
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Artemia franciscana as a Model for Stress in Saltwater Lakes: An Environmental 
Metabolomics Approach

Permalink
https://escholarship.org/uc/item/4w93x87t

Author
Morgan, Melissa Ann

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w93x87t
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


 

 
 

UNIVERSITY OF CALIFORNIA 
RIVERSIDE 

 
 

Artemia franciscana as a Model for Stress in Saltwater Lakes: an Environmental 
Metabolomics Approach 

 
 
 
 

A Dissertation submitted in partial satisfaction 
of the requirements for the degree of 

 
 

Doctor of Philosophy 
 

in 
 

Chemistry 
 

by 
 

Melissa Ann Morgan 
 
 

September 2018 
 

 
 
 
 
 
 
 
 
 
Dissertation Committee: 

Dr. Cynthia K. Larive, Chairperson 
Dr. Wenwan Zhong 
Dr. De-en Jiang 

 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by 
Melissa Ann Morgan 

2018 
 

  



 

The Dissertation of Melissa Ann Morgan is approved: 
 
 
            
 
 
            
         

 
            
           Committee Chairperson 
 
 
 
 

University of California, Riverside 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 iv 

Acknowledgements 
 

I’d like to acknowledge the following people, organizations, and services for their help in 

completing this dissertation: My advisor, Cindy Larive, for her support, guidance, and all 

of the edits. My labmates, Corey Griffith, Meredith Dinges, and Andrew Green, for their 

support and companionship and for providing a positive learning environment, especially 

Corey and Meredith with whom I worked side by side and who taught me so much.  Justin 

Peng for his help as an undergraduate researcher and for bringing so much positive energy 

to the lab, I’m so lucky that I was your TA our first year at UCR. Yana Lyon for being a 

great listener and bike buddy, also I’m really grateful for the mass spectrometry help. Ryan 

Julian for allowing us the use of his instrument. Dan Borchardt and the ACIF for his help 

with instruments and method development. Jay Kirkwood and the UCR Metabolomics 

Core for their instrument use and analysis. Professor David Volz for taking time to help 

me with my research, providing me guidance, and allowing me the use of his instrument. 

The NSF IGERT WaterSENSE Fellowship for their funding, all the opportunities that they 

provided, and all the amazing people in the group. The Chemistry Department for 

supporting me for 5 years and the staff for taking care of us graduate students. Emily Li for 

her friendship, hotpot, and our dog, Sokka, the best pup in the world. Professor Paul 

Edmiston at the College of Wooster for encouraging me to pursue graduate research and 

for always being there to give a positive word. My Wooster friends for staying in touch 

and helping me stay sane while we struggle through graduate school and life and for 

making every effort to get together. 



 v 

All the great friends I’ve made over my 5 years at UCR and Riverside through 

GradSuccess, sports, dog parties, physical therapy, and conference planning. Sylvia 

O’Neill for healing me and for being a great friend and role model as a strong, independent 

woman. Mick and Mimi for welcoming me to their family and letting me use their home 

for writing retreats. My parents for their love and support and for never trying to influence 

me. My sisters for being fun and goofy and making me regret the long distance. The little 

baby in my belly that is making me sick and miserable, I can’t wait to meet you. And my 

husband, Matt, for his love, for always making me laugh, and for motivating me to finish 

as fast as possible so that we could be together again.  

 
 
 
 

  



 vi 

Dedication 
 
 

To Women and Women First 
  



 vii 

ABSTRACT OF THE DISSERTATION 
 
 

Artemia franciscana as a Model for Stress in Saltwater Lakes: an Environmental 
Metabolomics Approach 

 
 

by 
 
 

Melissa Ann Morgan 
 

Doctor of Philosophy, Chemistry 
University of California, Riverside, September 2018 

Dr. Cynthia K. Larive, Chairperson 
 
 

Due to rising salinity of freshwater systems and the lack of information about contaminants 

in saltwater lakes, there is a need for new methods to identify stressors and their effects in 

saline environments. We propose the use of the saltwater aquatic crustacean, Artemia 

franciscana, as a model organism for environmental metabolomics analysis of stressors for 

saltwater ecosystems. Artemia is an ideal indicator species because it is well-studied, have 

short life-cycles, and are robust.  Their hemolymph has a high concentration of small 

molecule metabolites in an open circulatory system that is susceptible to environmental 

conditions and amenable to metabolomics analysis. Environmental metabolomics methods 

use analytical techniques, such as nuclear magnetic resonance (NMR) and mass 

spectrometry (MS), with chemometric analysis to characterize the interactions of an 

organism with its environment. When exposed to a stressor, these methods are used to 

identify biomarkers of exposure and assess the biochemical pathways that are impacted. 

The small molecule metabolite profile of Artemia was characterized using 1D and 2D NMR 

and GC-MS and 43 metabolites were identified. Environmental metabolomics methods 

were developed using untargeted 1H NMR and GC-MS analysis coupled with high-content 



 viii 

imaging to assess Artemia exposed to established and emerging stressors, which included 

temperature stress, Roundup® herbicide, and tris(1,3-dichloro-2-propyl) phosphate 

(TDCIPP) flame retardant. Targeted metabolomics analysis with LC-MS/MS was 

introduced to study the effects of perfluorooctanesulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA), 118 metabolites were identified with this method. 

Multivariate and univariate statistical analysis was used to identify biomarkers of exposure 

for each stressor and pathway analysis identified biochemical pathways that were likely 

affected. Although each stressor had a unique effect, it was determined that sugars, which 

are important for energy pathways such as glycolysis, and osmolytes, such as betaine and 

gadusol, play an important role in Artemia stress response.  
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Artemia franciscana as an Indicator for Stress in Saltwater Lakes: An Environmental 

Metabolomics Approach 

CHAPTER ONE 

1 Introduction 

The work presented in this dissertation aims to establish Artemia franciscana as an 

indicator species for stress in saltwater lakes. Inland saltwater lakes are understudied and 

undervalued, but they are important ecosystems that are increasingly stressed from drought 

conditions and human interference.1–3 Therefore, this work aimed to develop an ecosystem 

stress test for saltwater lakes to increase our understanding of the types of stress that affect 

these environments. This stress test was modeled after established Daphnia magna toxicity 

tests but used metabolite expression as an endpoint.4 By measuring changes in metabolite 

expression in response to stress, the metabolic perturbation can be traced to discover the 

biochemical modes of action of the stressor. This approach to studying ecosystem stressors 

is called environmental metabolomics. We believe that an environmental metabolomics 

assay with Artemia as a model species can offer a rapid and simple, yet comprehensive, 

method to identify and characterize stressors in saltwater ecosystems.  

 

The objectives of this thesis are as follows: 

Objective 1. Develop and optimize environmental metabolomics methods using Artemia 

franciscana. 

Objective 2. Establish the validity of Artemia environmental metabolomics for 

characterizing the effects of known and emerging contaminants in saltwater lakes. 
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Objective 3. Develop novel multiplatform assays to inform and drive metabolomics 

hypotheses. 

 

Chapter one introduces the challenges facing saltwater lakes and the methods in use to 

identify environmental stressors. In chapter two, the exposure, instrumental analysis, and 

statistical analysis methods developed for environmental metabolomics using Artemia 

franciscana under temperature stress are presented as a proof of concept. This chapter also 

reports the Artemia metabolome as determined from Artemia extracts measured using gas 

chromatography-mass spectrometry (GC-MS) and 1H nuclear magnetic resonance (NMR). 

Chapter three reports my findings on the impact of the Roundup® herbicide on the Artemia 

metabolome. In chapter four the effects of the organophosphate flame retardant, tris(1,3-

dichloro-2-propyl) phosphate (TDCIPP), on the Artemia metabolome are reported along 

with a high-throughput imaging assay that provides phenotypic insights to augment our 

metabolomics findings. Chapter five describes the correlation between 

perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) bioaccumulation 

and metabolic perturbation. Here, targeted metabolomics with liquid chromatography-

mass spectrometry will be introduced with the findings presented for PFOA and PFOS 

metabolic perturbation. Chapter six includes conclusions and future directions of this work. 

 

1.1. Environmental health and assessment 

Global freshwater salinization is a major threat to aquatic ecosystems, drinking water 

availability, and recreation.1–3,5,6 A recent study shows that many of the freshwater lakes in 
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the U.S. Midwest are suffering from rising salinity, largely from over-application and poor 

management of road salt in lakeside areas that are becoming increasingly urbanized. With 

the current chloride trends, the study projects that salinity levels will exceed the aquatic 

life threshold for many ecosystems in 50 years’ time.6 The impact of salinization in arid 

and semi-arid regions of the world is compounded by increased human pressures and 

scarcity of resources. In these regions, salinization is most often caused by diverting water 

for irrigation, which mobilizes salt in the soil and reduces inflows to catchment basins.1,2  

 

Inland saltwater lakes account for a large percentage of the surface water in the Western 

U.S. and are critical habitats.3 These lakes are naturally saline, but they are increasingly 

struggling from rapid increases in salinity due to anthropogenic interference.1,7,8 Mono 

Lake and the Salton Sea are critical habitats for the Pacific Flyway and for agriculture in 

California.7 At the Salton Sea, diversions for agriculture, reduced inflows from the 

Colorado River, and reduced rainfall are causing the lake to shrink and the salinity to 

increase rapidly. As this lake dries up and the shoreline becomes exposed, toxic dust 

pollutes the air and contaminates agriculture, and migratory birds lose one of their last 

sanctuaries to safely rest and fuel up on tilapia.7–10 

 

In addition to rising salinity, the Salton Sea and many freshwater lakes in the US have long 

suffered from the effects of nonpoint source agricultural pollution, such as eutrophication 

from fertilizer, animal waste, and pesticide runoff.11–14 Eutrophication, caused by excess 

nutrients, leads to hypoxia, dead zones, and toxic algae blooms that threaten human and 
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animal health. The decimation of the Mississippi River Delta ecosystem by seasonal algae 

blooms and dead zones as a result of agricultural pollution from the Corn Belt all along the 

Mississippi River is an unfortunate example of the harmful effects of eutrophication.15–17 

Non-point source pollution is difficult to curtail because its origin is diffuse. Many states 

now encourage cropland management strategies such as precision and no-till farming or 

tile drainage with filtration systems to prevent environmental release.18–20 Clean-up 

methods, such as dredging lakebed sediment and applying adsorbent treatment for nutrient 

sequestration, may be applied at the back end after pollution is extreme; however, these 

methods are expensive and disruptive to the ecosystem.15,21,22,22–24  

 

Although there are many methods in use to prevent or clean-up pollution once it has been 

identified, challenges with identifying environmental contaminants remain.25 The 

environmental movement began with vivid and dramatic examples of the risks of pollution, 

such as the Cuyahoga River catching on fire.26 This occurred many times over 100 years 

between 1868 and 1969 as a result of industries dumping untreated waste into the river. It 

was not always obvious that industrial waste would negatively affect human and 

environmental health, but once this was realized the source of the problem was not difficult 

to identify. Thanks to the establishment of the Environmental Protection Agency shortly 

after the 1969 Cuyahoga River fire, society has made a significant headway towards 

recognizing and preventing overt signs of pollution. However, cause and effect are not 

always easy to determine for non-point source pollutants when the effect occurs in an 

environment that is seemingly unrelated to the application.25,27 In the cases of DDT 
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decimating the bald eagle population, the feminization of frogs from atrazine, and even the 

accumulation of plastic beads in marine vertebrates, it took many years to connect the dots 

because it was not clear how these contaminants came into contact with the affected non-

target organism.28–31 Many studies today focus on identifying emerging contaminants and 

determining their effects on human and environmental health.25,27    

 

Environmental stress is caused by a stressor that reduces the performance or fitness of an 

organism or ecosystem.32 Stressors may be endogenous (salinity or temperature) or 

exogenous (pharmaceuticals or agrochemicals), but typically result from anthropogenic 

influence, be it climate change or nonpoint source pollution. Many different aspects of an 

ecosystem may be studied in order to identify these stressors. Water quality is one such 

parameter that is measured and monitored using standardized tests developed by the EPA 

and USGS.33–35 Regular monitoring of natural parameters like total dissolved solids, 

salinity, dissolved oxygen, temperature, and pH, provides insight on seasonal and yearly 

changes in different regions of the country in response to climate change or human 

interference.34 However, these changes may not be important unless there is a 

corresponding effect on the biota. Therefore, environmental stress may be better evaluated 

using bioindicators.36  

 

Bioindicators include biological organisms, communities, or processes that can be used to 

evaluate the state of an ecosystem. The canary in the coal mine is the most well-known 

example of a bioindicator.36 In this situation, the death of the canary was an indicator of 
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unsafe levels of carbon monoxide, giving miners time to escape a hazardous situation. 

Other examples of bioindicators include the presence of lichen indicating poor air quality, 

declining honey bee populations reflecting insecticide pollution, low earthworm 

populations indicating poor soil quality, and low Daphnia magna populations reflecting 

degraded freshwater quality.36,37 These examples of bioindicators involve regular 

environmental sampling to identify population trends. Environmental sampling is essential 

for evaluating long term trends, but it is time-consuming, costly, potentially disruptive to 

the environment, and data collection may be interrupted due to natural phenomena or when 

funding is limited. Therefore, in vitro and high-throughput screening assays using 

bioindicators are promising for less costly, rapid, specific, and quantitative evaluation of 

chemical effects on biota.38,39  

 

In vitro studies with Daphnia magna have been established as standardized ecotoxicity 

assays.4,40 Ecotoxicity testing refers both to the assessment of chemical effects on 

organisms and the testing of media for the presence of toxic compounds.39 The Toxic 

Substances Control Act requires chemical manufacturers to conduct ecotoxicity testing 

prior to approval of products for commercial release.41 The Organization for Economic 

Cooperation and Development (OECD) Guidelines for the testing of chemicals includes 

internationally accepted specifications under which new chemicals must comply. These 

tests fall into five categories: physical and chemical properties, effects on biotic systems, 

degradation and accumulation, health effects, and other.42 The OECD Daphnia sp., Acute 

Immobilisation and Reproduction Test as well as the EPA freshwater daphnids aquatic 
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invertebrate acute toxicity test and daphnid chronic toxicity tests are widely used and 

accepted tests under the “effects on biotic systems” category.4,40,42,43  

 

These Daphnia acute and chronic ecotoxicological assays rely on Daphnia magna for 

toxicity information for freshwater ecosystems, however, Daphnia are highly sensitive to 

salinity and would not be a suitable model for stressors for ecosystems with rising chloride 

levels.44,45 Therefore, we propose Artemia franciscana as an alternative indicator for 

saltwater stress. Artemia franciscana are closely related to Daphnia magna but they are 

known to live in environments with a salinity range up to 300 ppm and thus may be used 

to study saltwater lakes, marine aquatic systems, and freshwater systems that are increasing 

in salinity.46,47 Artemia fulfill all of criteria of a good indicator; they are abundant and 

common, well-studied, economically important, and they provide measurable responses to 

environmental stress.36 

 

1.2. Artemia as an indicator for saltwater stress 

The genus Artemia is an ancient and primitive aquatic crustacean that is found worldwide 

in inland saltwater lakes. The species Artemia franciscana is found in North America at 

the Great Salt Lake and the San Francisco Salt Pond. Artemia are an interesting biological 

model due to their unique development. In favorable environmental conditions, females 

will give birth to live, free-swimming Artemia nauplii, but when environmental conditions 

are poor, encysted gastrula embryos (“cysts”) are released. These cysts are metabolically 

inactive but hatch once favorable environmental conditions return.48–51 The Great Salt Lake 
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has a booming brine shrimp industry that relies on the formation of cysts that are collected 

and sold as fish food for aquacultures and aquariums all over the world. This phenomenon 

makes Artemia cysts ideal for ecotoxicity assays because the cysts are inexpensive, easy to 

hatch, and have a long shelf-life.52 

  

Artemia also have a short life cycle, allowing life-stage and generation specific testing.53 

Metabolically inactive cysts are encysted in the gastrula phase of development while they 

are in the maternal brood sac.49 Once released to the environment, they remain dormant 

until favorable conditions return. These dormant cysts are frozen in a vitrified state that 

makes them highly tolerant to environmental extremes.54 The disaccharide sugar, trehalose, 

is responsible for their robust nature because it replaces water in cysts to form glass-like 

structures that protect the internal membranes from dehydration damage.55 Favorable 

conditions trigger post-diapause development by activating the enzyme trehalase, which 

stimulates the metabolism of trehalose via the glycolytic pathway and Krebs cycle.54 

Metabolism and development is rapidly re-initiated with respiration, RNA and protein 

synthesis beginning within minutes of rehydration. Embryos emerge from the shell as 

swimming nauplius larva.54 

 

For the first few days of life, nauplii utilize internal yolk platelet organelles for energy. 

These yolk platelets store glycogen and act as a protective structure for mitochondria 

during diapause and through the naupliar stage.49,54,56 Yolk platelets are the source of the 

orange hue of nauplii, which disappears with the platelets as the Artemia develop to the 
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juvenile stage. Artemia begin to feed after depleting their yolk reserves and their digestive 

system matures. Their naupliar eye guides them towards light to find food. They use their 

antennae for swimming and for pushing food towards their mouth and they will eat algae 

and bacteria, or whatever detritus is found in the water.46,50,57 Artemia molt, shedding their 

exoskeleton through several naupliar stages and then to the juvenile and adult stages. As 

they develop, their trunk grows longer, they develop swimming appendages called 

thoracopods and two compound eyes. The adult males develop claspers for mating and the 

females develop a brood sac for housing eggs and forming cysts (Figure 1.1).54,57,58 
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Figure 1.1. Life cycle of Artemia from hatchling to adulthood. Images taken with 10x Leica MZIII Pursuit 
Stereoscope with SPOT camera. 
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Developing embryos have several stress response pathways that contribute to their extreme 

robustness. For diapause and post-diapause embryos, the pH switch determines whether an 

embryo will hatch or resume dormancy. The activity of enzymatic processes for 

development are completely dependent on intracellular pH. At high pH, development may 

proceed, but at low pH, embryos will either remain dormant or revert to a dormant state.49 

Development is reversible for developing embryos up until the hatching processes begin. 

Trehalase and stress response proteins, like p26, Hsp70 and 90, are pH dependent and are 

important for countering protein damage due to thermal or environmental stress.54,59,60 

 

Free swimming Artemia are more susceptible to environmental conditions than encysted 

gastrula but they are uniquely adapted for environmental extremes and they are the best 

osmoregulators in the animal kingdom.54 Artemia often are 10 times less susceptible to 

toxic agents than Daphnia under similar test conditions, as is the case for Roundup® and 

TDCIPP, as described in Chapters 3 and 4. However, Artemia are susceptible to 

environmental conditions due to their open circulatory system. In the open circulatory 

system, the hemolymph circulates through the body and remains in direct contact with the 

animal’s tissue which leads to greater exchange with the surrounding environment. This 

hemolymph contains a high concentration of free amino acids that are involved in primary 

metabolism and osmoregulation.61,62  

 

Ecotoxicity tests with Daphnia magna use mortality, heart rate, and fecundity as assay 

endpoints. These endpoints are useful for identifying an effective concentration of a 
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contaminant, but in order to identify the toxic mode of action, further targeted testing is 

typically required.40,63–66 Recent metabolomics studies have demonstrated the potential of 

monitoring metabolite shifts during sublethal stress in identifying toxic modes of action.67 

As Artemia are considered too robust for standard mortality tests, the potential for 

environmental metabolomics studies offers a new opportunity for Artemia use in 

ecotoxicity assays for studying saltwater stressors.46,52,63,68 

 

1.3. Omics approaches for studying environmental stress 

The omics revolution began with the Human Genome Project (HGP) that was completed 

in 2003. The goal of the HGP was to sequence the human genome and to identify the 

function of each gene.69 This endeavor was a mega-scale, multi-disciplinary project that 

demonstrated the potential of big science for tackling global challenges.70 The 

advancements made during the HGP have had far reaching implications for science and 

medicine. Technological advancements included the generation of new techniques for 

whole genome sequencing, the creation of publicly available databases to store biological 

information, and the development of approaches for handling and analyzing large 

datasets.69,71 At the conclusion of the HGP, these new tools inspired and made possible 

new omics methodology to tackle additional biomolecules and biological systems.  

 

The central dogma of biology says that DNA transcribes RNA which translates proteins 

that regulate the levels of downstream small molecule metabolites. These steps of the 

central dogma have corresponding omics fields that provide both novel and complementary 
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insights into biological questions. While science historically has tackled questions from a 

reductionist approach by isolating the problem as a means of simplifying the question, the 

HGP made it possible to study systems from a global, holistic, top-down approach.70,72 

Instead of targeting one or several genes for a mutation or variation, genomics looks for 

effects on the whole genome. The advances in genomics have led to commercial ventures 

that have drastically reduced the cost of genetic and carrier testing, as is the case for the 

company 23&Me, Inc. Transcriptomics, the study of total mRNA in an organism, 

proteomics, the study of all expressed proteins in an organism, and metabolomics, the study 

of the metabolite profile of an organism, are developing omics fields that measure the 

downstream products of gene expression and provide insights on biological conditions.72 

These omics approaches have been used to study disease progression, compare crop 

varietals, and illuminate the effects of environmental stress.73–75 Whereas genomics, 

transcriptomics, and proteomics give partial insight into the systems-level status, 

metabolomics reflects how an organism obtains and utilizes basal building blocks and 

maintains energy balance. Metabolomics is arguably a more direct measure of organismal 

health and the utilization of environmental resources than other omics approaches.76 

 

Metabolomics measures small molecule metabolites in complex biological samples. Small 

molecule metabolites are low molecular weight (< 900 Dalton) organic compounds that are 

the products of enzyme-catalyzed reactions in the cell. They regulate biological processes 

through intercellular biochemical pathways and are the building blocks of macromolecules, 

including proteins, lipids, polysaccharides, and nucleic acids.77 There are approximately 
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5000 known human primary and secondary metabolites that have critical roles in 

maintaining homeostasis.72 Metabolomics aims to profile the metabolite fingerprint of 

organisms under different biological conditions in order to identify differences in 

biochemical pathway activity. The variation in metabolite profiles measured under 

different experimental conditions provides information about metabolic modes of action 

that are triggered under these conditions.78,79 Metabolomics has emerged as a powerful tool 

for biomarker discovery, especially for disease detection and environmental 

exposure.72,74,78,80  

 

Environmental metabolomics is an emerging method for identifying ecosystem stressors 

by analyzing metabolite shifts in model organisms. These studies monitor changes to an 

organism's small-molecule metabolite profile before and after exposure to a stressor with 

the purpose of elucidating the toxicological mode of action.78,81,82 Advances in analytical 

platforms, sample preparation protocols, hyphenated techniques, metabolite databases, and 

statistical analysis methods have enabled metabolic measurements to address increasingly 

complex environmental challenges in new model species. These advances are enabling a 

deeper understanding of the metabolic responses of  organisms to environmental 

perturbations.78,79,81 

 

1.4. Tools for metabolomics 

The first step in environmental metabolomics experiments is to characterize the 

metabolome of the model organism. An organism's metabolome is its small molecule 
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fingerprint. This fingerprint is defined by the sample, which may be the whole body, one 

organ, one type of cell, etc. Once the sample is defined, isolation, extraction and 

derivatization steps are usually necessary to prepare the sample for instrumental analysis 

and metabolite profiling.81,83 For living biological samples, prior to sample acquisition, all 

metabolic processes have to be halted to prevent sample degradation or post-experiment 

metabolism.83,84 In many cases, this is accomplished by flash freezing in liquid nitrogen or 

in a -80 ºC freezer. For organisms that are tolerant of low temperatures, heat treatment may 

be necessary to quench enzymatic reactions. Halting metabolism as close to the end of the 

experiment as possible provides a snapshot of all metabolic processes occurring prior to 

death and leads to the identification of affected processes.83  

 

1.4.1. Sample Preparation 

Homogenization is used in experiments where the model organism has a tough exterior 

that needs to be disrupted to release the metabolites for analysis. Some of these methods 

include bead beating, sonication, and grinding with a mortar and pestle.83 Rice is 

particularly challenging to homogenize, but bead beating with a cryo-cooled vacuum 

breaks apart the tissue and prevents the sample from heating and degrading.85 After 

homogenization, solvent extractions isolate the desired small molecules from the unwanted 

biological material. In most cases, metabolomics studies seek to measure polar and semi-

polar small molecules that are involved in primary metabolism. Commonly used solvent 

extraction methods include solid phase extraction (SPE) and liquid-liquid extraction 

(LLE). SPE methods use a solid stationary phase to which the molecules of interest bind. 
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They are eluted step wise using liquid solvents.83 In liquid-liquid extraction, a biphasic 

method, such as the methanol:water:chloroform (MWC) method, is used for separating 

polar and non-polar molecules into two phases. In this method, polar metabolites are 

extracted into the methanol/water solvent layer, and unwanted lipids are extracted into the 

chloroform layer.83,84 Some studies use a simple buffer or water extraction to study water 

soluble metabolites.86 Other solvent conditions are used depending on experimental 

considerations, for example acetonitrile has been found to precipitate proteins better than 

methanol and cold methanol is important for some experiments to prevent metabolite 

degradation.87,88 Further isolation and purification may involve centrifugation or filtration 

with high molecular weight centrifuge filters to remove proteins that could interfere with 

analysis. Metabolite solvent extracts may be dried using a vacuum centrifuge or lyophilizer 

to increase stability during storage or to reconstitute the sample into a different medium for 

analysis.89 

 

1.4.2. Instrumental Analysis 

The analytical instrumentation used for analysis of metabolite extracts plays a major role 

in metabolome characterization. Nuclear magnetic resonance spectroscopy (NMR) and 

mass spectrometry (MS) are common tools used for metabolomics. MS is a highly sensitive 

method for detection, quantitation, and structure elucidation. Hundreds of metabolites can 

be detected in a single run from very little sample. NMR is a powerful tool that is 

quantitative, reproducible, and suitable for complex mixtures. NMR is a non-destructive 

technique, so samples can be recovered for further analysis; however, the detection limits 
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are generally higher than MS. Numerous techniques within MS and NMR offer 

multifaceted approaches to detect and identify a variety of metabolites and accurately 

measure their concentrations.78,90,91  

 

1.4.2.1. Nuclear Magnetic Resonance Spectroscopy 

1.4.2.1.1. Nuclear Spin and Resonance 

 

Nuclear magnetic resonance (NMR) spectroscopy is a spectroscopic technique that 

measures the absorbance of radio frequency radiation by atomic nuclei exposed to high 

magnetic fields. NMR is dependent on a quantum property called spin. A spinning charged 

nucleus generates a magnetic field. The resulting spin-magnet has a magnetic moment (µ) 

oriented along the axis of spin and proportional to the angular momentum (p). The 

proportionality constant, 𝛾, is the gyromagnetic ratio and is different for every type of 

nucleus (Equation 1.1). 

 

Equation 1.1 

𝜇 = 𝛾𝑝 

 

When an external magnetic field (B0) is applied, the nucleus may orient into 2I + 1 possible 

spin states depending on its spin quantum number. Nuclei may have integer spins (I = 1, 2, 

3 ...) like 2H, fractional spins (I = ½, 3/2, 5/2…) like 1H, or no spin (I = 0) like 12C. Those 

with I = 0 possess no nuclear spin and therefore cannot exhibit NMR. For a spin ½ nucleus 

such as the proton, there are two possible states alpha (+½) and beta (–½), and for I = 1, 
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such as deuterium, the states are +1, 0 and –1. For most nuclei with I = ½, the magnetic 

moment of the lower energy alpha state is aligned with the external field, but that of the 

higher energy beta spin state is opposed to the external field. However, this also depends 

on whether 𝛾 is positive or negative. In the case of 15N, the beta spin is aligned with 𝐵&. 

The difference in energy between these two states is demonstrated in Equation 1.2, where 

h is Planck’s constant. This energy difference depends on the gyromagnetic ratio and the 

external magnetic field.92,93 

 

Equation 1.2 

ΔΕ =
𝛾ℎ
4𝜋 𝐵& 

 

The lack of sensitivity in NMR experiments is due to the small energy difference between 

the excited and ground states which leads to small population differences (Equation 1.3). 

In this equation, 𝑁- = the population of spins in the alpha state, 𝑁.= the population in the 

beta state, T is temperature, and 𝑘0= the Boltzmann constant. When combining Equation 

1.2 and Equation 1.3, we can see that a larger 𝐵& leads to a larger ∆𝐸, which leads to a 

greater population ratio, therefore, higher magnetic fields are ideal for increased 

sensitivity.94 However, sensitivity and signal-to-noise (S/N) is also dependent on the 

sample size, n, the gyromagnetic ratio of the excited spin, 𝛾3 , the gyromagnetic ratio of the 

spin being detected, 𝛾4, and the acquisition time of the experiment, t (Equation 1.4). 

Increasing the magnetic field may reduce the resolution for some nuclei that have high 

chemical shift anisotropy, such as 31P, for which peaks broaden at high fields.92,94 Modern 
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NMR spectrometers have magnetic fields from 1-23 tesla (T). By convention, in NMR this 

energy difference is given as a frequency in units of MHz, ranging from 20-900 MHz, 

depending on the magnetic field strength and the nucleus being studied.  

 

Equation 1.3 

𝑁-
𝑁.

= 𝑒
67

89:;  

Equation 1.4 

𝑆
𝑁 ∝ 𝑛𝛾3?𝛾4@𝐵&A𝑡 

Proton NMR (1H NMR) is the most common type of NMR experiment, especially for high-

throughput metabolomics. However, 13C, 19F, and 31P are also important nuclei that have 

been widely used because they are biologically and pharmaceutically relevant.78  

 

1.4.2.1.2. The NMR spectrum 

In pulsed-NMR experiments, nuclei in a strong magnetic field are subjected to periodic 

pulses of radio frequency (RF) radiation. During the interval between pulses, the nuclei 

oscillate until the population distribution is restored. This oscillation produces a time-

domain RF signal, called the free-induction decay (FID). The FID is detected with a radio 

receiver coil and converted to a frequency-domain NMR spectrum by Fourier 

transformation.95,96  
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The NMR spectrum is a plot of absorption versus frequency (Hz), labeled from right to left 

by convention. Frequency on the x-axis is usually converted to parts-per-million (ppm) by 

referencing the frequencies of the sample resonance (𝜈D) to an internal reference standard 

(𝜈E), such as tetramethylsilane for proton NMR, and dividing this by the spectrometer 

frequency in megahertz. This new value is referred to as chemical shift (𝜎).  The unit ppm 

is dimensionless and is the same for any magnetic field, so it is consistent across 

instruments (Equation 1.5). The 1H NMR spectrum of Artemia metabolite extracts is shown 

in Figure 1.2A. The resonance of 2,2-dimethyl-2-silapentane-5-sulfonic acid-d6 (DSS) is 

used as an internal chemical shift reference (0 ppm).  

 

Equation 1.5 

𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙	𝑆ℎ𝑖𝑓𝑡	𝜎	(𝑝𝑝𝑚) =
𝜈D − 𝜈E

𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑚𝑒𝑡𝑒𝑟	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑥	10
[ 

 

1.4.2.1.3. Chemical shift 

 

The spectrum for each molecule is unique because the frequency of RF radiation that is 

absorbed by a given nucleus is affected by its chemical environment, which includes 

nearby electrons and nuclei. The two main environmental effects are chemical shift and 

spin-spin coupling. Chemical shifts arise from local magnetic fields generated by the 

circulation of electrons in a molecule. This field opposes the primary field and shields the 

nucleus from the full effect of the primary field. The degree of shielding is proportional to 

electron density, so shielding decreases with increasing electronegativity of adjacent 
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groups. Nuclei in a molecule that experience high degrees of shielding resonate upfield 

(right, close to zero) and nuclei that are deshielded resonate downfield (left) on an NMR 

spectrum.92,95,96 In the molecular structure of taurine (Figure 1.2B), there are four carbon 

bound protons that give rise to two resonances (3.25 and 3.43 ppm) detected in 1H NMR. 

The protons H8 and H9 (3.25 ppm), resonate upfield from protons H10 and H11 (3.43 ppm) 

because they are adjacent to an electron donating amine group that shields their nuclei from 

the external magnetic field. Protons H10 and H11 are adjacent to an electron withdrawing 

sulfonate group that deshields their nuclei (Figure 1.2C, red). Chemical shift information 

is extremely useful for structural elucidation because it is well characterized for known 

organic functional groups.  

 

1.4.2.1.4. Spin-Spin coupling 

As can be seen in the 1H NMR spectrum of taurine (Figure 1.2A and C, red), each resonance 

(3.25 and 3.43 ppm) consists of three narrow peaks. These resonances split into a triplet 

pattern because the angular momentum of H8/H9, and H10 /H11 are coupled, meaning the 

spins of one set of nuclei exert an effect on the resonance behavior of the other set. The 

spacing between each resonance is called the coupling constant, and this value is 

characteristic of different types of bond orientations for adjacent nuclei, such as 10 Hz for 

protons in the cis location on a carbon-carbon double bond.95 The peak splitting, or 

multiplicity, occurs because coupled nuclei have more possible spin orientations than 

uncoupled nuclei. The number of different orientations is reflected in the integral under 

each peak. In a triplet, the middle peak is twice as large as the outside peaks because there 
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are twice as many possible spin orientations with respect to B0. The multiplicity is equal to 

the number n of magnetically equivalent protons on adjacent atoms plus one. The taurine 

protons H8/H9 have two neighboring equivalent protons H10 /H11 so they have a multiplicity 

of three. Coupling constants are useful for the structural elucidation of organic molecules 

because they provide information about how nuclei are connected. In this example, only 

proton coupling is shown, but coupling can occur between any NMR-active nuclei.  

