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Your brain on art, nature, and 
meditation: a pilot neuroimaging 
study
Beatrix Krause-Sorio 1, Sergio Becerra 1, Prabha Siddarth 1, 
Stacey Simmons 2, Taylor Kuhn 1 and Helen Lavretsky 1*
1 Department of Psychiatry, Semel Institute for Neuroscience and Behavior, University of California 
Los Angeles, Los Angeles, CA, United States, 2 Hope Therapy Center, Burbank, CA, United States

Objectives: Exposure to art, nature, or meditation, all transcending human 
experiences, has beneficial effects on health and wellbeing. Focusing inward 
or watching art and nature videos elicits positive emotions that can help heal 
stress-related conditions. In a pilot functional magnetic resonance (fMRI) study, 
we  explored the effect of watching digital art or nature videos compared to 
contemplating the universal connectedness (also known as transcendental 
meditation). The instructions were to meditate on the connection to a Universal 
Soul linked to a sense of expansion and universal connectedness (“one with 
everything”), which was prompted by a video of the galactic nebula that also 
controlled for the visual stimuli of the two other conditions.

Methods: Nine healthy adults (mean age = 29; range = 19–42; 5 women) 
underwent a block design fMRI scan using a Siemens 3T Prisma scanner. 
The blocks included (1) nature videos, (2) AI-generated digital art (“machine 
hallucinations” by Refik Anadol), and (3) videos of NASA Webb-produced 
images of galactic nebulas. Brain oxygen-level dependent (BOLD) images were 
processed using FSL Version 6.0 and a general linear model (GLM) tested the 
contrasts between art, nature, and meditation blocks, using a cluster-corrected 
p-value of 0.05.

Results: Compared to rest, meditation led to BOLD increases in bilateral lateral 
occipital and fusiform gyri, as well as right postcentral gyrus and hippocampus. 
Compared to viewing AI-generated digital art, increased BOLD responses 
during meditation were observed in left parietal and central operculum, and 
right pre- and postcentral gyri, and compared to nature, in the left parietal 
operculum, bilateral postcentral and supramarginal gyri, and bilateral lateral 
occipital cortices.

Conclusion: Meditation compared to rest showed brain activation in regions 
associated with object, sensory, and memory processing. Meditation compared 
to nature videos led to activity in bilateral sensory and object processing areas, 
as well as a left sensory integration region (error monitoring), while meditation 
compared to art showed activity in left sensory integration and right sensorimotor 
regions. Further studies are needed to delineate the distinct neural signature 
and therapeutic effects of inner contemplation using human connection to art, 
nature, or meditative transcendent practices, in the brain and its potential in 
clinical applications.
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1 Introduction

Transcendent experiences like being in nature, witnessing great 
art, or meditating on the universal connection to the Universe (e.g., 
transcendental meditation) can elicit a subjective sense of awe, joy 
and wellbeing, but can also change the perception of one’s life. There 
are numerous theories surrounding these effects. For example, 
biophilia theory suggests that humans have an innate attraction to 
nature, and the more recent stress reduction theory (SRT) postulates 
that exposure to nature reduces the effects of stress, possibly through 
homeostatic mechanisms (Christensen and Gomila, 2018; Kellert 
and Wilson, 1995). Thus, exposure to natural environments, 
compared to more perceptually demanding urban environments, can 
promote recovery from stress, reduce negative affect, and improve 
attention (Ulrich et al., 1991; Gaekwad et al., 2022; Gamble et al., 
2014). In addition, a recent meta-analysis found that subjective 
measures of restoration from stress (e.g., perceived stress, 
restorativeness, or affect) were strongly associated with objective 
measures (e.g., blood pressure and heart rate) (Bolouki, 2023). Based 
on a meta-analysis, exposure to green spaces has been associated 
with decreased salivary cortisol, heart rate, high-density lipoprotein 
cholesterol, risk of type II diabetes, all-cause and cardiovascular 
mortality, increased heart rate variability, self-reported good health, 
and reductions in the incidence of stroke, hypertension, 
dyslipidemia, asthma, and coronary heart disease (Twohig-Bennett 
and Jones, 2018). An epidemiological study has demonstrated that 
after the COVID-19 pandemic, during which many became 
unemployed, worked from home during the lockdown, and 
experienced heightened stress, people have developed an even 
greater affection for green spaces and up to 4 times more people seek 
out conservation areas compared to before the pandemic, 
irrespective of the season (Tansil et  al., 2022). Overall, nature 
exposure during the pandemic appeared to reduce depression, 
anxiety, and stress, and increased happiness and life satisfaction, 
whereby more nature exposure was associated with less physical 
inactivity and fewer sleep disturbances (Labib et al., 2022). Some 
have even argued that nature can induce intense emotions, including 
awe and inspiring energy, experiences related to spiritual 
transcendence (Bethelmy and Corraliza, 2019).

Several studies have reported positive effects of nature exposure 
in clinical settings, which further supports the SRT. Two decades 
ago, in-patients who underwent cholecystectomy were found to 
recover faster and needed less medication when they had a window 
view overlooking a natural environment compared to patients 
whose windows faced a brick wall (Ulrich, 1984). Yet, for many 
years, the notion that nature could facilitate recovery from a 
physical or mental illness was dismissed. However, more recently, 
there has been a resurgence of interest in this concept. A survey 
study found that women experienced greater pain relief from 
C-sections if they had a more subjectively satisfying window view 
(Wang et al., 2019). Similarly, having a picture of a natural scenery 
next to the bed during a painful bronchoscopy procedure reduced 
patients’ subjective pain experience significantly (Diette et  al., 
2003). Another meta-analysis found that interior design features in 
the hospital, including nature images, bigger rooms, and more 
sunlight had positive effects on anxiety and postoperative pain 
(Vetter et al., 2015). Thus, there is increasing evidence that not only 
being outdoors, but also exposure to more daylight and natural 

environments through a window or from pictures of nature has 
positive effects on stress and recovery from physical or 
mental illness.

