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EPIGRAPH

Don’t worry Lucas, you will graduate in five years.

Dr. Ryan Šlechta

Nothing in this world can take the place of persistence. Talent will not; nothing is more common
than unsuccessful men with talent. Genius will not; unrewarded genius is almost a proverb.

Education will not; the world is full of educated derelicts. Persistence and determination alone
are omnipotent. The slogan ’Press On!’ has solved and always will solve the problems of the

human race.

Calvin Coolidge

I never conquered, rarely came
Tomorrow holds such better days
Days when I can still feel alive
When I can’t wait to get outside
The world is wide, the time goes by
The tour is over, I’ve survived
I can’t wait ’til I get home
To pass the time in my room alone

Mark Hoppus
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Extracting Graph Structure from Data via Topological Methods with Applications to
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Datasets are often noisy, high-dimensional, and complex, but they frequently contain

intrinsic structures that can aid in both understanding the data and enabling downstream applica-

tions. One such structure is graphs, and in particular, trees. This dissertation develops efficient

methodologies using geometric and topological ideas to extract graph-like structures from both

low- and high-dimensional datasets, with applications in neuroscience.

The first direction focuses on extracting tree structures from 2D and 3D imaging data.

Specifically, we aim to extract neuronal tree morphologies from mouse brain imaging datasets.

We employ discrete Morse (DM) graph reconstruction to improve neuronal process segmentation
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and single neuron skeletonization. Additionally, we have published both 2D and 3D full brain

skeletonization frameworks on Github.

In the second direction, we explore decomposing full brain neuronal process skeletoniza-

tions into the individual neurons that make up the graph. This involves decomposing a graph with

node density into a sum of monotone trees, which model individual neurons. We demonstrate

that this generalization and several related problems are NP-complete, establish approximation

bounds, and present approximation algorithms for solving these problems.

In the third direction, we extend our approach to handle high-dimensional, noisy point

cloud datasets (PCDs). This requires us to view the DM algorithm from a filtration perspective

instead of a density perspective. We propose a generalized algorithm that guarantees lex-optimal

cycles in output graphs and combine this with the sparse weighted Rips filtration for efficient

and effective graph extraction from PCDs.

In the final direction, we combine the generalized algorithm with a filtration defined with

respect to Jaccard index to develop a DM graph reconstruction algorithm for scRNA-seq datasets.

Output graphs are then used to accurately analyze gene expression gradients between cell types,

develop cell type taxonomies, and quantify changes in gene expression over Alzheimer’s disease

progression.

xxi



Chapter 1

Introduction

1.1 Overview

Modern datasets are often very large, both in number of samples and number of dimen-

sions, and are, in practice, frequently very noisy. This makes it inherently challenging not only to

analyze the datasets themselves, but also to properly use the datasets in downstream applications.

A key principle in modern data analysis is that datasets, no matter how large or noisy, often

have an underlying, simpler structure. An example of one such structure is a graph - a 1-D

singular manifold made up of the union of individual 1-manifolds glued together at endpoints.

Graphs are an important structure because they are versatile and are very commonly seen in

practice, such as in a variety of networks (road, river, etc.), data trend models, and cosmic webs

formed in dark matter. Trees, which are graphs without cycles, are also observed frequently in

practice. Extracting the inherent graph (or tree when appropriate) structure behind datasets can

greatly improve our understanding of the datasets themselves, as well as simplify the input and

improve the performance of downstream applications of datasets. Thus, it is critical to develop

meaningful graph extraction algorithms to capture true underlying 1-D structure from noisy, high

dimensional datasets.

Non-linear dimensionality reduction has been successfully applied to a broad range of

applications to analyze high dimensional data [125, 135, 9, 46, 99, 139, 84]. Nevertheless, there

are still key challenges: In particular, given that this process is often an inherent lossy process,

1



what is being preserved in the low-dimensional embedding is ultimately determined by the

objective function as well as the optimization procedure used to optimize this highly non-convex

problem. One way to alleviate this problem is to directly extract meaningful structures from

high dimensional space and perform analysis based on that, or develop dimensionality reduction

methods that can better preserve structure from the original, high-dimensional space. An example

of one such meaningful structure of high-dimensional datasets is its underlying graph skeleton.

While several methodologies have been developed to extract the true underlying graph structure

of datasets [69, 82, 110], there are some challenges in doing so. Identifying the nodes of the

graph and defining the connections between the nodes is particularly difficult, with difficulty

only increasing with high-dimensional datasets. Many approaches rely on local information to

make such decisions, which makes them ineffective when dealing with real world datasets that

are often noisy or contain gaps in the data. The goal of my dissertation is to develop effective

graph extraction algorithms using topological methods with neuroscientific applications in

mind.

1.1.1 Homology

To this end, topological methods can help overcome such deficiencies, as they are able

better capture coarser but essential key structures in data and are better suited in defining global

connectivity. Intuitively, the focus of analysis remains on features that remain present as long as

the connectivity does not change. Recent years have witnessed great advancements in topological

data analysis (TDA), see e.g, surveys and books [23, 44]. Roughly speaking, TDA consists of

algorithms used to quantify discrete datasets using concepts from topology, a field of mathematics

concerned with categorizing continuous spaces by their connectivity. Topological objects and

language intuitively provide us tools to characterize essential structures in data. For example,

homology groups of a continuous space, capture the independent holes of a space. The 0th

homology group captures connected components, the 1st homology group captures loops, the

2nd homology group captures voids, etc.
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In this dissertation, we will consider the so-called simplicial homology. Essentially, we

will model the space of interest using simplicial complexes, and study the homology group

induced by them. In particular, the domain of datasets is modeled by simplicial complexes. A

simplicial complex is an object consisting of building blocks called simplices. Geometrically, a

d-simplex is the convex hull spanned by d +1 points. Thus, a 0-simplex is a vertex, a 1-simplex

is an edge, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc. As we will see later, given

that we are focus on reconstructing graphs, we will only deal with 2 dimensional simplicial

complexes, consisting of vertices, edges and triangles.

1.1.2 Persistent Homology

While the topology of a simplicial complex can be interesting to study on its own, this

work makes use of persistent homology. Persistent homology is a very important, modern

extension of homology that has enabled the summarization of homology features across multiple

scales with respect to certain evolution of the space (usually induced by a descriptor function).

Instead of the homology of a fixed space, now we inspect and track the “birth” and “death” of

topological (homological) features through the evolution of a space or a function. Examples

of persistent homology are shown in Figure 1.1. Considering the first example of Figure 1.1,

one can now capture not just the two independent holes in the space from which the points are

sampled, but also their size or importance as well. This extension has significantly broadened the

use of homological features, and its various variants and follow-up developments have formed the

cornerstone of TDA. More information and explicit definitions relating to persistent homology

can be found in Chapter 2.

1.1.3 Morse Theory

Morse theory studies Morse functions, which are intuitively well-behaved smooth func-

tions of which all critical points of the function are non-degenerate. Critical points are points

in the domain at which the gradient vanishes. The integral line is a path between two points
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Figure 1.1. Two examples of persistent homology. On the left, circles with increasing radii are
centered at each point, with the 1st dimension persistence diagram capturing two meaningful
features. On the right, the domain is swept in increasing function order, with the 0th dimension
persistence diagram capturing two significant features.

that agrees with the gradient along the entire path. Intuitively, integral lines (gradient flow)

usually flow into minima. However, sometimes they may terminate at other types of critical

points (saddle points of different indices). We are especially interested in the so-called unstable

1-manifolds, which are integral lines that “start” at maxima and “end” at saddle points of index

d−1. Intuitively, these curves trace from mountain peaks (maxima) to saddles and back to peaks,

separating different “basins” of the graph of the function (viewed as a terrain). Thus, unstable

1-manifolds can capture “mountain ridges” of the graph of an input scale function f : Rd → R.

An example of the unstable 1-manifolds is shown in Figure 1.2 (D). More information and

explicit definitions related to Morse theory can be found in Chapter 2.

1.1.4 Discrete Morse Graph Reconstruction

The previous description suggests that one might be able to use the unstable 1-manifolds

associated with a function f : Rd →R to capture the mountain ridges of the graph of this function

(viewed as a terrain). In practice, however, we usually operate in a discrete setting where the

domain of interest (e.g, a compact subset of Rd) is approximated by a triangulation K. One can
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Figure 1.2. A practical example of DM graph reconstruction. (A) The image (downloaded from
www.brainimagelibrary.org/) contains neuronal branches that we aim to reconstruct. (B) View
the image as a density function, we show the graph of this function, and mountain ridges of this
terrain. (C) These ridges capture potential neuronal branches in the image in (A). (D) Gradient
and the integral line passing x. Dashed curves are union of unstable 1-manifolds.

aim to use piecewise-linear or higher-order approximation of f over K to compute the unstable

manifolds. However, given that these are differential objects, they are sensitive to noise. In

addition, usually the computation and simplification is non-trivial beyond 2-dimensional case.

To this end, one can leverage the so-called discrete Morse theory (DMT) proposed by [51, 52].

DMT is not a “discretization” of the smooth Morse theory. Rather, this is a combinatorial

analog of the classical Morse theory; see Chapter 2 for details. Due to the combinatorial nature,

there are robust and efficient algorithms for both constructing and simplifying resulting unstable

1-manifolds.

A line of recent works have developed a persistence-guided discrete Morse theory based

methodology to extract a graph from a given density field [38, 63, 123, 134, 147]. Given a

density field, with density accumulated around an underlying graph one wishes to extract, one

can take the mountain ridges of the density function to be the underlying graph. A practical 2D

example is shown in Figure 1.2 to build intuition, but we note that this methodology works for

higher dimensions as well. Figure 1.2 (A) shows a zoom-in on a splitting neuronal branch from a

mouse brain image. In this case, the density function is defined as the pixel values. Viewing the

graph of the density via plotting density function values in the third dimension, we observe the

true graph we wish to capture corresponds with the mountain ridges of our new terrain (Figure

5
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Figure 1.3. Outline for the contributions of this dissertation.

1.2 (B)). Projecting these mountain ridges onto the original image, we see that they entirely

capture the neuron branch, including the splitting (Figure 1.2 (C)). Discrete Morse theory is

used to capture the unstable 1-manifolds that represent the mountain ridges from the density

function. More information, explicit definitions, and computational details relating to discrete

Morse Graph Reconstruction can be found in Chapter 2.

Discrete Morse graph reconstruction has shown to be a robust method for extracting

underlying graph structure from noisy datasets in many domains. One field in which the

development of such methods is of particular interest is neuroscience. Reconstructing neurons

from mouse brain imaging datasets is a well-studied problem in the neuroscience community

[152, 65, 29]. Individual neurons can be represented as trees, and the entire neuron network

within a single brain can be represented as a graph. On the higher dimensional front, scRNA-seq

technology has exploded and there are now datasets with millions of cells and tens of thousands

of genes [156, 157, 155, 120, 3, 74, 101]. Many tools for analyzing these datasets rely on

dimensionality reduction [129, 66, 62], which is known to not be able to perfectly preserve true

structure of raw, higher dimensional input data, with metric distortion being one of the many

severe consequences. Extracting structure from the raw, noisy, higher dimensional space is

required to properly understand and analyze the true nature of these datasets.

1.2 Contributions

The overall contribution of this dissertation is the development of graph extraction

methodologies that are developed with neuroscientific problems in mind. The contributions
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fall into two categories: (1) extracting graph structure from 2D and 3D imaging datasets and

(2) extracting graph structure from high dimensional PCDs. An outline of our contributions is

shown in Figure 1.3.

1.2.1 Extracting graph structure from 2D and 3D imaging datasets

Topologically Constrained Neuronal Cell Process Segmentation and Skeletonization

As we mentioned earlier, there has already been work for DM (discrete Morse)-based

graph construction algorithms for 2D and 3D data [38, 63, 123, 134, 147]. Thus, our focus

in Chapter 3 is to successfully apply the existing methodology to neuroanatomical datasets.

Standard neural based segmentation and skeletonization methods are oblivious of topological

structures, and can produce broken pieces where signal is weak. An explicit example is shown

in Figure 1.4, which contains a 2D mouse brain image with several neuronal branches. One

such branch has a drop in intensity. The standard UNET [124] framework is unable to detect the

neuronal branch where intensity drops (Figure 1.4(B)). In contrast, DM graph reconstruction

perfectly captures the neuronal branch in this region (Figure 1.4(C)). The goal is to use DM

graph reconstruction to help produce topologically constrained segmentation and skeletonization

outputs that better respect the true connectivity of neuronal branches. In joint work with

researchers at Cold Spring Harbor Laboratory, we developed a neuronal process segmentation

network for 2D mouse brain images, a single neuron skeletonization pipeline for 3D mouse brain

images, a tracer injection summarization pipeline for 3D mouse brain images, and full brain

skeletonization pipelines for both 2D and 3D mouse brain images.

We have four main contributions. First, for the neuron process segmentation network, we

design a DM graph reconstruction pipeline for 2D mouse brain imaging datasets that outputs a

gray-scale mask representing the Morse graph. These gray-scale masks are integrated with a

novel neural process segmentation framework that we co-developed with collaborators at Cold

Spring Harbor Laboratory [4]. Additionally, the highly persistent vertices on the Morse graph are

used for bouton detection [4], which are high-intensity balls that appear along neuronal branches.
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Figure 1.4. (A) 2D mouse brain image taken (downloaded from www.brainimagelibrary.org/).
(B) UNET neuronal process segmentation output of image in (A). (C) Gray-scale mask of DM
graph reconstruction output of image in (A). The red circle highlights a neuron branch in the
original image (A) that is not connected in the UNET output (B) but is captured by DM graph
reconstruction (C).

Second, we design a DM graph reconstruction pipeline for 3D mouse brain imagining

datasets. These Morse graphs are the starting point for a 3D single neuron skeletonization

pipeline that we co-developed with collaborators at Cold Spring Harbor Laboratory [146]. Third,

we design a DM graph reconstruction pipeline for 3D tracer injection imaging datasets. These

Morse graphs are used in a larger pipeline for summarizing the distribution of neuronal signal

that we co-developed with our collaborators at Cold Spring Harbor Laboratory [146]. Finally, we

developed full brain skeletonization pipelines for both 2D and 3D mouse brain imaging datasets -

a significant step toward full brain neuronal process skeletonization.

Monotone Tree Decomposition

The ultimate goal for high-resolution full mouse brain imaging datasets would be to

extract each individual neuron in the entire brain. With pipelines now developed to extract

the full neuronal network graph from mouse brain imaging, it is natural to ask if one could

decompose the full graph into individual neurons. We explore this question in Chapter 4.

More specifically, we first generalize the above problem. A monotone tree - a tree

with a function defined on its vertices that decreases the further one travels from its root - is

a natural model for an acyclic process that weakens the further one travels from its source -

8
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such as the individual neurons in the mouse brain imaging datasets. The full brain DM graph

reconstruction output represents an aggregation of all such trees. Thus, given a graph representing

the aggregation of monotone trees, we wish to decompose the graph into individual monotone

trees. A polynomial time algorithm exists for computing the minimum cardinality collection of

monotone trees, which we refer to as an M-Tree Set, when the input is restricted to a density tree,

but no such algorithm exists when the input is a density graph that may contain cycles.

We have two main contributions. First, we prove that extracting such minimum M-

Tree Sets of density graphs is NP-Complete, as well as prove three additional variations of

the problem - such as the minimum M-Tree Set such that the intersection between any two

monotone trees is either empty or contractible (SM-Tree Set) - are also NP-Complete. Second,

on the algorithmic front, we provide several approximation algorithms, concluding with a

3-approximation algorithm for computing the minimum SM-Tree Set for density cactus graphs.

1.2.2 Extracting graph structure from high-dimensional PCDs and
scRNA-seq Datasets

DM Graph Reconstruction for High-Dimensional PCDs with Theoretical Justification

The existing DM graph reconstruction algorithm does not work well on high-dimensional

PCDs. It is far too expensive to compute a triangulation of the ambient space for high-dimensional

PCDs, and even then it can be non-trivial to compute a triangulation that appropriately approxi-

mates the space such that all meaningful topological features can be accounted for.

In Chapter 5, we aim to develop an efficient and effective graph skeletonization algorithm

for PCDs. We have four main contributions. First, we propose a new algorithm by changing our

perspective of the DM graph reconstruction algorithm from a density perspective to a filtration

perspective. This generalized algorithm greatly increases the flexibility of this procedure. Second,

we provide theoretical justification for this new algorithm by proving output graphs contain a so-

called lex-optimal persistent cycle basis of the input filtration. This proves that the output graph

contains meaningful information with respect to the input. Next, we design a practical filtration
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2

(A) (B) (C)

Figure 1.5. (A) A 2D PCD with points forming two circles of different scales and additional
white noise. (B) Output of our PCD DM graph reconstruction method at persistence threshold
δ = 1.2. (C) A graph reconstruction of the dataset, using a baseline density-based DM graph
reconstruction approach, detailed in Chapter 5, that fails to capture both features.

for high dimensional PCDs. We use the sparsified weighted Rips filtration of [16] as input for

the generalized algorithm to create a DM graph reconstruction algorithm for PCDs. Finally, we

include several empirical results to demonstrate both the effectiveness and efficiency of our high-

dimensional PCD DM graph reconstruction algorithm. An example is shown in Figure 1.5, which

shows our algorithm correctly extracting the graph skeleton of a PCD that contains two circles of

different scales with additional white noise (Figure 1.5. Figure 1.5(C) contains a failed graph

reconstruction performed by a baseline density-based DM graph reconstruction algorithm. This

failed reconstruction highlights the need for our high-dimensional PCD DM graph reconstruction

algorithm. It is not practical to adapt the density-based DM graph reconstruction algorithm to

extract structure from PCDs. Challenges such an approach faces include difficulty choosing

an appropriate scheme for building an input triangulation, running-time concerns should an

appropriate triangulation be particularly large, and dealing with points sampled at non-uniform

resolutions. Our high-dimensional PCD algorithm can successfully extract meaningful graph

structure, with the sparification of the input filtration also keeping the algorithm efficient.

Discrete Morse Graph Reconstruction for High-Dimensional Transcriptomic Data

The advancement and use of single-cell and spatial genomics techniques in neuroscience

have facilitated the large-scale creation of high-dimensional datasets and brain atlases across
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various species [3, 120, 74, 156]. Single-cell RNA sequencing (scRNA-seq) is now commonly

employed to explore anatomical transcriptomic structure [156, 157, 155, 120, 95], as well as

developmental stages [138], evolutionary trajectories [108], disease progression [101], and

other experimental scenarios. Analyzing these datasets requires thorough investigation and

quantification of the transcriptomic relationships among various brain features, which is crucial

for understanding their roles across different structures and biological contexts [36]. Goals of

such data analysis include identifying individual cell types, examining gene expression gradient

between different cell types, developing cell type taxonomies to explicitly define cell type

relationships, and quantifying gene expression changes over disease development cycles.

Analysis of scRNA-seq datasets faces all of the challenges of high-dimensional data

analysis. Manifold learning methods such as [99, 139, 84, 125, 135, 9, 46], as well as standard

dimensionality reduction techniques like principal component analysis [53], are used in many

scRNA-seq data analysis tools [73]. However, because its has been theoretically suggested [78]

and experimentally demonstrated [35] that these techniques fail to preserve structure, extracting

graph structure from the high-dimensional raw gene space is needed to analyze the true structure

of scRNA-seq datasets.

In Chapter 6, we aim to develop a graph reconstruction algorithm to extract meaningful

graph structure specifically from scRNA-seq datasets. We have two main contributions. First, we

develop an efficient and effective algorithm to construct the graph skeleton for high-dimensional

scRNA-seq datas, which are ultimately very high-dimensional, noisy PCDs. To this end, we note

that our high-dimensional PCD algorithm presented in Chapter 5 does not produce good results

when directly applied to scRNA-seq data, potentially due to the very high dimensionality and

high level of sparsity, as well as non-uniform sampling density of gene expression data across

different cell types. Instead, we combine the generalized algorithm in Chapter 5 with a lower-star

filtration with respect to Jaccard index to develop a graph extraction algorithm for scRNA-seq

datasets.

In our second contribution, we carry out various experiments both to validate that DM
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graph reconstruction output graphs are indeed meaningful structure and an effective tool for

data analysis of scRNA-seq datasets. We provide several experiments to demonstrate that Morse

graphs are (1) a more accurate representation of distance in the higher dimensional space than

lower dimensional embeddings, (2) compact, faithful representations of the entire input datasets,

and (3) contain important dataset exemplars. On the data analysis, we examine DM graph

reconstruction output graphs to define cell type identity, study gene expression gradient between

different cell types, and construct cell type taxonomies to define cell type relationships. We

conclude by using DM graph reconstruction outputs to quantify the difference between cell type

loss and gene expression changes along Alzheimer’s disease progression.
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Chapter 2

Preliminaries

We now briefly introduce some notions needed to describe the idea behind the DM-

graph algorithm of [147, 40]. In this dissertation, we will use the simplicial setting, where

the space of interest is modeled by a simplicial complex K, consisting of basic building blocks

called simplices. Intuitively, a geometric d-simplex is the convex combination of d +1 affinely

independent vertices: a 0-, 1-, 2-, or 3-simplex is just a vertex, an edge, a triangle, or a tetrahedron,

respectively. Ignoring the geometry, an abstract d-simplex σ = (v0, . . . ,vd) is simply a set of

d +1 vertices. Any subset τ of the vertices of a d-simplex σ is a face of σ , and τ is called a

facet of σ if its dimension is d −1. A simplicial complex K is a collection of simplices with the

property that if a simplex σ is in K, then any of its face must be in K as well. Given a simplicial

complex K, its q-skeleton Kq consists of all simplices in K of dimension at most q.

2.1 Persistent Homology

Instead of introducing persistent homology in its full general form, below we focus on

the simplicial complex setting. See e.g., [47, 28] for more detailed exposition.

Boundaries, cycles, homology groups.

Given a simplicial complex K, let Kq denote the set of q-simplices of K. Under Z2

field coefficient (which we use throughout this dissertation), a q-chain C = ∑σ∈Kq cσ σ where

cσ ∈ {0,1}; equivalently C is a subset of Kq (those with cσ = 1). The set of q-chains together
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with addition operation gives rise to the so-called q-th chain group Cq(K). Given any q simplex

σ , its boundary ∂qσ consists of all of its faces of dimension q-1. This in turn gives a linear

map, called the q-th boundary map ∂q : Cq(K)→ Cq−1(K), where ∂qC = ∑σ∈K1 cσ ∂q(σ) for any

q-chain C = ∑σ∈Kq cσ σ . A q-chain C is a q-cycle if its boundary ∂qC = 0. The collection of all

q-cycles form the q-th cycle group Zq; that is, Zq = kernel ∂q. A q-chain C is a q-boundary if it is

the image of some (q+1)-chain C′; i.e., C = ∂q+1C′. The collection of q-boundaries form the q-th

boundary group Bq; that is, Bq = image ∂q+1. By the fundamental property of boundary map,

i.e, ∂q ◦∂q+1 = 0, it follows that Bq is a subgroup of Zq. The q-th homology group Hq is defined

as Hq = Zq/Bq. In particular, given any q-cycle C, its homology class [C] is the equivalent class

of all q-cycles in q+Bq(K); and two q-cycles C1,C2 are homologous if [C1] = [C2], implying

that C1 +C2 is a boundary (i.e, C1 +C2 ∈ Bq(K)). The q-th homology classes intuitively capture

q-dimensional “holes” in K; i.e., connected components (0D), loops (1D), closed surfaces that

are not “filled” (2D) and their higher dimensional analogs. The qth homology group is the vector

space spanned by such topological features, and its rank, called the q-th Betti number βq(K),

gives the number of independent topological ”holes”.

Filtration, persistent modules.

Suppose we have a finite sequence of simplicial complexes connected by inclusions,

called a filtration of K, denoted by F : K1 ⊆ K2 ⊆ ·· ·Km = K. Applying the homology functor

to this sequence (with Z2 coefficients), we obtain a sequence of vector spaces (over field Z2)

connected by linear maps induced from inclusions, which is called a persistence module; in

particular, for any dimension q ≥ 0, we have:

PF : Hq(K1)→ Hq(K2)→ ·· · → Hq(Km).

where maps are induced by inclusions. We will assume that the persistence module is indexed by

a finite set [1,m] instead of Z for the remainder of the dissertation.

A special class of persistence modules is the so-called interval modules. (i) Ii = Z2
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for any ℓ ∈ [s, t] and Ii = 0 otherwise; and (ii) ν i, j is identity map for s ≤ i ≤ j ≤ t and 0 map

otherwise. We abuse the notation slightly and allow t = ∞, in which case the interval is really

[s,∞). A pictorial version of an interval module is as follows:

· · · → 0 → Z2 → Z2 → ·· ·Z2 → 0 → ··· .

Persistence diagram.

It turns out that a given persistence module V can be uniquely decomposed into direct

sums of interval modules (up to isomorphisms) V =
⊕

[b,d]∈J I[b,d], where J is a multiset of

intervals J = {[b,d]}. We call
⊕

[b,d]∈J I[b,d] the interval decomposition of V. Again, note that

the intervals in J could be of two forms: [b,d] for finite b,d ∈Z, and [b,∞); the former is called a

finite interval. Note that each interval [b,d] can also be viewed as a point in R2. Given a filtration

F , its persistence diagram dgmF is the multiset of points in J where PF =
⊕

[b,d]∈J I[b,d] is

the interval decomposition of PF . Each point in J is called a persistence point. Assuming that

we are given a monotone function f : Z→ R, then the persistence of p= [b,d] ∈ dgmF w.r.t. f

is defined as pers(p) = f (d)− f (b) 1. To make the dependency on the function f explicit, we

now write the filtration together with this function as F f , and the persistence diagram is denoted

by dgmF f . For example, a common choice of f in the literature is simply f (i) = i.

Simplex-wise setting.

In the remainder of this dissertation, we assume that we are given a simplex-wise filtration

F of K, such that there is an ordering of all simplices in K, σ1, . . . ,σN , and the filtration is given

by:

F : /0 = K0 ⊂ K1 ⊂ ·· · ⊂ KN = K, where Ki := {σ1, . . . ,σi}. (2.1)

1We note that in the literature, the persistence of a pair is often defined using some indices (Z or R) of the
filtration. Here we decouple the two to make the presentation cleaner.
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Suppose we are also given a monotone function ρ : [1,N]→R (i.e, ρ( j)≥ ρ(i) for j > i), which

we use to define the persistence of points in the persistence diagram dgmFρ . (If no function ρ

is explicitly given, we take ρ to be ρ(i) = i.)

Furthermore, note that for any i, Ki is obtained by adding σi to Ki−1. Let ind : K → [1,N]

be this bijection, where we set ind(σi) = i. That is, ind(σ) in general is the index of simplex σ

in the ordered sequence of simplices that induce simplex-wise filtration F ; or, the time it will

be inserted into a complex (i.e Kind(σ)) in the filtration. Given this bijection, a function on the

simplices in K also gives rise to a function on [1,N]. In what follows, for convenience, we do not

differentiate a function on simplices in K and a function on [1,N]; that is, ρ(σ) = ρ(ind(σ)),

and if simplices are ordered as in Eqn (2.1), then ρ(σi) = ρ(i). If ρ is defined on simplices in K,

we also call it a simplex-wise function ρ : K → R.

Given any persistence point [b,d] ∈ dgmFρ with b,d ∈ [1,N], we say its corresponding

persistence pair is (σb,σd) and it is necessary that dim(σd) = dim(σb)+1. We set pers(σb) =

pers(σd) = pers([b,d]) = ρ(d)−ρ(b). If d = ∞, then we say σb is unpaired, and pers(σb) =

ρ(∞) := ∞. Finally, consider each persistence pair (σ ,τ), we say that σ is positive and τ is

negative, as the q-simplex σ will create a new homology class that will become trivial (be killed)

when the (q+1)-simplex τ is added to the filtration.

A common way to induce a filtration is via a descriptor function ρ : V (K)→ R given at

vertices V (K) of K. For simplicity of presentation, assume that ρ is injective. We can extend ρ

to a simplex-wise function ρ : K → R by setting ρ(σ) = maxv∈σ ρ(v). Consider an ordering of

simplices Sρ : σ1, . . . ,σm that is consistent with ρ; i.e, (i) ρ(σi)≤ ρ(σ j) for any i ≤ j and (ii)

for any simplex σi, its faces appear before it in the ordering. This order induces the so-called

lower-star filtration Fρ w.r.t. ρ . That is, assume ρ(v1)< .. . < ρ(vn). Intuitively, we inspect the

domain in increasing values of ρ and the lower-star filtration is obtained by adding each vertex

vi and its lower-star (simplices incident on vi with function value at most ρ(vi)) in ascending

order of i. The persistence diagram dgmpFρ encodes birth and death of features during this

course. In this case, we modify the persistence to reflect function values: For a persistence point
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(b,d) ∈ dgmpFρ , we set pers((b,d)) = pers((σb,σd)) := |ρ(σd)−ρ(σb)|. Features with large

persistence survive for a long range of function values and are considered as more important

w.r.t. ρ .

2.2 Discrete Morse Theory

Below we very briefly introduce some concepts from discrete Morse theory, so that

we can introduce both the original algorithm of [147] (to provide intuition) and the simplified

algorithm of [40]. See [51, 52] for more detailed exposition of discrete Morse theory.

We again consider the simplicial complex setting. Given a simplicial complex K, a

discrete gradient vector is a combinatorial pair of simplices (σq,τq+1) where σ is a face of

τ of co-dimension 1 (i.e, σ is a vertex of an edge τ , or an edge of a triangle τ), and we

sometimes include the superscript to make its dimension explicit. Given a collection M(K)

of such discrete gradient vectors over K, a V-path is a sequence of simplices of alternating

dimensions: σ
q
1 ,τ

q+1
1 , . . . ,σ

q
ℓ ,τ

q+1
ℓ ,σ

q
ℓ+1 such that for each i ∈ [1, ℓ], we have (1) (σq

i ,τ
q+1
i ) ∈

M(K) and (2) σ
q
i+1 is a face of τ

q+1
i . We say that a V-path as above is a non-trivial closed V-path

(or cyclic) if σ1 = σℓ+1; otherwise, it is acyclic.