 

1.4.2.1.5. Resolution of NMR spectra 

One challenge with NMR is spectral crowding, especially in complex mixtures as spectra 

are usually measured on the whole sample without a hyphenated separation method. 

Complex metabolomics samples with hundreds of metabolites have overlapping 

resonances in regions of the spectra for which molecules have similar chemical shifts. As 

illustrated in Figure 1.2A and C, resonances for taurine are obscured by resonance overlap 

in the 1H NMR spectrum of Artemia metabolite extracts. 

 

Performing NMR metabolomics measurements using the highest available magnetic field 

is advisable for most nuclei as both sensitivity and dispersion increase with increasing field 

strength.97 In addition, two-dimensional NMR experiments create improved resolution in 

a second dimension.  Homonuclear 2D NMR experiments, such as correlation spectroscopy 

(COSY) and total correlation spectroscopy (TOCSY), are useful tools for structure 

elucidation because these experiments identify proton resonances that are connected along 

a carbon backbone.92 In a COSY spectrum of Artemia extracts (Figure 1.2D), a cross-peak 
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is evident at 2.25-2.43 ppm and 2.43-2.25 ppm, which confirms that the taurine protons 

H8/H9 and H10 /H11 are coupled.  

 

The most common heteronuclear 2D NMR experiment is 1H:13C heteronuclear single 

quantum coherence (HSQC). In this experiment, cross peaks correlate protons connected 

thru one bond to 13C. In the HSQC spectrum of Artemia extracts (Figure 1.2E), cross peaks 

are evident at 3.25-51.0 ppm for H8/H9 and C2 and at 3.43-38.0 ppm for H10 /H11 and C3 to 

confirm the taurine resonances. Multiplicity edited-HSQC has the added functionality of 

providing C-H multiplicity information, where the color indicates whether the bond is a 

CH/CH3 or a CH2. The Homonuclear Multiple Bond Correlation (HMBC) experiment 

correlates proton and 13C resonances along a carbon backbone that are separated by 3-4 

bonds. Used in tandem, 2D NMR techniques are pivotal tools for characterizing 

metabolites in a complex metabolome.78,98  

 

1.4.2.1.6. Metabolite Identification 

Due to the robust and reproducible nature of NMR and the well-characterized chemical 

shift and coupling information for organic functional groups, there are many available 

resources for identifying metabolites in a sample. Spectral matching libraries, such as 

Chenomx, and NMR spectral databases, such as the Human Metabolome Database 

(HMDB) and the Biological Magnetic Resonance Data Bank (BMRB), have thousands of 

reference spectra for which metabolites can be searched based on chemical shift.99–101 

When there is a lack of reference data, NMR can be used for de novo structural elucidation 
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using a combination of 1D and 2D techniques, and since it is a non-destructive technique, 

many different experiments can be performed without concern for sample loss.92,97,102  

 

For metabolomics applications, NMR is exceptionally useful because it is an inherently 

quantitative technique. An NMR signal is proportional to the number of protons (or other 

nuclei) in the molecule, so with a calibrated reference, exact quantitation is possible.102 

However, for environmental metabolomics, relative quantitation is often suitable because 

metabolite levels are considered within the context of experimental conditions, such as 

control versus treatment.81 Although quantitation is possible, NMR generally has higher 

limits of detection than MS-based methods. Metabolites that are present at trace levels 

(sub-micromolar) may not be detected by NMR using the currently available technology.83  
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Figure 1.2. (A) Full 1H NMR spectra (0-9.0 ppm) of a taurine standard (red) overlaid with Artemia metabolite 
extracts (black). (B) Taurine structure with arrows indicate coupled protons. (C) 1H NMR spectra magnified 
to show the taurine proton resonances (2.95 ppm to 3.95 ppm). (D) Homonuclear 1H:1H COSY spectra 
indicating correlated taurine resonances. (E) Heteronuclear 1H:13C HSQC indicating correlated taurine 
resonances.   
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1.4.2.1.7. Mass Spectrometry 

Mass spectrometry-based metabolomics methods are typically coupled with gas (GC) or 

liquid chromatography (LC) prior to sample introduction into the mass analyzer. In these 

methods, a complex metabolite sample is separated along the length of the column by 

chemical properties like volatility, solubility, and size such that metabolites are resolved 

prior to detection.103 Metabolites are ionized by electron impact, electrospray, or chemical 

ionization prior to introduction to the mass spectrometer which detects mass-to-charge 

ratios (m/z). Mass spectrometers are classified by their mass analyzer. Time-of-flight and 

quadrupole mass analyzers are common, however, ion trap mass analyzers, including the 

Orbitrap, have advanced detection capabilities.104 Additionally, tandem mass spectrometry 

(MS/MS, or MSn), for which ions pass through multiple mass analyzers, leads to highly 

resolved and accurate MS/MS spectra which allows enhanced mass resolution and 

detection.90,105 For many metabolomics applications, a researcher’s choice is driven by 

whether a gas or liquid chromatography separation will be employed and what mass 

analyzers are available locally.104  

 

1.4.2.1.8. Chromatographic Methods 

Metabolomics studies with mass spectrometry analysis introduce the sample into the mass 

analyzer through direct infusion (DIMS), gas chromatography (GC-MS), or liquid 

chromatography (LC-MS).103 Direct-infusion mass spectrometry is a rapid identification 

method because sample workup steps are avoided, however, challenges remain with 

identifying metabolites based solely on mass-to-charge ratio and with matrix 
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interferences.103,104,106,107 A chromatographic separation prior to MS analysis provides 

better spectral resolution and reduces matrix effects for improved quantification and 

identification of metabolites based on retention time and mass-to-charge ratio. However, 

separations introduce additional variables for method development, such as column 

selection and gradient optimization.  

 

Primary metabolites can be challenging to separate with traditional LC methods. Reversed 

phase (RP) separations are most common for liquid chromatography. In a RP separation, 

molecules elute along a nonpolar stationary phase, such as C18. Polar molecules are poorly 

retained on a C18 column, so derivatization or alternative separation methods can be used 

to improve chromatographic resolution.108 Different column chemistries also aid in 

chromatographic resolution, such as aqueous normal phase, hydrophilic interaction liquid, 

and ion-exchange chromatography. Additionally, column chemistries can be combined to 

form multidimensional-LC, such as RP-HILIC and ion-exchange-RP.90,109 Although these 

methods may lead to better resolution for polar metabolites, they are more expensive, less 

reproducible, and method development is complex.90,105  

 

Gas chromatography separates molecules along a capillary column based on volatility, but 

many polar molecules, like amino acids, have low volatility and decompose at high 

temperatures, therefore, chemical derivatization is necessary to stabilize the molecule and 

increase volatility.83,110 Chemical derivatization can also be used in liquid chromatography 

to increase retention along the non-polar, reversed phase (RP) column.111 Derivatizations 



 28 

methods such as ion-pairing reagents, like diamyl ammonium, and chemical derivatizing 

agents, like 2-hydrazinoquinoline, have been used in in RP separations for LC-MS in 

metabolomics studies to improve retention along the non-polar stationary phase.111,112 For 

both LC and GC, derivatization reagents are likely not compatible with all metabolites and, 

inevitably, not all metabolites will be detected. Derivatization also introduces variability 

that can affect the reproducibility of quantitation. Derivatization, however, is not only 

useful for chromatographic resolution, but also for ionization.108  

 

1.4.2.1.9. Electron Ionization 

After chromatographic separation or direct infusion, metabolites must be ionized at the ion 

source before they can be resolved in the mass analyzer. The ion source turns neutral 

molecules into charged, gas phase ions. In GC, the mobile phase is an inert carrier gas and 

the metabolites are volatile, so these molecules are already in the gas phase. GC is typically 

coupled with electron impact ionization (EI). Electron impact is a hard ionization technique 

because it uses high energy collisions with an electron beam to create ions. The collision 

creates a radical molecular ion (M+• - 2e-) that contains excess energy from the collision. 

This excess energy dissipates through the molecule and causes further fragmentation.83,96 

Fragmentation patterns are compound specific and can be used to identify known 

metabolites or to deduce the structure of unknown molecules. However, since EI mass 

spectra contain many fragment ions, it can be challenging to identify which peak is the 

molecular ion, information that is important for verifying the mass. This creates a challenge 

for correctly labeling metabolites. Also certain molecules, such as dipeptides or 
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disaccharides, fragment in such a way that could lead to misinterpretation of the metabolic 

pathway.83,108,113 

 

In LC, the molecules are in the liquid phase so electrospray (ESI) or atmospheric pressure 

chemical ionization (APCI) is used to convert the neutral liquid molecules into gaseous 

ions. In ESI, the ion source generates an “electrospray” of charged droplet from the solvent 

carrier liquid, this liquid is then evaporated by a heated nitrogen gas to create the charged 

molecule.83 In APCI, ions are generated by vaporizing the solvent carrier liquid 

and the sample by spraying them into a heater using an inert gas. Solvent 

molecules are ionized by corona discharge to generate stable reaction ions.  

These reaction ions undergo proton-transfer reactions with the sample 

molecules. ESI and APCI are the most common ionization method for LC-MS because 

they are soft ionization methods that produce mostly protonated M+H+ ions in positive 

mode or M-H- ions in negative mode with few fragments. This is advantage for identifying 

peaks by their mass, but it does not help for structural elucidation of an unknown.90 

However, tandem mass spectrometry (MS/MS, or MSn) is often utilized to address this 

challenge.105 The development of new ionization sources and dissociation methods are 

major areas of innovation in mass spectrometry, that aim to improve structural 

elucidation.114 
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1.4.2.1.10. Mass Analyzers 

Molecules must be ionized prior to mass analysis because mass analyzers can only 

manipulate atoms or molecules based on their mass-to-charge ratio (m/z). Ions in a time-

of-flight (TOF) mass analyzer are detected based on their velocity when accelerated 

through an electric field. TOF analyzers are fast and they have high ion transmission but 

limited dynamic range.90,104 Quadrupoles are considered mass filters because the 

quadrupole rods use DC and RF potentials such that only ions with a selected mass-to-

charge ratio pass through the channel. These mass analyzers are relatively inexpensive, 

have good reproducibility, and are ideal for MS/MS analysis because of their selectivity 

for a precursor ion.83 There are several different types of ion trap mass analyzers, including 

ion cyclotron resonance and quadrupole ion trap. The Orbitrap uses ion cyclotron to trap 

ions in orbit around a spindle shaped quadrupole. As the ions revolve around the axis, they 

also oscillate which generates an image current that the instrument records.83 This image 

current frequency depends on ion mass-to-charge ratio. Ion cyclotron traps have the highest 

reported mass resolution and are powerful for MS/MS experiments, but they have a limited 

dynamic range and are too costly for routine analysis.103,104,107 

 

Mass analyzers can be used in tandem for added selectivity and resolution. In tandem mass 

spectrometry, ions are formed in the source and separated by m/z in the first stage of mass 

spectrometry (MS1). Precursor ions of interest with a particular m/z are selected and 

fragmented to create product ions. These are then separated and detected in the second 

stage of mass spectrometry (MS2).105 The triple quadrupole, QqQ, which consist of two 
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quadrupole mass analyzers in sequence connected by a quadrupole collision cell, and the 

quadrupole-Time of Flight, q-TOF, a quadrupole and a TOF in sequence, are tandem-in-

space instruments. Whereas, linear triple quad (LTQ)-Orbitrap, and ion-trap-TOF, 

instruments are tandem-in-time. Tandem-in-space mass analyzers are physically separated 

by space but connected by high vacuum. Tandem-in-time mass analyzers trap ions in place 

with multiple stages of separation (MSn). Modern high-resolution mass analyzers can 

provide accurate mass measurements for metabolite identification and quantitation and 

MS/MS analysis can further aid in the identification of metabolites. However, MS/MS 

spectra have poor reproducibility compared to electron impact ionization and may vary 

greatly across instruments, which creates a challenge for spectral matching databases.90  

 

1.4.2.1.11. Metabolite Identification by GC-MS 

A major advantage of NMR metabolomics is the availability of many databases for 

metabolite identification; this is also an advantage of GC-MS. Due to standardized 

acquisition parameters, large libraries, such as NIST, Wiley, and Golm, are available to 

rapidly assign spectral features and ion fragments to a metabolite identity.99,115,116 Internal 

standards, such as fatty acid methyl ester (FAMEs) or n-alkanes, are used to increase the 

accuracy of assignments and calculate a retention index for each spectral peak. The 

retention index (I) of a chemical compound is its retention time (tr(unknown)) normalized to 

the retention times of adjacently eluting n-alkanes or FAMEs (tn and tN), where N is the 

retention index of the reference that elutes before the compound and n is the retention index 

of the reference that elutes after the compound (Equation 1.6).117–119 A molecules’ retention 
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index is a more accurate metric than retention time for comparison to library results because 

it accounts for differences from column length and temperature gradients.117 For example, 

the metabolite assignments for Artemia extracts derivatized with trimethylsilane (TMS) 

were verified by calculating the retention index in AMDIS (Equation 1.6) and comparing 

the results with reported literature values (Figure 1.3). Sample derivatization is not 

standardized, but most libraries account for commonly used derivatization reagents. 

Derivatization of amine and carboxylate groups is usually achieved with silylation 

reactions that covalently bond an alkyl-silyl group to the acidic or basic functional group 

(Scheme 1). This silyl group decreases the boiling point of polar molecules and increases 

their stability for high temperature gradient elutions.106  

 

Equation 1.6 

𝐼 = 100	 × ^𝑛 + (𝑁 − 𝑛)
𝑡E(`a8abca) − 𝑡E(a)

𝑡E(d) − 𝑡E(a)
e 

 

 

Scheme 1. Trimethylsilane derivatization reaction mechanism. N-Methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) reacts with the amine and carboxyl functional 
groups of leucine to create Leucine-1 TMS and Leucine-2 TMS. 
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Figure 1.3. (A) GC-MS spectrum of an Artemia metabolite extract and FAMES internal standards derivatized 
with silylation reagents. (B) Region of the GC spectrum labeled with FAMES carbon number (C#), 
metabolite identity, retention index calculated in AMDIS with equation 1(c), and reported literature retention 
index values (r) 
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1.4.2.1.12. Metabolite Identification by LC-MS 

The use of LC-MS for metabolomics applications is growing rapidly because of the broad 

coverage of metabolite classes it achieves due to the availability of different column 

chemistries, low limits of detection, and high mass resolution.83,90,105 However, unlike GC 

and NMR, standard acquisition methods have not been adopted for LC, which currently 

creates a challenge for developing robust spectral matching databases. For untargeted LC-

MS/MS metabolomics, metabolite identification is typically achieved through mass-based 

searching followed by verification with an authentic standard and MS/MS analysis.90,105,120 

Many labs or university’s build in-house libraries of authentic standards and their product 

ions. Once these libraries are built, rapid and specific metabolite identification is simple. 

However, even with access to an in-house library, unknown identification still remains a 

challenge. It has been demonstrated that it might be possible to create a universal product 

ion mass spectral library from fragments created by collision-induced dissociation.121,122 

This would aid in identification of known and unknown metabolites when combined with 

structural elucidation chemometric platforms. 

 

1.4.2.1.13. Multiplatform metabolome coverage 

Most metabolomics studies use either mass spectrometry or NMR based methods, but with 

multiplatform analysis greater metabolome coverage is achievable. NMR is a robust and 

quantitative technique that requires minimal sample preparation.123 GC-MS requires 

derivatization, but it has low limits of detection and well-established libraries.  LC-MS has 

low limits of detection and can detect a broad range of metabolite classes, but unknown 
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identification is challenging. Amino acids, sugars, sugar phosphates, nucleotide-sugars, 

polyamines, nucleosides, organic acids, and short chain fatty acids among other 

compounds are detectable and quantifiable in metabolomics samples by using these three 

methods.83  These are great complementary techniques that can achieve comprehensive 

analysis of the Artemia metabolome.85  

 

1.4.2.2. Chemometric methods for metabolomics  

Instrumental analysis is followed by a computational workflow including annotation, 

preprocessing, post-processing, statistical analysis, and pathway analysis.124–127 This 

workflow can also be described as chemometrics, or the science of extracting information 

from chemical systems by data-driven means.120,126,128 Metabolomics experiments involve 

dozens of samples, potentially with hundreds to thousands of features per spectrum; 

therefore, chemometrics is necessary to manage the large datasets and extract meaningful 

biological information. The initial steps of preprocessing and annotation are instrument-

dependent, but these steps should prepare the dataset for instrument-independent post-

processing and statistical analysis. The computational workup can be a major bottleneck 

for omics studies due to the lack of statistics training for bench scientists, poor 

standardization of these methods, and confusion about which statistical tests are most 

important or relevant depending on the experimental context. Bioinformaticists are 

developing commercial and open source software to streamline metabolomics workups for 

the bench researcher, but there is still uncertainty about processing metabolomics data in 

different contexts.127   
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Annotation does not have to be the first step in the computational workflow, but it is 

important to identify the regions of interest in an instrumental spectrum. For example, in 

1H NMR, water suppression methods do not entirely remove the HOD peak, so the region 

from 4.55 to 4.88 ppm may be excluded from the spectrum. For GC-MS analysis where 

derivatization steps were used, there will likely be silylation byproducts or contaminants 

in the spectrum that should be identified and excluded from analysis. For NMR and GC-

MS analysis, a single metabolite often has multiple peaks, either from multiple unique 

proton resonances or from incomplete derivatization. In some cases, these peaks will either 

be summed to represent one metabolite or only one peak will be selected for analysis and 

the others excluded. Open source and commercial software is available for NMR and GC-

MS to identify these peaks and convert the spectra into data points.127 

 

The pre-processing step involves converting instrumental spectra into data points. For 

NMR and chromatographic methods, this usually involves measuring individual peak 

integrals, also known as peak fitting, or binning the spectra.129,130 Peak fitting is essential 

for quantifying metabolites, but it can be a tedious process even with the assistance of a 

software tool.129 With programs like Mestrenova (Mestrelab Research), a curve is fit to the 

NMR peak and the area of the fitted curve is recorded in a spreadsheet for chemical shift 

or each time point. Mestrenova is even able to identify and integrate poorly resolved peaks 

(Figure 1.4). Each spectrum has to be fit individually, which necessitates further manual 

steps to identify the integrals that represent each metabolite in each spectrum.   
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Data binning is a technique to group a series of continuous values into one representative 

value or one bin.129 For example, a 1H NMR spectrum from 0-12 ppm can be divided into 

bins or intervals, for example 0.05 ppm, to produce an averaged integral for each bin to 

reduce the number of variables (Figure 1.5). In order to bin the data, all the spectra in a 

dataset have to be transferred to one document or file and aligned perfectly or the bins will 

not accurately reflect metabolite shifts between control and treatment. This can be 

challenging because some metabolites are highly pH sensitive which causes their location 

in the spectrum to shift slightly from sample to sample.130 Since binning arbitrarily 

segments a portion of a spectrum, individual metabolite shifts cannot be quantified, but this 

process greatly speeds up pre-processing and is beneficial for high-throughput analysis.123  

 

For untargeted mass spectrometry methods, absolute quantitation is challenging because 

each metabolite has a different response in a mass analyzer, necessitating calibration curves 

for each metabolite of interest. Relative quantitation is usually sufficient for GC and LC-

MS metabolomics. After the spectrum is collected, programs such as MarkerLynx (Waters 

Inc) or Skyline (MacCoss Lab Software) can be used to deconvolute and identify 

overlapping metabolite peaks and report an ion count for each mass. The mass will be 

labeled with a corresponding metabolite and the ion count for each metabolite is compiled 

and normalized to the total ion count for the spectra.  
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Figure 1.4. Expanded region of the 700 MHz 1H NMR spectrum of an Artemia metabolite extract showing 
the branched chain amino acid resonances (black) and the Lorentzian curves fitted to the peaks (blue). The 
overlapped isoleucine and leucine resonances at 0.95 ppm were resolved with peak-fitting.   
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Figure 1.5. 1H NMR spectra of Artemia metabolite extracts showing control (black) versus cold stress (red) 
from 0.85 to 2.20 ppm (top) and the spectra after processing by 0.01 ppm peak binning. 
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Post-processed data are consolidated into one spreadsheet, normalized, transformed, and 

ready for statistical analysis. This spreadsheet is usually arranged with the sample number, 

treatment, and metabolite identity in individual columns with each row containing 

replicates.126,131 Ideally, metabolomics data is normally distributed around a Gaussian 

curve. Most statistical tests, including ANOVA, are designed for normally distributed data. 

When data are not normally distributed, normalizations and transformations can be used to 

manipulate the data into a usable format or other statistical tests can account for non-

normally distributed data.  Normalization to the total spectral area, the area of an internal 

standard, or the sample mass reduces inter-sample variance.131 Further logarithmic or 

exponential transformations make highly skewed distributions less skewed. The Shapiro 

test can determine if a dataset is normally distributed and is useful in determining the best 

transformation for the dataset.124,126,131  

 

Normalized and transformed data arranged in a spreadsheet are now ready for statistical 

analysis. Both multivariate and univariate statistical methods are valuable for extracting 

information from metabolomics data. Multivariate analysis can indicate that the treatment 

or stress causes a difference in metabolite levels and univariate analysis can identify those 

differences.124,128,132 Multivariate analysis looks at the dataset as a whole and helps 

visualize variance between treatments and populations. Multivariate analysis methods 

involve the manipulation of many different variables and simplification of the variables 

down to the important components. Principal component analysis (PCA) and partial least 

squares discriminant analysis (PLS-DA) are common strategies for visualizing sample 
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behavior in a dataset. The difference between these techniques is that PCA is unsupervised 

and PLS-DA is supervised, meaning treatment membership is defined in PLS-DA but not 

in PCA. Samples that cluster together on a PCA or PLS-DA score plot have similar 

metabolite profiles, and this helps identify inter-treatment variance.125,133 A PCA and PLS-

DA loading plot identifies which metabolites drive the variance between treatments. After 

these important metabolites are identified, univariate analysis can measure how these 

metabolites change in different treatment conditions.  

 

Following the multivariate analyses, univariate analysis of the features identified as 

important leads to quantitative information about changes in the metabolite levels under 

different treatments. Analysis of Variance, also known as ANOVA, is a statistical method 

to compare sample means and determine if the differences are statistically significant.126,134 

ANOVA followed by a post-hoc analysis, such as Tukey’s HSD, will identify if there is a 

statistical difference between control and treatment conditions for each metabolite. For 

non-normally distributed data, analogous statistical tests can be used, such as the Kruskal-

Wallis-test, to compare means and calculate p-values. Volcano plots and box and whisker 

plots are popular visualizations for individual variables. In a volcano plot, the fold change 

is plotted on the x-axis and p-value is plotted on the y-axis. Similar to a PCA loading plot, 

significant metabolites will be furthest from the axis origin. A metabolite is deemed 

significant if it has a fold change greater than 1.2 or less than 0.8 and statistically significant 

p-values (usually p < 0.05).132 Box and whisker plots show the median and range of 
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metabolite replicates, which is useful to exhibit data integrity and treatment-dependent 

trends. Ideally, univariate analysis leads to a biological interpretation.  

 

Many statistical programs are available to help with choosing the correct tests and 

constructing the best plots. The open-source platform R has free packages specifically for 

metabolomics researchers.127,135 The muma R package automatically completes PCA, PLS-

DA, Kruskal-Wallis test, volcano plots, and box plots from a post-processed metabolomics 

spreadsheet.132 The metabolomics R package has scripts for normalization and log 

transformation in addition to PCA and box plots.127  R is an important tool but there is a 

curve to learning the language and interpreting error codes. Commercial programs such as 

GraphPad Prism and SPSS are more user-friendly and include decision trees to help novice 

statisticians choose the statistical tests that best suit their data and produce useful figures. 

SIMCA Umetrics is another useful program for multivariate statistics because it can 

perform multiblock multivariate statistics, which integrates data from multiple analytical 

pathways for PCA or PLS-DA. Combining multiple analytical techniques, such as NMR 

and GC-MS or LC-MS, into one dataset can validate the trends in the data collected by 

both techniques to identify important metabolites.136 

 

1.4.2.3. Biological interpretation of metabolite shifts 

Biological interpretation is the final step of metabolomics analysis. The large number of 

variables produced by metabolomics experiments creates an added challenge for biological 

interpretation. The reductionist approach to determining the biological effect is to focus on 
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the significant variables that were identified by univariate analysis. Relating the changes 

observed for these significant variables, or biomarkers, to known biochemical pathways 

can help to identify affected pathways. For example, if the levels of succinate, fumarate, 

and malate are affected by a treatment it can be deduced that the stress has an effect on the 

TCA cycle. Similarly, if a treatment is known to target a certain biochemical pathway, such 

as the shikimate pathway for glyphosate, shifts in the metabolites related to that pathway 

may be observed.137  

 

Open source bioinformatics platforms for correlating metabolite trends and biochemical 

pathway profiles are promising tools for biological interpretation. The metabolomics R 

package includes statistical total correlation spectroscopy (STOCSY) analysis and ratio 

analysis spectroscopy (RANSY) for binned NMR data. These analyses identify spectral 

bins within a spectrum that have the same ratio or follow the same trend, and therefore 

elucidates metabolites from the same pathway that is affected.97,123,138,139 The R package 

Pathway Activity Profiling (PAPi) correlates metabolite levels to the activity of metabolic 

pathways within biological systems.140 Using the metabolomics data and the Kyoto 

Encyclopedia of Genes and Genomes, PAPi predicts which pathways are affected and 

compares the activity of these pathways across experimental conditions. An open source 

platform in Java, called Cytoscape, similarly identifies affected pathways through 

metabolic network profiling.127 These programs are useful for hypothesis generation, but 

they can be misleading as they only account for metabolites and pathways that can be found 
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in their databases and are often only meant for human or saccharomyces biochemical 

pathways.  

 

1.4.3. Environmental relevance of Artemia metabolomics 

The primary goal of this dissertation is to develop an ecosystem stress test for saltwater 

lakes. In the following pages I will show that Artemia franciscana is a promising model 

organism because of its salt tolerance, ease of use for in situ and in vitro studies, and 

suitable biology for metabolomics analysis. Through thorough experimentation all areas of 

the metabolomics workflow have been tested, from organism growth to pathway analysis, 

to identify the established methods that best suit the questions asked and develop new 

methods when necessary. Considerable effort was placed into accurately and thoroughly 

reporting the Artemia metabolome as determined by NMR, GC-MS, and LC-MS. As the 

following chapters demonstrate, environmental metabolomics is an invaluable data driven 

method for identifying and studying known and emerging environmental stressors. 

 

The use of Artemia in environmental metabolomics is demonstrated through several 

applications of increasing complexity. The first environmental metabolomics application 

studies cold stress with 1H NMR and GC-MS followed by chemometric analysis as a proof 

of concept (Chapter 2). Temperature stress is well characterized in arthropod species, 

including Artemia and other extremophiles such as the Arctic midge and tardigrades, 

therefore many of the metabolite shifts can be predicted, including increases in the levels 

of glucose and glycerol, which are known cryoprotectants.54,55,141 The second application 
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studies the ubiquitous herbicide, glyphosate, also known as Roundup® (Chapter 3). The 

effects of this herbicide are well characterized in the environment and in several aquatic 

species, but have not been studied in Artemia or saltwater lakes.142–144  From this study, I 

validated our exposure protocol and elucidated the effects of glyphosate and the Roundup® 

formulation ingredients on Artemia.145 The study of the emerging contaminant, tris(1,3-

dichloro-2-propyl)phosphate (TDCIPP) demonstrates that Artemia metabolomics can 

provide novel information about the mode of action of emerging pollutants and that 

metabolomics can be coupled with high-throughput imaging analysis for multidimensional 

phenotyping of environmental stress (Chapter 4).146 The last study reported in this work 

emphasizes the versatility of NMR metabolomics and importance of Artemia as a model 

species. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are 

fluorinated surfactants that are known to bioaccumulate in aquatic species. Using 1H NMR 

and LC-MS, PFOS and PFOA bioaccumulation are measured and the resulting metabolic 

perturbation analyzed in Artemia (Chapter 5).147  As Artemia are at the bottom of the food 

chain, this study provides insight onto the potential for these molecules to biomagnify in 

the saltwater ecosystem.  The dissertation is concluded with an overview of conclusions 

and future work (Chapter 6).  
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Environmental metabolomics methods for experiments with Artemia franciscana 

CHAPTER TWO 

Abstract 

Environmental metabolomics methods were developed for studying aquatic stress in 

Artemia franciscana. Cysts were hatched for 48 hours in hatching vessels and the nauplii 

were transferred to saltwater aquariums for 48 hours before they were sacrificed. The 

metabolites are extracted and prepared for NMR and GC-MS analysis. The Artemia 

metabolome was characterized from a pooled sample and 43 metabolites were identified 

using 1D and 2D NMR and GC-MS. The metabolite gadusol was identified after SPE 

clean-up and further 2D NMR analysis, the identity was verified with LC-MS/MS. 

Environmental metabolomics methods were tested on cold stressed Artemia. Cold stress 

led to increased accumulation of sugars and cryoprotectants such as glycerol, trehalose, 

glucose, and maltose. Pathways related to protein synthesis and energy storage were also 

affected. These results agree with known metabolic pathways related to Artemia growth 

and development and are also consistent with other extremophile organisms. 

 

1 Introduction 

In this chapter, environmental metabolomics methods are developed to study stress in 

Artemia franciscana. Metabolomics is the study of small-molecule metabolites that 

comprise a biological sample. The metabolite profile is a representation of the biochemical 

processes that are important for the sample, such as photosynthesis or glycolysis. For 

metabolomics analysis, the metabolite profile is measured in using nuclear magnetic 
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resonance (NMR) or mass spectrometry (MS).1–3 These high-throughput analytical 

methods generate large volumes of complex information that provide insights into the 

metabolic state of the sample.4 Metabolomics has been identified as a powerful tool for 

biomarker discovery and has many potential applications in studying disease progression, 

medicine, and exposure to toxins.1,2,5,6  

 

Metabolomic technologies are increasingly being applied to study biological questions 

related to the environment.1,3,4,7,8 Environmental metabolomics has been used to answer 

questions about sublethal stress, pollutant mode of action, and the effects of climate 

change.9,10 For environmental metabolomics, the metabolite profile of an organism is 

monitored before and after exposure to a stressor.1,7 The biochemical mode of action of the 

stressor can be elucidated by analysis of changes in metabolite levels resulting from the 

exposure.  

 

Environmental metabolomics studies are conducted by first, designing the experiment – 

this involves selecting the stressor, the organism, and the mode of exposure, such as in 

vitro or in situ.1 Specimen selection and mode of exposure are important aspects of 

experimental design because the results should accurately and realistically represent the 

impact of the stressor. Since Daphnia magna is a freshwater species, it should not be used 

in studies focused on saltwater stressors, and if daphnids are raised in the lab, aquarium 

conditions should closely match environmental conditions.11–13 Due to a growing interest 

in the environmental challenges at the Salton Sea, we were interested in identifying a model 
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for studying stress in saltwater lakes.14–16 Artemia was identified as a potential bioindicator 

species because it thrives in saltwater lakes, such as the Great Salt Lake and Mono Lake, 

and it is closely related to Daphnia magna, which has already been established for 

environmental metabolomics for freshwater systems.9,17–19 In order to study the effects of 

isolated stressors on Artemia, the mode of exposure is in vitro with conditions that are 

relevant for saltwater lakes.  

 

The second step is to obtain a biological sample – this involves either collecting specimens 

in the environment or exposing the specimen to a stressor in vitro and isolating the samples 

for extraction.1 Since Artemia are aquatic organisms, the mode of collection ultimately 

involves removing them from the water. Since they cannot survive outside of water, the 

most logical method involves sacrificing them while they are in water and then removing 

the water via lyophilization. Liquid nitrogen is a fast and easy way to sacrifice the organism 

and also halt metabolism without adding more stress. Metabolomics represents a snapshot 

of global metabolic processes, in order to identify metabolic processes that are affected by 

experimental conditions, it is important to suspend metabolic processes during or just after 

exposure to the stressor.2 

 

Third, sample preparation – this includes metabolite extraction from the organism.1 In 

order to isolate the metabolites from the specimen and from unwanted macromolecules, 

steps such as homogenization, solid or liquid extraction, and filtration might be used.2 

These methods free metabolites from the tissue and isolate them from other unwanted 
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macromolecules. Samples are then prepared for instrumental analysis, which may involve 

derivatization or pH adjustment.2 In this study, each sample is analyzed using GC-MS and 

NMR, therefore the sample extraction method has to be suitable for both methods.  