Similar to effects from direct and indirect exposure to nature, 
production and passive experience of subjectively beautiful art have 
broad positive effects on wellbeing and have been widely applied in 
clinical settings. For example, art therapy can reduce anxiety, 
depression, fatigue, and quality of life in cancer patients, and 
depression in patients with neurocognitive and psychiatric disorders 
(Jiang et al., 2020; Batubara et al., 2023; Jenabi et al., 2023). While 
reduction of depression symptoms is frequently the therapeutic target, 
art therapy can also improve neurocognitive symptoms directly. For 
instance, the addition of virtual art therapy to physical therapy alone 
can improve independence in daily life activities and finger pinching 
strength in stroke patients (De Giorgi et al., 2023). The World Health 
Organization (WHO) identified over 3,000 studies on the effect of art 
on health and wellbeing and determined that art had positive effects 
on disease prevention, health, and the management and treatment of 
illnesses across the lifespan (Fancourt and Finn, 2019). In addition, 
the WHO concluded that early neuroaesthetics (appreciation of 
aesthetics in the brain) studies demonstrated reduced activity in the 
right caudate nucleus when viewing less preferred art pieces, and 
increased activity in bilateral occipital gyri, left cingulate sulcus, and 
bilateral fusiform gyri with greater preference for art pieces (Vartanian 
and Goel, 2004).

The WHO has argued that while being equivalent or even more 
cost-effective than common health interventions, art therapy targets 
a multitude of health outcomes and can be tailored to people of all 
cultural backgrounds, allowing for the inclusion of minority groups 
and populations that have limited access to standard medical 
treatment (Fancourt and Finn, 2019). While neuroaesthetics and art 
therapy are different disciplines, combining these could become a 
highly accessible and customizable form of adjunct therapy.

While producing art is not accessible to all, passively viewing art 
(also called “contemplation”), such as paintings or sculptures, requires 
fewer resources and has beneficial effects on health and wellbeing 
(Fancourt and Finn, 2019). Preliminary results demonstrate that 
viewing art images on a tablet might have beneficial effects on 
cognition, behavior, social relationships, and mood in older adults 
with dementia and their caregivers (Tyack et al., 2017). The same 
study also found that longer exposure durations led to greater 
improvements in these domains.

Due to its striking effect on human wellbeing and health, latest 
advances in neuroaesthetics explore the biopsychological mechanisms 
of art. The biopsychosocial and wellbeing effects that have been 
proposed to contribute to the observed cognitive and emotional 
effects of art include: (1) attentional focus and flow, (2) affective 
experience and higher affective sensitivity, (3) emotion elicited 
through imagery, (4) interpersonal communication, (5) self-
intimation (observing one’s affective state introspectively), and (6) 
social bonding (Christensen and Gomila, 2018). These aspects have 
also been linked to subjective experiences of transcendence, which can 
be a spiritual construct for some and a construct of authenticity for 
others (Levin and Steele, 2005). For example, an association between 
the aesthetic experience of art and the ability to connect with spiritual 
or transcendent experiences has been reported (Świątek et al., 2023). 
Kawabata and Zeki (2004) found motor, parietal, lateral occipital, and 
orbitofrontal brain activity when viewing art. This suggests that there 
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is a complex brain network involved in processing art, even when it is 
represented in pictures.

In a positron emission tomography (PET) study, participants 
watched film clips that evoked emotions and neutral clips, and were 
asked to connect with (“feel”) strong emotions they have recently 
experienced based on the presentation of prompted scripts (Reiman 
et al., 1997). The resulting film- and recall-generated emotion both led 
to significant symmetrical, bilateral increases in brain activity in the 
medial prefrontal cortex and thalamus. The authors argued that 
activity in these regions was specific to the internally generated 
emotional component, while increased activity in other regions 
reflected processing of other emotional components that were linked 
to external sensory features.

As discussed above, images have a profound impact on health, 
wellbeing, and neurophysiology. This effect appears to be modulated 
by subjective perceptions of aesthetics and the emotions elicited 
during image viewing. Positive emotions play a critical role in personal 
development, wellbeing, and social connection, and targeted therapy 
can enhance them (Helion et al., 2019; Fredrickson, 2001; Iwakabe 
et al., 2023). Emotion regulation is the ability to manage emotions 
both spontaneously and intentionally, and individuals possess varying 
levels of emotion regulation skills (McRae and Gross, 2020). This 
process involves adjusting emotions, including observing internal 
states, and is vital for psychological resilience, leading to improved 
coping mechanisms, health, and positive health behaviors (Cardi et al., 
2021; Low et  al., 2021; Rodriguez and Kross, 2023). Developing 
emotion regulation through therapeutic interventions that are calming 
or rebalancing can enhance mental and physical wellbeing.

