWCNTs, confinement of the electron wavefunction along the tube 
circumference quantizes the wavelength (or equivalently the crystal momentum) of the 
quasiparticles along that direction, resulting in only discrete sets of wavevectors (or k  points) 
in the two-dimensional Brillouin zone (BZ) of graphene allowable for the SWCNTs.  Electronic 
states from these allowed k points (the cutting-lines labeled with index P) shown in Figure 
II-1b give rise to the SWCNT electronic subbands [14].  In optical processes, the photo-excited 
quasielectron in the conduction band and the quasihole left behind in the valence band interact 
with each other forming excitons with excitation energies lower than the inter-subband 
transition energies, as schematically shown in Figure II-1c, giving rise to large exciton binding 
energies. The explicit dependence of exciton oscillator strength on diameter d, chiral angle  , 
and subband index P (the so-called family behavior) is yet unclear, in contrast to, for example, 
that of exciton excitation energies [8,15–18]. Although the first-principles GW plus Bethe-
Salpeter Equation (GW-BSE) approach  [19,20] for treating electron-hole interactions and 
optical response  [4,21] has successfully predicted the optical properties of SWCNTs including 
oscillator strengths, its application is so far limited to achiral and smaller diameter nanotubes, 
owing to the rather heavy computational cost of the calculations.  An effective model 
Hamiltonian approach with reliable many-electron interaction parameters, such as an extended 
Hubbard model, would provide an efficient means to arrive at such a formula.  In this approach, 
the interactions between electrons are limited to a physically relevant, restricted Hilbert space, 
and the screening effects of configurations outside of the restricted Hilbert space are taken into 
account using effective Coulomb interaction parameters. Such approaches had been 
tried,  [18,22] but difficulties were encountered in obtaining physically well-based effective 
interaction parameters in the past.   

Here, we apply an extended Hubbard Hamiltonian to the optical properties of SWCNTs 
with three geometrical-structure-independent parameters that are fixed by results from ab initio 
GW-BSE calculations. These parameters are obtained by fitting twenty physical quantities 
(quasiparticle energy gaps and exciton excitation energies of 4  achiral nanotubes) from our 
extended Hubbard model study to those from the ab initio calculations of the real systems using 
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the BerkeleyGW code [23]. In both the extended Hubbard model and ab initio studies, we 
employed the same approximations to the electron self energy [19,21] for quasiparticle 
excitations energy and to the BSE interaction kernel for the optical excitation energies of 
excitons [4,20].  The idea is to fit enough number of relevant physical quantities affected by 
many-electron interaction, to pin down the effective electron-electron interactions in the model 
Hamiltonian so that it is applicable to nanotubes of any arbitrary structure.   

 

(b) Theory and computation 

We chose for our full ab initio calculations of the real systems four SWCNTs -- one 
small diameter tube and one large diameter tube in each of the two types of semiconducting (n, 
m) SWCNTs classified by (n-m) modulo 3 equal to 1 or 2: the (10,0), (14,0), (16,0) and (17,0) 
nanotubes. We calculated the ground-state properties of the SWCNTs using density functional 
theory in the local density approximation (DFT-LDA) in a supercell geometry with a tube-tube 
separation of 36, 50.7, 57.9, and 61.2 in atomic units (a.u.) for the (10, 0), (14, 0), (16, 0), and 
(17, 0) SWCNTs, respectively. Norm-conserving pseudopotentials were used with a plane wave 
basis (60 Ry cutoff).  For the DFT-LDA calculation, we sampled 32 k points in the BZ along 
the tube axial direction. We then calculated the quasiparticle energies within the GW 

approximation [19,21,23]: iGW  where G is the electron Green’s function and W is screened 
Coulomb interaction. The frequency-dependence of the dielectric screening matrix is obtained 
from the static dielectric matrix employing a generalized plasmon pole model [19].  For the 
GW calculations, we used a cutoff parameter of 9, 6, 6, and 6 Ry for the dielectric matrix and 
a cutoff parameter of 390, 376, 488, and 500 bands for the evaluation of the dielectric screening 
matrix and self-energy operator, for the (10, 0), (14, 0), (16, 0), and (17, 0) SWCNTs, 
respectively.  

The optical excitation spectrum is then calculated. The exciton states can be represented, 
in occupation number representation, as 

 †| | 0S
cv c v

cv

S A c c  k k k
k

  (II-1) 

within the Tamm-Dancoff approximation. S
cvA k  is the electron-hole pair amplitude obtained by 

solving the GW-BSE equation [4,20],  

 int
' '

' ' '

( ) ( ) | |( ) S S S
c v cv c v cv

c v

SA cv K c v AE E A      k k k
k

k k k k   (II-2) 

where S
 
is the exciton excitation energy and intK  is the quasielectron-quasihole interaction 

kernel. There are two distinct terms in intK : i) an attractive direct interaction int
DK  - an electron-

hole pair scatters to another pair via the screened Coulomb interaction between the negatively 
charged electron and the positively charged hole; ii) a repulsive exchange interaction via the 
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bare Coulomb interaction int
exK . For the interaction kernel, we used up to 256 k-points along the 

tube axis direction and 10 valence and 10 conduction bands.  A truncated Coulomb interaction 
is used in the GW-BSE calculations to prevent interaction with nanotubes in neighboring 
supercells [23,24]. The details of the methodology may be found in Refs. 14 and 15. 

 Next, the effective model Hamiltonian is constructed with one pz orbital at each carbon 
atom:  

 †
, ,

{ , }
,

, { ,
,

}

1

2ij i j i
i j i j

i jjH t c c V n n   

  
 



     

     (II-3) 

where †
ic  , ic  , and in   are the electron creation, annihilation, and number operators at the site 

i with spin   respectively.  The curvature of the nanotube tilts the pz orbitals as shown in Figure 
II-1d, which are originally parallel to each other in planar graphene.  Curvature shifts the 

position of the Dirac point of graphene from the K and K’ point of the Brillouin zone, leading 
to a curvature gap at the charge neutrality energy for small diameter metallic nanotubes except 
for the armchair nanotubes [25].  The nearest-neighbor hopping integral, ijt , between the pz 

orbitals (aligned normal to the surface in graphene) at sites i and j may be modeled to 
incorporate the curvature effect in the following form [25]: 

 ˆ ˆ ˆ ˆ ˆ ˆ· · · ·( ) ( ) ( )·ij i i ij ij j j ij ij i ij j ijt t t    n n R R n n R R n R n R   (II-4) 

where t  and t  are the hopping integrals between two p orbitals side-by-side and end-to-

end, respectively, in  is  

 
2 2 2(| | 1/

1

/ )
ij

i j

V
e U


 R R

  (II-5) 

the surface normal unit vector, and ˆ )/ |( |ij j i j i R R R R R  where iR  is the carbon atom 

position vector as shown in Figure II-1d. The bare Coulomb interaction between two electrons 
is modeled in the form of an Ohno potential [26], 

 
in CGS unit, and U  is a Coulomb potential 

regularization parameter.  Although our model given by Eq. (II-3) does not incorporate all 
possible many-electron interaction terms in the exact many- body Hamiltonian for the SWCNT, 
we include the dominant terms when an atom-centered basis set spans the Hilbert space [27].  

To calculate the quasiparticle energies for our extended Hubbard model Hamiltonian, 
we use also the DFT-LDA results from the model as the mean-field starting point [28].  We use 
the full symmetry of the SWCNT including the screw translations, so that there are only two 
atoms per unit cell for any (n,m) tubes; and there is no need for a supercell geometry.  In the 
local density approximation, the exchange-correlation potential is then a function of site 
occupation. Since geometrical relaxation is included in the hopping integrals ijt  effectively and 
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site occupation is assumed to be uniform within our model, the inclusion of a LDA exchange-
correlation functional doesn’t change the band dispersion from the tight-binding band 
dispersion given by the first term in Eq. (II-3). 

We evaluated   in the GW approximation (as for the case of the real systems) using 
the generalized plasmon pole approximation to the screening of the Coulomb interaction in 
contrast to a previous model study in which a further approximation of the static COHSEX 
approximation to GW self energy is employed [18]. The static COHSEX approximation is 
known to overestimate the electron self-energy [19]. Additionally, we represent the Coulomb 
interaction and the longitudinal polarization function as 2 2  matrices at each momentum q  
and frequency  . This is needed since we have two pz orbitals in a unit cell in our Hilbert space. 
Furthermore, in contrast to a previous study [18], we did not include a constant renormalization 
factor to the bare Coulomb interaction, a factor that was attributed by the authors in Ref. 13 to 
additional screening from electronic states outside of the Hilbert space. We argue that this 
renormalization factor in the SWCNT should be unity in the long wavelength (q small) limit, 
which is appropriate for excitons in SWCNTs since they have large radius. This arises from the 
fact that, due to the 1D character of the SWCNTS, the longitudinal polarizability from the other 
electronic states multiplied by the bare Coulomb interaction goes to zero in the 0q   
limit [31].  

We calculated the electron self-energy ( ) correction to the mean-field solution within 
the GW approximation [21]. Within our model of Eq. (II-3), the longitudinal polarizability 
matrix at momentum q  in the static limit is 
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  (II-6) 

where   is the basis atom index in the 2-atom unit cell of SWCNT, N is the number of 2-atom 
unit cell in our system, ( )n k  is the DFT-LDA Kohn-Sham orbital coefficient in the basis of 

the pz orbitals, 0 ( )nE k is the Kohn-Sham orbital energy, and ( )f E  is the Fermi-Dirac 

distribution function. The screened Coulomb interaction matrix W in the static limit is 

 0 1)( , 0) (1 ) )( , 0 )( (W V V      q q q q   . (II-7) 

with the bare Coulomb interaction matrix denoted as 

 ·( )
, )( ( ) iV eV 

  
    k R τ τ'

R

q R τ τ'   (II-8) 

Here the “~” symbol denotes that the quantities are 2×2 matrices. In order to extend the static 
screened Coulomb interaction in the model calculation to nonzero frequencies, we made also 
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use of a generalized plasmon pole (GPP) model [19,29,30]. We express the screened Coulomb 
interaction in its eigen-representation )W ,(n q : 

 1
, '( , ) ( , )( ) ( )

n
n n nW D W D    

  qq q q   (II-9) 

where )(D q  is a matrix formed from the outerproduct of the eigenvectors of the static ( )W q . 
Due to the restriction of Hilbert space to two pz orbital in the two-atom unit cell, we have only 
two longitudinal modes of excitation. Then, ( )W q  have eigenvalues of the form 
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 

q q
q q

q q
,  (II-10) 

in Lehmann’s representation where  

 1 )( ) ( ( ( () ))n nnV DD Vq q q q     (II-11) 

 and n = 1 or 2.   The parameters )(nB q and )(n q are chosen such that ),(W q reproduces the 

static screened Coulomb interaction in the static limit, and ),(W q satisfies the sum rules 
derived from the longitudinal f-sum rules for imaginary part of retarded polarization matrix 
within an extended Hubbard model: 
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where 

 ·( )
, ( ) ( ) it t e 

  
    k R τ τ

R

k R τ τ .  (II-13) 

For example, for a system with one s orbital in the unit cell of a simple cubic lattice, 

  , ) 2 ( ) ( )I ( /m 2 ( )
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k

q k q k q k .  (II-14) 
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In the continuum limit, ( )t k , which is the eigen-energy of the noninteracting Hamiltonian, 

corresponds to kinetic energy 2 2 / 2mk  in the jellium model and 

 2 ( ) ( ) 2 ( ) /
occ

t t t N    
k

k q k q k  is (analogous to that of jellium model with electron 

density of n) 2 / 2nq m . The Coulomb-hole (COH) and screened exchange (SEX) term of the 
electron self-energy  [19] within the GW approximation is then given by 
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and 
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The quasiparticle energy is, denoting the renormalization factor  
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given by 

 0 0( (( ) ) ) , )(( )n n n n nE ReE EZ  q q q q q  (II-18) 

where 

 0 0 0( , )) ( , )) ( ,( )( ( )GW DFT
n n n n n nE E E   q q q q q q   (II-19) 

with 0 0 0( ( (( , )) ( , )) ( , ))GW COH SEX
n n n n n nE E E   q q q q q q  and 0( , )( )DFT

n nE q q  is the DFT 

exchange-correlation energy [28].  
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The optical excitations are then calculated for our extended Hubbard Hamiltonian 
within the Tamm-Dancoff approximation to the Bethe-Salpeter equation, similar to the 
discussion for the ab initio calculations above. Following Rohlfing and Louie [20], the direct 
electron-hole interaction term is   
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and the exchange electron-hole interaction term is 
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From the solutions of the BSE (Eq. (II-2)), optical transition oscillator strength to creating  an 
exciton in state |S> is given by  [32] 

 
2ˆ2 | 0 | | |S
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m S
f

  
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
v e

 (II-22) 

where ê  is the polarization direction of light, v  is electron velocity operator, |0> is the ground 
state of the SWCNT, m is the mass of the electron, and S  is the exciton excitation energy. 
The velocity matrix elements for the ab initio calculation is computed through the following 
relation using the generalized Hellmann-Feynman theorem  [33] 
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where qpH is the quasiparticle Hamiltonian for which ( )v k x and ( )c k x  are the Bloch 

eigenstates with energy of Ek  and cE k . ( )vu k x  and ( )cu k x  are the periodic parts of the Bloch 

eigenstates and x  is position operator.  For the extended Hubbard model, it is as follows 

 * *ˆ ˆ0 | | )( ( ( () ) ) / 2 .S S
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cv
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           k k k
k

v e e k k k k   (II-24) 

This procedure is exactly at the same level of approximation as the ab initio GW-BSE 
calculation for the real SWCNT systems.   