 

Fourth, data acquisition – measuring the metabolite profile using NMR or MS. Samples 

are analyzed by one or multiple instruments depending on the experimental considerations 

or instrument availability.1 The use of multiple instrumental methods leads to greater 

metabolome coverage because no single method can detect every metabolite; however, 

added instrumental measurements adds more time, complexity, and cost to the experiment.2 

NMR and GC-MS have well established databases that are useful for metabolomics 

profiling. NMR is robust and highly reproducible. This method has been the gold standard 

for structural elucidation of organic molecules for many years and this ability is highly 

useful for untargeted metabolomics and unknown identification.7,20 NMR, however, has 

higher limits of detection than MS-based methods.3,8 GC-MS has standardized 

derivatization and acquisition methods, which has led to large and robust databases, such 

as NIST, which can be used for untargeted metabolomics.21–23 However, GC-MS is only 

useful for metabolites that are volatile or can be derivatized, so some classes of molecules 

will not be suitable for this method, it is also not ideal for unknown identification because 

the mass spectrum is typically too fragmented to obtain a molecular ion.10,24 

 

Fifth, data processing – metabolite identification and chemometrics. Metabolites are 

identified using metabolomics databases, such as the Human Metabolome Database, 
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Chenomx, NIST, and the Golm Metabolome Database.21,22,25–29 Uncharacterized peaks or 

resonances may remain labeled as an unknown or further investigation with 2D NMR or 

MS/MS may lead to an identification.20,30 Often, metabolite identity is tentatively assigned 

via a database match and is verified by comparing elution times, mass spectra or NMR 

chemical shift to an authentic standard. Once identified, peak area or bins are collected for 

chemometric analysis, which involves multivariate and univariate analysis.6,31 Principal 

Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) 

dimension reduction methods are important visualizations for identifying the variation in 

the whole dataset. PCA is an unsupervised exploratory dataset analysis that identifies the 

variation between groups and PLS-DA is a supervised pattern recognition technique that 

identifies variation within groups.32 Univariate analysis is used for pairwise comparisons 

between treatments to identify significant variables in the dataset, such tests include t-test 

and ANOVA.32,33 

 

Lastly, biological interpretation – identifying biomarkers of exposure or metabolic 

perturbation.1,3,7 Biological interpretation of metabolite shifts may be performed a number 

of ways. Some studies using multi-omics methods to use metabolomics to give insight to 

genomic data from their own study or from published results.31,34 Researchers may 

compare the metabolite profile to the KEGG database or other biochemical pathway 

databases and draw conclusions based on changes to metabolites in the same pathway.19,35 

Bioinformatics packages are also available for this purpose, however, many of the available 
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databases are only relevant for humans or yeast and the results for other organisms may be 

inaccurate.36–38 

 

These six steps in the environmental metabolomics workflow were optimized to study 

environmental stress in Artemia franciscana. The main questions to be answered include: 

is Artemia a suitable model, how should the exposures be performed, how should the 

metabolites be extracted, what instruments will be used for analysis, and how are the data 

best analyzed? Methods that had been previously reported for metabolomics or small 

molecule analysis were applied and optimized for our conditions when needed. For this 

study, the growth and exposure parameters, sample preparation, and instrumental analysis 

were optimized and the Artemia metabolome was characterized using NMR and GC-MS. 

Additionally, the optimized environmental metabolomics methods were used to study the 

effect of cold stress on Artemia. 

 

2 Experimental 

Herein, the methods for optimizing metabolomics using Artemia franciscana are detailed. 

In addition, the optimized methods used for cold stress as a proof of concept for Artemia 

metabolomics are presented.  

 

2.1  Artemia growth and hatching conditions 

We attempted to establish an Artemia aquaculture multiple times by hatching Artemia cysts 

in an aquarium of saltwater, letting the shrimp grow, and reproduce, with the goal of having 
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access to different life stages to study instead of starting each experiment from a cyst. We 

also developed metabolomics methods that start from the cyst stage.  

 

2.1.1 Attempts at an Artemia aquaculture 

A brine shrimp aquarium kit was purchased from Lighthouse Educational Products. This 

kit included a 10-gallon tank, aquarium air pump, incandescent light bulb, cysts, sea salt, 

turkey baster, and spirulina algae for food. The aquarium was filled with 10 gallons of 35 

g/L sea salt and the cysts were added to the tank. The aquarium had constant aeration and 

constant light for the first 48 hours. After the initial hatch period, the aquarium had constant 

aeration and a 16:8-hour light cycle. The Artemia were fed a pinch of spirulina algae every 

48 hours after the initial 48-hour growth period. A third of the aquarium water was replaced 

each week with fresh salt water. Empty cysts that float to the surface and dead specimens 

that sink to the bottom of the aquarium were removed as needed using a plastic turkey 

baster or plastic 1 mL transfer pipet. The aquarium was maintained for 2 months until all 

the Artemia had died.  

 

A second aquarium was set up from an aquarium kit from Elliots’ for Pets (Riverside, CA). 

This included a 20-gallon glass tank, fluorescent overhead light, aquarium heater, and 

aquarium pump. The aquarium was filled with 35 g/L Oceanic Natural Sea Salt Mix 

(Amazon.com, Seattle, WA) mixed with ultrapure water (EMD Millipore, Burlington, 

MA).  Grade A brine shrimp cysts (Brine Shrimp Direct, Ogden, UT) were used for this 
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tank. The same aquarium directions were followed as with the 10-gallon tank with similarly 

poor results.  

 

Since neither of these methods were successful, we did not continue any attempts to 

establish a permanent aquarium. From this point, only temporary aquariums were prepared 

and used for the duration of each experiment.  

 

2.1.2  Artemia hatching 

An Artemia hatching vessel was assembled with a 2 L soda bottle, the San Francisco Bay 

Brand Hatchery kit (Newark, CA), and the Marina aquarium air pump. Oceanic Natural 

Sea Salt Mix (35 g/L) mixed with ultrapure water was added to the hatching vessel. This 

vessel was placed in an incubator with 2 inches of water, an aquarium heater, an aquarium 

air pump, and an overhead light source. 1 oz Grade A brine shrimp cysts were hatched in 

a hatching vessel at 80 °F with constant aeration. During the 48 hr hatching period, the 

cysts are exposed to constant fluorescent light. The hatched nauplii are then transferred to 

new tanks for growth in fresh media or exposure for environmental metabolomics studies.  

 

2.1.3 “Control” conditions 

Many of the initial experiments for parameter optimization were conducted on Artemia 

raised under control conditions. These samples were prepared in bulk and stored for later 

use. Control conditions are hatched following the procedure outlined in section 2.1.2. 

Hatched nauplii were next transferred from the hatching vessel into a 1 L beaker with fresh 
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salt water and stored in a temperature (80 °F) and light (16:8 hr cycle) controlled 

environment for a 48 hr growth period.  

 

2.2  Sample preparation optimization 

After a 48 hr growth or exposure period, Artemia are collected for analysis. To collect the 

nauplii, we take advantage of their phototaxis behavior which causes them to swim towards 

light sources to find food. When a point source of light is shone through the aquarium, the 

nauplii crowd around the light, making it easy to pipet the nauplii as a dense mass. They 

are transferred into cold-resistant microvials using a transfer pipet. The microvials 

containing Artemia are submerged in liquid nitrogen for several seconds to flash freeze the 

specimen. The samples are then thawed in room temperature, so that excess media can be 

removed and exchanged three times with ultrapure water to remove dosed media and 

excess salt prior to metabolite extraction. These samples are then re-frozen and lyophilized. 

The dehydrated samples are stored in a –80 ºF freezer until analysis.  

 

2.2.1 Solvent extraction and homogenization 

Dehydrated Artemia are homogenized to disrupt and release metabolites from cells and 

tissues. Solvent extraction transfers the metabolites from the tissue to the solvent so that it 

can be used for instrumental analysis. These can be done in sequence or simultaneously 

depending on the homogenization.  Tip sonication and bead beating methods were tested 

to determine the most effective homogenization technique. Grinding with a mortar and 

pestle was also attempted, but this method was not feasible because the lyophilized shrimp 
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were too small and had too much static to grind manually, so this method was not pursued 

further. Tip sonication and bead beating are conducted in solvents, so solvent extraction is 

done simultaneously with homogenization. In our experiments, all extractions were done 

using the established biphasic liquid-liquid methanol/water/chloroform method that 

extracts both aqueous and polar metabolites and separates the non-polar metabolites into 

the chloroform phase that is ultimately discarded.261,2,39   

 

2.2.1.1 Tip sonication 

640 µL methanol and 240 µL water was added to dehydrated control Artemia in a 2 mL 

microvial and placed in an ice bath. The tip of the sonicator (Branson Sonifier 250, Branson 

Ultrasonics, San Dimas, CA) was submerged in the solvent and pulsed for 30 s at a duty 

cycle of 30s and an output of 2V. The tip was cleaned with methanol and a Kimwipe 

(Kimberly-Clark, Roswell, GA) between samples. Additional water (240 µL) and 

chloroform (640 µL) was added to each sample.  

 

2.2.1.2 Vortex mixer bead mill 

Control Artemia were collected and flash frozen in 2 mL XXTuff reinforced polypropylene 

microvials (Biospec Products, Bartlesville, OK). Zirconia beads (500.0-700.0 mg), 640 µL 

methanol, and 240 µL water were added to each vial. Samples were mechanically 

homogenized in a ThermoMixer C vortex mixer at 4 °C for 1 min (Eppendorf, 

Hauppauge, New York). 
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2.2.1.3 Solvent extraction 

Aqueous and polar metabolites were extracted from lyophilized Artemia samples using a 

methanol: water: chloroform method.2,39 To each sample 640 µL cold methanol (Fisher 

Scientific) and 240 µL cold D2O (Sigma Aldrich) and the samples were homogenized. The 

remaining 240 µL cold D2O and 640 µL chloroform (Macron Fine Chemicals, Center 

Valley, PA) were added to each sample followed by centrifugation at 15.7 g for 20 min at 

4 °C (Eppendorf). The top layer of the supernatant was transferred to a 1 mL microvial 

which was evaporated at room temperature using a Savant SC110 speedvac equipped with 

a refrigerator vapor trap (RVT400) (ThermoFisher Scientific, Waltham, MA). The dried 

samples were stored at -80°C. 

 

2.3  Metabolome characterization 

The Artemia metabolome for 48 hr nauplii was characterized from Artemia raised under 

control conditions. In addition, a concentrated sample was prepared for 1H NMR analysis 

from a pooled sample of specimens exposed to the herbicide, Roundup®. This sample was 

used for many two-dimensional NMR experiments to identify an exogenous compound.  

 

2.3.1 Roundup® exposure conditions for metabolome characterization 

Artemia were hatched following the procedure reported in section 2.1.2. Hatched nauplii 

were transferred from the hatching vessel into three beakers containing 300 mL of 100 ppm 

glyphosate (Roundup Weed & Grass Killer Concentrate Plus, The Home Depot®) in 35 
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g/L sea salt, adjusted to pH 8.00, and maintained in an incubator for a 48 hr exposure and 

growth period. 

 

2.3.2 Sample preparation for pooled metabolome characterization samples 

After a 48 hr exposure, living brine shrimp from each beaker were collected in 2 mL 

microvials and flash frozen in liquid nitrogen. The samples were thawed, and the dose 

solution was exchanged with ultrapure water to remove salt and Roundup®. After 

lyophilization, the dehydrated specimens were combined to make a 29.0 mg pooled sample. 

The metabolites were homogenized using a bead beater (section 2.2.1.2) and extracted 

following the protocol from section 2.2.1.3. 

 

2.3.3 NMR for metabolome characterization 

Dried metabolite extracts were reconstituted in 200 µL 50 mM phosphate buffer (pD 7.45) 

in D2O (D, 99.9%) (Cambridge Isotope Laboratories, Tewksbury, MA) containing 0.4 mM 

sodium 2,2-dimethyl-2-silapentane-5-sulfonic acid-d6 (DSS-d6) and 0.2 mM 

ethylenediaminetetraacetic acid-d16 (Cambridge Isotope Laboratories, Tewksbury, MA). 

1H NMR spectra were acquired with a Bruker Avance 600 NMR (Billerica, MA) 

spectrometer equipped with a BBI probe operating at 599.58 MHz. 1H survey spectra were 

measured by coaddition of 256 transients using 32 dummy scans, a relaxation delay of 2 s 

and acquisition time of 3.0 s. Water suppression was performed using 1D NOESY with 

presaturation (noesypr1d) during the 120 ms mixing time and 2 s relaxation delay. A 
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spectral width 11.6808 ppm was used with 32768 complex data points acquired using 

digital quadrature detection. 

 

2.3.4 Identifying metabolites with 2D NMR 

Metabolites were identified in the 1H NMR profile of naupliar Artemia extracts using the 

metabolomics databases, Chenomx (Chenomx Inc, Edmonton, Alberta), the Human 

Metabolome Database, and by comparison with spectra measured for authentic standards 

from our in-house library.25–28 Two-dimensional NMR experiments, including 1H-1H 

TOCSY and 1H-1H COSY, were performed to verify the assignments. At 600 MHz, the 

double quantum filtered COSY spectra (cosygpprqf) were measured with a 45° pulse, 

while the TOCSY spectra (mlevgpphw5) were measured using a mixing time of 120 ms. 

Both experiments were performed with 32 scans and 16 dummy scans, with 2048 points 

acquired in F2 and 512 in F1. The 1H−13C edited HSQC spectra (hsqcedetgpsisp2.2) were 

acquired with 2048 by 128 points in F2 and F1, respectively. These spectra were zero filled 

to 4096 by 2048 points. The 2D J-Resolved spectra (jresgpprqf) were acquired at 600 MHz 

with 8192 points in F2 and 64 in F1 with 64 scans and 16 dummy scans. J-resolved spectra 

were zero filled to 16384 by 128 points. The TOCSY and HSQC spectra were apodized 

using a cosine function in both dimensions, while the COSY and 2D J-resolved spectra 

were apodized with a sine bell function.  
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2.3.5 Identifying gadusol 

Before the identity of gadusol was verified, two singlet peaks at 3.501 and 4.107 ppm and 

two doublet peaks at 2.379 and 2.686 ppm remained unidentified in the NMR after initial 

1D and 2D NMR experiments. From 1H-1H COSY and TOCSY, it was clear that 2.379 and 

2.686 ppm were equivalent, but no bond correlations were apparent between the other 

peaks. Therefore, we conducted several experiments to identify these peaks. A pH titration 

was performed to identify the pKa for each peak to identify likely functional groups, solid 

phase extraction was used to resolve and isolate the peaks, and 1H NMR and HSQC were 

used on the cleaned-up Artemia extracts to identify any previous unresolved peaks, 1H-13C 

homonuclear multiple bond correlation (HMBC) spectroscopy was used to elucidate the 

molecular structure by identifying long range coupling, and mass spectrometry was used 

for mass identification.  

 

2.3.5.1 pH titration  

A pH titration was conducted to determine the pKa of the unknown peaks. The pH of 10 

control samples of metabolite extracts reconstituted in phosphate buffer were titrated from 

pH 2 to 7.34. One-dimensional 1H NMR spectra were acquired for each sample with 125 

scans coadded and 16 dummy scans.  The chemical shift of each resonance was recorded 

at each pH. The pKa of the four peaks was determined by plotting chemical shift (y) against 

pH (x) and performing a nonlinear regression curve fit in GraphPad Prism version 7.03 

(GraphPad Software, La Jolla, CA). The nonlinear regression (Equation 2. 1) used for this 
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analysis was a Dose-Response (log[agonist] vs normalized response - variable slope). The 

pKa was reported as LogEC50 and the Hill Slope was set to 1.0. 

 

Equation 2.1. Nonlinear Regression 

𝑌 =
100

1 + 10(('()*+,-./)∗	3455	65(78))
 

 

2.3.5.2 Gadusol isolation 

The structure and identity of gadusol was verified by isolating the molecule from the 

control Artemia metabolome using solid phase extraction. Oasis® mixed cation exchange 

3cc extraction cartridges (Waters Corporation, Millford, MA) were conditioned with 3.0 

mL methanol followed by 3.0 mL ultrapure water. The methanol and water were discarded 

after passing through the cartridge. Artemia extracts were reconstituted in 1 mL ultrapure 

water, adjusted to pH 3.00, and loaded onto the cartridge. This load solution was passed 

through the cartridge and collected for analysis and evaporated at room temperature using 

a speedvac.  

 

2.3.5.3 Gadusol elucidation with NMR 

The structure of gadusol was confirmed by one and two-dimensional NMR and mass 

spectrometry from the mixed cation exchange Artemia extracts. 1H NMR and HSQC 

experimental parameters are found in sections 2.3.3 and 2.3.4, respectively. Homonuclear 

multiple bond correlation (HMBC) spectroscopy was acquired at 600 MHz with 32 scans 

and 16 dummy scans, a spectral width of 13.9848 ppm in F2 and 210.0 ppm in F1, a two 
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or three bond coupling constant (cnst13) of 10 Hz, and 2048 points in F2 and 512 points in 

F1.   

 

2.3.5.4 Gadusol verification with mass spectrometry  

Analyte of ~20 µM in 50:50 methanol/water was directly infused into an LTQ mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA) at 3 µL/min. Negative ion mode 

was utilized for Full MS and MS2 analysis. Source voltage was 3.5 kV, capillary 

temperature was 275°C, and tube lens voltage was -33 V. For MS2 analysis, an isolation 

window of 3 Da was used along with a normalized collision energy of 23.7.  

2.3.6 GC-MS derivatization and experimental parameters 

Artemia metabolite extracts were derivatized by adding 20 µL of 20 mg/mL methoxyamine 

(Sigma-Aldrich, St. Louis, MO) in pyridine (Thermo Scientific, Bellefonte, PA) and 

mixing at 300 rpm for 90 min at 37°C.40 A 90 µL aliquot of N-methyl-N-

(trimethylsilyl)trifluoroacetamide (MSTFA)(Sigma-Aldrich) was added to each sample 

and reacted for 30 min at 37°C. A 2 µL aliquot of a fatty acid methyl ester (FAMES) 

standard containing 0.8 mg/mL C8, C9, C10, C12, C14, and C16 and 0 .4 mg/mL C18, 

C20, C22, C24, C26, C28, and C30 was added to each sample as a retention time reference 

and the vial was immediately sealed with a crimp cap. 

 

Samples were injected in pulsed splitless mode on an Agilent J&W DB-5MS UI 30 m x 

0.25 mm x 0.25 µm column (Santa Clara, CA) using an Agilent 7890A gas chromatograph 
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coupled to a Waters GCT Premier mass spectrometer. Samples were introduced at initial 

oven temperature of 60 °C held for 1 min, ramped at 10 °C/min to a final temperature of 

320 °C with a final 5 min hold. The injector, transfer line, and source were maintained at 

230°C, 320°C, and 220°C, respectively, and the liner was changed after every 25 injections. 

Instrument operations were controlled by Waters MassLynx software version 4.1 (Waters 

Corporation, Milford, MA). 

 

2.3.7 Identifying metabolites from GC-MS 

The data were collected in the Waters file format (*.raw) and converted to NetCDF (*.cdf) 

for compatibility with the Automated Mass Spectral Deconvolution and Identification 

System (AMDIS, NIST, Gaithersburg, MD). Deconvolution parameters were set to a 

component width of 17 scans, high resolution, high sensitivity, and medium shape. 

Retention indices (RIs) were calculated for each peak by AMDIS using an internal standard 

library and calibration standard library. Compounds were identified using the Golm 

Metabolome Database (Max Planck Institute of Molecular Plant Physiology, Potsdam, 

Germany) and NIST 2017 Mass Spectral Library (National Institute of Standards, 

Gaithersburg, MD).  

 

2.4  Cold Stress metabolomics 

As a proof of concept for the application of Artemia in metabolomics we exposed newly 

hatched nauplii to 48 hr cold stress prior to metabolite extraction and metabolome analysis.  
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2.4.1 Cold Stress exposures 

Cysts were hatched following the procedure outlined in section 2.1.2. Hatched nauplii were 

transferred from the hatching vessel into twenty 50 mL tanks with 20 mL fresh salt water. 

Ten tanks were maintained at control conditions at 80 °F and ten tanks were kept at 4 °C 

in a cold room, all were maintained with a 16:8h light cycle. After the 48 hr exposure, 

living brine shrimp from each jar were collected in 2 mL microvials and flash frozen in 

liquid nitrogen. The samples were thawed, and the dose solution was exchanged with 

ultrapure water to remove salt. The samples were lyophilized and stored in -80 °C. The 

metabolites were extracted following the procedure outlined in sections 2.2.1.2 and 2.2.1.3 

for bead beating and solvent extraction. 

 

2.4.2 1H NMR parameters for Cold Stress metabolomics experiments 

1H NMR spectra were acquired following the procedure outlined in section 2.3.3 but using 

a Bruker Avance III NMR spectrometer equipped with a 5 mm TCI CryoProbe operating 

at 700.23 MHz. 

 

2.4.2.1 1H NMR data processing parameters 

Spectra were processed using Bruker Topspin 3.2 to phase and reference to DSS (0 ppm). 

Spectral deconvolution and line fitting was performed using MestReNova 11 (Mestrelab 

Research, Escondido, CA). FIDs were apodized by multiplication with an exponential 

function equivalent to 1.5 Hz line broadening, zero-filled to 131072 points, and baseline 

corrected using a Whittaker Smoother function set to autodetect. Peak fitting was 
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conducted using a generalized Lorentzian peak shape, a lower width constraint of 0 Hz, an 

upper width constraint of 30 Hz, position constraint within ± 5%, maximum number of fine 

iterations of 100, and local minima filter of 0. The peak fitting results were exported to 

Excel (Microsoft Office 2017) and the results of each spectrum were normalized to the sum 

of the total area between 0.8-9.0 ppm, excluding the HOD peak between 4.6-5.2 ppm. One 

well-resolved resonance of each metabolite was selected for statistical analysis (Table 2.2).  

 

2.4.3 GC-MS parameters for Cold Stress metabolomics experiments 

A 2 µL aliquot of 3.45 mM Triclosan (Fisher Scientific, Hanover Park, Il) in chloroform 

was added to the GC-MS aliquots as derivatization surrogate. The samples were derivatized 

following the procedure reported in section 2.3.6 with methoxyamine and MSTFA with 

1% TMCS. Instead of adding FAMES to each sample, between every 10 samples, a 

FAMES calibration standard containing a 2 µL aliquot of a fatty acid methyl ester 

(FAMES) standard containing 0.8 mg/mL C8, C9, C10, C12, C14, and C16 and 0.4 mg/mL 

C18, C20, C22, C24, C26, C28, and C30 was run to account for retention time drift. GC-

MS samples were run following the same procedure reported in section 2.3.6. 

 

2.4.3.1 GC-MS processing parameters  

MarkerLynx XS (Waters Corporation) was used for data preprocessing to collect 

integration values for identified metabolites.  Peaks were detected without smoothing from 

an initial retention time of 7.00 min and a final retention time of 32.00 min, with a low-

mass cutoff of 73.5 Da, a high-mass cutoff of 600 Da, and a mass accuracy of 0.10 Da. A 
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peak-to- peak baseline noise value of 1.0, a marker intensity threshold of 25 counts, and a 

mass and retention time window of 0.1 Da/min, with 3.0 noise elimination were used. The 

results were exported to Excel where the retention times and m/z values were matched with 

identified metabolites. One mass−retention time pair with the corresponding area for each 

metabolite was taken for data normalization and statistical analysis. For metabolites with 

more than one silylation product, the most abundant mass-retention time pair for each 

retention time was summed to obtain one value for each metabolite. The mass−retention 

time pair with the highest relative abundance was chosen to represent each metabolite 

(Table 2.2). 

2.4.4 Statistical analysis for Cold Stress metabolomics experiments 

 

Statistical analysis and data visualization was performed using SIMCA 14.1 (Umetrics, 

Malmo, Sweden) and the muma R package in R Studio (v 1.0.136).33 1H NMR and GC-

MS results for each sample were combined in SIMCA for multiblock PCA and PLS-DA. 

Univariate statistical analysis was performed using the muma R package and used to 

identify significant variables in the dataset. This package calculates fold change and p-

value and constructs boxplots and volcano plots from imported metabolite concentrations. 

Using a decision tree, muma runs the Shapiro test to determine which metabolites are 

normally distributed and then runs either the Welch’s t-test for normally distributed data 

and the Wilcoxon-Mann Whitney U Test for non-normally distributed data to calculate a 

p-value.32,33 A significant variable for our purpose is defined as a metabolite that has a 
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measured fold change (fc) 1.2 > fc < 0.8 and p-value < 0.05 when comparing two 

conditions, in this case control versus cold stress.33 

 

3 Results & Discussion 

Environmental metabolomics methods using Artemia franciscana were optimized for 

analysis with NMR and GC-MS. These methods were then used to characterize the Artemia 

metabolome and to study the effect of cold stress on the naupliar Artemia metabolome.  

 

3.1 Optimizing Artemia growth conditions 

At the onset of this project, I set out to determine the most feasible option for conducting 

environmental metabolomics experiments on Artemia franciscana. The initial questions 

included: what conditions are optimal for Artemia growth, what life stage should we study, 

what duration should exposure studies be, and what kind of toxicity tests should we 

perform? We started by following OECD and EPA guidelines for testing Daphnia 

magna.41–43 The OECD chronic and acute toxicity tests for Daphnia use specimens that are 

all at the same life stage. These specimens are often obtained from established aquarium 

colonies. Therefore, we began by attempting to set up an aquarium in which we would 

hatch and grow out the shrimp.  

 

The advantage of a colony of brine shrimp is that we would be able to potentially test 

different life stages and also study fecundity and progeny.44–46 We tested a 10 gallon and 

20 gallon aquarium, each with a 16:8 hr life cycle, constant aeration, 80 °F, and 35 g/L sea 
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salt. Conditions that were suggested from online forums and commercial sea monkey kits 

were followed. These included feeding the shrimp algae every 48 hrs and partially or 

completely exchanging the water every three days. After multiple attempts, we determined 

that our 10 gallon and 20-gallon saltwater aquarium setups would not be sufficient. The 

shrimp that did manage to survive to adulthood, which took 2 months, did not reproduce, 

therefore, a colony was not able to be established. We also experimented with growing 

shrimp in miniature aquariums with only 50 mL, but this also resulted in poor survival for 

longer than a few weeks and would not be suitable for obtaining the repetitions and amount 

of sample necessary for metabolomics experiments. Our conclusion from these attempts 

was that establishing a colony was not going to be simple and that we should consider 

different testing option. 

 

From that point, we initiated cyst-based assays. Artemia cysts are dormant gastrula 

embryos. Female Artemia produce young through either ovoviparous or oviparous 

reproduction. Ovoviparous reproduction occurs during favorable environmental conditions 

and leads to live young nauplii hatched from the mother’s brood sac.18,47 Oviparous 

reproduction occurs when environmental conditions are poor, causing embryonic 

development to be suspended and a hard shell to encase the embryo. This cyst is released 

from the brood sac and floats to the surface of the water until favorable conditions return. 

At the Great Salt Lake, colder temperatures cause female brine shrimp to undergo 

oviparous reproduction and a large harvest occurs every season during which shrimp 

farmers collect the floating eggs which are sold for live food for aquacultures and fish 
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tanks.47 Upon the return of warmer temperatures, the embryo becomes re-hydrated, 

metabolism is kick-started, and the embryo resumes development.17,18  

 

Artemia cysts offer many advantages as a starting point for toxicological assays compared 

to free swimming nauplii. For one, they can easily be used for lab-based and field-based 

experiments.44,46,48 These desiccated brine shrimp cysts can be purchased in bulk and stored 

in a freezer for decades. The standard protocol for hatching shrimp is to use a hatching 

vessel, which is simply any apparatus which produces aggressive bubbles from the bottom 

of the container. Millions of brine shrimp are typically hatched at the same time. A 48 hr 

hatching period maximizes the number of shrimp that breach the shell. After the 48 hr hatch 

period, the OECD Daphnia acute and chronic toxicity tests for 48-hour exposures and 

longer may easily be modified for Artemia.  

 

We have optimized the use of two different tanks for Artemia exposures: 50 mL (jars) and 

300 mL (beaker) tanks (Figure 2.1). In both set-ups, the tanks are housed in a 20-gallon 

aquarium that serves as an incubator to maintain a consistent 80 °F that is standard for 

saltwater aquariums (Figure 2.1a). Oxygen exchange is an important parameter for 

maintaining a healthy tank. The surface area of the 50 mL tanks allowed enough aeration, 

but an air pump was used for the 300 mL tanks. The swimming motion of Artemia also stir 

up the water and contribute to air exchange, which was sufficient for the 50 mL tank, but 

without enough aeration, many of the shrimp in the 300 mL tanks die.49 The other important 

factor for each tank was the distribution of specimens. Standard protocols for Daphnia call 
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for 20 animals per 100 mL media.41 However, it was found that Artemia were still able to 

thrive in a much higher density, which is fortunate as 20 shrimp were insufficient to 

comprise a metabolomics sample. Instead of counting individual shrimp, it was found that 

starting from 1 oz cysts, the hatched nauplii could be distributed into twenty 50 mL, and 

six 300 mL tanks. These parameters were sufficient for an exposure up to 1 week in 

duration.  

 

The different tank types were useful for different applications. The 50 mL tanks could 

provide higher replicates with one sample per tank; therefore, multiple doses or conditions 

could be tested at one time. However, these experiments typically resulted in smaller 

sample volumes and managing more tanks created logistical challenges. The 50 mL tanks 

were also used for range-finding experiments and lethal concentration experiments. With 

the 300 mL tanks, fewer conditions could be tested simultaneously, but for each tank, 

multiple large samples could be taken.  
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Figure 2.1. Aquarium set up labeled with parts. (A) Incubator with 50 mL (jar) tanks (B) 
hatching vessel (C) incubator with 300 mL (beaker) tanks. 
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3.2  Optimizing sample preparation 

Sample preparation is a critical step for metabolomics studies because it affects the quality 

of the data and puts the sample into a form that is suitable for the instrument to be used. In 

order to have consistent and comparable results with other metabolomics studies, the 

commonly used methanol: water: chloroform, two-step extraction method was used to 

extract metabolites from Artemia. This is a liquid-liquid biphasic extraction that isolates 

polar and aqueous classes of compounds from lipophilic compounds.1 This method is 

suitable for NMR and MS analysis. Some studies that solely use NMR for analysis use a 

D2O buffer extraction.19,50 This is suitable for many metabolites such as amino acids and 

sugars but could exclude more polar and polar aprotic metabolites.1,2 The chloroform 

extraction step is also important for removing unwanted lipid molecules that create broad 

peaks that obscure other alkyl resonances. The organic layer can also be analyzed 

separately for lipidomics, but this was not pursued in our study.    

 

Homogenization methods were briefly tested to identify an effective procedure. Tip 

sonication seemed to thoroughly disrupt the tissue, by visual inspection, but it introduced 

heat which was a concern for sample degradation. Additionally, each sample had to be 

homogenized individually because the apparatus is only equipped with one tip, which was 

a concern for reproducibility, cross-contamination from the tip, and the time required for 

sample preparation. The bead beater approach also appeared to disrupt the sample. With 

bead beating homogenization, zirconia beads were added to each sample vial, which was 

placed in a temperature controlled shaking apparatus. This method can also introduce heat, 
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but the temperature-controlled unit prevented this. Twenty-four samples can be 

homogenized simultaneously so we determined that this streamlined approach was the 

most feasible option for reducing the time for sample extraction and for reproducibility.  

 

3.3  Artemia metabolome 

The Artemia metabolome was characterized from a pooled sample of Artemia exposed to 

100 ppm Roundup® to achieve improved detection of low abundance metabolites for both 

1D and 2D NMR analysis. The metabolic impacts of Roundup® exposure are discussed in 

Chapter 3.  The metabolites reported in 1H NMR spectra (Figure 2.5, Table 2.1) include 

amino acids, organic acids, osmolytes, sugars, nucleic acids, and one exogenous 

compound. These molecules were verified with HSQC, COSY, and TOCSY as well as GC-

MS (Figure 2.3, Table 2.1) for some metabolites. NMR and GC-MS together resulted in 

the identification of 43 metabolites in our naupliar Artemia extracts. These metabolites fall 

under the classification of amino acid, osmolyte, sugar, nucleic acid, and polyamine. 

Alanine, betaine, formate, lactate, taurine, homarine, glycerophosphocholine, 

phosphocholine, methanol, guanosine, uridine, cytidine, and gadusol were only detected 

by NMR. There are several reasons why low molecular weight compounds can be better 

measured NMR, for example given the experimental parameters used they may have eluted 

in the GC void volume, are unstable at the separation temperatures employed, fragment 

under electron impact ionization to the degree that their mass-retention time might not be 

discernible or are nonvolatile and lack the functional groups that allow them to be 

derivatized. L dopa, cholesterol, linolenic acid, urea, spermidine, putrescine, uracil, and 
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myo-inositol were only detected by GC-MS. These compounds are present in quantities 

below the limit of detection for NMR or are poorly resolved in the NMR spectrum. Sugars, 

such as glucose, were better resolved in GC-MS but identified by both methods.  
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Figure 2.2. 1H NMR spectra of naupliar Artemia extracts labeled with identified 
metabolites. The chemical shift reference DSS at 0 ppm is shown in the full spectrum, A, 
with each region of the spectrum magnified to show spectral detail. The chemical shift 
range for each inset include: A. 0.8 to 2.2 ppm, B. 2.3 to 3.1 ppm, C. 3.1 to 3.7 ppm, D. 
3.7 to 4.5 ppm, E. 4.5 to 6.5 ppm, F. 6.8 to 8.7 ppm. 

