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2018



Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments ix

1 Introduction 1
1.1 From one-dimensional regression to volume sampling . . . . . . . . . . . 2
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of the chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Chapter 2: Unbiased pseudoinverse estimator . . . . . . . . . . . 9
1.3.2 Chapter 3: Regularized volume sampling . . . . . . . . . . . . . 10
1.3.3 Chapter 4: Leveraged volume sampling . . . . . . . . . . . . . . 11

2 Unbiased pseudoinverse estimator 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Reverse iterative sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Volume sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Inductive proof of Cauchy-Binet . . . . . . . . . . . . . . . . . . 21
2.2.3 Expectation formulas for volume sampling . . . . . . . . . . . . . 23

2.3 Linear regression with smallest number of responses . . . . . . . . . . . 28
2.3.1 When X is not in general position . . . . . . . . . . . . . . . . . 31
2.3.2 Lower-bounds for selecting d responses . . . . . . . . . . . . . . . 33
2.3.3 The importance of joint sampling . . . . . . . . . . . . . . . . . . 35

2.4 Loss expectation formula (proof of Theorem 2.6) . . . . . . . . . . . . . 39
2.4.1 Lifting expectations to matrix form (proof of Theorem 2.5) . . . 43
2.4.2 Leave-one-out loss formula (proof of Proposition 2.6) . . . . . . . 44

2.5 Matrix differentials as a tool for volume sampling . . . . . . . . . . . . . 48
2.6 Conclusion of the chapter and conjectures . . . . . . . . . . . . . . . . . 49

iii



3 Regularized volume sampling 54
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 A matrix expectation inequality . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Ridge regression with noisy responses . . . . . . . . . . . . . . . . . . . 60

3.3.1 Upper bounds (proof of Theorem 3.2) . . . . . . . . . . . . . . . 61
3.3.2 Lower bounds (proof of Theorem 3.3) . . . . . . . . . . . . . . . 63

3.4 Efficient algorithms for regularized volume sampling . . . . . . . . . . . 65
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.1 Runtime comparison between the algorithms . . . . . . . . . . . 73
3.5.2 Subset selection for ridge regression . . . . . . . . . . . . . . . . 74

3.6 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Leveraged volume sampling 76
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Lower bound for standard volume sampling . . . . . . . . . . . . . . . . 79
4.3 Rescaled volume sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Expectations for rescaled volume sampling . . . . . . . . . . . . 85
4.3.2 Leveraged volume sampling: a natural rescaling . . . . . . . . . . 88

4.4 Multiplicative tail bounds for linear regression . . . . . . . . . . . . . . . 90
4.4.1 Tail bounds for i.i.d. leverage scores . . . . . . . . . . . . . . . . 91
4.4.2 Tail bounds for leveraged volume sampling . . . . . . . . . . . . 93
4.4.3 Matrix multiplication (proof of Theorem 4.4) . . . . . . . . . . . 95
4.4.4 Subspace embedding (proof of Theorem 4.5) . . . . . . . . . . . . 98

4.5 Efficient algorithms for leveraged volume sampling . . . . . . . . . . . . 104
4.5.1 Determinantal rejection sampling . . . . . . . . . . . . . . . . . . 104
4.5.2 Faster algorithm via approximate leverage scores . . . . . . . . . 107

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.7 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Conclusions and future work 114

Bibliography 118

iv



List of Figures

1.1 The expected loss of w∗i = yi
xi

(blue line) based on one response yi is twice
the loss of the optimum w∗ (green line). . . . . . . . . . . . . . . . . . . 2

2.1 Shapes of the matrices. The indices of S may not be consecutive. . . . . 13
2.2 Reverse iterative sampling. . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Unbiased estimator w∗(S) in expectation suffers loss (d+ 1)L(w∗). . . . 30
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Abstract

Volume sampling for linear regression

by

Micha l Dereziński

In this thesis we study the following basic machine learning task: Given a fixed set of n

input points in a d-dimensional linear regression problem, we wish to predict a hidden

response value for each of the points. We can only afford to attain the responses for

a small subset of the points that are then used to construct linear predictions for all

points in the dataset. The performance of the predictions is evaluated by the total square

loss on all responses. We show that a good approximate solution to this least squares

problem can be obtained from just dimension d many responses by using a joint sampling

technique called volume sampling. Moreover, the least squares solution obtained for the

volume sampled subproblem is an unbiased estimator of optimal solution based on all

n responses. This unbiasedness is a desirable property that is not shared by standard

subset selection techniques.

Motivated by these basic properties, we develop a theoretical framework for

studying volume sampling, which leads to a number of new expectation formulas and

statistical guarantees which are of importance not only to least squares regression but

also numerical linear algebra in general. Our methods lead to several novel extensions

of volume sampling, including a regularized variant, and we propose the first efficient

vii



algorithms which make this technique a practical tool in the machine learning toolbox.

Finally, we provide experimental evidence which confirms our theoretical findings.
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Chapter 1

Introduction

Least squares regression is one of the oldest and most basic learning methods

in all of machine learning and statistics, and yet it is still extensively used to this

day. We focus on the case when all of the input points are given but obtaining the

response values for the points is expensive. As a motivating example, consider the task

of optimizing the “activity” of an enzyme [LWG+07] (such as the efficacy at breaking

down a certain compound). A large number of variants of an enzyme are considered, and

we wish to predict the activity for each of these variants as efficiently as possible. Each

variant is described by a feature vector and the simplest model is to assume that the

activity (or the response variable) can be modeled as a linear combination of the features.

However, obtaining the response value for a variant often involves expensive and lengthy

experiments. Thus we ask the following basic question: Is it possible to estimate the least

squares predictions for all variants after sampling the responses of only a small number

of them? What is the smallest number of responses yielding useful results? Intuitively
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the subset of chosen variants for which we will measure the response values should

be “diverse”. In answering these questions, we will demonstrate a fundamental new

connection between linear least squares and a joint sampling distribution for producing

diverse subsets called “volume sampling”.

1.1 From one-dimensional regression to volume sampling

x

y

xi

Figure 1.1: The expected loss of

w∗i = yi
xi

(blue line) based on one

response yi is twice the loss of the

optimum w∗ (green line).

As an introductory case, consider linear

regression in one dimension. We are given n points

xi. Each point has a hidden real response (or tar-

get value) yi. Assume that obtaining the responses

is expensive and the learner can afford to request

the responses yi for only a small number of in-

dices i. After receiving the requested responses,

the learner determines an approximate linear least

squares solution. In the one dimensional case this

is just a single weight (for simplicity, we omit the

additional bias term). How many response values does the learner need to request so

that the total square loss of its approximate solution on all n points is “close” to the

total loss of the optimal linear least squares solution found with the knowledge of all

responses? We will show that one response suffices if the index i is chosen proportional

to x2
i . When the learner uses the approximate solution w∗i = yi

xi
, then its expected loss

2



equals 2 times the loss of the optimum w∗ that is computed based on all responses (See

Figure 1.1). Moreover, the approximate solution w∗i is an unbiased estimator for the

optimum w∗:

Ei

[∑
j
(xj

yi
xi
− yj)2

]
= 2

∑
j

(xjw
∗ − yj)2 and Ei

[
yi
xi

]
= w∗, when P (i) ∼ x2

i .

Note that there are no range restrictions on the points and response values. Also,

randomization is necessary to achieve this loss equation because for any deterministic

algorithm, the total loss based on a single response can be up to n times the optimum:

An instance of this occurs when all n points xi are equal 1 and all responses are also 1,

except for the response of index picked by the deterministic algorithm which is set to 0.

Both of the above equations generalize to the case when the points xi lie in

Rd. Let X denote the n×d matrix that has the n transposed points x>i as rows, and let

y ∈ Rn be the vector of responses. Now the goal is to minimize the (total) square loss

L(w) =
∑n

i=1
(x>i w − yi)2 = ‖Xw − y‖2,

over all linear weight vectors w ∈ Rd. Let w∗ denote the optimal such weight vector.

We want to minimize the square loss based on a small number of responses we attained

for a subset of rows. Again, the learner is initially given the fixed set of n rows (i.e. fixed

design), but none of the responses. It is then allowed to choose a random subset of d

indices, S ⊆ {1..n}, and obtains the responses for the corresponding d rows. The learner

proceeds to find the optimal linear least squares solution w∗(S) for the subproblem

(XS ,yS). where XS is the subset of d rows of X indexed by S and yS the corresponding

d responses from the response vector y. As a generalization of the one-dimensional
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distribution that chooses an index based on the squared length, set S of size d is chosen

proportional to the squared volume of the parallelepiped spanned by the rows of XS .

This squared volume equals det(X>SXS). Using elementary linear algebra, we will show

that volume sampling the set S assures that w∗(S) is a good approximation to w∗ in the

following sense: In expectation, the square loss (on all n row response pairs) of w∗(S)

is equal d+ 1 times the square loss of w∗, and moreover, the unbiasedness property of

estimator w∗(S) is retained:

E[L(w∗(S))] = (d+ 1)L(w∗) and E[w∗(S)] = w∗, when P (S) ∼ det(X>SXS).

The discovery of these fundamental matrix expectation formulas was our pri-

mary motivation for studying volume sampling in the context of linear regression. In

this work, we show many other results which offer a direct connection of volume sam-

pling to not just least squares, but also other even more basic concepts in linear algebra

such as the matrix pseudoinverse. We also develop several extensions of this joint sam-

pling distribution which have additional useful properties, such as sampling sets S of

arbitrary fixed size, introducing regularization, and reweighting the instances. Finally,

we develop several efficient algorithms for volume sampling which make this procedure

a practical tool for machine learning for the first time.

1.2 Related work

Determinantal sampling methods and applications. Volume sampling is a type

of determinantal point process (DPP) [KT12]. DPP’s have been given a lot of attention

4



in the literature due to their ability to produce diverse subsets of data, with many

applications to machine learning, including recommendation systems [KT11, GPK16],

clustering [Kan13], computer vision [KT10], matrix approximation [DRVW06, DR10,

AB13], fairness [CDKV16, CKS+18] and optimization [ZKM17]. Those methods are

typically concerned with sampling sets of size no more than the dimension d, of either

fixed size or variable size.

Efficiency of volume sampling. Two primary types of volume sampling have been

considered in the literature. The first one, proposed by [DRVW06], samples sets of fixed

size s ≤ d proportionally to the squared row -volume of the submatrix XS . The second

one, proposed by [AB13], samples sets of size s ≥ d proportionally to the squared

column-volume of XS . Note that when s = d, those two definitions coincide. Our

primary interest is concentrated on the sampling of sets of size s ≥ d, i.e. of at least

dimension many rows. However, due to the important overlapping case of s = d, we

discuss algorithms for both settings. The first polynomial time algorithm for s ≤ d

volume sampling was given by [DR10], and then improved by [GS12], running in time

O(nd2s). An approximate sampling procedure was also developed by [DR10], however

it is only useful for s � d. Our algorithms apply to this line of work only for the case

of s = d. In this case, they do offer significant improvement over state-of-the-art (by a

factor of d), with running time O(nd2).

In this thesis, we focus on volume sampling sets of size s ≥ d, which was

proposed by [AB13] and motivated with applications in graph theory, linear regression,

5



matrix approximation and more. Until very recently, there was no polynomial time

algorithm for this type of volume sampling (apart from the case of s = d). The only

known polynomial time algorithm for size s > d volume sampling developed prior to this

work was proposed by [LJS17] with time complexity O(n4s). In Chapter 3 we propose

an algorithm which runs in time O(nd2) (independent of the choice of s), which is faster

by a factor of at least n2. In Chapter 4, we develop a new rescaled variant of volume

sampling, which after a preprocessing time of Õ(nd + d3) produces a sample in time

Õ((d2 + s)d2), which is considerably faster than O(nd2) for large enough n.

Volume sampling for matrix approximation. In the field of computational ge-

ometry a variant of volume sampling was used to obtain optimal bounds for low-rank

matrix approximation. In this task, the goal is to select a small subset of rows of a

matrix X ∈ Rn×d (much fewer than the rank of X, which is bounded by d), so that

a good low-rank approximation of X can be constructed from those rows. [DRVW06]

showed that volume sampling of size s < d index sets obtains optimal multiplicative

bounds for this task and [GS12] used that result to obtain even more effective matrix

approximation algorithms. We show in this paper that for linear regression, fewer than

rank many rows do not suffice to obtain multiplicative bounds. This is why we focus

on volume sampling sets of size s ≥ d.

Subset selection for linear regression. The problem of selecting a subset of the

rows of the input matrix for solving a linear regression task has been extensively studied

in statistics literature under the terms optimal design [Fed72] and pool-based active learn-

6



ing [SN09]. Various criteria for subset selection have been proposed, like A-optimality

and D-optimality. For example, A-optimality seeks to minimize tr((X>SXS)−1), which is

combinatorially hard to optimize exactly. Volume sampling was recently found to be a

useful technique for approximately satisfying the A-optimality criterion [AZLSW17,

NST18], motivated by the result of [AB13], bounding the expectation of the trace

tr((X>SXS)−1) under volume sampling. In Chapter 2, we generalize this result to a ma-

trix expectation formula using a new proof technique, obtaining that E[(X>SXS)−1] =

n−d+1
s−d+1 (X>X)−1. This expectation formula provides an approximate randomized solu-

tion for the sampled inverse covariance matrix rather than just its trace.

Approximately solving linear regression. Computing approximate solutions to

linear regression has been explored in the domain of numerical linear algebra (see

[Mah11] for an overview). Here, multiplicative bounds on the loss of the approximate

solution can be achieved via two approaches. The first approach relies on “sketching”

the input matrix X and the response vector y by multiplying both by the same suitably

chosen random matrix. Algorithms which use sketching to generate a smaller input ma-

trix for a given linear regression problem are computationally efficient [Sar06, CW13],

but they require all of the responses from the original problem to generate the sketch

and are thus not suitable for the goal of using as few response values as possible. The

second approach is based on subsampling the rows of the input matrix and only ask-

ing for the responses of the sampled rows. The learner optimally solves the sampled

subproblem and then uses the obtained weight vector for its prediction on all rows.
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The selected subproblem is known under the term “b-agnostic minimal coreset” in

[BDM13, DMM08], since it is selected without knowing the response vector (denoted as

the vector b). This line of work is mostly based on i.i.d. sampling using the statistical

leverage scores [DMIMW12]. Unlike volume sampling, i.i.d. leverage score sampling

does not produce unbiased estimators for linear regression. Moreover, it suffers from

coupon collector problem which prohibits any effective approximation guarantees for

samples size smaller than d log d. In this work we provide experimental results showing

that for small sample sizes volume sampling is much more effective than leverage score

sampling. A different and more elaborate sampling technique based on spectral sparsi-

fication [BSS12, LS15] was recently shown to be effective for linear regression [CP17],

however this method also does not produce unbiased estimates, which is a primary con-

cern of this work and desirable in many settings. Unbiasedness seems to require delicate

control of the sampling probabilities, which we achieve using volume sampling.

Unbiased estimates for linear regression. First, we should address a potential

confusion with the statistical term best linear unbiased estimator (BLUE). According to

Gauss-Markov theorem, the least squares estimator w∗ = X+y is the BLUE estimator.

However, it is unbiased only in the following narrow sense: if we assume that the

responses are generated from a hidden linear transformation plus random noise which

has mean zero, then the expectation of w∗ w.r.t. this response noise is equal to the

hidden weight vector defining the linear transformation. On the other hand, in the

context of our work, unbiasedness refers to an estimator w(S) produced based on a

8



random subset S ⊆ {1..n} of responses (the randomness coming from the sampling

distribution for choosing S), with the response vector being arbitrary and fixed. This

notion of unbiasedness demands that ES [w(S)] = w∗ and it is much harder to obtain.

To our knowledge, volume sampling is the only known non-trivial method of producing

such unbiased estimators. For the case of s = d, this fact was known in the linear algebra

community [BTT90, BI92] as a mathematical identity (long before volume sampling was

considered as a sampling procedure). We independently showed this result using a new

proof technique (Chapter 2), extending it to volume sampling of any size s ≥ d, and

also introducing new unbiased estimators with strong loss bounds (Chapter 4). This is

achieved by a new rescaled variant of volume sampling.

1.3 Overview of the chapters

We now sketch the contents of the main chapters of this dissertation (each

chapter will have a separate more detailed introduction). The main results of Chapters

2 and 3 were published at NIPS’17 and AISTATS’18 conferences [DW17, DW18b] and

will appear together as a JMLR paper [DW18a]. The results of Chapter 4 are based on

a manuscript that is currently in submission [DWH18].

1.3.1 Chapter 2: Unbiased pseudoinverse estimator

We propose a matrix estimator for the pseudoinverse X+, computed from a

small subset of rows of the matrix X. When the subset is sampled according volume

sampling, the estimator is unbiased and its covariance also has a closed form: It equals a

9



specific factor times X+X+>. Our analysis for computing matrix expectations is based

on a general framework we call reverse iterative sampling, which is developed in this

chapter.

These new formulas establish a fundamental connection between volume sam-

pling and linear least squares, because the least squares solution obtained for the vol-

ume sampled subproblem is an unbiased estimator of optimal solution based on all n

responses. Moreover, a good approximate solution can be obtained from just dimension

d many responses. Concretely, we show that if the rows are in general position and if a

subset of d rows is chosen proportional to the squared volume spanned by those rows,

then the expected total square loss (on all n rows) of the least squares solution found

for the subset is exactly d + 1 times the minimum achievable total loss. We provide

lower bounds showing that the factor of d + 1 is optimal, and any i.i.d. row sampling

procedure requires Ω(d log d) responses to achieve a finite factor guarantee.

1.3.2 Chapter 3: Regularized volume sampling

Given n vectors xi ∈ Rd, we want to fit a linear regression model for noisy

responses yi ∈ R. The ridge estimator is a classical solution to this problem. We propose

a new regularized variant of volume sampling and show that the ridge estimator obtained

from a subset selected with this procedure offers strong statistical guarantees in terms

of the mean squared prediction error over the entire dataset of n vectors. The number

of responses needed is proportional to the statistical dimension of the problem which is

often much smaller than d. A second major contribution is that we speed up volume

10



sampling so that it is essentially as efficient as leverage scores, which is the main i.i.d.

subsampling procedure for this task. Finally, we show theoretically and experimentally

that volume sampling outperforms any i.i.d. sampling when responses are expensive.

1.3.3 Chapter 4: Leveraged volume sampling

Volume sampling has a unique and desirable property that the least squares

weight vector it produces is an unbiased estimate of the optimum. It is therefore natural

to ask if this method offers the best unbiased estimator in terms of the number of

responses s needed to achieve a 1 + ε loss approximation. In this chapter, we show that

standard volume sampling can have poor behavior when we require a very accurate

approximation of a linear least squares problem – indeed worse than i.i.d. leverage score

sampling, whose estimates are biased. We then develop a new rescaled variant of volume

sampling that produces an unbiased estimator which avoids this bad behavior and has

at least as good a tail bound as leverage score sampling: sample size s = O(d log d+d/ε)

suffices to guarantee total loss at most 1 + ε times the minimum with high probability.

Thus, we improve on the best known sample size for an unbiased estimator, s = O(d2/ε),

constructed in Chapter 2 using standard volume sampling.

Our rescaling procedure leads to a new efficient algorithm for volume sampling

which is based on a determinantal rejection sampling technique with potentially broader

applications to determinantal point processes. Other contributions include introducing

the combinatorics needed for rescaled volume sampling and developing tail bounds for

sums of dependent random matrices which arise in the process.
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Chapter 2

Unbiased pseudoinverse estimator

2.1 Introduction

Given a matrix X ∈ Rn×d, with n ≥ d, suppose that our goal is to estimate

the pseudoinverse X+ of X based on the pseudoinverse of a subset of rows. For a

subset S ⊆ {1..n} of s row indices (where the size s is fixed and s ≥ d), we let XS

be the submatrix of the s rows indexed by S (see Figure 2.1). Consider a version of

X in which all but the rows of S are zero. This matrix equals ISX where IS is an

n-dimensional diagonal matrix with (IS)ii = 1 if i ∈ S and 0 otherwise. We show a

number of expectation formulas related to matrix (ISX)+, treated as an estimator of

pseudoinverse X+, when S is sampled from

size s volume sampling: P (S) ∼ det(X>SXS) where |S| = s.

For this type of sampling of the set S, we will prove that:

E[(ISX)+] = X+ and E[ (X>SXS)−1︸ ︷︷ ︸
(ISX)+(ISX)+>

] =
n− d+ 1

s− d+ 1
(X>X)−1︸ ︷︷ ︸
X+X+>

.

12



Note that (ISX)+ has the d×n shape of X+ where the s columns indexed by S contain

(XS)+ and the remaining n− s columns are zero. The expectation of this matrix is X+

even though (XS)+ is clearly not a submatrix of X+. The second expectation formula

can be viewed as a second moment of the pseudoinverse estimator (ISX)+, and it can be

used to compute a useful notion of matrix variance with applications in random matrix

theory:

E[(ISX)+(ISX)+>]− E[(ISX)+]E[(ISX)+]> =
n− s

s− d+ 1
X+X+>.

We prove the above expectation formulas using a general framework of reverse

iterative sampling which we develop in this chapter. This technique also leads to efficient

volume sampling algorithms, presented in Chapter 3, which beat the state-of-the-art by

a factor of n2 in time complexity, and make volume sampling nearly as efficient as the

comparable i.i.d. sampling technique called leverage score sampling.

There is a direct connection between the pseudoinverse and solving linear least

squares problems: recall that for an n−dimensional response vector y, the optimal

solution to the least squares problem (X,y) is w∗ = argminw ||Xw − y||2 = X+y.

Similarly w∗(S) = (XS)+yS is the solution for the subproblem (XS ,yS). The above

expectation formula now implies that for any size s ≥ d, if S of size s is drawn by

x>in

d

S
XSs

(XS)
+

X IS ISX X+ (ISX)+

Figure 2.1: Shapes of the matrices. The indices of S may not be consecutive.
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volume sampling, then w∗(S) is an unbiased estimator1 for w∗, i.e.

