
UC San Diego
Technical Reports

Title
An Optimization Methodology for Matrix Computation Architectures

Permalink
https://escholarship.org/uc/item/4w71405x

Authors
Irturk, Ali
Benson, Bridgit
Laptev, Nikolay
et al.

Publication Date
2009-03-09

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w71405x
https://escholarship.org/uc/item/4w71405x#author
https://escholarship.org
http://www.cdlib.org/

Abstract— Matrix computations such as matrix decomposition

and inversion are essential for various algorithms which are
employed in wireless communication. FPGAs are ideal platforms
for such applications; however, the need for vast amounts of

customization throughout the design process of a matrix
computation core can overwhelm the designer. This paper
presents an automatic generation and optimization methodology
for different matrix computation architectures using a generator
tool, GUSTO, that we developed to enable easy design space
exploration with different parameterization options. We
especially concentrate on wireless communication MIMO-OFDM
applications which often use small matrix dimensions. We

present automatic generation of a variety of general purpose
matrix computation architectures and optimized application
specific architectures. GUSTO’s application specific
architectures have comparable results to published architectural
implementations, but offer the advantage of providing the
designer the ability to study the tradeoffs between architectures
with different design parameters.

I. INTRODUCTION

Matrix computations lie at the heart of most scientific
computational tasks. Matrix computations, matrix
decomposition and inversion, are frequently used to solve
linear systems of equations in many fields such as wireless
communication. For example, in wireless communication,
MIMO-OFDM systems use matrix inversion in equalization
algorithms to remove the effect of the channel on the signal
[1], minimum mean square error algorithms for pre-coding in
spatial multiplexing [2] and detection-estimation algorithms in
space-time coding [3]. These systems often use a small
number of antennas (2 to 8) which results in small matrices to
be decomposed and/or inverted. For example the 802.11n
standard [4] specifies a maximum of 4 antennas on the
transmit/receive sides and the 802.16 [5] standard specifies a
maximum of 16 antennas at a base station and 2 antennas at a
remote station.

The choice of a computing platform plays an important role
in the overall design of these systems. Previously, designers
decided between a hardware or software implementation. The
hardware implementation consisted of designing an ASIC,
which offers exceptional performance, but long time to market
and high costs for all but the largest production chips. The
software route tended towards the use of DSPs due to the ease
of development and fast time to market. However, they lack
the performance for high throughput applications. Recently
FPGAs have become prevalent for these applications. FPGAs
play a middle role between ASICs and DSPs, as they have the

programmability of software with performance approaching
that of a custom hardware implementation. However, FPGAs
require vast amounts of customization throughout the design
process and few tools exist which can aid the designer with the
many system, architectural and logic design choices.
Designing a high level tool for fast prototyping matrix
computation architectures is crucial.

For automatic generation and optimization of matrix
computation architectures, we designed an easy to use tool,
GUSTO (“General architecture design Utility and Synthesis
Tool for Optimization”). GUSTO is the first tool of its kind to
provide automatic generation and optimization of a variety of
general purpose matrix computation architectures with
different parameterization options. It also optimizes the
general purpose architecture to improve its area results and
design quality which results in a scheduled, static, application
specific architecture. GUSTO allows the user to select the
matrix operation, the matrix dimension, the type and number
of arithmetic resources, the data representation (the integer
and fractional bit width), and the different modes of operation
for general purpose or application specific architectures.

To demonstrate the effectiveness of our methodology, we
implement different decomposition methods: QR, LU and
Cholesky and different matrix inversion methods: upper
triangular matrix inversion, general matrix inversion using QR
decomposition, nonsingular diagonally dominant square
matrix inversion using LU decomposition and positive definite
square matrix inversion using Cholesky decomposition.

Our major contributions are:
• Automatic generation and optimization of different

matrix computation architectures with parameterized
matrix dimensions, bit widths, resource allocation,
modes and methods.

• Comparison of different matrix decomposition and
inversion methods in terms of different matrix
dimensions, bit widths and parallelism.

• Detailed study of area, timing and throughput tradeoffs
of matrix inversion architectures using different
parameterizations.