 

012345678
1H (ppm)

0.80.91.01.11.21.31.41.51.61.71.81.92.02.12.2

2.32.42.52.62.72.82.93.0

3.103.153.203.253.303.353.403.453.503.553.60

3.73.83.94.04.14.24.34.44.5

6.87.07.27.47.67.88.08.28.48.6

4.64.85.05.25.45.65.86.06.26.4

Ile

Leu

Lactate +
Thr

Ala

LysMet

Glu

GlnMetAsp
Asn

Lys

Phe

Phosphocholine
Glycerophosphocholine

Arg

Betaine

ProTaurine

Gly

Thr
Val

Ile
Ser

LactateThr
Homarine

HOD Glucose

Maltose

Inosine

Tyr

His

Phe

TrpInosineFormate

Overlapping sugar 
resonances

Asp Val

}

È
Val

}
}

È

}È

È

}

} }

}

È

}È

}

È}}

È

ÈÈ

È
È

}} } }

Betaine

È

ÈGlucose

È

È

Uridine
Guanosine

Cytidine

}

È

} }

È }

His

È

}È

}

}
}

Methanol

È
Choline

È

Isopropyl-
amine*
È

Gadusol

A

B

C

D

EF

A

B

C

D

E

F

DSS

È

È



 87 

Table 2.1. 1H NMR and GC-MS metabolite profile of Artemia extracts 

Metabolites 1H Chemical Shift (ppm) R.I. 
Amino Acid       
Alanine (Ala) 1.464d, 3.77*  
Arginine (Arg) 1.900m, 3.238m 1821.6 
Asparagine (Asn) 2.840m, 2.943dd, 3.99* 1496.9; 1589.2 
Aspartate (Asp) 2.667m, 2.802dd, 3.89* 1511.8 
Glutamate (Glu) 2.051m, 2.139m, 2.342m 1615.4 
Glutamine (Gln) 2.123m, 2.440q, 3.76* 1723.1; 1769 
Glycine (Gly) 3.556s 1303 
Histidine (His) 3.103m, 3.23*, 3.98*, 7.073s, 7.837s 1914.2 
Isoleucine (Ile) 0.929m, 1.002d, 1.252m, 1.461m 1180.3; 1290.5 
Leucine (Leu) 0.952t, 1.708m, 3.72* 1159.7 
Lysine (Lys) 1.470m, 1.714m, 1.907m, 3.018m, 3.75* 1702; 1916 
Methionine (Met) 2.126m, 2.637t, 3.840* 1511.4 
Phenylalanine (Phe) 3.117m, 3.276, 3.983*, 7.318d, 7.372t, 7.418t 1621.3 
Proline (Pro) 2.027m, 2.347m, 3.330m, 3.414, 4.119dd 1295.4; 1573 
Serine (Ser) 3.83*, 3.952m 1356.8 
Threonine (Thr) 1.323d, 4.245m 1381.4 
Tryptophan (Trp) 7.189t, 7.276t, 7.534d, 7.724d 2204.7 
Tyrosine (Tyr) 3.037*, 3.182*, 3.927*, 6.885d, 7.184d 1933.4 
Valine (Val) 0.982d, 1.034d, 2.264m, 3.603* 1213.5 
Osmolyte     
Betaine 3.258s, 3.894s  
Choline 3.185s, 3.51*, 4.052m  
Formate 8.445s  
Glycerol 3.550m, 3.641m  
Glycerophosphocholine 3.212s, 3.40*, 3.47*, 3.75*, 3.98*  
Homarine 4.357s, 8.534dd, 8.77*  
Lactate 1.322d, 4.124m  
Methanol 3.345s  
Phosphocholine 3.195s, 3.58*, 4.17*  
Taurine 3.417m, 3.33* 1660.9 
Sugar     
Gadusol 2.379d, 2.686d, 3.502s, 3.567, 3.718, 4.107s  
Glucose 3.24*, 13.40*, 3.44*, 4.635d, 5.223d 1887.4 
Maltose 4.636d, 5.223d, 5.406d  
Myo-inositol  2072.8 
N-acetylglucosamine 5.196d 2059.2 
Trehalose 5.196d  
Nucleic Acid      
Cytidine 5.899d, 6.093d  
Guanosine 5.899d, 7.899s  
Inosine 4.428m, 6.093d, 8.224s, 8.329s 2566.5 
Uracil 5.794d, 7.528d 1334.1 
Uric acid  2085.1 
Uridine 3.85*, 4.12*, 4.22*, 5.902m, 7.855d  
Polyamine     
Ornithine 3.053t 1610.5;1811.7 
Ornithine-1,5-lactam  1452.6 
Putrescine  1729.1 
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Urea  1240.6 
Other   
L-Dopa  2081.6 
Glycyl-proline  1973.8 
Pyroglutamate 2.03*, 2.39*, 2.501m, 4.168dd  
Exogenous      
Isopropylamine 1.294d, 3.48*  
 
Asterisk (*) indicates resonances that were identified in COSY or TOCSY spectra. These values are 
reported to two decimal places due to reduced resolution in 2D spectra.  
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Figure 2.3. Gas Chromatography-Mass Spectrometry Total Ion Chromatogram (TIC) of 
Artemia extract labeled with selected metabolites labeled. 
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Several peaks and resonances were not able to be identified using metabolomics libraries. 

Isopropylamine, homarine, and gadusol were identified by comparison to published spectra 

after an extensive literature search.51–54 The identities of isopropylamine and homarine 

were confirmed by recording the NMR spectra of authentic standards. Isopropylamine is 

an exogenous compound that is an important ingredient in the Roundup® formulation, and 

it therefore, was not considered part of the Artemia metabolome. Homarine has not 

previously been reported in Artemia but it has been reported in other crustaceans, such as 

the American oyster.53 Homarine has been determined to be an important methyl donor 

and possibly serves as a methyl group reservoir in crustaceans.55,56   

 

Gadusol was more challenging to identify because many of its resonances were masked by 

spectral interference. Gadusol has been reported in Artemia and zebrafish, it is an 

interesting compound with a UV-protective function.51,52,57,58 Only the singlet at 3.502 ppm 

was clearly resolved in the 1D 1H NMR spectrum (Figure 2.2) and because of the limited 

1H-1H coupling the COSY and TOCSY spectra were of limited use in completing the 

spectra assignments. Initially, four intense resonances, 2.379 ppm (d), 2.686 ppm (d), 3.502 

ppm (s), and 4.107 ppm (s), remained unidentified in the NMR spectra after using the 

metabolomics libraries and the in-lab collection of standards. The resonances at 2.379 and 

2.686 were suspected to be equivalent protons because they had identical coupling and had 

similar structural features to citrate. Therefore, we performed a pH titration on control 

samples to verify this connection and to elucidate other structural features (Figure 2.4). It 

was found from a nonlinear regression of the changing chemical shifts versus pH, that these 
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four peaks had the same pKa (4.1) suggesting that the molecule had only one ionizable 

group, perhaps a carboxylate.58 Next, using mixed cation exchange SPE, we were able to 

clean up the spectrum and clearly resolve the resonances at 2.379 (H-2), 2.686 (H-2), 3.501 

(H-9), 3.567 (H-12), 3.718 (H-12), and 4.107 (H-6) ppm (Figure 2.5). 1H-1H coupling with 

COSY and TOCSY verified that the H-2 resonances were equivalent with a 17.10 Hz 

coupling and also revealed that the H-12 resonances were equivalent with a 12.21 Hz 

coupling, but no other coupling was identified (Figure 2.6).  

 

Using 1H-13C heteronuclear single quantum correlation spectroscopy (HSQC), the carbon 

resonance for each proton resonance was identified. The carbon shift for H-2 protons (C-

2) occurs at 43.3 ppm, C-9 occurs at 62.5 ppm, C-12 occurs at 66.2 ppm, and C-6 occurs 

at 78.3 ppm (Figure 2.4, Figure 2.7), however, the arrangement of carbons and protons was 

till not apparent. Homonuclear multiple bond correlation (HMBC) aided in the structural 

elucidation of gadusol by showing long range 1H-13C couplings (Figure 2.8). In this 

spectrum, cross peaks that are aligned vertically and horizontally are connected within 2-3 

bonds. This experiment verified that H-2 is connected to C-6, C-12, and C-9, H-6 is 

connected to C-2 and C-12, H-9 is connected to C-2, and H-12 is connected to C-6 and C-

2.  

 

Finally, the identity of gadusol was verified in our extracts from a mass spectrum (Figure 

2.9). The mass and molecular formula for gadusol is reported as 204.178 g/mol and 

C8H12O6. Using LC-MS/MS in negative ion mode, the parent ion [M-H] was measured at 
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202.92 m/z, this constitutes the loss of one proton (C8H11O6). Collision induced 

dissociation of the parent ion resulted in losses and ring cleavage products. Loss of the 

hydroxyl group at C-12 converts it to a methyl group with the formula C8H9O5, loss of this 

methyl group at C-1 leads to C7H7O5, ring cleavage leads to C4H3O3. These fragments were 

confirmed against predicted LC-MS/MS spectra in the HMDB database.27  
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Figure 2.4. Stacked 1H NMR spectra of Artemia extracts titrated from pH 1.94 to 7.34 
with four well-resolved gadusol resonances labeled. (A) 2.30 to 2.95 ppm showing peaks 
1 and 2 (B) 3.45 to 3.62 ppm showing peak 3 (C) 4.03 to 4.41 ppm showing peak 4. (D) 
Non-linear regression of the resonances with respect to pH revealed that these four 
resonances had the same pKa =4.1. (E) Table of peaks, with 1H and 13C chemical shift, J-
coupling constant in Hz, and multiplicity. 
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Figure 2.5. 1H NMR spectrum of Artemia extracts (0 – 9.5 ppm). The expanded region 
shows the extracts after mixed cation exchange clean-up (2.3 – 4.2 ppm), gadusol and 
taurine resonances are labeled. Gadusol-H2 refers to the doublet of doublets at 2.379 and 
2.686 ppm (J = 17.10 Hz), H-9 refers to the singlet at 3.501 ppm, H-12 refers to the 
doublet of doublets at 3.567 and 3.718 ppm (12.21 Hz), and H-6 refers to the singlet at 
4.107 ppm.  
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Figure 2.6. Two-dimensional homonuclear NMR spectra (left) TOCSY and (right) COSY 
of Artemia extracts labeled with gadusol resonances. Cross peaks represent 1H-1H 
coupling, which was observed for H-2 protons (J = 17.10 Hz) and H-12 protons (J = 
12.21 Hz), but no further coupling was observed for gadusol. 
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Figure 2.7. 1H-13C HSQC spectrum of Artemia extracts after mixed cation exchange clean-
up. Gadusol resonances for C-2 (43.3 ppm), C-9 (62.5 ppm), C-12 (66.2 ppm), and C-6 
(78.3 ppm) are labeled.  
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Figure 2.8. 1H-13C HMBC spectrum of Artemia extracts with the gadusol resonances 
labeled. Cross peaks that are aligned vertically and horizontally are connected through 2-
3 bond long-range 1H-13C coupling.   
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Figure 2.9. LC-MS/MS of Artemia extracts. a) Full mass spectrum of gadusol in negative 
ion mode. Inset shows expanded region of parent ion. b) Collision induced dissociation of 
parent ion yields various losses and ring cleavage products. 
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3.4 Cold Stress metabolomics 

Cold stress was chosen for the environmental metabolomics proof of concept experiment 

because it is a known stressor for Artemia and the effects have previously been studied in 

Artemia and other invertebrates and extremophile species.18,59–61 Seasonal weather changes 

in the Great Salt Lake have an effect on Artemia reproduction. During unfavorable 

environmental conditions, such as cold or hypoxic water, female Artemia lay dormant cysts 

instead of live young. These dormant cysts will only hatch once conditions become more 

favorable. At times when conditions seem favorable, cysts will start to reactivate, but if 

conditions reverse, the developing embryos will resume dormancy.17,18 In our study, the 

naupliar Artemia are unable to revert to the dormant state because they have already 

hatched; still our observations of the changes in metabolite levels are related to many of 

the important metabolites for the developing cysts. As shown in the example control and 

cold stress NMR spectra (Figure 2.10) and GC-MS TIC (Figure 2.11), the metabolites that 

appear to be important for responding to cold stress include glucose, trehalose, maltose, 

and glycerol. These molecules are important for gluconeogenesis which leads to 

downstream metabolic processes and for stabilizing the lipid bilayer during temperature 

extremes.62 However, to examine whether these observed changes are significant, 

statistical analyses are required.  

 

The identifying information for each metabolite used for statistical analysis can be found 

in Table 2.2. Due to small sample sizes (1 – 4 mg), not all metabolites in the previously 

reported Artemia metabolome (Table 2.1) were used for statistical analysis. Using SIMCA, 
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GC-MS and NMR results for each sample were combined for multiblock multivariate 

analysis (Figure 2.12). For PCA, 58.5% of the variance between the cold stress and control 

data can be explained by PC 1 (43.9%) and PC 2 (14.6%). OPLS-DA predicts 49.7% class 

discrimination between the cold and control conditions. Choline, methanol, alanine, 

glucose, maltose, trehalose, glycerol, arginine, and AMP were identified by both OPLS-

DA and PCA loading plots in the cold stress quadrants, indicating that these metabolites 

are strongly affected. 

 

Univariate statistical analysis was used for pairwise comparisons to identify significant 

variables in the dataset. A significant variable is defined as a metabolite that has a measured 

fold change (fc) 1.2 > fc < 0.8 and p-value < 0.05 when comparing two conditions, control 

vs cold stress. The significant variables for GC-MS are isoleucine, lysine, methionine, 

phenylalanine, serine, threonine, tryptophan, tyrosine and glucose. The NMR significant 

variables include arginine, aspartate, histidine, leucine, lysine, methionine, acetylcholine, 

phosphocholine, glucose, trehalose, and AMP. In both datasets, glucose is the driving 

variable for the difference between the cold and control conditions with a 4-fold increase 

in concentration under cold stress. Maltose could not be evaluated by univariate analysis 

because it was not detected under control conditions and a fold change cannot be calculated 

from a zero value.  
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Figure 2.10. 1H NMR spectra of Artemia extracts from organisms treated with cold (red) 
and control (black) overlaid. The insert shows the anomeric sugar resonances of maltose, 
glucose, trehalose, which are expressed in higher concentrations for the cold stress 
samples. 
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Figure 2.11. (Top) Full GC-MS spectrum for control Artemia extracts, the triclosan 
derivatization surrogate and C24 FAMES internal standard are labeled. (Bottom) 
Magnified region of the spectrum with a control spectrum (red) overlaid with a cold 
spectrum (purples). Prominent metabolites are labeled.  
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Table 2.2. Metabolites used for statistical analysis 

Metabolite 1H Chemical Shift (ppm) GC-MS Peaks   R.I. m/z 
Amino Acid         
Alanine (Ala) 1.464       
Arginine (Arg) 
  

3.245 
  

Arginine 3TMS 1822.2 256.21 
Arginine 3TMS 1822.2 157.14 

Asparagine (Asn) 
  
  

2.930 
  
  

Asparagine 2TMS 1497.2 115.1 
Asparagine 2TMS 1497.2 100.07 
Asparagine 3TMS 1663.8 116.11 

Aspartate (Asp) 2.790 Aspartate 3TMS 1512.2 232.15 
Glutamate (Glu) 2.050 Glutamate 3TMS 1616.4 246.17 
Glutamine (Gln) 2.427 Glutamine 3TMS 1769.4 156.11 
Glycine (Gly) 3.546 Glycine 3TMS 1302.7 174.14 
Histidine (His) 7.056 Histidine (3TMS) 1914.6 254.18 
Isoleucine (Ile) 
  
  
  

0.919 
  
  
  

Isoleucine 1TMS 1180.3 75.04 
Isoleucine 1TMS 1180.3 86.11 
Isoleucine 2TMS 1259.6 158.16 
Isoleucine 2TMS 1259.6 218.14 

Leucine (Leu) 
  
  

0.961 
  
  

Leucine 1TMS 1158.5 75.04 
Leucine 1TMS 1158.5 86.11 
Leucine 2TMS 1238.4 158.16 

Lysine (Lys) 
  

3.016 
  

Lysine 4TMS 1919.1 174.14 
Lysine 4TMS 1919.1 317.27 

Methionine (Met) 2.127 Methionine 2TMS 1511.4 176.11 
Phenylalanine (Phe) 
  

7.315 
  

Phenylalanine 2TMS 1622.3 91.07 
Phenylalanine 2TMS 1622.3 218.14 

Proline (Pro) 
  
  
  

3.336 
  
  
  

Proline 1TMS 1176.9 172.11 
Proline 2TMS 1264.3 142.12 
Proline 2TMS 1264.3 186.13 
Proline 2TMS 1264.3 142.13 

Serine (Ser) 3.946 Serine 3TMS 1356.7 132.1 
    Serine 3TMS 1356.7 218.13 
Threonine (Thr) 
  

4.238 Threonine 3TMS 1381.5 117.09 
  Threonine 3TMS 1381.5 218.17 

Tryptophan (Trp) 
  

7.722 
  

Tryptophan 3TMS 2205.6 202.14 
Tryptophan 3TMS 2205.6 291.2 

Tyrosine (Tyr) 6.885 Tyrosine 3TMS 1934 218.14 
Valine (Val) 
  
  

1.027 
  
  

Valine 1TMS 1098 75.04 
Valine 2TMS 1212.3 218.14 
Valine 2TMS 1212.3 144.14 

Osmolyte         
Acetylcholine 3.182    
Betaine 3.255 

  
  

Choline 3.191 
  

  
Glycerol 3.641    
Glycerophosphocholine  3.218 

  
  

Phosphocholine 3.201 
  

  
Sugar         
Glucose 
  
  

 5.223 
  
  

Glucose 5TMS 1888.8 147.09 
Glucose 5TMS 1888.8 319.21 
Glucose 5TMS 1888.8 205.14 
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    Glucose 5TMS 1888.8 205.14 
Gadusol 3.500       
Maltose 5.402    
Trehalose 5.196    
Nucleic Acid          
Inosine 
  

8.329 
  

Inosine 4TMS 2566.5 217.15 
Inosine 4TMS 2566.5 230.15 

Polyamine         
Urea 
  

  
  

Urea 1280.7 189.12 
Urea 1280.7 171.11 

Other         
AMP 8.239    
Homarine 4.355 

   

Taurine 3.422    
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a 

 

b 

 
Figure 2.12. (a) PCA score plot and (b) PCA loadings plot showing 43.9% variance in PC1 
and 14.6% variance in PC2. Maltose, glucose, trehalose, AMP, choline, arginine, and 
glycerol driving much of the variance. 
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Table 2.3. Cold Stress Significant Variables 

Metabolite NMR GC-MS 
Amino Acid p-value Fold Change p-value Fold Change 
Alanine 0.039 0.9224   
Arginine 0.008 0.5791   
Asparagine 0.095 1.2568   
Aspartate 0.025 1.3173   
Glutamate 0.310 1.1017 0.053 1.3203 
Glutamine 0.095 1.0963   
Glycine 0.016 1.1161   
Histidine 0.009 1.3273   
Isoleucine 0.999 0.9999 0.000 1.8714 
Leucine 0.000 1.2732   
Lysine 0.013 1.2578 0.024 4.0316 
Methionine 0.002 1.3258 0.003 1.8697 
Phenylalanine 0.020 1.1712 0.040 1.3717 
Proline 0.665 1.1282 0.796 1.0842 
Serine 0.644 1.0309 0.001 1.9914 
Threonine 0.131 1.1366 0.000 2.1946 
Tryptophan 0.091 1.9527 0.010 2.6442 
Tyrosine 0.308 1.0471 0.023 1.6544 
Valine 0.000 1.1986 0.546 1.7960 
Osmolyte     
Acetylcholine 0.010 2.1620   
Betaine 0.371 1.0615   
Choline 0.421 0.7557   
Glycerophosphocholine 0.974 1.0052   
Phosphocholine 0.007 1.2170   
Sugar     
Glucose 0.001 0.3791 0.005 0.04612 
Gadusol 0.054 1.1324   
Trehalose 0.000 0.0444   
Nucleic Acid     
Inosine 0.059 0.8510   
Polyamine     
Urea   0.085 3.9008 
Other     
AMP 0.001 0.5686   
Homarine 0.205 1.0816   
Taurine 0.151 0.9750   
* Wilcoxon-Mann-Whitney U Test P-Value   
*Statistically Significant P-Value (P < 0.05)   
*Fold change between 0.8 and 1.2   
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The biomarkers, or significant variables, that were identified in the Artemia metabolome 

exhibited statistically significant (p < 0.05) fold changes that were greater than 1.2 or less 

than 0.8. Glucose is the metabolite that contributes most to the variance between the control 

and cold conditions. The 1D 1H NMR spectra (Figure 2.10) clearly indicate a large increase 

in the glucose resonances at 4.6 and 5.2 ppm. A similar increase is observed in the GC-MS 

TIC (Figure 2.11) at 16.11 min. The large increase also affects the “sugar” region of the 

NMR spectra between 3 ppm and 4 ppm where the sugar resonances have obscured the 

signals from other metabolites in that region, such as the taurine triplet at 3.422 ppm. 

Maltose (5.40 ppm) and trehalose (5.19 ppm) also show notable increases in the 1H NMR 

spectrum of cold stressed Artemia. These metabolites are important for cryoprotection in 

many invertebrate organisms that live in extreme environments.   

 

Certain extremophiles, including Artemia, utilize cryoprotectant molecules to protect their 

internal structures from harsh environmental conditions.59,63–65 The freeze tolerant frog, 

Rana sylvatica, the Antarctic midge, Belgica antarctica, and the tardigrade, Milnesium 

tardigradum, utilize similar mechanisms to protect internal structures from cold and 

dehydration. Freezing induced rapid glucose accumulation in Rana sylvatica along with 

a decline in ATP and aspartate, glutamate, and glutamine.63  The Antarctic midge utilizes 

trehalose, glycerol, glucose, and proline to combat dehydration and extreme cold.59 

Maltose, glucose, glycerol, and trehalose play an important role in stabilizing the 

phospholipid bilayer for tardigrades in freezing temperatures.62,64,65 In the encysted 

Artemia embryo, energy is stored in the form of trehalose. As the embryo emerges and 



 108 

develops through the naupliar stages, trehalose is converted to glucose with the help of the 

proteolytic trehalase enzyme.17,18 Trehalase and the other proteolytic enzymes that are 

involved in Artemia development are highly sensitive to environmental conditions, such as 

temperature, hypoxia, and pH.17 Glucose accumulation may indicate suspended 

development and increased energy storage in response to the cold temperature.  

 

In addition to the effects on cryoprotectant sugars, there was an observed decrease in total 

amino acid concentration, which may be explained by suspension of gluconeogenesis in 

response to poor environmental conditions. This would cause the developing organism to 

enter a state of energy conservation, such that amino acid metabolism slows, protein and 

lipid synthesis and metabolism is inhibited, and organismal growth slows. The significant 

variables are also related to these processes. Lysine and arginine are involved in protein 

synthesis. AMP is an energy molecule. Acetylcholine and phosphocholine are involved in 

glycerophospholipid metabolism.66 The branched chain amino acids, leucine and 

isoleucine, are involved in stress, energy and muscle metabolism.29 Other pathways that 

may have been affected include the phenylalanine, tyrosine, and tryptophan biosynthesis 

pathway and the glycine, serine, threonine metabolism pathway, these metabolites were 

expressed at lower levels under cold stress.67,68  

 

4 Conclusions 

We have developed growth, sample preparation and instrumental methods for using 

Artemia franciscana as a model organism for environmental metabolomics and we have 
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applied these methods to study cold stress as a proof-of-concept experiment. Using 

multivariate and univariate analysis of 1H NMR and GC-MS data we determined that cold 

stress led to increased accumulation of sugars and cryoprotectants such as glycerol, 

trehalose, glucose, and maltose. We also measured a general decrease in amino acids 

related to protein synthesis and energy storage. These results agree with known metabolic 

pathways related to Artemia growth and development and are also consistent with other 

studies on freeze tolerant frogs, midges, and tardigrades. These results suggest that Artemia 

franciscana can be used as a model species for environmental metabolomics analysis of 

saltwater pollutants and in future studies we will study the effects of aquatic contaminants 

on the Artemia metabolome in order to identify stressors and determine their toxic mode 

of action.  
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Evaluating sub-lethal stress from Roundup® exposure in Artemia franciscana using 1H 

NMR and GC-MS 

CHAPTER THREE 

Abstract 

We have developed an environmental metabolomics method for the exposure of Artemia 

franciscana to the broad-spectrum herbicide, glyphosate, and the analysis of their 

metabolite extracts using 1H NMR and GC-MS. It was determined that unformulated 

glyphosate did not have a detectable effect on Artemia hatch rate, mortality, or metabolic 

perturbation, and that the polyethoxylated tallow amine (POEA) adjuvant and 

isopropylamine stabilizing salt likely contribute to toxic effects. The LC50 for a 48 hr 

exposure of Roundup® was determined to be 237 ± 23 ppm glyphosate in the Roundup® 

formulation. Artemia cysts were hatched and exposed to sub-lethal glyphosate 

concentrations of 1, 10, 50, or 100 ppm glyphosate in Roundup®. Dose-dependent 

metabolic perturbation was evident from principal component analysis and partial least 

squares-discriminant analysis. Metabolites that change significantly from Roundup® 

exposure include aspartate, formate, betaine, glucose, tyrosine, phenylalanine, gadusol, and 

isopropylamine. Biochemical pathway analysis with the KEGG database indicates 

impairment of carbohydrate and energy metabolism, folate-mediated one-carbon 

metabolism, Artemia molting and development, and microbial metabolism.  
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1. Introduction 

Glyphosate is the most widely used pesticide with an estimated 250 million pounds applied 

in the United States in 2015.1 In California alone, it is one of the top five pesticides used 

in each county for landscape management and crops such as grapes, alfalfa, avocado, citrus, 

and almonds.2 The most common use of Roundup® is post-emergent application on 

Roundup Ready® corn and soybeans. These seeds are genetically modified to be resistant 

to Roundup®; therefore, every living plant except for corn and soybeans in an agricultural 

field will be killed after application of this herbicide.3,4 Glyphosate-based products are also 

widely applied on a smaller scale for gardening and landscaping. Glyphosate is not 

generally considered a harmful contaminant because it is minimally toxic to animals, is 

readily degraded by soil microbes, and has low leach potential.4,5 However, due to poor 

management of this herbicide, it and its primary metabolite, aminomethylphosphonic acid 

(AMPA) is detected at sublethal levels in many water systems.5–7 Roundup® is a well-

characterized environmental contaminant and has been thoroughly studied in soil and 

freshwater systems, but there are few studies on the effects of Roundup® in saltwater 

lakes.8,9 Many studies have found that glyphosate products affect aquatic organisms, 

therefore,  we hypothesize that glyphosate may impact saltwater organisms such as Artemia 

franciscana.8,10–12 

 

Monsanto commercialized Roundup Ready® seeds in 1996, since this time, the volume of 

glyphosate applied on crops annually has increased from 30 to 250 million pounds in the 

US.2,13 This growth is due to both increased use of genetically modified crops and also 
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glyphosate-resistant weeds cropping up all over the country, which necessitates applying 

larger volumes.10,13 Glyphosate’s primary action is the inhibition of the enzyme 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), which is located in chloroplasts and 

is a critical part of the shikimate pathway. Inhibition of this enzyme prevents the production 

of chorsimate, which is needed for aromatic amino acid biosynthesis pathways as well as 

the synthesis of other aromatic compounds such as salicylic acid, an important plant 

hormone, Vitamin K and folate.14 This pathway is present in plants and bacteria, but not in 

animals, with the exception of bacteria that reside in gut microbiota.14 

 

Glyphosate is a small, polar molecule that is highly soluble in water. Glyphosate is resistant 

to chemical degradation, is stable in sunlight, and has a low tendency to runoff (Table 3.1). 

It is relatively immobile in most soil environments because it adsorbs strongly to soil 

particles. The field dissipation half-life for glyphosate is approximately 44 days and its 

primary metabolite is aminomethylphosphonic acid (AMPA). AMPA is further broken 

down into smaller constituents such as ammonium, carbon dioxide, and phosphate (Figure 

3.1). However, despite its’ low-leachability, in a 2002 study completed by the USGS, out 

of 154 water samples, glyphosate was detected in 36% and AMPA was detected in 69% of 

samples.15 The highest measured concentration for glyphosate was 8.7 ppb, which is well 

below the maximum contaminant level (MCL) of 700 ppm, and the highest concentration 

measured for AMPA was 3.6 ppb. Glyphosate run-off occurs as a result of poor agricultural 

management due to overapplication and application on rainy days. It also occurs from poor 

management of household applications.9,13,15  
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Many people are concerned about potential side-effects from widespread detection of 

glyphosate in terrestrial and aquatic environments.5,13 Toxicity testing has revealed that 

there are minimal risks to oral and dermal glyphosate exposure in mammals and it is 

unlikely carcinogenic or teratogenic for humans.10 AMPA was found to be even less toxic 

than the parent compound. However, long-term exposure to glyphosate led to reduced body 

weight, liver toxicity, and loose stool in dogs and rats.10 Toxicity results for aquatic species 

differ from those of terrestrial species.4,11 Bluegill sunfish and rainbow trout were 

susceptible to glyphosate exposures below the MCL (Table 3.2).4 Also, trace levels of 

glyphosate affected growth, metabolism, and energy utilization in juvenile crayfish.16 

There is no reported toxicity information for Artemia franciscana.  

 

Several studies have shown that the formulation of glyphosate is more toxic than the active 

ingredient. Roundup® is the Monsanto company’s formulation of the active ingredient 

glyphosate (Figure 3.2).13 This active ingredient needs other components for stabilization 

and for delivery through plant cuticles. The formulation used in this study uses 

isopropylamine as the stabilizing salt, other formulations use potassium or dimethylamine.2 

Different adjuvant compositions are also used for Roundup® but the exact chemical 

formulas are proprietary.17 The adjuvant is a polyethoxylated tallow amine (POEA) with 

different side chains and oxide:tallow amine ratios.17,18 POEA and isopropylamine have 

been reported to be more toxic than the glyphosic acid, and POEA varieties have been 

found to be highly toxic to North American frogs and fairy shrimp.12,17 Due to the reported 
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toxicity of the Roundup® ingredients, these different ingredients were individually tested 

for their effect on the Artemia metabolome.   

 

This study uses gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic 

resonance (NMR) to evaluate changes in Artemia metabolite levels in response to exposure 

to the Roundup® herbicide. NMR is a rapid, robust, and quantitative technique that 

requires minimal sample preparation.19,20 GC-MS requires derivatization, but its lower 

limits of detection and well-established libraries provide greater coverage of the 

metabolome.21–24 The complementarity of NMR and GC-MS produce a more 

comprehensive analysis of the Artemia metabolome than could be obtained with either 

method alone. 24,25 

 

The aims of this study are to identify the lethal concentration (LC50) of Roundup® in 

Artemia, characterize the metabolite profile of Artemia 48 hr after hatching using NMR 

and GC-MS, characterize the molecular response of Artemia to sub-lethal Roundup® 

exposure, and to ascertain how the Roundup® ingredients contribute to the metabolic 

perturbation. Analysis with principal component analysis (PCA) and univariate statistical 

methods helped identify biomarkers of sub-lethal Roundup® exposure providing insights 

about the mode of action.  
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Figure 3.1. Glyphosate (N-(Phosphonomethyl)glycine) degradation pathways. The 
primary degradants are aminomethyl phosphonic acid (AMPA) and glyoxylic acid. 
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Figure 3.2. Ingredients for the Roundup® formulation: the active ingredient glyphosate, 
the stabilizing salt isopropylamine, and the adjuvant polyethoxylated tallow amine 
(POEA) 
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Table 3.1. Physical and chemical properties of glyphosate 

Molecular weight 169.08 g/mol 
Water solubility 11,600 ppm (25 ºC) 
Soil adsorption coefficient (Kd) 61 g/m3 

Octanol-water coefficient log (Kow) -3.5 
Field dissipation half-life 44 days 
Half-life (aquatic, freshwater)3 2-91 days 
Half-life (aquatic, freshwater)8  47 days at 25 ºC in low light 

315 days at 31 ºC in dark 
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Table 3.2. Glyphosate toxicity information for select terrestrial and aquatic organisms 

Rat (oral) LD50 4320 mg/kg4 
Rat (oral) 90-day NOAEL 300 mg/kg bw per day10 

Mallard duck 8-day LC50 > 4640 ppm4 
Bobwhite quail LD50 > 3851 mg/kg4 
Bluegill sunfish (96 hr) LC50 ~ 78 ppm4  
Rainbow trout (96 hr) LC50 38 ppm4 
Daphnia magna (48 hr) LC50 930 ppm4 
Honeybee LD50 > 100 µg/bee4 
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2. Materials and Methods 

2.1. Roundup® effect on hatch rate 

The effect of Roundup®, glyphosate and AMPA on brine shrimp hatch rate was determined 

using petri dish experiments (described below).26 Roundup Weed & Grass Killer 

Concentrate Plus purchased from The Home Depot® was used for analysis of the 

glyphosate formulation, 96% N-(Phosphonomethyl)glycine (Sigma-Aldrich, St. Louis, 

MO) was used for authentic glyphosate, and 99% (Aminomethyl)phosphonic acid (Sigma-

Aldrich) was used for AMPA. The Roundup® formulation contains 18.00 % glyphosate 

isopropylamine salt, which converts to 142600 ppm glyphosate in Roundup®. Stock 

solutions of Roundup® (0 to 7000 ppm glyphosate in Roundup®), glyphosate (0 to 400 

ppm), and AMPA (0 to 400 ppm) were prepared in 35 g/L Oceanic Natural Sea Salt Mix 

mixed in ultrapure water, the solutions were adjusted to pH 8.0. Glyphosate and AMPA 

could not be dissolved at concentrations higher than 400 ppm in saltwater.  