E[w∗(S)] = E[(XS)+yS ] = E[(ISX)+y] = E[(ISX)+] y = X+y = w∗.

Moreover, under the additional assumption that response vector y is generated by a

linear transformation distorted with i.i.d. white noise (see Section 2.2.3 for details), the

expectation formula for (X>SXS)−1 leads to an exact formula for the covariance matrix

of the estimator w∗(S), as well as an approximate solution to the classical A-optimality

criterion in optimal design.

For volume sampling of size s = d we show an additional formula which relates

the expected loss of w∗(S) to the loss of the best for a fixed hidden response vector y.

Namely, when matrix X is in general position and set S is volume sampled with s = d,

we have
E
[
L(w∗(S))

]
= (d+ 1)L(w∗), where L(w) = ‖Xw − y‖2.

We show that the above formula gives the best achievable multiplicative approximation

factor for the least squares loss when using only dimension many responses. Our other

lower bounds suggest that by its joint nature volume sampling is uniquely well suited

for linear regression when a small number of responses is desired.

Outline of the chapter. In the next section, we define volume sampling as an in-

stance of a more general procedure we call reverse iterative sampling, and we use this

methodology to prove closed form matrix expressions for the expectation of the pseu-

doinverse estimator (ISX)+ and its square (ISX)+(ISX)+>, when S is sampled by

1For size s = d volume sampling, the fact that E[w∗(S)] = w∗ can be found in an early paper
[BTT90]. They give a direct proof based on Cramer’s rule.

14



volume sampling. Central to volume sampling is the Cauchy-Binet formula for deter-

minants. As a side, we produce a number of short self-contained proofs for this formula

and show that leverage scores are the marginals of volume sampling. Then in Section 2.3

we formulate the problem of solving linear regression from a small number of responses,

and state the upper bound for the expected square loss of the volume sampled least

squares estimator (Theorem 2.6), followed by a discussion and related lower-bounds. In

Section 2.4, we prove Theorem 2.6 and an additional related matrix expectation for-

mula. As a side note, Section 2.5 presents an alternate proof technique which utilizes

matrix differentials to show the unbiasedness of our pseudoinverse estimator (Theorem

2.3). Finally, Section 2.6 concludes the chapter by framing a number of open problems

about unbiased estimators for linear regression.

2.2 Reverse iterative sampling

{1..n}

S

S−i

P (S−i|S)

size

n

n−1

ss

s−1

d

Figure 2.2:

Reverse iterative sampling.

Let n be an integer dimension. For each subset

S ⊆ {1..n} of size s we are given a matrix formula F(S).

Our goal is to sample set S of size s using some sam-

pling process and then develop concise expressions for

ES:|S|=s[F(S)]. Examples of formula classes F(S) will be

given below.

We represent the sampling by a directed acyclic

graph (DAG), with a single root node corresponding to
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the full set {1..n}. Starting from the root, we proceed along the edges of the graph,

iteratively removing elements from the set S (see Figure 2.2). Concretely, consider a

DAG with levels s = n, n−1, ..., d. Level s contains
(
n
s

)
nodes for sets S ⊆ {1..n} of

size s. Every node S at level s > d has s directed edges to the nodes S−i = S\{i}

at the next lower level. These edges are labeled with a conditional probability vector

P (S−i|S), where the event S occurs if the sampling process visits node S as it traces a

(directed) path in the DAG from the root node {1..n} to a node at level d. Such paths

have n − d edges. It is natural to assign probabilities to shorter paths as well going

from any node to a node at a lower level. The probability of such paths is again the

product of its edge probabilities. It also follows that the probability P (S) of visiting

node S (via a path from the root) is the sum of the probabilities of all paths from root

to S. Finally, the probability P ({1..n}) of the root node is 1 and more generally, the

total probability of all nodes at each layer is 1.

We associate a formula F(S) with each set node S in the DAG. The following

key equality lets us compute expectations.

Lemma 2.1. If for all S ⊆ {1..n} of size greater than d we have

F(S) =
∑
i∈S

P (S−i|S)F(S−i),

then for any s ∈ {d..n}: ES:|S|=s[F(S)] =
∑

S:|S|=s P (S)F(S) = F({1..n}).

Proof. Suffices to show that expectations at successive layers s and s− 1 are equal for

16



s > d:

∑
S:|S|=s

P (S) F(S) =
∑

S:|S|=s

P (S)
∑
i∈S

P (S−i|S) F(S−i)

=
∑

S:|S|=s

∑
i∈S

P (S)P (S−i|S)F(S−i)

=
∑

T :|T |=s−1

∑
j /∈T

P (T+j)P (T |T+j)︸ ︷︷ ︸
P (T )

F(T ).

Note that the r.h.s. of the first line has one summand per edge leaving level s, and the

r.h.s. of the last line has one summand per edge arriving at level s − 1. Now the last

equality holds because the edges leaving level s are exactly those arriving at level s− 1,

and the summand for each edge in both expressions is equivalent. �

2.2.1 Volume sampling

Given a tall full rank matrix X ∈ Rn×d and a sample size s ∈ {d..n}, volume

sampling chooses subset S ⊆ {1..n} of size s with probability proportional to squared

volume spanned by the columns of submatrix2 XS and this squared volume equals

det(X>SXS). The following theorem uses the above DAG setup to compute the nor-

malization constant for this distribution. Note that all subsets S of volume 0 will be

ignored, since they are unreachable in the proposed sampling procedure.

Theorem 2.1. Let X ∈ Rn×d, where d ≤ n and det(X>X) > 0. For any set S of size

s > d for which det(X>SXS) > 0, define the probability of the edge from S to S−i for

2For sample size s = d, the rows and columns of XS have the same length and det(X>SXS) is also
the squared volume spanned by the rows XS .
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i ∈ S as:

P (S−i|S)
def
=

det(X>S−iXS−i)

(s−d) det(X>SXS)
=

1−x>i (X>SXS)−1xi
s−d

,

(reverse iterative volume sampling)

where xi is the ith row of X. In this case P (S−i|S) is a proper probability distri-

bution. If det(X>SXS) = 0, then simply set P (S−i|S) to 1
s . With these definitions,∑

S:|S|=s P (S) = 1 for all s ∈ {d..n} and the probability of all paths from the root to any

subset S of size at least d is

P (S) =
det(X>SXS)(

n−d
s−d
)

det(X>X)
. (volume sampling)

The rewrite of the ratio
det(X>S−i

XS−i )

det(X>SXS)
as 1 − x>i (X>SXS)−1xi is Sylvester’s

Theorem for determinants. Incidentally, this is the only property of determinants used

in this section.

Note also that the theorem implies the following formula:

∑
S:|S|=s

det(X>SXS) =

(
n− d
s− d

)
det(X>X).

When s = d, then the binomial coefficient is 1 and the above becomes the Cauchy-Binet

formula. The below proof thus results in a minimalist proof of this classical formula. It

uses the reverse iterative sampling (Figure 2.2) and proceeds by showing the fact that all

paths from the root to node S have the same probability. For the sake of completeness

we also give a more direct inductive proof of the above formula in Section 2.2.2.

Proof. First, for any node S st |S| = s > d and det(X>SXS) > 0, the probabilities out
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of S sum to 1:

∑
i∈S

P (S−i|S) =
∑
i∈S

1− tr((X>SXS)−1xix
>
i )

s− d
=
s− tr((X>SXS)−1X>SXS)

s− d
=
s− d
s− d

= 1.

It remains to show the formula for the probability P (S) of all paths visiting

node S. If det(X>SXS) = 0, then one edge on any path from the root to S has probability

0. This edge goes from a superset of S with positive volume to a superset of S that has

volume 0. Since all paths have probability 0, P (S) = 0 in this case.

Now assume det(X>SXS) > 0 and consider any path from the root {1..n} to S.

There are (n−s)! such paths all going through sets with positive volume. The fractions

of determinants in the probabilities along each path telescope and the additional factors

accumulate to the same product. So the probability of all paths from the root to S is

the same and the total probability into S is

(n− s)!
(n− d) . . . (s− d+ 1)

det(X>SXS)

det(X>X)
=

1(
n−d
s−d
) det(X>SXS)

det(X>X)
.

An immediate consequence of the above sampling procedure is the following

property of volume sampling, which states that this distribution is closed under subsam-

pling. We also give a direct proof to highlight the combinatorics of volume sampling.

Corollary 2.1. For any X ∈ Rn×d and n ≥ t > s ≥ d, the following hierarchical

sampling procedure:

T
t∼ X (size t volume sampling from X),

S
s∼ XT (size s volume sampling from XT )

returns a set S which is distributed according to size s volume sampling from X.
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Proof. We start with the Law of Total Probability and then use the probability formula

for volume sampling from the above theorem. Here P (T ∩ S) means the probability of

all paths going through node T at level t and then node S at level s. If S 6⊆ T , then

P (T ∩ S) = 0.

P (S) =
∑

T :S⊆T

P (T∩S)︷ ︸︸ ︷
P (S |T ) P (T )

=
∑

T :S⊆T

det(X>SXS)(
t−d
s−d
)
��

���
�

det(X>TXT )
��

���
�

det(X>TXT )(
n−d
t−d
)

det(X>X)

=

(
n− s
t− s

)
det(X>SXS)(

t−d
s−d
)(
n−d
t−d
)

det(X>X)
=

det(X>SXS)(
n−d
s−d
)

det(X>X)
.

Note that for all sets T containing S, the probability P (T ∩ S) is the same, and there

are
(
n−s
t−s
)

such sets. �

The main competitor of volume sampling is i.i.d. sampling of the rows of X

w.r.t. the statistical leverage scores. For an input matrix X ∈ Rn×d, the leverage score

of the i-th row x>i of X is defined as

li
def
= x>i (X>X)−1xi.

Recall that this quantity appeared in the definition of conditional probability P (S−i|S)

in Theorem 2.1, where the leverage score was computed w.r.t. the submatrix XS . In

fact, there is a more basic relationship between leverage scores and volume sampling: If

set S is sampled according to size s = d volume sampling, then the leverage score li of

row i is the marginal probability P (i ∈ S) of including the i-th row into S. A general

formula for the marginals of size s volume sampling is given in the following proposition:
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Proposition 2.1. Let X ∈ Rn×d be a full rank matrix and s ∈ {d..n}. If S ⊆ {1..n} is

sampled according to size s volume sampling, then for any i ∈ {1..n},

P (i ∈ S) =
s− d
n− d

+
n− s
n− d

li︷ ︸︸ ︷
x>i (X>X)−1xi .

Proof. Instead of P (i ∈ S) we will first compute P (i /∈ S):

P (i /∈ S) =
∑

S:|S|=s,i/∈S

det(X>SXS)(
n−d
s−d
)

det(X>X)

=
∑

S:|S|=s,i/∈S

∑
T⊆S:|T |=d det(X>TXT )(
n−d
s−d
)

det(X>X)

=

(
n−d−1
s−d

) det(X>−iX−i)︷ ︸︸ ︷∑
T :|T |=d,i/∈T

det((X−i)
>
T (X−i)T )

(
n−d
s−d
)

det(X>X)

=
n− s
n− d

(1− x>i (X>X)−1xi),

where we used Cauchy-Binet twice and the fact that every set T : |T | = d, i /∈ T appears

in
(
n−d−1
s−d

)
sets S : |S| = s, i /∈ S. Now, the marginal probability follows from the fact

that P (i ∈ S) = 1− P (i /∈ S). �

2.2.2 Inductive proof of Cauchy-Binet

The most common form of the Cauchy-Binet equation deals with two real

n×d matrices A,B:
∑

S : |S|=d det(A>SBS) = det(A>B). It is easy to generalize volume

sampling and Theorem 2.1 to this “asymmetric” version. Here we give an alternate

inductive proof.

21



Theorem 2.2. For A,B ∈ Rn×d and n− 1 ≥ s ≥ d :

det(A>B) =
1(
n−d
s−d
) ∑
S : |S|=s

det(A>SBS).

Proof. For i ∈ {1..n}, let ai,bi denote the i-th row of A,B, respectively. S is a size

s subset of {1..n}. We rewrite the range restriction n − 1 ≥ s ≥ d for size s as

1 ≤ n − s ≤ n − d and induct on n − s. For the base case, n − s = 1 or s = n − 1, we

need to show that

det(A>B) =
1

n− d

n∑
i=1

det(A>−iB−i).

This clearly holds if det(A>B) = 0. Otherwise, by Sylvester’s Theorem

n∑
i=1

det(

A>B−aib>i︷ ︸︸ ︷
A>−iB−i )

det(A>B)
=

n∑
i=1

(1− a>i (A>B)−1bi) = n−

d︷ ︸︸ ︷
tr((A>B)−1A>B) .

Induction: Assume 2 ≤ n− s ≤ n− d.

det(A>B) =
1

n− d

n∑
i=1

det(A>−iB−i)

=
1

n− d

n∑
i=1

∑
S : |S|=s, i 6∈S

1(
n−1−d
s−d

) det(A>SBS)

=
n− s
n− d

1(
n−1−d
s−d

)︸ ︷︷ ︸
1

(n−ds−d)

∑
S : |S|=s

det(A>SBS).

Note that for the induction step, S is a subset of size s from a set of size n− 1 and we

have the range restriction 1 ≤ n − 1 − s ≤ n − 1 − d. Clearly, n − 1 − s is one smaller

than n − s. For the last equality, notice that each set S ⊆ {1..n} : |S| = s is counted

n− s times in the double sum. �
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2.2.3 Expectation formulas for volume sampling

All expectations in the remainder of the chapter are w.r.t. volume sam-

pling. We use the short-hand E[F(S)] for expectation with volume sampling where

the size of the sampled set is fixed to s. The expectation formulas for two choices

of F(S) are proven in Theorems 2.3 and 2.4. By Lemma 2.1 it suffices to show

F(S) =
∑

i∈S P (S−i|S)F(S−i) for volume sampling. We also present a related ex-

pectation formula (Theorem 2.5), which is proven later using different techniques.

Recall that XS is the submatrix of rows indexed by S ⊆ {1..n}. We also use

a version of X in which all but the rows of S are zeroed out. This matrix equals ISX

where IS is an n-dimensional diagonal matrix with (IS)ii = 1 if i ∈ S and 0 otherwise

(see Figure 2.1).

Theorem 2.3. Let X ∈ Rn×d be a tall full rank matrix (i.e. n ≥ d). For s ∈ {d..n},

let S ⊆ {1..n} be a size s volume sampled set over X. Then

E[(ISX)+] = X+.

For the special case of s = d, this fact was known in the linear algebra literature

[BTT90, BI92]. It was shown there using elementary properties of the determinant such

as Cramer’s rule.3 The proof methodology developed here based on reverse iterative

volume sampling is very different. We believe that this fundamental formula lies at the

core of why volume sampling is important in many applications. In this work, we focus

on its application to linear regression. However, [AB13] discuss many problems where

3Using the composition property of volume sampling (Corollary 2.1), the s > d case of the theorem
can be reduced to the s = d case. However, we give a different self-contained proof.
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controlling the pseudoinverse of a submatrix is essential. For those applications, it is

important to establish variance bounds for the above expectation and volume sampling

once again offers very concrete guarantees. We obtain them by showing the following

formula, which can be viewed as a second moment for this estimator.

Theorem 2.4. Let X ∈ Rn×d be a full rank matrix and s ∈ {d..n}. If size s volume

sampling over X has full support, then

E[ (X>SXS)−1︸ ︷︷ ︸
(ISX)+(ISX)+>

] =
n− d+ 1

s− d+ 1
(X>X)−1︸ ︷︷ ︸
X+X+>

.

In the case when volume sampling does not have full support, then the matrix equality

“=” above is replaced by the positive-definite inequality “�”.

The condition that size s volume sampling over X has full support is equivalent

to det(X>SXS) > 0 for all S ⊆ {1..n} of size s. Note that if size s volume sampling has

full support, then size t > s also has full support. So full support for the smallest size d

(often phrased as X being in general position) implies that volume sampling w.r.t. any

size s ≥ d has full support.

The above theorem immediately gives an expectation formula for the Frobenius

norm ‖(ISX)+‖F of the estimator:

E
[
‖(ISX)+‖2F

]
= E[tr((ISX)+(ISX)+>)] =

n− d+ 1

s− d+ 1
‖X+‖2F . (2.1)

This norm formula was shown by [AB13], with numerous applications. Theorem 2.4

can be viewed as a much stronger pre-trace version of the known norm formula. Also

our proof techniques are quite different and much simpler. Note that if size s volume

sampling for X does not have full support, then (2.1) becomes an inequality.
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We now mention a second application of the above theorem in the context of

linear regression for the case when the response vector y is modeled as a noisy linear

transformation, i.e. y = Xw + ξ for some w ∈ Rd and an i.i.d. mean zero noise

vector ξ ∈ Rn. In this case the matrix (X>SXS)−1 can be interpreted as the covariance

matrix of least-squares estimator w∗(S) (for a fixed set S) and Theorem 2.4 gives an

exact formula for the covariance matrix of w∗(S) under volume sampling. In Chapter 3,

we give an extended version of this result which provides even stronger guarantees for

regularized least-squares estimators under this model (Theorems 3.1 and 3.2).

Note that except for the above application, all results in this chapter hold for

arbitrary response vectors y. By combining Theorems 2.3 and 2.4, we can obtain a

covariance-type formula4 for the pseudoinverse matrix estimator:

E[((ISX)+ − E[(ISX)+]) ((ISX)+ − E[(ISX)+])>]

= E[(ISX)+(ISX)+>]− E[(ISX)+] E[(ISX)+]>

=
n− d+ 1

s− d+ 1
X+X+> −X+X+>

=
n− s

s− d+ 1
X+X+>. (2.2)

We now give the background for a third matrix expectation formula for volume

sampling. Pseudoinverses can be used to compute the projection matrix onto the span

of columns of matrix X, which is defined as follows:

PX
def
= X

X+︷ ︸︸ ︷
(X>X)−1X> .

4This notion of “covariance” is used in random matrix theory, i.e. for a random matrix M we analyze
E[(M− E[M])(M− E[M])>]. See for example [Tro12].
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Applying Theorem 2.3 leads us immediately to the following unbiased matrix estimator

for the projection matrix:

E[X(ISX)+] = X E[(ISX)+] = XX+ = PX.

Note that this matrix estimator X(ISX)+ is closely connected to linear regression: It

can be used to transform the response vector y into the prediction vector ŷ(S) of

subsampled least squares solution w∗(S) as follows:

ŷ(S) = X (ISX)+y︸ ︷︷ ︸
w∗(S)

.

In this case, volume sampling once again provides a covariance-type matrix expectation

formula.

Theorem 2.5. Let X ∈ Rn×d be a full rank matrix. If matrix X is in general position

and S ⊆ {1..n} is sampled according to size d volume sampling, then

E[ (X(ISX)+)2︸ ︷︷ ︸
(ISX)+>X>X(ISX)+

]−PX = d (I−PX).

If X is not in general position, then the matrix equality “=” is replaced by the positive-

definite inequality “�”.

Note that this third expectation formula is limited to sample size s = d. It is a

direct consequence of Theorem 2.6 given in the next section which relates the expected

loss of a subsampled least squares estimator to the loss of the optimum least squares

estimator. Unlike the first two formulas given in Theorems 2.3 and 2.4, its proof does

not rely on the methodology of Lemma 2.1, i.e., on showing that the expectations at all
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levels of a certain DAG associated with the sampling process are the same. We defer

the proof of this third expectation formula to Section 2.4.1. No extension of this third

formula to sample size s > d is known.

Proof of Theorem 2.3

We apply Lemma 2.1 with F(S) = (ISX)+. It suffices to show that F(S) =∑
i∈S P (S−i|S)F(S−i) for P (S−i|S) =

1−x>i (X>SXS)−1xi
s−d , i.e.:

(ISX)+ =
∑
i∈S

1− x>i (X>SXS)−1xi
s− d

(IS−iX)+︸ ︷︷ ︸
(X>S−i

XS−i )
−1(IS−iX)>

.

We first apply Sherman-Morrison to (X>S−iXS−i)
−1 = (X>SXS − xix

>
i )−1 on the r.h.s.

of the above:

∑
i

1− x>i (X>SXS)−1xi
s− d

(
(X>SXS)−1 +

(X>SXS)−1xix
>
i (X>SXS)−1

1− x>i (X>SXS)−1xi

)
((ISX)>−xie

>
i ).

Next we expand the last two factors into 4 terms. The expectation of the first term, i.e.

(X>SXS)−1(ISX)>, is equal to (ISX)+ (which is the l.h.s.) and the expectations of the

remaining three terms times s− d sum to 0:

−
∑
i∈S

(1− x>i (X>SXS)−1xi) (X>SXS)−1xie
>
i +���

���(X>SXS)−1

�
�
�
��

∑
i∈S

xix
>
i (X>SXS)−1(ISX)>

−
∑
i∈S

(X>SXS)−1xi (x>i (X>SXS)−1xi)e
>
i = 0.

In Section 2.5, we give an intriguing alternate proof of Theorem 2.3 based on a derivative

formula for determinants from [PP12] (which can be obtained via matrix differential

calculus [MN99]) and the Cauchy-Binet formula.

27



Proof of Theorem 2.4

Choose F(S) = s−d+1
n−d+1(X>SXS)−1. By Lemma 2.1 it suffices to show F(S) =∑

i∈S P (S−i|S)F(S−i) for volume sampling:

s− d+ 1

(((
((n− d+ 1

(X>SXS)−1 =
∑
i∈S

1− x>i (X>SXS)−1xi
���s− d

���s− d
(((

((n− d+ 1
(X>S−iXS−i)

−1.

To show this we apply Sherman-Morrison to (X>S−iXS−i)
−1 on the r.h.s.:

∑
i∈S

(1− x>i (X>SXS)−1xi)

(
(X>SXS)−1 +

(X>SXS)−1xix
>
i (X>SXS)−1

1− x>i (X>SXS)−1xi

)

= (s− d)(X>SXS)−1 +���
���(X>SXS)−1

�
�
�
��

∑
i∈S

xix
>
i (X>SXS)−1 = (s− d+ 1) (X>SXS)−1.