Meditation is a common technique to disrupt ruminating 
thoughts and mitigate negative emotions, yielding benefits for 
psychological and physical health (Orme-Johnson and Barnes, 2014; 
Schneider et al., 2022; Hilton et al., 2017; Rogerson et al., 2024; Khanal 
et al., 2024). Transcendental meditation, a deep concentration on, and 
subjective connectedness with the cosmic consciousness, promotes a 
state of relaxed awareness (Travis, 2014). This practice fosters inner 
self-awareness, diminishes perception of time, space, and the body, 
and leads to higher brain integration, improved mood, emotional 
stability, and reduced anxiety (Orme-Johnson and Barnes, 2014; 
Travis, 2014; Mahone et  al., 2018; Basso et  al., 2019). Different 
meditation techniques target various cognitive tasks, from 
mindfulness and visualization to loving-kindness meditation and 
focusing on external stimuli like a candle flame. Utilizing 
transcendental meditation to expose novice transcendence 
practitioners to aesthetically pleasing images and guide them to 
connect subjectively with higher entities can enhance the therapeutic 
effects. Comparing the impact of transcendental meditation on 
anxiety and brain activity with exposure to art and nature in novice 
practitioners can offer valuable insights into its 
therapeutic mechanisms.

While nature, art, and meditative or contemplative practices 
engage distinct perceptual and cognitive processes, they all have the 
potential to reduce negative emotions, enhance psychological 
wellbeing, and facilitate transcendent experiences. Exploring the 
neural processing differences among these accessible activities in 
healthy adults, who are inexperienced in transcendental meditation 
can inform future therapeutic approaches for clinical populations. In 
the current pilot study in healthy young adults with sub-clinical levels 
of stress, anxiety, and depression, we used a whole-brain voxel-wise 

functional imaging approach to identify the brain regions that are 
specifically engaged when participants viewed natural scenes 
compared to artificial intelligence (AI)-generated digital art inspired 
by nature (“machine hallucinations”). Our hypothesis was that these 
stimuli would elicit activation in brain regions linked to visual 
processing, emotions, interoception, and memory. Additionally, 
we investigated brain activity in response to contemplating connection 
to the cosmic universal consciousness (transcendental meditation or 
visual stimulus-based inner contemplation), while participants viewed 
an aesthetically pleasing time-lapse video of night skies. We compared 
this brain response to that elicited when participants viewed videos of 
natural scenes and AI-generated art. We  anticipated observing 
different individual neural signatures between all 3 conditions that can 
shed light on the neural mechanisms of transcendence.

2 Methods

2.1 Participants

Participants were recruited using study advertisements on 
websites, clinical trial registration, local advertisement posts, flyers 
spread across campus, the medical center, and neighboring 
communities. Inclusion criteria consisted of healthy, right-handed 
adults between 18 and 55 years old and without self-reported anxiety, 
depression, or chronic stress, which was later confirmed by baseline 
standardized questionnaires (see Table 1). Furthermore, participants 
were required to speak English fluently in order to comprehend the 
study instructions and materials, a Perceived Stress Scale (PSS) score 
greater than 1 and sufficient visual abilities to complete the 
assessments. Exclusion criteria included visual impairments that 
interfere with viewing of images on the screen, a history of psychiatric 
disorders, such as bipolar disorder, psychosis or intellectual disability, 

TABLE 1 Participant demographics and clinical scores.

Sample (N = 9) Median Range

Sex, n (%)

Female 5 (55.6%)

Male 4 (44.4%)

Age 29 19–42

Education, years 16 13–18

BMI 22.4 20.6–36.0

PSS 22 15–27

PANAS

Total 53 45–61

  Positive affect 39 33–48

  Negative affect 12 10–21

STAI-state (N = 9)

  Baseline 24 20–32

  Post-scan 25 16–32

Signed rank test S = −3, p = 0.73

BMI, body mass index; N, total number of participants; n, number of participants; PSS, 
perceived stress scale; PANAS, positive and negative affect scale; STAI, state–trait anxiety 
inventory.
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as well as neurological damage or impairment, alcohol, nicotine or 
substance abuse, suicidal attempts within the past 24 months, current 
use of antidepressant or anxiolytic medications. The following medical 
conditions were excluded: a history of serious, uncontrolled illness or 
medically unstable condition, including significant cardio-pulmonary 
disease, neurological disorders, seizures or epilepsy, cerebrovascular 
disease, thyroid dysfunction, diabetes. Contraindications for MRI 
included unsafe or unverified metal implants, pregnancy, 
claustrophobia, weight over 200 lbs. This study was approved by the 
University of California Institutional Review Board (IRB).

2.2 Task

During the scan, participants passively viewed 5 video blocks of 
nature scenes (e.g., national parks), 5 video blocks of AI-generated 
digital art (“machine hallucinations”), and 10 blocks of rest. Each 
block was 30 s long containing at least three different scenes each. 
Nature images were licensed from multiple commercial stock video 
libraries. Nature videos included images of waterfalls, flowers, snakes, 
forests, and shores (1 block each). The art blocks included morphing 
images of flowers, mountains and lakes, wave shapes, snakes, and 
waves consisting of morphing cubes. Art images were generated using 
artificial intelligence (AI) “machine hallucinations” and created by 
visual artist Refik Anadol. The task of contemplation on the universal 
connectedness (“meditation block” used for simplicity here) included 
5 time lapse videos of the Milky Way and different cosmic nebulae. 
These aesthetic visual stimuli were intended to provide a similar task 
presentation mode across all 3 tasks. Participants were instructed to 
meditate on the Universal Soul and remember the expansive feeling 
of universal connectedness (“one with everything”) according to the 
training several days prior to the scan, while they were prompted by 
watching the images of cosmic nebulas.