 

Grade A brine shrimp cysts (Brine Shrimp Direct, Ogden, UT) were immobilized on glass 

slides using a small paint brush with double sided sticky tape. The slide was immersed in 

a petri dish (Eppendorf) filled with 15 mL of media dosed with Roundup®, glyphosate, or 

AMPA. For each dose, there were three replicate petri dishes containing 15-20 

immobilized cysts. The petri dishes were stacked in an incubator maintained at 80 °F with 

constant light. After a 48 hr hatch period the number of hatched nauplii and unhatched 

shrimp were counted under a dissecting microscope at 10x magnification (Nikon SMZ 2B) 
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equipped with a Low-Noise Illuminator light source (Cole Palmer Model 9741-50). The 

petri dishes were returned to the incubator for an additional 48 hrs, but now maintained at 

a 16:8 hr light cycle. At the end of this period, the shrimp were counted again, this time 

accounting for living and dead shrimp that had hatched. 

2.2. Glyphosate Exposures 

Brine shrimp cysts were hatched according to the procedure presented in Chapter 2, section 

2.1.2. To determine the Roundup® LC50, 20 nauplii (early life stage of Artemia) were 

transferred into each jar for 10 replicates per dose ranging from 0 to 300 ppm glyphosate 

in Roundup®. Solutions were adjusted to pH 8.0 for all doses. The numbers of dead and 

living brine shrimp in each jar were recorded after 48 hr. A sigmoidal curve was fit to the 

morality data points in OriginLab (OriginLab Corporation, Northampton, MA), and the 

lethal concentration for 50 % of the population (LC50) was determined from the inflection 

point of the curve.  

 

For sub-lethal Roundup® exposures, cysts (1 oz) were hatched and nauplii were evenly 

distributed into fifty 50 mL jars for dose-response exposures (0 ppm, 1.00 ppm, 10.0 ppm, 

50.0 ppm, 100 ppm). After a 48 hr exposure, living brine shrimp from each jar were 

collected in 2 mL microvials and flash frozen in liquid nitrogen. The samples were thawed, 

and the dose solution was exchanged with ultrapure water to remove salt and Roundup®. 

The samples were lyophilized and stored at -80 °C.  
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To assess the effect of Roundup® exposure and identify which formulation ingredients 

contribute to toxicity, in separate experiments Artemia were exposed for 48 hr to 100 ppm 

glycine (Fisher Scientific, Hanover Park, Il) as a positive control, 50.0 and 100 ppm 

glyphosate (Sigma Aldrich), and 50.0 ppm isopropylamine (Acros Organics, Morris, NJ), 

and samples were collected for GC-MS and NMR analysis.  
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Figure 3.3. Petri dish experiments. (A) The cysts are loaded onto a glass slide using a 
paintbrush. They are immobilized onto double-sided tape that is partially covered by a 
piece of transparency film. (B) Magnified region showing immobilized cysts submerged 
in water. The cysts are approximately 200 µm in diameter. 
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2.3. Sample preparation and Instrumental Analysis 

Dehydrated Artemia samples were extracted according to the protocol in Chapter 2, section 

2.2.1.3. 1H NMR spectra were acquired with a Bruker Avance III NMR spectrometer 

(Billerica, MA) equipped with a 5 mm TCI CryoProbe operating at 700.23 MHz. The 

protocol for NMR acquisition and processing are found in Chapter 2, sections 2.3.3 and 

2.4.2.1. The protocols for derivatization, GC separation, and MS analysis are found in 

Chapter 2, section 2.3.6.  

2.4. Data Analysis 

Statistical analysis and data visualization was performed using SIMCA 14.1 (Umetrics, 

Malmo, Sweden) and the muma R package in R Studio (v 1.0.136).27 NMR and GC-MS 

results for each sample were combined in SIMCA for multiblock PCA. Univariate 

statistical analysis was performed using the muma R package. This package calculates fold 

change and p-value and constructs boxplots and volcano plots from imported metabolite 

concentrations.  

 

The R package PAPi was used for pathway analysis of Artemia metabolites and their 

measured responses to Roundup® exposure.28 Spreadsheets were constructed according to 

the specifications of the PAPi package with metabolite identity, 2 sample treatments 

(control and 100 ppm Roundup®), and sample replicates in separate columns. PAPi queries 

the Kyoto Encyclopedia of Genes and Genomes database (KEGG, Kyoto University, 

Japan) to first convert metabolite names to KEGG codes and then to extract biochemical 
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pathway information. An activity score is calculated from the number of metabolites 

identified from each pathway and the relative abundance of each metabolite in a sample. 

A line graph of the activity score of significant pathways (p < 0.05) is plotted with the 

control group and the Bonferroni correction set as a reference.  

 

3. Results and Discussion 

The metabolomics analysis of sublethal exposure to Roundup® led to the identification of 

seven potential endogenous metabolite biomarkers of Roundup® exposure and one 

potential exogenous biomarker. Additionally, pathway analysis of the metabolite shifts 

indicated biochemical pathways that might be perturbed by Roundup® exposure.  

3.1. Hatch Rate 

Artemia cysts are highly susceptible to the environment and will not hatch in unfavorable 

conditions, such as low pH, hypoxia, or low temperatures.29,30 In order to determine if 

Roundup® creates an unfavorable environment, hatch rate tests were conducted with 

Roundup®, glyphosate, and AMPA.29  Initial range-finding studies from 0 – 7000 ppm 

Roundup®, 0-400 ppm glyphosate, and 0 – 400 ppm AMPA revealed that none of these 

compounds influenced the Artemia hatch rate. It was also determined that glyphosate nor 

AMPA had any effect on Artemia post-hatch mortality. However, significant post-hatch 

mortality was observed for nauplii hatched in 100 ppm – 7000 ppm glyphosate in 

Roundup® (Figure 3.4). This result was followed up with further mortality tests to identify 

the LC50 for Roundup® exposure.  
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Figure 3.4. Hatch Rate and mortality for cysts hatched in 0-7000 ppm glyphosate in the 
Roundup® formulation, three replicates per dose with n=15-20 cysts per dish. There was 
not a statistical difference in hatch rate (dark), but post-hatch mortality was observed for 
high dose Roundup® exposures (light). 
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3.2. Glyphosate lethal concentration 

Mortality studies for a 48 hr exposure were conducted to identify the concentrations of 

glyphosate in Roundup® that cause mortality. Seven concentrations ranging from 0 to 500 

ppm glyphosate in Roundup® were evaluated with 10 replicate tanks per dose each 

containing 20 nauplii. There was a slight decrease in mortality for low dose Roundup® 

exposures (0-100 ppm) compared to control conditions and then increasing mortality was 

observed until complete mortality was reached at the highest dose after 48 hours (Figure 

3.5). The lethal concentration for 50 % of the starting population of nauplii (LC50) was 

determined from the inflexion point of the sigmoidal curve and was determined to be 237 

± 23 ppm glyphosate in Roundup®. This value was determined to find a starting point for 

testing the sublethal effects of Roundup® for metabolomics studies with glyphosate. The 

remainder of the Roundup® exposures were conducted below the calculated LC25 (~118 

ppm).  

 

The lethal concentration determined for Roundup® is lower than the reported toxicity of 

glyphosate for Daphnia magna and higher than the toxicities reported in sunfish and trout 

(Table 3.2). We were unable to determine a lethal concentration for glyphosate because no 

mortality was observed when the solubility limits were reached at 400 ppm. Saltwater 

organisms may be less susceptible to Roundup® due to the solubility limits of this 

compound, especially in saltwater lakes where salinity levels can reach over 300 ppm.31 

The glyphosate formulation of Roundup® had toxic effects in naupliar Artemia so this was 

the focus of the remaining exposures. 
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Figure 3.5. Dose-Response Plot for Artemia mortality with exposure to Roundup®. The 
LC50 is determined to be 237 ± 23 ppm glyphosate in Roundup® (Origin Lab). 
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3.3. Dose-dependent metabolite changes 

3.3.1. Roundup® Exposures 

The lethal concentration for 50% of the Artemia population was determined to be 237 ± 23 

ppm glyphosate in the Roundup® formulation (Figure 3.5). Metabolomics analysis was 

conducted on Artemia exposed to 0, 1, 10, 50, and 100 ppm Roundup® concentrations to 

elucidate the sublethal dose-dependent metabolic impacts. A representative spectrum for 

NMR (Figure 3.6) and total ion chromatogram GC-MS (Figure 3.7) with control versus 

100 ppm Roundup® show peaks that correspond to metabolites that change significantly. 

Isopropylamine, aspartate, betaine, gadusol, tyrosine, and formate have a noticeable 

difference in 1H NMR peak height. The peak area for glucose is also considerably different 

in the GC-MS TIC.  

 

Using multiblock multivariate analysis, the results for NMR and GC-MS were combined 

for each sample to better visualize the variation in the whole dataset and confirm the 

identification of metabolites that contribute to the variation between groups. The 

metabolites reported in the Artemia metabolome (Table 2.1) were not all considered for 

metabolomics analysis because larger pooled sample quantities were used for profiling than 

were possible in the experiments. The metabolites that were measurable in the experimental 

procedure are reported in Table 3.3. Multivariate analysis results indicate dose-dependent 

separation. PCA (Figure 3.8) indicates that 35.6 % of variance can be explained by PC 1 

(23.2 %) and PC 2 (12.4 %). PCA reveals dose-dependent grouping but considerable 

overlap is evident among the control, 1 ppm and 10 ppm doses which suggests that the 
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metabolite profile within these samples is similar. The higher Roundup® doses (50 ppm 

and 100 ppm) have greater separation from the control and lower Roundup® doses (1 and 

10 ppm) indicating that there is more variation in the metabolite profile for these samples.  

 

The loading plot (Figure 3.8b) for PCA shows how the metabolites contribute to each 

component. In the score plots, PC1 and component 1 contributes to the separation between 

control and 100 ppm Roundup®. The PCA loading plot shows that tyrosine, aspartate, 

formate, glutamate, lysine, and arginine are plotted furthest from the origin in PC1. 

Loading plots can be challenging to decipher when comparing multiple groups, so in order 

to better understand how individual metabolite levels change with exposure, univariate 

analyses were conducted on each metabolite.  
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Figure 3.6. 1H NMR spectra (0.92 - 4.50 ppm and 6.80 - 8.60 ppm) for Artemia exposed 
to control (bottom) versus 100 ppm Roundup® (top). Spectra are labeled with 
metabolites that were significantly affected by exposure.  
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Figure 3.7. GC-MS total ion chromatogram for Artemia exposed to control (red) or 100 
ppm Roundup® (purple) labeled with FAMES internal standards and significant 
metabolites. 
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Table 3.3. 1H NMR resonances and GC-MS peaks used for statistical analysis  

Metabolite 1H Chemical Shift (ppm) GC-MS Peaks R.I. m/z 
Amino Acid         
Alanine (Ala) 1.464       
Arginine (Arg) 
  

3.245 
  

Arginine 3TMS 1822.2 256.21 
Arginine 3TMS 1822.2 157.14 

Asparagine (Asn) 
  
  

2.930 
  
  

Asparagine 2TMS 1497.2 115.1 
Asparagine 2TMS 1497.2 100.07 
Asparagine 3TMS 1663.8 116.11 

Aspartate (Asp) 2.790 Aspartate 3TMS 1512.2 232.15 
Glutamate (Glu) 2.050 Glutamate 3TMS 1616.4 246.17 
Glutamine (Gln) 2.427 Glutamine 3TMS 1769.4 156.11 
Glycine (Gly) 3.546 Glycine 3TMS 1302.7 174.14 
Histidine (His) 7.056 Histidine (3TMS) 1914.6 254.18 
Isoleucine (Ile) 
  
  
  

0.919 
  
  
  

Isoleucine 1TMS 1180.3 75.04 
Isoleucine 1TMS 1180.3 86.11 
Isoleucine 2TMS 1259.6 158.16 
Isoleucine 2TMS 1259.6 218.14 

Leucine (Leu) 
  
  

0.961 
  
  

Leucine 1TMS 1158.5 75.04 
Leucine 1TMS 1158.5 86.11 
Leucine 2TMS 1238.4 158.16 

Lysine (Lys) 
  

3.016 
  

Lysine 4TMS 1919.1 174.14 
Lysine 4TMS 1919.1 317.27 

Methionine (Met) 2.127 Methionine 2TMS 1511.4 176.11 
Phenylalanine (Phe) 
  

7.315 
  

Phenylalanine 2TMS 1622.3 91.07 
Phenylalanine 2TMS 1622.3 218.14 

Proline (Pro) 
  
  
  

3.336 
  
  
  

Proline 1TMS 1176.9 172.11 
Proline 2TMS 1264.3 142.12 
Proline 2TMS 1264.3 186.13 
Proline 2TMS 1264.3 142.13 

Serine (Ser) 3.946 Serine 3TMS 1356.7 132.1 
    Serine 3TMS 1356.7 218.13 
Threonine (Thr) 
  

4.238 Threonine 3TMS 1381.5 117.09 
  Threonine 3TMS 1381.5 218.17 

Tryptophan (Trp) 
  

7.722 
  

Tryptophan 3TMS 2205.6 202.14 
Tryptophan 3TMS 2205.6 291.2 

Tyrosine (Tyr) 6.885 Tyrosine 3TMS 1934 218.14 
Valine (Val) 
  
  

1.027 
  
  

Valine 1TMS 1098 75.04 
Valine 2TMS 1212.3 218.14 
Valine 2TMS 1212.3 144.14 

Osmolyte         
Betaine 3.255 

  
  

Choline 3.191 
  

  
Glycerophosphocholine (GPC) 3.218 

  
  

Formate 8.446 
  

  
Lactate 4.130 

  
  

Sugar         
Glucose 
  
  
  

  
  
  
  

Glucose 5TMS 1888.8 147.09 
Glucose 5TMS 1888.8 319.21 
Glucose 5TMS 1888.8 205.14 
Glucose 5TMS 1888.8 205.14 
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Gadusol 3.500       
Myoinositol 
   

  
  
  

Myo-Inositol 2073.3 147.09 
Myo-Inositol 2073.3 217.14 
Myo-Inositol 2073.3 305.2 

N-acetylglucosamine 
  

  
  

N-acetylglucosamine 2058.8 319.21 
N-acetylglucosamine 2058.8 205.14 

Nucleic Acid          
Inosine 
  

8.329 
  

Inosine 4TMS 2566.5 217.15 
Inosine 4TMS 2566.5 230.15 

Uracil 
  

  
  

Uracil 2TMS 1334.5 99.04 
Uracil 2TMS 1334.5 241.13 

Polyamine         
Butanediamine   Putrescine 4TMS 1729.3 174.14 
Urea 
  

  
  

Urea 1280.7 189.12 
Urea 1280.7 171.11 

Other         
L-Dopa   L-Dopa 2081.6 267.16 
Cholesterol   Cholesterol 2812 129.1 
Linolenic Acid   Linolenic acid 2241.4 79.07 
Homarine 4.355 
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a  

 
b 

 
Figure 3.8. Multivariate analysis of GC-MS and NMR dose-dependent results compiled 
in SIMCA. (a) Multiblock-PCA Score Plot with PC1 = 23.2% and PC2 = 12.4% 
explained variance for control (green), 1 ppm (purple), 10 ppm (red), 50 ppm (yellow), 
and 100 ppm (blue) Roundup®. (b) Loading plot indicating how metabolites from GC-
MS and NMR contribute to the variance in PC1 and PC2.  
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Univariate analysis was conducted with the muma package to determine which metabolites 

change significantly with Roundup® exposure, these metabolites might be considered 

biomarkers. The fold change and p-value for each metabolite in control and 100 ppm 

Roundup® dataset were plotted to generate a volcano plot. These plots provide a way of 

visualizing the metabolites that change most significantly from exposure, these are plotted 

furthest from the origin. The volcano plots indicate that much of the difference between 

the high dose (100 ppm Roundup®) and the control can be attributed to formate, aspartate, 

glucose, betaine, phenylalanine, tyrosine, and gadusol (Figure 3.9). Several of the 

metabolites identified in both GC-MS and NMR, such as aspartate and tyrosine, are 

significant in both datasets, indicating consistency between the techniques.  

 

Dose-response box and whisker plots of the normalized spectral area for each significant 

variable were plotted for 1H NMR and GC-MS (Figure 3.10) for each metabolite identified 

by volcano plots. According to 1H NMR: aspartate, betaine, gadusol, and tyrosine decrease 

with exposure and formate increases with exposure. According to GC-MS: aspartate and 

tyrosine decrease, and glucose increases with Roundup® exposure. The trend for aspartate 

and tyrosine is consistent between the instrument measurements but the error bars in GC-

MS data indicates more response variability. Threonine, glucose, phenylalanine, and 

isoleucine are able to be measured by GC-MS and NMR but were only identified as 

significant by GC-MS. These metabolites have similar trends for both measurements but 

did not have a statistically significant p-value for NMR due to resonance overlap. Although 
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other metabolites were affected by Roundup® exposure, we focused on the significant 

variables because they contribute most to the metabolic variation and might be reliable 

biomarkers of Roundup® exposure.  

 

The p-value for all remaining metabolites are reported in Table 3.4 for both GC-MS and 

NMR results for each dose compared to control conditions. The cells highlighted in blue 

are statistically significant (p < 0.05) and the bolded text represents a p-value that was 

calculated with a U-test instead of a t-test because the metabolite concentrations were non-

normally distributed. In addition to the significant metabolites, from GC-MS, urea, L dopa, 

linolenic acid, uracil, inosine, and myo-inositol had statistically significant p-values for at 

least one dose. For NMR, valine, proline, lysine, leucine, histidine, glycine, glutamine, and 

alanine were statistically significant for at least one dose. These metabolites had 

statistically significant p-values (p < 0.05) but did not have a fold change > 1.2 or < 0.8 

and several metabolites were significant in other doses, but not for control and 100 ppm 

Roundup®, so these were not identified in the volcano plots.  
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a 

 

b 

 

Figure 3.9. Volcano Plots for Control vs 100 ppm Roundup® exposure for metabolites 
identified by GC-MS (a) and NMR (b). Variables in blue are significant (p-value < 0.05) 
and exhibit fold changes > 1.2 or < 0.8 (constructed in muma). On the x-axis, negative 
values are metabolites with a positive fold change compared to the control. 
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Figure 3.10. Box and whisker plots of significant variables for each Roundup® dose in 1H 
NMR and GC-MS analysis. The box represents the interquartile range, the bar represents 
the median of the dataset, the whiskers extend to the highest and lowest observations, and 
black circles represent statistical outliers (Constructed in muma). 

 

Riverside, CA 92521

Tyrosine Betaine

Formate Aspartate

Isoleucine Glucose Tyrosine

Threonine Phenylalanine Aspartate

Control
1 ppm 
10 ppm 
50 ppm
100 ppm

Roundup® Concentration (ppm)

N
or

m
al

iz
ed

 A
re

a
N

or
m

al
iz

ed
 A

re
a

Significant Metabolites Identified by GC-MS

Significant Metabolites Identified by 1H NMR
Gadusol



 145 

Table 3.4. Univariate statistics: Roundup® dose versus control p-value for each 
metabolite 

 1 PPM 10 PPM 50 PPM 100 PPM 
Metabolite GC NMR GC NMR GC NMR GC NMR 
Amino Acid                 
Alanine 0.474 0.78 0.113 0.39 0.193 0.411 0.026 0.012 
Arginine 0.968 0.211 0.271 0.226 0.011 0.111 0.218 0.013 
Asparagine 0.170 0.094 0.315 0.769 0.348 0.533 0.059 0.964 
Aspartate 1.000 0.842 0.393 0.323 0.435 0.000 0.000 0.000 
Glutamate  0.139  0.569  0.190   
Glutamine 0.548 0.088 0.529 0.026 0.577 0.26 0.442 0.604 
Glycine 0.043 0.185 0.053 0.057 0.113 0.857 0.258 0.441 
Histidine  0.073  0.01  0.351  0.842 
Isoleucine 0.022 0.069 0.615 0.442 0.022 0.433 0.003 0.076 
Leucine 0.020 0.408 0.043 0.753 0.64 0.032 0.059 0.082 
Lysine 0.280 0.003 0.294 0.004 0.321 0.713 0.890 0.077 
Methionine  0.400  0.529  0.912  0.065 
Phenylalanine 0.056 0.804 0.922 0.481 0.009 0.280 0.005 0.009 
Proline 0.968 0.315 0.095 0.338 0.001 0.247 0.019 0.001 
Serine 0.141 0.315 0.208 0.719 0.304 0.458 0.051 0.025 
Threonine 0.053 0.49 0.780 0.348 0.008 0.129 0.011 0.059 
Tryptophan 0.035 0.958 0.053 0.383 0.745 0.007 0.203 0.074 
Tyrosine 0.043 0.207 0.013 0.151 0.023 0.000 0.000 0.000 
Valine 0.962 0.08 0.125 0.207 0.78 0.132 0.103 0.039 
Osmolyte                 
Betaine  0.190  0.000  0.000  0.000 
Formate  0.003  0.008  0.063  0.000 
Lactate  0.842  0.739  0.579  0.780 
Sugar                 
Glucose 0.057  0.066  0.000  0.000  
Myo-Inositol 0.391  0.536  0.008  0.243  
Gadusol 0.111  0.002  0.013  0.406  
N-Acetyl Glucosamine 0.516  0.552  0.841  0.147  
Nucleic Acid                 
Inosine 0.197  0.003  0.015  0.213  
Uracil 0.321  0.010  0.063  0.21  
Polyamine                 
Butanediamine 0.611  0.486  0.943  0.832  
Urea 0.053  0.036  0.041  0.373  
Other                
L-Dopa 0.024  0.003  0.035  0.422  
Linolenic acid 0.400  0.010  0.604  0.222  
* Wilcoxon-Mann-Whitney U Test P-Value      
*Statistically Significant P-Value (P < 0.05)      
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3.3.2. Positive Control Exposures 

To verify the metabolic perturbation is due to the Roundup® formulation, a dose-response 

experiment was conducted on Artemia exposed to 100 ppm glyphosate and 100 ppm 

glycine as a positive control using the same conditions as the Roundup® exposure. 

Multivariate analysis was performed using SIMCA. PCA resulted in no apparent separation 

with PC1 = 25.3% and PC2 = 14.1 (Figure 3.11). Univariate statistics was performed to 

identify statistically significant metabolites between the control, glycine exposure, and 

glyphosate exposure. The only significant variable identified in the positive control 

experiments was the metabolite glycine when comparing the Artemia exposed to 100 ppm 

glycine and 100 ppm glyphosate. Higher levels of glycine were measured in Artemia 

exposed to 100 ppm glycine in both GC-MS and NMR (Figure 3.12). Isoleucine, serine, 

and L dopa had p < 0.05 for several conditions, but not a significant fold change.  

 

3.3.3. Isopropylamine, Roundup®, Control Exposures 

An exposure of Artemia following the same procedure as the positive control experiments 

was performed to identify the effects of the Roundup® formulation ingredients. Namely, 

isopropylamine, since it has shown to bioaccumulate based on the 1H NMR spectra (Figure 

3.13). Multivariate analysis was performed in SIMCA 14.1 and univariate analysis was 

performed with the muma R package. The loading plot (Figure 3.14)  indicate which 

metabolites contribute most to the clustering predicted by the PCA score plots. The 

optimum separation for PCA was predicted with PC 1 (25.7%) and PC 2 (20.9 %). 

Metabolites that were significant from the control to the isopropylamine or Roundup® 
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exposure include aspartate, glucose, and glycine. Metabolites that were significant only in 

control versus isopropylamine include threonine, glycerophosphocholine, ornithine, and L 

dopa. Metabolites that were significant from the control to isopropylamine and between 

isopropylamine and Roundup® include proline, glucose, and homarine. This indicates that 

isopropylamine contributes to an effect on aspartate, glycine, proline, threonine, glucose, 

and homarine within the Roundup® formulation. Aspartate, threonine, and glucose were 

identified as metabolites that change significantly from the 100 ppm Roundup® exposure, 

so it is notable that isopropylamine also affects these metabolites. 
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a 

 

b 

 

Figure 3.11. Multivariate analysis of GC-MS and NMR results for positive control 
experiments comparing control, 100 ppm glycine exposure, and 100 ppm glyphosate 
exposure. (a) Multiblock-PCA Score Plot (PC1=25.3%, PC2=14.1) and (b) loading plot 
(compiled in SIMCA).  
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Figure 3.12. Boxplot showing glycine levels in the control (1, black), 100 ppm glycine (2, 
red), and 100 ppm glyphosate (3, green) exposures.  
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Figure 3.13. Overlaid 1H NMR spectra of control (black), isopropylamine exposed (red), 
and Roundup® exposed (green) Artemia extracts. 
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a 

 
 

b 

 
Figure 3.14. Multiblock PCA score plot (a) for control (green), 50 ppm isopropylamine 
(blue), 50 ppm Roundup® exposure (red). PC1 contributes 25.7% and PC2 contributes 
20.9%. (b) Loading plots indicate how metabolites contribute to each component.  
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Table 3.5. Univariate statistics: control, 50 ppm isopropylamine (IPA), 50 ppm 
Roundup® p-value 

Metabolites Con vs IPA Con vs Roundup® IPA vs Roundup® 
Amino Acids NMR GC-MS NMR GC-MS NMR GC-MS 
Alanine 0.278  0.805  0.130  
Arginine 0.328 0.807 0.000 0.106 0.000 0.071 
Asparagine 0.679 0.880 0.043 0.089 0.230 0.155 
Aspartate 0.170 0.029 0.395 0.009 0.562 0.284 
Glutamine 0.067 0.872 0.382 0.043 0.001 0.043 
Glutamate 0.414 0.684 0.169 0.353 0.323 0.075 
Glycine 0.015 0.543 0.760 0.031 0.029 0.097 
Histidine 0.195 0.864 0.164 0.001 0.798 0.000 
Isoleucine 0.316 0.853 0.609 0.684 0.615 0.315 
Leucine 0.220  0.488  0.036  
Lysine 0.611 0.443 0.385 0.016 0.894 0.001 
Methionine 0.060 0.075 0.382 0.631 0.328 0.097 
Phenylalanine 0.086 0.431 0.003 0.025 0.040 0.081 
Proline 0.021 0.143 0.728 0.279 0.001 0.019 
Serine 0.234 0.495 0.568 0.314 0.105 0.644 
Threonine 0.004 0.018 0.243 0.438 0.050 0.059 
Tryptophan 0.959 0.853 0.878 0.035 0.708 0.007 
Tyrosine 0.146 0.180 0.005 0.390 0.000 0.483 
Valine 0.612 0.739 0.614 0.796 0.932 0.631 
Osmolyte             
Betaine 0.115  0.000  0.017  
Formate 0.296  0.000  0.021  
Choline 0.141  0.004  0.113  
Phosphocholine 0.473  0.791  0.135  
Glycerophosphocholine 0.023  0.721  0.195  
Sugar             
Glucose 0.019 0.082 0.580 0.002 0.013 0.028 
Myo-inositol  0.451  0.000  0.000 
Gadusol 0.634  0.452  0.246  
Nucleic Acid             
Inosine 0.645 0.611 0.959 0.001 0.798 0.001 
Uracil  0.407  0.393  0.853 
Polyamine             
Ornithine  0.031  0.739  0.105 
Other             
L Dopa  0.001  0.004  0.677 
Taurine 0.161  0.007  0.000  
Homarine 0.042  0.964  0.019  
Glycyl proline  0.828  0.423  0.318 
N Acetyl Glucosamine  0.997  0.393  0.796 
Uric Acid   0.971  0.019  0.399 
*Wilcoxon Mann Whitney U-Test p-value      
*Statistically significant p-value (p < 0.05)     
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3.4. Contribution of Roundup® ingredients to metabolic perturbation 

The Roundup® formulation of glyphosate contains a polyethoxylated tallow amine 

(POEA) surfactant and isopropylamine stabilizing salt. The exogenous biomarker, 

isopropylamine (1.29 ppm, d), was identified in the 1H NMR spectrum of Artemia exposed 

to 50 ppm and 100 ppm Roundup®.36    As the naupliar Artemia feed solely off vitelline 

(yolk platelets), the route of exposure for environmental contaminants is most likely not 

through consumption but rather through absorption or diffusion through the chitin 

exoskeleton. An assessment of the environmental impact quotient of active and inert 

pesticide ingredients found that POEA and isopropylamine have higher dermal toxicity 

than glyphosate.33 The ratio of glyphosate salt to isopropylamine is expected to be 1:1, 

however the isopropylamine doublet at 1.29 ppm does not encompass the same spectral 

area in the 50 ppm Roundup® and 50 ppm isopropylamine exposure (Figure 3.13) 

suggesting that either the ratio is not exactly 1:1 in our store-bought Roundup® formulation 

or that there is less isopropylamine uptake in the absence of the POEA surfactant. PCA 

indicates that there is variation among the isopropylamine and Roundup® exposures, but 

there is an effect on many of the same metabolites which indicates that some of the effect 

that we see from the Roundup® formulation can be attributed to isopropylamine toxicity.34 

POEA is essential for facilitating the uptake of glyphosate by plants and was found to be 

toxic in certain frog, bacteria, algae, protozoa, and crustacea species.4,12,34 There was also 

no significant difference in the metabolome of Artemia in control conditions compared to 

Artemia exposed to 100 ppm glyphosate. This leads us to surmise that POEA contributes 

significantly to Artemia toxicity either by facilitating the uptake of glyphosate and 
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isopropylamine though the Artemia chitin exoskeleton or because the surfactant is toxic on 

its own. Unfortunately, we were unable to obtain samples of the POEA surfactant for 

further testing.  

3.5. Biological interpretation of endogenous metabolic perturbations 

Pathway activity profiling was used to provide biological insights for metabolomics results 

using the PAPi R package.  Global metabolite shifts from the 100 ppm Roundup® exposure 

were correlated with metabolic pathway information found in the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) to predict biochemical pathways and compare their activity 

between the dosed and control experimental conditions.28 A negative activity score (AS) 

indicates the pathway is down-regulated compared to the control group and a positive AS 

indicates the pathway is up-regulated. The GC-MS and NMR results were analyzed 

separately but similar pathways were identified in both datasets. Between GC and NMR, 

87 unique pathways may have been significantly altered from Roundup® exposure with 

only 10 pathways identified in both NMR and GC metabolome. Many of the pathways are 

not likely relevant to the Artemia metabolome, such as alcoholism and nicotine addiction, 

since the KEGG includes the genome for many different organisms (Figure 3.15). 
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Figure 3.15. Line graph showing predicted pathways perturbed by 100 ppm Roundup® 
exposure (orange) from GC-MS (top) and NMR (bottom) metabolite shifts compared to 
the control condition (blue). A Bonferroni correction (red) was used for normalization. 
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The metabolites that were significantly affected (p < 0.05) by Roundup® exposure (100 

ppm vs control) include aspartate, betaine, tyrosine, phenylalanine threonine, isoleucine, 

formate, gadusol, and glucose (Figure 3.10). These molecules are related to many of the 

metabolic pathways identified by PAPi. Although 87 different pathways were identified as 

significant by PAPi analysis, we will only focus on the pathways that can be explained by 

the measured changes to the significant variables because these were identified in our 

analysis as potential biomarkers of Roundup® exposure. PAPi analysis indicates that 

Roundup® exposure may significantly alter pathways related to amino acid metabolism, 

carbohydrate metabolism, energy metabolism, vitamin metabolism, and biosynthesis of 

secondary metabolites. 

 

Glucose levels increased significantly with Roundup® exposure. PAPi analysis predicted 

down regulation of pathways involved in carbohydrate metabolism, such as glycolysis. 

Glucose has been identified as a cryoprotectant in earthworm species and in Artemia 

franciscana, our observations show that large amounts of glucose accumulate in cold-

stressed naupliar Artemia (Chapter 2, section 3.4), therefore it may protect internal 

structures from damage from other xenobiotic stressors or adverse environmental 

conditions.29,35,36    In the encysted Artemia embryo, energy is stored in the form of 

trehalose. As the embryo emerges and develops through the naupliar stages, trehalose is 

converted to glucose with the help of the proteolytic trehalase enzyme.29,36,37   Trehalase 

and the other proteolytic enzymes that are involved in Artemia development are highly 

sensitive to environmental conditions, such as temperature, oxygen levels, and pH.37,39   
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Glucose accumulation may indicate suspended development and increased energy storage 

in response to the poor environmental conditions from the Roundup® exposure.  

 

Amino acids are readily identified by NMR and GC-MS and they are abundant in Artemia, 

therefore it is reasonable that many of the pathways identified by PAPi are related to amino 

acid metabolism. Many of these pathways were suggested to be down-regulated at the high 

dose Roundup® exposure, which may indicate a protective stress response. Cysteine 

proteases (CP) are essential enzymes in Artemia for yolk utilization and growth in the early 

stages of pre- and post-emergence development.29,39,40    When Artemia are under stress 

from unfavorable environmental conditions, these proteolytic enzymes may be inhibited to 

prevent nutrient and energy loss. Inhibition of CP may account for the overall observed 

decrease in metabolite concentration at higher Roundup® doses and for the down-

regulation in pathways related to amino acid metabolism.  

