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Abstract— Matrix computations such as matrix decomposition 

and inversion are essential for various algorithms which are 
employed in wireless communication. FPGAs are ideal platforms 
for such applications; however, the need for vast amounts of 

customization throughout the design process of a matrix 
computation core can overwhelm the designer. This paper 
presents an automatic generation and optimization methodology 
for different matrix computation architectures using a generator 
tool, GUSTO, that we developed to enable easy design space 
exploration with different parameterization options. We 
especially concentrate on wireless communication MIMO-OFDM 
applications which often use small matrix dimensions. We 

present automatic generation of a variety of general purpose 
matrix computation architectures and optimized application 
specific architectures. GUSTO’s application specific 
architectures have comparable results to published architectural 
implementations, but offer the advantage of providing the 
designer the ability to study the tradeoffs between architectures 
with different design parameters. 

I. INTRODUCTION 

Matrix computations lie at the heart of most scientific 
computational tasks. Matrix computations, matrix 
decomposition and inversion, are frequently used to solve 
linear systems of equations in many fields such as wireless 
communication. For example, in wireless communication, 
MIMO-OFDM systems use matrix inversion in equalization 
algorithms to remove the effect of the channel on the signal 
[1], minimum mean square error algorithms for pre-coding in 
spatial multiplexing [2] and detection-estimation algorithms in 
space-time coding [3]. These systems often use a small 
number of antennas (2 to 8) which results in small matrices to 
be decomposed and/or inverted. For example the 802.11n 
standard [4] specifies a maximum of 4 antennas on the 
transmit/receive sides and the 802.16 [5] standard specifies a 
maximum of 16 antennas at a base station and 2 antennas at a 
remote station. 

The choice of a computing platform plays an important role 
in the overall design of these systems. Previously, designers 
decided between a hardware or software implementation. The 
hardware implementation consisted of designing an ASIC, 
which offers exceptional performance, but long time to market 
and high costs for all but the largest production chips. The 
software route tended towards the use of DSPs due to the ease 
of development and fast time to market. However, they lack 
the performance for high throughput applications. Recently 
FPGAs have become prevalent for these applications. FPGAs 
play a middle role between ASICs and DSPs, as they have the 

programmability of software with performance approaching 
that of a custom hardware implementation. However, FPGAs 
require vast amounts of customization throughout the design 
process and few tools exist which can aid the designer with the 
many system, architectural and logic design choices. 
Designing a high level tool for fast prototyping matrix 
computation architectures is crucial. 

For automatic generation and optimization of matrix 
computation architectures, we designed an easy to use tool, 
GUSTO (“General architecture design Utility and Synthesis 
Tool for Optimization”). GUSTO is the first tool of its kind to 
provide automatic generation and optimization of a variety of 
general purpose matrix computation architectures with 
different parameterization options. It also optimizes the 
general purpose architecture to improve its area results and 
design quality which results in a scheduled, static, application 
specific architecture. GUSTO allows the user to select the 
matrix operation, the matrix dimension, the type and number 
of arithmetic resources, the data representation (the integer 
and fractional bit width), and the different modes of operation 
for general purpose or application specific architectures.  

To demonstrate the effectiveness of our methodology, we 
implement different decomposition methods: QR, LU and 
Cholesky and different matrix inversion methods: upper 
triangular matrix inversion, general matrix inversion using QR 
decomposition, nonsingular diagonally dominant square 
matrix inversion using LU decomposition and positive definite 
square matrix inversion using Cholesky decomposition. 

Our major contributions are: 
• Automatic generation and optimization of different 

matrix computation architectures with parameterized 
matrix dimensions, bit widths, resource allocation, 
modes and methods. 

• Comparison of different matrix decomposition and 
inversion methods in terms of different matrix 
dimensions, bit widths and parallelism.   

• Detailed study of area, timing and throughput tradeoffs 
of matrix inversion architectures using different 
parameterizations.  