2.3 Procedure

Participants were screened for MRI safety, demographics, health 
conditions, and eligibility over the phone. If participants were eligible, 
written informed consent was acquired at the in-person study visit. 
They were asked to abstain from caffeine, nicotine and alcohol at least 
24 h prior to the scheduled visit in order to reduce external effects on 
the autonomic nervous system. Demographics [age, sex, number of 
years of school education starting in grade 1, body mass index (BMI)], 
neuropsychological questionnaires and neuropsychological tasks were 
acquired at the visit, as well as a one-hour MRI scan. Anxiety was 
assessed again after the MRI scan to test how the art/nature/meditation 
affected trait anxiety. Participants received instructions and practice 
for the meditation task prior to the MRI scan. If participants required 
vision correction, MRI-safe goggles at their required subscription 
were provided before the scan. Participants had the opportunity to 
select the lenses that were the most effective for them. Subsequently, 
participants underwent an MRI scan and completed the STAI-state a 
second time after completing the scan. All participants completed the 
task in the same scanner and under the same controlled conditions. 
The temperature was held constant between 68 and 72 degrees 
Fahrenheit (approximately 20–22 degrees Celsius), with the room 
lights turned off, and each participant had a light blanket on their legs.

2.4 Behavioral assessments

The Mini International Neuropsychiatric Interview (MINI) 
(Sheehan et al., 1998) is a brief structured diagnostic interview to 
screen for the 17 most common disorders in DSM-5. The Perceived 
Stress Scale (PSS) is a 10-item scale assessing subjective 
experiences of stress over the past month, whereby a greater 
number reflects higher levels of perceived stress (Cohen et  al., 
1983). The Positive and Negative Affect Schedule (PANAS) is a 
20-item scale that consists of different words that describe feelings 
and emotions toward people and life experiences, each of which is 
rated using a five-point Likert scale (Watson et al., 1988). One 
subscale has positive and one has negative affect scales (10 
questions each). The State–Trait Anxiety Inventory (STAI), a 
psychological inventory consisting of 40 self-report items on a 
4-point Likert scale that assesses both state and trait anxiety 
(Spielberger et al., 1983). We assessed the 20 questions from the 
STAI-state portion.

2.5 FMRI tasks

In this block design, stimuli were back-projected onto a flatscreen 
located behind the scanner bore, viewed through an angled mirror 
mounted on top of the head coil. The resolution of the screen was 
1,024 × 768 pixels, and the height of each stimulus was 18.85° (600 
pixels), with varied width. Participants were presented with 10 blocks 
of images. Five blocks represented nature and five blocks art. Each 
block was based on a different rating category (beautiful, neutral, and 
unpleasant). Each block was presented for 120 s, with each image 
being displayed for 2 s. Eleven resting blocks were presented for 30 s 
and consisted of a centrally presented fixation cross participants were 
asked to focus on, while blinking normally, as needed. Participants 
were asked to press one of three buttons for each image, indicating 
whether it was beautiful, ugly, or neutral. A 120-s block at the end was 
reserved for the meditation task. The block duration of 120 s blocks 
was chosen based on a balance between prior meditation and video 
viewing and interoceptive state fMRI paradigms. Some visual 
stimulus-based meditation studies have used similar if not longer 
blocks to ensure participants viewed the presented videos long enough 
to provoke the desired effect [e.g., specific motional engagement 
(Davis Iv et al., 2008; Murphy et al., 2018; Brewer et al., 2011)]. On the 
other hand, some shorter block lengths ranging from 16 to 170 s have 
demonstrated robust responses to interoceptive engagement 
(Brefczynski-Lewis et al., 2007; Bauer et al., 2014; Weng et al., 2020; 
Baerentsen et al., 2010; Farb et al., 2013).

2.6 MRI acquisition

High-resolution T1-weighted and T2-weighted images and 
functional BOLD images were collected using a 3 Tesla Prisma-fit 
system (Siemens, Erlangen, Germany) and a 32-channel head coil. The 
multi-echo MPRAGE scan had the following parameters: 208 slices; 
isotropic voxels = 0.8-mm3; TR = 2,500 ms; TE 1 = 1.81 ms, TE 
2 = 3.6 ms, TE 3 = 5.39 ms, TE 4 7.18 ms; TI = 1,000 ms; FoV 
read = 256 mm; flip angle = 8 degrees. Total acquisition time was 
8:22 min.
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Gradient-echo echo-planar imaging (EPI) scans were collected 
in the anterior–posterior direction with a total scan time of 
28:27 min. Functional images involved the following parameters: 
72 slices; isotropic voxel size = 2 mm3; multiband acceleration 
factor = 8; TR = 800 ms; TE = 37 ms; FoV read = 208 mm; flip 
angle = 52 degrees.

2.7 Analysis

2.7.1 Data processing
Data were processed using FSL version 6.0 (FMRIB, Oxford, 

United  Kingdom). Initial preprocessing steps included: motion 
correction (MCFLIRT) (Jenkinson et  al., 2002) and 6 mm spatial 
smoothing. Motion artifact components were identified using 
independent component analysis-based automatic removal of motion 
artifacts (ICA-AROMA) (Pruim et  al., 2015) and removed from 
further analysis. A 128-s high-pass temporal filter was applied to 
remove low-frequency drifts. Individual pre-processed functional 
images were co-registered to the respective structural images using 
FMRIB’s linear image registration tool (FLIRT) (Greve and Fischl, 
2009). Subsequently, a non-linear transformation was applied using 
FNIRT (Anderson et al., 2010) to register the functional images into 
standardized Montreal Neurological Institute (MNI) space.