 

(c) Results and discussion 

We tuned the model parameters until we minimize the differences between the model 
and ab initio results of the four SWCNTs considered within the GW-BSE approach for:  i) the 
quasiparticle excitation gap and the 1u and 3u exciton excitation energies of the P=1 subband 
transitions, and ii) the quasiparticle excitation gap and the 1u exciton excitation energy of the 
P=2 subband transitions. The optimized effective interaction parameters for our extended 
Hubbard Hamiltonian are: t = -2.69 eV, t = 3.04 eV, and U = 3.87 eV.  The 20 excitation 

energies of the 4 SWCNTs considered from the extended Hubbard Hamiltonian with the above 
parameters match those from the ab initio GW-BSE calculations to within 0.06 eV  

Figure II-2 shows the imaginary part of the polarizability per tube, ( )E , for the (10,0) 
and (14,0) SWCNTs, from both the ab initio and model calculations with light polarization 
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along the tube axis. In an ab initio calculation using a supercell geometry [13], ( )E  is 
obtained from the calculated dielectric function ( )E  by the relation 

 ( ) Im( ( ( ) 1) / 4 )csE A E   ,  (II-25) 

where csA  is the supercell cross-sectional area perpendicular to the nanotube axis. To compare 
with experiment, the imaginary part of the polarizability of a system consisting of identical 
nanotubes would be the area density of the tubes multiplied by ( )E . The imaginary part of 
the polarizability per tube is related to the optical oscillator strength by  
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 (II-26) 

where m is the mass of the electron, e  is the charge of electron , L is the length of the SWCNT  
and Sf is the optical transition oscillator strength of the excited state | S  .  The oscillator 
strength is defined as [32] 
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 (II-27) 

where ê  is the polarization direction of light, v  is electron velocity operator and |0> is the 
ground state of the SWCNT. We sampled ( )E  at 0.01 eV steps and convoluted the results 
with a 0.025 eV Gaussian broadening.  Note that, although we tuned the effective interaction 
parameters to fit only the exciton excitation energies and the quasiparticle gaps, the resulting 
oscillator strengths match to within 10 % of the ab initio results without further adjustment.  
Within the energy gap of one inter-subband transition, there can be several different exciton 
states. For example, below the onset of the P=1 inter-subband transition, we have the 1u, 2g, 

3u, … singlet exciton states, which are odd, even, and odd with respect to inversion [34] for the 
first three states, respectively; but only the odd symmetry states are optically active for the light 
polarization considered here. As found in previous studies [12], the 1u excitons have the biggest 
oscillator strength and basically dominate the spectrum at the onset of each inter-subband 
transition.  This characteristic originates from the 1-dimensional character of the SWCNTs.  For 
example, for an 1-dimensional hydrogenic system with an attractive 1 | |x  potential, only the 
1s state has nonzero amplitude at the origin [35]; thus, for dipole allowed transitions, only the 
1u exciton is optically active and the oscillator strength is concentrated all in 1u state or the 
lowest energy excited state.   

Figure II-3a shows the family behavior of the optical excitation energies as a function 
of inverse diameter in the so called Kataura plot for SWCNTs from our theory and those from 
experiments [36–38].  In the energy range of 0-2.5 eV, the theoretical and experimental results 
agree with each other to within ~0.1eV, without any adjustable parameters from experiment. 
Figure II-3b compares the calculated oscillator strength per atom with experiments. Among the 
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21 different isolated single-walled carbon nanotubes measured by the Wang group [39], there 
is very good agreement between theory and experiment, especially in view of the difficulty in 
deducing the absolute absorption cross-sections from experiment.  The apparently systematic 
overestimation of theory as compared to experiment may arise from several factors, including 
the simplicity of the model Hamiltonian used, uncertainties in the background subtraction of 
experimental data, and possible doping of the measured semiconducting SWCNTs.  Screening 
from the doped carriers would reduce electron-hole interactions, resulting in a decrease in both 
the exciton binding energy and oscillator strength. 

 From our calculations, the oscillator strength per atom, s af N , of the 1u singlet 

excitons in the semiconducting SWCNTs is found to follow the formula, 

 
(1 (3 )P / )

(P Q)
S

a

f G J cos d

N d





, (II-28) 

where G, J, and Q are structure-independent parameters having the values of G=0.29 nm, 

J=0.047 nm and Q=7.5, and  ( ,3) 2P/3 mod P, 3 /3( 1)mod n m     . The physical origin of the form of 
the analytical formula above may be understood as follows.  The exciton states can be viewed 
to a good approximation, in occupation number representation, as †| | 0S

cv c v
cv

S A c c  k k k
k

 

where S
cvA k  is the electron-hole pair amplitudes that are obtained by solving the Bethe-Salpeter 

equation of the two-particle Green’s function [4,20]. From the ab initio calculations [12], an 
exciton in the energy gap of a particular P inter-subband transition is shown to be composed of 
basically free electron-hole pair configurations concentrated near the subband edges at  0k  (as 

marked by the blue circles in Figure II-1b) since the exciton extent is large compared to the 
inter-atomic distance.  Thus the exciton velocity matrix element square per carbon atom, 

2ˆ| 0 | | | / aS N  v e , can be approximated as 2 2ˆ ˆ2 | | | | | ( 0) | / ac v e F x L N   0 0k v k , where F 

is the exciton envelope function in real space ( ( ) e /S ik
c

x
vk

k

AxF L  with x  is a vector along 

the tube axial direction.). 2| ( 0) |F x   is the probability density to find the excited electron and 
the created hole at the same location, and L is the length of the nanotube. The envelope function 
of the 1-dimensional 1u exciton of semiconducting SWCNTs, ( )F x , has been shown to be well 

approximated by a Gaussian function [16], so that 2 1
| ( 0) |

2 o

F x
r

   where 0r  is the exciton 

radius. From the facts that (i) // 1L N d , (ii) the exciton size scaling relation [40,41] of 

0 1
T

p
r d

 
  

 
 with T, a constant from our model,  (iii) the interband velocity matrix elements 

ˆˆ /P| | (3 )c v Y cos d    0 0k v k e  with Y a constant from our model, and (iv) the exciton 

excitation energy scaling law26 of  
P P

(3 )Z cos
d d

    
 

 with Z a constant, one obtains the 
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above formula (Eq. (II-28)) for the oscillator strength per atoms, to first order in (3 )cos  . 

Figure II-4 shows s af N  from 160 carbon nanotubes, comparing the calculated results with 

the formula given by Eq. (II-28). As predicted, s af N  follows accurately the explicit formula 

with three structure-independent parameters. For tubes that are not isolated, an additional 
environmental polarizability, en , is expected to change Q to (1 4 )enQ  , since it is known 

that en� increase the exciton size to 0 1 (1 4 )en

Q

p
r d 

 
   

 
  [40]. Environmental screening 

effect on the exciton excitation energies is typically very small due to a cancellation of electron 
self-energy correction and exciton binding energy [12,36], but it may be larger on the oscillator 
strengths.  

 

(d) Conclusion 

In summary, we have calculated the excitation energies and optical oscillator strength 
of excitons in semiconducting SWCNTs with the ab initio GW-BSE approach and in an 
extended Hubbard model using three parameters derived from the ab initio GW-BSE 
calculations. Our calculated results explain quantitatively recent experimental measurements.  
Moreover, we have obtained an explicit formula for the oscillator strength, and its family 
behavior, of the dominant excitation (the 1u singlet excitons of each inter-subband transition) 
of semiconducting SWCNTs of arbitrary structure under different environments. This formula 
should be useful in interpreting experiments and in guiding designs of optical and 
optoelectronic devices using carbon nanotubes. 
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Figure II-1. Excitons in a SWCNT. (a) (4, 2) carbon nanotube geometrical structure. hC  is the 

chiral vector which is aligned along the circumferential direction when the sheet is rolled up 
into cylinder. hC , which uniquely defines a carbon nanotube, can be characterized by the chiral 

angle,  , and the length d  where d is diameter of the nanotube. (b) Graphene conduction 
band energy contours marked by light (gray) lines and allowed k -lines of the carbon nanotube 
marked by dark (blue) lines due to quantum confinement along the circumferential direction. 
The subbands on the allowed k -lines can be indexed by a number, P, which gives the distance 
from the Brillouin Zone corner points, K, of graphene. Filled (blue) circles indicate the location 
of band edge of the subbands. (c) Schematic of conduction and valence band joint density of 
states of SWCNT. Van Hove singularities in the joint density of states (JDOS) of each pair of 
subbands is labeled by P. Excitons associated with an inter-subband transition are marked by 
arrows and labeled by its symmetry representation such as 1u, 2g, and 3u. (d) pz orbitals, which 
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are parallel to each other in planar graphene, are slant in nanotubes. in  is the cylindrical surface 

normal unit vector and ( )ij j i R R R  where iR  is the carbon position vector.  
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Figure II-2. Absorption spectra in SWCNTs from ab initio and model calculations. (a) The 
imaginary part of polarizability per tube (with light polarization along the tube axis) of the (10, 
0) and (14, 0) nanotubes from ab initio (blue dashed line) and extended Hubbard model (red 
full line) calculations. Spectra are broadened with a 0.025eV Gaussian broadening. Exciton is 
labeled by their inter-subband P index and symmetry representation. 
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Figure II-3. Excitation energies and oscillator strengths of excitons in SWCNTs from theory 
and experiments (a) Exciton excitation energy family behavior. Dot and cross symbol are data 
from theory and experiments, respectively (see text). Red, green, blue, and black color represent 
data from the inter-subband transition of P=1, 2, 4, and 5. (b) 1u singlet exciton oscillator 
strength from present theory and from experiments. 
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Figure II-4. The family behavior of the oscillator strengths of exciton transitions in SWCNTs. 
1u singlet exciton oscillator strength family behavior. Dot and cross symbols are data from 

theory and the formula of 
(1 (3 )P / )

(P )
S

a

f G J cos d

N Q d

 



with G=0.29 nm, J=0.047nm and Q=7.5 

and  ( ,3) 2P/3 mod P, 3 /3( 1)mod n m     . Red, green, blue, and black color correspond to 1u singlet 
exciton corresponding to inter-subband transitions of P=1, 2, 4, and 5, respectively.  
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2. Electron beam supercollimation in graphene using one-
dimensional disorder potentials 

(a) Introduction 

Graphene, an atomic layer of sp2-bonded carbon atoms, is currently one of the most 
intensively investigated systems in condensed matter physics and materials science  [42–45]. 
Its conical electronic structure near the Dirac points gives rise to massless neutrino-like two-
dimensional (2D) electron states  [46,47]. Due to the chiral nature of these Dirac fermion states, 
electrons in graphene interact with external potential in unusual ways, manifesting various 
interesting characteristics such as absence of backscattering by long-range potentials  [48,49], 
Klein tunneling [50], weak-antilocalization [51–54], electron delocalization by one 
dimensional (1D) disorder [55–57], and supercollimation of electron beams by some specific 
1D external periodic potentials [58]. Here we present another surprising, counter-intuitive 
electron transport phenomenon in graphene, made possible by the carriers’ unique linear 
dispersion relation and chiral nature. We discovered that electron supercollimation can be 
induced by 1D disorder potentials.  An electron wavepacket is guided to propagate virtually 
undistorted along the fluctuating direction of the external 1D disorder potential, independent of 
its initial motion, as long as the disorder is large enough to produce a wedge-like dispersion in 
the bandstructure within which the k -components of the wavepacket is contained. This 
phenomenon was not known in any medium previously. Further, we find for graphene in an 
external periodic potential that nearly satisfies the supercollimation condition predicted in 
Ref.  [58], addition of disorder would greatly enhance collimation. The more is the disorder, 
the better is the supercollimation. This robust novel phenomenon has significant implications 
in the fundamental understanding of transport in graphene, as well as in other materials with 
Dirac cone physics (such as surface states of topological insulators [59] or possibly certain 
photonics crystals [60]), and has the potential to be exploited in the design of devices based on 
these materials. 

 

(b) Theory and Results 

We first discuss the predicted supercollimation in graphene using results from direct 
simulations (Figure II-5) and then derived the phenomenon from perturbation theory.  For the 
low energy carriers in graphene (Figure II-6A) and an external potential ( )V x  that depends only 
on x , we may set up an effective Hamiltonian for the electronic states [47]  

 0 0v v ( )x x y yH p p V x I    .  (II-29) 

Here 0v  is the Fermi velocity of electron in pristine graphene, i  is the i-component Pauli 

matrix, ip  is the i-direction momentum operator, and I  is the identity matrix in the space 

describing the A, B sublattice components of the electron wavefunction. We may neglect 
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intervalley scattering for ( )V x  that is smooth on the inter-atomic scales. We carried out direct 
numerical simulations on the Hamiltonian in Eq. (II-29) using a spatially-correlated Gaussian 
disorder potential for ( )V x . Such a disorder potential is characterized by a two-point correlation 

function having 1 22
1 2

| |/( ( e) ) cx x lV x V x    where   is the magnitude of the disorder fluctuation 

and cl  is the disorder correlation length. The overline represents ensemble-averaged value. We 

generated the spatially correlated Gaussian disorder in the simulation by using a Cholesky 
decomposition of the two-point correlation matrix [61].  First, we generated a vector, ( )i iV V x
, consisting of spatially-uncorrelated Gaussian-random variables having zero mean and a 

variance of 1. iV  can be characterized by TVV I
 

, where the tilde represents a matrix or vector 

and I


 represents an identity matrix. A random vector W


 with a desired spatial correlation, 
TW CW 

  
 where |2 |/e i j cx l

ij

xC   , can be obtained using by a Cholesky decomposition of 
TC LL

 
 that is symmetric and positive definite by definition. If we construct a random vector 

W LV
 

using the above generated V


 and L


 then  

 T T T T T TWW LVV L LVV L LL C   
           

  (II-30) 

Hence, the random vector W LV
 

 would have the desired two point correlation matrix of C


.  
Figure II-5A shows one realization of )(V x  in unit of  . The potential is spatially correlated 

so that on average it is nearly the same value within a length scale of cl . 

Figure II-5 B-D demonstrate supercollimation in a Gaussian wavepacket propagation 
simulation. Using 60 different realizations of the disorder potential ( )V x  with 04 vcl    ,we 

numerically calculated the electron density ( , )t r  using an initial Gaussian packet with initial 

center of mass wavevector 0 / 5 ck l  and a half width of 02r  with 0 5 cr l . Figure II-5C and 

Figure II-5D show the evolution of the electron density ( , )t r  from the initial electron density 
shown in Figure II-5B. In the absence of a disorder potential, the Gaussian wavepacket 
propagates along the initial center of mass wavevector direction marked by the white arrow and 
spreads sideway. Its spread angle at which the electron density is half the maximum is 48.6 . 
With the 1D disorder potential ( )V x , the electron package propagates nearly un-spread along 
the potential fluctuation direction, which is x , regardless of the initial velocity direction. The 
spread angles are 0.5and 0.7at an incident angle (measured from the x-axis) of 0  and 45
, respectively. A very tiny fraction of the electron density forms a supercollimated trail (barely 
visible in Figure II-5D), which increases with increasing incident angle.  