If some denominators 1−x>i (X>SXS)−1xi are zero, then we only sum over i for which the

denominators are positive. In this case the above matrix equality becomes a positive-

definite inequality �.

2.3 Linear regression with smallest number of responses

Our main motivation for studying volume sampling came from asking the fol-

lowing simple question. Suppose we want to solve a d-dimensional linear regression

problem with an input matrix X of n rows in Rd and a response vector y ∈ Rn, i.e. find

w ∈ Rd that minimizes the least squares loss ‖Xw − y‖2 on all n rows. We use L(w)

to denote this loss. The optimal weight vector minimizes L(w), i.e.

w∗
def
= argmin

w∈Rd
L(w) = X+y.

Computing it requires access to the input matrix X and the response vector y. Assume

we are given X but the access to response vector y is restricted. We are allowed to pick
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a random subset S ⊆ {1..n} of fixed size s for which the responses yS for the submatrix

XS are revealed to us, and then must produce a weight vector w(X, S,yS) ∈ Rd from

a subset of row indices S of the input matrix X and the corresponding responses yS .

Our goal in this section is to find a distribution on the subsets S of size s and a weight

function w(X, S,yS) s.t.5

∀ (X,y) ∈ Rn×d × Rn×1 : E [L(w(X, S,yS))] ≤ (1 + c)L(w∗),

where c must be a fixed constant (that is independent of X and y). Throughout the

chapter we use the one argument shorthand w(S) for the weight function w(X, S,yS).

We assume that attaining response values is expensive and ask the question: What is

the smallest number of responses (i.e. smallest size of S) for which such a multiplicative

bound is possible? We will use volume sampling to show that attaining d response

values is sufficient and show that less than d responses is not.

Before we state our main upper bound based on volume sampling, we make

the following key observation: If for the subproblem (XS ,yS) there is a weight vector

w(S) that has loss zero, then the algorithm has to predict with such a consistent weight

vector. This is because in that case the responses yS can be extended to a response

vector y for all of X s.t. L(w∗) = 0. Thus since we aim for a multiplicative loss bound,

we force the algorithm to predict with the optimum solution w∗(S)
def
= X+

SyS whenever

the subproblem (XS ,yS) has loss 0. In particular, when |S| = d and XS has full rank,

5Since the learner is given X, it is natural to define the optimal multiplicative constant specialized
for each X: cX,s = minc minP (·),w(·) maxy EP [L(w(X, S,yS))] ≤ (1 + c)L(w∗), where the domain for
distribution P (·) and weight function w(·) are sets of size s. Showing specialized bounds for cX,s is left
for future research.
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then there is a unique consistent solution w∗(S) for the subproblem and the learner

must use the weight function w(S) = w∗(S).

Theorem 2.6. If the input matrix X ∈ Rn×d is in general position, then for any

response vector y ∈ Rn, the expected square loss (on all n rows of X) of the optimal

solution w∗(S) for the subproblem (XS ,yS), with the d-element set S obtained from

volume sampling, is given by

E[L(w∗(S))] = (d+ 1) L(w∗).

If X is not in general position, then the expected loss is upper-bounded by (d+1) L(w∗).

L(·)

L(w∗)

E[L(w∗(S))]

L(w∗(Si))

L(w∗(Sj))

w∗(Si) w∗(Sj)w∗ = E[w∗(S)]

dL(w∗)

Figure 2.3: Unbiased estimator w∗(S) in

expectation suffers loss (d+ 1)L(w∗).

This bound is already non-obvious

for dimension 1, when the multiplicative fac-

tor is 2 (as discussed in Section 1.1). Note,

that if there is a bias term in dimension 1,

then the factor becomes 3. In dimension d,

it is instructive to look at the case when the

square loss of the optimum solution is zero,

i.e. there is a weight vector w∗ ∈ Rd s.t.

Xw∗ = y. In this case the response values

of any d linearly independent rows of X determine the optimum solution and the multi-

plicative loss formula of the theorem clearly holds. The formula specifies how noise-free

case generalizes gracefully to the noisy case in that for volume sampling, the expected

square loss of the solution obtained from d row response pairs is always by a factor of
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at most d + 1 larger than the square loss of the optimum solution. Moreover, since

E[w∗(S)] = w∗ and the loss function L(·) is convex, we have by Jensen’s inequality that

E
[
L(w∗(S))

]
≥ L

(
E[w∗(S)]

)
= L(w∗).

The above theorem now states that the gap E[L(w∗(S))]−L(w∗) in Jensen’s inequality

(which coincides with the “regret” of the estimator) equals dL(w∗), when the expec-

tation is w.r.t. size d volume sampling and X is in general position (See Figure 2.3

for a schematic). As we will show in Section 2.6, this gap also equals the variance

E[‖Xw∗(S)−Xw∗‖2] of the predictions since the estimator is unbiased. In summary:

E
[
L(w∗(S))

]
− L(

E[w∗(S)]︷︸︸︷
w∗ )︸ ︷︷ ︸

regret

= dL(w∗)︸ ︷︷ ︸
gap in Jensen’s

= E
[
‖Xw∗(S)−Xw∗‖2

]︸ ︷︷ ︸
variance

.

For the remainder of this section we make a number of observations and present

some lower bounds that highlight the above bound. Then, in Section 2.4 we prove the

theorem and a matrix expectation formula that is implied by it.

2.3.1 When X is not in general position

The above theorem gives a surprising equality for the expected loss of a volume-

sampled solution. However, this equality is only guaranteed to hold when matrix X is

in general position. We give a minimal example problem where the matrix X is not in

general position and the equality of Theorem 2.6 turns into a strict inequality. This

shows that for the equality, the general position assumption is necessary. If we apply

even an infinitesimal additive perturbation to the matrix X of the example problem,

then the resulting matrix Xε is in general position and the equality holds. Note that even

31



though the optimum loss L(w∗) does not change significantly under such a perturbation,

the expected sampling loss E[L(w∗(S))] has to jump sufficiently to close the gap in the

inequality. In our minimal example problem, n = 3 and d = 2, and

X =


1 1

1 1

1 0

 , y =


1

0

0

 .

We have three 2-element subsets to sample from: S1 = {1, 2}, S2 = {2, 3}, S3 = {1, 3}.

Notice that the first two rows of X are identical, which means that the probability of

sampling set S1 is 0 in the volume sampling process. The other two subsets, S2 and

S3, form identical submatrices XS2 = XS3 . Therefore they are equally probable. The

optimal weight vectors for these sets are w∗(S2) = (0, 0)> and w∗(S3) = (0, 1)>. Also

w∗ = (0, 1
2)> and the expected loss is bounded as:

E[L(w∗(S))] =
1

2

1︷ ︸︸ ︷
L(w∗(S2)) +

1

2

1︷ ︸︸ ︷
L(w∗(S3))︸ ︷︷ ︸

1

<

3︷ ︸︸ ︷
(d+ 1)

1/2︷ ︸︸ ︷
L(w∗)︸ ︷︷ ︸

3/2

.

Now consider a slightly perturbed input matrix

Xε =


1 1 + ε

1 1

1 0

 ,

where ε > 0 is arbitrarily small (We keep the response vector y the same). Now, there

is no d × d submatrix that is singular, so the upper bound from Theorem 2.6 must be

tight. The reason is that even though subset S1 still has very small probability, its loss

is very large, so the expectation is significantly affected by this component, no matter
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how small ε is. We see this directly in the calculations. Let w∗ and w∗(Si) be the

corresponding solutions for the perturbed problem and its subproblems. The volumes

of the subproblems and their losses are:

det(X>S1
XS1) = ε2 L(w∗(S1)) = ε−2

det(X>S2
XS2) = 1 L(w∗(S2)) = 1

det(X>S3
XS3) = (1 + ε)2 L(w∗(S3)) = (1 + ε)−2

L(w∗) =
1

2(1 + ε+ ε2)
.

Note that for each subproblem, the product of volume times loss is equal to 1. Now

the expected loss can be easily computed, and we can see that the gap in the bound

disappears (the denominator is the normalizing constant for volume sampling):

E[L(w∗(S))] =
1 + 1 + 1

ε2 + 1 + (1 + ε)2
= (d+ 1) L(w∗).

2.3.2 Lower-bounds for selecting d responses

The factor d+1 in Theorem 2.6 cannot, in general, be improved when selecting

only d responses:

Proposition 2.2. For any d, there exists a least squares problem (X,y) with d+1 rows

in Rd such that for every d-element index set S ⊆ {1 .. d+1}, we have

L(w∗(S)) = (d+ 1) L(w∗).

Proof. Choose the input vectors xi (and rows x>i ) as the d + 1 corners of any simplex

in Rd centered at the origin and choose all d + 1 responses as the same non-zero value

α. For any α, the optimal solution w∗ will be the all-zeros vector with loss

L(w∗) = (d+ 1) α2.
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On the other hand, taking any size d subset of indices S ⊆ {1 .. d+1}, the subproblem

solution w∗(S) will only produce loss on the left out input vector xi, indexed with i 6∈ S.

To obtain the prediction on xi, we use a simple geometric argument. Observe that since

the simplex is centered, we can write the origin of Rd in terms of the corners of the

simplex as

0 =
∑
k

xk = xi + d x̄−i, where x̄−i
def
=

1

d

∑
k 6=i

xk.

Thus, the left out input vector xi equals −d x̄−i. The prediction of w∗(S) on this vector

is

ŷi = x>i w∗(S) = −d
(

1

d

∑
k 6=i

x>k

)
w∗(S) = −

∑
k 6=i

x>k w∗(S) = −dα.

It follows that the loss of w∗(S) equals

L(w∗(S)) = (ŷi − yi)2 = (−dα− α)2 = (d+ 1)2α2 = (d+ 1)L(w∗). �

Moreover, it is easy to show that no deterministic algorithm for selecting d

rows (without knowing the responses) can guarantee a multiplicative loss bound with

a factor less than n/d [BDM13]. For the sake of completeness, we show this here for

d = 1:

Proposition 2.3. For any n× 1 input matrix X of all 1’s and any deterministic algo-

rithm that chooses some singleton set S = {i}, there is a response vector y for which

the loss of the subproblem and the optimal loss are related as follows:

L(w∗(S)) = nL(w∗).
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Proof. If the response vector y is the vector of n 1’s except for a single 0 at index i,

then we have

L(

0︷ ︸︸ ︷
w∗({i})︸ ︷︷ ︸
n−1

) = n L(

n−1
n︷︸︸︷

w∗ )︸ ︷︷ ︸
n−1
n

.

Note that for the 1-dimensional example used in the proof, volume sampling

would pick the set S uniformly. For this distribution, the multiplicative factor drops

from n downto 2, that is E[L(w∗(S))] = 1
n(n− 1) + n−1

n 1 = 2 L(w∗).

2.3.3 The importance of joint sampling

Three properties of volume sampling play a crucial role in achieving a multi-

plicative loss bound:

1. Randomness: No deterministic algorithm guarantees such a bound (see Proposi-

tion 2.3).

2. The chosen submatrices must have full rank : Choosing any rank deficient sub-

matrix with positive probability, does not allow for a multiplicative bound (see

Propositions 2.4 and 2.5).

3. Jointness: No i.i.d. sampling procedure can achieve a multiplicative loss bound

with O(d) responses (see Corollary 2.2).

By jointly selecting subset S, volume sampling ensures that the corresponding

input vectors xi are well spread out in the input space Rd. In particular, volume

35



sampling does not put any probability mass on sets S such that the rank of submatrix

XS is less than d. Intuitively, selecting rank deficient row subsets should not be effective,

since such a choice leads to an under-determined least squares problem. We make this

simple statement more precise by showing that any randomized algorithm, that with

positive probability selects a rank deficient row subset, cannot achieve a multiplicative

loss bound. Intuitively if the algorithm picks a rank deficient subset then it is not

clear how it should select the weight vector w(S) given input matrix X, subset S and

responses yS . We reasoned before that w(S) must have loss 0 on the subproblem

(XS ,yS). However if rank(XS) < d, then the choice of the weight vector w(S) with

loss 0 is not unique and this causes positive loss for some response vector y.

Proposition 2.4. If for any input matrix X, the algorithm samples a rank deficient

subset S of rows with positive probability, then the expected loss of the algorithm cannot

be bounded by a constant times the optimum loss for all response vectors y.

Note that this means in particular that if X has rank d, then sampling d − 1

size subsets with positive probability does not allow for a constant factor approximation.

Proof. Let S be a rank deficient subset chosen with probability P (S) > 0. Since in our

setup the bound has to hold for all response vectors y we can imagine an adversary

choosing a worst-case y. This adversary gives all rows of XS the response value zero.

Let w(S) be the plane produced by the algorithm when choosing S and receiving the

responses 0 for XS . Let i ∈ {1..n} s.t. x>i 6∈ row-span(XS) and let w∗ be any weight

vector that gives response value 0 to all rows of XS and response value x>i w(S) + Y to
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xi. The adversary chooses y as Xw∗, i.e. it gives all points xj not indexed by S and

different from xi the response values x>j w∗ as well. Now w∗ has total loss 0 but w(S)

has loss Y 2 on xi and the algorithm’s expected total loss is ≥ P (S)Y 2. �

We now strengthen the above proposition in that whenever the sample S is

rank deficient then the loss of the optimum is zero while the loss of the algorithm is

positive. However note that this proposition is weaker than the above in that it only

holds for specific input matrices.

Proposition 2.5. Let d ≤ n and let X be any input matrix of rank d consisting of n

standard basis row vectors in Rd. Then for any randomized learning algorithm that with

probability p selects a subset S s.t. rank(XS) < d and any weight function w(·), there

is a response vector y, satisfying:

L(w∗) = 0, and L(w(S)) > 0 with probability at least p.

Proof. Let Q = {1, 2, . . . , 2n}. The adversarial response vector y is constructed by

carefully selecting one of the weight vectors w∗ ∈ Qd, and setting the response vector

y to Xw∗. This ensures that L(w∗) = 0 and since X consists of standard basis row

vectors, the components of y lie in Q as well. Note that if the learner does not discover

w∗ exactly, it will incur positive loss. Let H be the set of all rank deficient sets in X,

i.e. those that lack at least one of the standard basis vectors:

H = {S ⊆ {1..n} : rank(XS) < d}.
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Suppose that given matrix X, the learner uses weight function w(S,yS). (Note that

for the sake of concreteness we stopped using the single argument shorthand for the

weight function during this proof.) We will count the number of possible inputs to this

function, when S is a rank deficient index set of the rows of X and the response vector

yS is consistent with some w∗ ∈ Qd. For any fixed rank deficient set S, let t be the

number of distinct basis vectors appearing in XS . Clearly t ≤ d−1. Fix a subset T ⊆ S

of size t s.t. XT contains all t basis vectors of XS exactly once (Thus the basis vectors

in XS\T are all duplicates). Since y ∈ Qn, the components of yS also lie in Q and yS

is determined by the responses of yT . Clearly there are at most |Q|d−1 choices for yT .

It follows that the number of possible input pairs (S,yS) for function w(·, ·) under the

above restrictions can be bounded as

∣∣∣{(S,yS) : [S ∈ H] and [yS = XSw∗ for w∗ ∈ Qd]
}∣∣∣ ≤ |H|︸︷︷︸

<2n

max
S∈H
|{XSw∗ : w∗ ∈ Qd}|︸ ︷︷ ︸

≤|Q|d−1

< 2n|Q|d−1 = |Qd|.

So for every weight function w(·, ·), there exists w∗ ∈ Qd that is missed by {w(S,yS) :

S ∈ H}. Selecting y = Xw∗ for the adversarial response vector, we guarantee that the

learner picks the wrong solution for every rank deficient set S and therefore receives

positive loss with probability at least p. �

Using Proposition 2.5, we show that any i.i.d. row sampling distribution (like

for example leverage score sampling) requires Ω(d log d) samples to get any multiplicative

loss bound, either with high probability or in expectation.
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Corollary 2.2. Let d ≤ n and let X be any input matrix of rank d consisting of n

standard basis row vectors in Rd. Then for any randomized learning algorithm which

selects a random multiset S ⊆ {1..n} of size |S| ≤ (d − 1) ln(d) via i.i.d. sampling

from any distribution and uses any weight function w(S), there is a response vector y

satisfying:

L(w∗) = 0, and L(w(S)) > 0 with probability at least 1/2.

Proof. Any i.i.d. sample of size at most (d− 1) ln(d) with probability at least 1/2 does

not contain all of the unique standard basis vectors (Coupon Collector Problem6). Thus,

with probability at least 1/2 submatrix XS has rank less than d. Now, for any such

algorithm we can use Proposition 2.5 to select a consistent response vector y such that

with probability at least 1/2 we have L(w(S)) > 0. �

Note that the corollary requires X to be of a restricted form that contains a

lot of duplicate rows. It is open whether this corollary still holds when X is an arbitrary

full rank matrix.

2.4 Loss expectation formula (proof of Theorem 2.6)

First, we discuss several key connections between linear regression and volume,

which are used in the proof. Note that the loss L(w∗) suffered by the optimum weight

vector can be written as ‖ŷ − y‖2, the squared Euclidean distance between prediction

6This was proven for uniform sampling in Theorem 1.24 of [AD11]. It can be shown that uniform
sampling is the best case for Coupon Collector Problem [Hol01], so the bound holds for any i.i.d.
sampling.
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vector ŷ = Xw∗ and the response vector y. Since ŷ is minimizing the distance from y

to the subspace of Rn spanning the feature vectors {f1, . . . , fd} (columns of X), it has

to be the projection of y onto that subspace (see Figure 2.4). We denote this projection

as PX y, as defined in Section 2.2.3. Note that PX is a linear mapping from Rn onto

the column span of the matrix X such that

for u ∈ span(X) u = PX y ⇔ PX (u− y) = 0 ⇔ X>(u− y) = 0. (2.3)

We next give a second geometric interpretation of the length ‖ŷ − y‖2. Let

P be the parallelepiped formed by the d column/feature vectors of the input matrix

X. Furthermore, consider the extended input matrix produced by adding the response

vector y to X as an extra column:

X̃
def
= (X,y) ∈ Rn×(d+1). (2.4)

y

y
f1

f2

L(w*)

Figure 2.4: Prediction vector ŷ is a pro-

jection of y onto the span of features fi.

Using the “base × height” formula we can re-

late the volume of P to the volume of P̃, the

parallelepiped formed by the d+ 1 columns of

X̃. Observe that P̃ has P as one of its faces,

with the response vector y representing the

edge that protrudes from that face. Hence the

volume of P̃ is the product of the volume of

P and the distance between y and span(X).

This distance equals ‖ŷ − y‖, since as discussed above, ŷ is the projection of y onto
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span(X). Thus we have

det(X̃>X̃) = det(X>X)L(w∗). (2.5)

Next, we present a proposition whose corollary is key to proving Theorem 2.6.

Suppose that we select one test row from the input matrix and use the remaining n− 1

row response pairs as the training set. The proposition relates the loss of the obtained

solution on the test row to the total leave-one-out loss an all rows.

Proposition 2.6. For any index i ∈ {1..n}, let w∗(−i) be the solution to the reduced

linear regression problem (X−i,y−i). Then

L(w∗(−i))− L(w∗) =

det(X>X)−det(X>−iX−i)

det(X>X)︷ ︸︸ ︷
x>i (X>X)−1xi `i(w

∗(−i)),

where `i(w)
def
= (x>i w − yi)2 is the square loss of w on the ith point.

An algebraic proof of this proposition essentially appears in the proof of The-

orem 11.7 in [CBL06]. For the sake of completeness we give a new geometric proof

of this proposition in Section 2.4.2 using basic properties of volume, thus stressing the

connection to volume sampling.

Note that if matrix X has exactly n = d+ 1 rows and the training matrix X−i

is full rank, then w∗(−i) has loss zero on all training rows. In this case we obtain a

simpler relationship than the proposition.

Corollary 2.3. If X has d + 1 rows and rank(X−i) = d, then defining X̃ as in (2.4),

we have

det(X̃>X̃) = det(X>−iX−i) `i(w
∗(−i)).
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Proof. By Proposition 2.6 and the fact that L(w∗(−i)) = `i(w
∗(−i)), we have

det(X>X) L(w∗) = det(X>−iX−i) `i(w
∗(−i)).

The corollary now follows from the “base × height” formula for volume. �

Returning to the proof of Theorem 2.6, our goal is to find the expected loss

E[L(w∗(S))], where S is a size d volume sampled set. First, we rewrite the expectation

as follows:

E[L(w∗(S))] =
∑

S,|S|=d

P (S)L(w∗(S)) =
∑

S,|S|=d

P (S)

n∑
j=1

`j(w
∗(S))

=
∑

S,|S|=d

∑
j /∈S

P (S) `j(w
∗(S)) =

∑
T,|T |=d+1

∑
j∈T

P (T−j) `j(w
∗(T−j)). (2.6)

We now use Corollary 2.3 on the matrix XT and test row x>j (assuming rank(XT−j ) = d):

P (T−j) `j(w
∗(T−j)) =

det(X>T−jXT−j )

det(X>X)
`j(w

∗(T−j)) =
det(X̃>T X̃T )

det(X>X)
. (2.7)

Since the summand does not depend on the index j ∈ T , the inner summation in (2.6)

becomes a multiplication by d+ 1. This lets us write the expected loss as:

E[L(w∗(S))] =
d+ 1

det(X>X)

∑
T,|T |=d+1

det(X̃>T X̃T )
(1)
= (d+ 1)

det(X̃>X̃)

det(X>X)

(2)
= (d+ 1)L(w∗),

(2.8)

where (1) follows from the Cauchy-Binet formula and (2) is an application of the “base

× height” formula. If X is not in general position, then for some summands in (2.7),

rank(XT−j ) < d and P (T−j) = 0. Thus the left-hand side of (2.7) is 0, while the

right-hand side is non-negative, so (2.8) becomes an inequality, completing the proof of

Theorem 2.6.
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2.4.1 Lifting expectations to matrix form (proof of Theorem 2.5)

We show the matrix expectation formula of Theorem 2.5 as a corollary to the

loss expectation formula of Theorem 2.6. The key observation is that the loss formula

holds for arbitrary response vector y, which allows us to “lift” it to the matrix form.