The rest of the paper is organized as follows. In section II, 
we introduce decomposition methods: QR, LU and Cholesky; 
and matrix inversion methods. In section III, we introduce our 
tool and describe the optimizations performed: static 
architecture generation and trimming for optimization. Section 
IV presents our implementation results in terms of area and 
throughput and compares our results with previously 

An Optimization Methodology for 
Matrix Computation Architectures 

 
Ali Irturk†, Bridget Benson†, Nikolay Laptev‡, Ryan Kastner† 

†Department of Computer Science and Engineering                          
University of California, San Diego                               

La Jolla, CA 92093                                                   
{airturk, b1benson, kastner}@cs.ucsd.edu 

‡Department of Computer Science                 
University of California, Los Angeles                      

Los Angeles, CA 90095                  
nlaptev@cs.ucla.edu 



 

published work. We conclude in Section V. 

II. MATRIX DECOMPOSITION AND INVERSION METHODS 

Explicit matrix computation of full matrices is 
computationally intensive. In many different computations 
such as matrix inversion, one should consider converting this 
problem into an easy decomposition problem which will result 
in analytic simplicity and computational convenience. Below 
we describe three known and widely used decomposition 
methods: QR, LU and Cholesky decomposition methods [6]. 
For square matrices, n denotes the matrix size of the matrix 
such that n = 4 for 4 × 4 matrices. For rectangular matrices, m 
and n denote the number of rows and columns in the matrix 
respectively such that m = 3, n = 4 for 3 × 4 matrices. 

• QR: Given A Є �

��� with rank(A) = n, QR 
factorization exists as A = Q×R where Q Є �

���has 
orthonormal columns and R Є �

��� is upper 
triangular.  

• LU: Given A Є �

��� with det(A(1:k, 1:k)) ≠ 0 for        
k = 1 : n-1, LU decomposition exists as A = LU. If LU 
decomposition exists and the given matrix A, is 
nonsingular, then the decomposition is unique and 
det(A) = u11...unn.  

• Cholesky: Given a symmetric positive definite matrix, 
A Є �

���, Cholesky decomposition exists as                 
A = G×G

T where G Є �

��� is a unique lower 
triangular matrix with positive diagonal entries. 

where a matrix � �  �

��� is positive definite if ���� � 0 for 
� �  �

� and � � 0 where if A is symmetric positive definite 

matrix then �

�

 	  �. A positive definite matrix is always 
nonsingular and its determinant is always positive.  

Cholesky and LU decompositions work only with positive 
definite and nonsingular diagonally dominant square matrices, 
respectively. On the other hand, QR decomposition is more 
general and can be applied to any matrix. We further explain 
these decomposition methods, their characteristics and 
algorithms, the resulting matrices and the solution steps for 
matrix inversion in the next subsections.  

A. QR Decomposition 

QR decomposition is an elementary operation, which 
decomposes a matrix into an orthogonal and a triangular 
matrix. QR decomposition of a matrix A is shown as                
A = Q × R, where Q is an orthogonal matrix, Q

T 
× Q =

                                             

Q × Q
T
 = I, Q

-1
 = Q

T, and R is an upper triangular matrix 
(Figure 1(b)). 

There are three different QR decomposition methods: 
Gram-Schmidt orthogonormalization (Classical or Modified), 
Givens Rotations (GR) and Householder reflections. Applying 
slight modifications to the Classical Gram-Schmidt (CGS) 
algorithm gives the Modified Gram-Schmidt (MGS) algorithm 
[6].  QRD-MGS is numerically more accurate and stable than 
QRD-CGS and it is numerically equivalent to the Givens 
Rotations solution [7] (the solution that has been the focus of 
previously published hardware implementations because of its 
stability and accuracy). Also, if the input matrix, A, is well-
conditioned and non-singular, the resulting matrices, Q and R, 
satisfy their required matrix characteristics and QRD-MGS is 
accurate to floating-point machine precision [7]. We therefore 
present the QRD-MGS algorithm in Figure 1(a) and describe it 
below. 