Definition 2.2.1 (Discrete Morse gradient vector field). A collection of discrete gradient vectors

M(K) of K is a discrete Morse gradient vector field, or DM-vector field for short, if (i) any

simplex in K is in at most one vector in M(K); and (ii) no V-path in M(K) is cyclic.

A simplex in K is critical w.r.t. a DM-vector field M(K) if it does not appear in any

gradient vector in M(K).

Now suppose we are given a critical edge e in M(K). The stable 1-manifold of e is the

union of vertex-edge V-paths v1,e1, . . . ,vℓ,eℓ,vℓ+1 such that v1 is an endpoint of e, while vℓ+1

is a critical vertex. Such stable 1-manifolds correspond to the ”valley ridges” in a continuous

function f : Rd → R (the graph of which can be viewed as a terrain), connecting index-1 saddles

with minima. They are the opposite of ”mountain ridges” (unstable 1-manifolds), connecting
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saddles to maxima and separating different valleys.

Finally, we note that there is a Morse cancellation operation that allows one to cancel a

pair of critical simplices, and thus reduce both the number of critical simplices as well as the

complexity of (un)stable 1-manifolds. In particular, a pair of critical simplices ⟨σq,τq+1⟩ is

cancellable if there is a unique V-path σ1,τ1...,σℓ,τℓ,σℓ+1 = σq in M(K) such that σ1 is a face

of τq+1. The Morse cancellation operation will essentially invert the gradient vectors along this

V-path and render σq and τq+1 no longer critical afterwards.

2.3 Graph Reconstruction Algorithm for Density Field
Based on Morse Theory

Below we first introduce the intuition behind the original discrete Morse based graph

reconstruction algorithm from density field by [134, 147] in the smooth setting. We will then

describe the discrete setting, and its simplification DM-graph by [40]. First, assume we are given

a smooth function ρ : Ω → R on a hypercube Ω in Rd . View ρ as a density function which

concentrates around a hidden geometric graph (e.g, Figure 1.2 (A) where Ω ⊂ R2). Consider the

graph of this function {(x,ρ(x)) | x ∈ Ω}, which is a terrain in Rd+1 and which we will refer to

as the terrain of ρ; see Figure 1.2 (B). Intuitively, the ”mountain ridge” of this terrain identifies

the hidden graphs, as locally on the hidden graph, the density should be higher than points off it.

To capture these mountain ridges, one can use the so-called unstable 1-manifolds of the function

ρ as in [134, 147].

Roughly speaking, given ρ , the gradient vector at x ∈Ω, ∇ρ(x) =−[ ∂ρ

∂x1
(x), . . . , ∂ρ

∂xd
(x)]T ,

indicates the steepest descending direction of ρ at x. See Figure 1.2 (D). Critical points of ρ are

points whose gradient vector vanishes. For a smooth function on d-D domain, non-degenerate

critical points include minima, maxima, and d-1 types of saddle points. An integral line is

intuitively the flow-line traced out by following the gradient direction at every point. Flow-lines

(integral lines) start and end (in the limit) at critical points. The unstable 1-manifold of a saddle
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(of index d-1) is the union of flow-lines starting at some maximum and ending at this saddle.

Intuitively, unstable 1-manifolds connect mountain peaks to saddles to peaks, separating different

valleys (around minima), and thus can be used to capture mountain ridges.

Hence one can compute the union of unstable 1-manifolds of ρ as its graph skeleton.

Furthermore, the density map ρ may be noisy. To denoise the graph skeleton, previous approaches

use persistent homology to keep only unstable 1-manifolds corresponding to ”important” saddles.

Algorithm in the discrete setting.

In the discrete setting imagine K is the 2-skeleton of a domain Ω of interest, ρ is a density

function defined on Ω but is only accessible at vertices V (K) of K, i.e., ρ : V (K)→R. Algorithm

firstDM-graph(K,ρ : V (K)→ R,δ ) will output a graph consisting of edges of K capturing a

graph skeleton of the density field ρ by the following three steps:

• (Step 1): Compute persistence pairing P induced by the lower-star filtration w.r.t. -ρ .

Specifically, we use f =−ρ as it is easier to algorithmicly compute the discrete analog of

”valley ridges” using discrete Morse theory than ”mountain ridges” – The valley ridges are

the stable 1-manifolds (vertex-edge V-paths) for critical edges, and thus only 2-skeleton of

input complex K is needed. To compute the importance of critical points in the simplicial

setting when we are given f : V (K) → R, we use the standard lower-star filtration to

simulate the so-called sublevel-set filtration in the smooth case. In particular, given

f : V (K)→ R, let v1 . . .vn be the set of vertices in K sorted in non-decreasing order of f

values. Given any vertex vi ∈V (K), its lower-star lowSt(vi) consists of the set of simplices

incident on vi spanned by only vertices from Vi := {v1, . . . ,vi}. The lower-star filtration

w.r.t. f is the following:

K̂1 ⊂ K̂2 ⊂ ·· · K̂n = K; where Ki = Ki−1 ∪ lowSt(vi). (2.2)

Equivalently, we can think that this filtration is induced by a simplex-wise function
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f̂ : K → R where f̂ (σ) = maxvertex v of σ f (v).

• (Step 2): Initialize vector field M(K) to be the trivial one where all simplices are critical.

Then in order of increasing persistence, for each pair (σ ,τ) ∈ P with pers(σ ,τ) ≤ δ ,

perform discrete Morse cancellation and update M(K) if possible. Intuitively, this is to

simplify and remove ”not-important” critical points.

• (Step 3): Output the graph Gδ =
⋃

e∈K,pers(e)>δ{ stable 1-manifold of e}.

In particular, we only consider critical edges that are ”important” (i.e., pers > δ ). Then we

trace the valley ridges (stable 1-manifolds) connecting them to minima. These minima -

which have persistence greater than δ - are the topographically prominent peaks of ρ .

Simplified algorithm.

It turns out that algorithm firstDM-graph() can be significantly simplified [40]. In

particular, one does not need to explicitly maintain any discrete Morse gradient vector field at all.

See Algorithm DM-graph() below.

Algorithm 1: DM-graph(K,ρ,δ )
Input: Triangulation K, density function ρ : V (K)→ R, persistence threshold δ

Output: a graph skeleton Gδ

(Step 1) Compute persistence pairing P induced by the lower star filtration w.r.t. -ρ ,
(Step 2) Set Tδ := {e ∈ E | e is negative and pers(e)≤ δ}

For each component (tree) T in Tδ , set its root to be r(T ) := argminv∈T -ρ(v).
(Step 3) Let πT (x,y) be the tree path from x to y in a tree T . Output:

Gδ =
⋃

e=(u,v),pers(e)>δ

{e∪πTi1
(u,r(Ti1))∪πTi2

(v,r(Ti2)) | u ∈ Ti1,v ∈ Ti2 in Tδ}.

(2.3)

In particular, in (Step 3) above, we only consider critical edges with pers > δ , and their

stable 1-manifolds turn out to be the union of tree paths as specified in Eqn (2.3). Note that (Step

2, 3) can be implemented in time linear to the number of vertices and edges in K.
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2.4 Reprint

Chapter 2, in full, is a reprint of the Preliminaries section as it appears in Graph skele-

tonization of high-dimensional point cloud data via topological method in Journal of Compu-

tational Geometry. Magee, Lucas; Wang, Yusu. 2022. The author of the dissertation was the

primary investigator and the author of this article.
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Chapter 3

Extracting Neuronal Trees from Mouse
Brain Imaging Datasets

In this chapter, we will apply the already developed DM graph reconstruction algorithm

(Algorithm 1) to extract meaningful graph structure from neuroscientific datasets. More specifi-

cally, we will develop pipelines for extracting Morse graphs from both 2D and 3D mouse brain

imaging datasets. These pipelines are then used to develop several pipelines for neuronal process

segmentation, neuron reconstruction, and tracer injection summarization with collaborators at

Cold Spring Harbor Laboratory.

3.1 Introduction

Analyzing the structure and connections of neurons is vital for comprehending brain

circuitry. This requires accurately labeling neuronal process in whole brains. Historically, this

was manually done with a microscope - a labor intensive process prone to human error. More

recently, image visualization techniques have advanced to enable visualization of full brain

imaging datasets at a subcellular resolution [13, 45, 119]. However, these imaging techniques

have enabled the quick generation of large-scale, high-resolution datasets [109, 115, 92], making

manual annotation no longer viable due to the amount of data that needs to be annotated.

The analysis of neuroanatomical imaging datasets specifically benefited from machine

learning based methodologies. Previous research has focused on reconstructing neuronal struc-
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tures from electron microscopy data and image stacks [64, 72, 111, 112, 121, 29, 54, 152, 65].

Although such methodologies are quite effective, there are still weaknesses inherent in machine

learning approaches that are very apparent in the analysis of neuroanatomical imaging datasets.

Such approaches do not factor in the inherent structure and connectivity of individual neurons,

which are tree-like in nature. Considering that these same approaches rely heavily on local

information to make decisions and outputs produced by such approaches do not respect the

tree structure of individual neurons and the connectivity of their branches, there is a need for

methodologies that respect neuronal structure.

In contrast to traditional machine learning based approaches, topological methods capture

global connectivity and will naturally respect the true structure of neurons. In particular, DM

graph reconstruction has already been applied successfully to different domains, such as road

network reconstruction [147], where respecting the connectivity of the input data is imperative.

An example of where DM graph reconstruction can be utilized in mouse brain imaging is shown

in Figure 1.4. Figure 1.4(A) shows a 2D mouse brain image, circling a clear neuron branch that

happens to have lower pixel values than other neuron branches in the image. UNET [124], a

machine learning image segmentation network, fails to identify the neuronal branch in this low

intensity region (Figure 1.4 (B)), because the architecture relies on local information. In contrast,

the DM graph reconstruction output (Figure 1.4(C)) , which is computed with global information,

accurately captures the neuronal branch.

In this chapter, we apply DM graph reconstruction to mouse brain imaging datasets.

In particular, we collaborated with Cold Spring Harbor research scientists to produce several

pipelines for analyzing mouse brain imaging datasets with DM graph reconstruction.

The first pipeline is a Siamese neural network architecture for neuronal process segmen-

tation of 2D mouse brain images that takes gray-scale masks of DM graph reconstruction outputs

as input. Additionally, bouton detection is performed by intersecting the highly persistent nodes

on the Morse graph with the final process detection output. Our contribution to this pipeline

is strictly the DM graph reconstruction output masks and the bouton detection. The complete

23



pipeline and results have been published in [4].

The second pipeline reconstructs individual neurons from 3D mouse brain imaging. The

starting point of the pipeline is the DM graph reconstruction output of the 3D input mouse brain

image, which is our contribution to this pipeline. The complete pipeline and results have been

published in [146].

The third pipeline constructs trees to summarize tracer injection datasets, which labels

thousands of neurons are collectively instead of individually and thus has a more complicated

topological structure than individual trees. The starting point of this pipeline is also the DM

graph reconstruction output of the 3D input mouse brain image, which is our contribution to this

pipeline. The complete pipeline and results have been published in [146].

The final pipelines are full brain skeletonization pipelines for 2D and 3D imaging datasets.

These pipelines are publicly available on Github.

3.2 DM Graph Reconstruction for 2D Neuronal Process
Detection

3.2.1 Neuronal Process Segmentation

We develop a pipeline that produces gray-scale masks of DM graph reconstruction

outputs of 2D mouse brain imaging. We first apply a Gaussian filter to the input image to smooth

pixel values. Next, we perform DM graph reconstruction on the Gaussian smoothed input image,

taking pixel values to be the density function. A mask is created by assigned each pixel that

is part of the DM graph reconstruction output the average pixel of the path that it is part of

(maximum value assigned if a pixel corresponds to a junction node on the graph). This pipeline

is shown in Figure 3.1, which was originally published in [4].

The DM graph reconstruction output is a poor image segmentation output on its own for

a few reasons. First and most importantly, it contains many false positives. Secondarily, there is

also no thickness to the graph, and thus thickness of the branches is also not captured. Although
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Figure 3.1. (A) 2D mouse brain image on which we wish to capture neuronal process. (B) Input
image after Gaussian smoothing. (C) Pixel values from Gaussian smoothed image are projected
into the third dimension. We observe that the neuronal process corresponds to the mountain
ridges of this terrain. DM graph reconstruction extracts these mountain ridges. (D) The final
gray-scale mask of the DM graph reconstruction output. This diagram was originally published
in [4].

Figure 3.2. The DM++ architecture contains a Siamese network that takes process detection
output from traditional machine learning network, such as ALBU, and DM graph reconstruction
masks as inputs to produce a final process detection output. This diagram, and the architecture it
is conceptualizing, were originally published in [4].

machine learning methodologies do not capture the underlying connectivity of neuronal branches,

do not have these downsides. Thus, researchers at Cold Spring Harbor Laboratory developed a

Siamese network architecture, named DM++, that takes our gray-scale masks as one input, and

the process detection output of ALBU [17] as another input. The architecture, which has been

published in [4], is shown in Figure 3.2.

In [4], neuronal process detection is performed on three mouse brain imaging datasets -

monochrome Serial Two Photon Tomographic images (STP), 3-color fluorescent WSI images

from the Mouse Brain Architecture project (MBA), and Bright Field Images (BFI), in [4].

Precision, recall, and F1 scores of DM++, ALBU [17], UNET [124], and an unsupervised

methodology are shown in Table 3.1. DM++ outperformed all other methodologies on all
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datasets in precision, recall, and F1. An example of where DM++ improves the connectivity

of the neuronal process segmentation output is shown in Figure 3.3. While ALBU produces

a segmentation that disconnects a branch with lower intensity than other branches, the DM

graph reconstruction mask perfectly captures the branch. This enables DM++ to produces a final

segmentation that perfectly capture the branch.

Table 3.1. Precision, Recall, and F1 values for neuronal process segmentation on three different
mouse brain imagining datasets (STP, MBA, and BFI) using UNET, ALBU, DM++, and an
unsupervised baseline technique. The unsupervised technique for Process Detection involves
intensity-based thresholding with hard-coded parameters for threshold and morphological opera-
tions. These results were originally published in [4].

Model Precision Recall F1
Process Detection - STP

Unsupervised 0.61 0.63 0.62
UNET 0.85 0.88 0.86
ALBU 0.90 0.88 0.89
DM++ 0.92 0.93 0.92

Process Detection - MBA
Unsupervised 0.41 0.51 0.46
UNET 0.67 0.73 0.70
ALBU 0.79 0.82 0.81
DM++ 0.83 0.84 0.84

Process Detection - BFI
Unsupervised 0.59 0.61 0.60
UNET 0.73 0.75 0.74
ALBU 0.79 0.80 0.80
DM++ 0.81 0.83 0.82

3.2.2 Bouton Detection

Boutons are swellings that occur along neuronal axon branches. In mouse brain imaging

datasets, they appear as balls with significantly higher pixel values than the axon branches they lie

on (see Figure 3.4 for an example image with many boutons). Thus, boutons are actually captured

by the DM graph reconstructions outputs as vertices on the graph that have high persistence

values.
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Figure 3.3. An example of where DM++ improves the connectivity of neuronal process segmen-
tation of an STP mouse brain image. This diagram was originally published in [4].
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(A) (B) (C)

Figure 3.4. (A) A tile from a mouse brain image containing several neuronal branches with
boutons. (B) The same image in (A) with detected boutons marked in red. (C) The same image
in (A) with true positives detected in (B) marked in yellow, false positives in (B) marked in
magenta, and false negatives missed in (B) marked in cyan. These pictures were originally
published in [4].

We detect boutons by intersecting the highly persistent vertices of the DM graph recon-

struction output with the final process detection output produced by DM++. An example from

[4] is shown in Figure 3.4. We report modified precision, recall, and F-1 scores of .76, .31, and

.44 respectively. The modified metrics used a radius of 2.5 microns, meaning a detection would

be marked as a true positive if the closest true bouton was at most 2.5 microns away from the

detection. This result was previously published in [4].

3.3 DM Graph Reconstruction for 3D Mouse Brain Images

3.3.1 Single Neuron Skeletonization

We develop a pipeline that produces a graph skeleton containing all neuronal process in a

3D mouse brain image. We run DM graph reconstruction on the 3D image, taking voxel values

to be the density function. DIPHA [6] is used for the persistence computation inside of the DM

graph reconstruction algorithm. The output produced is a list of vertices (voxels) and edges that

make up the output graph that captures all neuronal process in the image. The pipeline is shown

in Figure 3.5 (Pre-processing and Skeletonization steps).

The DM graph reconstruction output is great at skeletonizing all of the neuronal process

in a 3D image (Figure 3.5). However, it is a poor single neuron skeletonization methodology on

its own. While of the process of a single neuron may be skeletonized by DM graph reconstruction,

it is impossible for DM graph reconstruction to not capture neuron branches in the image that
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Figure 3.5. Workflow for single neuron skeletonization pipeline developed with our Cold Spring
Harbor collaborators in [146]. The methodology and the figure were previously published in
[146].

belong to multiple neurons. Thus, researchers at Cold Spring Harbor laboratory developed

a single neuron skeletonization pipeline for fluorescent micro-optical sectioning tomograph

(fMOST) 3D mouse brain images using the DM graph reconstruction output as the starting point

[146]. Afterwards, the output graph is postprocessed by first computing a weighted shortest path

spanning forest with trees rooted at each soma in the input image and the simplifying each tree.

The full single neuron skeletonization pipeline is shown in Figure 3.5. Refer to [146] for more

details on the simplification.

In [146], single neuron skeletonization is performed on 224 micron by 224 micron by

251 micron 3D fMOST mouse brain images centered at the somas of the neurons we wish

to reconstruct. Results of one such single neuron reconstruction, as well as the ground truth

annotation and results of APP2 [152] and GTree [65] are shown in Figure 3.6(A). Zoom-ins of

the reconstructions (Figure 3.6(B)) reveal that APP2 misses several branches in the reconstruction

and GTree has many false positive branches. The DM graph reconstruction based approach is

observably closest to the ground truth for this particular neuron. Precision, recall, and F1 scores

for all three methods on three neuron reconstructions are reported in Figure 3.6(C). For all three

neurons, the DM graph reconstruction approach yields a significantly higher F1 score than APP2

and GTree. Figure 3.6 was previously published in [146].
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Figure 3.6. (A) A zoom-in of a fMOST 3D mouse brain image centered around the soma of
a neuron. From left to right, we see the ground truth annotation, the DM graph reconstruction
approach, GTree, and APP2 skeletonization outputs. (B) Further zoom-ins on the ground truth
and reconstruction outputs highlighting the differences in each output. (C) Precision, recall, and
F1 scores for each of the three methodologies on three single neurons from 3D fMOST mouse
brain imaging. This figure was previously published in [146].
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Figure 3.7. Workflow for tracer injection summaraization pipeline developed with our Cold
Spring Harbor collaborators in [146]. The methodology and the figure were previously published
in [146].

3.3.2 Tracer Injection Summarization

We develop a pipeline to produce a graph skeleton containing all potential neuronal

trajectories from 3D multiple neuron tracer injection imaging datasets. We run the DM graph

reconstruction algorithm on a (preprocessed (Figure 3.7 Pre-processing)) 3D mouse brain neuron

tracer injection image, taking voxel values to be the density function. DIPHA [6] is used for

the persistence computation inside of the DM graph reconstruction algorithm. The output is

produced is a list of vertices (voxels) and edges that make up the output graph that captures all

potential neuronal trajectories in the dataset. The pipeline is shown in 3.7 (Skeletonization).

The DM graph reconstruction captures all possible neuron trajectories, but contains many

false positives. Thus, we collaborated with researchers at Cold Spring Harbor Laboratory to

develop a tracer injection summarization pipeline that uses our DM graph reconstruction pipeline

[146]. As previously stated, the raw tracer injection dataset is preprocessed with process detection

[4] and proofreading. Our DM graph reconstruction pipeline is run on this preprecossed image.

Finally, the output of DM graph reconstruction is postprocessed by first computing a weighted

shortest path spanning forest, and then simplifying each tree. Postprocessing is concluded by

assigning a thickness to each node along the graph. The full tracer injection summarization

pipeline is shown in Figure 3.7. Refer to [146] for more details on the simplification.

In [146], tracjer injection summarization is performed on a full STP 3D mouse brain

image. Multiple views (Figure 3.8(A)) show that the summarization pipeline developed in
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Figure 3.8. (A) Several views of the DM graph reconstruction based summarization on an
3D STP mouse brain image. (B) Fixed view of the raw data, DM graph reconstruction based
summarization pipeline output, and GTree output. (C) . This figure was previously published in
[146].

[146] faithfully captures all neuronal signal in the image. Comparing to other methodologies

(Figure 3.8(B)), GTree struggles to signal through low intensity regions, a strength of the DM

graph reconstruction approach. APP2 results for this image were excluded due to poor quality.

Figure 3.8(C) contains coverage results for all three approaches, highlighting the DM graph

reconstructions superiority in faithfully covering the full brain. Figure 3.8 and its results were

previously published in [146].

3.4 Full Brain Skeletonization

Our final work in this Chapter concerns using DM graph reconstruction to construct

skeletonizations for all neuronal process in high-resolution full brain imaging datasets. For

both 2D and 3D pipelines, DIPHA [6] is used for the persistence computation in the DM graph
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Figure 3.9. Workflow for our 2D mouse brain skeletonization pipeline. This pipeline is publicly
available at www.github.com/lucasjmagee/Neuron-Fragment-DM-Skeletonization. The raw
image is download from www.brainimagelibrary.org/. Likelihood and binary DM++ outputs
were provided by our collaborators at Cold Spring Harbor Laboratory.

reconstruction algorithm.

3.4.1 2D Full Brain Skeletonization Pipeline

Given a full stack of high-resolution 2D mouse brain images, we build a pipeline to

skeletonize all neuronal process in each image. Our pipeline is shown in Figure 3.9. Starting

with raw images, DM++ [4] is run to obtain a likelihood masks. DM graph reconstruction is

run on the likelihood images, and the output is intersection with the binary DM++ segmentation

output to avoid capture of non-neuronal processes in the images. DM++ outputs were provided

to us by our collaborators at Cold Spring Harbor Laboratory. We postprocess our graphs with

a so-called ”haircut” process. The raw DM graph reconstruction outputs contain many false

positives by nature of the algorithm. While the intersection with the binary DM++ process

segmentation output removes most false positives, this leaves several short paths off of the true

neuronal branches (Figure 3.9). We remove these branches by removing branches from our path

that contain a single node of degree 1 and have a single change in direction. The skeletonizations

for each image in the stack can be considered simultaneously to view all neuronal process in the

full mouse brain.

3.4.2 3D Full Brain Skeletonization Pipeline

Given a high-resolution full brain 3D mouse brain imaging dataset, such as fMOST

datasets, we build a pipeline to skeletonize all neuronal process in the image. Such datasets
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Figure 3.10. Workflow for our 3D mouse brain skeletonization pipeline. The input 3D
mouse brain image is first divided into sub-images. Then DM graph reconstruction is per-
formed on the each sub-images. Resulting graphs are tied together via the stitching pro-
cess described in [148]. This pipeline is publicly available at www.github.com/lucasjmagee/
3D-Discrete-Morse-Graph-Reconstruction.

are far too large for the DM graph reconstruction algorithm (and specifically, the persistence

computation within the algorithm). Thus, we opt to run DM graph reconstruction on overlapping

subsets of the input image, and stitch together the graph reconstructions via the methodology

described in [148]. Briefly, we first divide the input image into overlapping sub-images. Next,

DM graph reconstruction is performed on each sub-image. Then, a new graph is made starting

with the union of all sub-image graphs. Unwanted disconnections of neuronal branches may

occur in overlapping areas of our sub-images (see Figure 3.10). We build a new complex which

builds triangulation in the overlap regions around components of our graph that lie within them

and assign new vertices function values via diffusing of function values of vertices in the original

sub-image graphs by Gaussian kernel. Finally, we run DM graph reconstruction on this new

complex, which will correctly output a graph with connected branches that were previously

disconnected in the overlapping regions (see Figure 3.10). Please refer to [148] for more detail

on the stitching process.
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3.5 Reprint

Chapter 3, in part, is a reprint of the material as it appears in Semantic segmentation

of microscopic neuroanatomical data by combining topological priors with encoder-decoder

deep networks in Nature Machine Intelligence. Banerjee, Samik; Magee, Lucas; Dingkang,

Wang; Li, Xu; Huo, Bingxing; Jayakumar, Jaik-ishan; Matho, Katie; Lin, Adam; Ram, Keerthi;

Sivaprakasam, Mohanasankar; Huang, Josh; Wang, Yusu; Mitra, Partha. 2020. The author of the

dissertation was the second author of this article.

Chapter 3, in part, is a reprint of the material as it appears in Detection and skeletonization

of single neurons and tracer injections using topological methods in bioRxiv. Wang, Dingkang;

Magee, Lucas; Huo, Bingxing; Banerjee, Samik; Li, Xu; Jayakumar, Jaikishan; Lin, Meng Kuan;

Ram, Keerthi; Wang, Suyi; Wang, Yusu; Mitra, Partha. 2020. The author of the dissertation was

the second author of this article.
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Chapter 4

Minimum Monotone Tree Decomposition
of Density Graphs

We concluded the previous chapter (Chapter 3) with the development of full brain

neuronal process skeletonization pipelines. Given that we can now extract all the neuronal

process in a mouse brain imaging dataset into a single graph, it is natural to question how

one might decompose that graph into the original neurons. In this chapter, we generalize the

decomposition problem to constructing so-called minimum M-Tree Sets of density graphs. We

will cover several hardness results for computing minimum M-Tree Sets and other variations

of the problem. We will also provided several approximation algorithms, highlighted by a

3-approximation algorithm for computing the minimum SM-Tree Set for density cactus graph

[97].

4.1 Introduction

A common problem in modern data analysis is taking large, complex datasets and

extracting simpler objects that capture the true nature and underlying structure. In this chapter,

we are interested in the case when the input data is the aggregation of a collection of trees. In

fact, each tree also has attributes over nodes (e.g., the strength of certain signal) which decreases

monotonically from its root – we call such a tree a monotone tree. Such trees come naturally in

modeling a process that dissipates as it moves away from the root. One such example is in the
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construction of neuronal cells: a single neuron has tree morphology, with the cell body (soma)

serving as the root. In (tracer-injection based) imaging of brains, the signal often tails off as it

moves away from the cell body and out of the injection region, naturally giving rise to a rooted

monotone tree. Figure 4.1 (D) is centered around the soma of a single neuron within a full mouse

brain imaging dataset with branches that get weaker as they get further from the soma.

Generally, we are interested in the following: given input data that is the aggregation of a

collection of monotone trees, we aim to reconstruct the individual monotone trees. The specific

version of the problem we consider in this chapter is where the input data is a graph G = (V,E)

with a density function f : V →R≥0 defined on its vertices. Our goal is to decompose (G, f ) into

a collection of monotone trees (T1, f1), . . . ,(Tk, fk) whose union sums to the original (G, f ) at

each v ∈V . See Section 4.2 for precise definitions. A primary motivation for considering graphs

to be the input is because graphs are flexible and versatile, and recently, a range of methods

have been proposed to extract the hidden graph structure from a wide variety of datasets; see

e.g., [69, 82, 110, 1, 134, 58, 89, 27, 147, 40, 96]. In the aforementioned example of neurons,

the discrete Morse-based algorithm of [40] has been applied successfully to extract a graph

representing the summary of a collection of neurons [146, 4]. To extract the individual neurons

from such a summary would be a significant achievement for the neuroscience community -

which has developed many techniques to extract individual neuron skeletonizations from imaging

datasets; see e.g., [65, 116, 29]. However, going from a graph to a collection of trees poses

algorithmic challenges.

The monotone-tree decomposition problem has been studied in the work of [5], which

develops a polynomial-time algorithm for computing the minimum cardinality set of monotone

trees (M-Tree Set) of a density function defined on a tree (instead of a graph). However many

applications for such a decomposition have graphs that may contain cycles, with the authors of

[5] explicitly mentioning a need for algorithms that can handle such input domains.
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4.1.1 Contributions

We consider density functions defined on graphs, which we refer to as density graphs. Our

goal is to decompose an input density graph (G, f ) into as few monotone trees as possible, which

we call the minimum M-Tree Decomposition problem. See Section 4.2 for formal definitions

and problem setup. Unfortunately, while the minimum M-Tree Decomposition problem can be

solved efficiently in polynomial time via an elegant greedy approach when the density graph is

itself a tree [5], we show in Section 4.3 that the problem for graphs in general is NP-Complete.

In fact, no polynomial time constant factor approximation algorithm exists for this problem

under reasonable assumptions (see Section 4.3). Additionally, we show NP-Completeness for

several variations of the problem (Section 4.3). We therefore focus on developing approximation

algorithms for this problem. In Section 4.4, we first provide two natural approximation algorithms

but with additive error. For the case of multiplicative error, we provide a polynomial time 3-

approximation algorithm for computing the so called minimum SM-Tree Set of a density cactus

graph.

4.2 Preliminaries

4.2.1 Problem Definition

We will now introduce definitions and notions in order to formally define what we wish

to compute. Given a graph G(V,E), a density function defined on G is a function f : V → R≥0.

A density graph (G, f ) is a graph G paired with a density function f defined on its vertices. A

monotone tree is a density tree with a root v ∈V such that the path from the root to every node

u ∈V is non-increasing in density values. See Figure 4.1 for explicit examples of density trees

and monotone trees. While multiple nodes may have the global maximum value on the monotone

tree, exactly one node is the root. For example, in Figure 4.1 (B), either node with the global

maximum value may be its root, but only one of them is the root.

Given a density graph (G(V,E), f ), we wish to build a collection of monotone subtrees
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Figure 4.1. (A) - (C) Contain examples of density trees with relative maxima colored red. (A)
shows a monotone tree. (B) shows a monotone tree with multiple nodes having the global
maximum density value. (C) shows an example of a density tree that is not a monotone tree. (D)
A zoom in an individual neuron within a full mouse brain imaging dataset. The dataset is an
fMOST imaging dataset that was created as part of the Brain Initiative Cell Census Network and
is publicly available for download.

