
UC Irvine
UC Irvine Previously Published Works

Title
Optimizing control flow in loops using interval and dependence analysis

Permalink
https://escholarship.org/uc/item/4w70w7gh

Journal
Design Automation for Embedded Systems: An International Journal, 
13(3)

ISSN
1572-8080

Authors
Ghodrat, Mohammad Ali
Givargis, Tony
Nicolau, Alex

Publication Date
2009-09-01

DOI
10.1007/s10617-009-9043-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w70w7gh
https://escholarship.org
http://www.cdlib.org/


Des Autom Embed Syst (2009) 13: 193–221
DOI 10.1007/s10617-009-9043-5

Optimizing control flow in loops using interval
and dependence analysis

Mohammad Ali Ghodrat · Tony Givargis · Alex Nicolau

Received: 19 January 2009 / Accepted: 16 June 2009 / Published online: 1 July 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract We present a novel loop transformation technique, particularly well suited for
optimizing embedded compilers, where an increase in compilation time is acceptable in ex-
change for significant performance increase. The transformation technique optimizes loops
containing nested conditional blocks. Specifically, the transformation takes advantage of the
fact that the Boolean value of the conditional expression, determining the true/false paths,
can be statically analyzed using a novel interval analysis technique that can evaluate condi-
tional expressions in the general polynomial form. Results from interval analysis combined
with loop dependency information is used to partition the iteration space of the nested loop.
In such cases, the loop nest is decomposed such as to eliminate the conditional test, thus
substantially reducing the execution time. Our technique completely eliminates the condi-
tional from the loops (unlike previous techniques) thus further facilitating the application
of other optimizations and improving the overall speedup. Applying the proposed transfor-
mation technique on loop kernels taken from Mediabench, SPEC-2000, mpeg4, qsdpcm and
gimp, on average we measured a 2.34X speedup when running on a UltraSPARC proces-
sor, a 2.92X speedup when running on an Intel Core Duo processor, a 2.44X speedup when
running on a PowerPC G5 processor and a 2.04X speedup when running on an ARM9
processor. Performance improvement, taking the entire application into account, was also
promising: for 3 selected applications (mpeg-enc, mpeg-dec and qsdpcm) we measured 15%
speedup on best case (5% on average) for the whole application.

Keywords Interval analysis · Compiler loop optimization · Algorithmic code
transformation · Control flow optimization

M.A. Ghodrat (�) · T. Givargis · A. Nicolau
Department of Computer Science, University of California, Irvine, CA, USA
e-mail: mghodrat@uci.edu

T. Givargis
e-mail: givargis@uci.edu

A. Nicolau
e-mail: nicolau@uci.edu

mailto:mghodrat@uci.edu
mailto:givargis@uci.edu
mailto:nicolau@uci.edu


194 M.A. Ghodrat et al.

1 Introduction

Software is becoming a larger fraction of engineering effort. Aggressive compiler optimiza-
tion, in particular those that address loops can significantly improve the performance of the
software, thus justifying the additional compilation time requirements. This is in particu-
lar true in the embedded system domain where software has become a key element of the
design process and performance is of a critical concern. Furthermore, it is acceptable for a
compiler intended for embedded computing to take longer to compile but perform aggres-
sive optimizations, such as the ones presented in [16]. In our case, the additional compiler
execution time was of the order of 10 mili seconds per loop [3].

In contrast to existing work on loop transformation, we present an algorithmic loop trans-
formation technique that substantially restructures the loop using knowledge about the con-
trol flow combined with data-dependence information within the body of the loop. The con-
trol flow and data-dependences within the loop body are analyzed using a static interval
analysis technique previously outlined in [3]. Interval analysis provides information on the
true/false paths within the original loop body as a function of the loop indices. The analysis
of the loop iteration dependencies is used to establish the possible space of loop restructur-
ing. Combining these two static analysis results, an algorithm is provided that fully parti-
tions the original iteration space (i.e., original loop) into multiple disjoint iteration spaces
(i.e., generated loops). The bodies of these generated loops are void of conditional branches
and thus (unlike previous techniques which leave branches in loops) our techniques allows
for more effective optimizations. Moreover, each of these loops, and the ordering within
them, are consistent with the original loop iteration dependencies.

As an example consider the loop kernel shown below. This loop kernel is taken from
gimp benchmark [14].

#define STEPS 64
#define KERNEL_WIDTH 3
#define KERNEL_HEIGHT 3
#define SUBSAMPLE 4
#define THRESHOLD 0.25
for (yj = 0; yj <= SUBSAMPLE; yj++) {

y = (double) yj / (double) SUBSAMPLE;
for (xi = 0; xi <= SUBSAMPLE; xi++) {

x = (double) xi / (double) SUBSAMPLE;
x += 1.0; y += 1.0;
for (j = 0; j < STEPS * KERNEL_HEIGHT; j++) {

dist_y = y - (((double)j + 0.5) / (double)STEPS);
for (i = 0; i < STEPS * KERNEL_WIDTH; i++) {

dist_x = x - (((double) i + 0.5) / (double) STEPS);
if ((SQR (dist_x) + SQR (dist_y)) < THRESHOLD)

w = 1.0;
else

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
}

}
}

Using interval analysis [3] we statically compute information as shown in the table of Fig. 1
on the conditional expression in the loop nest ((SQR(distx)+SQR(disty)) < THRESHOLD).
For example the 2nd row of this table shows that when (0 ≤ xi ≤ 1) && (0 ≤ yj ≤ 1)

&& (152 ≤ i ≤ 191) && (0 ≤ j ≤ 191) the expression (SQR(distx) + SQR(disty)) <



Optimizing control flow in loops using interval and dependence analysis 195

Fig. 1 Interval analysis result
for the expression (SQR(distx) +
SQR(disty)) < THRESHOLD

Space([xi][yj][i][j]) Evaluation result(false/true)

[0,1][0,1][152,191][0,191] false
[0,1][2,2][123,191][0,191] false
[0,1][3,4][157,191][0,191] false
[2,2][0,1][0,28][0,191] false
[2,2][0,1][163,191][0,191] false
[2,2][2,2][0,63][0,191] false
[2,2][2,2][128,191][0,191] false
[3,4][0,1][0,40][0,191] false
[3,4][2,2][0,68][0,191] false
[3,4][3,4][0,34][0,191] false