The rest of the paper is organized as follows. In section II,
we introduce decomposition methods: QR, LU and Cholesky;
and matrix inversion methods. In section III, we introduce our
tool and describe the optimizations performed: static
architecture generation and trimming for optimization. Section
IV presents our implementation results in terms of area and
throughput and compares our results with previously

An Optimization Methodology for
Matrix Computation Architectures

Ali Irturk†, Bridget Benson†, Nikolay Laptev‡, Ryan Kastner†

†Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093
{airturk, b1benson, kastner}@cs.ucsd.edu

‡Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095
nlaptev@cs.ucla.edu

published work. We conclude in Section V.

II. MATRIX DECOMPOSITION AND INVERSION METHODS

Explicit matrix computation of full matrices is
computationally intensive. In many different computations
such as matrix inversion, one should consider converting this
problem into an easy decomposition problem which will result
in analytic simplicity and computational convenience. Below
we describe three known and widely used decomposition
methods: QR, LU and Cholesky decomposition methods [6].
For square matrices, n denotes the matrix size of the matrix
such that n = 4 for 4 × 4 matrices. For rectangular matrices, m
and n denote the number of rows and columns in the matrix
respectively such that m = 3, n = 4 for 3 × 4 matrices.

• QR: Given A Є �

��� with rank(A) = n, QR
factorization exists as A = Q×R where Q Є �

���has
orthonormal columns and R Є �

��� is upper
triangular.

• LU: Given A Є �

��� with det(A(1:k, 1:k)) ≠ 0 for
k = 1 : n-1, LU decomposition exists as A = LU. If LU
decomposition exists and the given matrix A, is
nonsingular, then the decomposition is unique and
det(A) = u11...unn.

• Cholesky: Given a symmetric positive definite matrix,
A Є �

���, Cholesky decomposition exists as
A = G×G

T where G Є �

��� is a unique lower
triangular matrix with positive diagonal entries.

where a matrix � � �

��� is positive definite if ���� � 0 for
� � �

� and � � 0 where if A is symmetric positive definite

matrix then �

�

 	 �. A positive definite matrix is always
nonsingular and its determinant is always positive.

Cholesky and LU decompositions work only with positive
definite and nonsingular diagonally dominant square matrices,
respectively. On the other hand, QR decomposition is more
general and can be applied to any matrix. We further explain
these decomposition methods, their characteristics and
algorithms, the resulting matrices and the solution steps for
matrix inversion in the next subsections.

A. QR Decomposition

QR decomposition is an elementary operation, which
decomposes a matrix into an orthogonal and a triangular
matrix. QR decomposition of a matrix A is shown as
A = Q × R, where Q is an orthogonal matrix, Q

T
× Q =

Q × Q
T
 = I, Q

-1
 = Q

T, and R is an upper triangular matrix
(Figure 1(b)).

There are three different QR decomposition methods:
Gram-Schmidt orthogonormalization (Classical or Modified),
Givens Rotations (GR) and Householder reflections. Applying
slight modifications to the Classical Gram-Schmidt (CGS)
algorithm gives the Modified Gram-Schmidt (MGS) algorithm
[6]. QRD-MGS is numerically more accurate and stable than
QRD-CGS and it is numerically equivalent to the Givens
Rotations solution [7] (the solution that has been the focus of
previously published hardware implementations because of its
stability and accuracy). Also, if the input matrix, A, is well-
conditioned and non-singular, the resulting matrices, Q and R,
satisfy their required matrix characteristics and QRD-MGS is
accurate to floating-point machine precision [7]. We therefore
present the QRD-MGS algorithm in Figure 1(a) and describe it
below.

A, Q, R and X are the input, orthogonal, upper triangular and
intermediate matrices, respectively. The intermediate matrix is
the updated input matrix throughout the solution steps.
Matrices with only one index as Ai or Xj represent the columns
of the matrix and matrices with two indices like Rij represent
the entry at the intersection of ith row with jth column of the
matrix where 1 ≤ i,j ≤ n.