A, Q, R and X are the input, orthogonal, upper triangular and 
intermediate matrices, respectively. The intermediate matrix is 
the updated input matrix throughout the solution steps. 
Matrices with only one index as Ai or Xj  represent the columns 
of the matrix and matrices with two indices like Rij represent 
the entry at the intersection of ith row with jth column of the 
matrix where 1 ≤ i,j ≤ n. 

In Figure 1(a) we show that we start every decomposition 
by transferring the input matrix columns, Ai, into the memory 
elements (2). Diagonal entries of the R matrix are the 
Euclidean norm of the intermediate matrix columns which is 
shown as (4). The Q matrix columns are calculated by the 
division of the intermediate matrix columns by the Euclidean 
norm of the intermediate matrix column, which is the diagonal 
element of R (5). Non-diagonal entries of the R matrix are 
computed by projecting the Q matrix columns onto the 
intermediate matrix columns one by one (7) such that after the 
solution of Q2, it is projected onto X3 and X4 to compute R23 
and R24. Lastly, the intermediate matrix columns are updated 
by (8). 

B. LU Decomposition 

If A is a square matrix and its leading principal submatrices 
are all nonsingular, matrix A can be decomposed into unique 
lower triangular and upper triangular matrices. LU 
decomposition of a matrix A is shown as A = L × U, where L 
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Fig. 1. QR decomposition (QR-MGS) algorithm 
is presented in (a). The resulting matrices of the 
decomposition are shown in (b). 

Fig. 2. LU decomposition algorithm is presented in 
(a). The resulting matrices of the decomposition are 
shown in (b). 

Fig. 3. Cholesky decomposition algorithm is 
presented in (a). The resulting matrices of the 
decomposition are shown in (b). 

 



 

and U are the lower and upper triangular matrices respectively 
(Figure 2(b)). 

The LU algorithm is shown in Figure 2(a).  It writes lower 
and upper triangular matrices onto the A matrix entries. Then 
it updates the values of the A matrix column by column ((4) 
and (7)). The final values are computed by the division of each 
column entry by the diagonal entry of that column (9). 

C. Cholesky Decomposition 

Cholesky decomposition is another elementary operation, 
which decomposes a symmetric positive definite matrix into a 
unique lower triangular matrix with positive diagonal entries. 
Cholesky decomposition of a matrix A is shown as A = G×G

T, 
where G is a unique lower triangular matrix, Cholesky 
triangle, and GT is the transpose of this lower triangular matrix 
(Figure 3(b)). 

Figure 3(a) shows the Cholesky decomposition algorithm.  
We start decomposition by transferring the input matrix, A, 
into the memory elements. The diagonal entries of lower 
triangular matrix, G, are the square root of the diagonal entries 
of the given matrix (2). We calculate the entries below the 
diagonal entries by dividing the corresponding element of the 
given matrix by the belonging column diagonal element (4). 
The algorithm works column by column and after the 
computation of the first column of the diagonal matrix with 
the given matrix entries, the elements in the next columns are 
updated (7). For example after the computation of G11 by (2), 
G21, G31, G41 by (4), second column: A22, A32, A42, third 
column: A33, A43, and fourth column: A44 are updated by (7). 

Decomposition methods such as QR, LU and Cholesky, 
provide a means to simplify the matrix inversion. The 
selection of the decomposition method depends on the 
characteristics of the given matrix. For non-square matrices or 
when simple inversion to recover the data performs poorly, the 
QR decomposition is used to generate an equivalent upper 
triangular system. For simpler detection via inversion of 
square channel matrices, the LU and Cholesky decompositions 
are compatible with positive definite and nonsingular 
diagonally dominant square matrices, respectively. We 
introduce these matrix inversion methods in the following 
subsections. 

D. Matrix Inversion of Triangular Matrices 

Triangular matrix inversion is used in all of the 
decomposition based (QR, LU and Cholesky) matrix inversion 

architectures described above and we use this subsection to 
describe why this inversion is relatively simple and therefore 
not a dominant calculation in any of these methods. Primarily, 
triangular matrix inversion requires fewer calculations 
compared to full matrix inversion because of its zero entries. 
The algorithm for triangular matrix inversion is shown in 
Figure 4 and described below. 