Note, that the loss of least squares estimator can be written in terms of the projection

matrix PX:

L(w∗) = ‖y − ŷ‖2 = ‖(I−PX)y‖2 = y>(I−PX)2y
(∗)
= y>(I−PX) y,

where in (∗) we used the following property of a projection matrix: P2
X = PX. Writing

the loss expectation of the subsampled estimator in the same form, we obtain:

E[L(w∗(S))] = E[‖y − ŷ(S)‖2] = E[‖(I−X(ISX)+)y‖2]

= E[y>(I−X(ISX)+)2 y] = y>E[(I−X(ISX)+)2] y.

Crucially, we are able to extract the response vector y out of the expectation formula,

which allows us to write the formula from Theorem 2.6 as follows:

y> E[(I−X(ISX)+)2] y = y>(d+ 1)(I−PX) y, ∀y ∈ Rn.

We now use the following elementary fact: If for two symmetric matrices A and B,

we have y>Ay = y>By, ∀y ∈ Rn, then A = B. This gives the matrix expectation

formula:

E[(I−X(ISX)+)2] = (d+ 1)(I−PX).
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Expanding square on the l.h.s. of the above and applying Theorem 2.3, we obtain the

covariance-type equivalent form stated in Theorem 2.5:

I− 2

PX︷ ︸︸ ︷
E[X(ISX)+] +E[(X(ISX)+)2] = (d+ 1)(I−PX)

⇐⇒ E[(X(ISX)+)2]−PX = d (I−PX).

2.4.2 Leave-one-out loss formula (proof of Proposition 2.6)

The main idea behind this proof is to construct variants of the input matrix X

and relate their volumes. We use the following standard properties of the determinant:

Proposition 2.7. For any matrix M, det(M>M) = det(M̃>M̃) where M̃ is produced

from M through the following operations:

1. M̃ equals M except that column mj is replaced by mj +αmi, where mi is another

column of M;

2. M̃ equals M except that two rows are swapped.

By Part 2 above, we can assume w.l.o.g. that i = n, i.e. that the test row in

Proposition 2.6 is the last row of X. Recall, that the columns of X are the feature vec-

tors, denoted by f1, . . . , fd. Moreover, the optimal prediction vector on the full dataset,

ŷ = Xw∗, is a projection of y onto the subspace spanned by the features/columns of

X, denoted as ŷ = PX y. Let us define a vector y as

y>
def
= ( ŷ>−n , yn), (2.9)
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where ŷ−n
def
= X−nw

∗(−n) is the optimal prediction vector for the training problem

(X−n,y−n). Note, that if rank(X−n) < d, then w∗(−n) may not be unique, but we can

pick any weight vector as long as it minimizes the loss on the training set {1..n−1}.

Next, we show the following claim:

Claim 2.7. The best achievable loss for the problem (X,y) can be decomposed as follows:

L(w∗) = L(w∗(−n))− `n(w∗(−n)) + ‖y − ŷ‖2. (2.10)

Proof. First, we will show that y is the projection of y onto the subspace spanned by

all features and the unit vector en ∈ Rn (where n corresponds to the test row). That

is, we want to show that y = P(X,en) y. Denote ỹ as that projection. Observe that

ỹn = yn, because if this was not true, we could construct a vector ỹ + (yn − ỹn)en that

is closer to y than ỹ and lies in span(X, en). Thus, the projection does not incur any

loss along the n-th dimension and can be reduced to the remaining n − 1 dimensions,

which corresponds to solving the training problem (X−n,y−n). Using the definition of

y in (2.9), this shows that ỹ = P(X,en) y equals y.

Next, we will show that ŷ is the projection of y onto span(X), i.e. that

PX y = ŷ. By the linearity of projection, we have

PX y = PX(y − y + y)

= PX(y − y) + PX y

= PX(y − y) + ŷ.

We already showed that y = P(X,en) y. Therefore, the vector y−y is orthogonal to the

column vectors of X, and thus PX(y − y) = 0. This shows that PX y = ŷ.
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Finally, note that since y is the projection of y onto span(X, en) and ŷ ∈

span(X, en), vector y−y is orthogonal to vector y−ŷ and by the Pythagorean Theorem

we have

‖ŷ − y‖2 = ‖y − y‖2 + ‖y − ŷ‖2.

Using the definition of y in (2.9), we have

‖y − y‖2 = ‖ŷ−n − y−n‖2 = L(w∗(−n))− `n(w∗(−n)),

concluding the proof of the claim. �

Continuing with the proof of Proposition 2.6, we now construct a matrix X by

adding vector y as an extra column to matrix X:

X
def
= (X , y) =


X−n ŷ−n

x>n yn


. (2.11)

Applying “base × height” and Claim 2.7, we compute the volume spanned by X:

det(X
>

X) = det(X>X) ‖y − ŷ‖2 = det(X>X) (L(w∗)− L(w∗(−n)) + `n(w∗(−n))).

(2.12)

Next, we use the fact that volume is preserved under elementary column operations

(Part 1 of Proposition 2.7). Note, that prediction vector ŷ−n is a linear combination

of the columns of X−n, with the coefficients given by w∗(−n). Therefore, looking at

the block structure of X (see (2.11)), we observe that performing column operations on
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the last column of X with coefficients given by negative w∗(−n), we can zero out that

column except for its last element:

y −X w∗(−n) = r en,

where r
def
= yn − x>nw∗(−n) (see transformation (a) in (2.13)). Now, we consider two

cases, depending on whether or not r equals zero. If r 6= 0, then we further transform

the matrix by a second transformation (b), which zeros out the last row (the test row)

using column operations. The entire sequence of operations, resulting in a matrix we

call X0, is shown below:

X =


X−n ŷ−n

x>n yn


(a)→


X−n 0

x>n r


(b)→


X−n 0

0 r


= X0 (2.13)

Note, that due to the block-diagonal structure of X0, its volume can be easily described

by the “base × height” formula:

det(X
>
0 X0) = det(X>−nX−n) r2 = det(X>−nX−n) `n(w∗(−n)). (2.14)

Since det(X
>

X) = det(X
>
0 X0), we can combine (2.12) and (2.14) to obtain the desired

result.

Finally, if r = 0 we cannot perform transformation (b). However, in this case

matrix X has volume 0, and moreover, `n(w∗(−n)) = r2 = 0, so once again we have

det(X
>

X) = 0 = det(X>−nX−n) `n(w∗(−n)),

which concludes the proof of Proposition 2.6.
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2.5 Matrix differentials as a tool for volume sampling

In this section, we briefly discuss matrix differential calculus and its intriguing

application to volume sampling. A thorough treatment of matrix differential calculus

can be found in [MN99]. Given a function f : Rn×d → R and a matrix X ∈ Rn×d

we are interested in finding a matrix A ∈ Rn×d, such that Aij = ∂f(X)
∂Xij

. Following

standard rules of differential calculus, we can compute this derivative by computing the

“differential” of function f(X), denoted df(X), which is the linear approximation of f ,

i.e.

f(X + d X) = f(X) + df(X) + (higher order terms).

For the formal definition we refer to [MN99]. The matrix derivative of f can be found

by transforming the differential into a trace form:

df(X) = tr(A> dX) ⇐⇒ ∂f(X)

∂X
= A. (2.15)

In our analysis, we will need the following standard transformations allowed in comput-

ing a matrix differential (here, X and Y are used loosely as matrix functions, while B

is a matrix constant):

(a) d X> = (dX)>,

(b) d BX = B dX,

(c) d XY = (dX) Y + X (dY),

(d) d det(X) = det(X) tr( X−1 dX ).
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As a key example for us, we derive the differential of det(X>SXS) for any fixed set S

using the above rules and basic properties of the trace:

d det(X>SXS)
(d)
= det(X>SXS) tr

(
(X>SXS)−1 d(

X>(ISX)︷ ︸︸ ︷
X>SXS )

)
(c)
= det(X>SXS) tr

(
(X>SXS)−1((d X>)ISX + X>(d ISX))

)
(b)
= det(X>SXS) tr

(
(X>SXS)−1(X>IS(d X>)> + X>IS(dX))

)
(a)
= 2 det(X>SXS) tr

(
(X>SXS)−1X>IS dX

)
= 2 det(X>SXS) tr

(
(ISX)+ dX

)
.

Thus, by the rule given in (2.15), we showed that
∂ det(X>SXS)

∂X = 2 det(X>SXS)(ISX)+>.

This fact can be used to prove the pseudoinverse expectation formula of Theorem 2.3.

The proof begins with generalized Cauchy-Binet for size s volume sampling:

∑
S,|S|=s

det(X>SXS) =

(
n− d
s− d

)
det(X>X).

Now, we take a derivative w.r.t. X on both sides

∑
S,|S|=s

2 det(X>SXS) (ISX)+> =

(
n− d
s− d

)
2 det(X>X) X+>

⇐⇒
∑

S,|S|=s

det(X>SXS)(
n−d
s−d
)

det(X>X)
(ISX)+>

︸ ︷︷ ︸
E[(ISX)+>]

= X+>.

2.6 Conclusion of the chapter and conjectures

We analyze linear regression when the learner is given the entire input matrix

X which contains the points in Rd as rows. The response vector y contains one real

response per row and is hidden from the learner. However the learner can request the
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responses yS for a small index set S of the points. The learner then produces a weight

vector w(S) from the input matrix X and the requested responses yS . Our goal is to find

a way to sample S and construct a weight function w(S) s.t. E[L(w(S))] ≤ (1+c) L(w∗),

where the multiplicative factor 1 + c is bounded for all input matrices X and response

vectors y. Recall that L(·) denotes the square loss on all rows and w∗ is the optimal

solution based on all responses.

We show in this chapter that the smallest size of S for which this goal can be

achieved is d (There is no sampling procedure for sets of size less than d and weight

function w(S) for which this factor is finite). We also prove that when sets S of size d are

drawn proportional to the squared volume of XS (i.e. det(X>SXS)), then E[L(w∗(S))] ≤

(d+1)L(w∗), where the factor d+1 is optimal for some X and y. Here w∗(S) denotes the

linear least squares solution for the subproblem (XS ,yS). The lower-bounds show that

similar results are not possible for certain classes of algorithms: For any deterministic

algorithm selecting a set S of size d the multiplicative factor can be at least n (the

number of rows of the input matrix X); also, any i.i.d. sampling procedure (such as

leverage score sampling) requires Ω(d log d) responses to achieve a finite factor.

We study volume sampling in more detail and develop a method for proving

matrix expectation formulas. This method leads to exact formulas for E[(ISX)+] and

E[(ISX)+(ISX)+>] when the subset S of s row indices is sampled by volume sampling.

The formulas hold for any fixed size s ∈ {d..n}. These new expectation formulas imply

that the solution w∗(S) for a volume sampled subproblem of a linear regression problem
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is unbiased:

E[w∗(S)] = E[(ISX)+y] = X+y = w∗.

We also give an additional second order formula for E[(X(ISX)+)2]. However, this

formula relies on our inequality E[L(w∗(S))] ≤ (d+ 1)L(w∗) that only holds for volume

sampling of size s = d. Generalizing this formula to sample size s larger than d is a

challenging open problem.

A natural more general goal is to get arbitrarily close to the optimum loss.

That is, for any ε, what is the smallest sample size |S| = s for which there is a sampling

distribution over subsets S and a weight function w(S) built from X and yS , such that

E[L(w(S))] ≤ (1 + ε)L(w∗). A related bound for i.i.d. leverage score sampling states

that a sample size of O(d log d+ d
ε ) suffices to achieve a 1 + ε factor with high probability

(this fact follows from standard techniques [Woo14] presented here in Section 4.4.1),

however this does not imply multiplicative bounds in expectation.

We conjecture that some form of volume sampling can be used to achieve the

1 + ε factor with sample size O(dε ), in expectation. How close can we get with the

techniques presented in this chapter? We showed that size d volume sampling achieves

a factor of 1 + d, but we do not know how to generalize this proof to sample size larger

than d. However, one unique property of the volume-sampled estimator w∗(S) that

can be useful here is that it is an unbiased estimator of w∗. As we shall see now, this

basic property has many benefits. For any unbiased estimator (i.e. E[w(S)] = w∗) and

optimal prediction vector ŷ = Xw∗, consider the following rudimentary version of a
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bias-variance decomposition:

E ‖X w(S)− y‖2︸ ︷︷ ︸
L(w(S))

= E ‖X w(S)− ŷ + ŷ − y‖2 = E ‖X w(S)− ŷ‖2 + ‖ŷ − y‖2︸ ︷︷ ︸
L(w∗)

.

The unbiasedness of the estimator assures that the cross term (X

w∗︷ ︸︸ ︷
E[w(S)]−ŷ)>(ŷ− y)

is 0. Therefore a 1 + c factor loss bound is equivalent to a c factor variance bound, i.e.

loss bound︷ ︸︸ ︷
E[L(w(S))] ≤ (1 + c)L(w∗) ⇐⇒

variance bound︷ ︸︸ ︷
E ‖X w(S)− ŷ‖2 ≤ cL(w∗) . (2.16)

To reduce the variance of any unbiased estimator w(S) (i.e. E[w(S)] = w∗) with sample

size s, we can draw k independent samples S1, . . . , Sk of size s each and predict with

the average estimator 1
k

∑k
j=1 w(Sj). If the loss bound from (2.16) holds for w(S), then

the average estimator satisfies

E

[
L

(
1

k

∑
j
w(Sj)

)]
≤
(

1 +
c

k

)
L(w∗).

Setting k = c/ε, we need s c/ε responses to get a 1 + ε approximation. We showed that

size d volume sampling achieves c = d. Thus with our current proof techniques, we need

d2/ε examples to get a 1 + ε factor approximation.

In conclusion the basic open problem is the following: Is there a size O(d/ε)

unbiased estimator that achieves a 1 + ε factor approximation? By the above averaging

method this is equivalent to the following question: Is there a size O(d) unbiased estima-

tor that achieves a constant factor? This is because once we have an unbiased estimator

that achieves a constant factor, then by averaging 1/ε copies, we get the 1+O(ε) factor.

Ideally the special unbiased estimators resulting from volume sampling can achieve this
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feat. We conclude with our favorite open problem: Does size O(d) volume sampling

achieve a constant factor approximation? The following two chapters make progress

towards addressing this open problem: in Chapter 3 we show that when the response

vector is linear plus noise of mean zero, then the desired sample size is achievable (al-

though the notion of loss in that setting is replaced with mean squared prediction error);

in Chapter 4 we return to the worst-case response vector setting, and show a surprising

lower bound indicating that volume sampling, as defined in this chapter, does not offer

1 + ε approximations for ε < 1
2 with small sample sizes. We then propose leveraged

volume sampling, which produces an unbiased estimator satisfying the 1 + ε loss bound

with high probability (but not in expectation) for sample size O(d log d+ d
ε ), matching

that of i.i.d. leverage score sampling.
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Chapter 3

Regularized volume sampling

3.1 Introduction

A simple approach for implementing volume sampling introduced in the previ-

ous chapter is to start with the full set of column indices S = {1..n} and then (in reverse

order) select an index i in each iteration to be eliminated from set S with probability

proportional to the change in matrix volume caused by removing the ith column:

Sample i ∼ P (i |S) =
det(X>S−iXS−i)

(|S| − d) det(X>SXS)
, (3.1)

Update S ← S − i. (reverse iterative volume sampling)

As shown in Theorem 2.1, this procedure samples a set S of fixed size according to the

distribution
P (S) ∝ det(X>SXS). (3.2)

Note that when |S| < d, then all matrices X>SXS are singular, and so the distribution

becomes undefined. Motivated by this limitation, we propose a regularized variant,
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called λ-regularized volume sampling:

Sample i ∼ P (i |S) ∝
det(X>S−iXS−i + λI)

det(X>SXS + λI)
, (3.3)

Update S ← S − i. (λ-regularized volume sampling)

The normalization factor of this conditional probability (i.e. the sum of (3.3) over i ∈ S)

can be computed using Sylvester’s theorem:

∑
i∈S

det(X>S−iXS−i + λI)

det(X>SXS + λI)
=
∑
i∈S

(
1− x>i (X>SXS + λI)−1xi

)
= |S| − tr

(
XS(X>SXS + λI)−1X>S )

= |S| − d+ λ tr
(
(X>SXS + λI)−1

)
. (3.4)

Note that in the special case of no regularization (i.e. λ = 0) the last trace vanishes

and (3.4) is equal to |S| − d, so we recover standard volume sampling. However, when

λ > 0, then the last term is non-zero and depends on the entire matrix XS . This

makes regularized volume sampling more complicated and certain equalities proven in

the previous chapter for λ = 0 no longer hold. In particular, the analogous closed form

of the sampling probability P (S) given in (3.2) is not recovered because the paths from

node {1..n} to node S in the directed acyclic graph described in Chapter 2 (see Figure

2.2) do not all have the same probability.

Nevertheless, we are able to show that the proposed λ-regularized distribution

exhibits a fundamental connection to ridge regression. Given a matrix X ∈ Rn×d, we

consider the task of fitting a linear model to a vector of responses y = Xw̃ + ξ, where

w̃ ∈ Rd and the noise ξ ∈ Rn is a mean zero random vector with covariance matrix
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Var[ξ] � σ2I for some σ > 0. A classical solution to this task is the ridge estimator:

w∗λ = argmin
w∈Rd

‖Xw − y‖2 + λ‖w‖2 = (X>X + λI)−1X>y.

In this setting, we are interested in producing an estimator based on a small subset of

responses indexed by set S. We will show that if S is sampled according to λ-regularized

volume sampling with λ ≤ σ2

‖w̃‖2 then the ridge estimator for the subproblem (XS ,yS)

w∗λ(S) = (X>SXS + λI)−1X>SyS

has strong generalization properties with respect to the full problem (X,y). In partic-

ular, we prove that if the subset S has size s, then the mean squared prediction error

(MSPE) of estimator w∗λ(S) over the entire dataset X is bounded as follows:

ESEξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≤ σ2dλ
s− dλ + 1

,

where dλ = tr(X(X>X + λI)−1X>)

is the statistical dimension. If λi are the eigenvalues of X>X, then dλ =
∑d

i=1
λi

λi+λ
.

Note that dλ is decreasing with λ and d0 = d. If the spectrum of the matrix X>X

decreases quickly then dλ does so as well with increasing λ. When λ is properly tuned

then dλ is the effective degrees of freedom of X. Our new lower bounds show that the

above upper bound for regularized volume sampling is essentially optimal with respect

to the choice of a subsampling procedure.

Recall that volume sampling can be viewed as a non-i.i.d. extension of lever-

age score sampling [DMIMW12], a widely used method where columns are sampled
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independently according to their leverage scores. We show that any i.i.d. subsam-

pling with respect to any fixed distribution such as leverage score sampling can require

Ω(dλ ln(dλ)) labels to achieve any generalization for ridge regression, compared to O(dλ)

for regularized volume sampling. We reinforce this claim experimentally in Section 3.5.

The main obstacle against using volume sampling in practice has been high

computational cost. In particular, the only previously known polynomial time algorithm

for exact volume sampling was O(n4s) [LJS17], whereas exact leverage score sampling1

is O(nd2). For many modern datasets, the number of examples n is much larger than d,

which makes existing algorithms for volume sampling infeasible. In this chapter, we give

an easy-to-implement volume sampling algorithm that runs in time O(nd2). Thus we

give the first volume sampling procedure which is essentially linear in n and matches the

time complexity of exact leverage score sampling. Finally our procedure also achieves

regularized volume sampling for any λ > 0 with the same running time.

Outline of the chapter. In the following section we show a matrix expectation in-

equality for λ-regularized volume sampling, which we then use for the statistical analysis

of volume sampled ridge estimators in Section 3.3. Next, in Section 3.4 we present two

efficient algorithms for regularized volume sampling. Finally, we evaluate the runtime

of our algorithms on several standard linear regression datasets, and compare the pre-

diction performance of the subsampled ridge estimator under volume sampling versus

leverage score sampling (Section 3.5). We conclude with a brief summary of this chapter

1Approximate leverage score sampling methods achieve even better runtime of Õ(nd+ d3).
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in Section 3.6.

3.2 A matrix expectation inequality

In the previous chapter we showed an important matrix expectation formula

for standard volume sampling (Theorem 2.4) which states that if matrix X ∈ Rn×d is

in general position and set S is sampled according to size s ≥ d volume sampling, then

E
[
(X>SXS)−1

]
=
n− d+ 1

s− d+ 1
(X>X)−1.

If X is not in general position, the above equality “=” is replaced with a positive

semi-definite inequality “�”. We showed this using a proof technique based on reverse

iterative sampling, which can also be applied to regularized volume sampling, resulting

in the following extension of the above formula:

Theorem 3.1. For any X ∈ Rn×d, λ ≥ 0, let S be sampled according to λ-regularized

size s volume sampling from X. Then,

E
[
(X>SXS + λI)−1

]
� n− dλ + 1

s− dλ + 1
(X>X + λI)−1

for any s ≥ dλ = tr(X(X>X + λI)−1X>).

Remark. In many settings, dλ � d, thus unlike Theorem 2.4, the above result offers

meaningful bounds for sampling sets S of size smaller than d. Also, note that the above

inequality does not turn into an equality when X is in general position.

Proof. To obtain Theorem 3.1, we use essentially the same methodology as described

in Lemma 2.1, except in the regularized case equality is replaced with inequality. Recall
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that using Sylvester’s theorem we can compute the unnormalized conditional probability

from (3.3):

hi =
det(X>S−iXS−i + λI)

det(X>SXS + λI)
= 1− x>i (X>SXS + λI)−1xi.