In Figure 1(a) we show that we start every decomposition
by transferring the input matrix columns, Ai, into the memory
elements (2). Diagonal entries of the R matrix are the
Euclidean norm of the intermediate matrix columns which is
shown as (4). The Q matrix columns are calculated by the
division of the intermediate matrix columns by the Euclidean
norm of the intermediate matrix column, which is the diagonal
element of R (5). Non-diagonal entries of the R matrix are
computed by projecting the Q matrix columns onto the
intermediate matrix columns one by one (7) such that after the
solution of Q2, it is projected onto X3 and X4 to compute R23
and R24. Lastly, the intermediate matrix columns are updated
by (8).

B. LU Decomposition

If A is a square matrix and its leading principal submatrices
are all nonsingular, matrix A can be decomposed into unique
lower triangular and upper triangular matrices. LU
decomposition of a matrix A is shown as A = L × U, where L

























=

44434241

34333231

24232221

14131211

QQQQ

QQQQ

QQQQ

QQQQ

Q

























=

44

3433

242322

14131211

000

00

0

R

RR

RRR

RRRR

R

























=

44

3433

242322

14131211

000

00

0

U

UU

UUU

UUUU

U

























=

44

4333

423222

41312111

000

00

0

L

LL

LLL

LLLL

LT

























=

44434241

333231

2221

11

0

00

000

LLLL

LLL

LL

L

L

























=

44434241

333231

2221

11

0

00

000

LLLL

LLL

LL

L

L

Fig. 1. QR decomposition (QR-MGS) algorithm
is presented in (a). The resulting matrices of the
decomposition are shown in (b).

Fig. 2. LU decomposition algorithm is presented in
(a). The resulting matrices of the decomposition are
shown in (b).

Fig. 3. Cholesky decomposition algorithm is
presented in (a). The resulting matrices of the
decomposition are shown in (b).

and U are the lower and upper triangular matrices respectively
(Figure 2(b)).

The LU algorithm is shown in Figure 2(a). It writes lower
and upper triangular matrices onto the A matrix entries. Then
it updates the values of the A matrix column by column ((4)
and (7)). The final values are computed by the division of each
column entry by the diagonal entry of that column (9).

C. Cholesky Decomposition

Cholesky decomposition is another elementary operation,
which decomposes a symmetric positive definite matrix into a
unique lower triangular matrix with positive diagonal entries.
Cholesky decomposition of a matrix A is shown as A = G×G

T,
where G is a unique lower triangular matrix, Cholesky
triangle, and GT is the transpose of this lower triangular matrix
(Figure 3(b)).

Figure 3(a) shows the Cholesky decomposition algorithm.
We start decomposition by transferring the input matrix, A,
into the memory elements. The diagonal entries of lower
triangular matrix, G, are the square root of the diagonal entries
of the given matrix (2). We calculate the entries below the
diagonal entries by dividing the corresponding element of the
given matrix by the belonging column diagonal element (4).
The algorithm works column by column and after the
computation of the first column of the diagonal matrix with
the given matrix entries, the elements in the next columns are
updated (7). For example after the computation of G11 by (2),
G21, G31, G41 by (4), second column: A22, A32, A42, third
column: A33, A43, and fourth column: A44 are updated by (7).

Decomposition methods such as QR, LU and Cholesky,
provide a means to simplify the matrix inversion. The
selection of the decomposition method depends on the
characteristics of the given matrix. For non-square matrices or
when simple inversion to recover the data performs poorly, the
QR decomposition is used to generate an equivalent upper
triangular system. For simpler detection via inversion of
square channel matrices, the LU and Cholesky decompositions
are compatible with positive definite and nonsingular
diagonally dominant square matrices, respectively. We
introduce these matrix inversion methods in the following
subsections.

D. Matrix Inversion of Triangular Matrices

Triangular matrix inversion is used in all of the
decomposition based (QR, LU and Cholesky) matrix inversion

architectures described above and we use this subsection to
describe why this inversion is relatively simple and therefore
not a dominant calculation in any of these methods. Primarily,
triangular matrix inversion requires fewer calculations
compared to full matrix inversion because of its zero entries.
The algorithm for triangular matrix inversion is shown in
Figure 4 and described below.