 We present now an analytic derivation of the phenomenon. We separate the Hamiltonian 
in Eq. (II-29) into two terms, 0 1H H H  , with 0 0v ( )x xpH V x I   and 1 0v y yH p . If 

0H  dominates over 1H  (to be defined more precisely below) as in the case of an extended low-

energy wavepacket in real space in a disorder ( )V x , we may regard 1 0v y yH p  as a 

perturbation. 
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We first show that the electron dynamics in 2D governed by 0 0v ( )x xpH V x I   

alone yields supercollimation along the x  direction. The term 0v x xp  has two eigenstates (

1s   ) as shown in Figure II-6B. By a unitary transformation of 
1 11

12 1
U

 
   

, 

†
0v x xU p U  is diagonal with eigenvalues 0v xs k  with 1s   , and eigenvectors 

1

0

i

A

e   
 
 

k r

 

and 
01
ieA 

 
 
 

k r , respectively, where A  is the area of the sample and the prime notation here 

indicates a matrix or vector in the unitary-transformed or pseudo-spin basis. These are chiral 
states moving forward ( 1s  ) or backward ( 1s   ) with a speed of 0v  and a pseudo spin 

aligned along the propagation direction.  
We derived the exact retarded Green’s function 0 ( , ', )G t r r of 0H   using a perturbation 

expansion. First, the retarded Green’s function of the first or kinetic term in 0H   is 
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The retarded Green’s function of 0H   to infinite order in ( )V x  is,  
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 (II-32) 

Since ( )V x  at different positions commute with each other [62],  
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with  
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' 1 1

1
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v
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x
x x dxV x

i


 
  

 
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  (II-34) 

which satisfies 1 000 ( , ', ) ( ) ( , ', ) ') )( ( Iti G t H G t t      r r r r r r r . Eq. (II-33) is consistent with 

the transfer matrix in Ref.  [63]. The Green’s function determines the time evolution of the 
electron wavefunction and density through  

 0( , ) ' ( , ', ) ( ),t d i G t ,t = 0    r r r r r'   (II-35) 

and 

 †(( , ) [ ) )], ( ,t tr tt   r r r ,  (II-36) 

where the trace is defined with respect to the 2 2  pseudo-spin subspace. (We recall that 
)( , t  r  is a 2-component spinor function and the total density ( , )t r  is a sum over densities 

from the two components.) As seen from the diagonal-matrix form of 0 ( , , )G t r r'  in Eq. (II-33) 

scattering between two states with different chirality (or group velocity) is not allowed for any 
arbitrary external potential ( )V x , if we neglect 1H . Consequently, for the Hamiltonian 0H  , the 

amplitude of any initial wavefunction ( , 0)t  r  with pseudo-spin s  moves at a velocity of 

0vs , maintaining its initial shape, although the phase of the wave function is changed by the 

interaction with the potential ( )V x I . The electron density of a wavepacket with a pseudo-spin 

s  thus also propagates with a velocity of 0vs  along the x  direction, maintaining its original 

shape at 0t  , again, if 1H   is neglected. To illustrate this point, if we take an initial Gaussian 

wave packet with initial center of mass wavevetor 0k  and a half width of 02r , 
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then, as a function of time, the electron density is given by (from Eqs.(II-35) and (II-36)) 
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The disorder potential ( )V x  generates a random phase accumulation for the electron 

which may be thought of as an effective elastic mean free path sl  or elastic collision time  for 

electrons governed by 0H  . The quantity sl  may be extracted from 0G . In the expression for 0G  
given by Eq. (II-33), the quantity ( , ')x x  incorporate all the effects of ( )V x . For a random 
potential, translation symmetry is restored by ensemble average [64], so that 

( , ') ( ')x x x x   . The form of   in Eq. (II-34) dictates that ( ')x x   has its maximum at 
'x x , and decreases as | ' |x x  increases since the phase of ( , ')x x  fluctuates from one 

member to another in an ensemble. If we assume that ( , ')x x  decays with a full-width-half-

maximum of sl , then 0 ( ', )G t r r  decays with the same mean-distance sl .The effective elastic 

collision time   is obtained by considering 0G  in Fourier space. A Fourier transform of Eq. 

(II-33) yields  
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with 
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1
) ( ) p .( ex

2 v v
dx x i x

E
A E 
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 

  
 

 
  (II-40) 

The function 0 0v( )xE sA k    here plays the role of the spectral function 0 ,( ),sA k . Due to the 

decay of ( )x , 0 ,( ),sA k  is maximum at 0v xs k   and has a finite width, owing to the 

effective finite elastic collision time, which is independent of the momentum k . From the full-
width-half-maximum of 0 ,( ),sA k , we can deduce  . For example, for a spatially correlated 

Gaussian disorder, one obtains: 
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Let us now consider the effects of 1 0v y yH p  and show that electron supercollimation 

still persists over a large distance 0L . We show this by examining the time evolution of the 

electron density ( , )t r  by the full Hamiltonian †H U HU   from a series expansion of the 

wavefunction up through third order in †
1 1 0 y yH U H U v p     . Suppose that we expand 

,( )t r  and ( , )t  r  to third order in 1H  :  
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and 
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( )
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( , ) ( , )i

i

t t 

r r ,  (II-43) 

where ( ) ( , )i t  r  and ( )i  are the ith order terms in 1H  . Substituting these expansions to Eq. 

(II-36) and arranging them according to powers in 1H  ,  

 (0)(0) (0) (( , ) , ) ( , )t tt tr    r r r† , (II-44) 

  (1) (1) (0)( , ) ( , )( , ) 2 Re trt t t     r r r† ,  (II-45) 

 (2) (2) (2)
02 11( , ) ( , ) ( , )t t t   r r r   (II-46) 

with 

  (2) (0) (2)
02 2 ( ,( , ) R ( ,e ) )t tt tr    r r r†  (II-47) 

and 

 (2) (1) (1)
11 (( , , () ) , )t tt tr    r r r† ,  (II-48) 

and 

  (3) (3) (0) (2) (1)( ,( , ) 2 ) ( , ) ( , ) ( , )Re tr t tt tr t t           r r r r r† † .  (II-49) 
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As explained before, the zeroth order term (0) ( , )t r  always shows supercollimation with the 

initial charge density. The first order term (1) ( , )t r  and the third order term (3) ( , )t r  is zero 

since the even order terms such as (0) ( , )t r  and (2) ( , )t r  are orthogonal to the odd order terms 

such as (1) ( , )t r  and (3) ( , )t r  in pseudo-spin space. Among the two second order terms, the 
(2)
02 ( , )t r  term doesn’t disrupt supercollimation because the amplitude of (0) ( , )t r  is 

(0) ( , t) r  , which constrains (2)
02 ( , )t r  to have the same extent and motion as (0) ( , )t r  in 

coordinate space. Only (2)
11 ( , )t r  may show electron dynamics deviating from electron beam 

supercollimation. With an initial wave packet of 0 0(
1

0
)exp( )i

 
 

 
r k r  where 0k  is the initial 

center of mass wavevector, (2)
11 ( , )t r  is 
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with 

 2
1 2 1 2 2 0 1 0( , ) ( (( ) / 2 ( ) / 2, ) v , v )x xx x x x t x tx       .  (II-51) 

To obtain (2)
11 ( , )r t  on average, we estimated 1 2( , )x x . If 0 0|| v st r lx   , the two factors in 

Eq. (II-51) are not correlated so that  
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If we assume that ( , ')x x  decays with a full-width-half-maximum of sl  and sl  is inversely 

proportional to the disorder fluctuation as is the case of spatially-correlated Gaussian disorder, 
then 
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And 
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Eq. (II-54) can be simplified for 0 sr l . In that case, 
2

1 2,( )x x may be approximated by  

1 2( )sl x x   since 0 ( ) r  is a smooth function. Then  
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This corresponds a strip of density of width determined by the initial wavepacket but extended 
from 0v t  to 0-v t  in the x  direction. For example, for an initial Gaussian wave packet given by 

Eq. (II-37), 
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Also, we shall assume that Eq. (II-56) approximates (2)
11 ( , )t r   even if 0 0|| v st r lx    and 

0 sr l . This is justified by the numerical wavepacket simulation with spatially-correlated 

Gaussian disorder potential. If we compare (2)
11 ( , )d t r r  with (0) ( , )d t r r , 

(2) (0)
11 ( , ) ( , )d dt t  r r r r  for 2

0 0
2
0(2 1/ (2 v 1))y sk r l t  , giving rise to supercollimation with 

little diminishment of the intensity of the original Gaussian profile over a distance of roughly 

 2
0

2
0 0 01 )/ 2 / (2ys sv t k lL l r   . For example, for a disorder potential that gives a broadening 

of 0.2 eV in the spectral function, a wavepacket with 0 40 250 ccr nm a   and a center of mass 

wavevector such that 0 0 0.01yk eVv   will undergo supercollimation for nearly a micrometer. 

We propose a possible experiment to demonstrate the predicted electron 
supercollimation phenomenon by measuring the conductance  in a geometry shown in Figure 
II-7A. In this set up, graphene is in contact with two electrodes that are separated at a distance 

 along the  direction. This direction is at an angle  with respect to the 1D potential 

fluctuation direction . The conductance  between the two electrodes is, according to the 
Kubo formula [65,66],  

 , (II-57) 

with conductivity 

   (II-58) 
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where  [67]. The quantity  is defined as  with  and  

being the retarded and advanced Green’s functions, respectively. Suppose that we expand R AG   

and conductance G  to first order in 1H    

 (0) (1)) ( ) ,(( , , )G G GL L L       (II-59) 

 ,(0) , (1)( , ) ( , ) ( , )R A R A R AG t G t G t    r r r   (II-60) 

where conductance ( )iG  and R A, ( )iG    represent the ith order term in 1H  . Substituting these 

expansions to Eq. (II-57) and arranging them according to powers in 1H  , we have 
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and  
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  (II-62) 

The zeroth order term in momentum space is, if we assume that 1 2(| )|x x   decays 

exponentially,   
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e
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with periodic boundary condition along the   direction. The first order term (1) ( , ) 0LG    due 
to cancellation of the two terms in Eq. (II-62). This is dramatically distinct from that of a gated 
prinstine graphene in the ballistic regime, in which case the conductance  is constant 

regardless of the orientation angle . 
The ensemble-average dispersion relation of the electrons is strongly and 

anisotropically renormalized in the presence of the random potential  for , 

forming a wedge-like structure for the energy surface ( )E k . The contribution of the perturbing 

Hamiltonian, †
1 1 0v y yH U H U p     , to the electronic states can be evaluated by using a 

perturbation expansion of the retarded Greens function to first order in 1H  ,  
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where 1 1)( yH k H  k k . For a random potential ( )V x , an ensemble average of Eq. (II-64) 

should be performed. The magnitude of the off-diagonal components of 0 1( ) ( )x yG k H k  in 

pseudo-spin indices may be viewed as a measure of the perturbation strength on average since 

0G  is a diagonal matrix with respect to pseudo-spin indices as well as with respect to 

wavevectors (since translation symmetry of pristine graphene is restored by ensemble 
average [64]) and the diagonal components of 1 )( yH k  in the pseudo-spin indices are zero. The 

maximum value of 0| ( , ) |xG k   is ~ / I   if we assume that the spectral function of an 

electronic state with xk  and s  follows a Lorentzian distribution centered at 0v xs k   with a 

full width at half maximum of ~ 2 / . Since 1 0( ) vy y yH k k    , the first and higher order 

contribution from 1H    can be neglected if 0| v | | | 1y y sk k l   , resulting in a flat dispersion given 

by 0H  .  
We demonstrate this effect by calculating the ensemble-average spectral function. Using 

60 different realizations of the disorder with , we numerically calculated 

. Figure II-8 shows the 60-ensemble-average spectral function, 

 where the trace is with respect to the  pseudo-spin subspace. 

Along the  line, shown in Figure II-8A, the dispersion relation is linear and it follows 

the  lines, which is the dispersion relation of pristine graphene. However, along the 

 line, shown in Figure II-8B, the bandstructure is strongly renormalized near the 

Dirac point and becomes flat. The anisotropic renormalization of the band structure can be 
demonstrated more clearly by a contour plot of  on the -  plane with , 

as shown in Figure II-8C. On this constant energy plane, constant amplitude lines of  

are oval-shaped and stretched along the  direction. For spatially-correlated Gaussian 

disorder potentials, we can evaluate explicitly the spectral function of  from the Fourier 

transform of Eq. (II-41). For this particular kind of disorder, the lineshape of the spectral 
function at different  with is identical and . As shown in Figure II-8 D, 

the line shape from Eqs. (II-40) and (II-41) matches well with numerically simulated line shape 
from  at various  with . However, as  increases (at ), the numerically 

calculated spectral function deviates from the lineshape from  owing to the effect of .  

Electron beam supercollimation has been predicted theoretically in certain special 
graphene superlattices (SGS): a graphene sheet modulated by 1D periodic potential satisfying 
specific conditions [58]. In the experimental realization of SGS (e.g., using substrate [68], 
controlled adatom deposition [69], ripples [70] under perpendicular electric field [71,72], or 
gating [73]), it is unavoidable to have some disorders in the external potential, which previously 
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thought might impede the supercollimation effect. However, we found that 1D disorder along 
the periodic potential modulation direction in fact enhances supercollimation for an external 
periodic potential which nearly satisfies the supercollimation condition. We demonstrate this 

effect by evaluating (2)
11 ( , )t r  since the other terms to ( , )t r  up through third order always 

show supercollimation as discussed above. For a system under disorder potential in addition to 
the periodic potential, if 0 0|| v st r lx   ,  
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Here 1 2( , )P x x   is 1 2( , )x x  of the periodic potential and 1 2( , )D x x  is 1 2( , )x x  of the 

disorder potential. If we assume that ( , ')x x  decays with a full-width-half-maximum of sl  and 

sl  is inversely proportional to the disorder fluctuation as is in the case of spatially-correlated 

Gaussian disorder, then 
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And we have  
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For 0 sr l , 
2

1 2,( )D x x may be approximated by 1 2( )sl x x   since 0 ( ) r  is a smooth function. 

Then,  
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Here, we assume that Eq. (II-68) approximate (2)
11 ( , )t r   even if 0 0|| v st r lx    and 0 sr l . 

This is justified by the numerical wavepacket simulation with center-width-height disorder 

potential. Eq. (II-68) is the same form as Eq. (II-55), indicating that (2)
11 ( , )r t  decreases as 

0/sl r  decreases as shown in Eq. (II-56).   

We demonstrate this effect numerically using a width-height-center disorder to a 
particular type of periodic potential with a height of  and a period of  shown in Figure II-9A. 

For each potential unit, we can disorder its center, width, and potential height by using mutually 
independent Gaussian random variables with a standard deviation of   centered at the 

0U l

D
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original value. We calculated wavepacket propagation in graphene under this disordered 
periodic potential from 60 ensemble average with  (which is half of the potential 

magnitude needed for supercollimation in SGS) and an  that is a 100 % of the original 

variables (potential height, center and width). The initial wave packet is given by Eq. (II-37)
with   and . Figure II-9C and Figure II-9D show the electron density 

distributions at two different incident angles  of  and  from the x axis. Without 
disorder, the electrons propagate nearly along the incident center of mass wavevector direction. 
Although the electron beam is slightly collimated along the  direction (owing to the 
superlattice potential) compared to pristine graphene shown in Figure II-5, it still spreads along 
the y direction. If we add the above disorder to this periodic potential, the Gaussian wave packet 
maintains its Gaussian shape and propagates along the direction of the external potential 
modulation regardless of the incident angle.  