 

The negative activity score assigned to the degradation of aromatic compounds metabolic 

pathway and the positive activity score assigned to tyrosine metabolism may be related to 

the decreasing levels of tyrosine with Roundup® exposure. Tyrosinase is an enzyme 

located in crustacean hemolymph that is active during crustacean molt cycles and is 

important for converting tyrosine into N-acetyldihydroxyphenylalanine, which ultimately 

forms the chitin exoskeleton.29,42 The developing Artemia nauplii are expected to undergo 

two molt cycles within the timeframe of the experiment (48 hr hatch, 48 hr exposure).29,43,44   

Upregulation of tyrosine metabolism may indicate that the Artemia exposed to Roundup® 
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were in the process of molting when they were sacrificed for the experiment. This could 

indicate either faster or slower development compared to the control group. Tyrosinase is 

also an important enzyme for wound healing in arthropods.  Early juvenile crayfish 

exposed to glyphosate had elevated aspartate transaminase to alanine transaminase levels 

(ASAT:ALAT).16Artemia exposed to Roundup® may correlate to elevated ASAT:ALAT 

which would necessitate upregulation of tyrosinase activity to counter tissue damage. 

Tissue damage may be a result of isopropylamine accumulation and the reported dermal 

toxicity of isopropylamine and POEA.33 

 

Gadusol and betaine levels decreased with Roundup® exposure. Gadusol is an interesting 

metabolite that is prevalent in marine organisms as a sunscreen-like molecule that absorbs 

UV radiation.43–45 A study on Artemia in Lake Urmia has determined that the 

bioaccumulation of mycosporine-like amino acids, such as gadusol, is affected by salinity 

and UV radiation, indicating that gadusol also contributes to osmoregulatory function.45    

Considering betaine is an osmolyte and gadusol has a similar dose-dependent response 

(Figure 3.10), Roundup® or POEA exposure may affect osmoregulation.  

 

Formate concentrations increase significantly with the increasing Roundup® 

concentration. Formate is an essential intermediate in folate-mediated one-carbon 

metabolism. Formate has been identified as a possible biomarker for deficiency in folate 

and vitamin B12 and downregulation of one-carbon metabolic processes.48,49    One-carbon 

metabolism involves metabolic processes where methyl groups from donors, such as 



 159 

serine, choline, glycine, betaine, and methionine, are interchanged and transferred using 

folate cofactors.49–51 Thiamine, nicotinamide, vitamin B12, pantothenate, riboflavin, 

pyridoxine, folic acid, biotin, and inositol have been identified as necessary vitamins for 

successful Artemia cultures.41 Formic acid is a toxic metabolite so accumulation brought 

on by vitamin deficiency from Roundup® exposure may cause delayed development and 

lead to toxic results.48,49                                      

 

Many of the pathways identified through PAPi are related to plant and bacteria metabolic 

pathways. Carbon fixation in prokaryotes, porphyrin and chlorophyll metabolism, and 

microbial metabolism in diverse environments were suggested to be down-regulated while 

bacterial chemotaxis, puromycin biosynthesis, and novobiocin biosynthesis were 

upregulated (Figure 3.15). These pathways are correlated to the changes measured in 

aromatic amino acids, such as tyrosine, L Dopa, and phenylalanine, and also gadusol. 

Artemia either obtain gadusol from the consumption of algae, from gut microbes, or 

through a biosynthetic pathway that has been identified in zebrafish.44,48–50 Microbes 

synthesize gadusol through the shikimate pathway, which is the targeted pathway for the 

herbicidal activity of glyphosate so reduced expression of gadusol with increased 

Roundup® exposure may indicate an effect on the microbial community.43,48,50,51 Gut 

microbes play an important role in the Artemia life cycle and the genome of this community 

has been sequenced.52,53 However, the literature about the impact of Roundup® on the soil 

and gut microbiome has produced inconsistent and contradictory results. Some studies 

point to an increase in bacterial diversity and abundance, other studies report that prolonged 
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Roundup® exposure causes a shift in bacterial community composition towards 

glyphosate-tolerant species, and some studies report no effect on gut or soil microbes.54–59    

Further studies on the gut microbes in Artemia are necessary to elucidate the impact of 

Roundup® exposure. 

 

4. Conclusion 

Artemia franciscana is an aquatic crustacean that thrives in hypersaline environments. This 

organism is an interesting biological model due to its unique development and sensitivity 

to environmental conditions. We have characterized the metabolome of naupliar Artemia 

extracts using NMR and GC-MS and we have shown that Artemia can be used as a model 

species to characterize sublethal stressors for saltwater aquatic systems using 

environmental metabolomics. Although glyphosate was found to have no measurable 

effect on the metabolite profile of naupliar Artemia, the other commercial ingredients such 

as isopropylamine and the herbicidal formulation which includes isopropylamine and 

POEA cause metabolic perturbation at concentrations below the LD50 of Roundup®. 

Aspartate, betaine, tyrosine, phenylalanine, formate, isopropylamine, and glucose are 

potential bioindicators for Roundup® exposure. The effects on these metabolites correlate 

with impairment of carbohydrate and energy metabolism, folate-mediated one-carbon 

metabolism, Artemia molting and development, and microbial metabolism. Future work 

will involve using Artemia metabolomics to characterize the sublethal mode of action for 

other aquatic stressors that have been identified as emerging environmental contaminants.  
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TDCIPP exposure affects Artemia growth and osmoregulation 

CHAPTER FOUR 

I would like to acknowledge Professor David C Volz for his help developing an Artemia 

imaging system and for the use of his microscope for the work presented in this chapter.  

 

Abstract 

Environmental monitoring has demonstrated widespread occurrence of the flame retardant 

tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), raising concerns about its impact on 

aquatic life.1–4 Using 1H NMR and GC-MS metabolomics and 20-day body length 

experiments, we have determined that chronic exposure to environmentally relevant 

concentrations of TDCIPP affects Artemia development. Acute exposure (48 hr) to 50 % 

of the LC50 did not affect Artemia body length but it did elicit a metabolic change. TDCIPP 

exposure triggered a significant response in the level of expression in metabolites of the 

osmolyte class, namely betaine, phosphocholine, gadusol, and taurine, and also glycerol 

and trehalose, metabolites that are essential osmoprotectants in extremophile species.5 

Other pathways that may be perturbed by TDCIPP exposure include one carbon, glycine, 

serine, and threonine, and glycerophospholipid metabolism.   
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1. Introduction 

Flame retardants are chemicals that are added to manufactured materials to prevent 

combustion and delay the spread of fire after ignition.4 The production and use of flame 

retardants is continually increasing due to strict fire safety standards for furniture and 

appliances, such as the California Technical Bulletin (TB) 117. In 2015 the worldwide 

consumption of flame retardants reached a volume of 2.49 million tonnes, valued at $6.29 

billion. By 2025, it is projected that use will reach 4.0 million tonnes and value $11.96 

billion.24 Brominated flame retardants (BFR), such as pentabromodiphenyl ether (PBDE), 

were one of the most widely used classes of flame retardants until they were phased out in 

the EU and US due to being highly persistent, bioaccumulative, and toxic.4,25,26 In addition 

to detection in human breast milk, adipose tissue, and serum, a number of flame retardants 

have been detected in aquatic animals including orcas, indicating their potential to 

accumulate in the aquatic environment.27 

 

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP, Figure 4.1) is a high-production volume 

organophosphate-based flame retardant (OPFR). TDICPP is widely used in automotive 

industry for upholstery and seat cushions; it is also used in household textiles like 

curtains.25 In the 1960s-70s, it was used in children’s pajamas until mutagenic properties 

were reported.25 It is applied as an additive flame retardant, meaning it is not chemically 

bonded to the surface of the product, which may result in easy release to the environment. 

OPFRs have been detected in household air, dust, clothes, and baby products, but TDCIPP 

is the most commonly detected.7,28 It was found that many OPFRs end up in aquatic 
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systems, such as the Columbia River, from laundry wastewater.28 OPFRs had been 

accepted as a safe alternative to BFRs, but recent studies have raised concerns about the 

safety of some of these formulations. TDCIPP was voluntary phased out of production by 

ICL Industrial Products in 2015, but many products with TDCIPP are still in use.3,4,25 

Growing use of flame retardants and increasing evidence of environmental prevalence has 

created a concern for the effects of exposure in humans and other animals.   

 

Studies have shown that TDCIPP exposure may cause endocrine disruption, neurotoxicity, 

carcinogenicity, infertility and developmental toxicity.4,6,8–12  TDCIPP exposure has been 

linked to infertility in women and decreased fecundity in zebrafish and Daphnia magna. 

Bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), the primary metabolite of TDCIPP, was 

detected in 87% of urine samples from a study of participants undergoing IVF treatment. 

The level of BDCIPP was correlated with decreased pregnancy success.9 Exposure did not 

cause birth defects in rats exposed to TDCIPP during pregnancy but it did affect the growth 

and development of Daphnia magna and zebrafish embryos.4,10,14–16 It has been identified 

as an endocrine disruptor in chicken and zebrafish embryos and the MCF-7 human breast 

cancer cell line.29–31  
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Figure 4.1. Structure of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) 
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The effects of TDCIPP have not been well studied in natural waters. Studies report 

detectable levels of TDCIPP in natural water systems ranging from 9 to 353 ngL-1, but little 

is known of the impact on aquatic life.1–3 Risk assessments from the WHO and EU report 

that TDCIPP is very persistent in the environment and that fish rapidly metabolize this 

compound.4,11,12 However, studies with zebrafish embryos and Daphnia magna report that 

TDCIPP affects development.1,6,12–15 Studies with zebrafish embryos have used 

developmental and genotoxicity assays and targeted genomics analysis to determine that 

TDCIPP affects DNA methylation during embryonic development.12–14   Han et al. used 

Daphnia magna as a model to analyze fecundity, growth, and gene transcription and 

determined that TDCIPP decreased fecundity and body length and affected pathways 

related to protein synthesis, endocytosis, and metabolism.10 While targeted genomics 

studies with aquatic species have revealed much about TDCIPP toxicity, untargeted studies 

may provide further insight into global metabolic effects. In order to further elucidate the 

mode of action of TDCIPP in aquatic organisms, we hope to complement these targeted 

studies using untargeted 1H NMR and GC-MS metabolomics analysis of the effects of 

TDCIPP exposure on the Artemia metabolome.  

 

Artemia franciscana is a saltwater aquatic crustacean that is native to inland saltwater lakes 

but is often used for ecotoxicity assays representing the marine environment. They are 

closely related to Daphnia magna; therefore, we hypothesized that TDCIPP would 

similarly affect Artemia growth and metabolism. However, TDCIPP may trigger an 

entirely different metabolic response in saltwater compared to freshwater aquatic species. 
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The metabolic response of Artemia was measured using 1H NMR and GC-MS 

metabolomics. NMR is a rapid, robust, and quantitative technique that requires minimal 

sample preparation.17–19 GC-MS requires derivatization, but its low limit of detection and 

well-established libraries make it a great complementary technique.20,21 We monitored 

changes to Artemia’s small-molecule metabolite profile before and after exposure to 

TDCIPP. We then applied data reduction and statistical analysis to extract meaningful 

information about the potential mode of action and identify biomarkers of stress 

corresponding to TDCIPP exposure.  

 

The aims of this study were to determine the effect of TDCIPP exposure on Artemia 

mortality and growth, characterize the metabolic response of Artemia to chronic and acute 

TDCIPP exposure, and apply Principal Component Analysis to identify small molecule 

biomarkers of exposure and metabolic pathways perturbed by chronic and acute TDCIPP 

exposure.  

 

2. Materials and Methods 

2.1. Determination of TDCIPP LC50 

To evaluate toxicity, we determined the lethal concentration of TDCIPP for 50% of the 

naupliar Artemia population (LC50) in a 48 hr exposure. Artemia cysts  were hatched in 300 

mL tanks containing 35 g/L sea salt with 0-300 µM TDCIPP (Sigma Aldrich, St. Louis, 

MO) and 0.1% dimethylsulfoxide (DMSO, EMD, Burlington, MA). During the hatch 

period, the cysts were exposed to constant light and aeration. Nauplii were transferred to 
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aquariums containing 20 mL salt water with TDCIPP with 20 Artemia per aquarium and 

10 aquariums per dose exposed to a 16:8 hr light:dark cycle. The number of living and dead 

shrimp in each aquarium was recorded to calculate the mortality rate. Mortality plots were 

constructed in GraphPad Prism 7 (San Diego, CA). 

 

2.2. Sublethal acute exposures to 20 µM TDCIPP for metabolomics analysis 

Artemia cysts (1 oz) were hatched for 24 hr in 1 L control sea salt solution or 20 µM 

TDCIPP with 0.1% DMSO-d6 (Sigma Aldrich) in sea salt solution. The hatched nauplii 

were divided into 6 aquariums containing 300 mL media, 3 control and 3 treated, with 

constant aeration and a 16:8hr light cycle. After the 48 hr exposure, the nauplii were 

transferred to 2 mL microvials (3 samples per aquarium, 9 samples per dose) and flash 

frozen in liquid nitrogen. The protocols for metabolite extraction and NMR and GC-MS 

sample preparation can be found in Chapter 2, sections 2.2.1, 2.3.3, and 2.3.6. 

 

2.3. Sublethal chronic exposure to 0.5 µM TDCIPP for imaging 

Artemia cysts (1 oz) were hatched for 48 hr in 1 L control sea salt solution or 0.5 µM 

TDCIPP (0.1% DMSO) in sea salt solution. The hatched nauplii were divided into 20 

aquariums, 10 treated and 10 control, containing 20 mL media and 20 nauplii per aquarium. 

The media was exchanged every 48 hr. After the first 96 hr of exposure, we began feeding 

algae to the Artemia by adding it to the fresh media. The number of living and dead Artemia 

was recorded each time the media was exchanged and the dead Artemia were removed 
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from the aquarium. At the end of the 20-day exposure, the living Artemia were fixed with 

4% paraformaldehyde (Spectrum, Gardena, CA) and 10 mM phosphate-buffered saline.  

 

2.4. Artemia body length measurements 

Fixed Artemia were stained with Rhodamine 6-G (JT Baker Chemical Co, Phillipsburg, 

NJ) and transferred to a well-plate, one specimen per well. For the 48 hr experiment, a 384 

well plate was used, and for the 20-day exposure a 96 well plate was used. An image 

acquisition protocol was optimized on an ImageXpress Micro (IXM) XLS Widefield High-

Content Screening System equipped with MetaXpress 6.0.3.1658 (Molecular Devices, 

Sunnyvale, CA). A 4X objective (384-well plate) or a 2X objective (96-well plate) and 

TRITC filter cube was used to acquire one frame per entire well.  Images were then used 

to measure body length.22   Artemia images were exported to ImageJ (National Institute of 

Health, Bethesda, MD) and the body length measurements were taken from the head to the 

tail along the thorax and abdomen. An average body length (in pixels) was calculated for 

control and exposed Artemia.  

 

2.5. Sublethal chronic exposure to 0.5 µM TDCIPP for metabolomics analysis 

Artemia cysts (1 oz) were hatched for 48 hrs in 1 L control (0.1% DMSO-d6) sea salt or 

0.5 µM TDCIPP (0.1% DMSO-d6) sea salt. The hatched nauplii were divided into 6 

aquariums containing 300 mL media, 3 control and 3 treated, with constant aeration and a 

16:8 hr light cycle. The nauplii were transferred to fresh solution and also fed algae after 

the first 96 hr of the exposure period. After 1 week, the nauplii were transferred to 2 mL 
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microvials (3 samples per aquarium, 9 samples per dose) and flash frozen in liquid 

nitrogen. Metabolite extracts were prepared for NMR and GC-MS metabolomics analysis. 

 

2.6. Metabolomics statistical methods 

Multivariate analysis was performed using SIMCA 14.1.48 NMR and GC-MS results for 

each sample were combined in SIMCA for multiblock PCA. Univariate statistical analysis 

was performed using GraphPad Prism. Boxplots were constructed, and the normalized data 

was processed using one-way ANOVA with Tukey’s post-hoc. 

 

3. Results and Discussion 

Artemia were subjected to acute and chronic TDCIPP stress to identify effects on growth 

and development and metabolic perturbation resulting from exposure.  

 

3.1. Determination of the LC50 for 48 hr TDCIPP exposure 

The LC50 for 48 hr TDCIPP exposure was determined to be 37.1 ± 1.3 µM TDCIPP in 

0.1% DMSO (Figure 4.2). An initial 48 hr period involved hatching the Artemia cysts in 

TDCIPP media. This lethal concentration is approximately 10 times less toxic than the 

reported toxicities for Daphnia magna or fish species.4 This value was determined to 

identify a starting point for studying sublethal TDCIPP stress in Artemia. The remaining 

exposures were conducted at 20 µM and 0.5µM TDCIPP for acute and chronic stress, 

respectively.  

  



 175 

 

 

Figure 4.2. Artemia mortality over a 48 hr TDCIPP exposure ranging from 0-300 µM. 
The LC50 was determined to be 37.4 ± 1.3 µM. 
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3.2. Impact of acute and chronic TDCIPP exposure on Artemia mortality and 

development 

Acute exposure to 0-20 µM TDCIPP caused no significant difference in Artemia body 

length (Figure 4.3). However, chronic exposure to 0.5 µM TDCIPP decreased body length 

significantly (Figure 4.4). Mortality was also higher in TDCIPP-exposed Artemia over the 

20-day exposure. 109 of the initial 200 Artemia were still living on day 20 of the exposure, 

41 from the TDCIPP exposures and 68 from the control group. Initially, we set out to test 

chronic exposure to 5 µM TDCIPP, but we observed 100% mortality for TDCIPP within 

14 days. Naupliar and juvenile Artemia were identified in both the control and treated 

specimens (Figure 4.5), but there were 10% more juvenile Artemia in the control condition 

which likely contributed to a larger body length average in the controls versus the Artemia 

exposed to TDCIPP. This suggests that the ability of Artemia to molt may be impeded by 

TDCIPP exposure. 
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Figure 4.3. Artemia body length after 48 hr TDCIPP exposure. No statistically significant 
difference in body length was measured between doses.  
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Figure 4.4. Body length measurements for 20-day Artemia exposed to 0.5 µM TDCIPP. 
The body length for TDCIPP exposed Artemia are significantly shorter than the body 
length for Control Artemia (**** p<0.0001). Body length measurements (measured in 
pixels) are taken from the top of the head to the tip of the tail. 
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Figure 4.5. Sample images of fixed Artemia taken after 20-day exposure. (A) Artemia 
exposed to 0.5 uM TDCIPP. All of the specimens are in the naupliar stage. (B) Artemia 
in control conditions. Two specimens are juveniles and 1 is a nauplii. 
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3.3. NMR and GC-MS metabolite profiles 

The Artemia metabolite profile was reported in Chapter 2. Representative 1H NMR spectra 

of extracts of control and TDCIPP-exposed Artemia are shown in Figure 4.6. The spectra 

are labeled to highlight the resonances of several significant metabolites including gadusol, 

glycine, taurine, homarine, and glucose. A representative GC-MS TIC is shown in Figure 

4.7, with the C24 internal standard and triclosan surrogate peaks labeled. Not all 

metabolites reported in the Artemia metabolome in Chapter 2 were quantified in this study 

due to the smaller number and age of the specimens. The extracts of 1-week old Artemia 

have slight differences in metabolite profile because they have started feeding on algae 

rather than relying on their own yolk stores. These samples are smaller because older 

specimens are harder to collect in large quantities. To collect the 48 hr nauplii, we take 

advantage of their phototaxis behavior which causes them to swim towards light sources 

to find food. When a point source of light is shone through the aquarium, the nauplii crowd 

around the light, making it easy to pipet the nauplii as a dense mass. 1-week old nauplii are 

developing new sight and swimming appendages that do not rely on a bright light source, 

so they are less likely to exhibit this behavior, as a result, it is harder to collected dense 

samples of Artemia as they age.  

 

3.4. Multi- and Univariate statistical analysis of TDCIPP-induced metabolite 

shifts  

Metabolite data represented by peak-fitted 1H NMR resonances and GC-MS ion count, 

normalized by total spectral area were used for multi- and univariate analysis. The 1H NMR 
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resonances and GC-MS peaks used for analysis are reported in Table 2.2. The variance in 

metabolite expression for Multiblock-PCA of acute and chronic TDCIPP exposure is best 

shown by PC 1 (36.4%) and PC 2 (17.4%) (Figure 4.8a). Principal component analysis of 

acute and chronic TDCIPP exposure indicates variance in metabolite expression for each 

condition. The loading plot (Figure 4.8b) indicates that inosine, glutamine, methionine, 

glutamate, taurine, and homarine contribute to the separation of the samples from the 1-

week exposure along PC1 and betaine, choline, lysine, arginine, and alanine contribute to 

the segregation of the 48 hr exposure samples along PC1. Glucose, ornithine and taurine 

contribute to the separation of the TDCIPP exposure samples along PC1 and threonine, 

tryptophan, and leucine contribute to the segregation of the control group along PC1. 

Loading plots are hard to interpret when there are many overlapping metabolites, so 

univariate analysis was used to clarify the individual metabolite changes for these four 

groups and to evaluate the significance of those changes. 

 

One-Way ANOVA identified metabolites that increased or decreased significantly (p < 

0.05) from the acute (48 hr, 20 µM TDCIPP) and chronic (0.5 µM TDCIPP, 1 week) 

exposures. For the acute exposure, aspartate, phenylalanine, glycine, phosphocholine, 

betaine, taurine, gadusol, glycerol and trehalose levels increased, while methanol, 

methionine, and leucine levels decreased. For the chronic exposure, the levels of glucose, 

phosphocholine, betaine, taurine, and gadusol increased, whereas tyrosine, serine, 

threonine, aspartate, glutamate, phenylalanine, glycerol, trehalose, and 

glycerophosphocholine decreased (Figure 4.9). For NMR, glycerophosphocholine was not 



 182 

detected in 48 hr-old Artemia and resonance overlap by glycerol prevented the 

determination of glycine for 1-week old Artemia. For GC, taurine was not detected in 48 

hr old Artemia and methionine was not detected in 1-week old Artemia. There remains one 

unidentified peak in the GC chromatogram at 15.59 min that did change significantly from 

the 1-week exposure. Unfortunately, we were not successful in determining the compound 

responsible for this feature.  
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Figure 4.6. Representative 1H NMR spectra showing the region from 2.60 to 4.65 ppm 
for Artemia extracts for 48 hr exposure to TDCIPP (bottom) and control (top). The 
labeled resonances indicate metabolites that were affected significantly by exposure. The 
vehicle DMSO was also identified in the spectra. 
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Figure 4.7. GC-MS TIC of an extract of control Artemia labeled with the internal 
standards and solvent delay regions.  
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Figure 4.8. Multiblock-PCA Score Plot (a) for acute (48 h, 20 µM) and chronic (1 week, 
0.5 µM) exposure to TDCIPP. The variance between control and TDCIPP-stressed 
Artemia is best explained by PC 1 (36.4 %) and PC 2 (17.4 %). The loading plot (b) 
indicates how metabolites contribute to each component. Data points are labeled by 
metabolite identity as determined by GC-MS and 1H NMR. 
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Figure 4.9. Univariate box plots indicating how significant variables change with acute 
(20 µM, 48 hr) and chronic (0.5 µM, 1 wk) TDCIPP exposure. Variables are labeled by 
metabolite name and instrument used for detection. One-way ANOVA with Tukey’s 
HSD was used to identify significant differences between control and dosed. (*p<0.1, 
**p<0.01, ***p<0.001**** p<0.0001) 
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3.5. Biochemical interpretation of acute and chronic TDCIPP exposure  

In agreement with studies on zebrafish and Daphnia magna, our study finds that chronic 

exposure to sublethal TDCIPP impedes Artemia development.10,13,14 Over a 20-day 

exposure, we observed increased mortality and decreased body length in TDCIPP-exposed 

Artemia compared to the control group. We were unable to collect samples for 

metabolomics analysis of the 20-day exposure due to low survival of specimens in both the 

control and treated conditions; however, samples taken after 1 week of exposure to 0.5 µM 

TDCIPP reveal metabolic perturbation that may lead to the decreased growth that was 

observed downstream. During the 20-day exposure, each specimen was expected to molt 

several times in order to grow and develop to adulthood. The lack of growth in the 

TDCIPP-exposed Artemia may indicate an effect on the molt cycle. Acute exposure (48 

hr) to 20 µM TDCIPP did not have an impact on Artemia body length but the organisms 

are not expected to molt during this time.  

 

Dormant Artemia cysts are preloaded with all the necessary components for initial life 

stages.32,33   These cysts are also impervious to environmental conditions and will only 

activate once conditions are suitable for hatching.32,34 Our cysts were hatched in media 

containing TDCIPP, and the hatch rate was unaffected by TDCIPP exposure. Studies with 

zebrafish indicate that TDCIPP affects early embryogenesis.14 Embryogenesis was already 

completed by the time the cyst was formed, so embryogenesis was not affected in 

Artemia.33,35 In a study with Daphnia magna, fecundity and growth were affected in 

subsequent generations following maternal TDCIPP exposure, which may result from an 
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impact on Daphnia embryogenesis.6 It would be interesting to study the effects of maternal 

TDCIPP exposure on the reproduction (oviparity vs ovoviparity), growth rate, fecundity, 

and metabolome of future generations to elucidate the impact on embryogenesis in 

Artemia. 

 

Acute exposure did have considerable impact on the expression of several metabolites, 

namely osmolytes such as glycerol, betaine, phosphocholine, taurine, gadusol, and 

trehalose. Acute exposure to TDCIPP may cause osmotic stress, which triggers increased 

expression of glycerol and trehalose. Glycerol and trehalose play an important role in 

Artemia for both development and stress protection.5,32,33,36 In the encysted Artemia 

embryo, energy is stored in the form of trehalose. As the embryo emerges and develops 

through the naupliar stages, trehalose is converted to glucose with the help of the 

proteolytic trehalase enzyme.5,32,35  Trehalase and the other proteolytic enzymes that are 

involved in Artemia development are highly sensitive to environmental conditions, such as 

temperature, oxygen levels, and pH. Trehalose also serves as a substrate for the synthesis 

of glycerol and glycogen. In some extremophile organisms, glycerol and trehalose serve as 

osmoprotectants and cryoprotectants to protect internal structures of the organism from 

extreme conditions, such as temperature, dehydration, and salinity. In contrast, glycerol, 

trehalose, and glycerophosphocholine were decreased in Artemia experiencing chronic 

exposure to TDCIPP. Glucose levels increased with chronic TDCIPP exposure, indicating 

that trehalose may have been converted to glucose at higher rates. 
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Phosphocholine, taurine, gadusol, and betaine levels were increased with chronic and acute 

exposure to TDCIPP. Gadusol is a mycosporin-like amino acid (MAA) that has been 

categorized as a natural sunscreen in marine species because it absorbs UV radiation.26–30 

MAAs are also related to salinity, thermal, and desiccation stress.27,28 A study with Artemia 

in Lake Urmia observed bioaccumulation of MAAs with UV radiation and salinity stress; 

therefore, we hypothesize that gadusol bioaccumulation in Artemia is related to an effect 

on osmoregulation.31Artemia is adapted to hypersaline environments and is an excellent 

osmoregulator; therefore, the high expression of these metabolites is likely a contributing 

factor in the considerably higher lethal concentration for TDCIPP in Artemia versus 

Daphnia and fish.2,4,10,32  

 

The metabolites that were significantly (p < 0.05) affected by TDCIPP exposure are also 

involved in one carbon metabolism, glycine, serine, and threonine metabolism, and 

glycerophospholipid metabolism. Glycerophosphocholine and glycerol decreased while 

phosphocholine increased. This indicates that glycerophospholipid metabolism may be 

downregulated in chronic TDCIPP exposure, which may result in an alteration to energy 

storage mechanisms and lipid structures.4,10,43 Lipid metabolism was also perturbed in 

chicken embryos exposed to TDCIPP.30 One carbon metabolism involves metabolic 

processes where methyl groups are transferred using folate cofactors to many biochemical 

pathways.44,45 Methanol is an intermediary of one carbon metabolism and downregulation 

of this metabolite may indicate perturbation of this pathway in response to oxidative 

stress.44,45 Phosphocholine is a precursor to choline in the glycine, serine, threonine, 
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metabolic pathway and betaine is another intermediary, the measured changes to these 

metabolites may be an indication that combating TDCIPP-induced stress is an energy 

priority over amino acid metabolism.44,46 These pathways and metabolites are interrelated 

and the measured patterns in metabolite shifts may indicate a perturbation in Artemia 

experiencing acute or chronic TDCIPP exposure.   

 

4. Conclusion 

Environmental monitoring has demonstrated widespread occurrence of TDCIPP, raising 

concerns about the impact on aquatic life. Using 1H NMR and GC-MS metabolomics and 

20-day body length experiments, we have determined that chronic exposure to 

environmentally relevant concentrations of TDCIPP affects Artemia development, which 

may indicate an effect on their molt cycle. TDCIPP exposure triggered a significant 

response in the expression in metabolites of the osmolyte class, namely betaine, 

phosphocholine, gadusol, and taurine and also glycerol and trehalose, metabolites that are 

essential osmoprotectants in extremophile species. Other pathways that may be perturbed 

by TDCIPP exposure include one carbon, glycine, serine, and threonine, and 

glycerophospholipid metabolism.   
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Metabolic perturbations from PFOS and PFOA in Artemia franciscana 

CHAPTER FIVE 

Abstract 

Perfluoroalkyl salts (PFAS) are fluorinated organic compounds that have many industrial 

uses due to their strong carbon-fluorine bonds that repel oil and water. Perfluorooctane 

sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are types of PFAS that have been 

widely detected in the environment from industrial application and also as a breakdown 

produce of larger PFAS compounds.  PFOS and PFOA are persistent contaminants that 

cause significant health concerns such as liver damage and infertility. PFOA is universally 

detected in human serum and breastmilk and PFOS bioaccumulates in fatty tissue of 

terrestrial and marine species.  Uptake of these compounds has been measured in many 

higher trophic level aquatic species, raising concerns about the impact of biomagnification 

in the food chain. As Artemia franciscana is often used as a feedstock for fish farms, the 

effect of PFOS and PFOA on this lower trophic level organism may play an important role 

on transfer through the food chain. Using NMR and LC-MS environmental metabolomics, 

the Artemia metabolic profile was measured after a 68 hour exposure to sublethal PFOS 

and PFOA. It was determined that the 48 hr LC50 for Artemia franciscana is 20 ± 9 ppm 

for PFOS and approximately 60 ppm for PFOA. Exposures were conducted at the LC5 and 

LC25 of both compounds, 59 metabolites were significantly affected by PFOS and 64 

metabolites were affected by PFOA. Using pathway analysis with the PAPi R package, 35 

metabolic pathways in the KEGG database were perturbed by PFOS and 116 pathways 

were perturbed by PFOA. Affected pathways were related to fatty acid oxidation and lipid 
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metabolism, protein synthesis, oxidative stress, and carbohydrate metabolism. PFOA also 

affected these mechanisms in addition to nitrogen and methane metabolism and the TCA 

cycle.  

1 Introduction 

Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are fully 

fluorinated, organic compounds that are a type of perfluoroalkyl salt (PFAS). These 

compounds have been widely used for industrial applications such as surfactants, fire-

fighting foam, and pesticides because of their ability to repel oil and water.1 These products 

work well in these applications due to the highly strong and stable nature of the carbon-

fluorine bond.2 However, this stable nature has also created a health and environmental 

challenge.  

 

PFOS and PFOA are detected in drinking water, indoor dust, food, environmental media, 

and biota in many parts of the world.3 PFASs are extremely persistent in the environment 

and have the potential to bioaccumulate in humans and animals.1 Toxicological studies 

indicate that PFAS exposure may be linked to preeclampsia, liver damage, increase in 

serum lipids, thyroid disease, infertility, asthma, decreased birth weight, and decreased 

antibody response to vaccines.4 The primary route of exposure for humans is through the 

consumption of water and food contaminated with PFASs.2,3 In 2002, the main producer 

of PFOS and PFOA, 3M, voluntarily phased out production of these compounds after a 

study found PFAS in samples from the global blood bank.1–3 PFOS was added to the 

Persistent Organic Pollutant list at the Stockholm Convention in 2009.1 In 2015, the EPA 
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lowered the drinking water standards for PFASs from 400 ppt to 70 ppt. Counties in 

Southern California had to take some of their water sources permanently offline in order 

to meet this new standard.5 A report by the EPA and the Agency for Toxic Substances and 

Disease Registry released in June 2018 suggested decreasing the maximum risk level even 

further, but the exact recommendations have not been released.4,6,7 

 

PFAS are globally distributed in our aquatic environment, with PFOS and PFOA being the 

most thoroughly studied in this class. PFOS or PFOA was detected in rivers in 100% of 

samples tested from 41 cities in North America, Asia, and Europe.8 PFOA is more soluble 

in water and has a lower bioaccumulation potential than PFOS, so it is usually reported at 

higher levels in water.8–10 PFOS is more often detected in sediment and biota.11,12 Although 

the highest levels are reported in freshwater surrounding industrial areas, PFOS and PFOA 

are also reported in open-ocean and coastal seawater samples in the Atlantic Ocean, Pacific 

Ocean, and smaller seas like the Japan Sea and the Labrador Sea.11 PFOS and PFOA have 

been detected in aquatic species and PFOS has been detected in higher trophic level 

species, including porpoises and turtles, indicating that it biomagnifies up the food 

chain.9,12 

 

Biomagnification in the food chain is a result of the concentration of toxins in an organism 

as a result of ingesting other plants or animals in which the toxins bioaccumulate. Daphnia 

are small planktonic crustacea that are low on the food chain and are an important keystone 

species in many freshwater ecosystems. They are often used for toxicology testing to 
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identify aquatic stressors.13 Several PFAS compounds, including PFOS and PFOA, were 

shown to bioaccumulate in Daphnia magna.14 In separate studies, PFOS was also shown 

to affect the individual fitness of daphnids, inhibit metabolic enzymes, and decrease 

reproduction.14–16 The consumption of daphnids or other low trophic level organisms is 

likely the source of PFAS detected in fish organs, such as tilapia, carp, and salmon.17–19 

Artemia franciscana is another important crustacean that is found in saltwater lakes. This 

organism is a globally important food source for aquacultures. The effects of PFAS on 

Artemia have not been reported, but if PFOS and PFOA have a similar effect on Artemia 

as Daphnia, it could be a human health concern. Due to the widespread detection of PFOS 

and PFOA in all environmental media, it is important to understand the effects of these 

contaminants for both the health of aquatic ecosystems and humans.  