From now on, we will use Zλ(S) = X>SXS + λI as a shorthand in the proofs. Next,

letting M =
∑

i∈S hi, we compute unnormalized expectation by applying the Sherman-

Morrison formula:

M E
[
(X>S−iXS−i + λI)−1 |S

]
=
∑
i∈S

hi

( Zλ(S−i)
−1︷ ︸︸ ︷

Zλ(S)−1 +
Zλ(S)−1xix

>
i Zλ(S)−1

1− x>i Zλ(S)−1xi

)

= M Zλ(S)−1 + Zλ(S)−1
(∑
i∈S

xix
>
i

)
Zλ(S)−1

= M Zλ(S)−1 + Zλ(S)−1(Zλ(S)− λI)Zλ(S)−1

= M Zλ(S)−1 + Zλ(S)−1 − λZλ(S)−2 � (M + 1) Zλ(S)−1.

Finally, the normalization factor M (which we already computed in (3.4)) can be lower-

bounded using the λ-statistical dimension dλ of matrix X:

M =
∑
i∈S

(1− x>i Zλ(S)−1xi) = s− d+ λ tr(Zλ(S)−1) ≥ s−
(
d−λ tr(Zλ({1..n})−1)︸ ︷︷ ︸

dλ

)
.

Putting the bounds together, we obtain that:

E
[
(X>S−iXS−i + λI)−1 |S

]
� s− dλ + 1

s− dλ
(X>SXS + λI)−1.

To prove Theorem 3.1 it remains to chain the conditional expectations along the se-

quence of subsets obtained by λ-regularized volume sampling:

E
[
Zλ(S)−1

]
�

(
n∏

t=s+1

t− dλ + 1

t− dλ

)
Zλ({1..n})−1 =

n− dλ + 1

s− dλ + 1
(X>X + λI)−1.
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3.3 Ridge regression with noisy responses

We apply the above result to obtain statistical guarantees for subsampling with

regularized estimators.

Theorem 3.2. Let X ∈ Rn×d and w̃ ∈ Rd, and suppose that y = Xw̃ + ξ, where ξ

is a mean zero vector with Var[ξ] � σ2 I. Let S be sampled according to λ-regularized

size s ≥ dλ volume sampling from X and w∗λ(S) be the λ-ridge estimator of w̃ computed

from subproblem (XS ,yS). Then, if λ ≤ σ2

‖w̃‖2 , we have

(mean squared prediction error) ESEξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≤ σ2dλ
s− dλ + 1

,

(mean squared error) ESEξ

[
‖w∗λ(S)− w̃‖2

]
≤ σ2n tr((X>X + λI)−1)

s− dλ + 1
.

Next, we present two lower-bounds for MSPE of a subsampled ridge estimator

which show that the statistical guarantees achieved by regularized volume sampling are

nearly optimal for s � dλ and better than standard approaches for s = O(dλ). In

particular, we show that non-i.i.d. nature of volume sampling is essential if we want to

achieve good generalization when the number of responses is close to dλ. Namely, for

certain data matrices, any subsampling procedure selecting examples in an i.i.d. fash-

ion (e.g., leverage score sampling), requires more than dλ ln(dλ) responses to achieve

MSPE below σ2, whereas volume sampling obtains that bound for any matrix with 2dλ

responses.

Theorem 3.3. For any p ≥ 1 and σ ≥ 0, there is d ≥ p such that for any sufficiently
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large n divisible by d there exists a matrix X ∈ Rn×d such that

dλ(X) ≥ p for any 0 ≤ λ ≤ σ2,

and for each of the following two statements there is a vector w̃ ∈ Rd for which the

corresponding regression problem y = Xw̃+ξ with Var[ξ] = σ2I satisfies that statement:

1. For any subset S ⊆ {1..n} of size s,

Eξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≥ σ2dλ
s+ dλ

;

2. For multiset S ⊆ {1..n} of size s ≤ (dλ− 1) ln(dλ), sampled i.i.d. from any

distribution,

ESEξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≥ σ2.

3.3.1 Upper bounds (proof of Theorem 3.2)

Standard analysis for the ridge regression estimator follows by performing bias-

variance decomposition of the error, and then selecting λ so that bias can be appropri-

ately bounded. We will recall this calculation for a fixed subproblem (XS ,yS). First,

we compute the bias of the ridge estimator for a fixed set S (recall the shorthand

Zλ(S) = X>SXS + λI):

Biasξ[w∗λ(S)] = E[w∗λ(S)]− w̃ = Eξ [Zλ(S)−1X>SyS ]− w̃

= Zλ(S)−1X>S (XSw̃ +����Eξ[ξS ])− w̃

= (Zλ(S)−1X>SXS − I)w̃ = −λZλ(S)−1w̃.
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Similarly, the covariance matrix of w∗λ(S) is given by:

Varξ[w∗λ(S)] = Zλ(S)−1X>SVarξ[ξS ]XSZλ(S)−1

� σ2Zλ(S)−1X>SXSZλ(S)−1 = σ2(Zλ(S)−1 − λZλ(S)−2).

Mean squared error of the ridge estimator for a fixed subset S can now be bounded by:

Eξ

[
‖w∗λ(S)− w̃‖2

]
= tr(Varξ[w∗λ(S)]) + ‖Biasξ[w∗λ(S)]‖2

≤ σ2tr(Zλ(S)−1− λZλ(S)−2) + λ2tr(Zλ(S)−2w̃w̃>)

≤ σ2tr(Zλ(S)−1) + λtr(Zλ(S)−2)(λ‖w̃‖2− σ2) (3.5)

≤ σ2tr(Zλ(S)−1), (3.6)

where in (3.5) we applied Cauchy-Schwartz inequality for matrix trace, and in (3.6) we

used the assumption that λ ≤ σ2

‖w̃‖2 . Thus, taking expectation over the sampling of set

S, we get

ESEξ

[
‖w∗λ(S)− w̃‖2

]
≤ σ2ES

[
tr(Zλ(S)−1)

]
(Theorem 3.1) ≤ σ2n− dλ + 1

s− dλ + 1
tr(Zλ({1..n})−1) (3.7)

≤ σ2 n tr((X>X + λI)−1)

s− dλ + 1
.

Next, we bound the mean squared prediction error. As before, we start with the stan-

dard bias-variance decomposition for fixed set S:

Eξ

[
‖X(w∗λ(S)−w̃)‖2

]
= tr(Varξ[Xw∗λ(S)]) + ‖X(Eξ[w∗λ(S)]− w̃)‖2

≤ σ2tr(X(Zλ(S)−1−λZλ(S)−2)X>) + λ2tr(Zλ(S)−1X>XZλ(S)−1w̃w̃>)

≤ σ2tr(XZλ(S)−1X>) + λ tr(XZλ(S)−2X>)(λ‖w̃‖2 − σ2)

≤ σ2tr(XZλ(S)−1X>).
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Once again, taking expectation over subset S, we have

ESEξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≤ σ2

n
ES
[
tr(XZλ(S)−1X>)

]
=
σ2

n
tr(X ES [Zλ(S)−1] X>)

(Theorem 3.1) ≤ σ2

n

n− dλ + 1

s− dλ + 1
tr(XZλ({1..n})−1X>) ≤ σ2dλ

s− dλ + 1
. (3.8)

The key part of proving both bounds is the application of Theorem 3.1. For MSE, we

only used the trace version of the inequality (see (3.7)), however to obtain the bound

on MSPE we used the more general positive semi-definite inequality in (3.8).

3.3.2 Lower bounds (proof of Theorem 3.3)

Let d = dpe+ 1 and n ≥ dσ2ed(d− 1) be divisible by d. We define

X
def
= [I, ..., I]> ∈ Rn×d, w̃>

def
= [aσ, ..., aσ] ∈ Rd

for some a > 0. For any λ ≤ σ2, the λ-statistical dimension of X is

dλ = tr(X Zλ({1..n})−1X>) ≥ dσ2ed(d− 1)

dσ2e(d− 1) + λ
≥ d(d− 1)

d− 1 + 1
≥ p.

Let S ⊆ {1..n} be any set of size s, and for i ∈ {1..d} let si
def
= |{i ∈ S : xi = ei}|. The

prediction variance of estimator w∗λ(S) is equal to

tr
(
Varξ[Xw∗λ(S)]

)
= σ2tr(X(Zλ(S)−1− λZλ(S)−2)X>)

=
σ2n

d

d∑
i=1

(
1

si + λ
− λ

(si + λ)2

)
=
σ2n

d

d∑
i=1

si
(si + λ)2

.

The prediction bias of estimator w∗λ(S) is equal to

‖X(Eξ[w∗λ(S)]− w̃)‖2 = λ2w̃>Zλ(S)−1X>XZλ(S)−1w̃

=
λ2a2σ2n

d
tr
(
Zλ(S)−2

)
=
λ2a2σ2n

d

d∑
i=1

1

(si + λ)2
.
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Thus, MSPE of estimator w∗λ(S) is given by:

Eξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
=

1

n
tr
(
Varξ[Xw∗λ(S)]

)
+

1

n
‖X(Eξ[w∗λ(S)]− w̃)‖2

=
σ2

d

d∑
i=1

(
si

(si + λ)2
+

a2λ2

(si + λ)2

)
=
σ2

d

d∑
i=1

si + a2λ2

(si + λ)2
.

Next, we find the λ that minimizes this expression. Taking the derivative with respect

to λ we get:

∂

∂λ

(
σ2

d

d∑
i=1

si + a2λ2

(si + λ)2

)
=
σ2

d

d∑
i=1

2si(λ− a−2)

(si + λ)3
.

Thus, since at least one si has to be greater than 0, for any set S the derivative

is negative for λ < a−2 and positive for λ > a−2, and the unique minimum of MSPE

is achieved at λ = a−2, regardless of which subset S is chosen. So, as we are seeking a

lower bound, we can focus on the case of λ = a−2.

Proof of Part 1. Let a = 1. As shown above, we can assume that λ = 1. In this

case the formula simplifies to:

Eξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
=
σ2

d

d∑
i=1

si + 1

(si + 1)2
=
σ2

d

d∑
i=1

1

si + 1

(∗)
≥ σ2

s
d + 1

=
σ2d

s+ d
≥ σ2dλ
s+ dλ

,

where (∗) follows by applying Jensen’s inequality to convex function φ(x) = 1
x+1 .

Proof of Part 2. Let a =
√

2d. As shown above, we can assume that λ = 1/(2d).

Suppose that multiset S is sampled i.i.d. from some distribution over set {1..n}. Sim-

ilarly as in Corollary 2.2, we exploit the Coupon Collector’s problem, i.e. that if
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|S| ≤ (d − 1) ln(d), then with probability at least 1/2 there is i ∈ {1..d} such that

si = 0 (ie, one of the unit vectors ei was never selected). Thus, MSPE can be lower-

bounded as follows:

ESEξ

[ 1

n
‖X(w∗λ(S)− w̃)‖2

]
≥ 1

2

σ2

d

si + a2λ2

(si + λ)2
=
σ2

2d

2dλ2

λ2
= σ2.

3.4 Efficient algorithms for regularized volume sampling

In this section we propose algorithms for efficiently performing volume sam-

pling. This addresses the question posed by [AB13], asking for a polynomial-time algo-

rithm for the case when the size of set S is s > d. [DR10] gave an algorithm for the case

when s = d, which was later slightly improved by [GS12], running in time O(nd3). Re-

cently, [LJS17] offered an algorithm for arbitrary s, which has complexity O(n4s). We

propose two new methods, which use our reverse iterative sampling technique to achieve

faster running times for volume sampling of any size s. Both algorithms apply to the

more general setting of λ-regularized volume sampling, and produce standard volume

sampling as a special case for λ = 0 and s ≥ d. The first algorithm has a deterministic

runtime of O(n−s+d)nd), whereas the second one is an accelerated version which with

high probability finishes in time O(nd2). Thus, we obtain a direct improvement over

[LJS17] by a factor of at least n2, and in the special case of s = d, by a factor of d over

the algorithm of [GS12].

Our algorithms implement reverse iterative sampling from Theorem 2.1. We

start with the full index set S = {1..n}. In one step of the algorithm, we remove one
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row from an index set S. After removing q rows, we are left with the index set of size

n − q that is distributed according to volume sampling for row set size n − q, and we

proceed until our set S has the desired size s. The primary cost of the procedure is

updating the conditional distribution P (S−i|S) at every step. It is convenient to store it

using the unnormalized weights defined in (3.3) which, via Sylvester’s theorem, can be

computed as hi = 1−x>i (X>SXS +λI)−1xi. Doing this naively, we would first compute

(X>SXS +λI)−1 which takes O(nd2) time2. After that for each i, we would multiply this

matrix by xi in time O(d2) to get the hi’s. The overall runtime of this naive method

becomes:

n−s︷ ︸︸ ︷
# of steps × (

O(nd2)︷ ︸︸ ︷
compute (X>SXS + λI)−1 +

≤n︷ ︸︸ ︷
# of weights×

O(d2)︷ ︸︸ ︷
compute hi ) = O((n−s)nd2).

We improve on this by observing that both the matrix (X>SXS +λI)−1 and the weights

hi can be efficiently computed from the one obtained in the previous step by using the

Sherman-Morrison formula. This lets us update the matrix inverse (X>SXS + λI)−1 in

O(d2) time instead of O(nd2). We propose two strategies for dealing with the cost of

maintaining the unnormalized probabilities:

1. Maintain all hi’s at every step, performing a cheap update step for every one of

them;

2. Use rejection sampling, which avoids computing all hi’s, but makes each one more

expensive.

2We are primarily interested in the case where n ≥ d and we state our time bounds under that
assumption. However, when λ > 0, our techniques can be easily adapted to the case of n < d.
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Algorithm 3.1: RegVol(X, s, λ)

1: Z← (X>X + λI)−1

2: ∀i∈{1..n} hi ← 1− x>i Zxi

3: S ← {1..n}

4: while |S| > s

5: Sample i ∝ hi out of S

6: S ← S − i

7: v← Zxi/
√
hi

8: ∀j∈S hj ← hj − (x>j v)2

9: Z← Z + vv>

10: end

11: return S

Algorithm 3.2: FastRegVol(X, s, λ)

1: Z← (X>X + λI)−1

2: S ← {1..n}

3: while |S| > max{s, 2d}

4: repeat

5: Sample i uniformly out of S

6: hi ← 1− x>i Zxi

7: Sample A ∼ Bernoulli(hi)

8: until A = 1

9: S ← S − i

10: Z← Z + h−1i Zxix
>
i Z

11: end

12: if s < 2d, S ← RegVol(XS , s, λ)

end

13: return S

As we can see, there is a trade-off between those strategies. In the following

lemma, we will show that updating the value of hi, given its value in the previous step

only costs O(d) time as opposed to O(d2). However, the number of hi’s that need to be

computed for rejection sampling (explained shortly) can be far smaller.

Lemma 3.1. For any matrix X ∈ Rn×d, set S ⊆ {1..n} and two distinct indices i, j ∈ S,

we have
1− x>j (X>S−iXS−i+ λI)−1xj = hj − (x>j v)2,

where hj = x>j (X>SXS+ λI)−1xj and v = 1√
hi

(X>SXS + λI)−1xi.
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Proof. Letting Zλ(S) = X>SXS + λI, we have

hj − (x>j v)2 = 1− x>j Zλ(S)−1xj −
(x>j Zλ(S)−1xi)

2

1− x>i Zλ(S)−1xi

= 1− x>j Zλ(S)−1xj −
x>j Zλ(S)−1xix

>
i Zλ(S)−1xj

1− x>i Zλ(S)−1xi

= 1− x>j

(
Zλ(S)−1 +

Zλ(S)−1xix
>
i Zλ(S)−1

1− x>i Zλ(S)−1xi

)
xj

(∗)
= 1− x>j (X>S−iXS−i + λI)−1xj ,

where (∗) follows from the Sherman-Morrison formula. �

Thus the overall time complexity of reverse iterative sampling when using the

first strategy goes down by a factor of d compared to the naive version (except for an

initialization cost which stays at O(nd2)).

Theorem 3.4. Algorithm RegVol produces an index set S of rows distributed according

to λ-regularized size s volume sampling over X in time O((n−s+d)nd).

Proof. Using Lemma 3.1 for hi and the Sherman-Morrison formula for Z, the following

invariants hold at the beginning of the while loop:

hi = 1− x>i (X>SXS + λI)−1xi and Z = (X>SXS + λI)−1.

Runtime: Computing the initial Z = (X>X + λI)−1 takes O(nd2), as does computing

the initial values of hj ’s. Inside the while loop, updating hj ’s takes O(|S|d) = O(nd)

and updating Z takes O(d2). The overall runtime becomes O(nd2 + (n−s)nd) = O((n−

s+d)nd), which completes the proof. �
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Next we present algorithm FastRegVol, which is based on the rejection sam-

pling strategy. Our key observation is that updating the full conditional distribution

P (S−i|S) is wasteful, since the distribution changes very slowly throughout the proce-

dure. Moreover, the unnormalized weights hi, which are computed in the process are

all bounded by 1. Thus, to sample from the correct distribution at any given iteration,

we can employ rejection sampling as follows:

1. Sample i uniformly from set S,

2. Compute hi,

3. Accept with probability hi,

4. Otherwise, draw another sample.

Note that this rejection sampling can be employed locally, within each iteration of the

algorithm. Thus, one rejection does not revert us back to the beginning of the algorithm.

Moreover, if the probability of acceptance is high, then this strategy requires computing

only a small number of weights per iteration of the algorithm, as opposed to updating

all of them. This turns out to be the case for a majority of the steps of the algorithm,

except at the very end (for s ≤ 2d), were the conditional probabilities start changing

more drastically. At that point, it becomes more efficient to use the first algorithm,

RegVol.

Theorem 3.5. For any λ, δ, s ≥ 0, algorithm FastRegVol samples according to λ-
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regularized size s volume sampling, and with probability at least 1− δ runs in time

O

((
n+ log

(
n/d

)
log
(
1/δ
))
d2

)
.

Proof. We analyze the efficiency of rejection sampling in FastRegVol. Let Rt be a ran-

dom variable corresponding to the number of trials needed in the repeat loop from

line 4 in FastRegVol at the point when |S| = t. Note that conditioning on the algo-

rithm’s history, Rt is distributed according to geometric distribution Ge(qt) with success

probability:

qt =
1

t

∑
i∈S

(
1− x>i (X>SXS + λI)−1xi

)
≥ t− d

t
≥ 1

2
.

Thus, even though variables Rt are not themselves independent, they can be upper-

bounded by a sequence of independent variables R̂t ∼ Ge( t−dt ). The expectation of the

total number of trials in FastRegVol, R̄ =
∑

tRt, can thus be bounded as follows:

E[R̄] ≤
n∑

t=2d

E[R̂t] =

n∑
t=2d

t

t− d
≤ 2n.

Next, we will obtain a similar bound with high probability instead of in expec-

tation. Here, we will have to use the fact that the variables R̂t are independent, which

means that we can upper-bound their sum with high probability using standard concen-

tration bounds for geometric distribution. For example, using Corollary 2.2 from [Jan18]

one can immediately show that with probability at least 1− δ we have R̄ = O(n ln δ−1).

However, more careful analysis shows an even better dependence on δ.

Lemma 3.2. Let R̂t ∼ Ge( t−dt ) be independent random variables. Then w.p. at least
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1− δ
n∑

t=2d

R̂t = O
(
n+ log

(
n/d

)
log
(
1/δ
))
.

Each trial of rejection sampling requires computing one weight hi in timeO(d2).

The overall time complexity of FastRegVol also includes computation and updating of

matrix Z (in time O(nd2)), rejection sampling which takes O
((
n+ log

(
n
d

)
log
(

1
δ

))
d2
)

time, and (if s < 2d) the RegVol portion, taking O(d3). �

Proof of Lemma 3.2

As observed by [Jan18], tail-bounds for the sum of geometric random variables

depend on the minimum acceptance probability among those variables. Note that for

the vast majority of R̂t’s the acceptance probability is very close to 1, so intuitively we

should be able to take advantage of this to improve our tail bounds. To that end, we

partition the variables into groups of roughly similar acceptance probability and then

separately bound the sum of variables in each group. Let J = log(nd ) (w.l.o.g. assume

that J is an integer). For 1 ≤ j ≤ J , let Ij = {d2j , d2j + 1, .., d2j+1} represent the j-th

partition. We use the following notation for each partition:

R̄j
def
=
∑
t∈Ij

Rt, µj
def
= E[R̄j ], rj

def
= min

t∈Ij

t− d
t

, γj
def
=

log(δ−1)

d2j−2
+ 3.

Now, we apply Theorem 2.3 of [Jan18] to R̄j , obtaining

P (R̄j ≥ γjµj) ≤ γ−1
j (1− rj)(γj−1−ln γj)µj

(1)

≤ (1− rj)γjµj/4
(2)

≤ 2−jγjd2j−2
,
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Dataset n× d RegVol FastRegVol LSS

cadata 21k×8 33.5s 0.9s 0.1s
MSD 464k×90 >24hr 39s 12s

cpusmall 8k×12 1.7s 0.4s 0.07s
abalone 4k×8 0.5s 0.2s 0.03s

Table 3.1: A list of used regression datasets, with runtime comparison between RegVol

and FastRegVol. We also provide the runtime for obtaining exact leverage score samples

(LSS).

where (1) follows since γj ≥ 3, and (2) holds because µj ≥ d2j and rj ≥ 1 − 2−j .

Moreover, for the chosen γj we have

jγjd2j−2 = j log(δ−1) + 3jd2j−2 ≥ log(δ−1) + j = log(2jδ−1).

Let A denote the event that R̄j ≤ γjµj for all j ≤ J . Applying union bound, we get

P (A) ≥ 1−
J∑
j=1

P (R̄j ≥ γjµj) ≥ 1−
J∑
j=1

2− log(2jδ−1) = 1−
J∑
j=1

δ

2j
≥ 1− δ.

If A holds, then we obtain the desired bound:

n∑
t=2d

R̂t ≤
J∑
j=1

γjµj ≤
J∑
j=1

(
log(δ−1)

d2j−2
+ 3

)
d2j+1 = 8J log(δ−1) + 6

J∑
j=1

d2j

= O
(

log
(
n/d

)
log
(
1/δ
)

+ n
)
.