Upper triangular matrix inversion is performed column by 
column. Calculating the diagonal entries of the R

-1 matrix 
consists of simply dividing 1 by the diagonal entry of the R 
matrix (3) and the rest of the column entries introduce 
multiplication and addition iteratively (1) which is then 
divided by the diagonal R matrix entry (2). 

E. General Matrix Inversion 

General matrix inversion which is applicable to any matrix 
dimension and characteristic employs QR decomposition. The 
solution for the inversion of a matrix A

-
P

1
P, using QR 

decomposition is shown as ��� � �

��

� �

�. This solution 
consists of three different parts: QR decomposition, matrix 
inversion for the upper triangular matrix and matrix 
multiplication which is shown in Figure 5.  

F. Nonsingular Diagonally Dominant Matrix Inversion 

Nonsingular diagonally dominant square matrix inversion 
employs LU decomposition. The solution for the inversion of 
a matrix A

-1, using LU decomposition is shown as ��� �
�

��

� �

��

. This solution consists of four different parts: LU 
decomposition of the given matrix, matrix inversion for the 
lower triangular matrix, matrix inversion of the upper 
triangular matrix and matrix multiplication which is shown in 
Figure 6.                            

G. Positive Definite Matrix Inversion 

Positive definite square matrix inversion employs Cholesky 
decomposition. The solution for the inversion of a matrix A-1, 
using Cholesky decomposition is shown as ��� � 	


�

�

��

�




��. This solution consists of four different parts: Cholesky 
decomposition, matrix inversion for the transpose of the lower 
triangular matrix, matrix inversion of the lower triangular 
matrix and matrix multiplication which is shown in Figure 7.  

III. MATRIX COMPUTATION CORE GENERATOR TOOL 

There are many architectural design choices while 
implementing the hardware for different matrix computations. 
These implementation choices are: matrix operation and its 
method (depends on the structure of the given matrices), 
matrix size (depends on the number of antennas used in 
MIMO-OFDM systems), resource allocation, number of 
functional units, the organization of controllers and 
interconnects (depends on the hardware constraints such that 
designs which offer the most time efficient or the most area 

 
Fig. 5. The solution steps of the general matrix 
inversion. 

Fig. 6. The solution steps of the nonsingular 
diagonally dominant square matrix inversion. 

Fig. 7. The solution steps of the positive definite 
square matrix inversion. 

 

 
Fig. 4. Matrix Inversion of upper triangular matrices.  



 

efficient architecture), and bit widths of the data (depends on 
the precision required). Not only is generating the hardware 
for given requirements tedious work, but performing a design 
space exploration to find the optimum hardware is a time 
consuming processes. Therefore, a high level tool for design 
space exploration and fast prototyping is essential and 
required. 

GUSTO, “General architecture design Utility and Synthesis 
Tool for Optimization,” is such a high level design tool, 
written in Matlab, that is the first of its kind to provide design 
space exploration across different matrix computation 
architectures. GUSTO allows the user to select the matrix 
operation and its method, the matrix dimension, the type and 
number of arithmetic resources, the data representation (the 
integer and fractional bit width), and two modes of operation 
(Mode 1 or Mode 2) as shown in Figure 8. GUSTO also 
performs error analysis after the resource allocation step to 
find an appropriate fixed point representation which provides 
results with the accuracy similar to that of a floating point 
implementation. GUSTO takes the sample input data which is 
generated by the user. The matrix computation is performed 
using single or double precision floating point arithmetic and 
these are referred as the actual results. The same calculations 
are performed using different bit widths of fixed point 
representations to determine the error, the difference between 
the actual and the computed result. GUSTO provides three 
different metrics to the user to determine if the accuracy is 
enough for the application: mean error, standard deviation of 
error, and mean percentage error. 