(T1, f1),(T2, f2), . . . ,(Tn, fn) such that Ti ⊆ G for all i and ∑
n
i=1 fi(v) = f (v) for all v ∈V . Note

that if a node v ∈V is not in a tree Ti then we say that fi(v) = 0 and vice versa. We will refer

to such a decomposition as a monotone tree (M-tree) decomposition of the density graph, and

refer to the set as an M-Tree Set throughout the remainder of the chapter. An M-Tree Set is a

minimum M-Tree Set for a density graph if there does not exist an M-Tree Set of the density

graph with smaller cardinality. An example of a density graph and a minimum M-Tree Set is

shown in Figure 4.2. Note that a density graph may have many different minimum M-Tree

Sets. We abbreviate the cardinality of a minimum M-Tree Set for a density graph (G, f ) as

|minMset((G, f ))|.

There are different types of M-Tree Sets that may be relevant for different applications.

A complete M-Tree (CM-Tree) Set is an M-Tree Set with the additional restriction that every

edge in the density graph G must be in at least one tree in the set. A strong M-Tree (SM-Tree) Set

is an M-Tree Set such that the intersection between any two trees in the set must be either empty

or contractible. We similarly abbreviate the cardinality of a minimum SM-Tree Set of (G, f ) as

|minSMset((G, f ))|. A full M-Tree (FM-Tree) Set is an M-Tree Set such that for each element

(Ti(Vi,Ei), fi), fi(v) = f (v) for the root node v ∈ Vi of (Ti, fi). The (minimum) M-Tree Set in

Figure 4.2 is also a (minimum) CM-Tree Set but is neither a SM-Tree Set nor a FM-Tree Set.
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Figure 4.2. A density graph (left) together with a minimum M-Tree Set (right). Note that a
minimum M-Tree Set is not necessarily unique for a density graph.

4.2.2 Greedy Algorithm for Density Trees [5]

We will now briefly describe the algorithm for computing minimum M-Tree Sets for

density trees developed in [5], as some of the ideas will be useful in our work. Please refer to [5]

for more details. The approach of [5] relies on a so-called monotone sweeping operation to build

individual elements of a minimum M-Tree Sets of density trees. Algorithm 2 explicitly defines a

generalized version of this operation that we will need in a later proof.

Algorithm 2: monotone-sweep((T (V,E), f ),v ∈V,α)
Input: A density tree (T (V,E), f ), a starting node v ∈V , and a staring value α such

that 0 < α ≤ f (v)
Output: A monotone subtree (T ′,h f ,v,α) and a remainder (T,Rv,α f )
(Step 1) Initialize output density subtree T ′ to only contain the input vertex v, with

corresponding density function h f ,v,α(v) = α

(Step 2) Perform DFS starting from v. For each edge (u → w) traversed:

h f ,v,α(w) =

{
h f ,v,α(u) f (w)≥ f (u)
max(0,h f ,v,α(u)− ( f (u)− f (w))) otherwise

Return monotone tree (T ′,h f ,v,α) and remainder density tree (T,Rv,α f ).

The operation takes a density tree (T (V,E), f ), a node v ∈ V , and a starting function

value α such that 0 < α ≤ f (v) as input. A monotone subtree (T ′,h f ,v,α) and the remainder

density tree (T,Rv,α f ) where Rv,α f (u) = f (u)−h f ,v,α(u) for all u ∈V is returned.

Algorithm 3, which outputs a minimum M-Tree Set of density trees, performs the

monotone sweeping operation iteratively from certain nodes, called the mode-forced nodes of the
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Figure 4.3. (A) A density graph with mode-forced nodes colored green and insignificant vertices
colored yellow. (B) A single element built by the monotone sweep operation from a mode forced
node as performed in Algorithm 3.

density tree. To compute these mode-forced nodes, one iteratively remove leaves from the tree

if their parent has greater or equal density. Such leaves are referred to as insignificant vertices.

Once it is no longer possible to remove any additional nodes, the leaves of the remaining graph

are the mode-forced nodes of the original density graph.

Algorithm 3: tree-algo((T (V,E), f ))
Input: A density tree (T (V,E), f )
Output: A minimum M-Tree set of (T (V,E), f )
(Step 1) Find a mode forced vertex v ∈V
(Step 2) Perform monotone-sweep((T (V,E), f ),v, f (v)) to build a single element of a

minimum M-Tree Set.
(Step 3) Repeat Steps 1 and 2 on remainder (T,Rv, f (v) f ) until no density remains.

An example of a single iteration of the tree algorithm is shown in Figure 4.3. The running

time complexity of Algorithm 3 is O(n∗ |minMset((T, f ))|) where n is the number of nodes in

T . We note that all M-Tree Sets of a density tree are also SM-Tree Sets, so Algorithm 3 also

outputs a minimum SM-Tree Set.

4.2.3 Additional Property of Monotone Sweeping Operation

Unfortunately, neither Algorithm 2 nor Algorithm 3 can be directly used to compute

minimum M-Tree Sets of density graphs with cycles. Nevertheless, we can show Claim 4.2.1

which will later be of use in developing approximation algorithms in Section 4.4.
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Claim 4.2.1. Given a density tree (T (V,E), f ), let v ∈V . Let a,b ∈ R+ such that, without loss

of generality, 0 < a < b ≤ f (v). Let (T,Rv,a f ) be the remainder of monotone-sweep((T, f ),v,a).

We can define a similar remainder (T,Rv,b f ). Then we have |minMset((T,Rv,b f ))| ≤

|minMset((T,Rv,a f ))|.

Proof. We will prove the claim by contradiction. Assume that |minMset((T,Rv,b f ))|>

|minMset((T,Rv,a f ))|.

In particular, we will construct two new density trees, (Ta, fa) and (Tb, fb), as follows: Ta

is equal to our starting tree with the addition of two nodes va and v∞, with two additional edges

connecting to va to both v∞ and v. Set fa(va) = a and fa(v∞) = ∞. Similarly define Tb and fb.

Now imagine we run Algorithm 3 on (Ta, fa). v∞ is a mode-forced node, and thus we

can perform the first iteraiton in Algorithm 3 on v∞. Sweeping from v∞ will leave remain-

der with a minimum M-Tree Set of size |minMset((Ta, fa))| − 1. The remainder is exactly

the same as (T,Rv,a f ) at all nodes v ∈ V , and is zero at our newly added nodes. Hence,

|minMset((Ta, fa))| = |minMset((T,Rv,a f ))|+ 1. Similarly, by performing Algorithm 3 on

(Tb, fb), we have |minMset((Tb, fb))|= |minMset(T,Rv,b f )|+1

Now if our initial assumption is true, then by the above argument we have that

|minMSet((Tb, fb))|> |minMSet((Ta, fa))|. (4.1)

However, we could construct an M-tree set of (Tb, fb) as follows: First construct one monotone

tree rooted at v∞ that leaves no remainder at both v∞ and vb, then perform the monotone sweep

operation starting at v with starting value a to build the rest of the component. Note that the

remainder after removing this tree is in fact (Ta,Rv,a f ), which we can then decompose using

the minimum M-tree set of (Ta,Rv,a f ). In other words, we can find a M-tree set for (Tb, fb)

with |minMset(T,Rv,a f )|+1 = |minMset(Ta, fa)|. This however contradicts with Eqn (4.1) (and

the correctness of Algorithm 3). Hence our assumption cannot hold, and we must have that

|minMset(T,Rv,b f )| ≤ |minMset(T,Rv,a f )|. This proves the claim.
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We note that while this proof is for M-Tree Sets specifically, the proof for SM-Tree Sets

follows identical arguments.

4.3 Hardness Results

Given that there exists a polynomial time algorithm for computing minimum M-Tree Sets

of density trees, it is natural to ask whether or not such an algorithm exists for density graphs.

We prove Theorem 4.3.1, stating that the problem is NP-Complete.

Theorem 4.3.1. Given a density graph (G(V,E), f ) and a parameter k, determining whether or

not there exists an M-Tree set of size ≤ k is NP-Complete.

Proof. It is easy to see that this problem is in NP, so we will now show it is also in NP-Hard. First

we consider a variation of the Set Cover problem where the intersection between any two sets is

at most 1. We refer to this problem as Set Cover Intersect 1 (SC-1). SC-1 is a generalization

of the NP-Complete problem of covering points in a plane with as few lines as possible [100],

and approximation bounds of SC-1 are well studied in [86]. Given an instance of SC-1 (m sets

S1,S2, . . . ,Sm covering a universe of n elements e1,e2, . . . ,en, and a number k), we reduce to an

instance of the M-Tree Set decision problem as follows:

• Create a bipartite graph G(V = A∪B,E) equipped with a density function f : V → R≥0

based on the input (SC-1) instance.

• In particular, for each set Si, add a node aSi to A and set f (aSi) = |Si|.

• For each element e j, add a node be j to B and set f (be j) = 1

• For each set Si, add edge between aSi and be j for each element e j ∈ Si.

An example of this reduction is illustrated in Figure 4.4.

First Direction: If there is a Set Cover of size ≤ k, then there is an M-Tree Set of density

graph (G, f ) whose cardinality is ≤ k.
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Let Scover be a set cover of size n ≤ k. For each Si ∈ Scover, we will construct a monotone

tree (Ti, fi) rooted at aSi . In particular, fi(aSi) = f (aSi). Then, for each element e j ∈ Si, Ti will

include be j and the edge (aSi,be j), with fi(be j) = 1. Note that if e j is an element in multiple sets

in Scover, simply pick one Si ∈ Scover such that e j ∈ Si to be the representative set of e j. Finally,

for each set Sl /∈ Scover, for each element e j ∈ Sl , add the node aSl and the edge (be j ,aSl) to Ti

with fi(aSl) = 1, where (Ti, fi) is the monotone tree rooted at the node aSi where Si ∈ Scover is

the representative set containing e j.

Firstly, each element in the M-Tree Set is connected by construction. The only nodes in

an element (Ti, fi) are the root node aSi , where Si ∈ Scover, nodes of the form be j , where e j ∈ Si,

and nodes of the form aSl , where Sl /∈ Scover and there exists e j in both Si and Sl . Edges of the

form (aSi,be j) are part of the domain by construction and are included in Ti. Similarly, edges of

the form (aSl ,be j) are also part of the domain by construction and are included in Ti. For each

edge (aSl ,be j) ∈ Ti, there must also exist an edge (aSi,be j). Thus all nodes in Ti are connected to

aSi - and in particular at most 2 edges away.

Secondly, each element in the M-Tree Set is a tree. Consider element (Ti, fi). By

construction, if a cycle were to exist in Ti it would have to be of the form aSi,bep,aSl ,beq,aSi ,

where both ep and eq are in both Si and Sl . However, such a cycle would imply that two sets have

at least two elements in their intersection, which is not possible given we reduced from SC-1.

Next, each element in the M-Tree Set is a monotone tree. fi(v) = 1 for all v ∈ Ti that are

not the root aSi of (Ti, fi) and fi(aSi)≥ 1.

Finally, f (v) = ∑
n
a=1 fi(v) for all v ∈ G. Each node aSi such that Si ∈ Scover is part of one

monotone tree (Ti, fi) and fi(aSi) = f (aSi). Each node be j ∈ B is also part of only one monotone

tree (Ti, fi) and fi(e j) = 1 = f (e j). Finally, for a set Sl /∈ Scover, aSl is included in m = |Sl|

monotone trees. For each such monotone tree (Ti, fi), fi(aSl) = 1, thus ∑
n
a=1 fi(aSl) =m= f (aSl).

Thus, we have proven that there exists a M-Tree Set of (G, f ) of size ≤ k.

Second Direction: If there is an M-Tree Set of density graph (G, f ) of size ≤ k, then there is
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a Set Cover of size ≤ k.

Let {(Ti, fi)} be an M-Tree set of density graph (G, f ) of size k. Each monotone tree

(Ti, fi) in the set has a root node mi. If multiple vertices in Ti have the maximum value of fi (as

seen in Figure 4.1(B)) simply set one of them to be mi. Each edge in Ti has implicit direction

oriented away from mi. First we prove Lemma 4.3.2.

Lemma 4.3.2. Let be j ∈ B. Either be j is the root of a monotone tree in the M-Tree Set or at least

one of its neighbors is the root of a monotone tree in the M-Tree Set.

Proof. Assume be j is not a root of any monotone tree. Consider a monotone tree (Ti, fi) of the

M-Tree Set containing be j . This means that fi(be j) > 0. Consider node aSl that is the parent

of be j in (Ti, fi). Assume aSl is not the root node of (Ti, fi). Because aSl is not the root of the

component, it must have a parent bed . Consider the remaining density graph (G,g = f − fi).

By definition of monotone tree, 0 < fi(be j)≤ fi(aSl)≤ fi(bed). By construction, we also know

f (aSl) = ∑e j∈Sl
f (be j). Therefore, g(aSl)> ∑e j∈Sl

g(be j). Because aSl has more density than the

sum of all of its neighbors in (G,g), it is impossible for aSl to not be the root of at least one

monotone tree in any M-Tree Set of (G,g). Thus if be j is not the root of any monotone tree in

the M-Tree Set, aSl must be the root of a monotone tree in the M-Tree Set.

We now construct a set cover from the M-Tree Set with the help of Lemma 4.3.2. Initialize

Scover to be an empty set. For each aSi ∈ A that is a root of a monotone tree in the M-Tree Set,

add Si to Scover. Next for each be j ∈ B that is the root of a monotone tree in the M-Tree Set, if

there is not already a set Si ∈ Scover such that e j ∈ Si, choose a set Sl such that e j ∈ Sl to add to

the Set Cover. Every element must now be covered by Scover. A node e j that is not the root in

any monotone tree in the M-Tree Set must have a neighbor aSl that is a root in some monotone

tree by Lemma 4.3.2. The corresponding set Sl was added to Scover - thus e j is covered. A node

em such that bem is the root of a monotone tree in the M-Tree Set must also be covered by Scover -

as a set was added explicitly to cover em if it was not already covered. We’ve added at most one

set to the cover for every monotone tree in the M-Tree Set, therefore |Scover| ≤ k.
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Figure 4.4. (A) SC-1 instance with 4 sets and seven elements. (B) M-Tree decision problem
instance created by following reduction outlined in proof of Theorem 4.3.1. The top row consists
of nodes in A ⊂V in the bipartite graph, which are nodes representing sets, while the bottom
row consists of nodes in B ⊂V in the bipartite graph, which are nodes representing elements.

Combining both directions, we prove that, given a SC-1 instance, we can construct a

density graph (G, f ) such that there exists a set cover of size ≤ k if and only if the density graph

has a M-tree Set of size ≤ k. This proves the problem is NP-Hard, and thus the problem is

NP-Complete.

4.3.1 Approximation Hardness

From the proof of Theorem 4.3.1, it is easy to see that given an instance of SC-1, the

size of its optimal set cover is equivalent to the cardinality of the minimum M-Tree Set of the

density graph constructed in the reduction. Hence the hardness of approximation results for SC-1

translate to the minimum M-Tree Set problem too. We therefore obtain the following result,

stated in Corollary 4.3.3 which easily follows from a similar result for SC-1. The SC-1 result

from [86] is stated in Appendix A.1. We note that while Corollary 4.3.3 states the bound in terms

of n = of number of relative maxima, a similar bound can be obtained where n = number of

vertices.

Corollary 4.3.3. There exists a constant c > 0 such that approximating the minimum M-Tree

Decomposition problem within a factor of c log(n)
log(log(n)) , where n is the number of relative maxima on

the given density graph, in deterministic polynomial time is possible only if NP ⊂ DT IME(2n1−ε

)

where ε is any positive constant less than 1
2 .
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Proof. Under the same assumptions mentioned above, there exists a c > 0 such that SC-1 cannot

be approximated within a factor of c log(n)
log(log(n)) , where n is the number of elements in the universe

[86]. We note that for a given SC-1 instance, performing the reduction to the M-Tree Set decision

problem seen in the proof of Theorem 4.3.1 results in a density graph with at most n(n−1)
2 +n

relative maxima - the upper bound on the number of sets in the SC-1 instance. Thus, the number

of relative maxima on the density graph is O(n2).

For sufficiently large n, we have the following:

c log(n2)
log(log(n2))

= 2c log(n)
log(2log(n)) = 2c log(n)

log(log(n))+1 < 2c log(n)
log(log(n))

Thus there exists a c > 0 such that minimum M-Tree Decomposition problem cannot be

approximated within a factor of c log(n2)
log(log(n2))

under the same assumptions mentioned previously.

Because the number of relative maxima on the density graph is O(n2), we can substitute the

number of relative maxima for n2 to establish our final bound.

4.3.2 Variations of minimum M-Tree Sets are also NP-Complete

In addition to proving that computing minimum M-Tree Sets of density graphs is NP-

Complete, we have also proven Theorem 4.3.4 in Appendix A.2. The theorem states that

computing the minimum CM-Tree Sets, minimum SM-Tree Sets, and minimum FM-Tree Sets

of density graphs is also NP-Complete.

Theorem 4.3.4. Given a density graph (G(V,E), f ) and a parameter k, determining whether or

not there exists a CM-Tree Set, SM-Tree Set, or FM-Tree Set of size ≤ k are all NP-Complete.

It should be noted that Corollary 4.3.3 can be extended to CM-Tree Sets and FM-Tree

Sets. In contrast, SC-1 is not used in the NP-Complete proof for SM-Tree Sets. Thus, Corollary

4.3.3 does not apply to minimum SM-Tree Set and there is hope we can develop tighter bounded

approximation algorithms for this problem than for the other variations.
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4.4 Algorithms

4.4.1 Additive Error Approximation Algorithms

Now that we have shown that computing minimum M-Tree Sets of density graphs, as

well as several additional variations, is NP-Complete, we focus on developing approximation

algorithms. We define two algorithms with different additive error terms. Firstly, we note that a

naive upper bound for a given density graph is the number of relative maxima on the graph. We

include Algorithm 9 in Appendix A.3 to establish this naive upper bound.

Shifting focus to nontrivial approaches, Algorithm 4 computes the minimum M-Tree

Set of a density graph restricted to a spanning tree T ⊆ G. We prove that |minMset((T, f ))| ≤

|minMset((G, f ))|+2g, where g the genus of G. For a connected graph, G(V,E), its genus is

equal to |E|− |V |+1, which is the number of independent cycles on the graph. This approxima-

tion error bound for Algorithm 4 is stated in Theorem 4.4.1.

Algorithm 4: additive-error-algo((G(V, E), f))
Input: A density graph (G(V,E), f ) such that β1G = g
Output: An (S)M-Tree set of G, f
(Step 1) Compute g edges that if removed leave a spanning tree T of G
(Step 2) Compute minimum (S)M-Tree set of density tree (T, f ) via Algorithm 3

Theorem 4.4.1. Let (G(V,E), f ) be a density graph with β1G = g. Let k∗ be the size of a

minimum (S)M-Tree Set of (G, f ). Algorithm 4 outputs an (S)M-Tree Set of size at most k∗+2g.

Proof. We need to prove Lemma 4.4.2 to provide an upper bound on |minMset(T, f )| for any

spanning tree T ⊆ G. Algorithm 3 will then output an M-Tree Set of size at most equal to the

upper bound, thus completing our proof. The proof is identical for SM-Tree Sets.

Lemma 4.4.2. Let (G(V,E), f ) be a density graph with β1G = g and

|minMset(G, f )|= k∗. For any spanning tree T ⊆ G, |minMset(T, f )| ≤ k∗+2g
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Let M = {(Ti, fi)} be a minimum M-Tree set of (G, f ). Let Ecut be the set of g edges that if

removed from G leave spanning tree T . Firstly, we note that |minMset(G, f )| ≤ |minMset(T, f )|,

as any M-Tree Set of (T, f ) is also an M-Tree Set of (G, f ).

We will construct an M-Tree Set of (T, f ) from a minimum M-Tree Set of G. For each

monotone tree (Ti, fi) ∈ M, consider an edge e j = (u,v) ∈ Ecut that is in Ti. There is implicit

direction to e j with respect to the root of (Ti, fi), meaning either (1) (u → v) or (2) (v → u). If

(1) is the case, we can cut the branch rooted at v off of (Ti, fi) to create two non-intersecting

monotone trees. See Figure 4.5 for an example. We perform a similar operation if (2) is the case,

but instead cut the branch rooted at u. Perform this cut for each edge in Ecut to divide (Ti, fi)

into, at most, |Ecut |+1 non-intersecting monotone trees. After dividing each tree into at most

|Ecut |+ 1 non-intersecting monotone trees, we make 2 key observations - (1) we still have a

M-Tree Set of (G, f ) and (2) no edge in Ecut is in any monotone tree in the M-Tree Set. Thus the

M-Tree Set is also an M-Tree Set of (T, f ).

We can shrink the size of this M-Tree Set by summing the components that share the

same root. In particular, consider an edge e j = (u,v) ∈ Ecut . We have created as many as k∗

additional monotone trees rooted at u and as many as k∗ additional monotone trees rooted at v.

Sum the monotone trees rooted at u to create a single monotone tree rooted at u. The sum would

clearly still be a monotone tree because all monotone trees are subtrees of tree T , so no cycle or

non-non-increasing path from u will be created. We can similarly do the same for v, and for all

edges in Ecut . This we have a new M-Tree Set of (T, f ), with (at most) an additional monotone

tree rooted at each node of each edge in Ecut when compared to the original M-Tree Set of G.

Thus |minMset(T, f )| is bounded above by k∗+2g.

4.4.2 Approximation Algorithm for Minimum SM-Tree Sets of Density
Cactus Graphs.

A cactus graph is a graph such that no edge is part of more than one simple cycle [67].

See Figure 4.6 (A) for an example. Many problems that are NP-hard on graphs belong to P when
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Figure 4.5. (A) shows a single monotone tree with its root colored red and an edge colored
green. Cutting the green edge leaves us with two non-intersecting monotone trees shown in (B).

Figure 4.6. (A) An example of a cactus graph - which is a graph such that no edge is part of more
than a single simple cycle. It is essentially a tree of cycles graph - which is a graph such that no
vertex is part of more than one simple cycle - with the exception that two simple cycles may share
a single vertex. Tree of cycles graphs are cactus graphs but cactus graphs (such as this one) are
not necessarily tree of cycles graphs. (B) An example of an input for Algorithm 5. The density
tree is broken into two subtrees (green and blue) that have a single node as intersection (red).
Monotone sweeping is performed iteratively at mode-forced nodes only in one of the subtrees.
Once the only remaining mode-forced nodes lie on the other tree, the output tuple containing the
number of monotone sweeps performed and the remaining density at the intersection node is
returned.

restricted to cacti - such as vertex cover and independent set [68]. While we do not yet know

whether or not computing a minimum M-Tree Set (or any variations) of density cactus graphs is

NP-hard, we have developed a 3-approximation algorithm for computing the minimum SM-Tree

Set of a density cactus graph.

We first prove Theorem 4.4.3, which states that for any density cactus graph (G, f ), there

exists a spanning tree T ⊆ G such that |minSMset(T, f )| is at most 3 times |minSMset(G, f )|.

Theorem 4.4.3. Let (G(V,E), f ) be a density cactus graph. There exists a spanning tree T of G

such that |minSMset(T, f )| ≤ 3|minSMset(G, f )|.
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Algorithm 5: split-tree-algo((T(V, E), f), T1, T2)
Input: A density tree (T (V,E), f ) and two subtrees T1,T2 of T that share a single

node v as intersection
Output: A tuple (a,b) representing the number of monotone sweeps a from

mode-forced nodes on T1 to make all mode-forced nodes on T be part of T2,
and the remaining function value b at v after the monotone sweeps.

While there exists mode-forced node u ∈V off of T2:
- monotone-sweep((T, f ),u, f (u))
Set a = number of monotone sweeps performed
Set b = remaining density on v
Return (a,b)

Proof. Let M = {(Ti, fi)} be a minimum SM-Tree Set of (G, f ), k = |M|, and β1G = g. Consider

graph G′ =
⋃k

i=1 Ti. Let β1G′ = g′. We note that g′ ≤ g. and that M is also a minimum SM-Tree

Set of G′. We will use G′ to help construct a spanning tree T of G with an SM-Tree Set with

the desired cardinality. Note that if G′ has no cycles then there obviously exists a spanning tree

T of G such that |minSMset(T, f )|= |minSMset(G, f )|. Additionally, if g′ = 1, then creating T

by removing any edge from the simple cycle |minSMset(T, f )| ≤ |minSMset(G, f )|+2 (similar

arguments to Lemma 4.4.2 and Theorem 4.4.1). Therefore assume g′ ≥ 2. Construct spanning

tree T as follows:

• Add each edge in G that is not part of a simple cycle.

• For each simple cycle in G that is not in G′, add all edges of cycle to T except for one

missing in G′ (it does not matter which if multiple such edges exist).

• For each simple cycle in G that is in G′, add all edges of that cycle to T except for one

(does not matter which).

Let k′ be the |minSMset(T, f )|. k′ is bounded above by k + 2g′, because removing

edges that aren’t used in the any monotone tree in M from the domain will not change

|minSMset(G′, f )|. Additionally, removing an edge from a simple cycle in g′ will increase

the |minSMset(G′, f )| by at most 2 (again by Lemma 4.4.2).
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k′ is also bounded below by 2+g′. For each cycle in G′, the number of monotone trees

in M that contain nodes in a simple cycle must be at least 3 - otherwise the set cannot be an

SM-Tree Set. So consider a leaf cycle C0 in G′. We know that there are at least 3 monotones

trees in M that cover C0 . For a cycle C1 adjacent to C0 in G′ that there is a single path between

the two cycles, and the monotone trees that cover C0 cannot completely cover C1, otherwise M

would not be an SM-Tree Set. There must be at least one monotone tree with nodes on C1 and

no nodes on C0. Continuing traversing the graph to all cycles and it is clear that for each cycle

there must be an additional monotone tree added to the SM-Tree Set. Thus, we cannot have an

SM-Tree Set of size less than 2+g′.

From above, we have k′
k ≤ k+2g′

k ≤ 2+g′+2g′
2+g′ ≤ 3g′+2

g′+2 < 3.

With Theorem 4.4.3 proven, we aim to compute the optimal density spanning tree of a

density cactus graph. To help compute such an optimal density spanning tree, we first define

Algorithm 5. Given a density tree (T (V,E), f ) divided into two subtrees T1 and T2 that share a

single node v ∈V as intersection, Algorithm 5 performs monotone sweeping operations on the

mode-forced nodes of T1 until all mode-forced nodes of (T, f ) are on T2. An example of a valid

input is seen in Figure 4.6 (B). The output is a tuple (a,b), where a is the number of monotone

sweeps performed and b is the remaining density on v after performing the monotone sweeps.

The tuple will essentially capture how helpful monotone sweeping from T1 is for building a

minimum (S)M-Tree Set on T2. Algorithm 5 can be used to help compute the desired density

spanning tree. In particular, it is used in Algorithm 6, to cut the optimal edge from each cycle,

one cycle at a time. We prove Theorem 4.4.4 which states that Algorithm 6 returns an SM-Tree

Set at most 3 times larger than a minimum SM-Tree Set of a density cactus graph. The running

time of Algorithm 6 is O(n3) where n is the number of nodes in the input cactus graph. Algorithm

2 (O(n2)) is performed once for each edge (O(n)) that is part of a simple cycle.

Theorem 4.4.4. Algorithm 6 outputs an SM-Tree Set that is at most 3 times the size of a minimum

SM-Tree Set of the input density cactus graph.
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Algorithm 6: opt-spanning-tree-algo((G(V, E), f))
Input: Density cactus graph (G(V,E), f )
Output: SM-Tree Set of (G, f )
If G is a tree
- Compute optimal (S)M-Tree Set of (G, f ) using Algorithm 3.
Else If G has only a single cycle
- compute optimal sized (S)M-Tree Set of each density spanning tree of G and return

smallest cardinality (S)M-Tree Set.
Else (G has multiple simple cycles)
- Compute a leaf cycle C = c1, . . . ,cm connected to rest of cycles at ci
- Let GC = the simple cycle C with all branches off of each node in the cycle - not

including the branches off of ci that do not lead to other cycles in the graph. Let
GC̄ = T −GC + ci.

- Fix a spanning tree TGC̄
of GC̄.

- For each spanning tree Ti of GC computing split-tree-algo((GC ∪GC̄, f ),Ti,TGC̄
)

- Set G = G(V,E − e∗) such that e∗ is edge removed from C that results in spanning
tree with smallest output of split-tree-algo.

- Iterate until basecase (single cycle graph) is achieved

Proof. Clearly, the algorithm outputs a minimum SM-Tree Set when the input domain is a tree.

When G contains a single cycle, by Lemma 4.4.2 the outputted SM-Tree Set will have at most

2 more monotone trees than a minimum SM-Tree Set of G. Therefore, we only need to prove

Theorem 4.4.4 holds when G contains multiple simple cycles. Because G is a cactus a leaf cycle

C = c1, . . . ,cm exists. Let GC be the graph of all nodes in the cycle and branches off of those

nodes, excluding branches off of ci that do not lead to other cycles. Let GC̄ be the graph of G

excluding C and all branches off of C, except for the node ci itself. GC has m spanning trees,

T1, . . . ,Tm corresponding to the m edges of C. Fix a spanning tree TGC̄
of GC̄. We next introduce

Lemma 4.4.5.

Lemma 4.4.5. Let T ∗ = spanning tree of GC such that the output of split-tree-algo(T ∗ ∪

TGC̄
,T ∗,TGC̄

) is minimized. |minSMset((T ∗∪TGC̄
, f ))| ≤

|minSMset((Tk ∪TGC̄
, f ))| for any spanning tree Tk ⊆ GC.

Proof. Lemma 4.4.5 is proven by proving Claim 4.4.6 and Claim 4.4.7.
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Claim 4.4.6. If split-tree-algo(Tj ∪TGC̄
,Tj,TGC̄

)[0] < split-tree-algo(Tk ∪TGC̄
,Tk,TGC̄

)[0] then

|minSMset((Tj ∪GC̄, f ))| ≤ |minSMset((Tk ∪GC̄, f ))|.