3.5 Experiments

In this section we experimentally evaluate the proposed volume sampling al-

gorithms in terms of runtime and in the task of subsampling for linear regression. The

list of implemented algorithms is:
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Figure 3.1: Comparison of runtime between FastRegVol and RegVol on four libsvm

regression datasets [CL11], with the methods ran on data subsets of varying size (n).

1. Regularized volume sampling (algorithms FastRegVol and RegVol),

2. Leverage score sampling3 (LSS) – a popular i.i.d. sampling technique [Mah11],

where examples are selected w.p. P (i) = (x>i (X>X)−1xi)/d.

3.5.1 Runtime comparison between the algorithms

The experiments were performed on several benchmark linear regression datasets

from the libsvm repository [CL11]. Table 3.1 lists those datasets along with running

times for sampling dimension many columns with each method. Dataset MSD was too

big for RegVol to finish in reasonable time, however FastRegVol finished in less than 40

3Regularized variants of leverage scores have also been considered in context of kernel ridge regression
[AM15]. However, in our experiments regularizing leverage scores did not provide any improvements.
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seconds. In Figure 3.1 we plot the runtime against varying values of n (using portions

of the datasets), to compare how FastRegVol and RegVol scale with respect to the data

size. We observe that FastRegVol exhibits linear dependence on n, thus it is much

better suited for running on large datasets.

Figure 3.2: Comparison of loss of the subsampled ridge estimator when using regularized

volume sampling vs using leverage score sampling on four datasets.

3.5.2 Subset selection for ridge regression

We applied volume sampling to the task of subset selection for linear regression,

by evaluating the subsampled ridge estimator w∗λ(S) using the total loss over the full
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dataset, i.e.

Total loss:
1

n
‖Xw∗λ(S)− y‖2, where w∗λ(S) = (X>SXS + λI)X>SyS .

We evaluated the estimators for a range of subset sizes and values of λ, when the subsets

are sampled according to λ-regularized volume sampling4 and leverage score sampling.

The results were averaged over 20 runs of each experiment. For clarity, Figure 3.2 shows

the results only with one value of λ for each dataset, chosen so that the subsampled ridge

estimator performed best (on average over all samples of preselected size s). Note that

for leverage scores we did the appropriate rescaling of the instances before solving for

w∗λ(S) for the sampled subproblems (see [Mah11] for details). Volume sampling does not

require any rescaling. The results on all datasets show that when only a small number

of responses s is obtainable, then regularized volume sampling offers better estimators

than leverage score sampling (as predicted by Theorems 3.2 and 3.3). The lower-bound

from Theorem 3.3 part 2 can be observed for dataset cpusmall, where d = 12 and

d log d ≈ 30.

3.6 Conclusion of the chapter

We proposed a sampling procedure called regularized volume sampling, which

offers near-optimal statistical guarantees for subsampled ridge estimators. We also gave

a new algorithm for volume sampling which is essentially as efficient as i.i.d. leverage

score sampling.

4Our experiments suggest that using the same λ for sampling and for computing the ridge estimator
works best.
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Chapter 4

Leveraged volume sampling

4.1 Introduction

In the previous chapters we established that volume sampling is closely con-

nected to linear least squares, and provided theoretical and experimental evidence that

it is an effective tool for subset selection. Recall that in our setting the input points in

Rd are provided, but the associated response for each point is withheld unless explicitly

requested. In this chapter, we return to the worst-case response model of Chapter 2 (as

opposed to the noisy response model of Chapter 3). The goal is to sample the responses

for just a small subset of inputs, and then produce a weight vector whose total square

loss on all n points is at most 1 + ε times that of the optimum, i.e., find ŵ such that

L(ŵ) ≤ (1 + ε)L(w∗) (where L(·) is the square loss and w∗ is the optimum). Unlike in

Chapter 2, where we focused on bounds in expectation, in this chapter we will primarily

focus on establishing the 1 + ε bound with high probability, i.e., w.p. at least 1 − δ,
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where the sample size depends both on ε and on failure probability δ (as well as on

dimension d). Given the evidence of previous two chapters, it is surprising that using

volume sampling in the context of linear regression with worst-case responses may in

some cases lead to severely suboptimal performance, as we show in this chapter. We

construct an example in which, even after sampling up to half of the responses, the

loss of the weight vector from volume sampling is with a significant probability larger

than the minimum loss by at least a fixed factor >1. Indeed, this poor behavior arises

because for any sample size >d, the marginal probabilities from volume sampling are a

mixture of uniform probabilities and leverage score probabilities, and uniform sampling

is well-known to be suboptimal when the leverage scores are highly non-uniform.

A possible recourse is to abandon volume sampling in favor of leverage score

sampling [DMM06, Woo14]. However, as discussed in the previous chapters, all i.i.d. sam-

pling methods, including leverage score sampling, suffer from a coupon collector problem

that prevents their effective use at small sample sizes. Moreover, the resulting weight

vector is a biased estimator of the least squares solution based on all responses. This

bias is a nuisance when averaging multiple solutions (e.g., as produced in distributed

settings). In contrast, volume sampling offers multiplicative loss bounds even with sam-

ple sizes as small as d and it is the only known non-trivial method that gives unbiased

weight vectors (see Chapter 2).

We develop a new solution, called leveraged volume sampling, that retains the

aforementioned benefits of volume sampling while avoiding its flaws. Specifically, we

propose a variant of volume sampling based on rescaling the input points to “correct”
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the resulting marginals. On the algorithmic side, this leads to a new “determinantal

rejection sampling” procedure which offers significant computational advantages over

existing volume sampling algorithms, while at the same time being strikingly simple

to implement. We prove that this new sampling scheme retains the benefits of volume

sampling (like unbiasedness) but avoids the bad behavior demonstrated in our lower

bound example. Along the way, we prove a new generalization of the Cauchy-Binet

formula, which is needed for the rejection sampling denominator. Finally, we develop a

new method for proving matrix tail bounds for leveraged volume sampling. Our analysis

shows that the unbiased least-squares estimator constructed this way achieves a 1 + ε

approximation factor from a sample of size O(d log d+ d/ε).

Experiments. Figure 4.1 presents exper-

imental evidence on a benchmark dataset

(cpusmall scale from the libsvm collection

[CL11]) that the potential bad behavior of

volume sampling proven in our lower bound

does occur in practice. Section 4.6 shows

more datasets and a detailed discussion of

the experiments. In summary, leveraged

volume sampling avoids the bad behavior

of standard volume sampling, and performs

considerably better than leverage score sam-

pling, especially for small sample sizes s.

Figure 4.1: Plots of the total loss for the

sampling methods (averaged over 100

runs) versus sample size (shading is stan-

dard error) for a libsvm dataset cpus-

mall scale [CL11].
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Outline of the chapter. In the next section, we present our lower bound for standard

volume sampling. A new variant of rescaled volume sampling is introduced in Section

4.3. We develop techniques for proving matrix expectation formulas for this variant

which show that for any rescaling the weight vector produced for the subproblem is

unbiased. In this section we also show how leverage scores emerge as the natural choice

of rescaling.

We prove multiplicative loss bounds for leveraged volume sampling in Section

4.4, by establishing two important conditions which are hard to prove for joint sampling

procedures. Next, we present a surprisingly simple and efficient algorithm for leveraged

volume sampling based on determinantal rejection sampling (Section 4.5): Other than

the preprocessing step of computing leverage scores, the runtime does not depend on n (a

major improvement over other volume sampling algorithms). Experimental evaluation

of leveraged volume sampling in comparison to standard volume sampling and i.i.d.

leverage score sampling is performed in Section 4.6. We conclude in Section 4.7 with an

open problem.

4.2 Lower bound for standard volume sampling

Recall from Chapter 2 that given X ∈ Rn×d and a size s ≥ d, standard volume

sampling jointly chooses a set S of s indices in [n]
def
= {1..n} with probability

P (S) =
det(X>SXS)(

n−d
s−d
)

det(X>X)
,
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where XS is the submatrix of the rows from X indexed by the set S. In the context of

linear least squares, the learner then obtains the responses yi, for i ∈ S, and uses the

optimum solution w∗(S) = (XS)+yS for the subproblem (XS ,yS) as its weight vector.

The goal is to obtain a multiplicative loss bound, i.e., that for some ε > 0,

L(w∗(S)) ≤ (1 + ε)L(w∗), where w∗ = argmin
w

L(w)︷ ︸︸ ︷
‖Xw − y‖2 .

We show that standard volume sampling cannot guarantee 1+ ε multiplicative

loss bounds on some instances, unless over half of the rows are chosen to be in the

subsample.

Theorem 4.1. Let (X,y) be an n× d least squares problem, such that

X =



Id×d

γ Id×d

...

γ Id×d


, y =



1d

0d

...

0d


, where γ > 0.

Let w∗(S) = (XS)+yS be obtained from size s volume sampling for (X,y). Then,

lim
γ→0

E[L(w∗(S))]

L(w∗)
≥ 1 +

n− s
n− d

, (4.1)

and there is a γ > 0 such that for any s ≤ n
2 ,

P

(
L(w∗(S)) ≥

(
1 +

1

2

)
L(w∗)

)
>

1

4
. (4.2)

Proof. First, let us calculate L(w∗). Observe that

(X>X)−1 =

c︷ ︸︸ ︷(
1 +

n− d
d

γ2
)−1

I,

and w∗ = cX>y = c1d.
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The loss L(w) of any w ∈ Rd can be decomposed as L(w) =
∑d

i=1 Li(w), where Li(w)

is the total loss incurred on all input vectors ei or γei:

Li(w
∗) = (1− c)2 +

1
c
−1︷ ︸︸ ︷

n− d
d

γ2 c2 = 1− c,

For i ∈ [d], the i-th leverage score of X is equal li = x>i (X>X)−1xi = c, so we obtain

that

L(w∗) = d (1− c) =

d∑
i=1

(1− li). (4.3)

Next, we compute L(w∗(S)). Suppose that S ⊆ {1..n} is produced by size s standard

volume sampling. Note that if for some 1 ≤ i ≤ d we have i 6∈ S, then (w∗(S))i = 0 and

therefore Li(w
∗(S)) = 1. Moreover, denoting bi

def
= 1[i∈S],

(X>SXS)−1�(X>X)−1 =c I, and X>SyS =(b1, . . . , bd)
>,

so if i ∈ S, then (w∗(S))i ≥ c and

Li(w
∗(S)) ≥ n− d

d
γ2 c2 =

(1

c
− 1
)
c2 = cLi(w

∗).

Putting the cases of i ∈ S and i 6∈ S together, we get

Li(w
∗(S)) ≥ cLi(w∗) + (1− cLi(w∗)) (1− bi)

≥ cLi(w∗) + c2(1− bi).

The marginal probability of the i-th row under volume sampling (see Proposition 2.1)

is

P (i ∈ S) = θ li + (1− θ) 1 = 1− θ (1− li), where θ =
n− s
n− d

. (4.4)
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Applying this formula, we note that

E[1− bi] = 1− P (i ∈ S) =
n− s
n− d

(1− c) =
n− s
n− d

Li(w
∗).

Taking expectation over Li(w
∗(S)) and summing the components over i ∈ [d], we get

E[L(w∗(S))] ≥ L(w∗)
(
c+ c2 n− s

n− d

)
.

Note that as γ → 0, we have c → 1, thus showing (4.1). It remains to show (4.2).

We bound the probability that all of the first d input vectors were selected by volume

sampling, using (4.3) in the process:

P
(
[d] ⊆ S

) (∗)
≤

d∏
i=1

P (i ∈ S) =
d∏
i=1

(
1− n− s

n− d
(1− li)

)
≤ exp

(
− n− s
n− d

∑d
i=1(1−li)︷ ︸︸ ︷
L(w∗)

)
,

where (∗) follows from negative associativity of volume sampling (see [LJS17]). If for

some i ∈ [d] we have i 6∈ S, then L(w∗(S)) ≥ 1. So for γ such that L(w∗) = 2
3 and any

s ≤ n
2 :

P

(
L(w∗(S)) ≥

(
1 +

1

2

) 2/3︷ ︸︸ ︷
L(w∗)

)
≥ 1− exp

(
− n− s
n− d

· 2

3

)
≥ 1− exp

(
− 1

2
· 2

3

)
>

1

4
.�

Note that this lower bound only makes use of the negative associativity of

volume sampling and the form of the marginals. However the tail bounds we prove in

Section 4.4 rely on more subtle properties of volume sampling. We begin by creating a

variant of volume sampling with rescaled marginals.

4.3 Rescaled volume sampling

Given any size s ≥ d, our goal is to jointly sample s row indices π1, . . . , πs

with replacement (instead of a subset S of [n] of size s, we get a sequence π ∈ [n]s).
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The second difference to standard volume sampling is that we rescale the i-th row (and

response) by 1√
qi

, where q = (q1, ..., qn) is any discrete distribution over the set of row

indices [n], such that
∑n

i=1 qi = 1 and qi > 0 for all i ∈ [n]. We now define q-rescaled

size s volume sampling as a joint sampling distribution over π ∈ [n]s, s.t.

q-rescaled size s volume sampling: P (π) ∼ det
( s∑
i=1

1

qπi
xπix

>
πi

) s∏
i=1

qπi . (4.5)

Using the following rescaling matrix Qπ
def
=
∑|π|

i=1
1
qπi

eπie
>
πi ∈ Rn×n, we rewrite the

determinant as det(X>QπX). As in standard volume sampling, the normalization factor

in rescaled volume sampling can be given in a closed form through a novel extension of

the Cauchy-Binet formula.

Proposition 4.1. For any X ∈ Rn×d, s ≥ d and q1, . . . , qn > 0, such that
∑n

i=1 qi = 1,

we have

∑
π∈[n]s

det(X>QπX)

s∏
i=1

qπi = s(s−1)...(s−d+1) det(X>X).

Proof. In this proof, we illustrate a technique which is also useful for showing Theorem

4.3, as well as Proposition 4.3. The key idea is to first apply the Cauchy-Binet formula

to the determinant term specified by a fixed sequence π ∈ [n]s, and then apply it again

at the end. Starting with a single term, we have

det(X>QπX) =
∑
S∈([s]d)

det(X>QπSX)
(∗)
=
∑
S∈([s]d)

det(XπS )2
∏
i∈S

1

qπi
.

where
([s]
d

) def
= {S⊆{1, . . . , s} : |S|=d} and πS denotes a subsequence of π indexed by

the elements of set S. Note that (∗) uses the fact that XπS is a square matrix. Next,
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we compute the sum, using the above identity:

∑
π∈[n]s

det(X>QπX)
s∏
i=1

qπi =
∑
π∈[n]s

∑
S∈([s]d)

det(XπS )2
∏

i∈[s]\S

qπi

(1)
=

(
s

d

)∑
π̄∈[n]d

det(Xπ̄)2
∑

π̃∈[n]s−d

s−d∏
i=1

qπ̃i

=

(
s

d

)∑
π̄∈[n]d

det(Xπ̄)2
( n∑
i=1

qi

)s−d
(2)
=

(
s

d

)
d!
∑
S∈([n]d)

det(XS)2 = s(s−1)...(s−d+1) det(X>X),

Note that in (1) we separate π into two parts (subset S and its complement, [s]\S) and

sum over them separately. The binomial coefficient
(
s
d

)
counts the number of ways that

S can be “placed into” the sequence π. In (2) we observe that qi’s sum to 1, and that

whenever π̄ has repetitions, determinant det(Xπ̄) is zero, so we can switch to summing

over sets. Finally, (3) again uses the standard size d Cauchy-Binet formula, now for the

entire matrix X. �

The following proposition states that rescaled volume sampling is closed un-

der subsampling with standard volume sampling, demonstrating a direct connection

between the two distributions. This mirrors a corresponding composition property of

standard volume sampling (see Corollary 2.1).

Proposition 4.2. Consider the following sampling procedure, for t > s:

π
t∼ X (q-rescaled size t volume sampling),

S
s∼


1√
qπ1

x>π1
. . .

1√
qπt

x>πt

 =
(
Q

1/2
[1..n]X

)
π

(standard size s volume sampling).
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Then πS is distributed according to q-rescaled size s volume sampling from X.

Proof. First step of the reverse iterative sampling procedure of standard volume sam-

pling described in Section 2.2.1 involves removing one row from the given matrix with

probability proportional to the square volume of that submatrix:

∀i∈S P (i |πS) =
det(X>QπS−i

X)

(|S| − d) det(X>QπX)
.

Suppose that s = t − 1 and let π̃ = πS ∈ [n]t−1 denote the sequence obtained after

performing one step of the row-removal procedure. Then,

P (π̃) =

n∑
i=1

t

removing one row︷ ︸︸ ︷
P (i | [π̃, i])

rescaled sampling︷ ︸︸ ︷
P ([π̃, i])

=
n∑
i=1

t
det(X>Qπ̃X)

(t−d) det(X>Q[π̃,i]X)

det(X>Q[π̃,i]X) (
∏t−1
j=1 qπ̃j ) qi

t!
(t−d)! det(X>X)

=
det(X>Qπ̃X)(

∏t−1
j=1 qπ̃j )

t−d
t

t!
(t−d)! det(X>X)

n∑
i=1

qi =
det(X>Qπ̃X) (

∏s
j=1 qπ̃j )

s!
(s−d)! det(X>X)

,

where the factor t next to the sum counts the number of ways to place index i into the

sequence π̃. Thus, by induction, for any s < t the algorithm correctly samples from

q-rescaled volume sampling. �

4.3.1 Expectations for rescaled volume sampling

In this section, we show that the key properties of standard volume sampling,

such as the unbiasedness of least squares estimators, are also exhibited by any q-rescaled

volume sampling. First, we give a construction of an estimator most appropriate for

this setting. Given a matrix X ∈ Rn×d, vector y ∈ Rn and a sequence π ∈ [n]s, we are
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interested in a least-squares problem (Q
1/2
π X,Q

1/2
π y), which selects instances indexed

by π, and rescales each of them by the corresponding 1/
√
qi. This leads to a natural

subsampled least squares estimator

w∗(π) = argmin
w

s∑
i=1

1

qπi

(
x>πiw − yπi

)2
= (Q

1/2
π X)+Q

1/2
π y.

The key property of standard volume sampling is that the subsampled least-squares

estimator is unbiased. Surprisingly this property is retained for any q-rescaled volume

sampling. As we shall see this will give us great leeway for choosing q to optimize our

algorithms.

Theorem 4.2. Given a full rank X ∈ Rn×d and a response vector y ∈ Rn, for any q as

above, if π is sampled according to (4.5), then

E[w∗(π)] = w∗, where w∗ = argmin
w

‖Xw − y‖2.

Proof. We demonstrate an interesting application of the composition property (Proposi-

tion 4.2). Suppose that π is sampled according to q-rescaled size s volume sampling, and

then set S is sampled according to standard size d volume sampling from (Q
1/2
[1..n]X)π.

Note that w∗(πS) is the exact solution of a system of d linear equations:

1
√
qπi

x>πiw =
1
√
qπi

yπi , for i ∈ S.

Thus, the rescaling of each equation by 1√
qπi

cancels out, and we can simply write

w∗(πS) = (XπS )+yπS . Note that this is not the case for sets larger than d whenever

the optimum solution incurs positive loss. Now, applying the unbiasedness formula
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(Theorem 2.3) for standard volume sampling followed by the law of total expectation,

we have:

E[w∗(π)] = E
[

E[w∗(πS) |π]
]

= E[w∗(πS)].

Note that Proposition 4.2 states that πS is distributed according to q-rescaled size d

volume sampling, which is in fact the same as standard size d volume sampling, because

the rescaling comes out of the determinant and then cancels out:

P (πS) ∼ det(X>QπSX)
∏
i∈S

qπi = det(X>πSXπS )

(∏
i∈S

1

qπi

) ∏
i∈S

qπi = det(X>πSXπS ).

Thus, we can simply apply Theorem 2.3 again, showing that E[w∗(πS)] = w∗. �

The matrix variance formula for standard volume sampling from Theorem 2.4

has a natural extension to any rescaled volume sampling, turning here into an inequality.

Theorem 4.3. Given a full rank X ∈ Rn×d and any q as above, if π is sampled according

to (4.5), then

E
[
(X>QπX)−1

]
� 1

s−d+1
(X>X)−1.

Proof. We will prove that for any vector v ∈ Rd,

E
[
v>(X>QπX)−1v

]
≤ v>(X>X)−1v

s−d+1
,

which immediately implies the corresponding matrix inequality. First, we use Sylvester’s

formula, which holds whenever a matrix A ∈ Rd×d is full rank:

det(A + vv>) = det(A)
(
1 + v>A−1v

)
.
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Note that whenever the matrix is not full rank, its determinant is 0 (in which case we

avoid computing the matrix inverse), so we have for any π ∈ [n]s:

det(X>QπX) v>(X>QπX)−1v ≤ det(X>QπX + vv>)− det(X>QπX)

(∗)
=

∑
S∈( [s]

d−1)

det(X>πSXπS + vv>)
∏
i∈S

1

qπi
,

where (∗) follows from applying the Cauchy-Binet formula to both of the determinants,

and canceling out common terms. Next, we proceed similarly as in the proof of Propo-

sition 4.1, letting Z = d!
(
s
d

)
det(X>X) and summing over all π ∈ [n]s:

Z E
[
v>(X>QπX)−1v

]
=
∑
π∈[n]s

v>(X>QπX)−1v det(X>QπX)
s∏
i=1

qπi

≤
∑
π∈[n]s

∑
S∈( [s]

d−1)

det(X>πSXπS + vv>)
∏

i∈[s]\S

qπi

=

(
s

d−1

) ∑
π̄∈[n]d−1

det(X>π̄Xπ̄ + vv>)
∑

π̃∈[n]s−d+1

s−d+1∏
i=1

qπi

=

(
s

d−1

)
(d−1)!