GUSTO has two different modes of operation. Mode 1 
provides a general purpose architecture while Mode 2 
provides an application specific architecture. The general 
purpose architecture is used for area and timing analysis of a 
general non-optimized solution, and the advantage of this 
architecture is that it is capable of solving different matrix 
computations with a selection input. Unfortunately, Mode 1’s 
general purpose architectures generally do not lead to high-
performance results. When the user knows the environmental 

requirements and matrix characteristics which will be 
encountered, choosing a specific method and creating an 
application specific architecture by optimizing/customizing 
these architectures to improve their area results is another 
essential step to enhance design quality. 

In Mode 2, GUSTO creates a scheduled, static, application 
specific architecture while ensuring the correctness of the 
solution is maintained. We divided these optimizations into 
two sections: static architecture generation and trimming for 
optimization.  
Static architecture generation: Mode 1 of GUSTO generates a 
general purpose architecture and its datapath by using resource 
constrained list scheduling after the required inputs are given. 
Simulating this architecture in Mode 2 helps us to reveal the 
assignments done to the arithmetic units and the memory 
elements during the scheduling process. Gathering this 
information and using it to cancel the scheduling process and 
dynamic memory assignments results in a static architecture 
with significant area and timing savings. 
Trimming for optimization: GUSTO performs 
trimming/removing the unused resources from the general 
purpose architecture while ensuring that correctness of the 
solution is maintained. GUSTO simulates the architecture to 
define the usage of arithmetic units, multiplexers, register 
entries and input/output ports and trims away the unused 
components with their interconnects. A trimming example is 
shown in Figure 9. Suppose there are 2 arithmetic units with 2 
inputs/1 output each and one memory with 1 input/2 outputs 
(a). Input / output port relationships between arithmetic unit A 
and the other units are shown in a block diagram in (b). 
Although Out_A, Out_B, Out_mem1, and Out_mem2 are all 
inputs to In_A1 and In_A2, not all the inputs may be used 
during computation. We can represent whether an input/output 
port is used or not during simulation in a matrix such as the 
one shown in (c). As the simulation runs, the matrix is filled 
with 1s and 0s representing the used and unused ports 
respectively. GUSTO uses these matrices to remove the 
unused resources (d). In this example, two inputs, Out_A, 
Out_mem1 to In_A1 and another two inputs, Out_B, 
Out_mem2 to In_A2 are removed.  
 

 
Fig. 8. Different modes of GUSTO. 
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Fig. 9. Flow of GUSTO’s trimming feature. 



 

IV. RESULTS 

In this section, we present different design space 
exploration examples using different inputs of GUSTO and 
compare our results with previously published FPGA 
implementations. Design space exploration can be divided into 
two parts, inflection point analysis and architectural design 
alternatives analysis.  
Inflection Point Analysis: We partitioned inflection point 
analysis into another two parts. First, we present the results for 
decomposition methods which help us to quantify their effects 
on the computation of matrix inversion and then we present 
matrix inversion results. We present different execution 
results, serial and parallel, for different bit widths and matrix 
dimensions to answer: at what matrix size does an inflection 
point occur and how does varying bit width and degree of 
parallelism change the inflection point? The comparisons for 
sequential and parallel executions of matrix decomposition 
and inversion methods are shown in Figure 10 (a, b, c, d) with 
different bit widths: 16, 32 and 64. Square, spade and triangle 
represent QR, LU and Cholesky methods respectively. Solid, 
dashed and smaller dashed lines represent 64, 32 and 16 bits 
of bit widths respectively. The balloons denote the inflection 
points between these methods for the different bit widths.  

The sequential execution results of decomposition methods 
(a) show that the QR decomposition method executes a 
significantly higher number of clock cycles than the other 
methods. The 16 bit QR decomposition implementation 
requires the same number of clock cycles with the 64 bit LU 

decomposition implementation. Cholesky decomposition takes 
more clock cycles than LU decomposition where this 
difference becomes smaller for smaller number of bit widths. 
The sequential execution results of matrix inversion (c) show 
that general matrix inversion takes more clock cycles than 
positive definite matrix inversion and nonsingular diagonally 

dominant square matrix inversion again where positive 

definite matrix inversion takes more cycles than nonsingular 

diagonally dominant square matrix inversion. As the bit 
widths get smaller, the difference between general matrix 

inversion and the other methods does not change, however the 
difference between positive definite matrix inversion and 
nonsingular diagonally dominant square matrix inversion 
becomes smaller.  