THRESHOLD evaluates to false. The transformed code, using the 2nd row of table yields
the optimized code shown below:

for (yj = 0; yj <= 1; yj++) {
y = (double) yj / (double) SUBSAMPLE;
for (xi = 0; xi <= 1; xi++) {

x = (double) xi / (double) SUBSAMPLE;
x += 1.0; y += 1.0;
for (j = 0; j < STEPS * KERNEL_HEIGHT; j++) {

dist_y = y - (((double)j + 0.5) / (double)STEPS);
for (i = 0; i < 152; i++) {

dist_x = x - (((double) i + 0.5) / (double) STEPS);
if ((SQR (dist_x) + SQR (dist_y)) < THRESHOLD)

w = 1.0;
else

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
for (i = 152; i < STEPS * KERNEL_WIDTH; i++) {

w = 0.0;
value[i / STEPS][j / STEPS] += w;

}
}

}
}

In the transformed code, the evaluation of the conditional expression for part of the most
inner loop (i.e., the loop with i as the index variable) is eliminated. Applying our optimiza-
tion to the rest of the loop kernel, while using the entire information in Table 1, we obtain
16% speed-up on SPARC, 21% on Intel Core Duo and 24% on PowerPC G5 as shown in
Sect. 5.

The rest of this paper is organized as follows. In Sect. 2, we outline the related work.
In Sect. 3, we formulate the problem, show the overall flow of the proposed transformation
and establish some preliminaries. In Sect. 4, we establish the transformation technique. In
Sect. 5, we show our experimental results. In Sect. 6, we conclude.

2 Previous work

There are many transformation techniques targeting nested loops. Since our work specifi-
cally applies to control flow optimization of loops we primarily focus on related work that
target control flow optimization. Of course, data-flow level optimizations can be combined



196 M.A. Ghodrat et al.

Table 1 Properties which are
being compared in Table 2 Property 1 Optimize control flow of a loop with nested conditional

block

Property 2 Dependence analysis needed

Property 3 Conditional expression depends on loop index

Property 4 Conditional expression is an affine function of loop
variables

Property 5 Conditional expression contains logical operators

Property 6 Conditional expression is a function of loop indices and
non-loop-index variables

Property 7 Conditional expression has a general polynomial form

Property 8 Conditional expression will be removed completely
from loop body of the transformed code

with control flow optimizations to further improve the generated code (i.e., data-flow opti-
mizations may benefit from simpler control flow within loops).

Table 1 provides a set of properties that are used to compare and contrast loop optimiza-
tion strategies using control flow analysis. Furthermore, Table 2 summarizes existing loop
transformation techniques and provides an analysis of their strength relative to the presented
work.

Among all the techniques listed in Table 2, the three most relevant ones are loop
unswitching, index-set splitting and loop nest splitting.

Loop unswitching [9], has similarities to our transformation in targeting conditional
blocks within loops. Specifically, loop unswitching attempts to replicate the loop inside
each branch of the conditional. In contrast, our technique attempts to completely eliminate
the conditional block within a loop by decomposing a loop into multiple independent loops.
In loop unswitching technique, the conditional expression does not depend on loop indices,
hence limiting its applicability to loops containing trivial conditions, but in our technique
the conditional expression is a function of loop indices.

Another technique, index-set splitting [15], does a similar transformation but in a much
limited way than our method. First index-set splitting only considers affine expressions and
there is no discussion on how to handle cases where there are dependences between loop
iterations. In our method we consider non-affine conditional expressions within the loop and
handle cases where there are dependences between loop iterations and, when dependences
allow, we eliminate the conditionals from the loops.

A closely related work in control flow loop optimization is suggested by Falk et al. [2].
The loop model used in their work differs from ours. First, they consider conditional ex-
pressions that are strictly affine (vs. arbitrary polynomial in our case) functions of the loop
indices. Figure 2a shows a case in gimp [14] benchmark which is optimized by our technique
but not by their method. Second, Falk’s loop model assumes that the conditional expression
is strictly a function of loop indices, but in our loop model the conditional expression can
include other variables computed within the loop body. Figure 2b shows a case in mp3
benchmark [1] that can be optimized by our technique but not by their method (here the
transformed code is not shown to save space). The final important difference between our
work and Falk’s is that in our transformed code the conditional block is completely elim-
inated while in their work it is simplified or hoisted to a higher point in the nested loops,
but not eliminated. To show this difference clearly, let’s first consider a synthetic example
shown in Fig. 2c. Figure 2c shows a case in which our technique (Fig. 2e) has remove the
condition completely resulting in significant (30% on SPARC and 68% on Intel) speedup
while their technique (Fig. 2d) has only partially eliminated the evaluation of the conditional



Optimizing control flow in loops using interval and dependence analysis 197

Table 2 Comparison with other loop optimization techniques

Optimization Summary of technique Property (Table 1)

technique 1 2 3 4 5 6 7 8

Loop fusion Fuse two adjacent countable loops with the same loop
limits

�

Loop fission Broke a single loop into two or more smaller loops �

Loop interchanging For two nested loops, switch the inner and outer loop �

Loop skewing For two nested loops, change the indices in a way that
remove the dependence from the inner loop

�

Strip-mining Decompose a single loop into an outer loop which steps
between strips of consecutive iterations and an inner
loop which steps between single iterations within a strip

�

Loop tiling Same as strip-mining for nested-loops and convex
shaped iteration space

�

Loop collapsing Two nested loops that refers to arrays be collapsed into
single loop

�

Loop coalescing Same as Loop collapsing but the loop limits do not
match

�

Loop unrolling Duplicate the body of the loop multiple times and
reduce the loop count

Loop unswitching Remove loop independent conditional from a loop � �

Loop peeling Remove the first or last iteration of the loop into
separate code

� � �

Index set splitting Divides the index set of a loop into two portions � � �

Loop nest splitting [2] For a nested loop, by using polytope model and genetic
algorithms, conditions having no effect on control flow
are removed or moved up in loop nest

� � � �

Our work For a nested loop, by using interval analysis
technique [3] and dependence analysis, the nested loop
is partitioned into multiple loops with the no condition

� � � � � � � �

expression. A similar example 186.crafty from SPEC-2000 [10] is shown in Fig. 2f where
applying the technique in [2] will not remove the conditions completely.