 

This study uses nuclear magnetic resonance (NMR) and liquid chromatography – mass 

spectrometry (LC-MS) to evaluate changes in Artemia metabolite levels in response to 

exposure to PFOS and PFOA. NMR is a rapid, robust, and quantitative technique that 

requires minimal sample preparation and has well-established libraries for metabolite 

identification.20,21 In this dissertation, the Artemia metabolome was characterized using 

untargeted NMR and GC-MS, and at the start of this project, the UCR Metabolomics Core 

became available. LC-MS methods at the Core were utilized to explore the different 

metabolites that can be identified due to its broad range of metabolite classes, low limits 

of detection, and high mass resolution.22–24  LC lacks standardized acquisition methods and 

robust libraries, so targeted methods compiled by the Core were utilized for this study. The 
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complementarity of NMR and LC-MS produce a more comprehensive analysis of the 

Artemia metabolome than could be obtained with either method alone. 25,26 The aims of 

this study are to characterize the molecular response of Artemia to sub-lethal PFOS and 

PFOA exposure and to identify metabolites and metabolic pathways that are perturbed by 

exposure using multivariate and univariate statistical analysis and biochemical pathway 

analysis. 

2 Materials and Methods 

2.1 PFOS and PFOA LC50 determination 

Artemia cysts were hatched into nauplii according to the protocol from chapter 2 section 

2.1.2. Perfluorooctane sulfonic acid (PFOS, Sigma Aldrich) and perfluorooctanoic acid 

(PFOA, Sigma Aldrich) dose solutions were prepared from a 1000 ppm stock solution in 

35 g/L saltwater at pH 8.0. To determine the lethal concentration for 50% of the Artemia 

population (LC50) of PFOS and PFOA, 20 nauplii were transferred into 50 mL jars for 3 

replicates per dose. Initial range finding experiments tested PFOA concentrations of 0, 

0.100, 1.00, 10.0, 100, and 1000 ppm and PFOS concentrations of 0, 0.100, 1.00, 10.0, and 

250 ppm. The number of living and dead shrimp was recorded after 48 and 96 hr. The range 

finding exposures were followed by triplicate exposures with 0, 15.6, 31.2, 62.5, 125, 250, 

500, and 1000 ppm PFOA and 0, 0.781, 1.56, 3.12, 6.25, 12.5, 25.0, 50.0, 100 ppm PFOS. 

The 48 hr LC50 was determined from mortality plots using the Dose-response -Stimulation: 

[Agonist] vs response (Variable slope – 4 parameters) non-linear regression in GraphPad 

Prism 7.0 (San Diego, CA). 
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2.2 PFOS and PFOA exposures 

PFOS and PFOA metabolomics exposures were conducted at approximately 25% (LC25) 

and 5% (LC5) of the lethal concentration for both PFOS and PFOA, as determined by 

mortality plots. The LC25 for PFOA was 30.0 ppm and the LC5 was 6.00 ppm.  The LC25 

for PFOS was 10.0 ppm and the LC5 was 2.00 ppm. 

 

 Artemia cysts (1 oz) were hatched for 48 hrs in 1 L control sea salt. The hatched nauplii 

were divided into 9 aquariums containing 300 mL media: 3 control, 3 LC25, and 3 LC5, 

with constant aeration and a 16:8 hr light cycle. After 68 hrs, 10 samples were taken for 

each treatment. For each sample, nauplii were transferred to 2 mL screw top microvials 

and flash frozen in liquid nitrogen. The samples were thawed, and the media exchanged 3x 

with ultrapure water. The samples were re-frozen and lyophilized to dryness then stored at 

– 80 °C. 

 

2.3 Sample preparation 

Sample preparation for LC-MS analysis was performed at the UCR Metabolomics Core. 

Freeze-dried brine shrimp pellets were weighed in 1.5 mL Eppendorf tubes. The extraction 

solvent was added (1 mL per 10 mg shrimp) and samples were vortexed for 20 min, 

sonicated for 15 min, then vortexed for an additional 60 min. Samples were then 

centrifuged for 15 min at 4° C at 16,000 × g. The supernatant was transferred to a 2 mL 

glass vial and analyzed by LC-MS. 
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2.4 Metabolomics measurements 

Untargeted metabolomics analysis was performed using 1H NMR and targeted 

metabolomics measurements was performed using LC-MS in the UCR Metabolomics 

Core. The procedure for 1H NMR acquisition can be found in chapter 2, section 2.3.3, and 

the procedure for 1H NMR processing can be found in chapter 2, section 2.4.2.1. The NMR 

buffer contained 0.26 mM fluoxetine (Sigma Aldrich) at pH 7.61 as a chemical shift 

reference. 1H NMR spectra were acquired with a Bruker Avance NMR spectrometer 

(Billerica, MA) equipped with a 5mm BBO broadband tunable probe operating at 599.88 

MHz. 

 

2.4.1 LC-MS analysis, targeted metabolomics 

Targeted metabolomics of polar, primary metabolites was performed on a TQ-XS triple 

quadrupole mass spectrometer (Waters) coupled to a I-class UPLC system (Waters). 

Separations were carried out on a ZIC-pHILIC column (2.1 x 150 mm, 5 µM) (EMD 

Millipore). The mobile phases were (A) water with 15 mM ammonium bicarbonate 

adjusted to pH 9.6 with ammonium hydroxide and (B) acetonitrile. The flow rate was 200 

µL/min and the column was held at 50° C. The injection volume was 2 µL. The gradient 

was as follows: 0 min, 90% B; 1.5 min, 90% B; 16 min, 20% B; 18 min, 20% B; 20 min, 

90% B; 28 min, 90% B.  

 

The MS was operated in selected reaction monitoring mode. Source and desolvation 

temperatures were 150° C and 500° C, respectively. Desolvation gas was set to 1000 L/hr 
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and cone gas to 150 L/hr. Collision gas was set to 0.15 mL/min. All gases were nitrogen 

except the collision gas, which was argon. Capillary voltage was 1 kV in positive ion mode 

and 2 kV in negative ion mode. System stability was monitored by analyzing a quality 

control sample (generated by pooling together equal volumes of all sample extracts) 

throughout the sample set. To prevent artifactual metabolite changes between groups, 

samples were analyzed in random order. 

 

2.5 Data analysis 

 
At the UCR Metabolomics Core, LC-MS data were processed and peaks integrated with 

the open source software Skyline  (University of Washington)27. Statistical analyses and 

data visualizations were performed and generated in MetaboAnalyst except for principal 

component analysis, which was performed using SIMCA (Umetrics).28–31 Univariate 

analysis was conducted between the high dose and control to identify metabolites that 

change significantly. A t-test was run between the mean of the control and the high dose to 

determine the p-value. For non-normally distributed data, the Wilcoxon-Mann Whitney U-

test was performed. The fold change was calculated. One-way ANOVA with Fisher’s LSD 

post hoc was performed for all three treatments and metabolites with p-value < 0.05 were 

identified along with the intertreatment significance. Heatmaps were also constructed in 

MetaboAnalyst for all three treatments. The heatmaps are plotted with Euclidean distance, 

Ward clustering and show with group averages and the colors correspond to z-score.30 
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Pathway analysis was conducted using the PAPi R package with metabolites that have a 

designated KEGG code. Ophthalmic acid, lauroyl-carnitine and glutarylcarnitine were 

excluded from analysis because they do not have designated KEGG codes. Glucose-6-

phosphate was used in place of hexose-phosphate, trehalose was used in place of 

disaccharide hexose, glucose was used in place of hexose monomer, and ribose 5 phosphate 

was used in place of pentose phosphate. Metabolic pathway charts were constructed from 

MetaboAnalyst pathway analysis using the Danio rerio (zebrafish) reference metabolome. 

The figures are labeled by KEGG code. Metabolites that are present in the dataset are 

outlined in red and metabolites that are missing are outlined in blue. Box plots were 

constructed using GraphPad Prism 7.03. 

 

3 Results and Discussion 

3.1 PFOS and PFOA toxicity 

Due to the widespread detection of PFOS and PFOA in aquatic systems and the importance 

of Artemia in aquacultures, we aimed to determine the toxic effects of these compounds. 

PFOS range-finding exposures estimated the approximate 48 hr LC50 as 15 ± 34 ppm and 

96 hr LC50 as 0.5 ± 0.3 ppm. An exposure with a narrower range of concentrations 

identified the PFOS LC50 as 20 ± 9 ppm (Figure 5.1a). The reported 48 hr LC50 for PFOS 

is 37.36 ± 6.64 ppm for D. magna and 17.95 ± 3.22 ppm for M. macrocopa.32 Our estimated 

lethal concentration is closer to M. macrocopa, which is a freshwater water flea like D. 

magna. 
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PFOA mortality was variable for the exposures, this prevented the calculation of precise 

LC50 values because the nonlinear regression did not fit the data. PFOA range-finding 

exposures identified the approximate 48 hr LC50 as ~130 ppm with an undetermined 

standard error and 96 hr LC50 as 44 ± 42 ppm. An exposure with a narrower range of 

concentrations was still statistically ambiguous and the PFOA LC50 was identified as ~ 60 

ppm.  The reported 48-hour LC50 for PFOA is 476.52 ± 101.2 ppm for D. magna and 

199.51 ± 45.62 ppm for M. macrocopa. The NOEC for M. macrocopa is 62.5 ppm and 

LOEC is 125 ppm.32 The PFOA result that was extrapolated from our data is much lower 

than reported values for these other similar water fleas. It is unexpected that the difference 

in mortality should be so great between D. magna and Artemia, considering Artemia is 

more tolerant of environmental toxins such as TDCIPP and adapted to harsh conditions.  

 

Variable mortality results were observed for both PFOS and PFOA. The exposures were 

repeated three times, and each repetition yielded different results. Since the goal of the 

project was to study sublethal effects, it was decided that an exact LC50 was not essential. 

We ultimately combined these results to obtain averaged data. We hypothesize that some 

of this variability is due to the physicochemical nature of PFAS compounds. PFAS self-

assemble into micelles at the critical micelle concentration (CMC). Below the CMC, 

monomers act as single molecules and above this point they aggregate into micelles. 

Micelle formation affects solubility. PFOA is soluble in water (~3.4 g/L) and its’ CMC is 

25 mM (~10 g/L).33–35 PFOS is less soluble in water (550 mg/L) and its CMC is 8 mM (~4 

g/L) than PFOA.33–35 Micelle formation depends on many conditions such as fluorocarbon 
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chain length, the type and concentration of ions present, and temperature.33 It is unclear to 

what extent the saltwater and temperature in the Artemia aquarium affects the solubility 

and micelle formation of these compounds, but both factors are known to decrease CMC 

and solubility for fluorocarbon surfactants.33–35 There remains a lack of available 

physicochemical and kinetic information about PFAS compounds because it is challenging 

to obtain experimental data due to their surface active properties. 

 

Other factors that may play a role in the variability in the dataset is the potential for 

partitioning, adsorption, and bioaccumulation. The octanol:water partition coefficient (log 

Kow) for PFOS (2.45) and PFOA (1.92) indicates that these compounds are likely to 

partition into a non-aqueous phase or adsorb to a surface, such as tissue from Artemia or 

the walls of the aquarium.33,35 Bioaccumulation factors for rainbow trout livers indicate 

that PFOS (5.40 x 103 L/kg) and PFOA (8.0 L/kg) have the tendency to biaccumulate.12,33 

PFOS and PFOA were measured in Artemia extracts using LC-MS. The 498.93 m/z ion in 

the Artemia extracted ion chromatogram corresponds to the same mass in the PFOS 

reference standard (Figure 5.2). Increased levels were measured at 2.00 ppm and 10.0 ppm 

PFOS. The 412.96 m/z ion from the extracted ion chromatogram corresponds to PFOA. 

Increased levels were measured at 6.00 and 30.0 ppm PFOA (Figure 5.3). This may 

indicate that both compounds have the potential for bioaccumulation in Artemia, however, 

further quantitative studies are needed to determine that uptake is occurring. 
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Figure 5.1. Artemia mortality plots after 48 hr exposure to PFOS (a) and PFOA (b) (n = 20 Artemia per 
sample). Concentrations in ppm are transformed by Log2. (a) PFOS LC50 = 20 ± 9 ppm. (b) LC50 was ~60 
ppm as determined by non-linear regression. This regression did not fit the data, so standard error was not 
determined.   
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a.                                                   b. 

 
c. 

 

Figure 5.2. Identification of PFOS in Artemia extracts. (a) extracted ion chromatogram of Artemia sample 
and PFOS standard showing the same ion at m/z 498.93. (b) Mass spectrum of PFOS molecular ion with M-
H less than -1 ppm mass error. (c) Box plots of PFOS relative abundance for the control (blue), 2.00 ppm 
(yellow), and 10.0 ppm (orange) doses. 
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a.                                                               b. 

 

c.  

 
Figure 5.3. Identification of PFOA in Artemia extracts. (a) extracted ion chromatogram of Artemia sample 
and PFOA standard showing the same ion at m/z 412.96. (b) Mass spectrum of PFOA molecular ion and base 
peak with M-H less than -1 ppm mass error. (c) Box plots of PFOA relative abundance for the control (blue), 
6.00 ppm (yellow), and 30.0 ppm (orange) doses. 
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3.2 Metabolites identified by LC-MS and NMR 

LC-MS analysis of Artemia extracts led to the identification and relative quantitation of 

100 metabolites for PFOS and 86 metabolites for PFOA (Table 5.1). These compounds 

were identified by their retention time, a precursor ion, and a product ion, from either 

positive or negative mode targeted metabolomics methods. These metabolites include 

amino acids, amino acid derivatives, polyamines, nucleotides, nucleoside, sugars, and 

sugar phosphates. Of the 29 metabolites quantified by NMR, asparagine, formate, 

methanol, gadusol and homarine were not identified by LC-MS.  Asparagine was removed 

from the targeted method because contaminants interfered with its retention time and 

identifying ions. The molecular weight of formate and methanol was too low for the mass 

spectrometer, this is the case for several small organic acids and alcohols.26 Gadusol and 

homarine are not common metabolites and a standard was not available to add to the 

targeted library.  

 
Several metabolites were not able to be differentiated between their isomers by LC-MS. 

These include citrate and isocitrate, disaccharide hexose, pentose phosphate, and hexose 

monomer. Based on our NMR results, the disaccharide hexose might be trehalose and the 

hexose monomer might be glucose. NMR is advantageous for identifying isomers because 

it can differentiate these structures based on j-coupling and chemical shift. However, MS 

is able to differentiate many isomers based on fragmentation patterns in MS2 and MS3.20,36 

The identity of metabolites measured between PFOS and PFOA LC-MS analysis also 

differed. Carnosine, cysteinesulfinic acid, folic acid, glutathione (GSH), glutathione 
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disulfide (GSSG), lauroyl-carnitine, N-acetylalanine, NADP, N-methylglutamate, 

thymidine, glutarate, glycerol-3-phosphate, hexose phosphate, phosphoenolpyruvate, and 

succinate were only detected in PFOS samples. UMP was only detected in PFOA samples.  

 
Although NMR is invaluable for metabolome characterization due to its strength for 

untargeted applications and structural elucidation of unknown metabolites, as was 

demonstrated by the elucidation of gadusol in chapter 2, section 2.3.5, LC-MS will be the 

primary focus of the remaining work. Due to the large number of primary and secondary 

metabolites that had not been previously elucidated by NMR or GC-MS there is more 

information from which to draw biochemical mode of action hypotheses from metabolic 

perturbations. However, more variables also add more complexity to the statistical analysis 

and there is no streamlined procedure for interpreting these large datasets.   
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Table 5.1. Metabolites quantified by LC-MS for PFOS and PFOA 
Metabolite RT precursor  product  ionization  PFOA* PFOS* 
4-guanidinobutyric acid 12.5 146.0 86.0 Positive Q Q 
4-Hydroxyproline 12.0 132.0 68.0 Positive Q Q 
5-aminovaleric acid 12.6 118.0 101.0 Positive Q Q 
5-hydroxylysine 15.8 163.0 128.0 Positive Q Q 
Acetylcarnitine 8.9 204.0 85.0 Positive Q Q 
Adenine 6.0 136.0 119.0 Positive Q Q 
Adenosine 6.4 268.0 136.0 Positive Q Q 
ADP 13.6 428.0 136.0 Positive Q Q 
ADP ribose 12.8 560.0 348.0 Positive Q Q 
Alanine 12.1 90.0 44.0 Positive Q Q 
Allantoin 11.2 157.0 114.0 Negative Q Q 
alpha-ketoglutarate 12.6 145.0 101.0 Negative Q Q 
Aminoadipate 12.5 162.0 98.0 Positive Q Q 
AMP 12.3 348.0 136.0 Positive Q Q 
Arginine 16.4 175.0 70.0 Positive Q Q 
Argininosuccinic acid 13.3 291.0 70.0 Positive Q Q 
Aspartic 12.5 132.0 88.0 Negative Q Q 
Betaine 8.8 118.0 58.0 Positive Q Q 
Carnitine  11.0 162.0 103.0 Positive Q Q 
Carnosine 12.5 227.0 110.0 Positive  Q 
CDP-choline 12.6 489.1 184.0 Positive Q Q 
CDP-ethanolamine 13.2 447.0 324.0 Positive Q Q 
Choline 15.4 104.0 60.0 Positive Q Q 
Citrulline 12.7 176.0 113.0 Positive Q Q 
cyclic GMP 11.4 346.0 152.0 Positive Q Q 
Cystathionine 13.4 223.0 134.0 Positive Q Q 
Cysteinesulfinic acid 12.0 154.0 74.0 Positive  Q 
Cystine 13.1 241.0 74.0 Positive Q Q 
Cytidine 10.1 244.0 112.0 Positive Q Q 
dAMP 11.2 332.0 136.0 Positive Q Q 
dCMP 12.8 306.0 79.0 Negative Q Q 
Deoxyadenosine 4.6 252.0 136.0 Positive Q Q 
Deoxycytidine 8.8 226.0 93.0 Negative Q Q 
Deoxyguanosine 9.9 266.0 150.0 Negative Q Q 
Deoxyuridine 4.5 227.0 184.0 Negative Q Q 
dGMP 13.2 348.0 152.0 Positive Q Q 
Dimethylarginine 15.1 203.0 70.0 Positive Q Q 
Disaccharide hexose 12.7 341.0 89.0 Negative Q Q 
FAD 11.0 786.2 348.0 Positive Q Q 
Folic acid 13.3 442.1 295.0 Positive  Q 
gamma-aminobutyrate 12.4 104.0 87.0 Positive Q Q 
GDP 14.3 444.0 152.0 Positive Q Q 
Gln-6-P 13.4 258.0 79.0 Negative Q Q 
Glutamate 12.1 146.0 102.0 Negative Q Q 
Glutamine 12.3 147.0 130.0 Positive Q Q 
Glutaric acid 12.1 131.0 87.0 Negative  Q 
Glutarylcarnitine 10.9 276.0 115.0 Positive Q Q 
Glycerol-3-P 12.4 171.0 97.0 Negative  Q 
GSH 12.0 308.0 76.0 Positive  Q 
GSSG 13.6 613.2 231.0 Positive  Q 
Guanosine 11.1 284.0 152.0 Positive Q Q 
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Hexose dimer 10.7 367.0 157.0 Negative Q  
Hexose monomer 10.7 179.0 71.0 Negative Q Q 
Hexose-P 13.4 259.0 79.0 Negative  Q 
Hypoxanthine 7.7 137.0 110.0 Positive Q Q 
Inosine 9.5 267.0 135.0 Negative Q Q 
Iso/Citrate 14.8 191.0 111.0 Negative Q Q 
Isoleucine 9.4 132.1 86.0 Positive Q Q 
Kynurenine 9.9 209.0 94.0 Positive Q Q 
Lauroyl carnitine 3.4 344.0 285.0 Positive  Q 
Leucine 9.4 132.1 86.0 Positive Q Q 
Lysine 16.1 147.0 84.0 Positive Q Q 
Malate 13.2 133.0 115.0 Negative Q Q 
Malonic acid 4.6 103.0 59.0 Negative Q Q 
Methionine 9.9 150.0 133.0 Positive Q Q 
Myo-inositol 13.1 179.0 161.0 Negative Q Q 
N-acetylalanine 3.3 132.0 44.0 Positive  Q 
N-acetyllysine 12.2 189.0 84.0 Positive Q Q 
N-acetylphenylalanine 1.6 208.0 120.0 Positive Q Q 
N-acetylputrescine 15.1 131.0 72.0 Positive Q Q 
N-methylglutamate 10.2 162.0 116.0 Positive  Q 
NAD 12.2 664.1 136.0 Positive Q Q 
NADP 13.7 744.1 136.0 Positive  Q 
Nicotinamide 3.6 123.0 80.0 Positive  Q 
Nicotinamide mononucleotide 12.9 335.0 123.0 Positive Q Q 
Nicotinic acid 3.5 122.0 78.0 Negative Q Q 
Opthalmic acid 11.4 290.0 161.0 Positive Q Q 
Ornithine 15.1 133.0 70.0 Positive Q Q 
Pentose-P 13.3 229.0 79.0 Negative Q Q 
Phenylalanine 8.4 166.0 103.0 Positive Q Q 
Phosphocholine 12.5 184.0 86.0 Positive Q Q 
Phosphoenolpyruvate 14.2 167.0 79.0 Negative  Q 
Proline 10.6 116.0 68.0 Positive Q Q 
S-adenosylhomocysteine 11.7 385.0 136.0 Positive Q Q 
S-adenosylmethionine 13.4 399.0 250.0 Positive Q Q 
Serine 12.6 106.0 60.0 Positive Q Q 
Succinate 12.1 117.0 73.0 Negative  Q 
Taurine 11.6 124.0 80.0 Negative Q Q 
Thiamine 15.4 265.0 122.0 Positive Q Q 
Thiamine monophosphate 12.1 345.0 122.0 Positive Q Q 
Threonine 11.7 120.0 74.0 Positive Q Q 
Thymidine 3.5 243.0 117.0 Positive  Q 
Trimethyllysine 15.2 189.0 84.0 Positive Q Q 
Tryptophan 10.3 205.0 188.0 Positive Q Q 
Tryptophanamide 3.7 204.0 159.0 Positive Q Q 
Tyrosine 11.2 182.0 136.0 Positive Q Q 
UDP-glucose 13.4 565.0 323.0 Negative Q Q 
UDP-glucuronic acid 14.6 579.0 403.0 Negative Q Q 
UMP 12.8 323.0 111.0 Negative Q  
Uridine 7.5 243.0 110.0 Negative Q Q 
Valine 10.4 118.0 72.0 Positive Q Q 
Xanthine 9.2 151.0 108.0 Negative Q Q 
*Q indicates a metabolite that was quantified in the PFOS or PFOA dataset  
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3.3 Statistical analysis of PFOS and PFOA exposure 

Multivariate analysis was conducted on metabolites detected by LC-MS to visualize global 

differences in the metabolite profiles of Artemia exposed to PFOS and PFOA. We were 

unable to do multiblock multivariate analysis with NMR because the samples were treated 

and analyzed differently from the LC-MS samples. PCA indicates that there is clear 

separation between doses for each compound. For PFOS, PC1 explains 53.8% of the 

variance, which corresponds to a separation between the control and the two doses. PC2 

explains 24.4% of the variance which corresponds to the difference between 2 ppm and 10 

ppm PFOS (Figure 5.4a). The loading plot (Figure 5.4b) indicates that the iso/citrate, 

pentose phosphate, and guanosine may contribute to the control, hexose phosphate, GSH, 

and GDP contribute to 2 ppm, and deoxyadenosine, adenosine, and malonic acid contribute 

to 10 ppm PFOS. For PFOA, PC1 explains 62.1% and PC2 explains 25.7% (Figure 5.4c). 

PC1 separates the control from 30 ppm PFOA and PC2 separates 6 ppm PFOA from the 

control and from 30 ppm. The loading plot indicates that N-acetyllysine, citrulline, and 

disaccharide hexose contribute to the control, cystine, malate and aminoadipate contribute 

to 30 ppm, and adenosine, cytidine, and deoxycytidine contribute to 6 ppm (Figure 5.4d).  

 

Univariate analysis was performed to identify how individual metabolites are affected by 

PFOS and PFOA exposure and to evaluate significance. Univariate analysis was conducted 

for the control versus 10 ppm PFOS and 30 ppm PFOA (high dose) treatments. 49 

metabolites were significantly affected by PFOS and 58 metabolites were significantly 

affected by PFOA. The majority of the metabolites had a negative fold change from PFOS 
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exposure, 12 of which had a fold change greater than 2.0, and a positive fold change from 

PFOA exposure, and 43 of which had a fold change greater than 2.0.  

 

One-way ANOVA with Fisher’s LSD post hoc was calculated for each treatment to identify 

metabolites that were significantly affected (p < 0.05) between two or three conditions. For 

these exposures, 77 out of 101 detected metabolites were significantly affected; 13 

metabolites were significant in PFOS, 18 were significant in PFOA, and 46 were significant 

in both exposures (Figure 5.5). Arginine, asparagine, betaine, leucine, phosphocholine, 

gadusol, and homarine were significant in NMR for PFOS exposures and lysine was 

significant by NMR and LC-MS for PFOS. ADP, alanine, taurine, and hexose 

monomer/glucose were significant by both PFOS and PFOS and identified by NMR and 

LC-MS. Glutamate and methionine were significant in PFOA and identified by NMR and 

LC-MS.  

 

Heat maps were also constructed to visualize metabolite changes with each treatment. The 

metabolites are arranged by hierarchal clustering to indicate which metabolites are 

similarly affected.  The heat map plotted with average metabolite response for each 

treatment shows an overall trend of metabolite levels increasing slightly from control to 2 

ppm PFOS and then decreasing from 2 ppm to 10 ppm PFOS (Figure 5.6a). In contrast, the 

PFOA heat map indicates that overall metabolite levels increase with exposure (Figure 

5.6b). However, N-acetylputrescine, 5-aminovaleric acid, glucosamine-6-phosphate, 

adenine, N-acetyllysine, disaccharide hexose, S-adenosylhomocysteine, hexose monomer, 
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alpha-ketoglutarate, and ophthalmic acid trend opposite from the majority and decrease 

with PFOA dose. The trends plotted in the heat map for control and the high dose agree 

with the univariate statistics (Table 5.2), however it is not clear why the levels of many 

metabolites would increase from control to 2 ppm PFOS but decrease from 2 ppm to 10 

ppm.  
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a. 

 
b. 
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c.  

 
d.  

 
Figure 5.4. PCA plots for the LC-MS metabolite response from PFOS and PFOA exposures. Ellipse 
represents 95% confidence interval. The PCA score plot (a) and loading plot (b) for PFOS indicates that 
PC1 = 53.8 % and PC2 = 24.4 % explained variance. The score plot (c) and loading plot (d) for PFOA 
indicates that PC1 = 62.1% and PC2 = 25.7% explained variance.  
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Table 5.2. Univariate analysis of LC-MS metabolites for control versus 10 ppm PFOS 
and 30 ppm PFOA  

Name PFOS  
p-value 

Fold 
Chang

e 

10 ppm 
PFOS/ 
Control 

PFOA p-
value 

Fold 
Change 

30 ppm 
PFOA/ 
Control 

4_guanidinobutyric_acid 0.3535 1.09 Up < 0.0001  -6.35 Down 
4_Hydroxyproline 0.0037 1.53 Up 0.0002 2.38 Up 
5_aminovaleric_acid < 0.0001  -4.68 Down 0.0046 -2.45 Down 
5_hydroxylysine 0.0001 -1.47 Down 0.0079 (W) 2.2 Up 
Adenine 0.0385 1.18 Up 0.0003 -1.94 Down 
Adenosine 0.002 1.35 Up 0.0017 1.64 Up 
ADP 0.0079 -2.23 Down 0.0027 2.04 Up 
ADP_ribose 0.9016 1.02 Up 0.0091 1.88 Up 
Alanine 0.1168 -1.05 Down < 0.0001  1.55 Up 
Allantoin 0.014 -4.29 Down 0.0801 5.47 Up 
alpha_ketoglutarate 0.4863 -1.16 Down 0.0079 (W) -1.91 Down 
Aminoadipate < 0.0001  -1.57 Down 0.038 1.67 Up 
AMP 0.0023 1.42 Up 0.0006 5.45 Up 
Arginino succinic_acid 0.0079 (W) -2.03 Down 0.0008 1.76 Up 
Aspartate 0.1206 -1.24 Down 0.0079 (W) 2.41 Up 
Carnosine 0.8796 -1.02 Down       
CDP_choline 0.0016 1.69 Up < 0.0001  3.11 Up 
CDP_ethanolamine 0.7881 -1.02 Down 0.0011 3.51 Up 
Citrulline 0.0079 (W) -3.39 Down 0.0079 (W) -3.39 Down 
cyclic_GMP 0.0007 -1.92 Down 0.0918 1.27 Up 
Cystathionine 0.0096 -1.29 Down 0.0079 (W) 3.01 Up 
Cysteinesulfinic_acid 0.0036 -1.22 Down       
Cystine 0.0097 -1.88 Down 0.0045 6.14 Up 
Cytidine 0.0721 -1.16 Down 0.0159 (W) 1.52 Up 
dAMP 0.0014 1.36 Up < 0.0001  3.61 Up 
dCMP 0.8595 1.02 Up 0.0007 3 Up 
Deoxyadenosine 0.0002 1.96 Up 0.0079 (W) 1.46 Up 
Deoxycytidine 0.2852 -1.16 Down 0.1904 1.28 Up 
Deoxyguanosine 0.0283 -1.42 Down 0.277 1.19 Up 
Deoxyuridine 0.1836 1.16 Up 0.001 2.45 Up 
dGMP 0.7966 1.04 Up 0.0003 3.72 Up 
Disaccharide_hexose 0.0815 -1.55 Down < 0.0001  -12.41 Down 
FAD 0.104 1.12 Up 0.0002 1.31 Up 
Folic_acid 0.0048 -1.77 Down       
gamma_aminobutyrate < 0.0001  -1.26 Down 0.3045 -1.11 Down 
GDP 0.5511 -1.05 Down 0.0003 5.29 Up 
Gln_6_P 0.1356 -1.16 Down 0.0021 -1.83 Down 
Glutamate 0.5153 1.06 Up < 0.0001  2.1 Up 
Glutaric_acid 0.066 -1.3 Down       
Glutarylcarnitine 0.0016 1.44 Up 0.0029 2.9 Up 
Glycerol_3_P 0.6856 -1.03 Down       
GSH 0.6745 -1.06 Down       
GSSG 0.001 -1.95 Down       
Guanosine < 0.0001  -3.63 Down 0.0283 2.77 Up 
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Hexose_monomer 0.0066 1.18 Up 0.1472 -1.12 Down 
Hexose_P 0.0075 1.65 Up       
Inosine 0.2163 -1.12 Down       
Iso/Citrate 0.0129 -9.94 Down 0.0119 6.56 Up 
Kynurenine < 0.0001  -3.26 Down 0.2822 1.13 Up 
Lauroyl_carnitine < 0.0001  -3 Down       
Lysine < 0.0001  -1.52 Down       
Malate 0.2844 -1.13 Down 0.0001 2.53 Up 
Malonic_acid 0.0008 1.31 Up 0.9282 1.03 Up 
Myo_inositol 0.0085 1.37 Up 0.0011 1.93 Up 
N_acetylalanine < 0.0001  -1.48 Down       
N_acetyllysine < 0.0001  -4.4 Down 0.0079 (W) -8.61 Down 
N_acetylphenylalanine 0.0044 -1.51 Down 0.0005 2.05 Up 
N_acetylputrescine 0.4535 1.08 Up 0.0001 -3.4 Down 
N_methylglutamic_acid 0.0001 -1.43 Down       
NAD 0.0159 (W) -1.28 Down 0.0079 (W) 3.58 Up 
NADP 0.0261 -1.26 Down       
Nicotinamide 0.1678 -1.07 Down       
Nicotinamide_ 
mononucleotide 0.0021 -1.29 Down < 0.0001  3.83 Up 

Nicotinic_acid < 0.0001  1.68 Up 0.0037 2.12 Up 
Opthalmic_acid 0.0002 -1.81 Down 0.7888 -1.03 Down 
Ornithine 0.0032 -1.27 Down 0.0021 2.65 Up 
Pentose_P 0.0002 -4.65 Down 0.0014 9.74 Up 
Phosphoenolpyruvate 0.0749 -2.15 Down       
Proline 0.0104 1.13 Up 0.0099 1.2 Up 
S_adenosylhomocysteine < 0.0001  2.86 Up 0.6356 -1.02 Down 
S_adenosylmethionine < 0.0001  -1.67 Down < 0.0001  6.04 Up 
Serine 0.6905 (W) 1.02 Up 0.0023 2.07 Up 
Succinate 0.391 -1.14 Down       
Taurine 0.0044 1.38 Up 0.0005 2.01 Up 
Thiamine 0.0114 1.2 Up < 0.0001  2.66 Up 
Thiamine_ 
monophosphate 0.0074 1.28 Up < 0.0001  3.79 Up 

Threonine 0.2976 -1.07 Down < 0.0001  1.87 Up 
Thymidine 0.1981 -1.17 Down       
Trimethyllysine < 0.0001  -1.71 Down 0.0003 2.59 Up 
Tryptophan 0.2237 -1.08 Down 0.0002 1.44 Up 
Tryptophanamide 0.0002 -1.45 Down 0.6169 -1.05 Down 
UDP_glucose 0.2163 -1.19 Down 0.0079 (W) 3.31 Up 
UDP_glucuronic_acid 0.6951 -1.05 Down 0.0004 2.54 Up 
UMP       0.0012 4.53 Up 
Uridine < 0.0001  -2.39 Down < 0.0001  2.28 Up 
Valine 0.4559 1.04 Up 0.0038 1.1 Up 
Xanthine 0.1961 1.15 Up 0.0003 2.78 Up 
*p-value is calculated with t-test as a default, significant p-values are highlighted in blue 
*p-value with (W) is calculated by the Wilcoxon Mann Whitney test 
*fold change > |2.0| are highlighted in blue 
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Figure 5.5. Venn diagram indicating metabolites that were significantly affected (p < 0.05) by PFOS and 
PFOA exposure. Metabolites that were significant by NMR are indicated by *, and metabolites that were 
significant by both NMR and LC-MS are indicated by **.  
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a       b 

  
Figure 5.6. Heat map of group average metabolite concentration measured by LC-MS from PFOS 
exposures (a) and PFOA exposures (b). Blue indicates decreased concentration and red indicates increased 
concentration with respect to the average metabolite concentration. Metabolites are arranged by hierarchal 
clustering.  
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3.4 Biochemical pathway analysis of PFOS and PFOA metabolites 

Pathway analysis (PAPi) was performed to identify biochemical pathways that might be 

affected from PFOS and PFOA exposure. PAPi indicated that 35 pathways were altered by 

PFOS and 116 pathways were altered by PFOA (Figure 5.7). These pathways are related 

to amino acid, nucleic acid, lipid, and carbohydrate metabolism in addition to signaling 

pathways and diseased states. Pathways with a positive activity score are considered 

upregulated and a negative activity score indicates down regulation. Upregulated pathways 

have decreased metabolite levels compared to the control and pathways and downregulated 

pathways have increased metabolite levels. Increased metabolite levels indicates that the 

activity of the pathway has slowed and is causing accumulation of metabolites.37 The heat 

maps show that metabolite accumulation increases with PFOA concentration, which 

indicates that more pathways may be downregulated. Less accumulation is evident at the 

high dose for PFOS, which may indicate more pathways are upregulated (Figure 5.6). This 

trend is also confirmed by the PAPi line graph, which shows more upregulated pathways 

in PFOS than PFOA (Figure 5.7). Identified pathways in which three or more metabolites 

were identified were mapped to show individual metabolite changes.  
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b. 