The parallel execution results of decomposition methods (b) 
show that QR decomposition and Cholesky decomposition get 
closer to each other where LU decomposition performs better 
than the others. It is important to see that the 64 bit 
implementation of LU decomposition performs almost the 
same as the 32 bit Cholesky decomposition and also the 32 bit 
LU decomposition performs almost the same as the 16 bit 
implementation of Cholesky decomposition. The parallel 
execution results of matrix inversion (d) show that general 

matrix inversion have the highest number of clock cycles for 
all bit widths where positive definite matrix inversion and 
nonsingular diagonally dominant square matrix inversion 
have a similar number of clock cycles for small bit widths. 
However, nonsingular diagonally dominant square matrix 

inversion uses increasingly fewer clock cycles than positive 

definite matrix inversion with increasing bit widths and matrix 
dimensions. Nonsingular diagonally dominant square matrix 

inversion with 32 bits performs almost the same as general 

matrix inversion with 16 bits. Also, the 64 bits nonsingular 

diagonally dominant square matrix inversion performs almost 
the same as the 32 bits general matrix inversion in terms of 
total number of clock cycles. 

Architectural Design Alternatives: These analyses are 
shown for matrix inversion for different bit widths and matrix 
sizes. We present area results in terms of slices and 
performance results in terms of throughput. Throughput is 
calculated by dividing the maximum clock frequency (MHz) 
by the number of clock cycles to perform matrix inversion. All 
designs are written in Verilog and synthesized using Xilinx 
ISE 9.2. Resource utilization and design frequency are post 
place and route values obtained using a Virtex 4 SX35 FPGA. 
Both mode 1 (non-optimized) and mode 2 (optimized) results 
are shown for general matrix inversion in Figure 11 (a) to 
show the improvement in the results with the optimization 
feature. It is shown that area and throughput increase up to the 
optimal number of resources as the number of resources 
increase. However, adding more than the optimal number of 
resources decreases throughput while still increasing area. 
Mode 2 of GUSTO finds the optimal number of resources 
which maximizes the throughput while minimizing area where 
the application specific architecture provides an average of 
59% decrease in area and 3X increase in throughput over 
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Fig. 10. Different design space exploration: inflection point analyses, of our tool. Top row: decomposition methods only. Bottom row: matrix inversion.   



 

Mode 1’s general purpose (non optimized) design. 
Bit width of the data is another important input for the 

matrix inversion. The precision of the results is directly 
dependent on the number of bits used. The usage of a high 
number of bits results in high precision at a cost of higher area 
and lower throughput. We present 3 different bit widths, 19, 
26 and 32 bits in (b) for these three different matrix inversion 
architectures. Usage of nonsingular diagonally dominant 

square matrix inversion results in smallest area and highest 
throughput compared to the other methods. Positive definite 

matrix inversion offers higher throughput at a cost of larger 
area compared to general matrix inversion. 

We also present three different matrix dimension, 4 ×  4,   
6 × 6 and 8 × 8, implementation results in (c) showing how 
the area and performance results scale with matrix dimension. 
We again observe that nonsingular diagonally dominant 

square matrix inversion offer better area and throughput 
results compared to other methods for all matrix sizes.  
Comparison: We provide a comparison between our results 
and previously published implementations for 4 × 4 matrices 
in Table 1. We present all of our implementations with bit 
width 20 as this is the largest bit width value used in the 
related works. Though it is difficult to make direct 
comparisons between our designs and those of the related 
works (because we used fixed point arithmetic instead of 
floating point arithmetic and fully used FPGA resources (like 
DSP48s) instead of LUTs), we observe that our results are 
comparable. The main advantages of our implementation are 
that it provides the designer the ability to study the tradeoffs 
between architectures with different design parameters and 
provides a means to find an optimal design. 