3 Proposed transformation

The proposed transformation decomposes the original nested loops of Fig. 3a into three
parts, as shown in Fig. 3b. The first part sets up one or more nested loop structures with
iteration spaces for which the stcond_expr is known to be true at compile time. Likewise,
the second part sets up one or more nested loop structures with iteration spaces for which
the stcond_expr is known to be false at compile time. The third part sets up one or more
nested loop structures with an iteration space for which the stcond_expr can not be statically
evaluated. The three parts combined cover the entire iteration space of the original nested
loops. Since the evaluation of stcond_expr is eliminated in parts one and two, the decomposed
code executes substantially fewer instructions than the original code.



198 M.A. Ghodrat et al.

Fig. 2 (a) 1st difference—gimp (b) 2nd difference—mp3 (c–e) 3rd difference—synthetic example (f) 3rd
difference—186.crafty

Our proposed transformation targets loops that follow the normalized template shown
in Fig. 3a. Here, there are n loop nests, with n indices x1, . . . , xn. For every index xk , the
value for lower (upper) bounds lbk (ubk) is assumed to be statically computable signed
integer constants. When unknown bounds exists, an estimate (possibly profile-based) can
be used without affecting the correctness of the transformed code. In particular, the closer
the estimated bounds to the actual, the higher the efficiency of the transformation. The body
of the inner most loop contains at least one conditional block, called the target conditional
block.

A large number of arbitrary loop structures can be re-written in the normalized form of
Fig. 3a [9]. Here, stcond_expr computes the value of the branch condition v.

3.1 Preliminaries

In this subsection we summarize the analysis technique developed in [3] and used for our
transformation. Without loss of generality, the remaining discussions in the paper will use
C/C++ notation. Every program can be represented as a Control Data Flow Graph (CDFG)
intermediate form. A CDFG is a graph that shows both data and control flow in a program.
The nodes in a CDFG are basic blocks. Each basic block contains straight lines of statements
with no branch except for the last statement and no branch destination except for the first
statement. The edges in a CDFG represent the control flow in the program.

As defined in [3], a conditional expression cond_expr is either a simple condition or a
complex condition. A simple condition is in the form of (expr1 ROP expr2). Here, expr1 and
expr2 are arithmetic expressions and ROP is a relational operator (=, �=, <, ≤, >, ≥). An
arithmetic expression is formed over the language (+, −, ×, constant, variable). A com-



Optimizing control flow in loops using interval and dependence analysis 199

Fig. 3 Transformation

plex condition is either a simple condition or two complex conditions merged using logical
operators (&&, ‖, !).

An integer interval of the form [a, b] represents all possible integer values in the range
a to b, inclusively. The operations (+, −, ×, /) can be defined on two intervals [a, b] and
[c, d]. We refer the interested reader to [8] for a full coverage of interval arithmetic.

We define an n-dimensional space to be a box-shaped region defined by the Cartesian
product [l0, u0] × [l1, u1] × · · · × [ln−1, un−1]. Hence, for a given program with n input
integer-variables x0, x1, . . . , xn−1, the program domain space is an n-dimensional space de-
fined by the Cartesian product [min0,max0] × [min1,max1] × · · · × [minn,maxn], where
mini and maxi are defined based on the type of the variable xi (e.g. if xi is of type signed
character then mini = −128 and maxi = 127).

4 Technical approach

We now begin to describe the technique proposed in this paper. A candidate loop L has
the structure shown in Fig. 3a. The iteration space of L is defined as [lb1, ub1] × [lb2, ub2]
×· · ·×[lbn, ubn]. The body of L can be decomposed into the reducible CDFGs correspond-
ing to stcond_expr , stthen, and stelse. The variable v, computed by stcond_expr , is defined in terms
of the loop variables x1, x2, . . . , xn and all other variables which are alive when computing
the value of v. The transformation technique consists of a number of steps, specifically:

• Compute the interval set of v by processing the CDFG corresponding to stcond_expr

(Sect. 4.1).
• Compute the dependence vector of iteration space (Sect. 4.2).
• Partition the iteration space (Sect. 4.3).
• Generate code (Sect. 4.4).

Given the conditional expression cond_expr with variables x1, x2, . . . , xk , the domain
space partitioning problem [3] is to partition the domain space of cond_expr into a mini-



200 M.A. Ghodrat et al.

Fig. 4 Partitioned domain of
2x0 + x1 + 4 > 0

mal set of k-dimensional spaces s1, s2, . . . , sn with each space si having one of true(T),
false(F), or unknown(U) Boolean value. If space si has a Boolean value of true, then
cond_expr evaluates to true for every point in space si . If space si has a Boolean value
of false, then cond_expr evaluates to false for every point in space si . If space si has
a Boolean value of unknown, then cond_expr may evaluate to true for some points in
space si and false for others.

For example, consider cond_expr : 2×x0 +x1 +4 > 0 (domain space [−5,5]×[−5,5]).
Figure 4 shows the partitioned domain space and the corresponding Boolean values [3].

4.1 Interval set computation

In the following discussion, the code segment presented in Table 3 is used to demonstrate
the interval_set computation. In Table 3, loop variables x1 and x2 are assumed to be live on
entry (i.e., inputs to the stcond_expr CDFG) and Boolean variable v is assumed to be live on
exit (i.e., output of the stcond_expr CDFG). We refer the reader to Sect. 3.1 for a review of
integer intervals, spaces and program domain space used here.

At any given point in the CDFG, a variable v has an interval, defining the range of
possible values it may have. At the point of declaration, the type of a variable v gives the
upper and lower bounds of such an interval (e.g., line 1 of Table 3). Along each path in the
CDFG, originating from the point of declaration of v, we recompute v’s interval when v is
redefined according to the following rules:

• If v is assigned a constant value C (or, expression evaluating to a constant value), then
v’s interval is defined to be [C,C].

• If v is assigned a unary arithmetic expression in the form of v = OPxi , then v’s interval
is defined to be the corresponding arithmetic operation OP applied to xi ’s interval.

• If v is assigned a binary arithmetic expression in the form of v = xiOPxj , then v’s in-
terval is defined to be the corresponding arithmetic operation OP applied to xi ’s and xj ’s
intervals.