Upper triangular matrix inversion is performed column by
column. Calculating the diagonal entries of the R

-1 matrix
consists of simply dividing 1 by the diagonal entry of the R
matrix (3) and the rest of the column entries introduce
multiplication and addition iteratively (1) which is then
divided by the diagonal R matrix entry (2).

E. General Matrix Inversion

General matrix inversion which is applicable to any matrix
dimension and characteristic employs QR decomposition. The
solution for the inversion of a matrix A

-
P

1
P, using QR

decomposition is shown as ��� � �

��

� �

�. This solution
consists of three different parts: QR decomposition, matrix
inversion for the upper triangular matrix and matrix
multiplication which is shown in Figure 5.

F. Nonsingular Diagonally Dominant Matrix Inversion

Nonsingular diagonally dominant square matrix inversion
employs LU decomposition. The solution for the inversion of
a matrix A

-1, using LU decomposition is shown as ��� �
�

��

� �

��

. This solution consists of four different parts: LU
decomposition of the given matrix, matrix inversion for the
lower triangular matrix, matrix inversion of the upper
triangular matrix and matrix multiplication which is shown in
Figure 6.

G. Positive Definite Matrix Inversion

Positive definite square matrix inversion employs Cholesky
decomposition. The solution for the inversion of a matrix A-1,
using Cholesky decomposition is shown as ��� � 	

�

�

��

�

��. This solution consists of four different parts: Cholesky
decomposition, matrix inversion for the transpose of the lower
triangular matrix, matrix inversion of the lower triangular
matrix and matrix multiplication which is shown in Figure 7.

III. MATRIX COMPUTATION CORE GENERATOR TOOL

There are many architectural design choices while
implementing the hardware for different matrix computations.
These implementation choices are: matrix operation and its
method (depends on the structure of the given matrices),
matrix size (depends on the number of antennas used in
MIMO-OFDM systems), resource allocation, number of
functional units, the organization of controllers and
interconnects (depends on the hardware constraints such that
designs which offer the most time efficient or the most area

Fig. 5. The solution steps of the general matrix
inversion.

Fig. 6. The solution steps of the nonsingular
diagonally dominant square matrix inversion.

Fig. 7. The solution steps of the positive definite
square matrix inversion.

Fig. 4. Matrix Inversion of upper triangular matrices.

efficient architecture), and bit widths of the data (depends on
the precision required). Not only is generating the hardware
for given requirements tedious work, but performing a design
space exploration to find the optimum hardware is a time
consuming processes. Therefore, a high level tool for design
space exploration and fast prototyping is essential and
required.

GUSTO, “General architecture design Utility and Synthesis
Tool for Optimization,” is such a high level design tool,
written in Matlab, that is the first of its kind to provide design
space exploration across different matrix computation
architectures. GUSTO allows the user to select the matrix
operation and its method, the matrix dimension, the type and
number of arithmetic resources, the data representation (the
integer and fractional bit width), and two modes of operation
(Mode 1 or Mode 2) as shown in Figure 8. GUSTO also
performs error analysis after the resource allocation step to
find an appropriate fixed point representation which provides
results with the accuracy similar to that of a floating point
implementation. GUSTO takes the sample input data which is
generated by the user. The matrix computation is performed
using single or double precision floating point arithmetic and
these are referred as the actual results. The same calculations
are performed using different bit widths of fixed point
representations to determine the error, the difference between
the actual and the computed result. GUSTO provides three
different metrics to the user to determine if the accuracy is
enough for the application: mean error, standard deviation of
error, and mean percentage error.

GUSTO has two different modes of operation. Mode 1
provides a general purpose architecture while Mode 2
provides an application specific architecture. The general
purpose architecture is used for area and timing analysis of a
general non-optimized solution, and the advantage of this
architecture is that it is capable of solving different matrix
computations with a selection input. Unfortunately, Mode 1’s
general purpose architectures generally do not lead to high-
performance results. When the user knows the environmental

requirements and matrix characteristics which will be
encountered, choosing a specific method and creating an
application specific architecture by optimizing/customizing
these architectures to improve their area results is another
essential step to enhance design quality.