Here, we discuss an additional condition for observing supercollimation using an external 
disorder potential: the upper bound for disorder correlation length cl .  Firstly, cl  should be 

shorter than the phase coherence length L of the system. Phase coherence length is the length 

scale beyond which there is no interference effect or no phase coherence [66]. It is originated 
from the incoherent and irreversible processes due to coupling of an electron to the environment 
such as interaction with phonons, other electrons, and impurities with internal degrees of 
freedom. For the case of prinstine graphene, it is ~ 0.5 m  [74]. We may expect that for a 

sample with cl L , an electron would see a more or less constant potential before losing its 

phase-coherence. In this case, the broadening in the spectral function is originated from the 
distribution of the constant potential heights, not from the random phase accumulation in each 
member of the ensemble. In contrast, if cl L , the electron sees the potential variation before 

losing phase coherence and the external potential plays a role of a disorder potential. Then, 
broadening in the spectral function is originated from the random phase accumulation of the 
electron. Secondly, there is another consideration on the upper limit in cl  set by the reflection 

of a charge carrier from a slowly-varying potential.  It is known that if an electronic state in 
graphene with wavevector 0k  encounters a slowly-varying p-n junction such that the external 

potential changes by 0 0v k  over a distance dc, the propagating state will be partially reflected 

from the junction if 0 1ck d   [63].  We have considered a potential with characteristic variation 

in strength by   over a distance of ~ cl ; hence, in our case, the distance dc for partial reflection 

corresponds roughly to 0 0~c c

v k
d l




 and the condition that such reflection does not occur is 

0 0
0 1c

v k
k l
    


. Or, if we define 2

0 0/ ( )PNL v k   , the second condition on cl  reduces to 

c PNl L . Combining these two effects, the upper bound on cl  for observing supercollimation 

discussed in our paper is roughly given by the shorter of the two lengths, L  and PNL . 
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(c) Conclusion 

In summary, through perturbation theory analysis and numerical simulations, we have 
discovered a highly counter-intuitive phenomenon of electron supercollimation via 1D disorder 
potential in graphene. To our knowledge, this phenomenon is not seen in any other systems.   
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Figure II-5  (A) A realization of spatially-correlated Gaussian disorder potential  with a 

magnitude  and correlation length . (B) Initial wavepacket with electron density in a 

Gaussian shape in coordinate space with initial center of mass wavevector  and a 

half-width . (C)-(D) Electron density distribution in coordinate space at time 

 in prinstine graphene (left panel) and in disordered graphene (right panel) with 

initial center of mass wavevector direction (white arrow) pointing with respect to the x axis at 
(C) and (D). 
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Figure II-6. (A) Low-energy electronic bandstructure of graphene near a Dirac point. (B) 
Electronic bandstructure of an initial 2D model Hamiltonian, , where  is the 

Fermi velocity,  is the -component Pauli matrix and  is the x-direction momentum 

operator. This model Hamiltonian generates two chiral eigenstates which correspond to 
forward-moving ( ) and backward-moving ( ) states with a speed of and a pseudo-

spin parallel to .  
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Figure II-7 (A) Schematic diagram of experimental setup for proposed conductance 
measurement. Two electrodes are in contact with graphene under 1D disorder potential 
fluctuating along the  direction. The electrodes are separated by a distance  along the  

direction. (B) Calculated conductance  (in a unit of  where  is the number 

of subbands due to the confinement along the  direction at energy ) as a function of the 

angle  in a gated prinstine graphene in the ballistic regime (red line) and in graphene with 1D 
disorder potential ( ) shown in (A) (blue line). 
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Figure II-8 (A)-(C) Numerically evaluated spectral function, , for  

 along the  line (A), along the  line (B), and on the  plane 

with (C).  (D)-(E) The lineshapes of the spectral function of  (red 

lines) and of  (blue lines) with  at various  with  (D), and at 

various  with  (E) . 
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Figure II-9 (A) A realization of a periodic potential with 1D disorder. The full and dashed lines 
represent disordered and ideal periodic external potential, respectfully. (B) Initial wavepacket 
with electron density in a Gaussian shape in coordinate space with initial center of mass 
wavevector of  and . (C)-(D) Electron density distribution in coordinate space 

at  in graphene under periodic potential with  (left panel) and in 

graphene under the same periodic potential but with disordered height, center and width of 
 (right panel) with initial center of mass wavevector direction (white arrow) 

pointing with respect to the  axis at (C) and (D).   
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 Interfaces 

1. Localization of metal-induced gap states at the metal-insulator 
interface. 

(a) Introduction 

Well below 1 K, low-transition temperature Superconducting Quantum Interference 
Devices  [75] (SQUIDs) exhibit magnetic flux noise  [76] with a temperature-independent 
spectral density scaling as 1/fα, where f	is frequency and 0.6	≤	α	≤	1. The noise magnitude, a 
few µΦ0Hz 1/2	at 1 Hz (Φ0	is the flux quantum), scales slowly with the SQUID area, and does 
not depend significantly on the nature of the thin film superconductor or the substrate on which 
it is deposited. The substrate is typically silicon or sapphire, which are insulators at low 
temperature (T)  [76]. Flux noise of similar magnitude is observed in flux  [77,78] and 
phase  [79] qubits. Flux noise limits the decoherence time of superconducting, flux sensitive 
qubits making scale-up for quantum computing problematic. The near-insensitivity of noise 
magnitude to device area [76,79,80] suggests the origin of the noise is local. Koch et	al.		[81] 
proposed a model in which electrons hop stochastically between traps with different preferential 
spin orientations. A broad distribution of time constants is necessary to produce a 1/f	power 
spectrum [82,83]. They found that the major noise contribution arises from electrons above and 
below the superconducting loop of the SQUID or qubit  [79,81], and that an areal density of 
about 5×1017m−2	unpaired spins is required to account for the observed noise magnitude. De 
Sousa  [84] proposed that the noise arises from spin flips of paramagnetic dangling bonds at the 
Si-SiO2	interface. Assuming an array of localized electrons, Faoro and Ioffe  [85] suggested that 
the noise results from electron spin diffusion. Sendelbach et	al.	 	[86] showed that thin film 
SQUIDs are paramagnetic, with a Curie (1/T) susceptibility. Assuming the paramagnetic 
moments arise from localized electrons, they deduced an areal density of 5 ×	 1017m−2. 
Subsequently, Bluhm et	al.	 	[87] used a scanning SQUID microscope to measure the low-T	
paramagnetic response of (nonsuperconducting) Au rings deposited on Si substrates, and 
reported an areal density of 4 ×	 1017m−2	 for localized electrons. Paramagnetism was not 
observed on the bare Si substrate. 

In this section, we propose that the local magnetic moments originate in metal-induced 
gap states (MIGS)  [88] localized by potential disorder at the metal-insulator interface. At an 
ideal interface, MIGS are states in the band gap that are evanescent in the insulator and extended 
in the metal  [88] (Figure III-1). In reality, at a nonepitaxial metal-insulator interface there are 
inevitably random fluctuations in the electronic potential. The MIGS are particularly sensitive 
to these potential fluctuations, and a significant fraction of them–with single occupancy– 
becomes strongly localized near the interface, producing the observed paramagnetic spins. 
Fluctuations  [89] of these local moments yield T-independent 1/f	flux noise. 
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(b) Theory and computation 

To illustrate the effects of potential fluctuations on the MIGS we start with a tight-
binding model for the metal-insulator interface, consisting of the (100) face of a simple-cubic 
metal epitaxially joined to the (100) face of an insulator in a CsCl structure (Figure III-2a). For 
the metal we assume a single s-orbital per unit cell and nearest neighbor (NN) hopping. For the 
insulator we place an s-orbital on each of the two basis sites of the CsCl structure and assume 
both NN and next-nearest neighbor (NNN) hopping. The parameters are chosen so that the 
metal s-orbitals are at zero energy and connected by a NN hopping energy of -0.83 eV. The 
onsite energy of the orbitals on the Cs and Cl sites is taken to be -4 eV and 2 eV, respectively, 
and both the NN and NNN hopping energies are set to -0.5 eV. These parameters yield a band 
width of 10 eV for the metal, and 8 and 4 eV band widths, respectively, for the valence and 
conduction bands of the insulator with a band gap of 2 eV (Figure III-2d). These band structure 
values are typical for conventional metals and for semiconductors and insulators. For the 
interface we take the hopping energy between the metallic and insulating atoms closest to the 
interface to be -0.67 eV, the arithmetic mean of -0.83 and -0.5 eV. 

The electronic structure of the ideal metal-insulator junction is calculated using a 
supercell  [90] containing 20 ×	20 ×	20 metal unit cells and 20 ×	20 ×	20 insulator unit cells, a 
total of 24,000 atoms. The total density of states (DOS) of the supercell (Figure III-2e) shows a 
nearly flat DOS in the band gap region. The states in the insulator band gap are MIGS that are 
extended in the metal, decaying rapidly away from the interface into the insulator. Our model 
with a lattice constant of 0.15 nm yields an areal density of states for the MIGS of about 
3×1018eV−1	m−2, consistent with earlier self-consistent pseudopotential calculations  [91]. 

To mimic the effects of interfacial randomness, we allow the onsite energy to fluctuate 
for both metal and insulator atoms near the interface  [92]. Specifically we assume an energy 
distribution P(E) =(1/√2πδ)exp[−(E	−	E0)2/2δ2], where E0	is the original onsite energy without 
disorder, and δ	 is the standard deviation. We characterize the degree of disorder by the 
dimensionless ratio R	= 2δ/W, where W	is the bandwidth of the metal. For those MIGS that 
become localized, the energy cost, Ui, for double occupation is large, and we cannot use a 
noninteracting electron approach. Instead we adopt a strategy similar to that used by Anderson 
in his calculation of local moment formation  [5]. We separate the space near the interface into 
3 regions: (i) the perfect metal region (M), (ii) an interfacial region consisting of 2 layers of 
metal unit cells and 2 layers of insulator unit cells (D) (Figure III-2b), and (iii) the perfect 
insulator region (I). Region (ii) is analogous to the impurity in Anderson’s analysis. 

We first compute the single-particle eigenstates, ϕi(r), of region D in	isolation. For each 
of these states, we calculate the Hubbard energy Ui	for double occupation for states in the 
isolated D region by evaluating the integral 
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over the supercell. Within our tight-binding supercell scheme, two additional factors need to 
be included. (i) The part of the Coulomb integral on the same atomic site is replaced with the 
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value of an onsite Hubbard U0 = 10 eV.  (ii) When the localization length (ξ) of the localized 
states is larger than the supercell size, there is overlap of wavefunctions from the neighboring 
supercell; this overestimates Ui	for the very weakly localized states. Given that the 
participation number, Pi	= 1/Pj	|ϕi(rj)|4	∼	(ξi/a)d	in a disordered d-dimensional system with 
supercell lattice constant a	and Ui	∝	1/ξi, we map the Ui	value of the finite supercell onto that 
of an infinite supercell using a scaling law [93] for ξ. The hybridization-energy broadening of 
the localized states arises from couplings to the extended states in the metal as well as those in 
the insulator, and is given by 

 
M I

i i i      (II-70) 

with   
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where ρM(I)(E) is the density of extended states in M (I) at the energy of the localized state E, 
and ViM(I)	is the hopping matrix element between an extended state in M(I) and a localized state 
in D (ave	indicates averaging over the extended states). Extended eigenstates in M(I) are a linear 
combination of constituent orbitals; the ViM(I)	can then be expressed in terms of the coupling of 
these orbitals to those in D. For example, the localized states inside the band gap of the insulator 
are hybridized with only extended states in M, and 2 /M

i i id WV    . (Here di	is the charge 

of the localized state i  in the unit cell layer immediately adjacent to M.)  

With the computed values of Ui	and Γi, we solve Anderson’s equation for the spin-
dependent occupation for spin-dependent occupation for each localized state  
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Here, Ei,σ	= Ei	+ Ui<ni,−σ>	and σ	is the spin index. The net moment associated with the state is 
given by mi	= µB|<ni,σ>	−	<ni,−σ>|. Eq. (II-72) and the associated expression for the net moment 
of the localized states are calculated within the self-consistent Hartree-Fock approximation  [5]. 
An mi	≠ 0	solution is obtained only when Ui/(EF	−Ei) exceeds a critical value which depends on 
Γi/(EF	−Ei). In the large Ui	limit, it is more appropriate to start from the weak coupling limit (Γi	
= 0), where the localized state is populated by a single electron, and treat Γi	as a perturbation. 
By calculating the areal density of such moment-bearing localized states we estimate the density 
of spin-1/2 local moments. 

(c) Results and Discussion 

Figure III-3 shows the calculated distribution ρ(E,U) in the isolated interfacial region 
for R= 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3; for each value, higher values of U	correspond to more 
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localized states. As expected we see that, for any given degree of randomness, the states with 
energy inside the insulator band gap (the MIGS) or those at the band edges are most susceptible 
to localization. Figure III-4 shows a perspective plot of the charge density of two states, with 
high and low values of Ui, showing the correlation between the degree of wavefunction 
localization and the value of Ui. Both states are centered in the insulator, a general characteristic 
of localized states in the band gap originating from the MIGS. 

Setting the Fermi energy at the insulator midgap value, we estimate the areal density of 
spins for a given degree of randomness R. The top panel in Figure III-5 depicts the distribution 
ρ(E,m) of the spin moments as a function of energy. We see that for small R	virtually all the 
local moments are derived from the MIGS. The bottom panel of Figure III-5 shows the 
calculated areal density of local moments versus R. Our simple model thus indicates that 
moderate potential fluctuations (R	∼	0.15) at the interface produce an areal density of localized 
moments comparable to experimental values. If one includes the effect of metallic screening 
from region M on Ui, [94] Ui would decrease by a factor of roughly 2 since the localized state 
in region I is located on average ∼ 3 unit cell layers from region M. We estimate this effect 
reduces the spin density by ∼ 50% at each R value. As a result, R should be increased by at 
most 10% to produce an areal density of ∼ 5 × 1017m−2. 

Although our analysis is for a specific model, we expect the general physical picture to 
remain valid for real materials.  First, the formation of MIGS at a metal-insulator interface is 
universal, and their areal density is rather insensitive to the nature of the materials [91]. We give 
a simple estimate of the areal density of MIGS. In a two-band tight-binding model  [95], the 
amplitude squared of the evanescent solutions [96] close to the valence band edge has an 
energy-dependent decay length 2 1/2  2 2( ) [ /( ) ]VBME m E E     , where m∗	 is the electron 

effective mass and EVBM	is the energy of the valence band maximum. Near the conduction band 
edge ECBM, 2 1/2  2 2( ) [ /( ) ]CBME m E E    . The areal density N	of MIGS in the insulator (in 

units of states per unit area) is given by  [88] 
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where we have assumed the density of states η(E) of the metal to be constant over the energy 
range of the band gap. Inserting the expression for β(E) into Eq.(II-73), we obtain 

 2 1/2[( )( )2 ]/ F VBMN m E E    (II-74) 

For most semiconductors and insulators  [32], me/m∗	≈	1 + C1/Eg	and EF	−	EVBM	= C2Eg	with C1	
≈	10 eV and C2	≈	0.5; furthermore, for most metals η(E) is of the same of order of magnitude. 
Consequently, the approximate expression 
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is relatively insensitive to the nature of both the metal and the insulator. Using the typical values 
η(E) ≈	2 ×	1028m−3eV−1	and C1C2	≈	5eV, we obtain N	≈	8×	1018m−2, in good agreement with 
pseudopotential calculation [91] for Al in contact with Si, GaAs or ZnS. Second, the formation 
of local moments from the combination of localized states and Coulomb interaction is a general 
phenomenon  [5]. We also note that our analysis should not be significantly modified when the 
metal is superconducting. This is because the Ui	for the localized states is generally much greater 
than the pairing gap. Of course, extended states with negligible Ui	would be paired. 