Optimizing control flow in loops using interval and dependence analysis 201

Table 3 Interval-set example
Code (stcond_expr) Interval Condition Space

// loop var: x1 [−10,10]
// loop var: x2 [−5,5]
1: bool v; [0,1] true [−10,10] × [−5,5]
2: v = 0; [0,0] true [−10,10] × [−5,5]
3: if(x1 > 0&&x2 > 0)

4: v = 1; [1,1] (x1 > 0&& [1,10] × [1,5]
x2 > 0)

• If v is assigned a complex arithmetic expression, then the complex arithmetic expression
is decomposed into a set of unary or binary operations as defined above.

• If v is assigned a statically undeterminable function, than v’s interval is defined according
to its type.

Let us extend the notion of v’s interval by associating a conditional expression with v’s
interval (third column in Table 3). The goal is to capture the fact that v’s interval takes on
different values along different paths (forks based on conditional expression) in the CDFG.
For example, line 4 of Table 3 shows a conditional assignments to variable v, based on
the values of the input variables x1 and x2. In this example, when (x1 > 0)&&(x2 > 0) v’s
interval is defined to be [1,1], otherwise, v’s interval is defined to be [0,0].

Let us establish an equivalence between a conditional expression and a set of spaces
(fourth column in Table 3). For each conditional expression cond_expr, there exists a set
of spaces S1, S2, . . . , Sk that collectively defines the part of the domain space for which
cond_expr evaluates to true. For example, line 4 of Table 3 shows the conditional expres-
sion (x1 > 0)&&(x2 > 0) defined as [1,10] × [1,5].

Formally, for a variable v, the interval_set (i.e., v.iset) is defined as {(Ij , Sj )|j ∈
(1 . . .m)}, where Ij is an integer interval and Sj a space. Furthermore,

⋃m

j=1 Sj =
iteration_space. Intuitively, the interval_set captures the range of values that a variable
may receive during the execution of a program, taking the control flow into account.

A procedure for computing the output interval-set of a reducible CDFG follows:

(1) Topologically sort the CDFG’s basic blocks and obtain b0, b1, . . . , bn, repeat steps 2–5
for each basic block in sorted order.

(2) Compute the interval set(s) for every DFG in bi .
(3) Perform domain space partitioning analysis on the conditional expression at the exit of

bi [3].
(4) Use the true and unknown spaces to compute the interval set(s) of the input variables

of bi ’s jump-through basic block.
(5) Use the false and unknown spaces to compute the interval set(s) of the input vari-

ables of bi ’s fall-through basic block.

Applying the above algorithm on the stcond_expr CDFG would yield the interval_set of
the Boolean variable v:

v.iset = {([1,1], ST 1), ([1,1], ST 2), . . . , ([1,1], ST n1),

([0,0], SF1), ([0,0], SF2), . . . , ([0,0], SFn2),

([0,1], SU1), ([0,1], SU2), . . . , ([0,1], SUn3)}.



202 M.A. Ghodrat et al.

Fig. 5 General memory access model

Furthermore, we define three sets of spaces:

T = {ST 1, ST 2, . . . , ST n1}, F = {SF1, SF2, . . . , SFn2}, U = {SU1, SU2, . . . , SUn3}.
For the example of Table 3, the interval_set of the Boolean variable v is:

v.iset = {([1,1], [1,10] × [1,5]), ([0,0], [−10,0] × [−5,5]), ([0,0], [1,10] × [−5,0])}.

4.2 Dependence vector computation

Data dependency in a loop is either of type loop-carried or of type loop-independent. Loop-
independent dependency occurs when at least one of the statements st1 and st2 write the
memory location M during the same loop iteration. Loop-carried dependency occurs when
statement st1 accesses the memory location M in one iteration and st2 accesses it in some
iteration later and at least one of these accesses is a write. In this discussion, statements st1

and st2 may belong to any of stcond_expr, stthen or stelse.
For each iteration of the nested loop structure, we define a vector I = {i1, . . . , in} of

integers showing the corresponding values of the loop indices. If there is a data dependency
between statement st1 during iteration I = {i1, . . . , in} and statement st2 during iteration
J = {j1, . . . , jn}, then the dependence vector is defined as J − I = {j1 − i1, . . . , jn − in}.

The notion of dependence vector is well established in the compiler literature [6]. The
existing dependence vector analysis techniques make the conservative assumption that any
pair of statements within a loop body may execute during the same iteration. For the pro-
posed transformation, we extend the analysis of dependence vector to account for control
flow dependency between a pair of statements with the loop body, as described below.

Figure 5 shows our general m-dimensional memory access model. Figure 5a shows the
case when both statements access an array during the execution of the then part. Figure 5b
shows the case when one statement accesses an array during the execution of the then part
and the other statement accesses an array during the execution of the else part.



Optimizing control flow in loops using interval and dependence analysis 203

Fig. 6 (a) Original code; (b) Wrong transformed code; (c) Correct transformed code

In the case of Fig. 5a, there exists a data dependence if there are two iteration vectors I

and J such that:

fk(I ) = gk(J ) ∀k, 1 ≤ k ≤ m &&

stcond_expr(I ) = true && stcond_expr(J ) = true (1)

In the case of Fig. 5b, there exists a data dependence if there are two iteration vectors I

and J such that:

fk(I ) = gk(J ) ∀k, 1 ≤ k ≤ m &&

stcond_expr(I ) = true && stcond_expr(J ) = false (2)

In the case that both of the accesses are in the else part, then stcond_expr(I ) and
stcond_expr(J ) in (1) are equal to false. Similarly, the case when the write access is in the
else part and the read access is in the then part, stcond_expr(I ) = false and stcond_expr(J ) = true
in (2).

4.2.1 Example

Before going over the next step of our methodology, an example will be presented which
shows the importance of the dependence vector computation and how it effects the result
of iteration space partitioning if it is ignored. Intuitively, what we need to ensure is that the
order of dependent statements from different spaces is preserved by the execution order of
the transformed loops. That is, a space (loop) Si has to execute before space (loop) Sj if
there are dependences between statements in Si and statements in Sj —e.g., if a statement in
Si produces a values used in Sj . As an example, consider the simple code segment shown in
Fig. 6a.

The result of domain space partitioning for the expression (i > 3&&j > 3) is given
in Fig. 7. The dependence vector for this code segment is [1,−1] and is shown in Fig. 8.

If the code is transformed without considering the dependence vector, then we may write
code for each space shown in Fig. 7 in any order. For example Fig. 6b shows one such trans-
formed code. This code is generated in the incorrect order [1,5][1,3], [1,3][4,5], [4,5][4,5]
yielding errornous results when executed. To see why the ordering is incorrect, is illustrated
by an example: A[4][4] depends on A[5][3] (write after read) and by generating code for
the space [1,5][1,3], we are violating this dependence. But considering the spaces using the
order [1,3][4,5], [4,5][4,5], [1,5][1,3] will generate correct code as shown in Fig. 6c.