∑
S∈( [n]

d−1)

det(X>SXS + vv>)

=
d!
(
s
d

)
s−d+1

(
det(X>X + vv>)− det(X>X)

)
= Z

v>(X>X)−1v

s−d+1
. �

4.3.2 Leveraged volume sampling: a natural rescaling

Rescaled volume sampling can be viewed as selecting a sequence π of s rank-1

covariates from the covariance matrix X>X =
∑n

i=1 xix
>
i . If π1, . . . , πs are sampled

i.i.d. from q, i.e. P (π) =
∏s
i=1 qπi , then matrix 1

sX
>QπX is an unbiased estimator
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of the covariance matrix because E[q−1
πi xπix

>
πi ] = X>X. In rescaled volume sampling

(4.5), P (π) ∼
(∏s

i=1 qπi
)det(X>QπX)

det(X>X)
, and the latter volume ratio introduces a bias to

that estimator. However, we show that this bias vanishes when q is exactly proportional

to the leverage scores.

Proposition 4.3. For any q and X as before, if π ∈ [n]s is sampled according to (4.5),

then

E[Qπ] = (s−d) I + diag
( l1
q1
, . . . ,

ln
qn

)
, where li = x>i (X>X)−1xi.

In particular, E[1
sX
>QπX] = X>E[1

sQπ]X = X>X if and only if qi = li
d > 0 for all

i ∈ [n].

Proof. First, we compute the marginal probability of a fixed element of sequence π

containing a particular index i ∈ [n] under q-rescaled volume sampling:

Z P (πs= i) =
∑

π∈[n]s−1

det(X>Q[π,i]X) qi

s−1∏
t=1

qπt

= qi
∑

π∈[n]s−1

∑
S∈([s−1]d )

det(XπS )2
∏

t∈[s−1]\S

qπt

︸ ︷︷ ︸
T1

+
∑

π∈[n]s−1

∑
S∈([s−1]d−1)

det(X>πSXπS + xix
>
i )

∏
t∈[s−1]\S

qπt

︸ ︷︷ ︸
T2

,

where the first term can be computed by following the derivation in the proof of Propo-

sition 4.1, obtaining T1 = qi
s−d
s Z, and the second term is derived as in the proof of

Theorem 4.3, obtaining T2 = li
s Z. Putting this together, we get

P (πs= i) =
1

s

(
(s−d) qi + li

)
.
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Note that by symmetry this applies to any element of the sequence. We can now easily

compute the desired expectation:

E
[
(Qπ)ii

]
=

1

qi

s∑
t=1

P (πt= i) = (s−d) +
li
qi
. �

The special rescaling defined by setting qi = li
d , which we call leveraged volume

sampling, has other remarkable properties, including algorithms and tail bounds, as

shown in the following sections. As we shall see, these properties often hold when

distribution q is merely approximately proportional to the leverage scores.

4.4 Multiplicative tail bounds for linear regression

An analysis of leverage score sampling, essentially following [Woo14, Section

2] which in turn draws from [Sar06], highlights two basic sufficient conditions on the

(random) subsampling matrix Qπ that lead to multiplicative tail bounds for L(w∗(π)).

To derive these conditions, it is convenient to shift to an orthogonalization of

the linear regression task (X,y) by replacing matrix X with a matrix U = X(X>X)−1/2 ∈

Rn×d. It is easy to check that the columns of U have unit length and are orthogonal,

i.e., U>U = I. Now, v∗ = U>y is the least-squares solution for the orthogonal problem

(U,y) and prediction vector Uv∗ = UU>y for (U,y) is the same as the prediction vec-

tor Xw∗ = X(X>X)−1X>y for the original problem (X,y). The same property holds

for the subsampled estimators, i.e., Uv∗(π) = Xw∗(π), where v∗(π) = (Q
1/2
π U)+Q

1/2
π y.

Volume sampling probabilities are also preserved under this transformation, so w.l.o.g.
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we can work with the orthogonal problem. Now L(v∗(π)) can be rewritten as

L(v∗(π)) = ‖Uv∗(π)− y‖2 (1)
= ‖Uv∗ − y‖2 + ‖U(v∗(π)− v∗)‖2

(2)
= L(v∗) + ‖v∗(π)− v∗‖2, (4.6)

where (1) follows via Pythagorean theorem from the fact that U(v∗(π)− v∗) lies in the

column span of U and the residual vector r = Uv∗ − y is orthogonal to all columns of

U, and (2) follows from U>U = I. By the definition of v∗(π), we can write ‖v∗(π)−v∗‖2

as follows:

‖v∗(π)− v∗‖ = ‖(U>QπU)−1 U>Qπ(y −Uv∗)‖ ≤ ‖(U>QπU)−1

d×d
‖ ‖U>Qπ r

d×1

‖, (4.7)

where ‖A‖ denotes the matrix 2-norm (i.e., the largest singular value) of A; when A

is a vector, then ‖A‖ is its Euclidean norm. Thus, we break our task down to showing

two key conditions:

1. Matrix multiplication: an upper bound on the Euclidean norm ‖U>Qπ r‖,

2. Subspace embedding: an upper bound on the matrix 2-norm ‖(U>QπU)−1‖.

4.4.1 Tail bounds for i.i.d. leverage scores

As an example of applying this type of analysis for i.i.d. sampling, we show

how to establish the above two conditions for leverage score sampling. Thus, for this

section only, we will assume that sequence π ∈ [n]s is sampled according to i.i.d. leverage

scores:

P (π) =
s∏
i=1

qπi , where qi =
li
d
.
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Note that the estimator w∗(π) produced this way is no longer unbiased, which is the

motivation behind developing leveraged volume sampling.

Orthogonalization described at the beginning of the section yields a simple

form of the ith leverage score: li = ‖ui‖2. Using this fact, a matrix multiplication

guarantee can be easily shown for leverage score sampling. Since zi
def
= rπi(d/‖uπi‖2)uπi

for i ∈ [s] are i.i.d. random vectors with E[zi] = U>r = 0 and E[‖zi‖2] = d‖r‖2,

E
[∥∥U>Qπ r

∥∥2
]

= E

[∥∥∥∥ s∑
i=1

rπi ·
d

s‖uπi‖2
uπi

∥∥∥∥2
]

= E

[∥∥∥∥1

s

s∑
i=1

zi

∥∥∥∥2
]

=
E[‖z1‖2]

s
=
d

s
· ‖r‖2.

Applying Markov’s inequality, we conclude that sample size s ≥ 8d
εδ is sufficient to show

that ‖U>Qπr‖2 ≤ ε‖r‖2 with probability at least 1− δ.

We show the subspace embedding condition by decomposing matrix U>QπU

into a sum of independent random matrices:

U>QπU =
s∑
i=1

Zi, Zi
def
=

d

s ‖uπi‖2
uπiu

>
πi ,

where the 2-norm of each matrix is bounded by ‖Zi‖ ≤ d
s . By a standard matrix

Chernoff bound (see Corollary 5.2 and Remark 5.3 of [Tro12]):

P

(
λmin

( s∑
t=1

Zt

)
≤ 1

2

)
≤ d exp

(
− s

8d

)
.

This lower bounds the smallest eigenvalue of U>QπU by 1/2, and thus upper bounds

the 2-norm of the inverse by 2, with sample size s = O(d ln(dδ )).

Putting everything together with inequalities (4.6) and (4.7), we have shown

that size O(d ln(dδ ) + d
εδ ) i.i.d. leverage score sampling yields a weight vector with loss

at most (1 + ε)L(w∗) with probability at least 1− δ.
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4.4.2 Tail bounds for leveraged volume sampling

We now show the guarantees of matrix multiplication and subspace embedding

for leveraged volume sampling. Due to the jointness of this distribution, the task is con-

siderably more challenging than for i.i.d. sampling, and requires different mathematical

machinery.

We start with a theorem that implies strong guarantees for approximate matrix

multiplication with leveraged volume sampling. Unlike with i.i.d. sampling, this result

requires controlling the pairwise dependence between indices selected under rescaled

volume sampling. Its proof is an interesting application of a classical Hadamard matrix

product inequality from [AAHRJ87] (Proof in Section 4.4.3).

Theorem 4.4. Let U ∈ Rn×d be a matrix s.t. U>U = I. If sequence π ∈ [n]s is selected

using leveraged volume sampling of size s ≥ 2d
ε , then for any r ∈ Rn,

E

[∥∥∥1

s
U>Qπr−U>r

∥∥∥2
]
≤ ε ‖r‖2.

Next, we turn to the subspace embedding condition. The following result is

remarkable because standard matrix tail bounds used to prove this condition for leverage

score sampling are not applicable to volume sampling. In fact, obtaining matrix Chernoff

bounds for negatively associated joint distributions like volume sampling is an active

area of research, as discussed in [HO14]. We address this challenge by defining a coupling

procedure for volume sampling and uniform sampling without replacement, which leads

to a curious reduction argument described in Section 4.4.4.
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Theorem 4.5. Let U ∈ Rn×d be a matrix s.t. U>U = I. There is an absolute

constant C, s.t. if sequence π ∈ [n]s is selected using leveraged volume sampling of size

s ≥ C d ln(dδ ), then

P

(
λmin

(1

s
U>QπU

)
≤ 1

8

)
≤ δ.

Theorems 4.4 and 4.5 imply that the unbiased estimator w∗(π) produced from

leveraged volume sampling achieves multiplicative tail bounds with sample size s =

O(d log d+ d/ε).

Corollary 4.1. Let X ∈ Rn×d be a full rank matrix. There is an absolute constant

C, s.t. if sequence π ∈ [n]s is selected using leveraged volume sampling of size s ≥

C
(
d ln(dδ ) + d

εδ

)
, then for estimator

w∗(π) = argmin
w

‖Q1/2
π (Xw − y)‖2,

we have L(w∗(π)) ≤ (1 + ε)L(w∗) with probability at least 1− δ.

Proof. Let U = X(X>X)−1/2. Combining Theorem 4.4 with Markov’s inequality, we

have that for large enough C, w.h.p.

‖U>Qπ r‖2 ≤ ε s
2

82
‖r‖2,

where r = y −Uv∗. Finally following (4.6) and (4.7) above, we have that w.h.p.

L(w∗(π)) ≤ L(w∗) + ‖(U>QπU)−1‖2 ‖U>Qπ r‖2

≤ L(w∗) +
82

s2
ε
s2

82
‖r‖2

= (1 + ε)L(w∗). �
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4.4.3 Matrix multiplication (proof of Theorem 4.4)

We rewrite the expected square norm as:

E

[∥∥∥1

s
U>Qπr−U>r

∥∥∥2
]

= E

[∥∥∥U>(1

s
Qπ−I

)
r
∥∥∥2
]

= E

[
r>
(1

s
Qπ−I

)
UU>

(1

s
Qπ−I

)
r

]
= r> E

[(1

s
Qπ−I

)
UU>

(1

s
Qπ−I

)]
r

≤ λmax

( (
E[(zi−1)(zj−1)] u>i uj

)
ij︸ ︷︷ ︸

M

)
‖r‖2, where zi =

1

s
(Qπ)ii.

It remains to bound λmax(M). By Proposition 4.3, for leveraged volume sampling

E[(Qπ)ii] = s, so

E[(zi−1)(zj−1)]=
1

s2

(
E
[
(Qπ)ii(Qπ)jj

]
−E
[
(Qπ)ii

]
E
[
(Qπ)jj

])
=

1

s2
cov
[
(Qπ)ii, (Qπ)jj

]
.

For rescaled volume sampling this is given in the following lemma:

Lemma 4.1. For any X and q, if sequence π ∈ [n]s is sampled from q-rescaled volume

sampling then

cov
[
(Qπ)ii, (Qπ)jj

]
= 1i=j

1

qi
E
[
(Qπ)ii

]
− (s−d)− (x>i (X>X)−1xj)

2

qiqj
.

Since ‖ui‖2 = li = dqi and u>i (U>U)−1uj = u>i uj , we can express matrix M

as follows:

M = diag
(d E

[
(Qπ)ii

]
‖ui‖2s2

‖ui‖2
)n
i=1
− s−d

s2
UU> − d2

s2

(
(u>i uj)

3

‖ui‖2‖uj‖2

)
ij

.

The first term simplifies to d
sI, and the second term is negative semi-definite, so

λmax(M) ≤ d

s
+
d2

s2

∥∥∥∥( (u>i uj)
3

‖ui‖2‖uj‖2

)
ij

∥∥∥∥.
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Finally, we decompose the last term into a Hadamard product of matrices, and apply a

classical inequality by [AAHRJ87] (symbol “◦” denotes Hadamard matrix product):

∥∥∥∥( (u>i uj)
3

‖ui‖2‖uj‖2

)
ij

∥∥∥∥ =

∥∥∥∥( u>i uj
‖ui‖ ‖uj‖

)
ij

◦
(

(u>i uj)
2

‖ui‖‖uj‖

)
ij

∥∥∥∥
≤

∥∥∥∥( (u>i uj)
2

‖ui‖‖uj‖

)
ij

∥∥∥∥ =

∥∥∥∥( u>i uj
‖ui‖ ‖uj‖

)
ij

◦UU>
∥∥∥∥

≤ ‖UU>‖ = 1.

Thus, we conclude that E[‖1
sU
>Qπr−U>r‖2] ≤ (ds + d2

s2
)‖r‖2, completing the proof.

Proof of Lemma 4.1

We compute marginal probability of two elements in the sequence π having

particular values i, j ∈ [n]:

Z P
(
(πs−1 = i) ∧ (πs=j)

)
=

∑
π∈[n]s−2

∑
S∈([s]d)

det(X>[π,i,j]SX[π,i,j]S )
∏

t∈[s]\S

q[π,i,j]t .

We partition the set
([s]
d

)
of all subsets of size d into four groups, and summing separately

over each of the groups, we have

Z P
(
(πs−1 = i) ∧ (πs=j)

)
= T00 + T01 + T10 + T11, where:

1. Let G00 = {S ∈
([s]
d

)
: s−1 6∈ S, s 6∈ S}, and following derivation in the proof of

Proposition 4.1, we have

T00 = qi qj
∑

π∈[n]s−2

∑
S∈G00

det(XπS )2
∏

t∈[s−2]\S

qπt = qi qj
(s−d−1)(s−d)

(s−1) s
Z.
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2. Let G10 = {S ∈
([s]
d

)
: s−1∈ S, s 6∈ S}, and following derivation in the proof of

Theorem 4.3, we have

T10 = qj
∑

π∈[n]s−1

∑
S∈G10

det(X[π,i]S )2
∏

t∈[s−1]\S

q[π,i]t = li qj
(s−d)

(s−1) s
Z.

3. G01 = {S∈
([s]
d

)
: s−1 6∈S, s∈S}, and by symmetry, T01 = lj qi

(s−d)
(s−1) s Z.

4. Let G11 = {S∈
([s]
d

)
: s−1∈S, s∈S}, and the last term is

T11 =
∑

π∈[n]s−1

∑
S∈G11

det(X[π,i,j]S )2
∏

t∈[s]\S

q[π,i,j]t

=

(
s−2

d−2

) ∑
π∈[n]d−2

det(X[π,i,j])
2

=

(
s−2

d−2

)
(d−2)!

(
det(X>X)− det(X>−iX−i)− det(X>−jX−j) + det(X>−i,jX−i,j)

)
(∗)
=

d!
(
s
d

)
s(s−1)

det(X>X)
(

1− (1−li)︸ ︷︷ ︸
det(X>−iX−i)

det(X>X)

− (1−lj)︸ ︷︷ ︸
det(X>−jX−j)

det(X>X)

+ (1−li)(1−lj)− l2ij︸ ︷︷ ︸
det(X>−i,jX−i,j)

det(X>X)

)

=
Z

s(s−1)

(
`i`j − `2ij

)
,

where lij = x>i (X>X)−1xj , and (∗) follows from repeated application of Sylvester’s

determinant formula. We can now compute the expectation for i 6= j:

E
[
(Qπ)ii (Qπ)jj

]
=

1

qi qj

s∑
t1=1

s∑
t2=1

P
(
(πs−1 = i) ∧ (πs=j)

)

=
s(s−1)

qi qj

1
Z

(T00+T10+T01+T11)︷ ︸︸ ︷
P
(
(πs−1 = i) ∧ (πs=j)

)
= (s−d−1)(s−d) + (s−d)

li
qi

+ (s−d)
lj
qj

+
lilj
qi qj

−
l2ij
qi qj

=
(

(s−d)qi +
li
qi

)(
(s−d)qj +

lj
qj

)
− (s−d)−

l2ij
qi qj

= E
[
(Qπ)ii

]
E
[
(Qπ)jj

]
− (s−d)−

l2ij
qiqj

.
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Finally, if i = j, then

E[(Qπ)ii (Qπ)ii] =
1

q2
i

s∑
t1=1

s∑
t2=1

P (πt1 = i ∧ πt2 = i)

=
s(s−1)

q2
i

P (πs−1 = i ∧ πs= i) +
s

q2
i

P (πs= i)

=
(
E
[
(Qπ)ii

])2 − (s−d)− l2i
q2
i

+
1

qi
E
[
(Qπ)ii

]
.

4.4.4 Subspace embedding (proof of Theorem 4.5)

We break the sampling procedure down into two stages. First, we do leveraged

volume sampling of a sequence π ∈ [n]m of size m ≥ C0d
2/δ, then we do standard size

s volume sampling from matrix (Q
1/2
[1..n]U)π. Since rescaled volume sampling is closed

under this subsampling (Proposition 4.2), this procedure is equivalent to size s leveraged

volume sampling from U. To show that the first stage satisfies the subspace embedding

condition, we simply use the bound from Theorem 4.4:

Lemma 4.2. There is an absolute constant C0, s.t. if sequence π ∈ [n]m is generated

via leveraged volume sampling of size m at least C0 d
2/δ from U, then

P

(
λmin

( 1

m
U>QπU

)
≤ 1

2

)
≤ δ.

The size of m is much larger than what we claim is sufficient. However, we

use it to achieve a tighter bound in the second stage. To obtain substantially smaller

sample sizes for subspace embedding than what Theorem 4.4 can deliver, it is standard

to use tail bounds for the sums of independent matrices. However, applying these

results to joint sampling is a challenging task. Interestingly, [LJS17] showed that volume
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sampling is a strongly Raleigh measure, implying that the sampled vectors are negatively

correlated. This guarantee is sufficient to show tail bounds for real-valued random

variables [PP14, see, e.g.,], however it has proven challenging in the matrix case, as

discussed by [HO14]. One notable exception is uniform sampling without replacement,

which is a negatively correlated joint distribution. A reduction argument originally

proposed by [Hoe63], but presented in this context by [GN10], shows that uniform

sampling without replacement offers the same tail bounds as i.i.d. uniform sampling.

Lemma 4.3. Assume that λmin

(
1
mU>QπU

)
≥ 1

2 . Suppose that set T is a set of fixed

size sampled uniformly without replacement from [m]. There is a constant C1 s.t. if

|T | ≥ C1 d ln(d/δ), then

P
(
λmin

( 1

|T |
U>QπTU

)
≤ 1

4

)
≤ δ.

The proof of Lemma 4.3 (provided at the end of this section) is a straight-

forward application of the argument given by [GN10]. We now propose a different

reduction argument showing that a subspace embedding guarantee for uniform sampling

without replacement leads to a similar guarantee for volume sampling. We achieve this

by exploiting a volume sampling procedure introduced in Chapter 3, shown here in

Algorithm 4.1. This procedure relies on iteratively removing elements from the set S

until we are left with s elements. Specifically, at each step, we sample an index i from

a conditional distribution, i ∼ P (i |S) = (1− u>i (U>QπSU)−1ui)/(|S| − d). Crucially

for us, each step proceeds via rejection sampling with the proposal distribution being

uniform. We can easily modify the algorithm, so that the samples from the proposal
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distribution are used to construct a uniformly sampled set T , as shown in Algorithm

4.2. Note that sets S returned by both algorithms are identically distributed, and

furthermore, T is a subset of S, because every index taken out of S is also taken out of

T .

Algorithm 4.1: Volume sampling

1: S ← [m]

2: while |S| > s

3: repeat

4: Sample i unif. out of S

5: q ← 1− u>i (U>QπSU)−1ui

6: Sample Accept ∼ Bernoulli(q)

7: until Accept = true

8: S ← S − i

9: end

10: return S

Algorithm 4.2: Coupled sampling

1: S, T ← [m]

2: while |S| > s

3: Sample i unif. out of [m]

4: T ← T − i

5: if i ∈ S

6: q ← 1− u>i (U>QπSU)−1ui

7: Sample Accept ∼ Bernoulli(q)

8: if Accept = true, S ← S−i end

9: end

10: end

11: return S, T

By Lemma 4.3, if size of T is at least C1 d log(d/δ), then this set offers a

subspace embedding guarantee. Next, we will show that in fact set T is not much

smaller than S, implying that the same guarantee holds for S. Specifically, we will show

that |S \ T | = O(d log(d/δ)). Note that it suffices to bound the number of times that a

uniform sample is rejected by sampling A = 0 in line 7 of Algorithm 4.2. Denote this

100



number by R. Note that R =
∑m

t=s+1Rt, where m = |Q| and Rt is the number of times

that A = 0 was sampled while the size of set S was t. Variables Rt are independent,

and each is distributed according to the geometric distribution (number of failures until

success), with the success probability

rt =
1

t

∑
i∈S

(
1− u>i (U>QπSU)−1ui

)
=

1

t

(
t− tr

(
(U>QπSU)−1U>QπSU

))
=
t− d
t

.

Now, as long as m−d
s−d ≤ C0 d

2/δ, we can bound the expected value of R as follows:

E[R] =

m∑
t=s+1

E[Rt] =

m∑
t=s+1

( t

t− d
− 1
)

= d

m−d∑
t=s−d+1

1

t
≤ d ln

(m− d
s− d

)
≤ C2 d ln(d/δ).