Proof. Let Tj,Tk be spanning trees of GC such that a j < ak, where a j = split-tree-algo(Tj ∪

TGC̄
,Tj,TGC̄

)[0] and ak = split-tree-algo(Tk ∪TGC̄
,Tk,TGC̄

)[0]. Let s∗ = |minSMset((TGC̄
, f ))|.

Algorithm 5 performs Algorithm 3 sweeping from mode-forced nodes on Tj, but stops

once mode-forced nodes only remain on TGC̄
. Thus it is still constructing minimum SM-Tree

Sets but stopping short of completion. The first element of the output of Algorithm 5 indicates

the number of iterations required to have only mode-forced nodes on TGC̄
. |minSMset((Tj ∪

TGC̄
, f ))| ≤ a j + s∗. Similarly, |minSMset((Tk ∪TGC̄

, f ))| ≥ ak + s∗−1. These bounds prove the

claim.

Claim 4.4.7. If split-tree-algo(Tj ∪TGC̄
,Tj,TGC̄

)[0] = split-tree-algo(Tk ∪TGC̄
,Tk,TGC̄

)[0] and

split-tree-algo(Tj ∪TGC̄
,Tj,TGC̄

)[1] < split-tree-algo(Tk ∪TGC̄
,Tk,TGC̄

)[1] then |minMset((Tj ∪

GC̄, f ))| ≤ |minMset((Tk ∪GC̄, f ))|.

Proof. Let Tj,Tk be spanning trees of GC such that a j = ak and b j < bk where (a j,b j) = split-

tree-algo(Tj ∪TGC̄
,Tj,TGC̄

) and (ak,bk) = split-tree-algo(Tk ∪TGC̄
,Tk,TGC̄

).

a j = ak indicates that both Tj and Tk require the same number of iteration of monotone

sweeps to leave mode-forced nodes on TGC̄
. However, b j < bk means that Tj is more helpful

than Tk for reducing the minimum SM-Tree Set size on the remainder in the same number of

monotone sweeps by Claim 4.2.1. This proves the claim.

This completes the proof of Lemma 4.4.5.

It follows from Lemma 4.4.5 that Algorithm 6 outputs a minimum SM-Tree Set on the

density spanning tree that has the smallest sized minimum SM-Tree Set of all density spanning

trees. Combining this with Theorem 4.4.3 finishes the proof.
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4.5 Conclusion

Decomposing density graphs into a minimum M-Tree Set becomes NP-Complete when

the input graph is not restricted to trees. We proved that computing the minimum M-Tree,

CM-Tree, SM-Tree, and FM-Tree Set of density graphs is NP-Complete. We provided additive

error approximations algorithms for the minimum M-Tree Set problem, as well as developed a

3-approximation algorithm for minimum SM-Tree Sets for density cactus graphs. Future work

will be to close the gap between the bounds of approximation we have established with the error

bounds of the algorithms we have developed.

4.6 Reprint

Chapter 4, in full, is a reprint of the material as it appears in Minimum Monotone Tree

Decomposition of Density Functions Defined on Graphs in Lecture Notes in Computer Science.

Magee, Lucas; Wang, Yusu. 2024. The dissertation author was the primary investigator and

author of this paper.
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Chapter 5

High Dimensional PCD Algorithm

In previous chapters (Chapter 3 and Chapter 4), we focused first on extracting graph

structure from 2D and 3D mouse brain imaging datasets. Now, in this chapter, we will shift focus

to the second part of this dissertation - extracting graph structure from high-dimensional PCDs.

We will first change our perspective of DM graph reconstruction from a density-based perspective

to a filtration-based perspective, allowing us to define a generalized DM graph reconstruction

algorithm. After providing theoretical justification for the new generalized algorithm, we design

a DM graph reconstruction algorithm for high dimensional PCDs and include several empirical

results to demonstrate both the effectiveness and efficiency of the methodology.

5.1 Introduction

Modern complex data, or the space where data is sampled from, often has a simpler

underlying structure. A key step in modern data analysis is to model and extract such hidden

structures. A particularly interesting type of non-linear structure is a (geometric) graph skeleton,

which can be thought of as a 1-D singular manifold, consisting of pieces of 1-manifolds (curves)

glued together. Graph structures are common in practice, such as river networks and dark matter

filament structures in cosmology. Graphs can also be natural models for the evolution of trends

behind data (e.g, the evolution of topics in twitter data).

While there has been beautiful work on manifold learning [125, 135, 9, 46], recovering
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singular manifolds is more challenging [10]. Nevertheless, recovering a hidden graph skeleton

(singular 1-manifolds) from data has attracted much attention; e.g, in [69, 82, 110]. In general,

one of the main challenges involved is to identify graph nodes and connections among them.

Local information is often used to make inference or decisions, making it hard to handle noise,

non-uniform sampling and gaps in data. To this end, topological methods become useful, as they

offer ways to capture the global structure behind data and thus can be robust in detecting junction

nodes and their global connectivity. Indeed, there are several algorithms that extract a graph

skeleton behind point cloud datasets (PCDs) based on topological ideas; e.g. [1, 58, 27, 89].

Unfortunately, while such approaches work well when the input points are sampled within

a tubular neighborhood of the hidden graph (called tubular or Hausdorff noise), they do not

effectively handle more general noise, such as outliers and background noise. The locally-defined

principal curve approach [110] can handle noisy data with non-tubular noise via a ridge-finding

strategy using a constraint mean-shift-like procedure. However, the procedure only moves points

closer to a graph skeleton without outputting an actual graph.

Recently, there has been a line of work using a persistence-guided discrete Morse theory

based approach to reconstruct a graph (or even a 2D) skeleton from density field [38, 63, 123,

134, 147]. In particular, assume that the input is a density field defined on a discretized domain.

Such methods use the discrete Morse (DM) theory to compute the so-called stable 1-manifolds

to capture the mountain ridges of the density field and returns these mountain ridges as the

extracted graph skeleton; see Figure 1.2 for a 2D example. Persistent homology is used to

simplify the resulting stable 1-manifolds. The algorithm based on this idea has been significantly

simplified in [40] together with theoretical analysis. The resulting method (which we will refer

to as DM-graph) can recover a hidden graph from noisy and non-homogeneous density fields,

and has already been applied to several applications in 2D/3D [4, 41, 43]. These graphs have

also been used as input for Graph Neural Networks (GNNs) to generate effective predictive

models for rock data [20]. However, this method currently assumes that one has a discretization

of the ambient space where data is embedded in, which becomes prohibitively expensive for
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high dimensional data, and also cannot be directly applied to metric data that is not embedded.

5.1.1 Contribution

We consider the general setting where the input is just a set of points P embedded in a

metric space, say the Euclidean space Rd , or with pairwise distances (or correlations) given. The

previous DM-graph does not work in this setting, and as we will explain later, the straightforward

extension is not effective for high-dimensional PCDs. In this chapter, we extend the idea behind

the discrete-Morse based approach beyond density field, and combine it with the so-called

sparsified weighted Rips filtration of [16] to develop an effective and efficient algorithm to infer

graph skeletons of high-dimensional PCDs.

More specifically, in Section 5.2, we view the DM-graph reconstruction method from a

filtration perspective instead of a density perspective, and thus generalize the DM-graph algorithm

to work with an arbitrary filtration (which intuitively is a sequence of growing spaces spanned by

our input points in our setting). We then prove (Theorem 5.2.5) that the output of the generalized

method contains a so-called lex-optimal persistent cycle basis of the given filtration, thereby

showing that the output captures meaningful information w.r.t. the filtration. This result is of

independent interest.

We next show how this simple change of view can help us reconstruct the graph skeleton

of a set of points P more efficiently and effectively. In particular, the filtration perspective now

allows us to combine the DM-based graph reconstruction algorithm with a sparsified weighted

Rips filtration scheme proposed by [16], which both improves the quality of the reconstruction

and significantly reduces the time complexity. This new graph reconstruction algorithm for

PCDs, called DM-PCD, is our second main contribution and presented in Section 5.4.

Finally, we show experimental results on a range of datasets, and compare with previous

methods to demonstrate the effectiveness of our new DM-PCD algorithm. More results are

shown in the Appendix.
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5.2 Generalized Algorithm and Optimality

Now suppose instead of a triangulation of a d-D domain Ω, we have an arbitrary simplicial

complex K – our algorithm only needs its 2-skeleton K = (V,E,T ). Suppose further that there is a

simplex-wise function ρ̂ : K → R. Let Πρ̂ := ⟨σ1, . . . ,σN⟩ be an ordered sequence of simplicies

of K that is consistent with ρ̂ (see the end of Section 2.1), and let Fρ̂ be the simplex-wise

filtration of K induced by this order Πρ̂ . (We will describe in Section 5.4 how to set up this

filtration for graph skeletonization from PCDs.) We now generalize algorithm DM-graph() to

the following extDM-graph(), where essentially, only (Step 1) differs by taking an arbitrary

simplex-wise filtration Fρ̂ , which we state in Algorithm 7 for clarity.

Algorithm 7: extDM-graph(K,Fρ̂ ,δ )

Input: Arbitrary simplex-wise filtration Fρ̂ of a simplicial complex K = (V,E,T ),
threshold δ

Output: A reconstructed graph Gδ

(Step 1) Compute persistence pairings w.r.t. Fρ̂

(Step 2) + (Step 3): same as in alg. DM-graph

It is easy to verify that the original DM-graph(K,ρ,δ ) algorithm is a special case of

the above algorithm, where we set Fρ̂ in extDM-graph(K,Fρ̂ ,δ ) to be the lower-star filtration

induced by the vertexwise function ρ ′ =−ρ : V (K)→R; specifically, for any simplex σ ∈ K, set

ρ̂(σ) := maxv∈σ −ρ(v). The difference between our extDM-graph() algorithm and the original

algorithm is rather minor. However, we will see that this change of perspective (from density-

function based view to arbitrary filtration-based view) significantly broadens the applicability of

this algorithm. In particular, in Section 5.4 we will show how this generalized algorithm can be

combined with weighted Rips sparsification strategy to reconstruct a hidden graph skeleton of

high-dimensional points data. But first, in what follows, we provide some characterization of the

graph skeleton output by extDM-graph. Specifically, we show that the output of extDM-graph()

contains the so-called lex-optimal cycle basis of K w.r.t. important 1D homological features in

dgm1Fρ̂ . To make this statement more precise, we first introduce some notations, following
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[34, 42, 150]. Intuitively, a 1-cycle is a collection of edges forming one or multiple closed loops;

and a d-cycle is a d-D analog of it.

Definition 5.2.1 (Persistent cycles [42]). Let F be a simplexwise filtration of K induced by the

ordered sequence of simplices σ1, . . . ,σN , and dgmqF its resulting q-th persistence diagram.

Given a point p = [b,d] ∈ dgmqF , a q-cycle γ is a persistent q-cycle w.r.t. p if (i) if d ̸= ∞, γ

is a cycle in Kb containing σb, and γ is not a boundary in Kd−1 but becomes a boundary in Kd;

and (ii) otherwise if d = ∞, then γ is a cycle in Kb containing σb.

Given a subset D = {p1, . . . ,pr} ⊆ dgmqF with r = |D|, we say that a set of cycles

{γ1, . . . ,γr} form a persistent cycle-basis for D if γi is a persistence cycle w.r.t. pi for all i ∈ [1,r].

Roughly speaking, a persistent cycle γ w.r.t. a persistence point p= [b,d] is created at b

and killed at d, and can be thought of a representative of the homological feature captured by

point p ∈ dgmF . A persistent cycle basis w.r.t. D ⊂ dgmF corresponds to representative cycles

captured by points in D. More specifically, given a cycle γ , let [γ]Ki denote the homology class

of γ in complex Ki. The following result from [42] intuitively says that a persistence cycle-basis

for dgmqF essentially generates the interval decomposition of persistence module PF .

Claim 5.2.2 ([42]). Let {γ1, . . . ,γg} be a persistence cycle-basis for dgmqF = {p1, . . . ,pg} and

g = |dgmqF |. Then PF =
⊕

pℓ∈dgmqF
Ipℓ , where the interval module Ipℓ = {Ii

νi, j−→ I j}i≤ j is

generated by γℓ in the sense that Ii = [γℓ]Ki .

Lexicographic optimal cycles are introduced in [33, 34]. We will extend them to the

persistence version. Given a simplex-wise filtration F of K induced by an ordering of simplices

σ1, . . . ,σN , we set ind(σ) as the order it appears in F ; i.e, ind(σi) = i.

Definition 5.2.3 (Lexicographic order [34]). Given two q-cycles C1,C2 ∈ Cq(K), we say that

C1⪯C2 if either (i) C1 +C2 = 0 or (ii) otherwise, the simplex σmax := argmaxσ∈C1+C2
ind(σ) is

from C2. If (ii) holds, we say that C1≺C2, i.e., C1 is smaller than C2 in lexicographic order.

Intuitively, C1⪯C2 if simplices in C1 comes ”earlier” than C2 in the filtration order.
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Definition 5.2.4 (Lex-optimal persistent cycles). Given a persistence point p= [b,d] ∈ dgmqF ,

a q-cycle γ is a lexicographic-optimal (lex-opt for short) persistent cycle w.r.t. p if (i) γ is

a persistent cycle w.r.t. p; and (ii) among all persistence cycles w.r.t. p, γ has the smallest

lexicographic order. We say that Γ = {γ1, . . . ,γr} forms a lex-optimal persistent cycle basis

for a multiset D = {p1, . . . ,pr} ⊆ dgmqF if γi is a lex-optimal persistence cycle w.r.t pi for all

i ∈ [1,r].

Given a q-th persistence diagram dgmqF and a threshold δ , let dgmqF (δ )⊆ dgmqF

denote the subset of points in dgmqF whose persistence is larger than δ (intuitively, these

corresond to important features). Our first main result is the following theorem.

Theorem 5.2.5. (i) Gδ as constructed w.r.t. a simplex-wise filtration Fρ contains a lex-

optimal persistence cycle basis for dgm1Fρ(δ ), and (ii) the first Betti number of Gδ equals

|dgm1Fρ(δ )|.

The above theorem suggests that the output graph Gδ by our algorithm extDM-graph()

contains the ”best” loops whose homology classes have large persistence and whose edges

come as early as possible in the filtration. In particular, imagine that important edges or more

faithful edges come early in the filtration, then the output graph contains those loops with

large persistence (> δ ) and formed by more faithful edges whenever possible. In the graph

reconstruction from PCDs application in the next section, intuitively, if edges from high-density

region come into the filtration first, then the resulting output graph will use such edges whenever

possible. See Figure 5.3 (A) to (D).

5.3 Proof of Theorem 3.5

We assume that K is connected. If it is not, then we will perform the following arguments

to each connected component of K. Now recall that Tδ := {e∈E | e is negative and pers(e)≤ δ}

consists of all negative edges with persistence at most δ (from (Step 2) of Algorithm 7). It is

shown in [40] that Tδ consists of a set of trees. Set

61



w1

w2

w3

w4

C1

C2

C3

C4

· · · → Kid(e′) → · · · → Kid(e`) → · · · · → Kd−1 → Kd → · · ·

Kb′ Kb

d− b ≥ δ

d′ − b′ < δ

(a) (b)

Figure 5.1. (a) The solid red curve is Gδ , while dashed trees are components in Ĝδ \Gδ .
The closure of each component Ci connects to Gδ at one point wi, and thus its closure can
deformation retracts to wi ∈ Gδ . (b) As pers(e′) = d′−b′ ≤ δ , and pers(eℓ) = d−b > δ , and
b′(= ind(e′)) ≤ b, it then follows that the persistent cycle C′ = π(u,v) + e′ must become a
boundary in the simplicial complex Kd−1, which in turn leads to that [γ ′] = [γ∗] in Kd−1.

E+
δ

:= {e ∈ E | e is positive and pers(e)> δ}, and

E−
δ

:= {e ∈ E | e is negative and pers(e)> δ}.

Set Ĝδ =Tδ

⋃
Gδ , where Gδ is the output of algorithm extDM-graph. Furthermore, by construc-

tion, Gδ consists of edges in E−
δ
∪E+

δ
together with a set of tree paths in T (recall Eqn (2.3) in

Algorithm 1, which is the same as the construction for algorithm extDM-graph). It follows that

Ĝδ = Tδ

⋃
Gδ = Tδ

⋃
E−

δ

⋃
E+

δ
. (5.1)

We prove Theorem 3.5 in two steps, laid out in the following two lemmas.

Lemma 5.3.1. Statements (i) and (ii) in Theorem 3.5 holds for Ĝδ . That is: (i’) Ĝδ constructed

w.r.t. a simplex-wise filtration Fρ contains a lex-optimal persistence cycle basis for dgm1Fρ(δ ),

and (ii’) the first Betti number of Ĝδ equals |dgm1Fρ(δ )|.

Lemma 5.3.2. Ĝδ deformation contracts to Gδ .

Our theorem then follows from these two lemmas. Specifically, we will use the graph Ĝδ
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as a proxy: Lemma 5.3.1 states that the desired results hold for Ĝδ . Lemma 5.3.2 then relates

Ĝδ to Gδ . In particular, as both Ĝδ and Gδ are graphs, this lemma implies that any simple cycle

in Ĝδ must be present in Gδ as well. Theorem 3.5 then follows. What remains is to prove these

two lemmas, which we present in the two subsections that follow.

5.3.1 Proof of Lemma 5.3.1

Let dgm1Fρ(δ ) = {p1, . . . ,pg}. By the definition of positive and negative edges, we

know:

• (C1). T̂ = Tδ ∪E− is a spanning tree of K.

• (C2). By the definition of positive edges, E+
δ

contains exactly those edges whose addition

create the persistence points in dgm1Fρ(δ ). In other words, g = |E+
δ
| and we can order

edges in E+
δ
= {e1, . . . ,eg} so that for any ℓ ∈ [1,g], pℓ = [ind(eℓ),dℓ]: i.e, the birth-time

of pℓ corresponds to the insertion of edge eℓ in the simplicial complex Kind(eℓ).

Furthermore, the addition of each positive edge eℓ ∈ E+
δ

creates a cycle in the spanning tree T̂

(as eℓ is not a tree edge), As Ĝδ = T̂ ∪E+, we thus have β1(Ĝδ ) := rank(H1(Ĝδ )) is the same

as g = |dgm1Fρ(δ )|. This proves part (ii’) in Lemma 5.3.1 for the graph Ĝδ .

We now prove part (i’) of Lemma 5.3.1. Consider any eℓ ∈ E+
δ

, and let γ∗ denote a

lex-opt persistent cycle of the corresponding persistence point pℓ = [b,d] (where b= ind(eℓ)).

By the definitions of persistent cycles and lexicographic order, γ∗ necessarily contains eℓ, and all

other edges in γ∗ have an index smaller than ind(eℓ). We will next prove that γ∗ is in Ĝδ , that is,

treating a cycle (under Z2 coefficients) as a set, γ∗ ⊆ Ĝδ .

In particular, take any edge e′ ∈ γ∗ with e′ ̸= eℓ, we will show that e′ ∈ Ĝδ .

• If e′ is negative, then this is trivially true as e′ ∈ T̂ ⊆ Ĝδ .

• If e′ is positive but with persistence pers(e′)> δ , then it is also true as e′ ∈ E+
δ
⊆ Ĝδ .
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• So what remains is the case when e′ = (u,v) is positive but with pers(e′)≤ δ . However,

we will show that this case cannot happen, which implies that e′ ∈ Ĝδ .

Assume this case happens for edge e′. Then let Ce′(= π(u,v)+e′)⊂ Kind(e′) be a persistent

cycle w.r.t. the persistence point [b′ = ind(e′),d′] generated by e′. First, as the path (1-

chain) π(u,v) is contained in Kind(e′), all edges in π(u,v) have an index less than that

of e′. This means that the cycle γ ′ = γ∗− e′+π(u,v) is necessarily smaller than γ∗ in

lexicographic order. We now claim that γ ′ is also a persistent cycle w.r.t. the persistence

point pℓ = [b,d] corresponding to the positive edge eℓ.

Indeed, as γ∗ is a persistent cycle w.r.t. pℓ, we know that ind(e′) < ind(eℓ) = b. Recall

that the persistence point corresponds to the positive edge e′ is [b′ = ind(e′),d′]. As

pers(eℓ) = ρ(d)−ρ(b)> δ while pers(e′) = ρ(d′)−ρ(b′)≤ δ , it then follows that d′ < d.

(See Figure 5.1 (b) for illustrations of these notations.) Hence we know that it is necessary

that the cycle π(u,v)+ e′ becomes boundary in Kd−1. In other words, in Kd−1, the two

cycles γ∗ and γ ′ are homologous. It is then easy to verify that γ ′ must be a persistent cycle

for pℓ as well.

Since γ ′ is also a persistent cycle for pℓ and is lexicographically smaller than γ∗, this

contradicts our assumption that γ∗ is a lex-opt persistent cycle for pℓ. Hence no positive

edge e′ ∈ γ∗ with pers(e′)< δ can be in γ∗.

By the above case analysis, any edge e′ ∈ γ∗ must be in Ĝδ . It then follows that γ∗ ⊆ Ĝδ .

As this argument holds for any edge in E+
δ

, we thus have proven (i’). This finishes the proof of

Lemma 5.3.1.

5.3.2 Proof of Lemma 5.3.2

First, by construction of Ĝδ (Eqn (5.1)), we have that Gδ ⊆ Ĝδ , and all edges in Ĝδ \Gδ

must come from Tδ . Now recall T̂ =Tδ

⋃
E−, which is a spanning tree of K. Given an arbitrary

tree T and two nodes u,v ∈ T , let πT (u,v) denote the unique tree path from u to v in T . We have
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the following simple claim.

Claim 5.3.3. Given any rooted tree T with root r(T ) and two nodes u,v ∈ T , we have that

πT (u,v)⊆ πT (u,r(T ))∪πT (v,r(T )).

Proof. If u and v have ancestor / descendent relation, say u is ancestor of v, then it is clear that

πT (u,v)⊆ πT (v,r(T )), and the claim then follows. Otherwise, let w be the common ancestor of

u and v. It can again be verified that in this case, πT (u,w)⊆ πT (u,r(T )), πT (v,w)⊆ πT (v,r(T )),

while πT (u,v) = πT (u,w)◦πT (w,v). The claim thus follows.

Tδ is a spanning forest of vertex set V . Given any vertex v ∈V , suppose it is in the tree

T ∈ Tδ . We denote pathTδ
(v) := πT (v,r(T )) to be the path from v to the root r(T ) of T . Recall

that Gδ is constructed by, for any edge e = (u,v) ∈ E−
δ
∪E+

δ
, adding e∪ pathTδ

(u)∪ pathTδ
(v)

into Gδ .

Lemma 5.3.4. For each edge e = (u,v) ∈ E+
δ

, set γ = e∪π
T̂
(u,v). Then the cycle γ must be

contained in Gδ .

Proof. Consider the path π = π
T̂
(u,v): it will be broken into k ≥ 0 maximally connected pieces

from Tδ , connected by edges in E−∪E+. If k = 0, we are done, because this means that u,v are

contained in the same tree T in T , and it then follows from Claim 5.3.3 that

π = πT (u,v)⊆ pathTδ
(u)∪ pathTδ

(v)⊆ Gδ .

So assume that k > 0, and the edges connecting these pieces are e1 = (v1,u1), . . . ,ek =

(vk,uk) from u to v along π; see Figure 5.2 (a). Obviously, for each i ∈ [1,k], ei /∈ Tδ and

ei ∈ E−
δ
∪E+

δ
. Set u0 = u and vk+1 = v. It then follows that for any i ∈ [0,k], ui is connected to

vi+1 within some tree, say T ∈ Tδ . By Claim 5.3.3 that the portion of π from ui to vi+1 must be
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u(= u0) v(= vk+1)

v1

u1

u2

v2

vk

uk

T

u

w

e2
e1

C1
C2

r(T )

w1

w2

w3

w4

C1

C2

C3

C4

(a) (b) (c)

Figure 5.2. (a) The path π = π(u,v) is broken into k+1 pieces, each of which (blue subcurves)
is a maximal connected component in π ∩Tδ , while the connecting edges (red edges (vi,ui)’s)
must come from E−

δ
∪E+

δ
. (b) The solid red path is the tree path π = πT (u,w) connecting u and

w in the tree T from the spanning forest Tδ . The root of T is r(T ). (c) The solid red curve is
Gδ , while dashed trees are components in Ĝδ \Gδ . The closure of each Ci connects to Gδ at one
point wi, and thus its closure can deformation retract to wi.

contained in path(ui)∪ path(vi+1). Applying this for all i ∈ [0,k], it follows that

π ⊆
( ⋃

i∈[0,k]
(path(ui)∪ path(vi+1)

) ⋃ (
e1 ∪ e2 · · ·∪ ek

)
=
(

path(u)∪ path(v)
) ⋃ (

e1 ∪ path(v1)∪ path(u1)
)⋃

· · ·
⋃ (

ek ∪ path(vk)∪ path(uk)
)
.

As all edges e1, . . .ek and e are all in E−∪E+, it then follows that π ⊆ Gδ and thus γ = e∪π ⊆

Gδ .

Lemma 5.3.5. β0(Gδ ) = β0(Ĝδ ), and β1(Gδ ) = β1(Ĝδ ).

Proof. That β1(Gδ ) = β1(Ĝδ ) follows immediately from Lemma 5.3.4. We now prove that Gδ

and Ĝδ also has the same number of connected components. Note that we have already assumed

that K is connected, and thus Ĝδ is connected as it contains a spanning tree T̂ of K. So what

remains is to show that Gδ is connected.

Assume Gδ is not connected, and let C1,C2 be two components of Gδ . Recall that Gδ

is constructed by the union of paths
⋃

e=(u,v)∈E−
δ
∪E+

δ

(
e∪ pathTδ

(u)∪ pathTδ
(v)

)
. Let e1 ∈C1

be an arbitrary edge from C1 ∩ (E−
δ
∪E+

δ
): Note that such an edge must exist, as otherwise C1

will not be in Gδ . Similarly, let e2 ∈C2 ∩ (E−
δ
∪E+

δ
). Let u be an endpoint of e1 while w be an

edge point of e2. We know that u and w are connected in Tδ by path π = πTδ
(u,w). We now
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claim that this path must be in Gδ ; which contradicts with our assumption that C1 and C2 are two

connected components of Gδ . Hence our assumption is wrong, and Gδ must be connected as

well, which finishes the proof of the claim.

What remains is to show that the path π = πTδ
(u,w) as described above must be in Gδ .

Let T ∈ Tδ be the tree in Tδ containing path π , and let rT be its root. We now perform a case

analysis based on the location of rT w.r.t. u and w. (Case 1): u is an ancestor of w in T ; (case 2):

w is an ancestor of u in T ; and (case 3): otherwise. See Figure 5.2 (b) for an illustration of (case

3). We first prove that π ⊆ Gδ for (case 3). In this case, we have that pathTδ
(u)∪ pathTδ

(w) is a

superset of π , that is, π ⊆ pathTδ
(u)∪ pathTδ

(w). Furthermore, since both e1,e2 ∈ E−
δ
∪E+

δ
, by

construction of Gδ , pathTδ
(u)⊆ Gδ and pathTδ

(w)⊆ Gδ . It then follows that π ⊆ Gδ . Using a

similar argument, one can show that π ⊆ Gδ for (case 1) and (case 2) as well.

Putting everything together, we have that Gδ is connected and thus β0(G) = β0(Ĝδ ).

This finishes the proof of the lemma.

Now let C1, . . . ,Cs be the components of Ĝδ \Gδ , and for each i ∈ [1,s], let Ci be the

closure of Ci. We claim that Ci\Ci can contain only one vertex, say wi. See Figure 5.2 (c). Indeed,

as Ĝδ \Gδ ⊆ Tδ , each Ci is simply connected (i.e, it is a subtree of some tree in Tδ ). Suppose

Ci \Ci contains at least two vertices, say w and w′. As Ci is connected, there is a path πCi
(w,w′)

connecting w to w′ in Ci. On the other hand, as Gδ is connected (Lemma 5.3.5), there is another

path πGδ
(w,w′) connecting w and w′. This gives rise to a cycle γ = πCi

(w,w′)∪ πGδ
(w,w′)

in Ĝδ , and this cycle is not in Gδ . This however contradicts to what we just proved that

β1(Gδ ) = β1(Ĝδ ). Hence this cannot happen.

Hence Ci can only connect to Gδ via one point wi as illustrated in Figure 5.2 (c). It then

follows that Ĝδ deformation retracts to Gδ by contracting each subtree Ci to the point wi. This

finishes the proof of Lemma 5.3.2.
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5.4 PCD Algorithm via Sparse Weighted-Rips

Given a PCD P ⊂Rd , we now wish to compute a graph skeleton of P. Our algorithm can

be easily extended to the case where these points P are not embedded but with only pairwise

distances (or similarity) given.

A baseline approach.

A natural approach is to (i) build a simplicial complex K from P to ”approximate” the

space behind P, (ii) estimate a density function ρ at P =V (K), and (iii) then perform algorithm

DM-graph. A reasonable choice for K is the so-called Rips complex ripsr(P) := {(pi0 , . . . , pik) |

∥pi j − pi j′∥ ≤ r}: Intuitively, an edge (p,q) ∈ ripsr(P) if the distance between points p,q ∈ P is

at most r. A triangle is in ripsr(P) if all three edges are in, and similarly for higher-dimensional

simplices. However, we only need 2-skeleton of ripsr(P), which we still denote by ripsr(P). The

estimated density of a point is determined by summing the distances under a Gaussian kernel to

each of its KNN for some k. We refer to this algorithm as baseline where we use the ripsr(P) as

choice of complex K, that is, we perform DM-graph(ripsr(P),ρ,δ ).

Challenges with baseline.

This baseline approach faces several challenges. (C-1) It is usually hard to choose the

right radius r and the topology of ripsr(P) crucially decides the final output graph: see Figure

5.3, where if r is too small, the shape is not yet captured by ripsr(P); for larger r, there can be

spurious topological features (extra loops) in K which cannot be simplified by persistence (as

these loops are generated by edges with infinity persistence). There is also the issue that even if

one has found a radius r value such that ripsr(P) can provide the correct topology, the geometry

of the graph skeleton computed by this baseline algorithm may lose resolution (e.g, Figure 5.3

(H)).