204 M.A. Ghodrat et al.

Fig. 7 Domain space
partitioning (i > 3&&j > 3)

Fig. 8 Dependence vector for
the example

4.3 Iteration space partitioning

Recall that sets T , F and U were computed according to Sect. 4.1. Likewise, the dependence
vector was computed in Sect. 4.2. We define the first problem of iteration space partitioning
as below:

Problem 1 Given T , F and U and the dependence vector between the points in that space
we are interested in p = |T | + |F | + |U | sorted spaces (S1, S2, . . . , Sp) in a way that there
is no loop-carried data dependence from Si to Sj if i < j .

In general, solving Problem 1 requires finding the dependencies for the whole iteration
space (i.e., solving equations ∀k ∈ (1, . . . ,m)fk(i1, . . . , in) = gk(i1, . . . , in) in Fig. 5) for
arbitrary equations, which is a known NP-hard [6] problem.

However, in two special cases, the problem can be solved efficiently. The first obvious
case is when it is known (e.g., via a pragma directive) that there is no loop-carried data
dependence. Here, the spaces can be sorted in any arbitrary way. The second case is when
the dependency relationship is expressed as a linear equation of a special form. Specifically,
if fk’s and gk’s in Fig. 5 can be expressed as:

∀k ∈ (1..n)fk(i1, i2, . . . , in) = fk(ik) = αk,1 × ik + βk,1,

∀k ∈ (1..n)gk(i1, i2, . . . , in) = gk(ik) = αk,2 × ik + βk,2.



Optimizing control flow in loops using interval and dependence analysis 205

Fig. 9 Sort the spaces using the
dependence vector

1: Input: T , F , U

2: Input: dependencyvector = {β1,1 − β1,2, . . . , βn,1 − βn,2}
3: Output: Sorted{T ,F,U}
4: relationSet ← φ

5: for all Spaces Si ∈ {T ,F,U} do
6: expandedspace ← expandSpace(Si ,dependencyvector)

7: overlappedspaces ← findOverlap(expandedspace)

8: for all Spaces Sj ∈ overlappedspaces do
9: relationSet ← relationSet ∪ (Si < Sj )

10: end for
11: end for
12: sortedSpaces ← RelationalSort(relationSet, {T ,F,U})
13: return(sortedSpaces)

Fig. 10 Relational sort 1: Input: T , F , U

2: Input: relationSet
3: Output: Sorted{T ,F,U}
4: sortedList ← φ

5: for all Relation rk = (Si < Sj ) ∈ relationSet do
6: if (Si /∈ sortedList) and (Sj /∈ sortedList) then
7: sortedList.push(Si )

8: sortedList.push(Sj )

9: else if (Si ∈ sortedList) and (Sj /∈ sortedList)
then

10: iindex ← sortedList.find(Si )

11: sortedList.insert(Sj , iindex)

12: else if (Si /∈ sortedList) and (Sj ∈ sortedList)
then

13: jindex ← sortedList.find(Sj )

14: sortedList.insert(Si , jindex − 1)

15: else
16: iindex ← sortedList.find(Si )

17: jindex ← sortedList.find(Sj )

18: if iindex >= jindex then
19: sortedList.remove(Si )

20: sortedList.insert(Si , jindex − 1)

21: end if
22: end if
23: end for
24: return(sortedSpaces)

If ∀k αk,1 = αk,2 then the dependence vector can be expressed as {β1,1 − β1,2, . . . ,

βn,1 − βn,2}. Hence, Problem 1 can be re-defined as Problem 2 below:

Problem 2 Given T , F and U and the dependence vector in the form of {β1,1 −
β1,2, . . . , βn,1 −βn,2} we are interested in p = |T |+ |F |+ |U | sorted spaces (S1, S2, . . . , Sp)

in a way that there is no loop-carried data dependency from Si to Sj if i < j .

Algorithm shown in Fig. 9 shows the proposed solution for Problem 2. This algorithm
first expand the boundaries of all the spaces using the dependence vector (line 6). It then,
finds all the spaces which have overlap with the expanded region, which gives, for each
space, the set of dependent spaces (line 7). Using these dependencies, a set of relations
between spaces is built (lines 8–10). Finally, algorithm in Fig. 10 is used as a subroutine to
sort the spaces (line 12).

Algorithm shown in Fig. 10 works as follows. In a partially sorted list of spaces, if it
reads a relation Si < Sj and if Si is located after Sj in the list, their locations in the list are
exchanged (lines 16–21). If any of Si and Sj is not in the list, it is added to the list in a way
to preserve the precedence relation (i.e. Si before Sj if Si < Sj and etc.) (lines 6–15).



206 M.A. Ghodrat et al.

Fig. 11 Example run of
Algorithms 9 and 10

Figure 11 shows an example run of algorithms in Figs. 9 and 10. Figure 11a shows the
spaces that are dependent on the space S3 by expanding the boundaries of S3 using the
dependence vector β . It also shows the relative set which is built by applying Algorithm 9
on all the spaces. Figure 11b shows the result of executing Algorithm 10 on the relative
set shown in Fig. 11a and finally Fig. 11c shows the sorted spaces under the dependency
vector β .

4.4 Code generation

Given the sorted spaces (S1, S2, . . . , Sp), code generation entails emitting a loop for the Sis.
We note that, Si = [l1, u1] × [l2, u2] × · · · × [ln, un]. Hence, the loop control segment would
be generated according to the following template:

for(x1 = l1; x1 ≤ u1; x1 + +)
for(x2 = l2; x2 ≤ u2; x2 + +)

...

for(xn = ln; xn ≤ un; xn + +)
body

Moreover, the body of the generated loops contains only stthen if Si ∈ T , only stelse if
Si ∈ F , or the original loop body if Si ∈ U .

5 Experiments

To evaluate the proposed code transformation technique, several loop kernels from Media-
Bench [7] application suite and SPEC-2000 [10] were chosen. We also experimented with
an mp3 encoder implementation obtained from [1], an mpeg4 full motion estimation ob-
tained from [2], GNU Image Manipulation Program (gimp) [14] and also qsdpcm [11] video
compression algorithm which is obtained from [5].