In this step, we made use of the first stage sampling, guaranteeing that the term under

the logarithm is bounded. Next, we show that the upper tail of R decays very rapidly

given a sufficiently large gap between m and s:

Lemma 4.4. Let Rt ∼ Geom( t−dt ) be a sequence of independent geometrically dis-

tributed random variables (number of failures until success). Then, for any d < s < m

and a > 1,

P
(
R ≥ a E[R]

)
≤ e

a
2

( s− d
m− d

)a
2
−1

for R =
m∑

t=s+1

Rt.

Let a = 4 in Lemma 4.4. Setting C = C1 + 2aC2, for any s ≥ C d ln(d/δ),

using m = max{C0
d2

δ , d+ e2 s
δ}, we obtain that

R ≤ aC2 d ln(d/δ) ≤ s/2, w.p. ≥ 1− e2 s− d
m− d

≥ 1− δ,

showing that |T | ≥ s−R ≥ C1 d ln(d/δ) and s ≤ 2|T |.
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Therefore, by Lemmas 4.2, 4.3 and 4.4, there is a 1 − 3δ probability event in

which

λmin

( 1

|T |
U>QπTU

)
≥ 1

4
and s ≤ 2|T |.

In this same event,

λmin

(1

s
U>QπSU

)
≥ λmin

(1

s
U>QπTU

)
≥ λmin

( 1

2|T |
U>QπTU

)
≥ 1

2
· 1

4
=

1

8
,

which completes the proof of Theorem 4.5.

Proof of Lemma 4.2

Replacing vector r in Theorem 4.4 with each column of matrix U, we obtain

that for m ≥ C d
ε ,

E
[
‖U>QπU−U>U‖2F

]
≤ ε ‖U‖2F = ε d.

We bound the 2-norm by the Frobenius norm and use Markov’s inequality, showing that

w.p. ≥ 1− δ

‖U>QπU− I‖ ≤ ‖U>QπU− I‖F ≤
√
ε d/δ.

Setting ε = δ
4d , for m ≥ C0 d

2/δ, the above inequality implies that

λmin

( 1

m
U>QπU

)
≥ 1

2
.

Proof of Lemma 4.3

Let π denote the sequence of m indices selected by volume sampling in the

first stage. Suppose that i1, ..., is are independent uniformly sampled indices from [m],
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and let j1, ..., js be indices sampled uniformly without replacement from [m]. We define

matrices

Z
def
=

s∑
t=1

Zt︷ ︸︸ ︷
1

sqit
uitu

>
it , and Ẑ

def
=

s∑
t=1

Ẑt︷ ︸︸ ︷
1

sqjt
ujtu

>
jt .

Note that ‖Zt‖ = d
s li
‖uit‖2 = d

s and, similarly, ‖Ẑt‖ = d
s . Moreover,

E[Z] =
s∑
t=1

[
1

m

m∑
i=1

1

sqi
uiu

>
i

]
= s

1

s

1

m
U>QπU =

1

m
U>QπU.

Combining Chernoff’s inequality with the reduction argument described in [GN10], for

any λ, and θ > 0,

P
(
λmax(−Ẑ) ≥ λ

)
≤ e−θλ E

[
tr
(

exp(θ(−Ẑ))
)]
≤ e−θλ E

[
tr
(

exp(θ(−Z))
)]
.

Using matrix Chernoff bound of [Tro12] applied to −Z1, ...,−Zs with appropriate θ, we

have

e−θλ E
[
tr
(

exp(θ(−Z))
)]
≤ d exp

(
− s

16d

)
, for λ =

1

2
λmax

(
− 1

m
U>QπU

)
≤ −1

4
.

Thus, there is a constant C1 such that for s ≥ C1 d ln(d/δ), w.p. at least 1− δ we have

λmin(Ẑ) ≥ 1
4 .

Proof of Lemma 4.4

We compute the moment generating function of the variable Rt ∼ Geom(rt),

where rt = t−d
t :

E
[
eθRt

]
=

rt
1− (1− rt)eθ

=
t−d
t

1− d
t eθ

=
t− d
t− d eθ

.
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Setting θ = 1
2d , we observe that deθ ≤ d+ 1, and so E[eθRt ] ≤ t−d

t−d−1 . Letting µ = E[R],

for any a > 1 using Markov’s inequality we have

P (R ≥ aµ) ≤ e−aθµ E
[
eθR
]
≤ e−aθµ

m∏
t=s+1

t− d
t− d− 1

= e−aθµ
m− d
s− d

.

Note that using the bounds on the harmonic series we can estimate the mean:

µ = d

m−d∑
t=s−d+1

1

t
≥ d (ln(m− d)− ln(s− d)− 1) = d ln

(m− d
s− d

)
− d,

so e−aθµ ≤ ea/2 exp

(
− a

2
ln
(m− d
s− d

))
= ea/2

(m− d
s− d

)−a/2
.

Putting the two inequalities together we obtain the desired tail bound.

4.5 Efficient algorithms for leveraged volume sampling

Rescaling volume sampling with leverage scores leads to a simple and efficient

algorithm called determinantal rejection sampling. In this section, we present this al-

gorithm and then construct an accelerated variant which for s = O(d2) runs in time

Õ(nd+ d4).

4.5.1 Determinantal rejection sampling

Consider the following procedure: Repeatedly sample t = O(d2) indices π1, . . . , πt

i.i.d. from q = ( l1d , . . . ,
ln
d ), and accept the sample with probability proportional to its

volume ratio, i.e.
det( 1

t
X>QπX)

det(X>X)
. Having obtained a sample, we reduce its size further via

reverse iterative sampling as described in Chapter 3 (denoted here as ”VolumeSample(·, ·)”).

We show next that this procedure not only returns a q-rescaled volume sample, but also
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exploiting the fact that q is proportional to the leverage scores, it requires (surprisingly)

only a constant number of iterations of rejection sampling with high probability.

Lemma 4.5. Let X ∈ Rn×d be full rank and let A ∈ Rd×d be a positive definite matrix.

If π1, . . . , πt are sampled i.i.d. ∼ (l̂1, . . . , l̂n), where l̂i = x>i A−1xi, then

det
(1

t
X>Q̃πX

)
≤ det(A) where Q̃π =

t∑
j=1

d

l̂πj
eπje

>
πj ,

and E

[
det(1

tX
>Q̃πX)

det(A)

]
≥
(

1− d2

t

) det(X>X A−1)

(1
dtr(X>X A−1))d

.

Proof. We use the geometric-arithmetic mean inequality for the eigenvalues of matrix

1
tX
>Q̃πXA−1:

det(1
tX
>Q̃πX)

det(A)
= det

(1

t
X>Q̃πXA−1

)
≤
(

1

d
tr
(1

t
X>Q̃πXA−1

))d
=
( 1

dt
tr
(
Q̃πXA−1X>

))d
=
( 1

dt

t∑
i=1

d

l̂i
x>i A−1xi

)d
= 1.

Next, we use Proposition 4.1 to compute the expected value:

E

[
det(1

tX
>Q̃πX)

det(A)

]
=
∑
π∈[n]t

( t∏
i=1

qπi

)
det(1

tX
>Q̃πX)

det(A)

=

(
d∑n
i=1 l̂i

)d 1

td det(A)

∑
π∈[n]t

( t∏
i=1

qπi

)
det(X>QπX)

=
t(t−1) . . . (t−d+1) det(X>X)

(1
d

∑n
i=1 x>i A−1xi)d td det(A)

≥
(

1− d

t

)d det(X>X A−1)

(1
dtr(X>X A−1))d

.

Applying Bernoulli’s inequality to the above expression concludes the proof. �

Note that the above lemma uses a slightly different rescaling matrix Q̃π than

was used in the definition of q-rescaled volume sampling, however the difference is only
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by a constant factor. Moreover, for the special case of A = X>X, when l̂i are the

exact leverage scores of X, then Q̃π = Qπ, and we easily obtain a runtime guarantee

presented in the next theorem.

Algorithm 4.3:

Determinantal rejection sampling

1: Input: X∈Rn×d, q = ( l1d , . . . ,
ln
d ), s ≥ d

2: t← max{s, 4d2}

3: repeat

4: Sample π1, . . . , πt i.i.d. ∼ (q1, . . . , qn)

5: Sample Accept ∼

Bernoulli
(

det( 1
tX
>QπX)

det(X>X)

)
6: until Accept = true

7: S ← VolumeSample
(
(Q

1/2
[1..n]X)π, s

)
8: return πS

Algorithm 4.4:

Fast leveraged volume sampling

1: Input: X∈Rn×d, s ≥ d, ε ≥ 0

2: Compute A = (1± ε) X>X [AC09]

3: Compute l̃i=(1± 1
2 )li ∀i∈[n][DMIMW12]

4: t← max{s, 8d2}

5: repeat

6: π ← empty sequence

7: while |π| < t

8: Sample i ∼ (l̃1, . . . , l̃n)

9: a ∼ Bernoulli
(

(1−ε)x>i A−1xi
2l̃i

)
10: if a = true, then π ← [π, i]

11: end

12: Q̃π ←
∑t
j=1 d (x>πjA

−1xπj )
−1eπje

>
πj

13: Sample Acc ∼ Bernoulli
(

det( 1
tX
>Q̃πX)

det(A)

)
14: until Acc = true

15: S ← VolumeSample
(
(Q̃

1/2
[1..n]X)π, s

)
16: return πS

Theorem 4.6. Given the leverage score distribution q = ( l1d , . . . ,
ln
d ) and the determi-

nant det(X>X) for matrix X ∈ Rn×d, determinantal rejection sampling (Algorithm 4.3)
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returns sequence πS distributed according to q-rescaled volume sampling, and w.p. at

least 1−δ finishes in time O((d2+ s)d2 ln(1
δ )).

Proof. Lemma 4.5 shows that acceptance probability from line 5 is bounded by 1. Thus,

sequence π is drawn according to q-rescaled volume sampling of size t. Now, the com-

position property of rescaled volume sampling (Proposition 4.2) implies correctness of

the algorithm. We refer to Lemma 4.5 again, and the fact that t ≥ 4d2 (see line 2),

to observe that the expected value of the acceptance probability is at least 3
4 . An easy

application of Markov’s inequality shows that at each trial there is at least a 50% chance

of it being above 1
2 . So, the probability of at least r trials occurring is less than (1− 1

4)r.

Note that the computational cost of one trial is no more than the cost of SVD decom-

position of matrix X>QπX (for computing the determinant), which is O(td2). The cost

of reverse iterative sampling (line 7) is also O(td2) with high probability. Thus, the

overall runtime is O((d2 + s)d2r), where r ≤ ln(1
δ )/ ln(4

3) w.p. at least 1− δ. �

4.5.2 Faster algorithm via approximate leverage scores

In some settings, the primary computational cost of deploying leveraged vol-

ume sampling is the preprocessing cost of computing exact leverage scores for matrix

X ∈ Rn×d, which takes O(nd2). There is a large body of work dedicated to fast estima-

tion of leverage scores (see, e.g., [DMIMW12, Mah11]), and in this section we examine

how these approaches can be utilized to make leveraged volume sampling more effi-

cient. The key challenge here is to show that the determinantal rejection sampling
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step remains effective when distribution q consists of approximate leverage scores. Our

strategy, which is described in the algorithm fast leveraged volume sampling (Algorithm

4.4), will be to compute an approximate covariance matrix A = (1± ε)X>X, i.e. such

that

(1− ε) X>X � A � (1 + ε) X>X, (4.8)

and use it to compute the rescaling distribution qi ∼ x>i A−1xi. We can compute matrix

A−1 efficiently in time Õ(nd + d3) using a sketching technique called Fast Johnson-

Lindenstraus Transform [AC09], as described in [DMIMW12]. However, the cost of

computing the entire rescaling distribution is still O(nd2). Standard techniques circum-

vent this issue by performing a second matrix sketch. We cannot afford to do that while

at the same time preserving the sufficient quality of leverage score estimates needed for

leveraged volume sampling. Instead, we first compute weak estimates l̃i = (1 ± 1
2)li

in time Õ(nd + d3) as in [DMIMW12], then use rejection sampling to sample from

the more accurate leverage score distribution, and finally compute the correct rescaling

coefficients just for the obtained sample. The below result uses Lemma 4.5, showing

that for a sufficiently small ε, determinantal rejection sampling can still work efficiently,

while reducing the preprocessing cost to Õ(nd+ d3).

Theorem 4.7. Given a full rank matrix X ∈ Rn×d, an integer s ≥ d, and ε = 1
16d ,

conditions from lines 2 and 3 of Algorithm 4.4 are satisfied with high probability and

in time Õ(nd + d3), and when they are, the procedure returns sequence πS distributed

according to q-rescaled volume sampling, and takes O((d2 + s)d2(ln(1
δ ))2) time w.p. at
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least 1− δ.

Proof. To establish correctness of the algorithm, we note that sequence π produced in

line 12 consists of i.i.d. samples from the distribution qi ∼ x>i A−1xi, via rejection

sampling who’s acceptance probability is lower bounded by a constant. Correctness

now follows from Lemma 4.5 and Proposition 4.2. Note that having produced matrix

A−1, computing a single leverage score estimate l̂i takes O(d2). To obtain a single

sequence π of length t, the algorithm w.p. ≥ 1 − δ only has to compute O(t ln(1
δ ))

such estimates, which introduces an additional cost of O(td2 ln(1
δ )), not exceeding the

cost of other dominant procedures in leveraged volume sampling (up to the logarithmic

factor). It remains to show that determinantal rejection sampling remains efficient when

A = (1 ± ε)X>X. Note that this guarantee on A implies that the matrix X>XA−1

is a spectral approximation of identity, so we can easily bound both its determinant

and trace. Thus we can apply Lemma 4.5 through the following observation which uses

(4.8):

det((1+ε)X>X A−1)

(1
dtr((1−ε)X>X A−1))d

≥ det(I)

(1
dtr(I))d

= 1

⇒ det(X>X A−1)

(1
dtr(X>X A−1))d

≥
(

1− ε
1 + ε

)d
≥
(

1− 2ε

1 + ε

)d
≥
(

1− 1

8d

)d
≥ 7

8
.

Since Algorithm 4.4 ensures that t ≥ 8d2, we can combine the above bound with the

expectation bound from Lemma 4.5, obtaining that the expected acceptance probability

of line 15 is at least 7
8 ·

7
8 ≥

3
4 . Thus, same reasoning as in the proof of Theorem 4.6

shows that w.p. ≥ 1− δ the number of determinantal rejections is O(ln(1
δ )). �
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It is worth noting that as long as preprocessing successfully produces the de-

sired estimates A and l̃1, . . . , l̃n, fast leveraged volume sampling produces a valid q-

rescaled volume sample (and not an approximation of one), so the least-squares esti-

mators are still exactly unbiased. Moreover, Theorems 4.4 and 4.5 can be extended to

the setting where q is constructed from approximate leverage scores, so our loss bounds

also hold in this case.

4.6 Experiments

We present experiments comparing leveraged volume sampling to standard

volume sampling and to leverage score sampling, in terms of the total square loss suffered

by the subsampled least-squares estimator. The three estimators can be summarized as

follows:

volume sampling: w∗(S) = (XS)+yS , P (S) ∼ det(X>SXS), S ∈
(

[n]

s

)
;

leverage score sampling: w∗(π) = (Q
1/2
π X)+Q

1/2
π y, P (π) =

s∏
i=1

lπi
d
, π ∈ [n]s;

leveraged volume sampling: w∗(π) = (Q
1/2
π X)+Q

1/2
π y, P (π) ∼ det(X>QπX)

s∏
i=1

lπi
d
.

Both the volume sampling-based estimators are unbiased, however the leverage score

sampling estimator is not. Recall that Qπ =
∑|π|

i=1 q
−1
πi eπie

>
πi is the selection and rescal-

ing matrix as defined for q-rescaled volume sampling with qi = li
d . For each estimator we

plotted its average total loss, i.e., 1
n‖Xw−y‖2, for a range of sample sizes s, contrasted

with the loss of the best least-squares estimator w∗ computed from all data.
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Figure 4.2: Comparison of loss of the subsampled estimator when using leveraged volume

sampling vs using leverage score sampling and standard volume sampling on six datasets.
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Dataset Instances (n) Features (d)

bodyfat scale 252 14
housing scale 506 13

mg 1,385 21
abalone 4,177 36

cpusmall scale 8,192 12
cadata 20,640 8
MSD 463,715 90

Table 4.1: Libsvm regression datasets [CL11]. Suffix “ scale” indicates that a scaled

version of the dataset was used, as explained in [CL11]. To increase dimensionality of mg

and abalone, we expanded features to all degree 2 monomials, and removed redundant

ones.

Plots shown in Figures 4.1 and 4.2 were averaged over 100 runs, with shaded

area representing standard error of the mean. We used seven benchmark datasets from

the libsvm repository [CL11] (six in this section and one in Section 4.1), whose dimen-

sions are given in Table 4.1. The results confirm that leveraged volume sampling is

as good or better than either of the baselines for any sample size s. We can see that

in some of the examples standard volume sampling exhibits bad behavior for larger

sample sizes, as suggested by the lower bound of Theorem 4.1 (especially noticeable on

bodyfat scale and cpusmall scale datasets). On the other hand, leverage score sampling

exhibits poor performance for small sample sizes due to the coupon collector problem,

which is most noticeable for abalone dataset, where we can see a very sharp transition

after which leverage score sampling becomes effective. Neither of the variants of volume

sampling suffers from this issue.
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4.7 Conclusion of the chapter

We developed a new variant of volume sampling which produces the first known

unbiased subsampled least-squares estimator with strong multiplicative loss bounds. In

the process, we proved a novel extension of the Cauchy-Binet formula, as well as other

fundamental combinatorial equalities. Moreover, we proposed an efficient algorithm

called determinantal rejection sampling, which is to our knowledge the first joint de-

terminantal sampling procedure that (after an initial O(nd2) preprocessing step for

computing leverage scores) produces its s samples in time Õ(d2 +s)d2), independent

of the data size n. The preprocessing can be reduced to Õ(nd + d3) by rescaling with

approximate leverage scores. Surprisingly the estimator stays unbiased and the loss

bound still holds with only slightly revised constants.

In this chapter we focused on tail bounds. However we conjecture that expected

bounds of the form E[L(w∗(π))] ≤ (1+ε)L(w∗) also hold for a variant of volume sampling

of size O(dε ).

113



Chapter 5

Conclusions and future work

We proposed algorithms for selecting informative subsets of points from a

dataset by exploring a deep connection between linear regression and volume sampling.

Using a novel theoretical analysis and experimental evaluation we showed that vol-

ume sampling can be used as a subset selection technique for linear regression, offering

strong statistical guarantees on the prediction error in terms of the number of responses

needed. We also proposed algorithms which took this procedure from being virtually

infeasible, to becoming an efficient and practical tool even for large datasets. A crucial

technique which was introduced in Chapter 2 is reverse iterative sampling, a general

approach for sampling from joint distributions over sets, which not only leads to efficient

algorithms but also provides a theoretical framework for showing statistical guarantees.

Furthermore, we developed several extensions of volume sampling. In Chapter 3 we

proposed a regularized variant which offers statistical guarantees for ridge estimators

when sampling fewer than dimension many responses. Then, in Chapter 4 we extended
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the unbiased least squares estimator of standard volume sampling to a whole family of

unbiased estimators via a rescaling technique which resulted in better loss bounds and

a new type of sampling algorithm, called “determinantal rejection sampling”, which

further improved the efficiency of volume sampling. Many open questions and future

directions still remain to be explored and we outline some of them below.

Best unbiased least squares estimator. The central question that lies at the core

of this thesis can be stated as follows: Is there a way to produce an unbiased least squares

estimator ŵ from O(d/ε) responses such that its expected square loss on all data points

is at most 1 + ε times the optimum (i.e., E[ŵ] = w∗ and E[L(ŵ)] ≤ (1 + ε)L(w∗)). In

Chapter 2, we show an unbiased estimator which needs O(d2/ε) responses to achieve

the expected loss bound, whereas in Chapter 4 we construct an unbiased estimator from

O(d log d + d/ε) responses, which satisfies L(ŵ) ≤ (1 + ε)L(w∗) with high probability

(but not necessarily in expectation). On the other hand, a recent paper [CP17] showed

that if we forego the unbiasedness requirement, then there is an estimator which achieves

a 1 + ε loss bound with high probability from O(d/ε) responses, which suggest that a

similar result may be possible for an unbiased estimator as well. However, our central

question still remains open.

Reverse iterative sampling for structured data. The computational improve-

ments in volume sampling developed in this work promise a new research frontier in

subset selection, where sophisticated joint sampling techniques (such as reverse iterative

sampling) can be deployed on a large scale in place of existing i.i.d. methods without

115



sacrificing the performance. Can the techniques proposed in this work be effectively

applied in domains with structured data? For example, in graph theory related sam-

pling approaches are used to find spectral sparsifiers [BSS09], or random spanning trees

with desired properties [AB13]. Another important future direction is to explore the

connection between volume sampling and submodular functions [JLB11], which offers

potential extensions of the sampling techniques proposed in this thesis.

Stochastic Newton’s method with unbiased steps. Recently, subsampling tech-

niques for performing approximate Newton’s method and other second-order optimiza-

tion algorithms received a lot of attention (see [RM16, WRXM17]). The fundamental

limitation of these approaches is that they can only show that subsampling improves

computational efficiency, while not decreasing the convergence rate. On the other

hand, subsampling for first-order methods (for example, going from gradient descent

to stochastic gradient descent) is known to significantly improve the convergence rate

of optimization (see [BB07]), both theoretically and empirically. The results obtained

in this work suggest that similar results could be shown for stochastic second-order op-

timization. In particular, we showed that volume sampling can be used to produce an

unbiased estimator of matrix pseudo-inverse from a small subset of examples. Comput-

ing the pseudo-inverse is an essential step in performing optimization using Newton’s

method, and the unbiasedness property allows us to use the subsampling noise to our

advantage, similar as it was done for stochastic first-order methods [BB07]. Comput-

ing unbiased estimates also plays a crucial role in many ensemble methods, which are
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useful in distributed settings. Thus, a promising research direction involves designing

new stochastic second-order methods which will leverage the unbiased Newton steps to

achieve better convergence rates in theory and efficiency in practice.
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