First-level analysis was performed with FEAT (FMRI Expert 
Analysis Tool) (Woolrich et al., 2004), including time-series statistical 
analysis using FILM with local autocorrelation correction 
(pre-whitening). Time series for each of the three conditions that were 
extracted (art, nature, and meditation) and registered into MNI space 
for group analysis with FLAME (FMRIB’s Local Analysis of Mixed 
Effects). Time series for each of the three task conditions were 
compared against the rest condition. Using a general linear model 
(GLM), the following contrasts were tested: art > nature, nature > art, 
art > meditation, meditation > art, nature > meditation, meditation > 
nature, as well as the average activity maps for art, nature, and 
meditation individually. Statistical significance was set at a two-sided 
p < 0.05. Lastly, cluster thresholding was performed using a 
Z-threshold of 3.1 (equivalent to an uncorrected voxel-level 
p-value = 0.001) and full connectivity matrix. The average signal of 
each resulting cluster was extracted for further correlation with the 
clinical scores. Temporal signal-to-noise (tSNR) maps of the whole-
brain volume across participants were computed across tasks to 
demonstrate temporal stability of the task-related BOLD response 
relative to task-unrelated noise signals throughout the duration of the 
scan (Friedman and Glover, 2006). The tSNR was defined as the mean 
BOLD signal intensity of a voxel relative to the standard deviation of 
the signal over time.

2.8 Statistics

Using IBM SPSS Version 27, descriptive statistics were computed 
for demographics, psychological and neuropsychological scores. Pre- 
and post-MRI state anxiety (STAI-state) scores were compared using 
a non-parametric signed rank test with a two-sided alpha level of 0.05. 
The average cluster signals were each correlated with each clinical 
score using Pearson’s correlation coefficients and an alpha level of 
p = 0.05. Both uncorrected and Bonferroni-corrected are reported.

3 Results

Ten participants completed the baseline assessments. One 
participant was unable to complete the MRI scan. Participant 
demographics and scores are listed in Table  1. One of the nine 
participants was missing the meditation block and another participant 
was missing the post-scan STAI-state. There was no significant 
difference in state anxiety (STAI-state) between before and after the 
MRI scan (median change = −1, range = −5-7, p = 0.7). No other 
participants were excluded from the analysis. Temporal stability of the 
signal (a tSNR map) is depicted in Supplementary Figure S1.

Cluster statistics are presented in Table 2 and depicted in Figure 1.
Compared to rest, the BOLD response during meditation 

increased in bilateral lateral occipital cortices, fusiform gyri, and 
postcentral gyri, as well as the right hippocampus. Compared to rest, 
nature led to a greater BOLD response across bilateral visual cortices. 
Compared to rest, nature led to reduced BOLD responses across a 
large network of left central opercular and insular cortices, precuneus, 
thalamus, cerebellar regions crus II and VIIb, supramarginal gyrus, 
frontal pole and the basal ganglia. In addition, clusters were found in 
the right central opercular and insular cortices, frontal pole, 
precuneus, lingual gyrus, basal ganglia, cerebellar region VIIIa, 
supramarginal gyrus, superior frontal gyrus, and midfrontal/
precentral gyri.

Compared to rest, art revealed clusters in bilateral lateral occipital 
cortices. Two clusters were observed in the contrast meditation > art; 
the junction of the left central-to-parietal operculum and the junction 
of the right pre-to-postcentral cortex. Notably, no regions showed 
greater activation during the art block compared to the meditation 
block. The clusters resulting from the meditation > nature contrast 
overlapped with those observed in the meditation > rest average and 
included the bilateral postcentral gyri, both the bilateral lateral 
occipital cortices, and the left parietal operculum. Notably, there were 
no clusters for the contrast nature > meditation.

Pearson correlations between post-scan anxiety and cluster BOLD 
difference for the contrast meditation vs. rest were observed in the left 
occipital/fusiform cortex (r = −0.84, p = 0.01) and the right 
hippocampus (r = −0.74, p = 0.04; Supplementary Figure S2). These 
results did not survive correction for multiple comparisons (6 scores 
and 12 clusters = 72 tests; corrected p-value p = 0.000694). No further 
correlations were found (p’s > 0.36; Supplementary Figures S2, S3).

4 Discussion

In this cross-sectional pilot study in nine healthy, non-depressed 
adults, we  found that in participants, who were first trained in 
transcendental meditation on cosmic Soul connection with the use of 
images of cosmic nebulas as a conditioned stimulus, and during an 
fMRI session were prompted to perform transcendental meditation 
practice with the visually-images of cosmic nebulas compared to rest, 
increased BOLD responses were observed in bilateral lateral occipital 
cortices, fusiform gyri, and postcentral gyri, as well as the right 
hippocampus. Art > rest engaged somewhat smaller and slightly 
disconnected regions in bilateral lateral occipital cortices. Compared 
to rest, nature videos elicited greater BOLD responses in bilateral 
lateral visual cortices and reduced BOLD responses in a widespread 
network across the brain, including left central opercular and insular 
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TABLE 2 Cluster parameters.