In Mode 2, GUSTO creates a scheduled, static, application
specific architecture while ensuring the correctness of the
solution is maintained. We divided these optimizations into
two sections: static architecture generation and trimming for
optimization.
Static architecture generation: Mode 1 of GUSTO generates a
general purpose architecture and its datapath by using resource
constrained list scheduling after the required inputs are given.
Simulating this architecture in Mode 2 helps us to reveal the
assignments done to the arithmetic units and the memory
elements during the scheduling process. Gathering this
information and using it to cancel the scheduling process and
dynamic memory assignments results in a static architecture
with significant area and timing savings.
Trimming for optimization: GUSTO performs
trimming/removing the unused resources from the general
purpose architecture while ensuring that correctness of the
solution is maintained. GUSTO simulates the architecture to
define the usage of arithmetic units, multiplexers, register
entries and input/output ports and trims away the unused
components with their interconnects. A trimming example is
shown in Figure 9. Suppose there are 2 arithmetic units with 2
inputs/1 output each and one memory with 1 input/2 outputs
(a). Input / output port relationships between arithmetic unit A
and the other units are shown in a block diagram in (b).
Although Out_A, Out_B, Out_mem1, and Out_mem2 are all
inputs to In_A1 and In_A2, not all the inputs may be used
during computation. We can represent whether an input/output
port is used or not during simulation in a matrix such as the
one shown in (c). As the simulation runs, the matrix is filled
with 1s and 0s representing the used and unused ports
respectively. GUSTO uses these matrices to remove the
unused resources (d). In this example, two inputs, Out_A,
Out_mem1 to In_A1 and another two inputs, Out_B,
Out_mem2 to In_A2 are removed.

Fig. 8. Different modes of GUSTO.













0101

1010

Fig. 9. Flow of GUSTO’s trimming feature.

IV. RESULTS

In this section, we present different design space
exploration examples using different inputs of GUSTO and
compare our results with previously published FPGA
implementations. Design space exploration can be divided into
two parts, inflection point analysis and architectural design
alternatives analysis.
Inflection Point Analysis: We partitioned inflection point
analysis into another two parts. First, we present the results for
decomposition methods which help us to quantify their effects
on the computation of matrix inversion and then we present
matrix inversion results. We present different execution
results, serial and parallel, for different bit widths and matrix
dimensions to answer: at what matrix size does an inflection
point occur and how does varying bit width and degree of
parallelism change the inflection point? The comparisons for
sequential and parallel executions of matrix decomposition
and inversion methods are shown in Figure 10 (a, b, c, d) with
different bit widths: 16, 32 and 64. Square, spade and triangle
represent QR, LU and Cholesky methods respectively. Solid,
dashed and smaller dashed lines represent 64, 32 and 16 bits
of bit widths respectively. The balloons denote the inflection
points between these methods for the different bit widths.

The sequential execution results of decomposition methods
(a) show that the QR decomposition method executes a
significantly higher number of clock cycles than the other
methods. The 16 bit QR decomposition implementation
requires the same number of clock cycles with the 64 bit LU

decomposition implementation. Cholesky decomposition takes
more clock cycles than LU decomposition where this
difference becomes smaller for smaller number of bit widths.
The sequential execution results of matrix inversion (c) show
that general matrix inversion takes more clock cycles than
positive definite matrix inversion and nonsingular diagonally

dominant square matrix inversion again where positive

definite matrix inversion takes more cycles than nonsingular

diagonally dominant square matrix inversion. As the bit
widths get smaller, the difference between general matrix

inversion and the other methods does not change, however the
difference between positive definite matrix inversion and
nonsingular diagonally dominant square matrix inversion
becomes smaller.