(C-2) Points may be sampled at non-uniform resolution, hence there may not exist a

single good r that can capture all features; see Figure 5.4. (C-3) Even for a moderate radius r,
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the size of Rips complex becomes large, making persistence computation very costly. (C-4) The

Rips complex can be a poor approximation of the hidden space when there is background noise;

see Figure 5.4 (F) and (H), where even though the hidden space consists of 5 independent cycles

(see Section 5.5), with much background noise, even a small radius r makes the Rips complex

connect these noisy points and lose the hidden structure. Removing low-density points can help;

however in general that can be challenging when the density distribution is non-uniform.

A DTM-Rips based approach.

The Rips complex is defined based on the Euclidean distance between input points, and

does not handle noise or non-uniform point samples well. The distance-to-measure (DTM)

distance is introduced in [26] to provide a more robust way to produce distance field for noisy

points. We use the work of [16] to induce a weighted Rips complex from DTM distances, which

we now describe briefly. In particular, given a set of points (P,dP) equipped with metric dP (for

points P ⊂ Rd , dP is the Euclidean distance in Rd). For a fixed integer parameter k > 0, let

kNN(p) denote the set of k-nearest neighbor of p in P under metric dP. For each p ∈ P, we set

(DTM-induced) weight wp as wp =
√

1
k ∑q∈kNN(p) d

2
P(p,q), and the weighted radius of p at scale

α as rp(α) =
√

α2 −w2
p. Now given a simplex σ = {pi0, . . . , pis}, we define ρw(σ) to be

ρw(σ) = min{α
′ | wpi j

≤ α
′, and dP(pi j , pi j′ ) ≤ rpi j

(α ′) + rpi j′
(α ′),∀ j ̸= j′ ∈ [0,s]}.

This gives an ordering of all possible simplices formed by points in P (again, edges and trian-

gles are needed), and the resulting filtration is called DTM-Rips filtration Fρw . Equivalently,

consider the DTM-weighted Rips complex wRipα(P) at scale r defined as: wRipr(P) = {σ =

{pi0, . . . , pis} | ρw(σ) ≤ r}. The sequence of wRipr(P) with increasing scales r = [0,∞) gives

rise to the filtration Fρw . The weight ωp is a certain average distance to the kNN of p and

thus intuitively an inverse density estimator (high density points have low weight). Given two

points p,q ∈ P, the edge σ = (p,q) has smaller ρw(σ) if p and q has lower weight (thus higher
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density). Simplices spanned by higher density points will enter earlier into the filtration Fρw .

Incorporating data sparsification.

However, the size of weighted Rips can still be large. To this end, we deploy the sparsified

version of DTM-Rips developed in [16]. The resulting filtration is denoted by sparse DTM-Rips

F̂ρw(ε) which uses a sparsification parameter ε > 0. See [16] for details of its construction. Our

final graph skeletonization algorithm for PCDs, denoted by DM-PCD(P,k,ε,δ ), consists of only

two steps:

(Step 1). Compute the sparse DTM-Rips filtration F̂ρw(ε) using parameters k (to compute

DTM-weights of points) and ε (for sparsification).

(Step 2). Apply extDM-graph(K,F̂ρw(ε),δ ) to compute the graph skeleton of P, where

K is given implicitly as all simplices in F̂ρw(ε).

Intuitively, using the DTM-weight alleviates the problem of noisy points (challenge

(C-4)), using sparsification addresses the issue of size (challenge (C-3)), while using the entire

sparse DTM-Rips filtration allows us to use all radii/scales (instead of a Rips complex at a fixed

radius r as in baseline), thereby addressing challenges (C-1) and (C-2). Also, while at a larger

radius, the filtration will include edges and triangles spanned by far-away points. Theorem 5.2.5

guarantees that we will output those important loop features using edges that come in as early as

possible, i.e., those spanned by higher density points (with smaller ρw values) whenever possible.

This allows DM-PCD to capture hidden graphs across different scales. See Figure 5.4.

5.5 Experimental Results

We compare our DM-PCD algorithm with the baseline algorithm introduced in Section

5.4, and with SOA graph skeletonization algorithms based on Reeb graph [58] and Mapper

[130] (referred to as ReebRecon and Mapper below). (Mapper can produce higher dimensional

structures beyond graph skeleton, although often 1D structures are used in practice.) We test

on two synthetic point sets and three real datasets. Unless otherwise specified, we use k = 15
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and ε = .99 in our DM-PCD(P,k,ε,δ ); while the persistence simplification threshold δ depends

on the point set at hand. For baseline, ReebRecon, and Mapper we report the results of the best

parameters we find for them. In particular, a key input for the Mapper algorithm is an appropriate

filter function. We tested several standard choices, including distance to base point, eccentricity,

density, graph Laplacian eigenfunction and so on, and report the best results found. For all

experiments, all methodologies are run on the original point cloud data, and the figures showing

results of higher dimensional data display projections of the results into a lower dimensional

space. Significantly more results and details are in the Appendix.

Overview.

Methods are run on five total datasets - two lower-dimensional (2-D) synthetic datasets,

image patches dataset [22] (8-D), time-delay embedding of traffic sensor datasets [21] (6-D),

and Coil-20 [106] (16384-D). Our experiments show that DM-PCD is able to extract the true

underlying structure of all of these datasets while the other methodologies struggle with noise

(image patches and traffic datasets), capturing features at different scales (synthetic and Coil-20

datasets), and having geometrically faithful outputs (synthetic datasets). Additionally, the size of

the filtration used by DM-PCD is consistently smaller than that used by baseline.

Synthetic datasets.

We create two synthetic PCDs to illustrate the behavior of our DM-PCD algorithm. Circle

dataset contains a noisy and non-uniform sample around a hidden circle with 2050 points. DM-

PCD is able to recover a geometrically faithful hidden circle. The other methodologies, which

require more parameters, also recover a hidden circle, but with a less geometrically faithful

structure. Additionally, baseline requires far greater running time for comparable results. See

Figure 5.3: the output of our method (in (C)) recovers the hidden circle. In comparison, outputs

of baseline algorithm over the Rips complex ripsr(P) at different radius values are shown in (E) –

(H). The total number of simplices involved in our sparsified DTM-Rips filtration is 368,276.

The successful baseline result (shown in Figure 5.3 (G)) however requires 7,708,243 simplices,
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which is about 20 fold increase in size. This results in a drastic run-time difference (2.6 seconds

vs. 44.8 seconds) between DM-PCD and baseline. In general, DM-PCD is more efficient than

baseline because persistence is computed on a much smaller filtration (see Appendix for fully

detailed timing results on all datasets). Also, in general, it is not clear which r to choose for

baseline, and if r is too large (e.g., Figure 5.3 (H)), then the output graph is geometrically not

faithful any more – this is because long edges are now present in the Rips complex and can

appear early in the lower-star filtration in the DM-graph algorithm. In contrast, our output (in

(C)) takes advantage of the lex-optimality of the algorithm (Theorem 5.2.5) and thus always uses

”good” edges (small edges from high density regions that enter the filtration early) first. The

ReebRecon approach also uses Rips complex at a fixed scale r and thus has similar issues with

baseline. The Mapper approach (Figure 5.3 (J)) correctly captures topology of the space, but

misses some geometric details.

The top row of Figure 5.4 shows the reconstruction from a set of 300 points non-

uniformly sampled from two circles (of different sizes) with background noise. DM-PCD

successfully captures both circles, while other methods either fail to capture both circles, or have

a topologically correct output that is less geometrically faithful than our method’s output. Our

algorithm scans through all scales in the filtration and captures both loop features. In contrast,

both baseline and ReebRecon can capture only one loop. Using a small radius r, they can capture

the small loop but not the big one. To capture the large loop, they need to use a large radius r

(as in Figure 5.4 (C) and (D)), at which point the small loop is destroyed in the Rips complex.

Mapper is able to capture both loops, but again some geometric details are lost (Figure 5.4 (E)).

See more results in the Appendix.

Image patches dataset.

The image patches dataset from [22] contains 50K points in S7 ⊂ R8, each of which

corresponds to a 3x3 image patch [90]. We subsample 10K points randomly so computationally

we can experiment with Rips complexes at different radii for the baseline. DM-PCD is the only
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(A) Data (D) Bad Cycle

(I) Reeb Graph (J) Mapper

(E) Baseline

(F) Baseline (G) Baseline (H) Baseline

(B) H1 Diagram (C) Our Method

Figure 5.3. (A) Noisy sample of a circle. (B) 1-D persistence diagram w.r.t. our later sparse
DTM-Rips filtration. Persistence points are green. Only one point (big point) p has persistence
larger than some threshold δ (above the red dotted line). (C) Output of our DM-PCD method
with persistence threshold δ = .25, which is a lex-optimal persistent cycle w.r.t. the only high
persistence point p in (B). (D) shows a ”bad” persistent cycle w.r.t. the same high persistence
point p. In contrast, our output in (C) uses good (high density) edges whenever possible. (E) –
(H) are outputs from the baseline algorithm using different radius r. (E) r = 0.1: The underlying
shape (circle) is not yet captured. (F) r = 0.2: There are spurious loops that cannot be simplified
via persistence. (G) r = 0.25: The circle is recovered; however, the size of ripsr(P) is now 20
times that of our sparse DTM-Rips filtration. (H) r = 1.05: The output loses geometric details.
(I) is output from ReebRecon using ripsr(P) with radius r = .25 and has much noise. (J) is output
from Mapper using graph Laplacian filter (k = 15).

method that can extract the true underlying structure from the dataset. All other methods fail to

extract any meaningful structure. The projection of points in 3D (Figure 5.4 (F)) is very noisy.

However, the analysis of [22] shows that the underlying space has a ”three-circle model”, with

two circles intersecting the third circle twice but not intersecting each other, thus the first Betti

number of the underlying space is 5. Our DM-PCD (shown in Figure 5.4 (G)) successfully

recovered the same ”three-circle model” (with correct β1 = 5) directly from raw data without

preprocessing, and the locations of these (outer, horizontal, and vertical) circles match those

shown in [22]. Both baseline and Mapper (in Figure 5.4 (H) and (I)) fail to capture it. (More

details in the Appendix.) Results by ReebRecon are omitted for this data set, as the algorithm

does not handle background noise well and results are poor.
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(C) Baseline (D) Reeb Graph

(H) Baseline

(A) 2-Circle

(F) Image Patch (G) Our Method

(B) Our Method

(I) Mapper

(E) Mapper

Figure 5.4. Top row: 2-circle data. Output of our DM-PCD method with persistence threshold
δ = 1.2 in (B); of baseline in (C), of ReebRecon in (D), and of Mapper in (E). Using a smaller
radius r for baseline and ReebRecon will lose the large circle. Mapper output misses geometric
details. Bottom row: image patch dataset with projection in R3 shown in (F). Our output with
persistence threshold δ = .146 in (G) captures the 3-circle model (with β1 = 5) perfectly. For
baseline in (H), further simplification will remove the main circle from the ”3-circle model”
while keeping all the noisy ones. Mapper (I) (base point filter) is unable to capture any of the
loops.

Traffic flow dataset.

We extract two time-series from [21], which are the traffic flows at detector #409529

from the time-range 10/1/2017 to 10/14/2017 and from the time-range 11/19/2017 to 12/2/2017

(including Thanksgiving). Each time-series is mapped to a PCD in R6 via time-delay embedding

as proposed by [113], who also propose that loops in the resulting PCD can be used to detect

quasi-periodic behavior in the original time-series data. We note that a normal time range has one

major loop, indicating one major periodicity; while the Thanksgiving period has two: a normal

one and one that indicates the traffic pattern over the holiday weekend. DM-PCD recovers these

loops much better than baseline and Mapper. Results by ReebRecon are again omitted due to

low quality.

Coil-20 dataset.

In our final experiment, we use the Coil-20 dataset provided by [106]. More specifically,

we take a subset of 17 objects - removing objects 5, 6, and 19. Objects 5 and 9 are both medicine
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(A) Traffic Flow (B) Embedding (D) Baseline(C) Our Method (E) Mapper

Figure 5.5. Top row: traffic flow for range (10/1/2017 - 10/14/2017) and bottom row is for
range (11/19/2017 - 12/2/2017). (A) input time series, and (B) 2d projections of the time
delay embeddings of the time-series. (C) Outputs of our DM-PCD algorithm with persistence
thresholds of δ = 50 (top row) and δ = 12.5 (bottom row). (D) Outputs of the baseline approach.
For the Thanksgiving period, any further simplification will destroy the outer-loop but not the
cross connections. (E) Outputs of Mapper with graph Laplacian filter (k = 15).

boxes, and objects 3, 6, and 19 are toy cars, and we wanted to evaluate our method’s performance

on a dataset containing unique objects. We refer to this subset as Coil-17. Following the process

used by [99] to convert images to point clouds, we convert each 128 x 128 gray scale image into

a 16384 dimensional vector. Hence the input is a set of 1224 points in R16384. Outputs of other

methods can be found in the Appendix.

We visualize the data in two dimensions using UMAP dimensionality reduction with L1

metric. Presumably, each class forms a high-dimensional loopy shape. We run DM-PCD using

L1 metric with k = 5. DM-PCD is able to capture most of the individiual coils UMAP does,

while providing a more correct representation of some classes than UMAP. Shown in Figure 5.6

is the UMAP reduction with objects uniquely colored (A), the output of our DM-PCD algorithm

with a persistence threshold of 0 (B), the output of our DM-PCD algorithm with a persistence

threshold of 56 (C), and the output in (C) after removing the critical edges with L1 length above a

threshold of 1700 in the 16384 dimensional original space (D). The raw output contains the loops

that we would expect to see based on our understanding of the data and the shapes formed in the

UMAP projection. The raw output also contains many other edges, revealing more relationships

both within individual classes and across multiple classes in the feature space. We remove the

longer edges in order to better highlight the features of the output that capture individual objects.
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(C) Our Method
(δ = 56)

(D) Our Method
(Post process)(A) UMAP

(B) Our Method
(δ = 0)

Figure 5.6. Coil: (A) The UMAP projection (using L1 metric) of Coil-17. (B) Output of our
DM-PCD algorithm with persistence threshold δ = 0. (C) Output of our DM-PCD algorithm
with persistence threshold δ = 56. (D) The output shown in (C) with critical edges of L1 length
greater than 1700 removed from the output.

Taking a closer look at Figure 5.6 (D), there are eight objects that the DM-PCD captures

in the same exact manner that the UMAP projection does. Close up pictures of these eight

objects are shown in Figure 5.7.

There are also four objects that both the DM-PCD output and the UMAP projection

capture as loops, but the loops differ between the two methods. Close up pictures of these

four objects are shown in Figure 5.8. Object 11 (Figure 5.8 (A)) is a single loop in the UMAP

projection, but is actually two full loops in the DM-PCD output. A closer look (Figure 5.8 (B)) at

images 16, 17, 54, and 55 shows two separate loops in the output. The L1 distances between these

images in the 16384 dimensional original space (1069.2157046029981, 1038.6980409049952,

693.1607849029981, and 566.901973108997) for pairs (16,54), (17,55), (16,17), and (54,55)

respectively) do not match the distances between the pairs in the UMAP projections. This

indicates that the UMAP projection does not preserve the underlying structure of this object, and

that the DM-PCD output containing two loops is correct.

A similar result is obtained for Object 14 (Figure 5.8 (C)), where UMAP projects a

single loop and the DM-PCD output contains multiple loops. Objects 11 and 14 are symmetrical,

adding further justification that multiple loops is a better skeletonization.

Object 2 (Figure 5.8 (D)) makes a complete loop in the DM-PCD output, but the loop

looks incomplete in the UMAP projection. We ran UMAP projections on smaller subsets of
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(A) Obj1 (B) Obj17 (C) Obj4 (D) Obj10

(E) Obj7 (F) Obj13 (G) Obj15 (H) Obj8

Figure 5.7. Coil: Zoom ins of Figure 5.6 (D) on the eight objects for which our DM-PCD post
processed output matches the UMAP projection.

Coil-20, some of which project Object 2 as a clear loop (Figure 5.8 (E)), whereas the DM-PCD

output consistently captures Object 2 as a loop.

Object 20 (Figure 5.8 (F)) is captured as the same loop in both the UMAP projection and

the DM-PCD output, but the DM-PCD output has an additional edge dividing the loop. The edge

connects images 44 and 70, which have a L1 distance of 1329.8000237339966 in the original

space. While the other edges adjacent to these nodes are much shorter, other edges that would

similarly divide the loop into two are much longer. For example, the L1 distance between images

19 and 58 is 1822.1608110429997. The dividing edge in the DM-PCD output captures this

difference, whereas the UMAP projection has no indication of such a difference.

For the remaining five objects, it is not as clear whether or not the DM-PCD output is

correct. Close ups of all five objects are shown in Figure 5.9. For each object, the figure shows

the output at persistence thresholds δ = 0 (first row), δ = 56 (second row), and δ = 56 with

critical edges longer than 1700 removed (third row). Object 3 (Figure 5.9 (A)) and Object 18

(Figure 5.9 (E)) are not captured as a loop in either the UMAP projection or in any DM-PCD
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(D) Obj2 (E) Obj2

(A) Obj11 (C) Obj14

(F) Obj20

(B) Obj11

Figure 5.8. Coil: Zoom ins of Figure 5.6 (D) on the four objects for which our DM-PCD post
processed output captures a different loop than the UMAP projection. (A) Object 11 - While it
appears at first glance that the DM-PCD output matches the loop the UMAP projection contains,
a closer look reveals (B) that the DM-PCD output actually captures two loops. (C) Object 14 -
Similarly to Object 11, the DM-PCD output contains multiple loops and UMAP projection only
captures one. (D) Object 2 - UMAP projection is not a complete loop, but DM-PCD produces a
complete loop. (E) Object 2 - UMAP projection of only Object 2’s images - a complete loop
is visible. (F) Object 20 - UMAP projection shows a single loop, while the DM-PCD output
captures the same loop, but has an additional edge dividing the loop.
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(A) Obj3 (B) Obj9 (C) Obj12 (D) Obj16 (E) Obj18

Figure 5.9. Coil: Zoom ins of DM-PCD outputs with persistence thresholds δ = 0 (first row),
δ = 56 (second row), and δ = 56 with critical edges longer than 1700 removed (third row). The
objects of focus are (A) Object 3, (B) Object 9, (C) Object 12, (D) Object 16, and (E) Object 18.

output. The arcs appear to follow the arcs embedded in the UMAP projection. Object 9 (Figure

5.9 (B)) does appear as a loop in the UMAP projection, but is captured as a (double) arc by

DM-PCD. Object 12 (Figure 5.9 (C)) is captured as a loop in UMAP, but is not in any DM-PCD

output. However an arc spanning most of the loop is clearly captured. Under different parameters,

DM-PCD was able to extract a loop. Object 16 (Figure 5.9 (D)) is captured as a loop in UMAP,

and a loop is only captured by DM-PCD with persistence threshold δ = 0.

A final note on comparing DM-PCD to UMAP projections - the metric distortion of

UMAP became apparent when viewing the DM-PCD outputs. There is metric distortion within

classes - such as Object 20, where there appears to be an extra edge in the DM-PCD output

because the UMAP embedding does not preserve the distances in the original space. There is

also clear metric distortion in the UMAP embedding with respect to object relationships. For

example, before removing critical edges with length greater than 1700, both Objects 4 and 16

have an edge that connects to Object 8. However, once the thresholding is applied, the edge

connecting Objects 4 and 8 is removed and the edge connecting Objects 16 and 8 remains. This
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would indicate that Object 16 is closer to Object 8 than Object 4 is, but Object 4 appears closer

in the UMAP embedding.

5.6 Conclusion

We generalized the DM-graph reconstruction algorithm to arbitrary filtrations, proved

that the output of this generalized algorithm is meaningful, and developed a method for graph

reconstruction from high-dimensional PCDs. Empirical results demonstrate the effectiveness of

our DM-PCD approach.

Time complexity is the main limitation of our approach. The time to compute persistence

is a function of the size of the input filtration. While the theoretical worst case running time is

cubic in this size, in practice modern implementations (such as PHAT) perform in subquadratic

time (we observe near-linear growth of time w.r.t. the size of simplicial complex in our exper-

iments). Hence reducing the size of filtration is crucial in practice. While the sparsification

strategy we used in this chapter helps to bring down the size of filtration, the reduction might not

be significant enough for very large or more challenging datasets than what we experiment with

in this chapter.

In addition to running time causing potential limitations, the raw output of our DM-PCD

method must be connected. As shown in Coil-20, with some post-processing we were able to

capture individual objects quite easily - but the proper post-processing approach will depend on

individual datasets and may not be so straight forward.

5.7 Data and Code Availability

Code for both our new methodology and the baseline approach is publicly available

at https://github.com/lucasjmagee/PCD-Graph-Recon-DM. The repository also contains all

datasets used in this manuscript.
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5.8 Reprint

Chapter 5, in full, is a reprint of the material as it appears in Graph skeletonization of

high-dimensional point cloud data via topological method in Journal of Computational Geometry.

Magee, Lucas; Wang, Yusu. 2022. The author of the dissertation was the primary investigator

and the author of this article.
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Chapter 6

scRNA-seq Graph Extraction Algorithm

In the previous chapter (Chapter 5), we developed a generalized DM graph reconstruction

algorithm and combined that with the sparsified weights Rips filtration of [16] to develop a graph

extraction algorithm for high-dimensional PCDs. In this chapter, we develop an efficient and

effective algorithm to construct the graph skeleton of high-dimensional scRNA-seq datasets. We

include several experimental results that empirically demonstrate the outputs of our algorithm

capture meaningful structure. We then use the output graphs of our algorithm to define cell

type identity, study gene expression gradients, construct cell type taxonomies, and analyze gene

expression changes along Alzheimer’s disease progression.

6.1 Introduction

The development and application of single-cell and spatial genomics approaches in

neuroscience has led to the generation of large high-dimensional datasets and atlases of the brain

in multiple species [156, 157, 155, 120, 74, 95]. Single cell and nucleus RNA-seq (sc/snRNA-

seq) are routinely used to study anatomic and transcriptomic structure [156, 155] developmental

stages [138], evolutionary trajectories [108], disease states [101, 95], and a variety of other

experimental conditions. To understand these data requires quantification of transcriptomic and

anatomic relationships across structures and biological conditions [36].

Extracting meaningful structure from high-dimensional datasets however is challeng-
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ing, and there are challenging issues in analyzing, representing, and visualizing single cell

or nucleus RNA-seq to deduce interpretable and reproducible structure (Armand et al. 2021).

Representation learning methods are routinely used to analyze these complex, high-dimensional

data by projecting them into lower-dimensional embeddings [73] that facilitate interpretation

of the structure and dynamics of cell heterogeneity [73, 154]. Routinely applied methods seek

to dramatically reduce the dimension of the ambient space including popular techniques such

as t-distributed stochastic neighbor embedding (t-SNE) [35], isomap [135], locally linear em-

bedding (LLE) [125], Uniform manifold approximation and projection (UMAP) [8], Laplacian

eigenmaps [140], and several others [73, 154].

There are limitations in our intuition about the properties and structure of high dimen-

sional data [79]. Interpreting and visualizing high-dimensionality datasets require methods to

remove noise and facilitate exploratory data analysis [32], and analysis of single cell omics data

shares challenges common to all data analysis in high dimensions. The curse of dimensionality,

whereby as the number of dimensions and features increases, data becomes increasingly sparse

and less representative, leads to finding redundant or non-relevant features, overfitting, and inten-

sive computational demands [36]. A common genomics workflow is to apply multivariate linear

or other non-linear machine learning techniques to reduce dimensionality to tens or hundreds

of dimensions, derive analyses or associations, and then finally to apply t-SNE and UMAP

to arrive at a visual depiction of clusters in 2 or 3 dimensions. Low dimensional embeddings

are ubiquitously used in the literature to directly generate cluster or cell type assignments [83]

and to infer properties of clusters (their heterogeneity, separation, or similarity) [114, 156, 3].

Unfortunately, extreme dimension reduction introduces significant distortion of high-dimensional

datasets [25], and while these methods claim faithful representation of local and global structure

in low dimensions, there is evidence they also fail in this regard [35].

Modeling and visualizing major differences in transcriptomic structure in low dimensions

has interpretive value and has led to advances in our understanding of numbers of cell types

in the brain and their taxonomic structure [156, 157, 120, 3, 74, 95, 11]. While progress in
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deriving these taxonomies has been immense, studies have shown that use of low dimensional

embeddings creates extreme local metric distortion that may obscure fine structure relationships

[25]. For more precise quantification of cell type properties, such as the nature of cell type

gradients and their relationship to cell type, it is preferable to work directly in the ambient space

where the original distance metric holds. Although extracting meaningful structure directly from

high-dimensional transcriptomic data without preliminary dimensionality reduction is appealing

it is not entirely straightforward.

Several novel approaches have been proposed to capture the underlying structure of high-

dimensional transcriptomic datasets [95, 158, 18]. A promising approach is the application of

topological data analysis (TDA) [48, 23, 44]. TDA proposes to analyze real world datasets based

on concepts from topology, a field that describes geometric properties preserved under continuous

transformations. In the discrete setting, modeling using simplicial complexes, generated by

triangulations of the data based on neighborhood relationships, is used to define and represent

the underlying structure. Persistent homology, an essential concept in TDA, is used to quantify

meaningful topological features that are preserved by varying a threshold with respect to some

desired metric. In single cell genomics we are interested in quantitative differences in gene

expression between cells and cell types and understanding how robust these features are. Here,

TDA enables prioritization of features retained through persistence, while reducing noise of

individual cell measurements.

We present single cell Discrete Morse Graph Reconstruction (scDMGR) combining

persistent homology with discrete Morse theory, with key modifications for single cell omics

data, for extracting meaningful graph structure and cell type relationships from scRNA-seq

datasets. Recent theoretical advances [96] and code optimizations, now make scDMGR a viable

approach for problems in single cell genomics. scDMGR constructs a compact 1-D spanning

representation, a Morse graph, of the underlying data in the ambient space, as well as a gradient

field for the entire dataset such that every cell flows via an underlying gradient path into a

unique cell on the graph. Local maxima of the Morse graph itself represent putative cell types,
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and transitions between types are optimal paths of individual cells connecting peaks through

saddles. In this manner, scDMGR models high dimensional scRNA-seq data without need for

intermediate dimension reduction (e.g. PCA, t-SNE, UMAP). Although the Morse graph lies

in the ambient gene expression space, the graphs are one dimensional and can be visualized, in

the same appealing way as a UMAP. However, local transcriptomic structure is preserved, as

every edge on the graph is part of the original neighborhood graph in the high-dimensional gene

expression space.

The scDMGR method is useful for studying the basic structure of cell type identity,

observed transcriptomic gradients and continuous variation between cell types, and other relevant

aspects of cell type differentiation such as perturbations in disease. After first overviewing

this approach, we illustrate an application to cell type identity using whole cortex single cell

in the mouse [157]. A particular strength of scDMGR is the analysis of transition states or

gradients between potential cell types. To demonstrate this, we analyze data from GABAergic

hippocampal CA1 interneurons [81] where a transcriptomic gradient in express was found in Cck

expressing cells. scDMGR finds a single cell path representation of this gradient that enables

more detailed characterization. The inherent graphical structure of Morse graphs provides a

graph-based taxonomy that captures complex cell type relationships, as well as a method for

evaluating annotation from other studies. We illustrate this by deriving a novel whole brain

GABAergic taxonomy of the mouse brain [157], and evaluate the reproducibility of cell types

labeled through this study. In an application of scDMGR to translational studies of Alzheimer’s

disease [133, 101, 94, 104], we use single nucleus data from a recent study [133, 101, 94] to

help distinguish between cell type loss and modified transcriptional state.
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6.2 Methods

6.2.1 Topological Data Analysis

We use several concepts from topology and discrete Morse theory, references include

[44, 118, 127]. We construct a simplicial complex spanned by input points (cells) in the input

ambient space based on k-NN. A simplicial complex is an object consisting of smaller building

blocks called simplices. A 0-simplex is a vertex, a 1-simplex is an edge, and a 2-simplex is a

triangle, a 3-simplex is a tetrahedron, etc. In this work, we only need to build 2D simplicial

complexes. Specifically, we use the 2D k-NN complex, which is the set of vertices, edges, and

triangles induced by the k-NN graph (Euclidean distance).

6.2.2 Lower-Star Filtration

A filtration is a finite sequence of simplicial complexes connected by inclusion. A

simplex-wise filtration is a filtration in which for every two consecutive simplicial complexes Ki,

Ki+1 in the sequence there is only a single additional simplex in Ki+1. The lower-star filtration is

a filtration in which the simplices are added in increasing value with respect to some descriptor

function. We use the lower-star simplex-wise filtration with respect to (inverse) Jaccard index

on the 2D k-NN complex. The Jaccard index is defined on edges (u,v), value at vertex u is

the maximum of incident edges, the value on a triangle is the minimum of its three edges. For

more information on filtrations, and persistence computation used within these algorithms, see

[44, 118, 127].

6.2.3 scRNA-seq DM Graph Reconstruction Algorithm

The original discrete Morse graph reconstruction algorithm was developed to extract the

true underlying graph structure of density fields [38, 63, 147, 134, 123]. Within this algorithm,

the lower-star filtration of the discretized input domain with respect to the (negated) input density

function is computed. The final output is the mountain ridges, also known as the unstable 1-
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manifolds, of the input density function. [96] observe that the output of the original algorithm is

entirely dependent on the lower-star filtration computed at the beginning. The major contribution

is a generalized DMGR algorithm (Algorithm 7 of Chapter 5) that takes any filtration as input,

allowing for a wider variety of input domains and descriptor functions to be utilized in graph

extraction. Lex-optimality of output graphs is proven, showing that the output of the algorithm

contains meaningful information with respect to the input. A PCD algorithm is provided, but the

weighted Rips filtration used is not so informative for scRNA-seq datasets. Thus we developed

Algorithm 8. Here, δ is a noise parameter, with higher values resulting in more restricted graphs.