Hemisphere Region Cluster size 
(number of 

voxels)

p-value Maximum 
intensity 

voxel

MNI coordinates

X Y Z

Meditation > Rest

Left Lateral Occipital Cortex 445 0.0000001 4.73 −40 −66 4

Occipital Fusiform Gyrus 415 0.0000003 4.33 −18 −82 −16

Right Lateral Occipital Cortex 569 <0.0000001 5.4 50 −66 0

Occipital Fusiform Gyrus 410 0.0000004 4.07 18 −74 −10

Postcentral Gyrus 218 0.000182 4.42 52 −26 48

Hippocampus 92 0.0345 4.3 34 −24 −20

Lateral Occipital Cortex, superior division 89 0.0399 4.12 30 −84 8

Art > Nature

Left Lateral Occipital Cortex 2,167 <0.0000001 7.05 −42 −74 −3

Right Lateral Occipital Cortex 3,192 <0.0000001 6.91 44 −69 −3

Rest > Nature

Left Central opercular cortex/insular cortex 1,519 <0.0000001 8.18 −42 0 5

Precuneus 820 <0.0000001 5.66 −12 −69 20

Thalamus 292 0.00015 4.46 −5 −19 4

VI (cerebellum) 273 0.00025 5.35 −30 −61 −28

Crus II (cerebellum) 270 0.00027 4.8 −42 −54 −46

VIIb 207 0.00172 4.41 −19 −71 −51

Supramarginal gyrus 137 0.0167 4.16 −58 −38 44

Frontal pole 123 0.0274 5.22 −38 50 18

Basal ganglia 107 0.049 4.64 −10 4 7

Right Central opercular cortex/insular cortex 2,793 <0.0000001 7.62 46 0 6

Anterior cingulate 2,369 <0.0000001 6.09 1 −8 42

Frontal pole 970 <0.0000001 6.25 36 49 17

Precuneus 379 0.0000156 6.49 12 −76 39

Lingual gyrus 369 0.00002 4.92 18 −57 1

Basal ganglia 333 0.00005 5.7 18 2 7

VIIIa (cerebellum) 210 0.00157 5.22 15 −66 −50

Supramarginal gyrus 156 0.00875 4.58 56 −41 12

Superior frontal gyrus 132 0.0199 5.01 17 −1 71

Midfrontal gyrus/precentral gyrus 123 0.0274 4.45 42 7 35

Meditation > Art

Left Parietal operculum cortex/central 

operculum cortex
245 0.000118 4.16 −40 −68 6

Right Postcentral gyrus/precentral gyrus 235 0.000166 4.28 −50 −30 56

Meditation > Nature

Left Parietal operculum cortex 358 0.000003 4.67 −60 −20 12

Lateral occipital cortex 245 0.000118 4.16 −40 −68 6

Postcentral gyrus/supramarginal gyrus 235 0.000166 4.28 −50 −30 56

Right Postcentral gyrus/supramarginal gyrus 379 0.000002 4.75 52 −26 48

Lateral occipital cortex 334 0.000007 4.48 50 −66 0
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cortices, precuneus, thalamus, cerebellar regions crus II and VIIb, 
supramarginal gyrus, frontal pole and the basal ganglia. In addition, 
clusters were found in the right central opercular and insular cortices, 
frontal pole, precuneus, lingual gyrus, basal ganglia, cerebellar region 
VIIIa, supramarginal gyrus, superior frontal gyrus, and midfrontal/
precentral gyri.

During meditation compared to viewing art videos, increased 
BOLD responses were observed in the junctions between the left 
parietal and central opercula, and the right pre- and postcentral gyri. 
During meditation compared to nature, increased BOLD responses 
were observed in the junction between bilateral postcentral and 
supramarginal gyri, and bilateral lateral occipital cortices, as well as 
the left parietal operculum. Overlapping clusters were found in the 
right postcentral gyrus and the left parietal operculum for meditation 
> nature and meditation > art contrasts, while the left central 
operculum portion and the right precentral gyrus were unique to 
meditation > art, and bilateral lateral occipital cortices, right 
postcentral gyrus, and left supramarginal gyrus were unique to 
meditation > nature. Clusters in bilateral lateral occipital cortices were 
also found for the contrast meditation > rest and nature > rest. The 
lateral occipital cortex is part of the ventral visual stream, known for 
object recognition, symmetry, and size, and contributes to object 
completion by providing integrated feedback to lower visual regions, 
such as V1 and V2 (Zeng et al., 2020; Cattaneo et al., 2022; Chen et al., 
2021). It has been found to code objects in a non-holistic format, 
independent of whether attention is employed (Guggenmos et al., 
2015). Since the art videos in our current study included morphed 
pictures and not complete objects, it is likely that the lateral occipital 
cortex activity observed in the meditation condition and meditation 
> nature contrasts reflects the processing of visual object features.