The parallel execution results of decomposition methods (b)
show that QR decomposition and Cholesky decomposition get
closer to each other where LU decomposition performs better
than the others. It is important to see that the 64 bit
implementation of LU decomposition performs almost the
same as the 32 bit Cholesky decomposition and also the 32 bit
LU decomposition performs almost the same as the 16 bit
implementation of Cholesky decomposition. The parallel
execution results of matrix inversion (d) show that general

matrix inversion have the highest number of clock cycles for
all bit widths where positive definite matrix inversion and
nonsingular diagonally dominant square matrix inversion
have a similar number of clock cycles for small bit widths.
However, nonsingular diagonally dominant square matrix

inversion uses increasingly fewer clock cycles than positive

definite matrix inversion with increasing bit widths and matrix
dimensions. Nonsingular diagonally dominant square matrix

inversion with 32 bits performs almost the same as general

matrix inversion with 16 bits. Also, the 64 bits nonsingular

diagonally dominant square matrix inversion performs almost
the same as the 32 bits general matrix inversion in terms of
total number of clock cycles.

Architectural Design Alternatives: These analyses are
shown for matrix inversion for different bit widths and matrix
sizes. We present area results in terms of slices and
performance results in terms of throughput. Throughput is
calculated by dividing the maximum clock frequency (MHz)
by the number of clock cycles to perform matrix inversion. All
designs are written in Verilog and synthesized using Xilinx
ISE 9.2. Resource utilization and design frequency are post
place and route values obtained using a Virtex 4 SX35 FPGA.
Both mode 1 (non-optimized) and mode 2 (optimized) results
are shown for general matrix inversion in Figure 11 (a) to
show the improvement in the results with the optimization
feature. It is shown that area and throughput increase up to the
optimal number of resources as the number of resources
increase. However, adding more than the optimal number of
resources decreases throughput while still increasing area.
Mode 2 of GUSTO finds the optimal number of resources
which maximizes the throughput while minimizing area where
the application specific architecture provides an average of
59% decrease in area and 3X increase in throughput over

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s (
Se

qu
en

tia
l)

Matrix Size

0

500

1000

1500

2000

2500

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s (
pa

ra
lle

l)

Matrix Size

0

1000

2000

3000

4000

5000

6000

2 2 3 3 4 4 5 5 6 6 7 7 8 8

#
 o

f
C

lo
ck

 C
y

cl
es

 (
se

q
u

en
ti

a
l)

Matrix Size

0

200

400

600

800

1000

1200

1400

2 2 3 3 4 4 5 5 6 6 7 7 8 8

of

 C
lo

ck
 C

yc
le

s (
pa

ra
lle

l)

Matrix Size

Fig. 10. Different design space exploration: inflection point analyses, of our tool. Top row: decomposition methods only. Bottom row: matrix inversion.

Mode 1’s general purpose (non optimized) design.
Bit width of the data is another important input for the

matrix inversion. The precision of the results is directly
dependent on the number of bits used. The usage of a high
number of bits results in high precision at a cost of higher area
and lower throughput. We present 3 different bit widths, 19,
26 and 32 bits in (b) for these three different matrix inversion
architectures. Usage of nonsingular diagonally dominant

square matrix inversion results in smallest area and highest
throughput compared to the other methods. Positive definite

matrix inversion offers higher throughput at a cost of larger
area compared to general matrix inversion.

We also present three different matrix dimension, 4 × 4,
6 × 6 and 8 × 8, implementation results in (c) showing how
the area and performance results scale with matrix dimension.
We again observe that nonsingular diagonally dominant

square matrix inversion offer better area and throughput
results compared to other methods for all matrix sizes.
Comparison: We provide a comparison between our results
and previously published implementations for 4 × 4 matrices
in Table 1. We present all of our implementations with bit
width 20 as this is the largest bit width value used in the
related works. Though it is difficult to make direct
comparisons between our designs and those of the related
works (because we used fixed point arithmetic instead of
floating point arithmetic and fully used FPGA resources (like
DSP48s) instead of LUTs), we observe that our results are
comparable. The main advantages of our implementation are
that it provides the designer the ability to study the tradeoffs
between architectures with different design parameters and
provides a means to find an optimal design.

V. CONCLUSION

This paper presents matrix computation architectures using
a generator tool, GUSTO, that is developed to enable easy
design space exploration. GUSTO provides different
parameterization options including matrix dimensions, bit
width and resource allocations which enable us to study area
and performance tradeoffs over a large number of different
architectures. In this paper, we especially concentrate on
matrix decomposition and inversion methods for wireless
communication, MIMO-OFDM systems which often use small
matrices, to observe the advantages and disadvantages of these
methods in response to varying parameters. GUSTO is the
only tool that allows design space exploration across different
matrix computation architectures.