By loop kernel, we mean the region of code that was impacted by the transformation.
For example, if the transformed code was a conditional block within a for-loop, then the
time taken to execute that entire for-loop before and after the optimization was used to de-
termine the speedup. The characteristics of the loop kernels selected for our experiments are



Optimizing control flow in loops using interval and dependence analysis 207

listed in Table 4. In Table 4 conditional expressions column shows the particular conditional
expression(s). If there are more than one conditional expression in a loop kernel, then we
run our algorithm for each instance of conditional expression separately (i.e., the algorithm
is run iteratively as long as improvements are obtained). Also, in Table 4, Application col-
umn shows where we picked the loop kernel and Function description column shows the
functionality of the code where the kernel is taken from. We applied our transformation
technique (Sect. 4) at the source level to each of the chosen benchmarks by hand (except the
first step in Sect. 4 which is automated), compiled the original and the transformed code,
and measured the improvement. We did this experiment for four types of instruction sets:
SPARC, x86, PowerPC and ARM. For all the instruction sets, we measured the speedup
together with code size increase.

Each loop kernel (original and transformed) was compiled using different optimization
levels of gcc [13], namely: no optimization (shown as no in the following sections); using
-O1 switch; using -O2 switch and finally using -O3 switch. In the following sections, the
speedup calculations are based on the ratio of the time to execute the original loop kernel to
the time to execute the optimized loop kernel. In each case the execution time before code
transformation (To) and the execution time after code transformation (Tn) are measured and
speedup has been calculated using the following formula: Speedup = (To/Tn). Each bar in
Figs. 12, 14, 16 and 18 shows the speedup after applying our code transformation. For each
benchmark there are 5 bars, the first 4 representing the speedup for 4 cases of optimizations
mentioned above, the fifth bar gives the average speedup. Likewise we have calculated the
code size ratio, which is the transformed code size divided by the original code size.

5.1 SPARC

The results of experiments on SPARC are summarized in Table 5. The first half of Table 5
shows the result of measured time before and after transformation for 4 different optimiza-
tion options. The second half of Table 5 shows the result of code size before and after
transformation for the same 4 optimization options plus another optimization for code size
(-Os). The speedup and the code size ratio have been shown graphically in Figs. 12 and 13.

The experiments were run on a Sun workstation, with two 1503 MHz SUNW,
UltraSPARC-IIIi CPU’s and 2 GB of memory, but the code ran for all experiments on a
single CPU. We used GCC compiler version 3.4.1 in order to generate executables. In the
best case, we observed application speedup of 6.58X. On average, we observed application
speedup of 2.34X. On average we observed 2.51X increase on code size.

Note that there are cases where we measured decrease in code size (e.g., B9 or B15), this
is due to removal of the conditional expression evaluation from the code combined with the
small number of partitions that are generated. The same result is observed X86, PowerPC
and ARM as shown in the following sections.

5.2 Intel x86

The results of experiments on Intel x86 are summarized in Table 6. The first half of Table 6
shows the result of measured time before and after transformation for 4 different optimiza-
tion options. The second half of Table 6 shows the result of code size before and after
transformation for the same 4 optimization options plus another optimization for code size
(-Os). The speedup and the code size ratio have been shown graphically in Figs. 14 and 15.

The experiments were run on a MacBook with a Intel Dual Core 1.8 GHz and 1 GB
of memory. We used GCC compiler version 3.4.1 in order to generate executables. In the



208 M.A. Ghodrat et al.

Ta
bl

e
4

Se
le

ct
ed

ap
pl

ic
at

io
n

lis
t

B
en

ch
m

ar
k#

A
pp

lic
at

io
n

Fu
nc

tio
n

de
sc

.
C

on
di

tio
na

le
xp

re
ss

io
ns

Pr
op

er
tie

s
(T

ab
le

1)

1
2

3
4

5
6

7
8

1
m

pe
g4

M
ot

io
n

es
tim

at
io

n
(x

3
<

0‖
x

3
>

35
‖y

3
<

0‖
y

3
>

48
)

�
�

�
�

�
�

(x
4

<
0‖

x
4

>
35

‖y
4

<
0‖

y
4

>
48

)

2
qs

dp
cm

M
ot

io
n

es
tim

at
io

n
((

4
∗x

+
v
x

−
4

+
x

4
<

0)
‖

�
�

�
�

�
�

(4
∗x

+
v
x

−
4

+
x

4
>

(N
/
4

−
1)

)‖
(4

∗y
+

v
y

−
4

+
y

4
<

0)
‖

(4
∗y

+
v
y

−
4

+
y

4
>

(M
/
4

−
1)

))

3
gi

m
p

C
re

at
e

K
er

ne
l

(3
2

∗x
−

2
∗i

+
1)

2
+

(3
2

∗y
−

2
∗j

+
1)

2
<

40
96

�
�

�
�

�

4
12

2.
ta

ch
yo

n
Pa

ra
lle

lr
ay

tr
ac

in
g

(x
==

N
M

A
X

−
1)

,
�

�
�

�
�

�
(S

PE
C

M
PI

-2
00

7)
(G

en
er

at
e

N
oi

se
M

at
ri

x)
(y

==
N

M
A

X
−

1)
,
(z

==
N

M
A

X
−

1)

5
18

6.
cr

af
ty

C
he

ss
pr

og
ra

m
(j

<
16

),
(j

>
47

)
�

�
�

�
�

(S
PE

C
-2

00
0)

(G
en

er
at

e
Pi

ec
e

M
as

ks
)

6
17

5.
vp

r
FP

G
A

C
ir

cu
it

Pl
ac

em
en

t
i!=

4&
&

i!=
D

E
TA

IL
E

D
_S

TA
R

T
+

5&
&

�
�

�
�

�
(S

PE
C

-2
00

0)
an

d
R

ou
tin

g
(C

he
ck

ar
ch

ite
ct

ur
e

fil
e)

i!=
5&

&
i!=

D
E

TA
IL

E
D

_S
TA

R
T

+
6

7
25

2.
eo

n
C

om
pu

te
r

V
is

ua
liz

at
io

n
(i

==
0)

,
(j

==
0)

,
(k

==
0)

�
�

�
�

�
(S

PE
C

-2
00

0)



Optimizing control flow in loops using interval and dependence analysis 209

Ta
bl

e
4

(C
on

ti
nu

ed
)