Brain activity in pre- and postcentral cortices in the current study 
was observed in the right postcentral gyrus in the meditation 
condition, the right pre- and postcentral gyrus for meditation > art, 
and bilateral postcentral gyri for meditation > nature. This suggests 
the involvement of sensory and motor processing. Further evidence 
from functional and structural neuroimaging, circuit-based dissection, 
and human and animal behavioral studies suggests that motor and 
emotion networks are strongly interconnected, that emotion can 

modulate movement (Liang et al., 2016; Hassa et al., 2017; Braine and 
Georges, 2023) and that induction of negative emotion from pictures 
modulates human motor cortex plasticity and slows down motor 
speed in healthy adults (Li et al., 2019; Koganemaru et al., 2012). Such 
effects could result from the added cognitive resources required 
during an action task (Li et  al., 2019). Further evidence from 
functional and structural neuroimaging, circuit-based dissection, and 
human and animal behavioral studies suggests that motor and 
emotion networks are strongly interconnected, that emotion can 
modulate movement (Liang et al., 2016; Hassa et al., 2017; Braine and 
Georges, 2023) and that induction of negative emotion from pictures 
modulates human motor cortex plasticity and slows down motor 
speed in healthy adults (Li et al., 2019; Koganemaru et al., 2012). It was 
suggested that such effects could result from the added cognitive 
resources required during an action task (Li et al., 2019). This is not 
only relevant for therapeutic interventions in movement disorders, but 
also for athletes and in professions that rely on the speed of their 
motor abilities, such as musicians, dancers, artists, and writers. It is 
noteworthy that bilateral somato-motor activity has also been 
observed in non-sensorimotor tasks, for example when individuals 
viewed art pictures they subjectively experienced as ugly compared to 
those they experienced as beautiful (Kawabata and Zeki, 2004). It is 
therefore possible that the observed sensorimotor activity in our 
current study was associated with subjective preferences of the 
presented pictures. However, due to the small sample size, we did not 
consider participants’ subjective ratings of beauty of the images.

Clusters in the parietal operculum were observed for meditation 
> art, as well as meditation > nature. This suggests that the meditation 
task involved brain processes unique to this task. Since the video 
images in the meditation task resembled aesthetic forms of a natural 
scene (i.e., had similar features to nature and art pictures), we believe 
the observed activity might stem from the cognitive or emotional 
functions that were engaged in the meditation task. The posterior 
operculum, a region adjacent to the insular cortex, has been associated 
with pain and temperature-related pain, tactile and vestibular 
functions (Garcia-Larrea et al., 2010; zu Eulenburg et al., 2013). The 
imagery in the meditation task was a time-lapse, locked-camera image 
of the night skies from the ground. This gave the illusion that the sky 

FIGURE 1

Brain oxygen-level dependent (BOLD) response to viewing nature, art, and meditation videos. (A) Compared to rest, nature led to a greater BOLD 
response across bilateral visual cortices; (D) while a reduced BOLD response was observed across a widespread network across both hemispheres; 
(B) compared to rest, meditation led to a greater BOLD response in bilateral lateral occipital cortices and fusiform gyri, the right postcentral gyrus and 
hippocampus; (C) compared to rest, art revealed clusters in bilateral lateral occipital cortices; (E) compared to nature, meditation showed greater 
BOLD responses in bilateral postcentral gyri, both the bilateral lateral occipital cortices, and the left parietal operculum; and (F) compared to art, 
meditation showed greater BOLD responses in the junction of the left central-to-parietal operculum and the junction of the right pre-to-postcentral 
cortex.
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was rotating above the viewer. The posterior operculum may have 
been activated by this vestibular mimicry. It has also been associated 
with self-awareness during an error monitoring task (Terneusen et al., 
2023). The authors argued that the posterior operculum is part of a 
fronto-parietal control network and demonstrated that 
low-performing traumatic brain injury (TBI) patients had greater 
activity in bilateral insular cortices and parietal opercula in TBI 
patients compared to control participants in response to errors. The 
effect was similar when comparing low-performing to high-
performing patients, but with greater left lateralization. It is therefore 
possible that the operculum is involved in situations where the 
individual monitors internal states.

An increased BOLD response was also found in bilateral 
supramarginal gyri in the meditation > nature contrast. Greater 
activity in this region in individuals with anxiety and depression 
compared to healthy controls has been implicated in emotion and 
emotion regulation (Picó-Pérez et  al., 2017). In addition, the left 
supramarginal gyrus has been associated with attention control to 
happy faces and the regulation of happiness in an emotional Stroop 
task (Loeffler et al., 2019). We therefore believe that this observed 
activity was associated with the emotion regulation component during 
the meditation task.

The clusters emerging from all three tasks compared to rest confirmed 
that participants experienced complex visual input. Additional clusters 
during meditation were found in the right hippocampus and postcentral 
cortex, which may be associated with memory retrieval of prior sensory 
experiences during prior meditation training.

There was a correlation between post-scan anxiety and meditation 
vs. rest cluster signal in the left occipital/fusiform cortex and the right 
hippocampus. However, these results did not survive correction for 
multiple comparisons. It is also noteworthy, that there was no 
correlation between cluster signal and baseline anxiety.

It is important to note that the cognitive and emotional aspects of 
art and nature exposure are complex and involve a variety of processes. 
For instance, both conditions in the current study involved a high 
degree of visual complexity, including light, shape, color, motion, 
composition, and places, and each individual may have experienced 
varying degrees of emotion, liking, and memory triggers for each 
picture (for a comprehensive review, see Cela-Conde and Ayala, 2018). 
For example, a relatively simple picture of a beach scene might trigger 
positive memories in some individuals, and no or even negative 
memories in others. Another complexity involves the temporal 
processing of pictures. In a magnetoencephalography (MEG) study it 
has been demonstrated that spatial and temporal components of art 
perception interacted with perceived beauty and non-beauty (Cela-
Conde et al., 2013). Specifically, early signals for beautiful art pictures 
showed a different spatial distribution across the brain, compared to 
later signals. This pattern differed further for ugly pictures. The 
authors labeled these components the early and delayed aesthetic 
networks. This temporal component is important to consider because 
the relatively poor temporal resolution of the BOLD signal might not 
allow to control for the effects of what is perceived as beautiful or ugly. 
In the current study, images in the AI generated art were constantly 
morphing, video images in nature and the meditation were not static, 
and therefore, the temporal and motion components may have added 
additional noise to the effects. Other functions involved might 
be  related to individuals’ body representation, which has been 
associated with the fusiform, precentral, postcentral, and 
supramarginal gyri, as well as the hippocampus, among other regions 

(Di Vita et  al., 2016). The supramarginal, hippocampus, pre and 
postcentral gyrus are additionally associated with pain and pain-
related conditioned fear (Biggs et  al., 2020). It is possible that 
subjective feelings of emotional pain were triggered in the current 
study by any of the three task conditions.