Given our picture of the origin of the localized spin moments, how do they produce 1/f	
flux noise with a spectral density SΦ(f) ∝	1/fα? The local moments interact via mechanisms such 
as direct superexchange and the RKKY interaction  [85,97–99] between themselves, and Kondo 
exchange with the quasiparticles in the superconductor. This system can exhibit a spinglass 
transition  [100], which could account for the observed susceptibility cusp  [86] near 55 mK. 
For T	>	55 mK, however, experiments suggest that the spins are in thermal equilibrium  [101] 
and exhibit a 1/T	(Curie Law) static susceptibility  [86,87]. In this temperature regime, for hf	
<<	kBT	standard linear response theory  [102] shows that the imaginary part of the dynamical 
susceptibility χ′′(f,T) = A(f,T)(hf/kBT). Here, A(f,T) ∝	Pµ	Pα,β	Pαδ(hf	+ Eα	−	Eβ)|<β	 |	Sµ	|	α>|2, 
where Sµ	is the µ-th component of the spin operator, α	and β	label the exact eigenstates, and Pα	
is the Boltzmann distribution associated with state α. Combining the above result with the 
fluctuation-dissipation theorem  [89] which relates the flux noise to χ′′(f,T), namely SΦ(f,T) ∝	
(kBT/hf)χ′′(f,T), we conclude that the observed 1/fα	spectral density implies A(f,T) ∝	1/fα(0.6 ≤	
α	≤	1). Assuming low frequency contributions dominate the Kramers-Kronig transform, this 
result is consistent with the observed 1/T	static susceptibility, and the recent measurement  [103] 
showing that flux noise in a SQUID is highly correlated with fluctuations in its inductance, 
However, without knowing the form of the interaction between the spins, one cannot derive this 
behavior for A(f,T) theoretically. 

(d) Conclusion 

In conclusion, we have presented a theory for the origin of the localized magnetic 
moments which have been shown experimentally to give rise to the ubiquitous low-T	flux 1/f	
noise observed in SQUIDs and superconducting qubits. In particular we have shown that for a 
generic	metal-insulator interface, disorder localizes a substantial fraction of the metal-induced 
gap states (MIGS), causing them to bear local moments. Although MIGS have been known to 
exist at metal-insulator interfaces for three decades, we believe this is the first understanding of 
their nature in the presence of strong local correlation and disorder. Provided T	is above any 
possible spin glass transition, experiments show that fluctuations of these local moments 
produce a paramagnetic χ′	and a power-law, f‐dependent χ′′	which in turn leads to flux 1/f	noise. 
It is important to realize that localized MIGS occur not only at the metal-substrate interface but 
also at the interface between the metal and the oxide that inevitably forms on the surface of 
superconducting films such as aluminum and niobium. There are a number of open problems, 
for example, the precise interaction between the local moments, its relation to the value of α, 
and the possibility of a spin glass phase at low temperature. A particularly intriguing 
experimental issue to address is why different metals and substrates evidently have such similar 
values of R, around 0.15. Experimentally, to improve the performance of SQUIDs and 
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superconducting qubits we need to understand how to control and reduce the disorder at metal-
insulator interfaces, for example, by growing the superconductor epitaxially on its substrate. 
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Figure III-1. (a) Schematic density of states. (b) MIGS at a perfect interface with energy in the 
band gap are extended in the metal and evanescent in the insulator. 
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Figure III-2. (a) The metal (M) has a simple-cubic structure with one atom per unit cell and the 
insulator (I) a CsCl structure with two atoms per unit cell. (b) Interfacial region (D) consists of 
2 layers of metal unit cells and 2 layers of insulator unit cells. The lattice constant is 0.15 nm. 
Computed DOS with Fermi energy (dotted red line) set to zero. (c) Typical metal with 10 eV 
bandwidth. (d) Typical insulator with a 2 eV band gap separating two bands of about 8 and 4 
eV. (e) Metal-insulator interface with MIGS in the band gap of the insulator due to the presence 
of the metal. 
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Figure III-3. Density of states distribution ρ(E,U) as a function of energy E and Hubbard energy 
U for 6 values of the randomness parameter R in the isolated D region of Figure III-2. For a 
given value of R, the highest values of U, resulting in the most highly localized states, appear 
in the band gap of the insulator and at the band edges. The position of the insulator band gap is 
represented by black dashed lines 
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Figure III-4. Perspective view images of the two-dimensional probability density distribution 
at the interfacial region (D) along directions parallel to the interface (x and y directions), 
integrated along the z direction. (a) States with 3.25iU eV  and 0.24iE eV   and (b) with 

0.35iU eV  and 0.23iE eV    
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Figure III-5. (a) Electron density distribution ρ(E,m) for 6 values of R. We simulated 5000 
different configurations of disorder for each value of R. The position of the insulator band gap 
is represented by black dashed lines. Virtually all the magnetic moments are from the MIGS in 
the band gap of the insulator. (b) Integrated spin density versus randomness parameter R. For 
R = 0.05, we estimate the spin density to be less than 0.01 × 1017m−2. 
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2. Dielectric screening effects on local magnetic moment density at 

nonmagnetic metal-insulator interfaces 

(a) Introduction 

Local magnetic moments play an important role in many phenomena and devices. The 
presence of local magnetic moments is typically attributed to magnetic atoms such as those with 
partially-filled d or f shells. Strong local electron correlation in the partially-filled atomic d or 
f orbitals makes materials  [5,104] with these atoms magnetic. There is however another origin 
of local magnetic moments: defects.  One intriguing example is the moments at nonmagnetic 
metal-insulator interfaces [81,105]. Sendelbach et al. [86] showed that Nb/Al oxide/Nb 
SQUIDs are paramagnetic, with a Curie (1/T) susceptibility. Assuming the paramagnetic 
moments arise from localized electrons, they deduced an areal density of 5×1017 m-2.  
Subsequently, Bluhm et al. [87] used a scanning SQUID microscope to measure the low 
temperature paramagnetic response of (nonsuperconducting) Au rings deposited on Si 
substrates and reported an areal density of 4×1017m-2. Paramagnetic moments were not 
observed on the bare Si substrate. Later experiments on different systems have also observed 
values of ~5×1017  m-2 for the moments.  

The universality of localized moment density of ~5×1017 m-2 regardless of measurement 
and materials lead to the conclusion that the magnetic moments do not originate from impurities 
composed of the magnetic atoms. In our previous work [105], we argued that interfacial 
potential disorder localizes the metal-induced-gap states (MIGS) [88] at the interface, and 
strong electron-electron correlation effects at these localized MIGS lead to the formation of the 
local magnetic moments. The previous study gives the correct order of magnitude for the 
moment density but shows a dependence of the magnetic moment areal density on the 
magnitude of disorder; the aim of the present work is to address this issue. 

(b)Theory and Computation 

We work within in the same physical picture as in Ref.  [105], i.e., localized MIGS give 
rise to the magnetic moments; but we evaluate the magnetic moment areal density using a more 
advanced method including dielectric screening effect, which was missing in our previous study. 
Since the volume near the metal-insulator junction consists of many electrons, these electrons 
polarize to screen any charge interactions. In particular, dielectric screening will decrease the 
Coulomb repulsion associated with doubly occupying localized MIGS at the interface. 
Therefore, it has a potential to weaken the dependence of the magnetic moment areal density 
on the disorder magnitude.  Using a model Hamiltonian based on the tight-binding formalism 
and incorporating electron-electron interaction and disorder potential explicitly, we evaluated 
the magnetic moment areal density numerically. 

We employed the following model Hamiltonian for the generic metal-insulator interface 
shown in Figure III-6(a):  
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 IFM I M IF IF IH H HH H H      . (II-76) 

The bulk metal Hamiltonian ( MH ) is modeled as a simple cubic lattice with one s orbital basis 

at half-filling. In occupation number representation,  

 †

,

M
M

MH n cE t c  
R R'

R R R R'
R

, (II-77) 

where R is the lattice vector. Here nR , †cR , and cR are electron number, creation and 

annihilation operator, respectively, at the orbital located at R . The onsite energy of the metal 
s orbital MER  is set to be zero and nearest neighbor hopping integral Mt  is set at -0.83 eV to 

yield a typical metal bandwidth of 10eV as shown in Figure III-6(b). The bulk insulator 
Hamiltonian ( IH ) is modeled by CsCl crystal structure with two different s orbital basis at half-

filling, i.e., 
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where 1 or 2   is the basis index. The onsite energies of the two insulator s orbitals 1
IER and 

2
IER  are set to be -4eV and 2eV, respectively. The nearest neighbor (NN) hopping integral I

NNt  

and the next nearest neighbor (NNN) hopping energy I
NNNt  in the insulator are set to . 

These parameter values are determined to yield a valence band width of 8eV, conduction band 
width of 4 eV, and a gap of 2 eV as shown in Figure III-6(c), which are representative of values 
in semiconductors and insulators.  

The noninteracting interface Hamiltonian ( 0
IFH ) is modeled by a region consisting of 

two unit cell layers of the insulator and two unit cell layers of the metal. The hopping energy 
between metal atoms and insulator atoms closest to the interface is set to be -0.67eV, the 
arithmetic means of -0.5 eV and -0.83 eV. In contrast to IH  and MH , it is essential to include 

disorder effect explicitly in the interface Hamiltonian ( IFH ) to produce local magnetic moments. 

At a realistic interface, there are various sources of potential disorder such as lattice mismatch, 
dislocations, atomic diffusion between metal and insulators, and interface roughness. The 
disorder potential  breaks translation symmetry in the interfacial region along the in-plane 
directions, and gives rise to scattering centers to electrons, resulting in the in-plane localization 
of electrons from Anderson’s disorder theory [92]. In our study, the potential disorder at the 
interface is modeled by onsite energy fluctuations of the metal and insulator orbitals with a 

Gaussian distribution   2 2
0( ) /2( 1 2) e E EP E    , where   is the standard deviation and 

is the original onsite energy. After the diagonalization of the isolated term 0
IFH , 0

IFH  may be 

written as 

0.5eV

0E
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H E n , (II-79) 

where  is the index for the eigenstates with eigenenergy of 0,iE  is the energy of the ith 

eigenstates. 
The localization of electron wavefunctions at the interface requires explicit treatment of 

electron-electron interaction. The spatial extent of electron wavefunction determines the energy 
cost for double occupation of the wavefunction due to the repulsive Coulomb interaction 
between the two electrons. We may evaluate the repulsive Coulomb interaction associated with 
a wave function ( )i r  of the isolated interfacial region in the static limit,  

 ,  (II-80) 

where  and   represent the two spin directions and ( , )W r r'  is the screened Coulomb 
interaction in the static limit.  The form of Eq. (II-80) shows that the smaller the electron 
wavefunction, the larger repulsive Coulomb interaction, since ( , ')W r r  is a decreasing function 

of increasing - r r . We calculate the screened Coulomb interaction in the following way.  The 

screened Coulomb interaction is given by   1
01W V V


       [102]. Here, “~” denotes a matrix 

in the basis of orbitals in the system, and  is the identity matrix. The quantity  is the usual 
bare Coulomb interaction which decays as 1/ r r'  , and we have regularized it to have a value 

of 10 eV when  r  and 'r  are on the same orbital. The polarizability 0  is, within random 

phase approximation in the static limit, is given by 

 0
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where i R  and 0
iE  are the tight-binding wavefunction coefficient and the noninteracting 

Hamiltonian energy of th eigenstate, respectively. The term ( )f E  is the Fermi-Dirac 

distribution function. In the calculation of 0 , if one neglects the hybridization between states 

in the metal region and interface region as well as in the insulator region and interface region, 
then the static polarizability may be simplified to  

0 0, 0,M I IF       (II-82) 

with  
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and  
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Here, M / I / IF in the summation of Eq. (II-83) and (II-84) represents the set composed of the 
eigenstates of 0/ /M I IFH H H , respectively. The screened Coulomb interaction is given by 

  (II-85) 

with  

  . (II-86) 

For simplicity we evaluate IFV  using a classical image charge model [106], not by calculating 

Eq. (II-86) directly.  This simplified model has shown to work well in other metal 
junction [107]. The nonlocal screening from the metal and insulator regions can be mimicked 
by putting image charges in the metal and insulator regions with appropriate charge magnitude. 
The two image planes are assumed to be at the metal-interface boundary and interface-insulator 
boundary, as shown in Figure III-7. In this classical model, if a point charge is residing on an 
orbital in the interface region, the screened Coulomb potential on another orbital in the interface 
region will be the sum of bare Coulomb potential from the point charge and its image charges 
shown in Figure III-7 (with an insulator dielectric constant ).  

  From the screen Coulomb interaction W , we calculate the Coulomb repulsion 
associated with the double occupation of state i in the interface region, the extra interaction 
term iU  is included in a new interacting interface Hamiltonian which is now given by  

. (II-87)  

Although this interface Hamiltonian does not incorporate all possible many-electron interaction 
terms in the exact many-body Hamiltonian, it includes the most dominant terms when an 
eigenstate of the noninteracting Hamiltonian,  ,  is localized. This assumption can also be 
justified by the observed magnetic moment areal density of 5×1017m-2. If we assume that they 
are from localized states at the interface, average distance between the localized states is ~ 1.4 
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nm. At this distance, the Coulomb repulsion between the nearest localized states should be one 
order of magnitude smaller than iU .  

We have included one further correction to our Hamiltonian rising from the finite 
supercell [90] size we use to construct the disorder in our numerical calculation. If the 
localization length i  of the localized states at the interface region is larger than the supercell 

size L  in the interface plane, there is overlap of wavefunctions in neighboring supercell. This 
will cause an overestimation of iU  for the very weakly localized states if it were calculated 

using only the amplitude of the wavefunction within a supercell. Using a scaling law [93] for 
the localization length i , we map the iU 	value from a finite supercell calculation onto that of 

an infinite supercell. The localization length of each state is estimated by calculating the 

participation number, 4| 1 |i iP    
 
 r

r

 which is known to be ~ ( / )d
i L , where d  is the 

dimension of the system.  
The reformulated interface region-metal Hamiltonian ( M IFH  ) and insulator-interface 

region Hamiltonian ( IF IH  ) are modeled by electron hopping term between the orbitals in the 

metal and the insulator with the ith states in the interface region. 