B
en

ch
m

ar
k#

A
pp

lic
at

io
n

Fu
nc

tio
n

de
sc

.
C

on
di

tio
na

le
xp

re
ss

io
ns

Pr
op

er
tie

s
(T

ab
le

1)

1
2

3
4

5
6

7
8

8
25

3.
pe

rl
bm

k
PE

R
L

Pr
og

ra
m

m
in

g
((

c
>

=′
A

′ &
&

c
<

=′
Z

′ )‖
�

�
�

�
�

�
(S

PE
C

-2
00

0)
L

an
gu

ag
e

(c
>

=′
a
′ &

&
c

<
=′

z
′ )‖

(c
>

=′
0′

&
&

c
<

=′
9′

)‖c
==

′ _
′ )

9
Sy

nt
he

tic
gr

ap
hi

cs
C

ol
lis

io
n

de
te

ct
io

n
(x

∗x
+

y
∗y

==
x

∗x
∗y

)
�

�
�

�
�

10
m

pg
de

c-
in

itd
ec

In
iti

al
iz

e
D

ec
od

er
(i

<
0)

,
(i

>
25

5)
�

�
�

�
�

11
m

pg
en

c-
vh

fil
te

r
V

er
./H

or
.F

ilt
er

,2
:1

Su
bs

am
pl

e
(i

<
5)

,
(i

<
4)

,
(i

<
3)

,
(i

<
2)

,
(i

<
1)

�
�

�
�

�

12
m

p3
-p

sy
ch

L
ay

er
3

Ps
yc

h.
A

na
ly

si
s

j
<

sy
nc

_fl
us

h,
j

<
B

L
K

SI
Z

E
�

�
�

�
�

�

13
m

p3
-a

lig
n

R
ea

d
an

d
al

ig
n

au
di

o
da

ta
j

<
64

�
�

�
�

�

14
m

pg
en

c-
id

ct
ID

C
T

In
iti

al
iz

e
(i

<
−2

56
),

(i
>

25
5)

�
�

�
�

�

15
m

pg
de

c-
vh

fil
te

r
V

er
./H

or
.I

nt
er

po
la

tio
n

Fi
lte

r
(i

<
2)

,
(i

<
1)

�
�

�
�

�



210 M.A. Ghodrat et al.

Ta
bl

e
5

R
es

ul
to

f
ex

pe
ri

m
en

ts
fo

r
sp

ar
c-

tim
e

an
d

co
de

si
ze

(s
ha

de
d:

or
ig

in
al

;w
hi

te
:t

ra
ns

fo
rm

ed
)

B
en

ch
m

ar
k

T
im

e
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

C
od

e
si

ze
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

N
o

-O
1

-O
2

-O
3

N
o

-O
1

-O
2

-O
3

-O
s

m
pe

g4
22

86
38

67
03

2
98

92
0

45
74

0
91

78
2

44
67

4
91

60
8

45
20

8
36

2
65

1
17

8
30

3
19

6
30

6
19

6
57

7
18

0
28

3

qs
dp

cm
13

87
30

10
83

32
26

23
4

19
88

4
19

60
2

14
44

6
17

40
8

14
30

4
25

3
18

60
13

5
10

24
14

1
98

1
15

3
10

88
12

8
87

4

gi
m

p
11

40
54

94
42

2
45

87
0

38
66

4
44

96
0

38
36

8
44

92
8

38
27

4
26

5
25

80
15

8
14

98
14

9
13

19
14

9
13

21
14

0
12

76

12
2.

ta
ch

yo
n

17
74

16
16

13
06

44
71

4
10

34
8

38
29

4
99

28
30

61
4

99
32

16
6

69
3

80
17

9
76

13
9

15
3

13
9

74
13

7

18
6.

cr
af

ty
21

63
10

21
21

02
51

43
6

47
78

2
44

63
6

42
70

2
23

58
4

17
60

2
38

0
55

2
19

8
30

7
11

7
28

5
23

8
43

5
14

3
31

4

17
5.

vp
r

14
05

0
11

97
2

59
02

32
04

59
90

30
38

58
46

30
54

14
8

35
1

84
19

0
94

21
1

94
21

1
87

18
0

25
2.

eo
n

59
0

48
7

59
4

48
4

59
1

48
1

58
6

48
9

35
0

14
28

13
9

26
8

81
19

2
78

19
2

10
1

16
8

25
3.

pe
rl

bm
k

10
47

4
25

12
71

38
10

84
67

98
10

68
68

06
10

62
10

8
19

9
61

10
2

60
10

1
60

10
1

60
10

1

gr
ap

hi
cs

49
82

24
66

23
20

11
52

13
38

59
4

13
08

58
8

82
81

44
44

48
42

48
42

43
43

m
pg

de
c-

in
itd

ec
34

38
24

08
67

0
41

2
67

0
30

8
64

2
31

0
72

91
38

51
39

48
39

48
39

47

m
pg

en
c-

vh
fil

te
r

12
70

6
80

10
50

40
24

06
42

34
79

0
42

38
78

6
29

5
75

6
15

1
35

8
13

0
12

3
12

8
12

3
12

0
10

9

m
p3

-p
sy

ch
61

84
55

32
39

30
32

70
38

34
31

28
37

64
30

88
18

6
32

5
12

7
21

5
12

0
21

3
11

9
21

2
10

7
18

3

m
p3

-a
lig

n
15

10
6

13
74

0
36

04
29

80
29

72
23

86
27

36
23

52
99

10
4

49
51

52
50

52
50

48
50

m
pg

en
c-

id
ct

34
86

25
82

71
8

41
2

11
52

33
2

74
8

38
6

24
1

10
0

44
59

43
53

43
53

43
52

m
pg

de
c-

vh
fil

te
r

20
34

90
0

55
2

94
58

2
96

58
2

96
15

7
26

2
82

76
71

64
71

64
66

60



Optimizing control flow in loops using interval and dependence analysis 211

Fig. 12 Effect of transformation on time for SPARC

Fig. 13 Effect of transformation on code size for SPARC

best case, we observed application speedup of 10.65X. On average, we observed application
speedup of 2.92X. On average we observed 2.34X increase on code size.