Algorithm 8: scDMGR(X ,k,δ )
Input: Normalized gene by cell matrix X , neighborhood value k to build k-NN

complex, persistence threshold δ

Output: A reconstructed graph Gδ

(Step 1) Compute 2D k-NN complex K on cells of X (euclidean metric)
(Step 2) Build lower-star filtration FK of K w.r.t. (inverse) Jaccard index of edges in

K.
(Step 3) extDM-graph(K,FK,δ )

6.2.4 Jaccard Index

Jaccard index is a meaningful descriptor function for scRNA-seq datasets, and capturing

the mountain ridges of such function provides meaningful interpretation with respect to cell

type identity. If a cell type is truly a cell type, there should be a set of cells with similar gene

expression corresponding to that type. Because these cells have similar gene expression, they

should be k-NN with each other. Thus, individual cell types should correspond to relative maxima

of Jaccard index on the k-NN graph. Relative maxima of Jaccard index are captured by the

scDMGR output graphs.

Additionally, if two cell types are truly distinct, then these cell clusters will have a

meaningful drop in Jaccard index separating the two, i.e. “peak-saddle-peak.” The Morse graphs

of scDMGR capture relative maxima and drops in Jaccard index(saddles) through optimal

gradient paths that measure the fastest changes in gene expression separating types. Depth of
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the gradient path to the saddle can be interpreted as measuring the strength of evidence for

distinction between the two related types.

Although for interpretive purposes, we want to compute the unstable 1-manifolds (moun-

tain ridges) of the Jaccard index, it is computationally easier to compute stable 1-manifolds

(valley ridges). Stable 1-manifolds of the inverted Jaccard index are what is explicitly computed

in the Algorithm 7, but is equivalent to the unstable 1-manifolds of the original function.

6.2.5 Wasserstein Distance

We use the Wasserstein distance originally proposed in [142] to compare the distributions

of cells. We use the implementation from the Python Optimal Transport library [50].

6.2.6 W-L Graph Distance

To compare these Morse graphs, we use the Weisfeiler-Lehman (W-L) distance [31], an

optimal transport-inspired metric for graph data with node features, combined with the classical

Weisfeiler-Lehman graph isomorphism test [149].

6.2.7 Soft Margin Support Vector Machines (SVMs)

We use a soft margin SVM to distinguish excitatory and inhibitory classes.

6.2.8 k-Label Cohesiveness Index (k-LCI)

Given a graph G(V,E), and a label function L : V −→ {l1, l2, ..., ln} defined on its vertices,

the k-LCI of label li is defined as k-LCI(li) =
∑v∈VLi

|{u∈Nk(v)|L(u)=li}|
∑v∈VLi

|Nk(v)|
, where VLi is the set of

vertices in the graph with label li, and Nk(v) reachable from v in k edges excluding v itself.

k-LCI(li) therefore measures the fraction of neighbors of each v ∈Vli reachable within k edges

in the graph that have the same label li.
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6.2.9 Morse Graph Separability

To measure separability of anatomic regions using Morse graphs we define separability

as the percentage of triplets of the form (a,b,c), where a and b represent elements of the

same class, and c represents an element from a different class, such that the distance d(a,b)<

min{d(a,c),d(b,c)}.

6.2.10 Morse Persistence Taxonomy (MPT)

We represent our proposed taxonomy as a N x N, where each row and column correspond

to a single type. The value of the i-th row and j-th column of MPT is equal to the highest such

persistence threshold such that the Morse graph contains at least three non-critical edges between

the i-th and j-th cell type. For full GABAergic MPT is computed for each of the 6 subclasses

(Lamp5, Pvalb, Sncg, Sst, Sst Chodl, and Vip) individually, as we explicitly show for Sst, as

well as for all pairs of the 6 subclasses. MPT matrix entries corresponding to two cluster types

belonging to the same subclass is equal to the corresponding value from the appropriate subclass

MPT. The values for entries in the matrix corresponding to two cluster types belonging to two

different subclasses is equal to the corresponding value from the appropriate subclass pair MPT.

6.2.11 Constellation Map Embedding

From the MPT cluster types that are outliers for both 1-LCI score and for highest lasting

persistence threshold are removed. MPT is input to multidimensional scaling to achieve the

coordinates for each type in the constellation. The size of the vertex for a cell type is scaled

as max 1-LCI score across Morse graphs of all persistence thresholds. Louvain clustering to

determine the optimal number of supertypes and the cluster types that belong to each. Finally, an

edge is drawn between two cluster types if the corresponding entry in MPT is ≥ .05 and at least

75% of the max value of either cell type’s row in MPT, and where thickness of the line scales by

corresponding MPT entry.
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6.3 Datasets

6.3.1 Mouse Hippocampus CA1 Cell Dataset

We took the 465 Cck expressing cells of the hippocampal CA1 inhibitory neurons from

[81]. We preprocessed the dataset by taking log(CPM + 1) of the raw gene expression of 27,998

genes. k = 15 was used for all k-NN complexes. For more information, see [81].

6.3.2 Mouse Cortex and Hippocampus Dataset

We took the 1.3 million from the adult mouse isocortex and HPF from [157]. We prepro-

cessed subsets of interest by taking log(CPM + 1) of the raw gene expression. For experiments

restricted to a single subclass, we restricted to the top 2,000 most differentially expressing

genes by ANOVA. For experiments run on subsets of cells covering multiple subclasses, we

restricted to the top 4,000 most varying genes. k = 25 was used for all k-NN complexes. For

more information, see [157].

6.3.3 Human Sea-AD Dataset

We took 992,281 cells belonging to 109 out of 139 supertypes from the Sea-AD dataset

in [101], selected from GABAergic and glutamatergic classes. We preprocessed the set of cells

belonging to each supertype by taking log(CPM+1) of the raw gene expression. We restricted to

the top 2,000 most varying genes. k = 15 was used for all k-NN complexes. See [101] for more

information.

6.4 Discrete Morse Graph Reconstruction for Omics Data

The scDMGR algorithm proposed here is based on techniques of topological data analysis

(TDA) and Morse theory, summarized in Methods [48, 44]. Briefly, Morse theory allows us to

study the critical points of functions on manifolds, and a combinatorial adaptation of Morse

Theory, called discrete Morse theory (DMT), can be applied to any simplicial complex defined on
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data points [51, 127]. Recent work in DMT has developed an approach to extract the underlying

data graph skeleton from a given density field [38, 63]. Here, DMT is used to extract the

one-dimensional structure (unstable 1-manifolds) that captures the ridges of the density field,

which are returned as a characteristic description of the salient features of the data. A continuous

threshold technique (persistent homology) is used to denoise the output, returning only the most

significant peaks (Methods). The work of [96] derives a DMT algorithm for efficient graph

reconstruction to infer a graph skeleton for high-dimensional point cloud datasets.

While implementations of this algorithm work well on lower dimensional datasets,

performance is degraded on datasets of scale encountered in single cell genomics. To run DMT

on omics data we introduce a data structure (called a lower star filtration (Methods)) having

two properties: 1) a simplicial complex of points, edges, and triangles that capture k nearest

neighbor relations, and 2) an ordering of the simplices subject to a metric to be described below.

The scDMGR algorithm constructs a (discrete) gradient vector field for the entire dataset, and

every cell flows via the underlying gradient path into a unique cell on the Morse graph, called

the Morse representative of that cell.

Figure 6.1A-E summarizes the proposed scDMGR workflow for our applications. Starting

with a cell by gene matrix with log normalized CPM data, we select genes with significant

differential expression (Figure 6.1A) (Methods) which determine the dimension of the ambient

space. We then construct the k-nearest neighbor complex of vertices (cells), edges, triangles

ordered by inclusion using Euclidean distance in ambient space, (shown in (Figure 6.1B) for

Sst cortical interneurons [157]. In the k-NN complex, edges (pairs of cells u,v) are assigned a

similarity score, the Jaccard index J(u,v), defined as the fraction of shared neighbors of u and v,

and the Jaccard index of a cell is defined to be the maximum J of all incident edges. Intuitively,

two cells are close if they share a large fraction of nearest neighbors in gene expression space

(Figure 6.1C). The filtration is ordered by Jaccard index, where a relative maximum of the

Jaccard index on the k-NN complex corresponds to a peak in density of cells sharing a common

transcriptional profile. The scDMGR algorithm then computes the persistence pairings with
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respect to the filtration and outputs the Morse graph (stable 1-manifold) consisting of saddles and

optimal gradient paths to the peaks they separate (Figure 6.1D). Thus, instead of reducing the

dimensionality of the data, scDMGR selects a subset of samples that best capture the underlying

topology of the data. The Morse graph can be visualized in other representations such as UMAP

representation (Figure 6.1E), and has an intuitively appealing interpretation conceptualized as

a landscape of cells with unique expression (types) and ridges as gradient transitions between

these types (Figure 6.1F).

There are many results on the inaccuracies of local and global structure (Figure 6.1E)

and limitations on metric distortions in the application of nonlinear dimension reduction of high

dimensional data [35, 83, 25]. We illustrate this local distortion in Figure C.1 which shows

Cck expressing cells in mouse hippocampus CA1 [81]. Overall, t-SNE distance correlates with

ambient Euclidean distance (ρ = 0.6,p < 2.2x10−16), while local 15-nearest neighbors of a given

point correlate only at (ρ = 0.1, p < 2.2x10−16). More than half of cells have 2 or fewer nearest

neighbors preserved in the embedding.

In contrast, the scDMGR representation better maintains the original space distance

structure and preserves neighborhood relationships. The underlying Morse graph is a subgraph

of the k-NN complex and is a compact and faithful representation of the data, and not very

sensitive to the number of nearest neighbors k chosen (Figure C.1). Figure 6.1G plots the fraction

of cells from the full Sst dataset that live on the Morse graph as a function of persistence threshold

(green curve). There is a high fraction of all cells at lower persistence threshold on the graph

with decreasing number as the threshold increases. Compactness of the Morse representation is

indicated by a large fraction of cells that have a 25-NN nearest neighbor on the Morse graph

(blue) at each persistence threshold. This is significantly higher than the fraction of cells with a

25-NN representation of random sets of cells of equivalent size (mean, red).

Although GABAergic interneuron cell types have a common developmental origin, their

expression patterns are less correlated with spatial location than for glutamatergic neurons

[158]. Nevertheless, cortical regions still have identifiable and differentiating transcriptomic
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Figure 6.1. (A) Log normalized cell by gene expression matrix, (B) 25-NN complex including
cells (vertices), edges, and triangles using Euclidean distance, sparser for viewing. (C) Jaccard
index for each edge computing the fraction of shared neighbors in k-NN graph. Jaccard index
provides a filtration input to scDMGR algorithm. (D) scDMGR constructs the Morse graph in the
ambient gene expression space consisting of saddles and optimal gradient paths on J(u,v) to the
peaks they separate (unstable 1-manifold) and providing the structure for cell type interpretation.
(E) Morse graph superimposed on UMAP embedding of Sst cells shows preservation of longer-
range connections with significant noise in short range distances. (F) Intuitive conceptualization
of Morse structure as traversing peaks and saddles through gradient paths. Two peak saddle
peak paths are shown (orange, red). (G) Fraction of cells from the full Sst dataset as a function
of persistence threshold (green curve). Fraction of cells that have a 25-nearest neighbor on the
Morse graph (blue) at each persistence threshold, 1000 random sets of cells of equivalent size
(mean, red) capture the entire dataset poorly. (H) Weisfeiler-Lehman (W-L) as a measure of graph
distance, and Wasserstein (W) distance (Methods) between sets of cells, confirm transcriptomic
identity of regions. Fraction separability using these metrics captures regional transcriptomic
identity of 10 cortical regions,and all 18 regions [157]. Wasserstein distance on Morse cells
(yellow), and Wasserstein distance on random subsets of cells (green) show that the Morse graph
structure (W-L metric) of cells captures regional identity significantly better than density-based
cell type estimates (W metric), as well as the W metric on random cell sets.
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signatures [70]. To illustrate that the Morse graph differentiates the identity of cortical regions we

performed the following experiment using Vip positive cells from 18 cortical regions including

hippocampus [157]. Ten subsets of 500 cells from each region were used to construct 180 Morse

graphs representing the cell type structure in the 18 regions. To compare anatomic identity based

on gene expression, we compare distances between Morse graphs using Weisfeiler-Lehman

(W-L) [31] and use the Wasserstein (W) from optimal transport [142] to compute distances

between sets of cells.

For each cortex region R, we choose two subsets (A,B) from R and the third C from a

different region. Percent separability is defined as the fraction for triplets for which W(A,B)¡

min W(A,C), W(B,C) and indicates that A and B are more similar in transcriptomic structure

than either is to C. Figure 6.1H shows results for 10 regions (ACA, AI, AUD, ENT, HIP, MOp,

RSP, SSp, VISm, VISp) and for all 18 regions [157]. Scoring using the W-L graph distance to

compare Morse graphs, Wasserstein distance on Morse cells (i.e., cells in the Morse graphs),

and Wasserstein distance on random subsets of cells, shows that the Morse graph structure (W-L

metric) of cells measures regional transcriptomic identity significantly better than density based

cell type estimates (W-metric), as well as the W metric on random cell sets. Over all regions,

W-L graph distance attains 0.95 mean accuracy, Wasserstein distance 0.88, and random sets 0.85,

illustrating that Morse graphs capture the regional identity of cell type architecture via cells on

the graph, which is further improved using the edges that define their relationships.

6.5 Discrete Morse Graph Reconstruction: Cell Type
Identity

Effective methods for profiling thousands of cells or nuclei at a time and simultaneous

computational advances make it is now possible to systematically classify and characterize the

transcriptomic diversity of neural cells [117, 56]. A transcriptomic cell type can be defined by a

(potentially small) group of cells with similar gene expression profile [14]. A collection of cells
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sharing similar transcription will have common neighbors in the k-NN graph and therefore pairs

with higher Jaccard index. A key feature of scDMGR is that that Morse graph paths respect the

gradient structure of the gene expression metric and are the most rapidly changing transitions

between peaks or types. Therefore, in the Morse approach a cell type is a representative cell

with a local maximum in Jaccard index. The Morse graph is optimal in the sense that while

these edge paths occur in the initial k-NN graph they will not remain in the Morse graph if

Jaccard index is low [96]. In this way, we define a Morse cell type as a cell achieving a local

maximum in Jaccard threshold. Second, if two cell types are truly distinct, then these cell clusters

will have a meaningful drop in Jaccard index separating the two, i.e. “peak-saddle-peak.” The

Morse graphs of scDMGR capture relative maxima and drops in Jaccard index (saddles) through

optimal gradient paths that measure the fastest changes in gene expression separating types.

Depth of the gradient path to the saddle can be interpreted as measuring the strength of evidence

for distinction between the two related types.

To illustrate the Morse cell type approach we consider two somatostatin (Sst) positive

cell type clusters identified in the mouse cortex (Sst 88, Sst 91) [157]. Both types express

Neuromedin B Receptor (Nmbr) and originate in the medial ganglionic eminence (MGE), and

consist of (n=2775,1515) cells. Highlighting these cells within a UMAP embedding of all

45,467 Sst cells is shown in Figure 6.2A, with Sst 88 (orange), Sst 91 (brown). A Morse path

(peak-saddle-peak) (L=44) from the full Morse graph M having 239 cells shows the distinction

between the Sst 88 and Sst 91 and a loss of local distance relations in the UMAP representation.

A histogram of maximum incident Jaccard index of all cells of M is shown in 6.2B together with

the labels of several local maxima. As there are cells occurring as local maxima of type Sst 88

and 91 we recognize these as representative Morse cell types, where the inset shows most of

these cells are in primary motor cortex MOp.

To investigate the relationship of these two labeled Sst 88 and 91 cells, we examine the

optimal Morse path L connecting them (Figure 6.2C) with the saddle edge (dashed red) and

regional cortical identity of cells. The path illustrates the fraction of shared neighbors (Jaccard
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index) of each cell along the gradient between the Sst 91 labeled cell to the left of the saddle and

Sst 88 to the right. The fraction of common neighbors along this path indicates a more continuous

transition in expression between these cells. The mean of highest differentially expressing genes

(n = 50) between [157] defined cell clusters Sst 88 and Sst 91 (Figure 6.2D) shows that the

Morse path captures the continuous cell type transition. The curves cross precisely at the saddle

edge, confirming the distinction of these types.

The neuronal development and signaling gene Reln is a dramatic marker of the dis-

tinction between these types (Figure 6.2E), while kinase family Erbb4, implicated in several

neurocognitive disorders [151, 153], has a reverse differential at the saddle. More continuous

expression transition is illustrated by Edil3 and Mgat4c in Fig. 2F. These results show how

scDMGR identifies specific cells as a representative cell type and a path of cells having the

largest transcriptomic variation in ambient space between these types. A gene ontology analysis

[30] of differentially expressed genes shows cell type Sst 91 significant for synaptic structure

and organization (FDR BH q < 1.88x10−8), and Sst 88 more weakly associated with ion channel

activity (q < 8.93x10−3).

6.6 scDMGR and Cell Type Gradients

Molecular gradients across areas in the cortical sheet, likely a remnant of brain develop-

ment [143], were described in earlier studies in human bulk tissue profiling [70, 122]. Single cell

genomics surprisingly shows that cell types that are specific to a cortical area or shared amongst

areas often exhibit gradients in distribution or gene expression across those areas [157, 24].

Whether cortical cell types represent discrete classes with sharp inter-class boundaries, or points

along a continuum is actively studied [156, 158, 81].

The scDMGR approach provides a principled way to describe and quantify transcriptomic

gradients between putative types without preliminary dimension reduction. To illustrate this

application to gradient analysis we used data in the mouse hippocampus CA1 [81] that identified
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10 major GABAergic types divided into 49 fine-scale clusters. This division into discrete classes,

however, was found insufficient to describe the diversity of these cells, as continuous variation

also occurred between and within classes. A primary cluster exhibiting this effect consists of

465 Cck Cxcl14 expressing cells suggesting more continuous gradation in expression between

GABAergic types Slc17a8, Calb1 Tac2, Calb1 Kctd12, Calb1 Igfbp5, Calb1 Tnfaip813, and Vip

(Figure 6.3A, Figure C.2). Harris and colleagues [81] described a gradient using a latent factor

model that predicts the expression of genes using a single continuous variable fit by maximum

likelihood. To examine this gradient at cellular resolution, a Morse graph using their gene set (g

= 27,998) at persistence threshold δ = 0.2 was chosen to produce a path L spanning the observed

latent space gradient. The path has 26 cells with three peaks and two saddles (Figure 6.3A).

The inset of Figure 6.3A presents the mean correlation of point distances in ambient Euclidean,

PCA reduced, t-SNE, and Morse Jaccard based and shows that Jaccard distance has favorably

preserved local point structure over t-SNE.

Figure 6.3B shows how the latent factor value (LFV) changes weakly non-linearly (Adj.

R2 = 0.61, p = 0.074) with the gradient Morse path. On the Morse path with peaks (red) and

saddles (green), Slc18a7, Calb1 Tnfaip813, and Vip are seen as the primary Morse types. The

Morse path allows us to describe the transcriptomic characteristics of the gradient from Slc17a8

to Vip. Over this path non-zero mean expression (Figure 6.3C) increases (solid black) through

Tnfaip813 to Vip, while the expression variability of these genes decreases. Further, there are

fewer genes expressing along the gradient (Figure C.2B) for a net result of a smaller number of

highly expressing genes with increasing cell type specificity defining types Slc17a8, Tnfaip813,

to Vip.

Harris and colleagues [81] identify 40 genes functionally associated with axon targeting

with expression along the gradient. Correlation of these genes with the Morse path agrees

well with the latent factor (Figure 6.3D) (Spearman 0.828) although with some variation (Adj.

R2 = 0.554, p< 1.18x10−7). In agreement with [81], soma-targeting cannabinoid receptor (Cnr1)

most strongly defines the gradient (inset) along with mitochondrial mt-Cytb, neurofilament Krt73,
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and GABA-receptors Kctd12, Gabbr1. Morse path analysis affirms the hypothesis that genes

associated with fast-spiking phenotype (e.g. Kcnc1, Kcna1, Scn1a, Scn8a) were amongst the

genes most positively correlated with the gradient [81]. Important differences include actin

processing Tmsb10, several neuropeptides including Vip, Tac2, and ubiquitously expressing Cck

(Figure C.2) whose expression has more variation along the optimal gradient.

The scDMGR algorithm produces a gradient map from all cells to its closest cell on the

Morse graph. Figure 6.3E colors all Cck cells by the label of its representative Morse cell using

the gradient map. The distribution of reassigned cells shows limited agreement of 49.8% with

Slc17a8, Vip, Tnfaip813 agreeing with the original classification (Figure C.2). and where the

Calb 1 Tac 2 cluster with limited cells (n=36) does not appear at this Jaccard resolution. Indeed,

ANOVA analysis of the original latent factor values (Figure C.2E) shows while Slc17a8, Vip

are quite distinct types (p < 4.82x10−51), while Calb1 Tac2 is indistinguishable from Igfbp5

(p¡ 0.16), and in the Morse framework these cells have been absorbed into other clusters. By

assigning gene expression vector of every cell to its mapped Morse representative (Figure 6.3F)

affirms the Morse path captures the overall decreasing gradient structure of the data (ρ = 0.951,

p < 8.16x10−14).

The cell types Calb 1 Tac 2 and Kctd12 are weak determinants of the Morse gradient.

To investigate the identify of these cell types we lower the threshold to J=0.11 so that Slc18a7,

Tac2, Calb1 Kctd12, Calb1 Igfbp5, Calb1 Tnfaip813, and Vip all occur as Morse maxima. This

new graph (Figure C.3) spans the Cck dataset although it correlates weakly with the gradient.

Mapping all cells to the Morse graph now improves classification to 70.5% agreeing with

original type (Slc17a8 0.992, Vip 0.833, Tfnfaip813 0.618, Igfvp5 0.597, Kctd12 0.437, Tac2

0.361) indicating that while each of the 6 Cck [81] cell types are molecularly distinct not all are

determinants of the observed gradient.
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6.7 scDMGR for Cell Type Taxonomy

Advances in single cell and nucleus sequencing have produced a wealth of data for the

study and classification of transcriptomic based cell types in the brain [156, 157, 155, 120, 3, 74].

Clustering of transcriptomic data reduces the dimensionality of the data and allows researchers to

better analyze, visualize and interpret the results [132]. Many approaches have been developed to

identify minimal statistically coherent groups, or transcriptomic cell types, based on hierarchical

clustering, machine learning based, and other statistical methods [156, 81, 74, 144, 98, 145].

A common hierarchical approach [156, 157, 155, 120, 3] first selects anchor cells and high

variance genes for a dataset, computes k nearest neighbors with respect to some metric, then

performs Louvain clustering [136] on the similarity of cell groups. Clusters are then merged if

insufficiently separable and the process is recursively repeated to capture the multiresolution

nature of brain cell types.

As scDMGR can compare transcriptomic differences between individual cells with any

annotation, it provides a natural framework for investigating the validity and coherency of a

labelled taxonomy. In Figure 6.4A we have constructed a Morse graph on 57,902 cells from

the anterior cingulate cortex area (ACA) [157], an area involved in both the acquisition and

expression of contextual fear to predatory threat [37]. The dataset consists of 10,503 GABAergic

and 47,399 glutamatergic cells. A Morse graph at persistence threshold δ = 0.3 having 384

cells (160 GABAergic, 224 glutamatergic) is shown in Figure 6.4A. The Morse graph cells carry

annotation from cell type clustering labels from [157], with labels of GABAergic subtypes (Sst,

Sst Chodl, Pvalb, Sncg, Lamp5, Vip) and glutamatergic subtypes (L2/3 IT, L4/5 IT, L5 IT, L5

PT, L5/6 NP, L6, L6 IT, L6b) and region specific types (L4-RSP-ACA, CA2-IG-FC).

To measure the consistency of externally derived cluster labels, and therefore the consis-

tency of those cell types with respect to the Morse embedding, we use a metric derived from scan

statistics [59]. The k-LCI metric (Methods) measures the fraction of neighbors of each cell v

with label li reachable within k edges in the graph that have the same label li. In practice 1-LCI is
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Figure 6.4. (A) Morse graph on 57,902 cells from the anterior cingulate area (ACA) [157] at
persistence at threshold δ = 0.3 showing separation of GABAergic, glutamatergic, and subclass
cells. (B) As a measure of cell type specificity 1-LCI metric (Methods) measures fraction of the
neighbors of Morse cell v that have the same label as v itself. Curves of 1-LCI by threshold shown
for GABA-ergic (Pvalb, Sncg, Lamp5) and glutamatergic (L2/3 IT, L4/5 IT) (Figure C.4) Points
label curve maximum, barplot is maximum 1-LCI for all subclasses. (C) A Morse Persistence
Taxonomy (MPT) is derived as a matrix where each row and column represent Morse types, and
where the (i,j)-th entry is the maximum persistence threshold for which a minimal connection in
the Morse graph is retained between those types. Cell types are labeled by representative cluster
labels from [157]. Top annotation bar is Morse Type Maximum MTM(c) the largest δ for which
c occurs on Mδ as a relative maximum. Left annotation bar is maximum 1-LCI as a measure
of consistency with annotated cell types. Color bar is the supertype group from [157]. Boxed
types are optimal Louvain groups corresponding with supertype labels. (D) Constellation map
representation of MPT with multidimensional scaling (MDS) for the coordinates for each type.
The size of the vertices scales as the maximum 1-LCI score with edge thickness determined by
the magnitude of off-diagonal MPT entries and representing cell type confusion.
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sufficient to capture label coherency (Figure 6.4A). In Figure 6.4A GABAergic and glutamatergic

labeled cells of the graph are well separated. As we specialize to subclass and cluster level types,

1-LCI stability will rise as threshold δ increases up to a maximum value beyond which there are

no coherent groups with this concentration of cells (Figure 6.4B) For a well-defined cell type,

increasing δ denoises neighbors in the k-NN graph until groups of maximum coherency occur.

Beyond the maximum δ labeled groups are splintered and eventually disappear from the graph.

Figure 6.4B shows several curves for GABAergic (Pvalb, Sncg, Lamp5) and glutamatergic

(L2/3 IT, L4/5 IT) subclasses with maxima for all ACA subclasses (mean GABAergic 0.949,

Glutamatergic 0.924) consistent with the uniqueness of these clusters (Figure C.4).

Another important metric is the Morse Type Maximum (MTM) which captures the

strength of cell type identity in the Morse graph. To define MTM, we recall that a Morse cell type

is a cell achieving a local maximum at some threshold, and construct a sequence of Morse graphs

Mδ , δ ∈ [δMin,δMax], where δMin (δMax) is the smallest (largest) threshold for which a Morse

cell type occurs on Mδ . We then define the Morse Type Maximum MTM(c) to be the largest

δ for which c occurs on Mδ as a relative maximum. MTM(c) is a measure the of strength of a

Morse cell type c, increases as the fraction of neighbors of c with similar expression increases

(Figure C.5).

We use scDMGR and the metrics (MTM, 1-LCI) to investigate the structure of 42 Sst cell

types brainwide identified in [157]. Computing a Morse graph on 45,467 cells over persistence

thresholds δ ∈ [0,0.35] we first identify the Morse types and find that all but two types, Sst

95 and Sst 101, occur as labels of Morse Types (Figure C.5). A complete summary of the

Morse cell types and their relationship to the annotated taxonomy is described by the Morse

Persistence Taxonomy (MPT) (Figure 6.4C), a matrix where each row and column are unique

Morse types labeled by the associated taxonomy [157]. The (i, j)-th entry of MPT is the

maximum persistence threshold for which a minimal connection in the Morse graph is retained

between those types (Methods) and measures the proximity relationship of these types in the

ambient space. Annotation bars show MTM measuring Morse cell type strength and maximum
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1-LCI measure coherence of the labels from the inherited taxonomy.

The MPT describes the relationship of Morse type to the annotated taxonomy labels

[157]. The result shown in Figure 6.4C corroborates 40 out of 42 clusters, with mean MTM =

0.21, range [0.0 (Sst 101), 0.35 (Sst 91)] and mean 1-LCI= 0.614, range [0.0 (Sst 95), 0.947 (Sst

HPF 104)]. The types Sst 95 and Sst 101 have been removed having insufficient evidence of

transcriptomic uniqueness. The MPT shows rich transcriptomic structure with coherent groups

corresponding to larger supertype clusters such as Sst Crh (Sst 70-Sst 75) and Sst Nmbr (Sst

88-Sst 94). Hippocampal Sst cell types of [157] are comparatively rare types (mean) Max MT

= 0.16 but transcriptomicaly highly coherent 1-LCI = 0.784. Louvain community detection

[136] identifies 7 groups corresponding with supertypes [157] although there are also complex

transcriptomic relationships between types indicated by off-diagonal band entries.

A constellation map representation is depicted in Figure 6.4D, obtaining a more quantita-

tive realization of the constellation maps used in [157]. Here, we apply multidimensional scaling

(MDS) to the MPT matrix to obtain coordinates for each type. The size of the vertices scale as

the maximum 1-LCI score with edge thickness determined by the magnitude of off-diagonal

MPT entries, representing cell type confusion. Figure 6.4D agrees with the supertype groupings

colored [157] with important divergences labeled in black (e.g. Sst Calb2, Nts, Etv1). We also

derive an MPT for glutamatergic types L4 IT, L4/5 IT, L5 IT, and, L5/6 IT CTX in Figure C.5 in

agreement with [157].

Applying this approach, we can derive a Morse Persistence Taxonomy for all 177,594

GABAergic cells of [157] extending the approach of Figure 6.4D measuring MTM for identifia-

bility and 1-LCI for coherency of cell types. The taxonomy of 119 Morse representative types

(Figure 6.5) shows predominant diagonal structure of subclasses Lamp5, Pvalb, Sncg, Sst, Sst

Chodl, and Vip. Overall mean GABAergic MTM is 0.235 (above) and 1-LCI 0.663 (left). Whole

brain transcriptomic studies in the mouse have shown reproducible structure of major cell types

with increasing variability among finer types [156, 155, 157, 120, 3, 74, 49] and using scDMGR

corroborates this finding.
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Figure 6.5. MPT for 119 identified Morse cell types of major GABAergic inhibitory classes
with (Lamp5 (n=42,144), Pvalb (30,461), Sncg (13,877), Sst (45,467), Sst Chodl (1961), Vip
(43,684)) with 21 of 30 supertypes shown annotated. Matrix entries are maximum persistence
for which edges occur in Morse graph connecting types. Top bar shows Morse Type Maximum
(MTM) (mean 0.235) and left bar 1-LCI (mean 0.663). Color annotation bars show subclass
and supertype membership from [157]. Bar plots (right) show maximum 1-LCI value indicating
coherency of types. The MPT shows supertype 1-LCI is much stronger than cluster level cell
type identity (mean Cluster: 0.665, Supertype: 0.923, Subclass: 0.948).
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An intermediate level of transcriptional type between subclass and cluster level, called

supertypes, has been defined and exhibits strong reproducibility between studies [11, 101].