 
 
Figure 5.7. PAPi pathway analysis line plots indicating metabolic pathways that are significantly affected 
(p < 0.05) by PFOS (a) and PFOA (b) exposure. The activity score for each pathway is calculated with the 
control group (1) set as a reference compared to the low dose (2) and the high dose (3) for each treatment 
and normalized using the Bonferroni correction. Graphs were constructed in the PAPi r package.37 
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Toxicological studies with PFAS consistently report effects on glucose, urea/uric acid 

metabolism, lipid metabolism, and hepatotoxicity in model organisms.4,38 We have found 

that both PFOS and PFOA affect glycerophospholipid metabolism and pathways related to 

carbohydrate metabolism in Artemia after 68 hrs of exposure. Artemia are ammonotetic, 

meaning they excrete waste in the form of nitrogen instead of urea.39 We found that 

nitrogen metabolism was downregulated by PFOA exposure (Figure 5.8), which may be 

related to an effect on waste excretion or an overall impact on metabolism which results in 

reduced waste production, which would be consistent with reported findings. 

Phenylalanine, tyrosine, cystathione, aspartate, AMP, glutamine and glutamate increased, 

and taurine decreased at 6 ppm and increased at 30 ppm. Methane metabolism was also 

downregulated with PFOA exposure, this is another important route of waste removal.   

 

Glycerophospholipid metabolism was downregulated by PFOS exposure, with 2 ppm 

PFOS having a lower activity score than 10 ppm PFOS (Figure 5.9), and PFOA exposure. 

Choline increases, phosphocholine, CDP-choline, and CDP-ethanolamine increase at 2 

ppm and decrease at 10 ppm. Glycerol-3-phosphate does not change. In PFOA, choline, 

phosphocholine, CDP-choline, and CDP-ethanolamine increased with exposure. This 

pathway is associated with the metabolism of fatty acids that make up lipid bilayers.40 The 

impairment of lipid metabolism is a commonly hypothesized pathway of toxicity for PFOS. 

It is known to bioaccumulate in fatty tissue and is attributed to liver toxicity in many 

organisms, including chickens, fish, and rats.19,41–43 PFOS affects fatty acid metabolism in 



 225 

fish species, such as fathead minnows and rainbow trout.44 PFOS and PFOA induced 

hepatotoxicity in tilapia, in which liver glycogen accumulation was measured.19   

 

The acylcarnitines, lauroylcarnitine and glutarylcarnitine, are involved in processes related 

to carnitine biosynthesis, transport, and utilization.45 Carnitine is essential for fatty acid 

oxidation. It was found to increase with PFOS and PFOA.  Glutarylcarnitine and 

lauroylcarnitine were not identified by the KEGG database and could not be considered for 

pathway analysis. Glutarylcarnitine increases with PFOS and PFOA exposure and 

lauroylcarnitine decreases with PFOS but was not detected in PFOA. The accumulation of 

carnitine with PFOS and PFOA exposures indicates that pathways related to fatty acid 

oxidation were likely downregulated. The effects on these polyamine compounds may also 

be related to downregulation of nitrogen metabolism measured in PFOA exposures. 

 

Several pathways related to carbohydrate metabolism were perturbed by PFOS and PFOA. 

These pathways are important for energy conservation or utilization. Artemia are highly 

sensitive and responsive to environmental conditions and this is reflected in the 

carbohydrate and osmolyte profile.39,46 In the studies described in earlier chapters of this 

dissertation, we have found that several of these metabolites are consistently affected by 

exposure to environmental toxins. These include the metabolites that are involved with 

osmoregulation, including taurine, betaine, glucose, phosphocholine, gadusol, homarine, 

and choline.39 This indicates that these metabolites are likely important for defending 

growing Artemia from environmental stress. Additionally, inositol phosphate metabolism 
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had the largest negative activity score for PFOS. Myo-inositol, ATP and ADP are involved 

in this pathway along with many other inositol compounds that are absent from our dataset. 

Starch and sucrose metabolism (Figure 5.10) and pentose and glucuronate interconversions 

were upregulated with PFOA. In the starch and sucrose metabolism pathway, trehalose 

(disaccharide hexose) and glucose (hexose monomer) decreased, UDP-glucose increased, 

and UDP-glucuronic acid decreased at 6 ppm and increased at 30 ppm.  

 
Several pathways involved in amino acid metabolism were affected by PFOS and PFOA 

exposure. Alanine, aspartate, and glutamate metabolism (Figure 5.11) arginine and proline 

metabolism (Figure 5.12), lysine degradation (Figure 5.13), lysine biosynthesis, and D-

arginine and D-ornithine metabolism were upregulated with PFOS. Glycine, serine and 

threonine metabolism (Figure 5.14), and taurine and hypotaurine metabolism were 

downregulated with PFOS. These same pathways were all downregulated with PFOA 

exposure. In the alanine, aspartate, and glutamate metabolism pathway, aspartate, 

argininosuccinate, and glutamine decreased with increasing exposure, glucosamine-6-

phosphate and succinate increased for 2 ppm and decreased for 10 ppm PFOS. Alpha-

ketoglutarate and glutamate did not change significantly. For PFOA, aspartate, 

argininosuccinate, glutamine, and glutamate increased, oxoglutarate, and glucosamine-6-

phosphate decreased. In the arginine and proline metabolism pathway, glutamine, 

aspartate, argininosuccinate, arginine, citrulline and ornithine decrease with PFOS 

exposure. Proline and hydroxyproline increase at 2 ppm and decrease at 10 ppm PFOS. N-

acetylputrescine, 4-guanidinobutyric acid, and glutamate do not change significantly. For 
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PFOA, glutamine, aspartate, argininosuccinate, arginine, ornithine, proline, 

hydroxyproline, and glutamate increased. N-acetylputrescine, citrulline, and 4-

guanidinobutyrate decreased. In the lysine degradation pathway, lysine was only detected 

in the 10 ppm PFOS sample, N-acetyllysine, aminoadipate, 5-aminovaleric acid, and 

trimethyllysine decreased with exposure. For PFOA, lysine increased, aminoadipic acid 

decreased at 6 ppm and increased at 30 ppm, trimethyllysine increased at 6 ppm and was 

not detected at 30 ppm. N-acetyllysine and 5-aminopentanoic acid (5-aminovaleric acid) 

decreased. In the glycine, serine, and threonine metabolism pathway, choline increased, 

betaine and cystathione increased at 2 ppm and decreased at 10 ppm, serine and threonine 

did not change significantly. Choline and cystathione increased, serine increased at 6 ppm 

and decreased at 30 ppm. Betaine decreased at 6 ppm and increased at 30 ppm. Threonine 

was only detected in the control. The pathways that were upregulated by PFOS include 

amino acids with amine side-chains and polyamine metabolites. These pathways are 

important for protein synthesis and waste excretion and detoxication. Valine, leucine, and 

isoleucine degradation and cysteine and methionine metabolism were also downregulated 

with PFOA exposure.  

 

Several studies have determined that PFOS and PFOA induce oxidative stress.17–19 In a 

study where in which salmon were fed PFOS or PFOA, reactive oxygen species-induced 

damage was measured.17 Glutathione metabolism was downregulated by PFOA by Artemia 

and glutathione (GSH) and oxidized glutathione (GSSG) were affected by PFOS. 

Additionally, ophthalmic acid levels decreased in PFOS and PFOA. This compound is not 



 228 

in the KEGG database, but it is a tripeptide analog of glutathione. Ophthalmic acid has 

been identified as a possible biomarker of oxidative stress that is produced in higher 

quantities when glutathione is being consumed by oxidative stress.47 The sulfur relay 

system and cysteine and methionine metabolism were identified by pathway analysis, 

indicating that many sulfur-containing compounds were affected in this study by both 

PFOS and PFOA.   

 

The sulfur relay system was upregulated with PFOS and downregulated with PFOA 

exposure. This system includes many different pathways, including thiamine metabolism 

and cysteine metabolism.48 Cysteine and methionine metabolism was downregulated from 

PFOA exposure (Figure 5.15). Cystine, methionine, S-adenosylmethionine, and 

cystathione increased. S-adenosylhomocysteine decreased at 6 ppm and increased at 30 

ppm. And serine increased at 6 ppm and decreased at 30 ppm. For thiamine metabolism, 

three metabolites detected from this pathway include thiamine, thiamine monophosphate, 

and cysteine, but cysteine was not detected for PFOA exposures. Thiamine is produced 

from dephosphorylation of thiamine monophosphate. Thiamine levels increased and 

thiamine monophosphate decreased with PFOS. Both metabolites increased with PFOA 

exposure.  

 

Other pathways that may have been affected by PFOS and PFOA include vitamin 

metabolism, nucleic acid metabolism, the TCA cycle, and signaling pathways. Pathways 

related to the metabolism of vitamins include nicotinate and nicotinamide metabolism 
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(Figure 5.16) and vitamin digestion and absorption. These pathways were downregulated 

by PFOS and PFOA. In the nicotinate and nicotinamide metabolism pathway, aspartate, 

nicotinamide mononucleotide, and NADP decrease with exposure, nictotinic acid, 

nicotinamide, and NAD increase at 2 ppm and decrease at 10 ppm PFOS. For PFOA, 

aspartate, nicotinic acid, NAD, and nicotinamide mononucleotide increased. Pathways 

related to nucleic acid metabolism were affected by PFOS and PFOA. Pyrimidine 

metabolism was upregulated with PFOS and PFOA (Figure 5.17). Glutamine and uridine 

decrease, cytidine, deoxycytidine, and thymidine decrease at 2 ppm and increase at 10 ppm, 

deoxyuridine increases at 2 ppm and decreases at 10 ppm PFOS. For PFOA, glutamine 

decreased, dCMP and deoxyuridine increased, deoxycytidine, cytidine, and uridine 

increased at 6 ppm and decreased at 30 ppm.  

 

Purine metabolism (Figure 5.18), amino sugar and nucleotide sugar metabolism, and 

thiamine metabolism were downregulated by PFOA. ADP-ribose, GDP, xanthine, 

hypoxanthine, glutamine, ADP, and AMP increased. Cyclic GMP, deoxyguanosine, 

guanosine, inosine, and deoxyadenosine increased at 6 ppm and decreased at 30 ppm. 

These pathways are related to DNA synthesis and nucleotide interconversion from the 

exchange of phosphate. Pathways related to phosphate transfer were also affected by 

PFOA, including the phosphotransferase system and oxidative phosphorylation.  
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The TCA Cycle was upregulated in 6 ppm and downregulated at 30 ppm (Figure 5.19). 

Malate decreased at 6 ppm and increased at 30 ppm. Citrate and isocitrate (iso/citric acid) 

increased and oxoglutarate decreased. This pathway is central for many metabolic 

pathways and is essential for cellular respiration. Downregulation of this pathway in PFOA 

may have been the reason for the overall increase in measured metabolite levels that was 

identified in the heat map.    

 

The mTOR signaling pathway and the PI3K-AKT signaling pathway were downregulated 

with PFOS and PFOA exposure. In humans, the mTORC1 gene is activated by the presence 

of growth factors, amino acids, energy status, stress and oxygen levels to regulate several 

biological processes, including lipid metabolism, autophagy, protein synthesis and 

ribosome biogenesis. The phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway is 

activated by cellular stimuli or toxins and regulates cellular functions such as transcription, 

translation, proliferation, growth, and survival. PI3K catalyzes the production of 

phosphatidylinositol-3,4,5-triphosphate (PIP3) at the cell membrane. PIP3 serves as a 

second messenger that activates Akt. Akt controls key cellular processes by 

phosphorylating substrates involved in apoptosis, protein synthesis, metabolism, and cell 

cycle. It is not clear if these pathways are relevant for Artemia, but they may have been 

identified by PAPi because other pathways related to these cellular functions were affected 

by exposure.  
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Figure 5.8. Metabolite changes induced by PFOA exposure (control=grey, 6 ppm= orange, 30 ppm = pink) 
from the nitrogen metabolism pathway. Nitrogen metabolism was downregulated with PFOA. The 
biochemical map indicates which metabolites were identified in the dataset, with blue rectangles indicating 
metabolites that were not identified and red rectangles indicating metabolites that were present. Asterisks 
indicate statistically significant difference in mean for the dose compared to the control mean (*p<0.5, 
**p<0.01, ***p<0.001, ****p<0.0001).  
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Figure 5.10. Metabolite changes induced by PFOA exposure (control=grey, 6 ppm= orange, 30 ppm = 
pink) from starch and sucrose metabolism pathway. This pathway was upregulated with PFOA. The 
biochemical map indicates which metabolites were identified in the dataset, with blue rectangles indicating 
metabolites that were not identified and red rectangles indicating metabolites that were present. Asterisks 
indicate statistically significant difference in mean for the dose compared to the control mean (*p<0.5, 
**p<0.01, ***p<0.001, ****p<0.0001).  
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Figure 5.14. Metabolite changes induced by PFOS exposure (control=grey, 2 ppm= blue, 10 ppm = green) 
and PFOA (b) exposure (control=grey, 6 ppm= orange, 30 ppm = pink) from the glycine, serine, and 
threonine metabolism pathway. This pathway was downregulated in PFOS and PFOA. The biochemical 
map indicates which metabolites were identified in the dataset, with blue rectangles indicating metabolites 
that were not identified and red rectangles indicating metabolites that were present. Asterisks indicate 
statistically significant difference in mean for the dose compared to the control mean (*p<0.5, **p<0.01, 
***p<0.001, ****p<0.0001).  
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Figure 5.15. Metabolite changes induced by PFOA exposure (control=grey, 6 ppm= orange, 30 ppm = 
pink) from the cysteine and methionine metabolism pathway. This pathway was downregulated with 
PFOA. The biochemical map indicates which metabolites were identified in the dataset, with blue 
rectangles indicating metabolites that were not identified and red rectangles indicating metabolites that 
were present. Asterisks indicate statistically significant difference in mean for the dose compared to the 
control mean (*p<0.5, **p<0.01, ***p<0.001, ****p<0.0001).  
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Figure 5.18. Metabolite changes induced by PFOA exposure (control=grey, 6 ppm= orange, 30 ppm = 
pink) from the purine metabolism pathway. This pathway was downregulated with PFOA. The biochemical 
map indicates which metabolites were identified in the dataset, with blue rectangles indicating metabolites 
that were not identified and red rectangles indicating metabolites that were present. Asterisks indicate 
statistically significant difference in mean for the dose compared to the control mean (*p<0.5, **p<0.01, 
***p<0.001, ****p<0.0001). 
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Figure 5.19. Metabolite changes induced by PFOA exposure (control=grey, 6 ppm= orange, 30 ppm = 
pink) from the TCA cycle. This pathway was downregulated with PFOA. The biochemical map indicates 
which metabolites were identified in the dataset, with blue rectangles indicating metabolites that were not 
identified and red rectangles indicating metabolites that were present. Asterisks indicate statistically 
significant difference in mean for the dose compared to the control mean (*p<0.5, **p<0.01, ***p<0.001, 
****p<0.0001).  
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4 Conclusion 

PFAS are widely distributed contaminants of the indoor and outdoor environment. Uptake 

in humans and animals has raised concerns about the effects of chronic exposure. PFOS 

and PFOA are found in many aquatic systems and in drinking water all over the world. The 

tendency of PFOS to bioaccumulate in fish has led to many studies on the potential toxic 

effects in aquatic species. Since Artemia are used as feedstock for aquacultures, we set out 

to determine the effect of PFOS and PFOA exposure on these saltwater crustaceans. From 

this study, we estimated that the 48 hr LC50 is 20 ± 9 ppm for PFOS. We did not identify 

an LC50 for PFOA due to inconsistent results, but it was approximately 60 ppm. Exposures 

at LC25 and LC5 were conducted to identify sublethal metabolic effects. It was determined 

from pathway analysis that PFOS affected pathways and metabolites related to fatty acid 

oxidation and lipid metabolism, protein synthesis, oxidative stress, and carbohydrate 

metabolism. PFOA also affected these mechanisms in addition to nitrogen and methane 

metabolism and the TCA cycle. Many pathways related to phosphate transfer and sulfation 

were identified in both exposures, which are related to signal transduction, energy 

metabolism, and drug metabolism.49  
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Conclusions and Future Work 

CHAPTER SIX 

1 Conclusions 

The work presented in this dissertation seeks to establish Artemia franciscana as a model 

organism for studying stress in saltwater lakes using environmental metabolomics. Artemia 

are an ideal model system because they are robust, easy to work with, have a short life 

cycle, and have a hemolymph rich with metabolites that exchange with the environment.1,2 

Metabolomics takes advantage of this rich hemolymph and extracts information about the 

metabolic state of the organism and how they respond to different environmental 

conditions.3,4 Metabolomics offers many advantages as an analytical approach for studying 

environmental stress because it is high-throughput and produces content-rich information 

about metabolic perturbations and biomarkers of exposure.5  

 

In order to determine the utility of Artemia as a model species, we studied the effects of 

environmental stressors of increasing complexity. We started with cold stress because it is 

well studied in Artemia and similar extremophile organisms, such as the Arctic midge and 

freeze tolerant frogs.6,7 With this stressor we were able to optimize and verify our analytical 

methods as described in Chapter 2, including Artemia exposures, sample preparation, and 

NMR and GC-MS analysis. Two-dimensional NMR methods aided in the identification of 

metabolites with poorly resolved resonances and uncommon metabolites, such as gadusol. 

It was determined that a 48 hr cold temperature stress affected metabolites related to 

osmoregulation and cryoprotection, including glucose, trehalose, glycerol, and gadusol.   
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Next, Chapter 3, we described the impacts of glyphosate exposure. Though glyphosate is 

a well-studied herbicide, it’s effects had not been reported in Artemia or many saltwater 

contexts. Glyphosate is applied terrestrially, but still has significance in salt water 

ecosystems due to its extensive global agricultural application and concerns over human 

exposure through food consumption and farm work.8–10 Studies have determined that the 

formulation of glyphosate is more toxic than the active ingredient, especially the POEA 

adjuvant has been reported to be toxic to several North American frogs.11 Using NMR and 

GC-MS metabolomics, we determined that Artemia exposed to the unformulated active 

ingredient did not have increased mortality or experience a measurable metabolic 

perturbation. However, the LC50 for the Roundup® formulation was 237 ± 23 ppm for a 

48 hr exposure. Sublethal exposure caused a metabolic perturbation in pathways involving 

carbohydrate and energy metabolism, folate-mediated one-carbon metabolism, Artemia 

molting and development, and microbial metabolism. The stabilizing salt, isopropylamine 

also present in the Roundup® formulation, was also found to have toxic effects that 

contribute to this perturbation.  

 

In Chapter 4, we focused on the impacts of the organophosphate flame retardant, tris(1,3-

dichloro-2-propyl) phosphate (TDCIPP). This is an emerging contaminant that has been 

studied in zebrafish by our collaborator, Dr. David Volz, from UCR’s environmental 

science department. TDCIPP affects embryogenesis in zebrafish embryos, so we 

hypothesized that if TDCIPP affects Artemia growth and development we would be able 
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to determine this by measuring the body length of developing nauplii.12,13 We developed 

an imaging assay to measure Artemia body length after exposure to TDCIPP.  The TDCIPP 

LC50 was determined to be 37.4 ± 1.3 µM, it was determined that Artemia exposed to 

sublethal TDCIPP for 20 days had a smaller body length than control specimens. The most 

significant metabolic perturbations related to osmoprotectant metabolites, such as betaine, 

gadusol, and taurine. Pathways involving one carbon metabolism, amino acid metabolism, 

and glycerophospholipid metabolism were also affected.   

 

Lastly, in Chapter 5, the emerging contaminants perfluorooctane sulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA) were studied. These compounds have unique chemical 

characteristics as fully fluorinated compounds that bioaccumulate in humans and 

animals.14 We introduced LC-MS metabolomics in this study and the metabolites that are 

elucidated by this method. This study showed the power of LC-MS metabolomics, which 

was able to quantify over 100 metabolites. Bioaccumulation of these compounds was 

demonstrated by LC-MS and it was determined that these compounds affect pathways 

involving lipid metabolism, amino acid metabolism, oxidative stress, carbohydrate 

metabolism, and the TCA cycle.   

 

After subjecting Artemia to stress from 4 different environmental contaminants and 

temperature stress, we were able to learn a lot about how these organisms interact with 

their environment and respond to stress. In each study, it was clear that sugars and 

osmolytes play an important role in stress response. Glucose, betaine, taurine, 
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phosphocholine, choline, and gadusol were significantly affected by almost every 

condition. Glycerol, glycerophosphocholine, and trehalose were not detected in each study 

likely because their concentrations change with the age of the organism, but these 

compounds also changed significantly for cold stress and TDCIPP exposure. Osmolyte 

compounds play an important role in maintaining cell volume and fluid balance in many 

organisms.15,16 These are especially important in Artemia, because they live in extremely 

saline environments, such as the Great Salt Lake which seasonally fluctuates between 50 

to 270 parts per thousand.17 Metabolic perturbations related to amino acids were also 

identified in each study. Artemia hemolymph has a high concentration of free amino acids 

that are involved in primary metabolism and osmoregulation.  

 

Compared with GC-MS and LC-MS, fewer metabolites were detected by NMR-based 

metabolomics due to its higher limits of detection and problems arising from resonance 

overlap because NMR analysis is usually effected without a separation. Therefore, the 

NMR resonances of the abundant amino acids and primary metabolites overshadowed 

lower concentration metabolites leading to data bias because the interpretation of metabolic 

mode of action is skewed towards pathways related to abundant metabolites like amino 

acids.  The addition of a separation step in GC-MS and the use of solvent delays for high 

concentration species permitted the detection of some lower concentration metabolites that 

were not observed by NMR. LC-MS metabolomics, which became available only near the 

end of this research, opened up many more possibilities for metabolic interpretation 

because the limit of detection is lower, and the range of metabolite classes accessed is 
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broader. Even though the untargeted approach of GC-MS and NMR has some advantages, 

with targeted LC-MS metabolomics 118 metabolites were identified in the Artemia 

metabolome compared to 49 metabolites for NMR and GC-MS combined. Gadusol is an 

important and unusual compound in Artemia, and it was not identified by GC-MS or LC-

MS. Gadusol was not part of the libraries used for peak identification and it is also 

challenging to ionize. Also, LC-MS was not able to differentiate several compounds, 

including hexose, hexose phosphate, and disaccharide hexose. These compounds are likely 

glucose, glucose-6-phosphate, and trehalose based on our 1D and 2D NMR and GC-MS 

data. This demonstrates the importance of using multiple instrumental platforms for 

metabolic profiling.  

 

Chapter 5 also highlighted the major challenge still remaining with chemometric analyses 

in metabolomics studies. LC-MS produces many variables and it is challenging to find the 

best way to manage all of that information and draw meaningful, unbiased conclusions. 

Principal component analysis, t-tests, hierarchal clustering, and heat maps provide valuable 

information but with so many variables, it is difficult to consider all the variables together. 

Pathway analysis is a useful way to derive meaning from this information, but many of the 

resources are still lacking and only focus on human genes and pathways, limiting their 

utility in environmental metabolomics studies. In our analysis of the Artemia metabolome, 

important metabolites impacted by the applied stress including gadusol, homarine, 

ophthalmic acid, glutaryl-carnitine, and lauroyl-carnitine could not be subjected to pathway 

analysis because they do not have designated KEGG codes. It is also likely that their 
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pathways are not completely elucidated. Future advances in bioinformatics, genomics, and 

metabolomics will likely lead to fewer gaps in knowledge in unresolved biochemical 

pathways and new and improved resources for making sound hypotheses to explain 

metabolic perturbations in environmentally important species.  

 

Is Artemia franciscana a good model organism for environmental metabolomics? This was 

the big question posed by my research, and I believe that work described in this dissertation 

has demonstrated that the answer is unequivocally yes. Artemia has all of the right qualities 

to make it a good indicator species, it is abundant and common, easy to raise, has a short 

life cycle, is economically important, and provides measurable responses to a wide variety 

of environmental stressors.18 Additionally, Artemia is a more suitable model for many 

studies compared to Daphnia magna because it is tolerant of salt and temperature changes. 

One other important quality for an indicator species is that they are well-studied.19 Artemia 

have been studied for hundreds of years because they have an interesting and strange 

interaction with their environment. Enzymes and molecules that are important for early 

development were characterized back in the mid to late 1900s, especially those related to 

diapause and hatching.2 Unfortunately, Artemia have not been a popular model in the omics 

age and the Artemia genome has not been sequenced. Many metabolomics studies with 

well-studied model organisms, such as zebrafish and Daphnia, are able to make metabolic 

interpretations based on known genetic pathways. Therefore, Artemia metabolomics 

suffers somewhat from a lack of supporting genetic information. Several researchers have 

been pushing for the use of Artemia in more ecotoxicological studies, but one challenge 
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with Artemia is lack of standardized methods and a decision for a unified subspecies.20–22 

Therefore, it is my hope that as more researchers employ Artemia as a model organism, 

standard methods will be established, and it will be easier to fill in some of the gaps in 

knowledge of Artemia metabolic pathways. 

 

2 Future Work 

The success of the experiments described herein paves the way for future environmental 

metabolomics studies using Artemia. Among the many opportunities for future work, four 

possibilities are discussed as important next steps: the study of different contaminants, 

especially ones that are important for saltwater ecosystems such as the Salton Sea and the 

Great Salt Lake. Second, determine the optimal instrumentation for Artemia metabolomics. 

Third, use different omics approaches, such as lipidomics or genomics to study 

environmental stress. Fourth, sample Artemia directly from the environment to compare 

metabolic profiles to lab grown shrimp. 

 

Although the Artemia metabolomics experiments described in this dissertation led to 

important findings about the mode of action of several relevant environmental 

contaminants, the environmental stressors that were studied are not necessarily among the 

biggest threats facing saltwater lakes. In order to determine that Artemia is a good 

biological model for saltwater ecosystems, we wanted to be able to compare our results 

with those of better studied model organisms, and those are largely freshwater. My main 

motivation for this work was the Salton Sea, which is an inland lake in Southern California. 
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The surrounding agriculture operations produce run-off that flows into the lake, causing 

eutrophication, high salinity, and pesticide pollution. Therefore, in future work it would be 

interesting to study contaminants that are important for saltwater lakes, such as metals.  

 

Selenium is one such metal of concern at the Salton Sea. Selenium levels vary greatly 

across the Sea, ranging from 1.1 µg/L in the Sea to 6.6 µg/L in the Alamo River.23 These 

levels are non-toxic to fish, but biomagnification increases the toxicity in higher order 

species and has caused massive die-offs and developmental problems in the endangered 

birds that rely on this body of water as the last protected stop on the Pacific Flyway.24 

Selenium exists in four states in the Sea, the majority is in the form of selenate (VI) which 

is found in aerobic conditions such as irrigation water. In anoxic conditions, such as deeper 

water and bottom sediment, selenite (0) and metal and organically-bound selenide (-II) are 

the dominant forms.25 It has been shown that Artemia accumulate Se, there have even been 

proposals to use Artemia for bioremediation of agricultural wastewater and a new 

technology used chitin to sequester Se.26,27 Studying selenium bioaccumulation in Artemia, 

as well as the metabolic perturbations resulting from selenium exposure would be 

important to understand its role in biomagnification and potential for bioremediation. It 

would also be important in future studies to evaluate the effects of different oxidation states 

of selenium and how they transform throughout the exposure.  

 

In addition to studying other pollutants, more work is needed to evaluate the optimal 

instrumentation to be used for Artemia environmental metabolomics. NMR, GC-MS, and 
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LC-MS were used at different times in this dissertation. While it was useful to characterize 

metabolome with these methods, it might not be important to use each instrument for every 

study. However, these studies were performed under slightly different time periods and 

conditions and the LC-MS samples were extracted by the UCR Metabolomics Core, so the 

protocol was different for this method than for NMR and GC-MS. In order to determine 

which instrumentation are optimal, it would be useful to conduct a study using all three 

instruments with Artemia raised under the same conditions and the solvents extracted in 

the same manner to compare the metabolite profiles directly. Targeted LC-MS 

metabolomics, which only became available in the last months of my dissertation research, 

quantified 101 metabolites in our study compared to 43 identified by NMR and GC-MS, 

therefore, LC-MS is the preferred technique as far as sensitivity and detecting a wide range 

of metabolite classes and it would be advantageous to continue to use this method for future 

studies in addition to NMR or GC-MS. 

 

Another area of further study is to apply genomics or lipidomics to the Artemia model. 

Since the Artemia franciscana genome is not fully sequenced, this would be a useful 

addition to metabolomics for interpreting metabolic impacts. The Institute for Integrative 

Genome Biology at UCR assists researchers with sequencing genomes and transcriptomes 

using next generation sequencing. Using RNA-Seq at the genomics core, gene expression 

can be measured in Artemia exposed to different conditions.28 The UCR Metabolomics 

Core is also developing methods for lipidomics analysis. This would be an interesting 

application for Artemia because the yolk platelets that are present in nauplii are high in fat, 
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which makes them a great food source for aquacultures.2,29 Since many bioaccumulative 

compounds are taken up into fatty tissue and affect processes related to fatty acid oxidation 

and fat reserves, as was the case with PFOS, PFOA and TDCIPP, a lipidomics study could 

better identify which metabolites and pathways are affected. 

 

Lastly, it would be interesting to compare the metabolite profile of Artemia raised under 

different environmental conditions, such as Salton Sea, Mono Lake, or Great Salt Lake 

water. The Artemia cysts used in this dissertation were collected from the Great Salt Lake 

but hatched in sea salt reconstituted in ultrapure water, so it would be interesting to study 

how the growth conditions affect metabolite expression for cysts that were hatched from 

the same source. These bodies of water suffer from many of the same pollutants but have 

different levels of important inorganic species. For example, the Great Salt Lake is known 

for high levels of mercury, Mono Lake is highly alkaline from high levels of carbonates 

and sulfates, and the Salton Sea has high selenium. All three lakes are shallow, have high 

salinity levels, and suffer from anthropogenic interference.17,30,31  

 

Artemia franciscana is a versatile and promising model system that offers many 

opportunities for environmental omics research. It is a robust organism that can be used to 

study stressors from aquatic environments of varying salinity levels. Environmental 

metabolomics in particular is a promising approach to studying stressors that affect 

arthropods, such as Artemia, because these organisms have hemolymph that is rich in 

metabolites that are susceptible to changes and are readily measured with instrumental 
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methods. Further studies with this system have the potential to make advances in the 

understanding of how aquatic organisms interact with their environment and the impact of 

pollutants on these organisms. 
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