 , (II-88) 

and 

 , (II-89) 

where M
it are hopping integral between an orbital on a metal atom and the state in the interface 

region, and ,
I
NN it  and ,

I
NNN it  are nearest neighbor and next nearest neighbor hopping integrals 

between an orbital on the insulator atom and the state  in the interface region. 
The total Hamiltonian in Eq. (II-76) with the new terms is analogous to the Anderson 

impurity Hamiltonian [5]. To illustrate, the states in the interface region are analogous to the 
localized d orbital state and the metal and insulator band states here are analogous to the 
extended s band states in the Anderson model. From this similarity, we can apply our 
understanding of Anderson impurity Hamiltonian to our Hamiltonian for the evaluation of 
magnetic moments associated with the localized states at the interface region. For the interface 
Hamiltonian IFH in Eq. (II-87),  the Coulomb repulsion associated with double occupation of 

the eigenstates favors the formation of local magnetic moments because it hinders double 
occupancies. On the other hand, the hybridization between eigenstates of IFH  and extended 

states in the metal tend to interrupt the formation of moments. This hybridization energy 
associated with the eigenstate  is given by  [5] 
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 (II-90) 

where  M Ivk k  and  M IE Ek k  are an eigenstate and its eigenenergy of  IMH H . With the 

three parameters of  0,iE , iU , and i  for state i in the interface region, we calculate the 

expectation value of electron density using [5] 

  (II-91) 

(derived within Hartree-Fock approximation), where , ,0 ,i i iE E U n   and  is spin index. 

Then the net magnetic moment for the ith localized state is given by 
, ,i B i i

m n n     

 

(c)Results and Discussion 

Setting the Fermi energy at the insulator midgap value, we have evaluated with the 
above model the areal density of magnetic moments for a given degree of randomness R  using 
a 500 member ensemble average. We characterize the degree of disorder by the dimensionless 
ratio 2 /R W , where W 	is the bandwidth of the metal. The interface Hamiltonian is 
modeled using a supercell containing 20 ×	20 ×	2 metal unit cells and 20 ×	20 ×	2 insulator unit 
cells, with a total of 2,400 atoms. Figure III-8(a) shows the magnetic moment areal density as 
a function of R . If we don’t incorporate dielectric screening in evaluating the Coulomb 
repulsion associated with the states at the interface (marked by red color), the magnetic moment 
areal density is rapidly increasing function of R . Although the magnetic moment areal density 
agrees with experimentally measured moment density of 17 25 10 m  (grey dashed line) at 

0.15R  , the steep slope in Figure III-8(a) disagrees with the observed insensitivity of the 
measured magnetic moment density to the interface conditions. However, if we incorporate 
dielectric screening in calculating the Coulomb repulsion associated with the doubly occupying 
the eigenstates in the interfaces region (with 12I  ), the magnetic moment areal density 

saturates to a maximum value of 17 24 10 m , in a good agreement with experiments. 
Further the calculated maximum value of 17 24 10 m  is relatively insensitive to the 

dielectric constant of insulator used. As shown in Figure III-8(b), the calculated magnetic 
moment areal density at each R  doesn’t change much when we change  from 4 to 12. This 

is because the magnitude of the image charge changes slowly as  changes. For example, the 

charge of the first image charge in the insulator region is given by ( 1)q/ ( 1)I I   . If we 

increase I  3 times from 4 to 12, the charge of this image charge increases by only 40%.  

2 2
( ) ( )M M I

i M IF i I IF i vi E E E EH i H v


         k
k k

kk k

, 2 2
,

1

( )

FE
i

i
i i

n dE
E E

 







I

I



 

 64

To understand the physical origin of the local magnetic moment, we calculated the 
magnetic moment weighted electron areal density of states in the interface region 

 .  (II-92) 

where A is the area of interface plane in the sample and 0,iE  is noninteracting interface 

Hamiltonian energy. Figure III-8(c) shows the calculated ( , )m E m  for R=0.2 and 0.3 from a 

500 ensemble average. We see all the magnetic moment is originated from the states of which 
the energy from the noninteracting Hamiltonian is in the bandgap of the insulator (marked by 
black dashed lines), confirming that the magnetic moment are derived from the disorder-
induced localized MIGS. As  increases from 0.2 to 0.3, all the magnetic moments are still 
from the states in the bandgap of the insulator.  

(d)Conclusion 

To summarize, using the screened Hartree-Fock solution of a model Hamiltonian 
including double occupancy Coulomb repulsion of states, we show that metal-induced gap 
states at the interfaces are prone to be localized by disorder and that the localized metal-induced 
gap states are magnetic due to electron-electron interactions. The magnetic moment areal 
density is saturated to its maximum value of 17 2104 m  as the disorder increases, consistent 
with the experimental observation of having an universal value for the measured moment areal 
density in different systems. Dielectric screening effect is found to be essential for explaining 
this universal behavior.  
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Figure III-6 (a) Atomic geometry of a model metal-insulator interface. The bulk metal is 
modeled by a simple-cubic lattice with one s orbital, and the bulk insulator is modeled by a 
CsCl structure with two different s orbitals per unit cell. Interfacial region consists of 2 layers 
of metal unit cells and 2 layers of insulator unit cells. The lattice constant is set to , to 

yield a typical areal density of states for the MIGS of ~ 18 2103 m . Computed DOS of (a) bulk 
metal with 10 eV bandwidth, (b) bulk insulator with a 2 eV band gap separating two bands, one 
with a bandwidth of  8 eV and the other with a bandwidth of 4 eV, and (c) the metal-insulator 
interface. The Fermi level is set at 0 eV.  

1.5 Å
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Figure III-7 dielectric screening model of disordered metal-insulator interface. The dielectric 
screening from the bulk metal and insulator has been incorporated within a classical image 
charge model. The dielectric constant of the insulator is set to I . Higher order image charges 

going beyond the two primary image charges are also included. The dielectric screening from 
the localized electron in the interface region is separately included using a polarizability 
calculated within the random phase approximation in the static limit. 
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Figure III-8 (a) (a) The effect of dielectric screening on the magnetic moment areal density as 
a function of the dimensional-less parameter R which characterizes the interfacial disorder. Red 
and blue dots show calculated magnetic moment areal density with and without dielectric 
screening effects. An insulator dielectric constant of 12I  is used. (b) The effect of changing 

I  on the magnetic moment areal density against R. (c) Magnetic moment weighted electron 

density of states as a function of energy E  and magnetic moment (m) with 12I   at R=0.1 

and R=0.2. 
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 Defects 

1. Mechanism for optical initialization of spin in NV- center in 
diamond 

(a) Introduction 

NV- in diamond is a defect complex composed of a substitutional nitrogen atom and an 
adjacent carbon vacancy  [108,109] as shown in Figure IV-1. NV- has emerged as one of the 
best candidates for realization of individually addressable spins in the solid state for quantum 
computing and other studies  [110–119]. The interest in this system in large part stems from an 
optical initialization process under ambient conditions, which results in a state with long spin 
coherence time of up to ~ 1 ms  [120]. The optical initialization of the NV- center, which starts 
with a degenerate mixed triplet ground state, involves optical transition to an excited state and 
subsequent relaxations to a specific ground state with an un-entangled pure spin of ms=0. The 
detailed electronic structure of the low-energy excited states, especially the placement of 
possible singlet defect levels with respect to the ground (3A2) and first excited triplet (3E) levels, 
is crucial in explaining the optical initialization mechanism. However, up to now there is no 
consensus. It is reported experimentally that two singlet levels (1A1 and 1E) are near the ground 
and the first excited triplet levels, but the character and ordering of the two singlet levels are 
not determined  [121,122]. Various theoretical studies also failed to agree with each 
other  [123–129]. There are several different optical initialization pictures in the literature. The 
most widely used picture, where one singlet level (1A1) is assumed to lie in between the two 
lowest-lying triplet levels  [130–132], has not been confirmed. There exist two different “two 
active singlet level” models  [122–124] involving an intermediate step of radiative decay 
between two singlet levels of 1A1 and 1E symmetry before the system decays to the ground 
state. However these models are in contradiction with the experimental findings which show 
that after the initially excited triplet level decayed to a singlet state, the system decays 
nonradiatively  [121,122].  

The main theoretical difficulty in determining the nature of this system arises from the 
fact that NV- is a deep-level center in the band gap of diamond with multiple localized, 
interacting electrons. Such systems are not appropriate for mean-field type of calculations 
because of strong electron-electron interaction. Alternatively, mimicking the system as a small 
isolated diamond cluster with a NV- defect without additional input is also expected to be not 
so appropriate because it does not include the large screening effects from the bulk and because 
of issues with possible spurious boundary effects. Furthermore, this defect is prone to large 
excited-state structural relaxation [123,126,133]. An effective model Hamiltonian with reliable 
interaction parameters for the electrons, such as an extended Hubbard model, offers an efficient 
way to evaluate the excited-state level structure which could include many-electron interactions 
fully if solved exactly. In such models, the electron-electron interaction and screening effect of 
the host material however must be accurately incorporated using effective Coulomb interaction 
parameters. The effects of structural relaxation should also be taken into account through the 
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parameters. Such approaches had been hindered in the past by the difficulty in getting 
physically grounded model parameters.  

 In this study, we employ an extended Hubbard model Hamiltonian with structure-
dependent interaction parameters that are derived from ab intio quasiparticle energy levels. 
These parameters are put on physical grounds by fitting the quasiparticle excitation energies of 
the model system to those of the real system, both calculated within the same GW 
approximation to the electron self-energy operator [19,134]. The idea is to use relevant physical 
quantities, and a sufficient number of them, to accurately determine the effective electron-
electron interactions. 

(b) Theory and computation 

For the real system, we calculated from first principles the ground-state using density 
functional theory in the local spin density approximation (DFT-LSDA) and the low-energy 
excited-state quasiparticle levels using the ab initio GW method. To obtain the ground-state 
equilibrium geometry (GEG) of NV- in diamond, we performed ab initio calculations within 
the pseudopotential density functional theory (DFT) framework. We used the local spin density 
approximation (LSDA) to the exchange correlation functional. Norm-conserving 
pseudopotentials were used with a plane wave basis (80 Ry cutoff) for structural relaxations. 
The defect system was modeled with a supercell containing 214 carbon and 1 nitrogen 
atoms  [135].  We then calculated the quasiparticle energies of the NV- within the GW 
approximation to the electron self energy following the method of Hybertsen and 
Louie  [19,134]. For these calculations, we used a dielectric matrix cutoff of 10 Ry and 3990 
bands in the evaluation of the polarizability and self-energy operator. Our ab initio GW 
quasiparticle level diagram at the ground-state equilibrium geometry (GEG) of the NV- center 
is shown in Figure IV-1b. There are 8 quasiparticle defect states near the band gap. These defect 
states, which are localized at the defect site, should form an efficient basis set for describing 
the low-energy charge-conserved excitations that are of the main interest of the present study.   

 We therefore chose the Hilbert space for the effective model system to be spanned by 
the 8 dangling-bond spin orbitals centered at the 3 carbon atoms and the one nitrogen atom 
nearest to the vacancy site  [136]. To ensure that such a basis would describe the lowest lying 
excitations well, we constructed maximally localized Wannier functions from the ab initio 
wavefunctions out of above mentioned 8 defect states [137]. As is evident from Figure IV-2, 
the Wannier functions are strongly localized at the atoms nearest to the vacancy, showing 
dangling bond characteristics and justifying our choice of an 8 atom-centered spin-orbital 
Hilbert space. It also shows that hybridization of the u states and the extended state in the 
valence band is small. Simple electron counting dictates that 6 electrons be shared amongst 
these 8 spin-orbitals for the NV-: 3 electrons from the 3 carbon atoms, 2 electrons from the 
nitrogen atom, and 1 added electron from the defect being negative charged. The effective 
Hamiltonian hence is taken as:  
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where †
,ic  , ,ic  ,and †

,in   are creation, annihilation, and number operators at the site i with spin 

 . 
It should be noted that while this model does not include all possible electron-electron 

interaction terms in the exact many-body Hamiltonian, it includes the two dominant terms when 
the Hilbert space is spanned by an atom-centered basis set  [28], namely, the onsite-Coulomb 
repulsion (U) as well as the nearest neighbor Coulomb repulsion (V) term. Further 
simplifications have been made to the model Hamiltonian parameters by examining the 
Wannier functions corresponding to the 8 defect states. As shown in the Figure IV-2, the 
Wannier functions centered at the carbon atoms and the nitrogen atom are all similar in shape 

and size. Their mean radii, which are defined as 
22

W r W W r W
 

 where r


 is the 

position operator, are within 5% of one another. The mean radius is 2.0 Å for the up-spin orbital 
of nitrogen, 1.9 Å for the up-spin orbital of carbon, 1.9 Å for the down-spin orbital of nitrogen, 
and 1.8 Å for the down-spin orbital of carbon. Based on this, we constrain that the onsite 
Coulomb repulsion (U) for carbon and nitrogen are the same, and that the carbon-nitrogen 
nearest-neighbor Coulomb repulsions and carbon-carbon nearest-neighbor Coulomb-repulsions 
(V) are also all the same. 

We determined the parameters in Eq. (II-93) by comparing the quasiparticle energies 
calculated within the ab initio GW approach to those from a GW calculation of our model 
Hamiltonian at the GEG. To calculate the quasiparticle energies for the extended Hubbard 
model with a given set of interaction parameters, we use the DFT-LSDA as the mean-field 
starting point  [28,138,139]. We calculated the quasiparticle self-energy correction to the mean-
field solution within the GW approximation. This is exactly the same level of approximation as 
the ab initio GW quasiparticle calculation for the real system. We tuned the model parameters 
(Table IV-1) until we minimize the differences between the model Hamiltonian quasiparticle 
energy levels and the ab initio quasiparticle levels. As seen in Figure IV-1b, the quasiparticle 
energies from our extended Hubbard model match the ab initio values to within 0.1eV.   

The interaction parameters in Table IV-1 are physically well-determined because the 
two Hamiltonians (model and real) are treated in equal footing with important self-energy 
effects incorporated. Because nitrogen has a larger atomic number than carbon, as expected, the 
onsite energy of nitrogen is lower than that of carbon (EC-EN > 0). The transfer integrals (tNC 
and tCC) are close to a value from a Wannier function analysis (which is -0.7 eV). The onsite 
Coulomb repulsion is also reasonable; the bare onsite Coulomb repulsion of  ߨ electrons in 
carbon nanotube is ~ 16 eV  [140] but for NV- in diamond it is screened by the dielectric 
constant of diamond of 5.5  [141]. 