The coherent expression structure of 21 supertypes is confirmed in Figure 6.5 which shows

1-LCI coherency is much larger than cluster level cell type coherency (mean Cluster: 0.665,

Supertype: 0.923, Subclass 0.948) (Figure C.6) and showing that supertypes are essentially

as identifiable as subclass types. The GABAergic MPT taxonomy in Figure 6.5 illustrates a

high degree of consistency with the hierarchical cell type classification obtained in [157] with

agreeing supertypes annotated. Strong and isolated supertypes such as Pvalb Vipr2 (1-LCI =

0.866, MTM=0.355), Lamp5 Lhx6 (1-LCI=0.647, MTM= 0.182), Sst Chodl (1-LCI=0.625,

MTM=0.333) are captured in the taxonomy which also describes variation at the finer cluster

level.

6.8 Cell Type Loss in Alzheimer’s Disease

Alzheimer’s disease (AD) is the leading cause of dementia in older adults [133] and

is characterized by stereotyped accumulation of proteinopathies (amyloid and tau) along a

continuum [76] leading to profound cognitive decline. A recent study [11, 101, 94] used single

nucleus transcriptomics and a reference taxonomy from the BRAIN Initiative [11] to study

changes in middle temporal gyrus (MTG) cell types in 84 donors with varying AD pathologies.

The study produced the Seattle Alzheimer’s Disease Cell Atlas (SEA-AD) [11, 101, 94], which

extended the BICCN MTG taxonomy to include 139 cell supertypes. Quantitative neuropathology

was used to place donors along a disease pseudo-progression score (CPS), that revealed two

disease phases: an early phase with a slow increase in pathology, presence of inflammatory

microglia, and loss of somatostatin positive inhibitory neurons, and a later phase with exponential

increase in pathology, and loss of excitatory neurons and Pvalb and Vip inhibitory neuron

subtypes.

The study [11, 101, 94] found changes in Sst and Pvalb cell type distribution early in
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the CPS continuum and that loss of cell type was either due to cell death or to inability to

map diseased cells to an identifiable type. Mapping cells to an identifiable type requires the

analysis of coherent cell type expression patterns and is a natural application of scDMGR. To

directly quantify changes in gene expression for supertypes along the CPS continuum we build

a Morse graph for each of 109 neuronal supertypes maintaining annotated cell labels early

(CPS ≤ .5) or late (CPS > .5). We then compute the cell type coherency measure 1-LCI at

several thresholds to determine maximum separability between the early and late cells (Methods).

Here, the maximin of the 1-LCI of both labels over all thresholds measures the change in gene

expression of supertypes as a function of disease burden.

Figure 6.6A shows a scatterplot 1-LCI values by CPS effect size loss for all 109 GABAer-

gic (Lamp5, Pax6, Pvalb, Sst, Vip) and glutamatergic (Chandelier, L2/3 IT, L4 IT, L5 IT, L6

IT, L5 ET, L5/6 NP, L6 CT, L6b) supertypes and colored by subclass. The plot is divided into

4 quadrants based on median values showing no linear relationship of cell type loss to overall

1-LCI changes in gene expression (Adj. R2 = 0.02). However, when viewed at subclass level

(Figure 6.6B) the (-/+) quadrant consists primarily of L2/3 IT supertypes that are both lost

with disease progression and have significant gene expression changes. Similarly, the quadrant

(-,-) shows supertypes lost with disease progression with less variable gene expression across

CPS having only GABAergic Sst, Pvalb and Sncg cell types, likely due to cell death. A soft

margin SVM (Figure 6.6C, Methods) shows significant gene expression changes by CPS between

GABAergic and glutamatergic cell types (F1 = 0.862), and although glutamatergic types have

more variably expressed genes, CPS effect size is not fully explainable by this observation

(Figure C.7) [11, 101, 94].

Dysfunction of Sst and Pvalb interneurons and associated memory deficits has been

reported in both model organisms and humans AD [88, 131, 2] and correlated with disease

progression [101]. To examine gene expression changes with CPS cell type loss we focus

on Sst 13 and Pvalb 12 (labeled, Figure 6.6A), two affected GABAergic supertypes with the

most significant 1-LCI changes and examine Morse cell paths (lengths 15,17) in transition
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Figure 6.6. (A) Scatterplot 1-LCI values by cell type loss for all GABAergic (Lamp5, Pax6,
Pvalb, Sst, Vip) and glutamatergic (Chandelier, L2/3 IT, L4 IT, L5 IT, L6 IT, L5 ET, L5/6 NP,
L6 CT, L6b) supertypes, colored by subclass label. Maximum of minimum 1-LCI scores across
thresholds for early and late cells (Y-axis) and the cell type loss distribution change calculated
in (X-axis) for each supertype in the Sea-AD dataset [101, 94]. Quadrants indicate median
delineated regions of supertype loss and quantifiable gene expression changes. Supertypes Sst
13 and Pvalb 12 are highlighted. (B) Same scatter plot colored by subclass level labels, (C) Soft
margin linear SVM model separating GABAergic and Glutamatergic types with classification
F1 = 0.862, (D) Box plot of p-values for 100 most differentially affected genes along supertype
Morse paths. (E) Pvalb 12 expressing genes with strong differential gradient across Morse path
by dementia status. SASH1, MGAT4C are decreasing across Morse gradient, TET3, KCNQ3
increasing. Inset is the differential effect size for each for this supertype found in [101], (F)
Expression trajectory for genes PDE10A, RPS6KA3, FAM135B, LRRTM4 for supertype Sst 13.
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from cognitively normal to dementia status. The study [101] found many genes selectively

expressed in both vulnerable Sst and Pvalb supertypes, but not in unaffected supertypes from

these subclasses. In Figure 6.6D we identify genes and cells that exhibit the most significant

transcriptomic changes across the Morse path based on dementia status. The effect size for

Pvalb 12 supertype expression changes with dementia (Cohen D = 1.12) is larger than for Sst 13

(D = 0.899) (Figure 6.6D) where the most differential genes for non-dementia/dementia genes

in Pvalb 12 are enriched for neurofibrillary tangles measurement (p < 2.59x10−9) [30].

Figure 6.6E,F illustrate the expression trajectory of several genes with strong gradient

along the Morse paths and corroborating the differential effect size identified in [101]. Many of

these genes with the highest differential gradient have been associated with AD and cognitive

deficits [128, 126, 12]. In particular, Pvalb 12 potassium channel gene KCNQ3 is known to be

required for the brain to generate accurate spatial maps and has been suggested as a target for AD

[158, 55]. The role of Sst 13 expressing phosphodiesterase and their inhibitors in AD therapeutics

is well-established [75, 71] through modulation of signaling pathways and physiologic effects

[93], and ribosomal protein rPS6KA3 has been shown to predict amyloid burden in preclinical

AD [107, 141]. The scDMGR framework provides a method for examining transitions in gene

expression for cells and cell types altered in AD and by dementia status, potentially providing

new avenues for identifying therapeutic targets.

6.9 Discussion

The field of single cell genomics has expanded enormously in recent years with im-

proved detection sensitivity, multi-omic profiling of single cell/nucleus and chromatin state, and

advanced data processing [105]. The complexity of these data has motivated development of

advanced and high-performance algorithms for the identification of cell types and transitional

states and for the annotation of these data [19]. Unlike morphological and projection data of

individual neurons, the structure of omics data is fundamentally more abstract. While the ambient
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space is evidently high dimensional, the precise nature of the underlying manifold is unclear

[102]. Whereas a large fraction of the genome expressed in neuronal brain cells, which subsets

of these genes are essential to defining cell type identity, remains an open question [105, 70].

The taxonomy and identity of brain cell types is at least partially hierarchical where

at the highest level neurons and glia differentiate, neurons can be divided into excitatory and

inhibitory classes, and well defined subclasses among these groups correspond to understood

anatomic and to a certain extent functional properties [102, 155, 74]. Most approaches to cell

type profiling in the brain have taken a multiresolution approach identifying first major class,

subclass and then finest cluster level structure. However, there is uncertainty in distinguishing

a cell’s more permanent identity from its transient states [137]. Cell types have characteristics

reflective of tissue development and organization, although there is variation even among types

that may reflect cell states or transitions between less defined cell types [19, 77]. Biological and

functional annotation wherever available are necessary to clarify distinctions [87]. scDMGR

provides a principled way to model the observed continuous nature of cell type identity and for

the analysis and characterization of cell types.

scDMGR exploits the computational approach of discrete Morse theory and persistent

homology by developing a representation of the transcriptomic landscape in the input ambient

space [80, 127, 44]. The underlying idea of Morse theory is to study a manifold by studying

functions defined on that manifold and to examine the critical points of these functions as the

places where the most significant changes occur [80, 127, 103]. The extension of Morse theory

to discrete data is based on the work of Forman and colleagues [51, 80, 127, 103, 85] who

develop combinatorial data structures for representing and effectively computing gradients. As

an application to transcriptomic data analysis, scDMGR captures the desired characteristics of

cell type identity and the relationship between types by finding a lower dimensional manifold of

high-density neighborhoods of cells with common transcriptomic profile (cell types) and ridges

between these peaks. The ridges are optimal gradient paths between peaks that are the most

direct route between peaks.
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In scDMGR we study cell type densities as measured by Jaccard index of common shared

neighbors of cells with closet transcriptomic properties. We showed that scDMGR graphs are

compact, faithful representation of the full dataset (Figure 6.1). The output graphs of scDMGR

reveal the continuous nature of gene expression changes, in contrast to lower dimensional

embeddings, which tend to show cells appearing in discrete, separated clusters [156, 155, 120].

Additionally, gene expression appears to change smoothly along the output graphs. While some

genes may turn on or off transitioning between types, typically at the saddles of the scDMGR

output graphs, there is continuity in gene expression change approaching the saddle. In this

way scDMGR models the seemingly continuous transformations in expression are observed in

anatomically or transcriptome proximal cells [159, 156]. Another useful statistical model of

these transitions of state is the concept of pseudo-time, for which a number of methods have been

developed [19, 60, 39]. The goal of pseudo-time modeling is to determine changes in underlying

latent variables driving transition where single cell assays are susceptible to confounding as the

measurements are not averaged over populations of cells. While several of these methods are

suitable for cell type gradient analysis, scDMGR combines aspects of pseudo-time modeling

with Morse theory methods to allow simultaneous measurement of distinguished peaks and

continuous modeling of transitions.

The ability to examine the coherency of cell type labels is a powerful application of

scDMGR, and k-LCI is an effective means of measuring cell type coherency in the assignment

of cell type labels in a manner consistent with the underlying metric. In this way, examining

the properties of a cell type on scDMGR graphs reveals some labels, particularly at the lower

levels of clustering, that do not exhibit patterns consistent with desired cell type features (e.g.

Figure 6.4, Sst 95 and Sst 101), and allows us to discard these as viable cell types. In further

work, it will be interesting to explore cross regional cortical taxonomies and the consistency of

these structures across brain regions. Additionally, the application of scDMGR is not restricted

to single cell/nucleus RNA-seq and could be applied to epigenetic data such as ATAC-seq [61]

and potentially providing a means of testing alignment in multiome data.
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A limitation of most methods in topological data analysis is the complexity and running

time of algorithms [44]. scDMGR is not an exception to this rule where the persistence computa-

tion within the scDMGR algorithm remains the largest computational bottleneck of the method.

This computation has a worst-case running time that scales with the cube of the size of the input

filtration, as opposed to just the size of the input dataset. This poses certain limitations on the size

of data that can be run and scDMGR will not be a replacement for large scale clustering methods.

The most powerful use cases of the methodology are in precise expression characteristics such as

gradient analysis and detailed examination of localized cell type structure. There is ongoing work

in developing sparse filtrations [16, 7] and the distributed persistence algorithms [6, 91], to make

TDA more usable on large datasets, and these advances will increase viability of TDA on large

scale scRNA-seq datasets. In summary, scDMGR is a novel and powerful tool for metrically

faithful investigation of detailed and local transcriptomic structure as well as the corroboration

of cell type identities derived in the many available studies.

6.10 Reprint

Chapter 6, in full, is a reprint of the material to be submitted in Discrete Morse Graph Re-

construction for High-Dimensional Transcriptomic Data. Magee, Lucas; Gala, Rohan; Travaglini,

Kyle; Sümbül, Uygar; Wang, Yusu; Hawrylycz, Mike. 2024. The dissertation author was the

primary investigator and author of this paper.
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Chapter 7

Conclusion and Future Work

7.1 Summary

In this dissertation, we developed several topological methodologies for extracting true

underlying graph structure from data with applications to neuroscientific datasets in mind. The

starting point for this dissertation was the already developed DM graph reconstruction algorithm,

which would extract the unstable 1-manifolds of density functions as the underlying graph

structure. Chapter 2 covers this algorithm and the underlying mathematics required to intuitively

understand the computation and its output.

First, we focus on 2D and 3D imaging applications. In Chapter 3, we applied the

already developed DM graph reconstruction algorithm to both 2D and 3D mouse brain imaging

datasets. In particular, neuronal process segmentation and skeletonization methodologies rely on

machine learning techniques that only use local information and do not respect the connectivity

of neuronal branches. We applied DM graph reconstruction outputs to the images. For the 2D

images, we created gray-scale masks of graph reconstructions, and applied used these masks as

input for a Siamese neural network to achieve state-of-the-art performance for neuronal process

segmentation by observable connectivity improvements segmentation outputs. Additionally, we

used the highly persistence vertices on the graphs to achieve state-of-the-art bouton detection.

For 3D images, DM graph reconstruction outputs were used as the starting point for a single

neuron reconstruction pipeline that achieved state-of-the-art performance, outperforming several
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machine learning methodologies. We then developed full brain skeletonization pipelines for both

2D and 3D mouse brain imaging datasets, an important step toward reconstructing each neuron

in an entire brain.

Next, in Chapter 4, we explore the decomposition of a graph representing all neuronal

processes into individual neurons. We generalize this problem to decomposing a density graph

into the minimum number of monotone trees. We prove this and several variations of the problem

to be NP-Hard, and provide several approximation algorithms, highlighted by a 3-approximation

algorithm for density cactus graphs.

Then, we shifted focus to extracting graph structure from high-dimensional PCDs. We

focus on further developing DM graph reconstruction to handle such datasets in Chapter 5.

Specifically, we started by changing how we view the DM graph reconstruction algorithm from

a density-based perspective to a filtration-based perspective. We then generalize DM graph

reconstruction to take any arbitrary filtration as input and prove its output graph is lex-optimal.

We then combine the generalized algorithm with the sparsified weighted Rips filtration of [16]

for effective graph extraction from high-dimensional PCDs. We demonstrate the effectiveness

and efficiency of our algorithm with several experimental results.

Finally, we conclude by applying DM graph reconstruction to scRNA-seq datasets in

Chapter 6. The high-dimensional PCD algorithm developed in Chapter 5 does not produce

meaningful graph structure for scRNA-seq datasets. Thus, we start by combining the lower-

star filtration with respect to Jaccard index of the k-NN graph with the generalized algorithm

of Chapter 5 to extract meaningful graph structure from k-NN graphs. We experimentally

demonstrate that the Morse graph is a compact, meaningful representation of the full dataset and

is more faithful to the high-dimensional raw gene space than lower-dimensional embeddings.

We then use DM graph reconstruction output graphs to define cell type identity, analyzed gene

expression gradients between cell types, build cell type taxonomies, and quantify gene expression

changes over Alzheimer’s disease progression.
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7.2 Future work

Time complexity is the biggest limitation of topological methods that use persistent

homology. The persistence computation has cubic worst-case running time with respect to the

size of the input filtration. Several developments that were used in this dissertation, such as

sparsified filtration or distributed algorithms, have already made TDA more accessible. Any

further advancements in these lines of work will only continue to make the methodologies we

developed in this dissertation more and more viable to a wider range of applications. Even

scRNA-seq datasets, which continue to get larger both in number of samples and dimensions

due to rapid technological developments, could immediately benefit from such advancements in

TDA. Although this work focuses on neuroscientific applications, we believe the methodologies

can be applied as is to similar problems in different domains.

While the work of monotone tree decomposition of a desnity graph in Chapter 4 is strictly

theoretical. It would be interesting to develop an efficient and effective algorithm that is useful

for recovering different neural processes within a neuronal bundle or other applications that

may arise. While we also provided some variations of the general monotone tree decomposition

problem to be NP-Hard, different applications may give rise to new formulations of the problem.

Additionally, the scope of this dissertation is to extract meaningful graph structure

from datasets using topological methods. However, topology also holds promise for higher

dimensional structures beyond persistent homology. Although, persistent homology can also

capture higher dimensional homology features, whereas in this work we are only concerned with

zero and one dimensional homology features. Developments in topological methods that can

extract higher dimensional structures from data will make topological data analysis an option for

data that has true underlying structure that is more complicated than just a graph.
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Appendix A

Chapter 4 Appendix

A.1 SC-1 Approximation Bound [86]

Theorem A.1.1. There exists a constant c > 0 such that approximating the SC-1 problem within

a factor of c log(n)
log(log(n)) , where n is the number of elements in the universe, in deterministic

polynomial time is possible only if NP ⊂ DT IME(2n1−ε

) where ε is any positive constant less

than 1
2 .

A.2 Complexity

In this section, we prove Theorem 4.3.4, which states many variations of the minimum

M-Tree set problem are also NP-Complete.

A.2.1 Proof of Theorem 4.3.4: CM-Tree Sets

Firstly, the problem is clearly in NP. We will follow the same reduction from SC-1 as

seen in the proof of Theorem 4.3.1 to prove NP-Hardness, with one additional step.

The first direction we follow identical arguments to create an M-Tree Set of appropriate

size, but do not yet have a CM-Tree Set. In particular, consider the M-Tree Set at the end of the

proof - the only possible edges missing are edges (aS j ,be) such that S j is in the Set Cover and

contains e, but another set Si containing e is in the Set Cover and fi(be) = 1. We will modify

the M-Tree Set to ensure every such edge that is left out is included in a component. Consider
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an element e that is in n sets in the set cover, where n > 1. Let (Ti, fi) be the monotone tree

in the M-Tree Set such that fi(be) = 1. Set fi(be) =
1
n . Additionally, for each set S j in the set

cover such that be ∈ S j, add (aS j ,be) to monotone tree (Tj, f j) and set f j(be) =
1
n . Then, for

each set Sk such that Sk is not in the set cover and be ∈ Sk, add (be,aSk) to each (Tj, f j) and set

f j(ask) =
1
n . We still have an M-Tree Set, as each component clearly remains a monotone tree,

and the sum of function values at each node is equal to what it was prior to the modification.

Once this modification is performed for every element contained within multiple sets in the

set cover, we have an M-Tree set with every edge in the input domain included in at least one

monotone tree. The second direction is identical to the previous proof.

A.2.2 Proof of Theorem 4.3.4: SM-Tree Sets

Firstly, the problem is clearly in NP. In order to prove this decision problem is NP-Hard -

we first show that a specific instance of Vertex Cover - where for the given input graph G(V,E),

for any two verts u,v ∈ V , there is at most one vert w ∈ V that is adjacent to both u and v - is

NP-Complete. This will limit the number of connected components in the intersection between

two components to be at most one in our reduction to the M-Tree problem.

Lemma A.2.1. Given a graph G(V,E) such that for any two verts u,v ∈V , there is at most one

vert w ∈V that is adjacent to both u and v and an integer k, determining whether or not there

exists a vertex cover of size ≤ k is NP-Complete.

Proof. This is a specific instance of Vertex Cover and is clearly in NP. To show it is in NP-Hard

use the same reduction from 3-SAT to regular Vertex Cover as seen in [57], but use a ”restricted”

version of 3-SAT where we can assume the following:

• A clause has 3 unique literals

• A clause cannot have a literal and its negation

These assumptions are safe because we can transform any 3-SAT instance that has any such
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clauses to an equivalent 3-SAT instance with no such clauses in polynomial time. Thus this

restricted version of 3SAT is also NP-Complete.

Consider the graph created in the reduction of this restricted 3-SAT to Vertex Cover. Two

literal vertices will have no shared neighbors by design. Any literal vertex and vertex in a clause

will only have 1 neighbor if the literal vertex is also in the clause or the clause vertex is the

negation of the literal vertex. Two vertices in clauses will only have a single shared neighbor -

the literal vertex if they are the same literal (and are thus in different clauses), or the final clause

vertex if they are in the same clause. Thus, the reduction is also a reduction to our special Vertex

Cover problem, and follows the exact same proof.

We will now reduce the special instance of Vertex Cover to the SM-Tree decision problem

to prove NP-Hardness. We follow a very similar reduction as seen in the proof of Theorem 4.3.1.

We construct a bipartite graph G(V = A∪B,E), with nodes in A corresponding to nodes in the

instance of Vertex Cover, and nodes in B representing edges in the instance of Vertex Cover.

We then build density function f on the nodes of V , setting f (av) = degree of node v in Vertex

Cover instance for each node av ∈ A, and f (be) = 1 for each edge e in the Vertex Cover instance.

Prove both directions the exact same way as shown in the proof of Theorem 4.3.1, but note that

for the first direction, because of the restriction on our input graph, any two components of the

decomposition can have at most a single vertex in their intersection.

A.2.3 Proof of Theorem 4.3.4: FM-Tree Sets

Firstly, the problem is clearly in NP. To show the problem is in NP-Hard, we follow the

exact same reduction from SC-1 as seen in proof of Theorem 4.3.1. For the first direction - we

note that the M-Tree Set we have constructed is also an SM-Tree Set - as each set Si in the set

cover is a root of a component (Ti, fi) such that fi(aSi) = f (aSi). The second direction remains

the same - though the argument that if a node be is not the maximum of any monotone tree then

one of its neighbors must be is slightly different. In this case, the neighbor must be a maximum
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in the same monotone tree it is a parent of be in - not being so would contradict that the set is in

fact a FM-Tree Set.

A.3 Naive Approximation Algorithm

Given a density graph (G, f ), a natural upper bound for |minSMset(G, f )| is the number

of relative maxima on the density graph. Algorithm 9 constructs monotone trees rooted at

each relative maxima on the input density graph. Starting at a root, depth-first search (DFS)

is performed to reach every node that can be reached via a non-increasing path from the root.

DFS stops once no nodes remain or all remaining nodes are not reachable from the root via a

non-increasing path. We call this graph traversal algorithm monotone DFS. Perform monotone

DFS from each relative maxima to build an M-Tree Set. The M-Tree Set will have size at most

one less than the number of relative maxima more than the size of a minimum M-Tree Set. Figure

A.1 shows an example output of Algorithm 9.

Algorithm 9: naive-algo((G(V, E), f))
Input: A density graph (G(V,E), f )
Output: An (S)M-Tree set of (G(V,E), f )
(Step 1) Compute set M containing the relative maxima of f on G.
(Step 2) For each relative maxima mi ∈ M, perform monotone DFS to build a

component (Ti, fi)
(Step 3) Return all Ti, fi
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Figure A.1. M-Tree Set with of a density tree with 4 monotone trees computed by Algorithm 9.
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Appendix B

Chapter 5 Appendix

B.1 Further Study of Alternative Approaches

B.1.1 Different input triangulations for baseline

Our main experiments compare the quality of our DM-PCD method to the baseline

algorithm. baseline takes an input triangulation, for which we chose the Rips complex at a fixed

radius. We tested other input triangulations to highlight that the baseline approach fails regardless

of the input triangulation. Results are shown in Figure B.1. Even using sparse weighted Rips

complex at a fixed radius large enough to capture the larger feature with less noise compared to a

regular Rips complex, the points forming the smaller feature are connected by nearly a clique.

Using this triangulation with any valid density function as input for the baseline algorithm results

in the smaller feature being lost. It is also shown that using the weighted Rips complex without

sparsification results in a similar triangulation and final output.

B.1.2 Different input filtrations for generalized algorithm

Our DM-PCD algorithm takes a sparse weighted Rips filtration of a point cloud dataset.

However, we generalized the discrete Morse graph reconstruction algorithm to take an arbitrary

filtration. To highlight the utility of the sparse weighted Rips filtration, we run the generalized

discrete Morse graph reconstruction algorithm with both the regular Rips filtration and the regular

weighted Rips filtration. Results are shown in Figure B.2. Using the regular Rips filtration,
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Figure B.1. Sparse weighted Rips complex at fixed radii (first row) with results of baseline using
sparse weighted Rips complex (second row) and full weighted Rips complex (third row). Fixed
radii values of 2 (first column), 4 (second column), and 8 (third column) are shown.
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(A)
Rips Filtration

Persistence Threshold = 1

(B)
Rips Filtration

Persistence Threshold = 3

(C)
Weighted Rips Filtration

Persistence Threshold = 1

Figure B.2. Results of using the generalized discrete Morse algorithm with the regular Rips
filtration as input. At a lower persistence threshold (A), both features are captured with additional
noise. At a higher persistence threshold (B), the smaller feature is lost while some noise remains.
Using the weighted Rips filtration as input (C), the algorithm is able to recover both features
with no noise.

the output captures the two features with a lot of additional noise. Trying to use persistence

thresholding to remove the noise will remove the smaller feature before all noise is removed. The

regular weighted Rips filtration is able to perfectly capture both features, similarly to using the

sparse weighted Rips filtration. However, because the persistence computation of the filtration is

a bottleneck, the sparse filtration is a superior option for our DM-PCD algorithm.

B.1.3 Dimensionality reduction of noisy data

For noisy datasets, such as the image patches dataset, dimensionality reduction techniques

alone fail to reveal meaningful structure. Results of such techniques are shown in Figure B.3.

Chapter 5 shows our DM-PCD algorithm extracts a clear three circle structure that is known to

be the true underlying structure of the image patches data. However, PCA, tSNE, and UMAP

projections of the image patches dataset reveal no meaningful structure (Figure B.3 (A) - (C)).

This is because these methods do not look to preserve metric relations. In particular, tSNE

attempts to cluster data and UMAP attempts to preserve continuous structure. For cleaner data,

such as Coil-20 (Figure B.3 (D)), we see that UMAP is able to capture structure. However, even

applying PCA and UMAP (Figure B.3 (E) and (F)) to the much cleaner X(15,30) subset of

image patches, we see that UMAP is still unable to capture the known three circle structure of
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the data. Running the baseline and Mapper approaches on the PCA reduced image patches data

also fails to extract the correct structure. Results are shown in Figure B.4. Running baseline with

a persistence threshold δ = 2 results in a graph where three circles appear visible (Figure B.4

(B)). However, the topology is incorrect, as all circles intersect twice (the first Betti number is

equal to 7). Raising the persistence threshold to 4 (Figure B.4 (C)) results in an output with the

correct first Betti number equal to 5, but we have clearly lost the 3 circles. Mapper fails on the

PCA reduced data and the output is very similar to the output on the original data (Figure B.4

(D)). This example highlights a general problem with performing dimensionality reduction then

performing graph reconstruction - one needs to reduce to an appropriate dimension. Clearly it

would not be possible to extract the correct graph structure from the images patches dataset if it

were first reduced to 2 dimensions. It turns out that reducing to 3 dimensions is also too much,

as we are unable to capture the proper (dis)connections between circles. Not having to reduce

dimension, and more so not needing to know the limit for dimensionality reduction, is a huge

advantage to our method.

B.2 More Details on Experiments

Comparison of methods Our experiments compare the quality of outputs and computational

efficiency of our DM-PCD method with the baseline algorithm and the state-of-the-art ReebRecon

algorithm. We also compare the quality of outputs to those of the Mapper algorithm. We do

not include Mapper running times in our comparisons of computational efficiency because it is

significantly faster than the other algorithms.

The ReebRecon algorithm has two outputs - a contracted output, which contains only

non-degree two nodes, and an augmented output, which contains edges going through every

possible node in the domain. While the contracted outputs are useful for examining the topology

of the output, they do a poor job of preserving the underlying geometry of the output. On the

other hand, the augmented outputs are very noisy because every node is included. For this reason,
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(A) PCA Image Patches

(F) UMAP X(15, 30)(E) PCA X(15, 30)(D) Coil-20 UMAP

(B) tSNE Image Patches (C) UMAP Image Patches

Figure B.3. Outputs of various dimensionality reduction techniques (PCA, tSNE, and UMAP)
performed on the 10,000 image patch subset ((A) - (C)), Coil-20 (D), and X(15,30) ((E) and
(F)).

  

(D) Mapper(B) Baseline (δ = 2))(A) PCA Image Patches (C) Baseline (δ = 4))

Figure B.4. PCA reduction of image patches dataset (A) and outputs of baseline with persistence
thresholds 2 and 4 (B and C), and Mapper (base point filter) (D) on the PCA reduced image
patches dataset.
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(A) Contracted (B) Augmented (C) Smoothed

Figure B.5. ReebRecon outputs on one circle dataset. The contracted output (A) and the
augmented output (B) of the ReebRecon algorithm with r = .25. The contracted output is useful
in examining the topology of the output, but does a poor job of preserving the geometry of the
underlying skeleton. The augmented output better preserves the geometry but contains a lot of
noise. (C) is a smoothed augmented output with less noise.

the authors of the ReebRecon algorithm smooth outputs. We smooth the augmented outputs by

subsampling the arcs (non-degree two paths), and then perform standard iterative smoothing

on the remaining vertices. An example is shown in Figure B.5. Unless otherwise noted, the

ReebRecon results displayed in figures are the smoothed augmented outputs. Ultimately, the

quality of the output is now dependant on the smoothing, and we note that different smoothing

techniques may result in better quality outputs. However, the topology of the outputs is often

incorrect, and in such cases no smoothing can make the output ”correct”.