V. CONCLUSION 

This paper presents matrix computation architectures using 
a generator tool, GUSTO, that is developed to enable easy 
design space exploration. GUSTO provides different 
parameterization options including matrix dimensions, bit 
width and resource allocations which enable us to study area 
and performance tradeoffs over a large number of different 
architectures. In this paper, we especially concentrate on 
matrix decomposition and inversion methods for wireless 
communication, MIMO-OFDM systems which often use small 
matrices, to observe the advantages and disadvantages of these 
methods in response to varying parameters. GUSTO is the 
only tool that allows design space exploration across different 
matrix computation architectures. 

We would like to give information about our previous work 
since the paper submission is blind review. In our previous 
work, we compare two different matrix inversion methods: 
QR decomposition based and analytic method since they are 
applicable to any matrix structure. We determine different 
inflection points and present their architectural results. In this 
work, we present a methodology to handle any matrix 
computation and compare decomposition methods: QR, LU 
and Cholesky, matrix inversion methods: general matrix 
inversion, nonsingular diagonally dominant matrix inversion 
and positive definite matrix inversion. This discussion will be 
added to our paper if our paper gets accepted. 

REFERENCES 

[1] L. Zhou, L. Qiu, J. Zhu, “A novel adaptive equalization algorithm for 
MIMO communication system”, Vehicular Technology Conference, 
Volume 4, 25-28 Sept., 2005 Page(s):2408 – 2412. 

[2] K. Kusume, M. Joham, W. Utschick, G. Bauch, “Efficient Tomlinson-
Harashima precoding for spatial multiplexing on flat MIMO 
channel,”IEEE International Conference on Communications, Volume 
3,  16-20 May 2005 Page(s):2021 - 2025 Vol. 3. 

[3] C. Hangjun, D. Xinmin, A. Haimovich, “Layered turbo space-time 
coded MIMO-OFDM systems for time varying channels,”Global 

Telecommunications Conference, 2003. IEEE Volume 4, 1-5 Dec. 2003 
Page(s):1831 - 1836 vol.4. 

[4] “IEEE 802.11 LAN/MAN Wireless LANS,” IEEE Standards 

Association, http://standards.ieee.org/getieee802/802.11.html. 
[5] “IEEE 802.16 LAN/MAN Broadband Wireless LANS,” IEEE Standards 

Association, http://standards.ieee.org/getieee802/802.16.html.  
[6] G.H. Golub, C.F.V. Loan, Matrix Computations, 3rd ed. Baltimore, MD: 

John Hopkins University Press. 
[7] C. K. Singh, S.H. Prasad, P.T. Balsara, “VLSI Architecture for Matrix 

Inversion using Modified Gram-Schmidt based QR Decomposition”, 
20th  International Conference on VLSI Design. (2007) 836 – 841. 

[8] F. Edman, V. Öwall, “A Scalable Pipelined Complex Valued Matrix 
Inversion Architecture”, IEEE International Symposium on Circuits and 

Systems. (2005) 4489 – 4492. 
[9] M. Karkooti, J.R. Cavallaro, C. Dick, “FPGA Implementation of Matrix 

Inversion Using QRD-RLS Algorithm”, Thirty-Ninth Asilomar 

Conference on Signals, Systems and Computers (2005) 1625 – 162. 
 

TABLE I 
COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY PUBLISHED PAPERS.  

NR DENOTES NOT REPORTED. 
 Ref[8] Ref[9] Our Our  Our 

Method QR QR QR LU Cholesky 

Bit width  12 20 20 20 20 

Data type fixed floating fixed fixed fixed 

Device type (Virtex) II IV IV IV IV 

Slices 4400 9117 3584 2719 3682 

DSP48s NR 22 12 12 12 

BRAMs NR NR 1 1 1 

Throughput (10
6
×s

-1
) 0.28 0.12 0.26 0.33 0.25 
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Fig. 11. Different design space exploration examples, specifically area and throughput results of different bit width and matrix dimensions, of our tool.  