To understand the optical initialization process, it is important to include this Frank-
Condon relaxation. To account for this effect, we first calculated the excited-state equilibrium 
geometry (EEG) for the 3E state of NV- in diamond within an ab initio constrained DFT 
framework by depopulating the v  level and populating either the xe  or ye  level. The overlap 

of 3A2 and 3E many-body states from exact diagonalization with the model single Slater 
determinant listed in Table IV-2 at GEG and EEG are more than 0.98, which justifies our 
geometric relaxation calculation by constrained DFT, which assumes a single Slater 
determinant many-body state. At the EEG, N moves toward the vacancy by 0.05Å while the 
three C nearest to the vacancy move outwards from the vacancy by 0.06Å. We re-evaluated the 
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model parameters following the same procedure as for the GEG. Because the structural change 
between GEG and EEG is small (Figure IV-3a), we may safely assume that the minimum-
energy path between the two geometries can be explored by using parameters that are linear 
interpolations of the values from the two end points – the GEG and EEG. The parameters at the 
GEG and EEG are given in Table IV-1.  

(c) Results and discussion 

Having parameterized the model Hamiltonian, we calculated the many-body eigenstates 
and their corresponding energies by exact diagonalization (or, in quantum chemistry language, 
a full CI calculation) of the Hamiltonian matrix in the basis of all possible 6-electron Slater 
determinants spanned by the 8 spin orbitals. It is worth pointing out that exact diagonalization 
includes all many-electron correlation effects within our restricted Hilbert space. This is 
important because U/t >3 in this system. Figure IV-3b shows the energy surfaces of the ground 
and excited states of the extended Hubbard model. The many-body levels in the Figure IV-3b 
and Figure IV-3c are aligned by the following way. The ground-state energy surface is taken to 

be a parabola centered at the GEG and having the value of 
3 3

2 2 0.15A A
EEG GEGE E eV  . This value 

of the structural energy is from ab initio DFT-LSDA calculation of the ground state, which is 
known to predict accurately such relative structural energy. The excited-state energy surfaces 
are obtained by adding the calculated excitation energy to the ground-state energy surface.  

In the range of generalized coordinates considered, the many-body states listed in Table 
IV-2 are ordered (from low to high energies) as 3A2, 1E, and 1A1 in the 2e  hole configuration 
and, 3E and 1E in  the 1 1v e  hole configuration  [128,129]. If there were no electron-electron 
interaction, the hole occupation in the many-body state of lowest energy corresponds to having 
two holes in the two e  orbitals ( 2e ) (see Table IV-2). The hole occupation in the first excited 
many-body state corresponds to one hole in one of the e  orbitals and the other in one of the v  
orbitals ( 1 1v e ). In Table IV-2, we list all possible symmetry adapted many-body states labeled 
by their C3v symmetry representation. In the 2e  configuration, the 6 many-body states can be 
labeled with 3-fold degenerate 3A2, two-fold degenerate 1E, and non-degenerate 1A1 states. The 

1 1v e  configuration is spanned by 6-fold degenerate 3E and 2-fold degenerate 1E states. These 
degeneracies are lifted when one includes electron-electron interactions. If we assume that the 
many-body states of the interacting system are close to the many-body state of the non-
interacting system shown in Table IV-2, the energy splitting in the degenerate subspace for a 
given hole configuration is a consequence of electron-electron interaction. In the 2e  
configuration, triplet states should be lower in energy than singlet states. This is because the 
triplet (singlet) states are odd (even) with respect to exchange of two hole orbitals so that two 
holes cannot (can) occupy the same orbital. So, the triplet state would have lower Coulomb 
repulsion than singlet states. Between the two different singlet states in 2e  configuration, 1A1 
state should be higher in energy than 1E states. This is because, as shown in Table IV-2, two 
holes occupy the same orbital in 1A1. In contrast, two holes occupy different orbitals in ye  of 

the state of 1E. Two holes in xe  of 1E occupy the same orbital but the relative phase between 
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the two basis configurations is  , so that Coulomb repulsion contribution should cancel each 
other. Using the same argument as above, 3E should be lower in energy than 1E in the 1 1v e  
configuration. Electron-electron interaction effect on the level order between the two different 
triplet 3A2 and 3E should be small because the Coulomb repulsion parameter for carbon and 
nitrogen is the same in the present model. Following all these arguments, one can expect the 
low-lying many-body state to be ordered as 3A2, 1E, and 1A in the 2e  configuration, and 3E and 
1E in the 1 1v e  configuration. However, the position of 3E in 1 1v e  with respect to 1E and 1A in 

2e  cannot be ascertained based solely on symmetry arguments. 
Without any free parameters, our calculated many-body energy level differences for the 

triplet states match very well with experimental findings:  (i)
3 3

2E A
GEG GEGE E  = 2.1 eV, as compared 

to experimental vertical absorption energy of 2.2 eV.  (ii) 
3 3

2E A
EEG EEGE E  = 1.8 eV, as compared 

to experimental vertical emission energy of 1.8 eV.  (iii) A zero phonon line 
3 3

2E A
EEG GEGE E  = 2.0 

eV, as compared to experimental value of 1.945 eV [108].   
Figure IV-3b shows that the ordering of 3E and 1A1 levels is inverted as the system 

relaxes beyond EEG. This inversion of the ordering allows for the possibility of an intersystem 
crossing between these states. If intersystem crossing is mediated by spin-orbit coupling, which 
is known as the only mechanism to couple many-body states of different spin multiplicities in 
this system  [128,129], only the 3E state with A1 representation ( 1sm   ) can couple to 1A1 as 

shown in Table IV-2. As discussed more below, these findings explain the observed optical 
initialization from the 1sm    excited triplet state. Our results are distinctly different from 

those from a recent ab initio GW-BSE study  [123], where a level crossing between the 3E and 
1E’ levels is reported and there is no crossing between the 3E and 1A1 levels. We also computed 
the excited-state energies within the same GW-BSE approximation for the extended Hubbard 
model in the same Hilbert space; the results are shown in Figure IV-3c. Our calculated GW-
BSE results for the extended Hubbard model reproduce the ab initio GW-BSE results in 
Ref. [123].  Figure IV-3c shows that the 3E and 1E’ level are indeed very close within the GW-
BSE approach as in Ref. [123]. The difference between the results from conventional GW-BSE 
and exact diagonalization arises from: i) the number of configurations (Slater determinants) to 
describe the many-electron states, and ii) how these two methods treat electron-electron 
interaction. Conventional GW-BSE approach take only one, e.g., the | x ye e   configurations out 

of the three fold degenerate ground state (3A2) configurations of | x ye e  , | x ye e  , and 

1/ 2 | 1/ 2 |x y x ye e e e   in Table IV-2. Then it considers single electron-hole excitation 

and de-excitation from them. Due to this less complete description, the number of 
configurations composing a particular state within the GW-BSE calculation is smaller than the 
actual number of configurations from an exact diagonalization calculation.  For instance, if one 
considers the 3E representation in Table IV-2, exact diagonalization would give rise to states 
mixing all 6 configurations ( | xve  , | xve  , | yve  , | yve  , 1 / 2 | 1/ 2 |y yve ve  

, 
1/ 2 1/ 2x xve ve ). However, within GW-BSE, the 3E states would only consist of two 

configurations (|v ex> and |v ey>) and are two-fold degenerate. As for the treatment of 
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interactions, standard GW-BSE method being a perturbative approach is an approximation to 
exact diagonalization in several ways for a given Hamiltonian. Conceptually, it doesn’t include 
vertex contribution in evaluating the electron self-energy, and the electron-hole interaction 
kernel in the Bethe-Salpeter equation is taken at the GW level. 

While knowing the excited-state level positions is a necessary requirement of any model 
that would explain optical initialization, they are of themselves not sufficient. To have a 
complete understanding of the process, it is also important to calculate the transition rate 
between the many-body states. Our calculations lead to the following optical initialization 
mechanism shown in Figure IV-3d.  First, an electron is excited radiatively from the 3A2 
ground-state level to the 3E level, both are spin triplet states. Second, the 1A1 ( 1sm   ) state in 

the 3E level is de-excited to the 1A1 level by an intersystem crossing mediated by spin-orbit 
coupling.  For the last step, two paths are possible. One possible transition path to the final 
ground state is an intersystem crossing mediated by spin-orbit interaction  [128,129] from 1A1 
to the ms=0 state of the ground-state 3A2 level. The other possible path to the final ground state 
is first a non-radiative transition from 1A1 to 1E by electron-multiple phonon interaction and a 
subsequent intersystem crossing transition from the 1E level to the ms=0 state of 3A2 by spin-
orbit coupling, enabled by dynamic-Jahn-Teller-effect-assisted symmetry lowering of the 
structure from C3V to C1h  [129]. 

The proposed mechanism is supported by agreement of the calculated transition rates 
with the corresponding measured values. We have calculated radiative de-excitation lifetime 
between many-body states. Within the electric dipole approximation, the radiative transition 

lifetime from many-body state Ψi  to many-body state Ψ j  is given by 
23 33 4 ij ijc nE r


 in 

atomic unit  [142], where n is index of refraction of diamond,  iΨ Ψij jr r
 

 
and ij i jE E E   

are the dipole matrix element and transition energy.  For the calculation of dipole matrix 
element between two many-body states, the position operator is r r



  
 where   denotes the 

th  electron and we calculated ijr


 using ab initio quasiparticle wavefunctions forming the 

Slater determinants that span our restricted Hilbert space.  The triplet-triplet (3E→3A2) radiative 
de-excitation lifetime is calculated to be 20 ns using our calculated many-body states and within 
the electric dipole approximation, as compared to the experimental value of 13 ns. Radiative 
de-excitation from the 1A1 state to the lower singlet state of 1E is calculated to be ~70 ns, which 
is much larger than the reported lifetime of 1 ns [14]. It is consistent with the experimental 
observation that de-excitation from the singlet level (that the system in the initially optically 
excited triplet state decayed nonradiatively to), in our model is 1A1, is dominated by 
nonradiative transition [14,15]. We therefore assign that the de-excitation from 1A1 is 
dominated by nonradiative transition. 

The intersystem crossing rate between 3E and 1A1, mediated by spin-orbit coupling, is 
calculated to be ~50 ns within a displaced harmonic oscillator model, as compared to the 
experimental value of 30 ns  [132]. We  calculated it within  the  first  order perturbation  by  
spin-orbit  coupling  including  dephasing  effect.  First,  we  assumed  that  initial state for 
intersystem crossing is A1 in 3E with   number of phonon and final state is any phonon-excited 
states in the 1A1 energy surface, satisfying energy conservation law. d  is displacement between 
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initial and final state energy surface, 0ΔE  is electronic energy changes, and   is reorganization 

energy (nuclear energy change when the system is displaced from it’s minimum to d ). 
Nonradiative transition rate from 3E to 1A1 is calculated within the first order perturbation by 
spin-orbit coupling including dephasing effect. First we assumed that initial state is A1 in 3E 
with   number of phonons, which is localized at the NV- center. Vertical absorption from the 
ground state (3A2) energy surface excites the system into the 3E state with energy of 0.2 eV 
higher than the minimum of 3E. This is about 2 times of the local vibrational mode energy (~70 
meV) of the NV- center  [128]. The final state will be any phonon-excited states in the 1A1 
energy surface, satisfying energy conservation for the nonradiative transition. The unperturbed 
Hamiltonian for the system is composed of electronic as well as nuclear degrees of freedom. 
We modeled the nuclear motion of NV- as a harmonic oscillator with mode frequency of  . 
Spin-orbit coupling is assumed to be the perturbing Hamiltonian V. From first order 
perturbation theory, total nonradiative transition rate between initial (|I>) and final (|F>) state 
can be calculated by knowing time correlation function of the spin-orbit coupling 
Hamiltonian [143] 

I FiH t iH t

F

W dt I e Ve F V IF
 


     (II-94), 

where IH  and FH  are the initial- and final-state Hamiltonian. To calculate the matrix elements, 

we used two approximations: Born-Oppenheimer approximation and Condon approximation. 
Within the Born-Oppenheimer approximation, electronic and nuclear parts of wavefunctions 
can be decoupled. Within the Condon approximation, spin-orbit coupling is assumed to be 
independent of the nuclear geometry. Then, we can decouple the nuclear and electronic 
contributions to the matrix element completely as follows. 

  0
2 Δ

0
i E t

FCW dt V R e f



       (II-95) 

with 

 |I Fn n

n

iH t iH t

FC n n n n
F

f I e e F F I
       (II-96) 

where eI  and eF  are the electronic part of initial and final state wavefunctions and nI  and 

nF  are the nuclear part of initial and final state wavefunctions. 0R  is the GEG and 0E  is 

electronic energy change between initial and final states. The Frank-Condon factor ( FCf ) 

describes nuclear wavefunction overlap between initial and final state. Here, we assumed that 
the nuclear part of the Hamiltonian of initial ( ,I nH ) and final ( ,F nH ) states can be described by 

a displaced harmonic oscillator model, which is widely used in Markus’s theory [144–147] for 
electron-transfer reactions. The initial- and final-state energy surface are assumed to have the 
same curvature with phonon frequency FCf  of  , which is not a bad assumption for our case 

as we see from Figure IV-3b. Then ,F nH  is a displaced harmonic oscillator by d  from ,I nH  as 
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shown in Figure IV-4. Dephasing by states outside of our Hilbert space as well as ensemble 
measurement is considered by the short-time approximation. Homogeneous broadening effect 
by states outside of our Hilbert space can be characterized by a coherence time ( ct ) of local 

vibration mode. From the fact that nonradiative transition rate is ~30 ns, we conclude that ct  is 

longer than 30 ns. Inhomogenous broadening can be characterized by broadening parameter ()
  of 2 kT =0.1 eV. Since our system is in the regime where inhomogeneous broadening is 

dominant ( / ct   ), we used the short-time approximation to  [143–147] to mimick 

dephasing effect. Then, the transition rate is given as follows. 
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where   is the reorganization energy (i.e., the energy change when system is displaced from 

its minimum to d  as shown in Figure IV-4, /d     is a reduced displacement between 

harmonic oscillators, and 1 ( 1)kTn e    is average phonon number at temperature T of 300K. 

With parameters of 0Δ 0.5E eV , 20V eV  [128,129], 70meV   [128], 0.2eV  , we 

get a lifetime of 50 ns. 
A definitive calculation of the rate of the last step of this mechanism is beyond our 

current model.  The overall process nevertheless explains all the steps consistently with 
experiments in the optical initialization to the 0sm   ground state. It should be noted that 

within our formalism, we cannot absolutely determine the equilibrium geometries of the singlet 
states, 1A1 and 1E, which can’t be represented by a single Slater determinant and therefore 
cannot compare directly to the singlet-singlet zero-phonon line experiments [121,122]  

 

(d) Conclusion 

To conclude, we have constructed a theoretical model to understand the physical 
mechanism for the optical initialization of spin of NV- center in diamond.  Using exact 
diagonalization of an extended Hubbard Hamiltonian determined from ab initio GW 
calculations, we incorporated full electron-electron interactions, the diamond host screening, 
and geometrical relaxation effects in the calculation.  The computed ground- and excited-state 
energy surfaces and transition rates between them provided a consistent picture with 
experiments in support of an optical initialization path of 3A2→3E→1A1→3A2 or  
3A2→3E→1A1→1E→3A2 in which intersystem crossings play a crucial role.  Our method should 
be applicable to other deep centers in large band gap materials. 