We would like to give information about our previous work
since the paper submission is blind review. In our previous
work, we compare two different matrix inversion methods:
QR decomposition based and analytic method since they are
applicable to any matrix structure. We determine different
inflection points and present their architectural results. In this
work, we present a methodology to handle any matrix
computation and compare decomposition methods: QR, LU
and Cholesky, matrix inversion methods: general matrix
inversion, nonsingular diagonally dominant matrix inversion
and positive definite matrix inversion. This discussion will be
added to our paper if our paper gets accepted.

REFERENCES

[1] L. Zhou, L. Qiu, J. Zhu, “A novel adaptive equalization algorithm for
MIMO communication system”, Vehicular Technology Conference,
Volume 4, 25-28 Sept., 2005 Page(s):2408 – 2412.

[2] K. Kusume, M. Joham, W. Utschick, G. Bauch, “Efficient Tomlinson-
Harashima precoding for spatial multiplexing on flat MIMO
channel,”IEEE International Conference on Communications, Volume
3, 16-20 May 2005 Page(s):2021 - 2025 Vol. 3.

[3] C. Hangjun, D. Xinmin, A. Haimovich, “Layered turbo space-time
coded MIMO-OFDM systems for time varying channels,”Global

Telecommunications Conference, 2003. IEEE Volume 4, 1-5 Dec. 2003
Page(s):1831 - 1836 vol.4.

[4] “IEEE 802.11 LAN/MAN Wireless LANS,” IEEE Standards

Association, http://standards.ieee.org/getieee802/802.11.html.
[5] “IEEE 802.16 LAN/MAN Broadband Wireless LANS,” IEEE Standards

Association, http://standards.ieee.org/getieee802/802.16.html.
[6] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed. Baltimore, MD:

John Hopkins University Press.
[7] C. K. Singh, S.H. Prasad, P.T. Balsara, “VLSI Architecture for Matrix

Inversion using Modified Gram-Schmidt based QR Decomposition”,
20th International Conference on VLSI Design. (2007) 836 – 841.

[8] F. Edman, V. Öwall, “A Scalable Pipelined Complex Valued Matrix
Inversion Architecture”, IEEE International Symposium on Circuits and

Systems. (2005) 4489 – 4492.
[9] M. Karkooti, J.R. Cavallaro, C. Dick, “FPGA Implementation of Matrix

Inversion Using QRD-RLS Algorithm”, Thirty-Ninth Asilomar

Conference on Signals, Systems and Computers (2005) 1625 – 162.

TABLE I
COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY PUBLISHED PAPERS.

NR DENOTES NOT REPORTED.
 Ref[8] Ref[9] Our Our Our

Method QR QR QR LU Cholesky

Bit width 12 20 20 20 20

Data type fixed floating fixed fixed fixed

Device type (Virtex) II IV IV IV IV

Slices 4400 9117 3584 2719 3682

DSP48s NR 22 12 12 12

BRAMs NR NR 1 1 1

Throughput (10
6
×s

-1
) 0.28 0.12 0.26 0.33 0.25

0

0.05

0.1

0.15

0.2

0.25

0.3

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

2222 2244 3444 4444

of Adder, Subtractor, Multiplier, Divider

T
h

r
o
u

g
h

p
u

t

#
 o

f
S

li
c
e
s Slices (Mode 1)

Slices (Mode 2)

Throughput (Mode 1)

Throughput (Mode 2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

1000

2000

3000

4000

5000

6000

7000

19 bits 26 bits 32 bits

T
h

r
o

u
g

h
p

u
t

#
 o

f
S

li
c
es

of bits

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

2000

4000

6000

8000

10000

12000

14000

4 6 8

T
h

r
o

u
g
h

p
u

t

#
 o

f
S

li
c
e
s

Matrix Size

Fig. 11. Different design space exploration examples, specifically area and throughput results of different bit width and matrix dimensions, of our tool.