There are several methodological considerations that may have 
influenced the outcomes of our study.

The primary limitation of this study was the small sample size, 
consisting of only nine participants. Consequently, we were unable to 
account for potential sex differences or consider participants’ previous 
experiences with art, nature, or meditation. In addition, we did not 
apply corrections for multiple comparisons between the 3 tasks. 
Despite the low statistical power, we  were able to detect clusters 
consistent with the existing literature on watching videos of art and 
nature. For example, as discussed above, early viewing components 
differ from later ones (Cela-Conde et al., 2013), and people spend 
more time looking at imagery they find attractive compared to those 
they do not find attractive (Vartanian and Goel, 2004). The dynamic 
nature of our task may therefore have obscured results that could 
distinguish more carefully between preferred and non-preferred 
pictures. Overall, the BOLD signal does not allow for distinction of 
temporal components of this sensitive time frame, but adding 
additional task blocks for subjectively beautiful, neutral, and ugly 
pictures could remove the confounding effects of existing temporal 
dynamics. Future studies in larger samples will need to identify a 
network that can distinguish between art, nature, and meditation, with 
their transcendent nature, as well as considering esthetics of imaging.

Additional limitations of the study include the reliance on 
questionnaires and fMRI data obtained from a brief block design, 
which may limit the depth of data analysis. Furthermore, the art and 
nature blocks were each 120 s long. Given the extended duration of 
the entire scanning session, which exceeded an hour, it is uncertain if 
participants were able to fully engage with the images/videos 
throughout this period. It is also unclear to what extent fatigue effects 
may have impacted their responses and whether any lingering effects 
persisted into the subsequent 30-s rest periods. Furthermore, the 
fMRI design for the meditation task differed as it was presented in a 
single 120-s block instead of the block design used for art and nature 
stimuli. In future research, it may be  beneficial to inquire with 
participants after each block regarding their level of engagement and 
connection to the stimuli, as well as whether the impact of the images 
persisted beyond the conclusion of each block. This feedback could 
provide valuable insights into how participants interacted with the 
stimuli and help interpret their neural responses more accurately.

Enhanced interpretability and broader applicability of the 
findings could be achieved by including assessments of visual acuity 
and color perception. Furthermore, using physiological measures 
like cortisol or heart rate variability instead of subjective stress 
reports may offer a more comprehensive understanding of stress 
responses. Future research endeavors could benefit from 
incorporating more extensive fMRI datasets, objective stress 
measurements, exploration of sex differences, and consideration of 
participants’ prior exposure to art, nature, and meditation. It is also 
recommended to conduct baseline resting state scans to examine the 
interplay between resting brain activity and baseline affect, perceived 
stress, and anxiety. These enhancements would provide a more 
holistic view of how viewing art, nature, and meditation videos 
impacts the brain networks associated with these 
psychological variables.
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5 Conclusion

In conclusion, our pilot study demonstrates that there is an 
overlapping network of brain regions involved during watching art 
and nature videos. These regions include visual object processing, 
sensory, motor, and potentially self-monitoring and integration 
regions. Given that visual simulation and motion were shared features 
across all three tasks, the results likely reflect processes beyond simple 
visual stimulation. However, it is important to note that this pilot 
study is based on a small sample and therefore should be interpreted 
with caution. Future studies with greater statistical power should 
expand on the current results to identify more specialized networks 
for art, nature, and positive emotions by distinguishing the effects of 
participants’ subjective preference for pictures (beautiful, neutral, and 
ugly), and standardizing the visual features of the pictures (luminance, 
color, busyness or number of items or edges, and whether they evoke 
emotions or memories). Understanding brain networks underlying 
these features will support the refinement of clinical studies using 
pictures or videos as therapeutic interventions or help to develop cost-
effective and low-tech clinical tools.
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SUPPLEMENTARY FIGURE S1

Temporal signal-to-noise (tSNR) map over the duration of the scan and 
across participants. Greater values (yellow) reflect greater task-related BOLD 
signal compared to noise.

SUPPLEMENTARY FIGURE S2

Uncorrected Pearson’s correlations between clinical scores (x-axis) and 
the cluster BOLD signal from the contrast meditation vs. rest (y-axis). 
The correlations between post-MRI state-trait anxiety and BOLD 
contrast difference in the left occipital cortex bordering on the fusiform 
cortex (r = −0.84, p = 0.01) and the right hippocampus (r = −0.74, 
p = 0.04) showed uncorrected p-values <0.05. Based on the number of 
correlation tests performed (72), these correlations would not survive 
correction for multiple comparisons (corrected threshold of 
p = 0.00069).

SUPPLEMENTARY FIGURE S3

Uncorrected Pearson’s correlations between clinical scores (x-axis) and the 
cluster BOLD signal from the contrast meditation vs. nature (y-axis). There 
were no significant correlations.
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