 
  



 

 76

 
Table IV-1. Extended Hubbard model interaction parameters. Model parameters in Eq. (1) at 
the ground-state equilibrium geometry (GEG) and the optically excited-state equilibrium 
geometry (EEG).  

  

Parameters (eV) EC-EN tNC tCC U V 

GEG 2.56 -0.68 -1.03 3.43 0.83 
EEG 2.86 -0.75 -0.90 3.45 0.67 
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Hole 
Occ. 

Representation 
Many-body States 

w/o SO w SO 

1 1v e  

1E’ 
Ex 1/ 2 1/ 2x xve ve  

Ey 1/ 2 1/ 2y yve ve  

3E 

Ex 1/ 2 1/ 2 / 2 / 2x x y yve ve i ve i ve    

Ey 1/ 2 1/ 2 / 2 / 2x x y yve ve i ve i ve     

Ex 1/ 2 1/ 2y yve ve  

Ey 1/ 2 1/ 2x xve ve  

A2 1/ 2 1/ 2 / 2 / 2x x y yve ve i ve i ve    

A1 1/ 2 1/ 2 / 2 / 2x x y yve ve i ve i ve    

2e  

1A1 A1 1/ 2 1/ 2x x y ye e e e  

1E 
Ex 1/ 2 1/ 2x x y ye e e e  

Ey 1/ 2 1/ 2x y x ye e e e  

3A2 

Ex 1/ 2 1/ 2x y x ye e e e  

Ey 1/ 2 1/ 2x y x ye e e e  

A1 1/ 2 1/ 2x y x ye e e e  

 

Table IV-2. Low-lying many-body states of the NV- center in diamond denoted by hole 
occupations and their symmetry representations (degenerate representation without spin-orbit 
coupling and corresponding spin-orbit split representations). Instead of electron occupation of 
single-particle orbitals, one can equivalently express a many-body state by holes occupation. 
Each ket vector represents a 6-orbital Slater determinant in second-quantized notation, for 
example, a bc c f ab , where f  is the fully filled configuration (the 8-orbital Slater 

determinant).  
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Figure IV-1. (a) Ground-state structure. Carbon (nitrogen) atom nearest to the vacancy site 
(light green colored sphere) is marked by red (blue) color. (b) Quasiparticle energy levels near 
the band gap, from ab initio GW calculation (solid line) of a NV- center in diamond and from 
GW calculation of the extended Hubbard model (dotted line). The filled and open arrows 
correspond to quasi-hole and quasiparticle state (i.e., removing and adding an electron to the 
system), respectfully. For each spin, these levels belong to the two A1 and one E representation 
in C3v symmetry group.  We label them as u  (u ), v  ( v ),  xe  ( xe ), and ye  ( ye ) for up (down) 

spin states, marked by red (blue) color.  
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Figure IV-2.  Defect-state Wannier functions. Isosuface plot of maximally localized spin-up 

Wannier function at amplitude    
max

0.5W r W r  
 

, constructed from the 4 spin-up defect 

states in Figure IV-1b.  Yellow (green) color denotes plus (minus) sign of the amplitude. The 
Wannier function centered at each carbon is equivalent, so only one of them is shown. 
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Figure IV-3.  (a) Relaxation path taken between the GEG and EEG. (b) Energy surfaces from 
exact diagonalization of the extended Hubbard model. (c) Energy surfaces from a GW-BSE 
calculation of the extended Hubbard model. (d) Optical spin initialization mechanism supported 
by results from exact diagonalization of the extended Hubbard model.  
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Figure IV-4. Displaced harmonic oscillator model. Initial state for intersystem crossing is A1 in 
3E with   number of phonon and final state is any phonon-excited states in the 1A1 energy 
surface, satisfying energy conservation law. d  is displacement between initial and final state 
energy surface, 0ΔE  is electronic energy changes, and   is reorganization energy (nuclear 

energy change when the system is displaced from it’s minimum to d ) 
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2. The screened charge associated with a single Ca dimer on an 
graphene sheet 

(a) Introduction 

Atomic collapse theory addresses the stability of an atom due to relativistic quantum 
effects. In light elements with the charge of nucleus ( Z ) less than a critical value 170cZ 
,  [148] electrons make stable orbits around the nucleus. In contrast, in super-heavy elements 
with cZ Z , has been predicted that electrons collapse into the nucleus and positrons are 

emitted away. Although this theory dates back to Paul Dirac in the 1930s, experimental 
demonstrations have been hindered by the large threshold number of 170, which is higher than 
the atomic number of any atom in the periodic table. 

Graphene has been predicted to be a good test material for atomic collapse theory [149–
151]. First, electrons in graphene behave in a manner similar to relativistic electrons due to its 
linear band structure. Second, charged impurities on graphene can play the role of nucleus to 
the electrons, forming artificial atoms with the electron in graphene. Third, electrons in 
graphene move 300 times slower than the speed of light. As a consequence, atomic collapse in 
the artificial atom can be observed with a charge of the artificial nucleus 300 times smaller than 
170. The atomic collapse state near a charged  impurity on graphene is expected to be a spatially 
extended electronic resonance  whose  energy  lies  just  below  the  Dirac  point.  Such 
resonances correspond to the electron-like part of the atomic collapse wavefunction. 

The Crommie group at UC Berkeley measured, using scanning tunneling microscopy, 
electrons bound to the positively charged calcium dimers on graphene placed on a hexagonal 
boron nitride substrate, which corresponds to electrons collapsed to the super-heavy nucleus in 
artificial atoms. To compare measured bound states to atomic collapse theory in an artificial 
atom on graphene, the net charges associated with calcium dimers should be quantified. Here, 
we quantified the net charges associated with a calcium dimer.  

 

(b) Theory and computation 

As charges are transferred from a Ca dimer to graphene, into the band states as carriers, 
the Ca dimer becomes charged and the electrons in the graphene layer would self-consistently 
rearrange to screen the bare charge on the dimer. We computed the charge density around a 
calcium dimer on an isolated graphene sheet in the relaxed geometry obtained using the first-
principles norm-conserving pseudopotential density functional theory (DFT), as implemented 
in the OpenMX package [152] which is based on a linear combination of pseudo-atomic orbital 
(LCPAO) method. The system is modeled by a n×n (n=8, 9, and 10) hexagonal graphene 
supercell with a Ca dimer as shown in Figure IV-5. The in- and out-of-graphene plane lattice 
constants are n×2.47 Å and 1000 Å, respectively. The Brillouin zone is sampled with a 3×3×1 
Γ-centered k-point grid and the wavefunction cutoff used is 150Ry. In the calculated relaxed 
structure in the generalized gradient approximation to the exchange correlation functional, both 
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Ca atoms are located at 2.4 Å above the graphene plane with a Ca-Ca distance of 3.4 Å and the 
center of the Ca dimer is on the center of a C-C bond in graphene as shown in Figure IV-5.   

(c) Results and discussion 

Partitioning the electron density in real space can be used to evaluate the screened 
charge of the Ca dimer as seen by a test particle far from the dimer on an isolated graphene 
sheet. First, we define the electron density difference, quantifying the redistribution of the 
electron density due to the dimer-graphene interaction, as 

( )( ) ( ) ( )ca g g ca      rrr r ,    (II-98) 

where ( )ca g  r  is the electron density of the combined dimer-graphene system, and ( )g r  and 

( )ca r  are the electron density of an isolated graphene and an isolated Ca dimer in the same 

position as for the dimer-graphene system, respectively. Fig. S7 shows the z-direction-

integrated charge density differences, ( , ) ( )dy zx    r . The electron density within a 

stadium-shaped region (a rectangles with a length of the Ca-Ca distance and a width of 2 snr  

plus semicircles with a radius of snr on two sides) with the radius of snr , marked by black line 

in Figure IV-6, redistributes the most. The net electron accumulation density outside the 
stadium-shaped region of radius snr  is due to the electron transferred from the Ca dimer to the 

graphene itinerary states, which is expected to decrease to zero in the infinite supercell size 
limit. We estimated the screened charge on a Ca-dimer as seen by a test charge at large distance 
by calculating the integrated ( , )x y  (or the monopole charge) in a stadium-shaped region. 

The radius of the particular stadium snr , that gives the screened charge associated with a dimer, 

is defined in our calculation as the radius sr  at which the net charge inside the region has a 

maximum value in magnitude, which is expected for a single Ca dimer on an infinitely extended 
pristine graphene sheet. Figure IV-7 shows the net charge as a function sr  in our n×n graphene 

supercell calculation with n=8, 9, and 10, using the generalized gradient approximation to the 
exchange correlation functional. Around 3.5sr Å , the net charge is at its maximum value in 

magnitude of -0.4e, where e is the electron charge, from all three supercell calculations 
regardless of the exchange correlation functional used. As sr  increases to the supercell size 

dimension, the calculated net charge within the stadium in our calculations converges to 0 due 
to the finite supercell size used and charge neutrality condition. An estimated fractional 
uncertainty in the value of the screened charge as evaluated here snr , originated from the finite 

supercell size and imposed charge neutrality condition, should roughly be given by the ratio of 
the stadium area given by snr  to the supercell area; in the case of a 10x10 supercell, it would be 

around 10% if an order of 1 electron is donated from the Ca dimer to the conduction band of 
graphene.   
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In a second approach, we estimated the screened charge associated with a Ca dimer on 
an isolated graphene sheet employing another widely used method of “real space 
partition” [153]. The charge density is partitioned into two regions, one belonging to graphene 
and one to the Ca dimer. The position of the partitioning plane, which is parallel to the graphene 
plane (gray line in Figure IV-8), is defined as the position at which the region of charge 
depletion changes to that of charge accumulation for charge transfer from the dimer to the 
graphene, as calculated from the x-y planar integrated electron density difference, 

( ) ( )dxdz y    r , as shown in Figure IV-8 for the case of n=10. The screened charge 

associated with the Ca dimer is defined in this method by integrating ( )z   within the dimer 
region. This method also gives a screened charge value of -0.4e associated with the Ca dimer. 

As a third method, the screened charge of a Ca dimer on an isolated graphene sheet is 
obtained from calculating the dipole moment of the graphene-dimer system along the graphene 
surface normal (out-of-plane) direction. By calculating the out-of-plane dipole moment of the 
system and knowing the separation between the Ca dimer and the graphene plane, we obtain 
also a screened charge of missing 0.4 electrons from the Ca dimer.  

Our calculated results (from the three methods above and with three different supercell 
sizes) thus all give a screened charge of missing 0.4 electrons from the Ca dimer (i.e., a screened 
charge of -0.4 e) on an isolated graphene sheet. This value is insensitive to the particular 
exchange correlation functional used in our DFT calculation. 

 The dielectric screening from the electrons in the BN substrate is incorporated as follows. 
The dielectric screening from the electrons in the BN substrate renormalizes the bare Coulomb 
interaction in graphene, so that the dielectric constant of isolated graphene ( g ) will be 

renormalized [154] and the total dielectric constant ( tot ) of the dimer-graphene placed on the 

BN substrate may be represented as the product of the renormalized dielectric constant of 
graphene ( g ) and the dielectric constant of the BN substrate ( s ) within random phase 

approximation to the longitudinal polarizability. The screened charge of a single Ca dimer on 

graphene placed on a BN substrate is thus given by 
( 0.4 ) g

g s

e
Z

 





 
, where g  = 3±1 [154–

157], 3.0 1.0g    [158], and 2.5 0.5s     [159–161], where g  given here has a range of 

values depending on the method from which it is estimated. From ab initio calculation [157] at 
wavevectors relavant to this experiment its value is 2 to 4, while from a random phase 
approximation calculation [154,157] 4g  , and an experimental [156] measurements put it at 

2.2g  . The uncertainty in  g  arises from fitting experimental data to a Dirac model 

calculation  [158] while uncertainty in s  comes from different reported values of the dielectric 

constant of BN [159–161] ( (1 ) / 2s BN    ).  By taking into account the uncertainties of the 

screened charge of a single dimer on isolated graphene in our calculation and  uncertainty in 
the different dielectric constants, a resulting Z/Zc = 0.6 ± 0.3 for a single Ca dimer on graphene 

placed on a BN substrate is obtained (here 
2

0.25
2

F
c

v
Z

e
 


 is the supercritical charge 

threshold). 
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(d) Conclusion 

Z/Zc associated with a Ca dimer deposited on graphene placed on BN substrate is 
estimated in the following ways. First, we calculated the screened charge associated with a Ca 
dimer on isolated graphene, as seen by a test charge at large distance, using three different 
methods described below and arrived at a value of a positively charged center with missing of 
0.4 electrons from the neutral Ca dimer. Then the dielectric screening from a BN substrate is 
incorporated. The additional substrate screening reduces the screened charge, resulting in a Z/Zc 
associated with a Ca dimer on graphene on a BN substrate estimated to be ~0.6±0.3, with 

2
0.25

2
F

c

v
Z

e
 


. 
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Figure IV-5. Geometrical structure for a single Ca dimer on a 10×10 hexagonal graphene 
supercell used in ab initio DFT calculation. 
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Figure IV-6. The z-direction-integrated charge density difference, ( , ) ( )dy zx    r , from 

a 10×10 hexagonal graphene supercell calculation where ( ) r  is defined as the electron 
density difference between that of the combined graphene-dimer system and that of the 
individual entities as given in Eq. (II-98). The stadium-shaped region (a rectangle with a length 
of the Ca-Ca distance and a width of 2 snr  plus semicircles with a radius of snr on two sides) 

with a radius of snr  is indicated by a black full line.   
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Figure IV-7. The net charge inside a stadium shaped region in Figure IV-6, as function of the 
stadium radius sr  from a n×n hexagonal graphene supercell calculation with n=8, 9, and 10. 

The particular stadium radius snr  in Figure IV-6, that gives the screened charge associated with 

the Ca dimer in our calculation, is marked by a gray vertical line.   
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Figure IV-8. The x-y planar integrated electron density difference, ( ) ( )dxdz y    r , as a 

function of position along the out-of graphene plane direction where ( ) r  is defined as the 
electron density difference between that of the combined graphene-dimer system and that of 
the individual entities as given in Eq. 1S. Blue, gray, and red vertical lines indicate the positions 
of the graphene sheet, the partition plane (see text), and the Ca dimer, respectively.   
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