The Mapper algorithm traditionally outputs a simplicial complex and was not developed

to explicitly extract underlying graph structures from data. For all of our experiments, we

limit the Mapper output to be a graph (1-dimensional simplicial complex). Each node in a

graph outputted by Mapper represents a cluster computed within the algorithm. We assign the

coordinates of a node to be the average coordinates of the cluster it represents.

In our time comparisons, ReebRecon is much slower than both DM-PCD and baseline.

While we are using an old implementation from 2011 that may not be optimized, it is known

that ReebRecon is theoretically faster than both DM-PCD and baseline, which have persistence

computation as a bottleneck. DM-PCD tends to be more efficient than baseline, as the sparsi-

fication in our algorithm builds a filtration that is linear in size with respect to the number of

points, whereas the regular Rips complex used in baseline results in a filtration of size O(n3),
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and r values large enough to capture the underlying skeleton will have much bigger filtrations.

B.2.1 One Circle dataset

Chapter 5 shows that our DM-PCD algorithm is able to successfully capture the circle,

and both the baseline and ReebRecon capture the circle with r = .25. However, the quality of

output for both baseline and ReebRecon is heavily dependent on the value of r - more specifically

the corresponding ripsr(P) complex. Shown in the first row of Figure B.6 is the ripsr(P) complex

for r values of .1 (A), .2 (B), .25 (C), and 1.05 (D). The second and third rows contain results

of baseline and ReebRecon. All ReebRecon outputs are smoothed with no subsampling, a

neighborhood radius of 2 neighbors, and 5 iterations - except for (D), where the output is a

spanning tree and smoothing does not improve output quality. With an r value too small (.1),

the underlying skeleton is not contained in ripsr(P), and neither method will be able to produce

a desirable output. It is not enough to select an r value that results in the complex containing

the underlying skeleton. For r = .2, the circle is captured by the ripsr(P) complex, but so is an

additional spurious loop. Neither baseline or ReebRecon can produce an output not containing

the spurious loop. For r = 1.05, there are no additional spurious loops in the ripsr(P) complex,

but ReebRecon produces a spanning tree and baseline, while producing a single loop, loses the

geometry of the underlying skeleton.

For this dataset, r = .25 was an appropriate selection for both baseline and ReebRecon.

However, as shown in Table B.1, the size of the ripsr(P) complex is much bigger than the

sparsified weighted Rips complex used in our DM-PCD algorithm. Complex size is particularly

costly for our DM-PCD method and the baseline method because of the persistence computation.

While baseline was able to produce a reasonable output at r = .25, it took significantly more time

than our DM-PCD algorithm.

While smoothing certainly decreases the noise in the ReebRecon output, the output

quality is still worse than that of both DM-PCD and baseline. We comment that a different

smoothing method may result in a better quality output.

127



  

(A) r = .1 (B) r = .2 (C) r = .25 (D) r = 1.05
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Figure B.6. One circle data - ripsr(P) complex (first row), baseline outputs (second row), and
ReebRecon outputs (third row). (A) r = .1 - ripsr(P) complex fails to capture the circle, resulting
in both methods failing to capture the circle. (B) r = .2 - ripsr(P) complex now contains the
circle, but also contains a spurious loop. Both the baseline output, which was generated with
persistence threshold δ = ∞, and the ReebRecon output must contain this spurious loop (C)
r = .25 - ripsr(P) complex now contains the circle without any additional spurious loops. Both
the baseline output (δ = ∞) and the ReebRecon output capture the loop. (D) r = 1.05 - ripsr(P)
complex still contains the circle, as well as many more simplices. As a result, the baseline
output has lost its nice geometry, with long edges going through high density regions, and the
ReebRecon output is a spanning tree.

Additionally, Chapter 5 shows that the Mapper approach is also able to successfully

capture the circle. We show the Mapper results with a variety of filter functions in Figure B.7.

The graph Laplacian filter and the distance to base point filter are able to capture the circle, while

the eccentricity filter and the Gaussian density filter are unable to capture the true underlying

structure of the data. The heat maps of the filter functions shown in the first row of Figure B.7

provide intuition on why each filters is either successfully or unsuccessfully used to extract the

underlying structure with Mapper. These two filter functions will be the top choices for most of

the remaining datasets.
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure B.7. One circle data - Filter function values (first row) and corresponding Mapper outputs
(second row) with filter functions - (A) graph Laplacian filter (k = 15), (B) eccentricity filter, (C)
Gaussian density filter, (D) distance to base point filter.

Table B.1. One circle dataset: Comparison of radius used, # simplices, and running time of
DM-PCD, baseline, and ReebRecon. Our algorithm has radius ∞ as we run on the full sparse
DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method ∞ 368276 2.6
Baseline .05 33368 .1
Reeb Graph .05 33368 .03
Baseline .10 356925 1.1
Reeb Graph .10 356925 2.49
Baseline .15 1490149 5.4
Reeb Graph .15 1490149 21.05
Baseline .2 3869507 13.0
Reeb Graph .2 3869507 76.46
Baseline .25 7708243 44.8
Reeb Graph .25 7708243 221.25
Baseline .5 43392850 231.1
Reeb Graph .5 43392850 3445.10

129



B.2.2 Two Circle dataset

Chapter 5 shows that our DM-PCD algorithm is able to successfully capture both circles,

while both baseline and ReebRecon failed to capture both circles. Again, this is because both

methods are heavily dependent on the input triangulation (the ripsr(P) complex). This complex

at various values of r is shown in the first row of Figure B.8, while the corresponding baseline and

ReebRecon outputs are shown in the second and third rows respectively. All ReebRecon outputs

are smoothed with no subsampling, a neighborhood radius of 2 neighbors, and 10 iterations.

Neither result can contain the larger circle if the input triangulation itself does not contain the

larger circle, so we increase values of r until the complex contains the larger circle. r = 1 is too

small to capture even the smaller circle. At r = 1.5, the complex does contain the smaller circle,

and both baseline and ReebRecon are able to successfully extract the loop. However, at r = 2

and r = 3, the complex still does not contain the larger circle, and more noise around the smaller

circle is added to the outputs. Finally, at r = 4, the larger circle is contained within the complex.

However there are two issues. Firstly, there is a spurious loop in the complex along the larger

circle, so while r = 4 is able to capture the larger circle, it is still not an appropriate value of r.

We would need to try to find a new r value that better captures the data if not for the second issue

- the smaller circle is lost in both outputs - meaning an appropriate value of r does not exist for

either method. We can see that in the ripsr(P) complex at r = 4, the points forming the smaller

circle now nearly form a clique, which results in both baseline and ReebRecon outputs losing the

smaller circle. We conclude that there is no value for r that will result in either method capturing

both circles. Running time and simplicial complex size comparisons are shown in Table B.2.

For radius r = 4, we see that the number of simplices used in both baseline and ReebRecon is

nearly double that of the filtration used by DM-PCD. As a result, the running times of baseline

and ReebRecon are longer than that of DM-PCD.

Additionally, Chapter 5 shows that Mapper was able to successfully capture both features

of the two circle dataset. Further results for different filter functions are shown in Figure B.9.

130
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Figure B.8. The ripsr(P) complex (first row), baseline outputs (second row), and ReebRecon
outputs (third row). All baseline outputs were generated using persistence threshold zero,
meaning that no simplification occurred. (A) r = 1 - ripsr(P) complex fails to capture either
circle, resulting in both methods failing to capture either circle. (B) r = 1.5 - ripsr(P) complex
now contains the smaller circle but not the larger circle. Both outputs successfully capture the
smaller circle, but fail to capture the larger circle. (C) r = 2 - ripsr(P) complex now connects the
noise inside of the smaller circle to the smaller circle, while still not containing the larger circle.
The outputs now capture the smaller circle and some noise inside of the circle, and still fail to
capture the larger circle. (D) r = 3 - ripsr(P) complex still does not contain the larger circle,
and contains many edges cutting across the smaller circle. The ReebRecon output captures the
smaller circle with more noise, while the baseline output has begun to lose the smaller circle.
Both outputs fail to capture the larger circle. (E) r = 4 - ripsr(P) complex now contains the
larger circle, as well as a spurious loop, and the points forming the smaller circle now nearly
form a clique. The outputs capture the larger circle, but contain a spurious loop, and the smaller
circle is completely lost.

Similarly to the results of the one circle dataset, Mapper was able to successfully capture both

features when using either the graph Laplacian filter or distance to base point filter. Looking

at the heat map for the eccentricity filter, we see that it would also appear to be an acceptable

choice for this particular dataset. The output captures the larger feature and is unable to capture

the smaller feature. The density filter once again fails to extract any meaningful structure from

the dataset.
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure B.9. Two circle dataset: filter function values (first row) and corresponding Mapper
outputs (second row) using (A) graph Laplacian filter (k = 15), (B) eccentricity filter, (C)
Gaussian density filter, (D) distance to base point filter.

Table B.2. Two circle dataset: Comparison of running time of DM-PCD, baseline, and ReebRecon.
Our algorithm has radius ∞ as we run on the full sparse DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method ∞ 19497 .06
Baseline 1 2182 .002
Reeb Graph 1 2182 .01
Baseline 2 8350 .013
Reeb Graph 2 8350 .02
Baseline 3 20005 .045
Reeb Graph 3 20005 .05
Baseline 4 41349 .13
Reeb Graph 4 41349 .25

132



B.2.3 Image patches dataset

Chapter 5 shows that our DM-PCD algorithm is able to successfully extract the ”three-

circle model” from a random 10,000 point subset of the image patches dataset from [22], while

baseline, ReebRecon, and Mapper methods are unable to do so. We run baseline with rips.75(P) as

the input complex. We tried several r values less than .75, as well as r = .8. For r values less than

.75, there were many spurious loops that could not be removed with persistence thresholding.

For r = .8, the desired three-circles are not completely recovered even with no persistence

thresholding. Results at various persistence thresholds are shown in Figure B.10. Although the

output does contain the three circles we wish to extract, it is also made up of several additional

loops. Raising the persistence threshold to 5 removes some of the additional loops, but raising

the persistence threshold to 10 removes part of the desired three circle model without removing

the remaining additional loops. In fact, raising the persistence threshold to ∞, we see that some

of these incorrect loops are a product of the input triangulation, and it is not possible to achieve a

desired output from baseline with r = .75. While it may still be possible for a ”good” r value to

exist, it is extremely expensive to compute persistence on triangulations with this many simplices.

Running time and simplicial complex size comparisons are shown in Table B.3. For

radius r = .75, we see that the number of simplices used in baseline is over 50,000,000 greater

than the number of simplices in the filtration used by DM-PCD. Although DM-PCD takes longer

to compute persistence even with a smaller filtration, the DM-PCD filtration has an implied

r = ∞, and that any sizable increase to r = .75 for baseline will result in a significant increase in

running time. We note that for all values of r, the number of simplices used in baseline would be

the same number of simplices used by ReebRecon.

Additionally, Chapter 5 shows that Mapper was unable to capture the true underlying

structure of the image patches dataset. Further results for different filter functions are shown in

Figure B.11. Gaussian density and eccentricity filters fail, as seen in previous datasets. However,

unlike the previous dataset, the graph Laplacian and distance to base point filters also fail
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(A) δ = 0 (B) δ = 5 (C) δ = 10 (D) δ = ∞

Figure B.10. Image Patches: Outputs of baseline with ripsr(P) complex (r = .75) as the input
triangulation at various persistence thresholds. (A) δ = 0 - With no thresholding of critical edges,
the output captures the three circles that we expect to, as well as additional loops. (B) δ = 5 -
Raising the persistence threshold allows for some of the additional loops to be removed while
keeping the three circles we expect. (C) δ = 10 - Further raising the persistence threshold results
in losing part of the horizontal circle while keeping extra loops. (D) δ = inf - Removing all
critical edges except those with infinity persistence removes more of the desired three circle
output and keeps loops not part of the desired output.

to capture the underlying structure. This data is simply too noisy for Mapper to extract the

underlying structure.

Finally, while our algorithm is deterministic, this dataset is generated from a random 10K

point subset. In an attempt to quantify the error, we generated 10 different random subsets to

apply our method to. On all 10 datasets, our method extracts the 3 circles correctly. To quantify

error, we computed the distance between two output graphs Gi, G j by calculating the average

distance between each node in one graph to its nearest node in the other graph, and normalizing

this distance by the diameter of the full 50K point dataset. The result was 0.036 average error.

Table B.3. Image Patches dataset: Comparison of running time of DM-PCD and baseline. Our
algorithm has radius ∞ as we run on the full sparse DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method ∞ 209397755 16089.4
Baseline .25 77261 .15
Baseline .75 263787145 1485.42
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure B.11. Image patches: Outputs of Mapper using different filter functions - (A) graph
Laplacian filter (k = 15), (B) eccentricity filter, (C) Gaussian density filter, (D), distance to base
point filter. The dataset is too noisy and none of the filters result in Mapper outputting a graph
representative of the true underlying structure.

B.2.4 Traffic flow dataset

We also test on point clouds derived from traffic flow data [21]. We extract two datasets:

the time-series of traffic flow at detector #409529 from time-range 10/1/2017 to 10/14/2017 and

from time-range 11/19/2017 to 12/2/2017 (which includes Thanksgiving). Each time-series is

mapped to a point cloud dataset in R6 via time-delay embedding.

Given a time series f : t−> R and a parameter τ , the lift defined by φ(t) = ( f (t), f (t +

τ), ..., f (t +Mτ)) is called a time delay embedding. For each traffic flow function, we create a

PCD using a time delay embedding with M = 5 and τ = 50. The two dimensional projections of

these PCDs are shown in Figure 5.5 (B). The first function’s time delay embedding projection

appears to be a single loop, while the second appears to have an inner loop and an outer loop.

Chapter 5 shows the results of our DM-PCD algorithm with k = 30 on both time series

datasets. So far in our experiments, a default value of k = 15 has been used. By the nature of

time delay embeddings, which may create clumps of points close together, different values of k

can produce markedly different results. Shown in Figure B.12 are results of DM-PCD on the two

datasets with k values of 15, 30, and 40. For the first dataset (10/1/2017 - 10/14/2017), a single

loop is captured with all values of k. For the second dataset (11/19/2017 - 12/2/2017), changing

the value of k results in more drastic changes in the output. The persistence thresholds for the

outputs are 8.25 (k = 15), 12.5 (k = 30), and 12.84 (k = 40). In all cases, if the persistence
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threshold were raised enough to further threshold the output, a portion of the outer loop would

be lost. We note that our output must be connected, so the desired result is two loops with a

single connection. The output with k = 15 contains many extra connections, while the output

with k = 30 contains a single extra connection. With k = 40, the desired output is achieved.

Also shown in Chapter 5, baseline is able to successfully capture the single loop of the

first time series dataset. Results for baseline on the second time series dataset are shown in Figure

B.13. The persistence thresholds for the outputs are 8 (k = 15), 5 (k = 30), and 3 (k = 40). Just

like the results for DM-PCD in Figure B.12, if the persistence thresholds were raised enough

to further threshold the output, a portion of the outer loop would be lost, making the output of

DM-PCD superior.

Running time and simplicial complex size comparisons for 10/1/2017 - 10/14/2017 and

11/19/2017 - 12/2/2017 traffic flows are shown in Table B.4 and B.5 respectively. Note that the

baseline results shown in Chapter 5 use r = 90 and r = 75 respectively. For the first dataset, we

see that the number of simplices used by the baseline with r = 90 is more than five times greater

than the number of simplices used in DM-PCD. This results in longer running time for baseline.

For the second dataset, the number of simplices used by the baseline with r = 75 is a little less

than three times greater than the number of simplices used in DM-PCD. While the running time

remained shorter for baseline in this particular instance, we note that an increase in the value

of r can add a significant amount of simplices and push the running time to be longer than the

DM-PCD running time. We again note that for all values of r, the number of simplices used in

baseline would be the same number of simplices used by ReebRecon.

Additionally, Chapter 5 shows that Mapper was able to extract the structure behind traffic

flow from 10/1/2017 to 10/14/2017, but was unable to do so for traffic flow from 11/19/2017

to 12/2/2017. Results of Mapper on both datasets using a variety of filter functions is shown in

Figure B.14. Again, using the graph Laplacian and distance to base point filters allowed Mapper

to extract the single loop structure behind the first dataset. However, Mapper is unable to extract

the two loop structure behind the second dataset with these filters, along with eccentricity and
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Gaussian density filters. In contrast, DM-PCD was able to get the true underlying structure

behind both datasets.

Table B.4. Traffic (10/1/2017 - 10/14/2017) dataset: comparison of running time of DM-PCD
and baseline. Our algorithm has radius ∞ as we run on the full sparse DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method ∞ 6,879,338 98.6
Baseline 75 14,646,522 54.7
Baseline 90 35,543,784 123.903

Table B.5. Traffic (11/19/2017 - 12/2/2017) dataset: comparison of running time of DM-PCD
and baseline. Our algorithm has radius ∞ as we run on the full sparse DTM-Rips filtration.

Method Radius # Simplices Time (seconds)
Our Method ∞ 5,720,309 106.1
Baseline 60 5,157,336 16.8
Baseline 75 15,659,797 57.7

B.2.5 Coil-20

Similarly to the two circle example, both the baseline and ReebRecon approaches are

unable to capture all coils because the coils have varying scales in the original space. A concrete

example is shown in Figure B.15, where Objects 1 and 17 cannot be captured at the same

scale. We also applied Mapper to Coil-17 using a base point filter. While Mapper can extract

the structure of individual objects quite well, the method also struggles to capture all coils.

Focusing on Objects 1 and 17 again, we see that by changing the epsilon parameter of the density

clustering scheme we use inside of Mapper, we are able to capture the structure of either Object

1 or Object 17, but not both (results shown in Figure B.16). While it may be possible that a

different clustering scheme (or different covering and filter function combinations) could lead to

a Mapper configuration that can capture both objects, finding parameters able to capture all coils

would be difficult.
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(A) k = 15 (C) k = 40(B) k = 30

Figure B.12. Traffic flow: Outputs of DM-PCD on both datasets (10/1/2017 - 10/14/2017 top
row, 11/19/2017 - 12/2/2017 bottom row) with different values of k. (A) k = 15 - Single loop
captured in first dataset, two loops captured with extra connections in second dataset. (B) k = 30
- Single loop captured in first dataset, two loops captured with an extra connection in second
dataset. (C) k = 40 - Single loop captured in first dataset, two loops captured with a single
connection in second dataset.

  

(A) k = 15 (B) k = 30 (C) k = 40

Figure B.13. Traffic flow: Outputs of baseline method on the second traffic time series dataset
(11/19/2017 - 12/2/2017) at different values of k - (A) k = 15, (B) k = 30, (C) k = 40. In all
cases, any further simplification will lose the outer loop before removing any connections with
the inner loop.
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(A) Graph Laplacian (B) Eccentricity (C) Density (D) Base Point

Figure B.14. Traffic flow: Outputs of Mapper on both datasets using different filter functions
- (A) graph Laplacian filter (k = 15), (B) eccentricity filter, (C) Gaussian density filter, (D),
distance to base point filter. The structure of traffic flow from 10/1/2017 to 10/14/2017 (first row)
is captured by Mapper using the graph Laplacian filter function and the distance to base point
filter function, while the structure of traffic flow from 11/19/2017 to 12/2/2017 (second row) is
not captured by Mapper using any of the filter functions.

  

Baseline

Reeb

(A) Obj17, r = 700 (B) Obj1, r = 700 (D) Obj1, r = 1000(C) Obj17, r = 1000

Figure B.15. Coil: Objects 1 and 17 with baseline and ReebRecon outputs. (A) Object 17,
r = 700 - Object 17 is captured by both methods. (B) Object 1, r = 700 - Object 1 is not captured
by either method. (C) Object 17, r = 1000 - Object 17 is not captured by either method. (D)
Object 1, r = 1000 - Object 1 is captured by both methods.
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(A) Obj17, EPS = 650 (B) Obj1, EPS = 650 (C) Obj17, EPS = 1200 (D) Obj1, EPS = 1200

Figure B.16. Coil: Objects 1 and 17 with Mapper outputs generated using a base point filter
function. (A) Object 17, EPS = 650 - structure of Object 17 is captured. (B) Object 1, EPS = 650
- structure of Object 1 is not captured. (C) Object 17, EPS = 1200 - structure of Object 17 is not
captured. (D) Object 17, EPS = 1200 - structure of Object 1 is captured.
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Appendix C

Chapter 6 Appendix

C.1 Supplementary Methods

C.1.1 Wasserstein Distance

The Wasserstein distance, a special case of optimal transport, is widely used to compare

two probability distributions defined on the same space. In Chapter 6 we use the ℓ1-Wasserstein

distance, also known as the earth-mover distance in fields such as computer vision. Intuitively,

given two distributions ρ and µ over Rd , we can view them as two piles of earth. Our goal is to

transport the mass from ρ to match µ while minimizing the total cost, where the cost is defined

as the sum of the mass moved, weighted by the distance traveled. The Wasserstein distance

dW (ρ,µ) is defined as this minimal transport cost. See [142] for more precise definitions and

details of the Wasserstein distance and related concepts.

The Wasserstein distance can be used to compare two point sets P and Q from Rd , as

each point set can be considered as a discrete measure. In particular, given a set of points

P = {p1, . . . , pn}, it induces an empirical distribution µP := 1
n ∑i∈[n] δpi , where δx is the Dirac

Delta function at x. We can then compare the two point sets P and Q by the Wasserstein

distance between these induced empirical measures µP and µQ, that is, dW (P,Q) := dW (µP,µQ).

Furthermore, if P is a set of points sampled uniformly randomly from a well-behaved continuous

measure µ , then it is dW (µP,µ) tends to 0 almost surely as the number of points in P goes to

infinity.
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In Chapter 6, we use the Wasserstein distance to compare the distributions of cells (which

are point sets in the high dimensional space of RNA expression data). We use the implementation

from the Python Optimal Transport library [50] to compute the Wasserstein distance.

C.1.2 W-L Graph Distance

Chapter 6 uses the Morse graph as a succinct summary of input data (a collection of cells,

which can also be viewed as a point cloud in a certain high dimensional space). To compare the

key structure of two collections of cells P and Q, we can also compare their Morse graph GP

and GQ. Furthermore, note that each Morse graph is an attributed graph in the sense that each

graph node v ∈V (G) is associated with a node feature represented by a point xv ∈ X in some

metric space (X,dX): For example xv could be the gene expression of the cell corresponding to

the graph node v, represented as a point in X = Rd . In this case, the associated metric is just

dX = the Euclidean distance in X = Rd . In our experiments, the node feature of each Morse

graph cell (node) will be the cell’s gene expression.

To compare these Morse graphs, we need a meaningful distance measure for attributed

graphs which can also be computed efficiently. Unfortunately, common graph distances are

often NP-hard to compute and even to approximate within a constant factor, e.g., the graph edit

distance. Furthermore, they usually only focus on graph combinatorial structure and ignore node

features. We use the so-called Weisfeiler-Lehman (WL) distance originally proposed in [31],

which is an optimal transport-inspired metric for graph data with node features, combined with

the classical Weisfeiler-Lehman graph isomorphism test [149]. We use the differentiable variant

of the WL-distance as proposed in [15], as this version also allows the computation of objects

such as the (Fréchet) mean of a set of graphs, if needed.

C.2 Extended Data Figures
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tSNE by [81]. (B) Zoom-in on 3 edges from Morse graph. (C) Heatmap of distance in raw gene
space vs in the embedding between (C) all cells (ρ = 0.6) and (D) 15-NN in raw gene space
(ρ = 0.1). (E) Raw gene space 15-NN preserved in embedding for each cell. (F) Morse graph
size and coverage compared to random and (G) embedding for k = 25. (H,I) Similar for k = 35.

143



A

33.9

B

Cck

0 100 200 300 400

0

5

10

15

Stmn1

0 100 200 300 400

0 100 200 300 400

9

10

12

11

13

Tmsb10

 E
xp

re
ss

io
n

Latent Factor Index

 E
xp

re
ss

io
n

 E
xp

re
ss

io
n

Latent Factor Index Latent Factor Index

0

2

4

6

8

10
C D

Slc17a8

Calb1 Kctd12 

Calb1 
Tnfalp813

Calb1 Tnfalp813

Vip

0 5 10 15 20 25

0.
4

0.
6

0.
8

1.
0

1.
2

Mean
% Zero

 Kctd12

  1.0

  0.8

Slc17a8
 Tac2

 Igfbp5  

      
      

Tnfaip813 Vip

  0.6

  0.4

  0.2

  0.0
-1 0 1 2 3

Slc17a8

             Kctd12

               Tac2

              Igfbp5

              Tnfaip8l3

Vip

Ca
lb

1

Latent Factor Value

E F

Figure C.2. (A) Mean expression along the Morse path gradient showing peak and saddle cells
labeled. (B,C,D) Trajectory Lowess fit of expression along LFV ordered cells with Morse cells
highlighted in red for (B) Tmsb10 (C) Cck and (D) Stmn1 genes. (E) Distribution of LFVs for
major cell types. (F) Percentage of [81] cell types assigned to the same label in Morse gradient.

144



-40 -20     0  20   40

95

90

85

80

75

70

65

60

A

t-SNE 1

t-S
N

E 
2

33.9

B

C D

E F

Sl
c1

8a
8

Ta
c2

Kc
td

12

Ig
fb

p5

Tn
fa

ip
81

3

Vi
p0.00

0.10

0.20

0.30

t-SNE 1

Slc17a8
Calb1 Tac2
Calb1 Kctd12
Calb1 Igfbp5
Calb1 Tnfaip813
Vip

Vip

Tac2

Tnfaip813

Kctd12

Igfvp5

Slc17a8

Latent Factor Morse 

Vip

Tac2

Tnfaip813

Kctd12

Igfvp5

Slc17a8 Vi
p

Ta
c2

Ig
fv

p5

Tn
fa

ip
8l

3

Sl
c1

7a
8

Kc
td

12

0.0

0.2

0.4

0.6

0.8

1.0

-40 -20     0  20   40

95

90

85

80

75

70

65

60

t-S
N

E 
2

Vip

Slc17a8

Igfvp5

Tnfaip813

Tac2

Kctd12

Slc17a8

Slc17a8
Calb1 Tac2
Calb1 Kctd12
Calb1 Igfbp5
Calb1 Tnfaip813
Vip

Vip

Slc17a8
Calb1 Tac2
Calb1 Kctd12
Calb1 Igfbp5
Calb1 Tnfaip813
Vip
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Figure C.4. (A) 1-LCI metric as a measure of cluster label stability. Highest lines show essen-
tially perfect separation of GABAergic and glutamatergic cell types. Point indicates maximum
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Figure C.5. (A) Plot of log of cell type cluster size as identified in [157] versus Morse Type
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natural measure of cell type uniqueness. MT is correlated (ρ = 0.666) with the log of cluster
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depicted similar to Figure 6.4D. Morse cell types are input to multidimensional scaling (MDS) to
obtain the coordinates for each type. The size of the vertices scales as the maximum 1-LCI score
with edge thickness determined by the magnitude of off-diagonal MPT entries and representing
cell type confusion.

147



Morse Threshold

M
ax

im
um

 1
−L

C
I

0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sst 101

Sst HPF 104

Sst HPF 105

Sst HPF 107 Pvalb 109

Lamp5 10

Pvalb 112

Pvalb 117

Pvalb 121

Pvalb Vipr2 122

Pvalb Vipr2 123Lamp5 12

Lamp5 16

Lamp5 

Sncg 21

Sncg 22

Sncg 24

Sncg 31

Sncg 33

Sncg 36

Sncg 37

Sncg 38

Vip 40

Vip 42

Vip 43

Vip 44

Vip 45

Vip 46

Vip 47
Vip HPF 54

Vip HPF 56

Lamp5 5

Vip Igfbp6 60

Sst Chodl 63
Sst Chodl 65Sst 66

Sst 67

Sst 68

Sst 69

Sst 72

Sst 74

Sst HPF 77

Sst HPF 78

Sst 83

Sst 84

Sst 87
Sst 89

Sst 92

Sst 95

Sst 96

Lamp5 Lhx6 9Lamp5 Lhx6 9

Lamp5 18

Pvalb 116

Max 1-LCI
Fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Morse Threshold

Fr
eq

ue
nc

y

0

5

10

15

0.1 0.2 0.3 0.4 0.5

A B

C

La
m

p5
 E

gl
n3

La
m

p5
 L

hx
6

La
m

p5
 M

ei
s2

La
m

p5
 P

ax
6

La
m

p5
 P

dl
im

5
Pv

al
b 

Lp
l

Pv
al

b 
Th

Pv
al

b 
Vi

pr
2

Sn
cg

 J
am

2
Sn

cg
 K

rt7
3

Sn
cg

 N
tn

g1
Sn

cg
 S

er
pi

nf
1

Ss
t C

al
b2

Ss
t C

ho
dl

Ss
t C

rh
Ss

t C
ts

c
Ss

t E
tv

1
Ss

t H
ps

e
Ss

t L
m

o1
Ss

t M
m

e
Ss

t M
yh

8
Ss

t N
m

br
Ss

t N
ts

Ss
t S

yn
di

g1
l

Vi
p 

C
bl

n4
Vi

p 
C

p
Vi

p 
Ig

fb
p6

Vi
p 

Lm
o1

Vi
p 

M
yb

pc
1

Vi
p 

Pc
dh

11
x

0.0

0.1

0.2

0.3

0.4

D

Figure C.6. (A) Scatter plot of ACA GABAergic supertypes showing relationship of Morse
Type Maximum and maximum 1-LCI. Lines indicate mean values in each dimension. Colors
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Maximum 1-LCI distribution. (D) Morse Type Maximum of each ACA GABAergic supertype.
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variable genes coded here by GABAergic or glutamatergic expressing supertypes. Adjusted
R-squared: 0.3821, p-value: p < 4.81x10− 13. (B) Effect loss is not fully explained by the
increased number of variable genes. Soft margin SVM fitting variable genes to loss effect size
separates GABAergic and glutamatergic neurons at F1 = 0.763.
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