One interesting point here (and also for SPARC in Fig. 12) is the huge constant speedup
for benchmark B4 with -O1, -O2 or -O3 optimization. In this benchmark there is an access
to a 3 dimensional array. In the non-optimized version the address to the beginning of the
array is always computed for every access inside loop. In the optimized version (-O1, -O2
and -O3), the beginning of the array computation is hoisted out of the loop and is kept in
a register, yielding a huge performance gain. Finally, the timing result for all -O1, -O2 and
-O3 is almost the same as can be seen in Tables 5 and 6.



212 M.A. Ghodrat et al.

Ta
bl

e
6

R
es

ul
to

f
ex

pe
ri

m
en

ts
fo

r
in

te
lx

86
-t

im
e

an
d

co
de

si
ze

(s
ha

de
d:

or
ig

in
al

;w
hi

te
:t

ra
ns

fo
rm

ed
)

B
en

ch
m

ar
k

T
im

e
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

C
od

e
si

ze
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

N
o

-O
1

-O
2

-O
3

N
o

-O
1

-O
2

-O
3

-O
s

m
pe

g4
36

63
8

83
66

16
90

6
28

66
16

60
0

27
38

17
86

2
28

46
36

5
63

6
21

1
30

5
19

3
27

0
21

2
29

0
20

4
28

8

qs
dp

cm
34

45
2

27
84

8
94

60
72

72
14

85
0

10
53

0
15

93
0

11
29

0
21

9
14

86
17

9
11

92
17

3
10

91
21

8
12

82
17

9
11

25

gi
m

p
18

13
8

15
93

6
16

26
2

13
38

0
16

06
0

13
44

8
16

06
0

13
44

8
21

0
20

32
15

7
13

72
13

3
11

30
13

3
11

30
13

1
10

63

12
2.

ta
ch

yo
n

40
85

4
34

43
8

15
47

2
25

02
15

54
8

32
46

84
74

24
86

14
3

64
9

82
19

0
73

13
5

95
13

8
73

13
5

18
6.

cr
af

ty
37

73
6

39
65

2
19

34
6

18
11

6
21

74
0

21
11

0
84

00
68

40
34

6
50

8
27

2
42

2
25

0
42

0
36

2
48

8
31

4
49

4

17
5.

vp
r

21
30

14
00

14
62

97
6

12
72

73
2

12
76

74
4

11
0

24
4

80
23

0
10

4
25

3
10

6
25

3
93

22
3

25
2.

eo
n

12
6

12
3

24
11

35
25

28
25

28
5

12
65

10
8

21
0

14
4

23
6

82
23

6
12

6
23

6

25
3.

pe
rl

bm
k

18
50

46
2

76
2

15
2

76
2

15
0

75
6

15
0

83
15

8
59

10
0

64
10

6
64

10
6

60
10

0

gr
ap

hi
cs

25
0

12
2

58
22

52
30

52
30

60
60

48
48

53
48

53
48

53
48

m
pg

de
c-

in
itd

ec
54

0
44

8
15

8
52

14
0

60
14

0
60

57
68

49
53

54
54

57
54

49
54

m
pg

en
c-

vh
fil

te
r

30
12

14
82

10
00

15
8

98
0

92
98

0
92

25
4

65
3

17
5

12
6

17
6

12
9

17
6

12
9

17
1

12
9

m
p3

-p
sy

ch
90

0
80

0
61

0
48

2
55

0
49

2
53

8
51

0
11

7
20

3
10

8
18

6
93

18
4

93
18

4
11

0
18

3

m
p3

-a
lig

n
27

70
25

72
12

40
64

4
84

6
61

4
78

6
64

0
74

71
59

54
59

61
59

61
59

51

m
pg

en
c-

id
ct

56
0

43
0

15
8

52
18

0
52

18
2

60
63

74
56

61
61

62
64

62
56

62

m
pg

de
c-

vh
fil

te
r

43
8

17
0

21
6

30
11

0
12

11
0

20
13

6
21

6
99

82
10

3
80

10
3

80
97

80



Optimizing control flow in loops using interval and dependence analysis 213

Fig. 14 Effect of transformation on time for x86

Fig. 15 Effect of transformation on code size for x86

5.3 PowerPC

The results of experiments on PowerPC are summarized in Table 7. The first half of Table 7
shows the result of measured time before and after transformation for 4 different optimiza-
tion options.

The second half of Table 7 shows the result of code size before and after transforma-
tion for the same 4 optimization options plus another optimization for code size (-Os). The
speedup and the code size ratio have been shown graphically in Figs. 16 and 17. The ex-
periments were run on a Apple PowerMac G5 with a 1.6 GHz PowerPC G5 and 768 MB
of memory. We used GCC compiler version 4.0.1 in order to generate executables. In the
best case, we observed application speedup of 9.33X. On average, we observed application
speedup of 2.44X. On average we observed 2.31X increase on code size.



214 M.A. Ghodrat et al.

Ta
bl

e
7

R
es

ul
to

f
ex

pe
ri

m
en

ts
fo

r
Po

w
er

PC
-t

im
e

an
d

co
de

si
ze

(s
ha

de
d:

or
ig

in
al

;w
hi

te
:t

ra
ns

fo
rm

ed
)

B
en

ch
m

ar
k

T
im

e
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

C
od

e
si

ze
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

N
o

-O
1

-O
2

-O
3

N
o

-O
1

-O
2

-O
3

-O
s

m
pe

g4
11

19
68

19
87

6
29

63
8

45
30

27
16

6
45

32
19

56
2

45
34

34
6

61
4

15
4

23
3

16
3

24
2

26
4

34
4

15
7

23
6

qs
dp

cm
71

24
4

72
05

2
98

02
10

41
2

96
22

93
46

16
10

0
91

88
24

0
16

94
12

4
77

2
12

8
78

1
14

5
82

1
12

3
76

6

gi
m

p
81

89
4

67
69

2
44

64
2

35
74

6
42

34
4

34
81

8
42

32
0

34
87

8
25

3
23

61
14

1
11

72
13

7
11

56
15

4
11

80
13

6
11

40

12
2.

ta
ch

yo
n

77
39

4
64

74
0

18
87

8
69

60
17

88
8

85
70

13
28

6
79

66
14

7
55

2
75

14
4

78
14

5
15

3
14

5
75

14
4

18
6.

cr
af

ty
10

58
44

10
33

00
25

78
2

27
16

0
26

09
0

26
03

4
85

90
81

30
35

7
52

3
20

2
29

3
19

4
29

5
23

5
39

8
22

7
38

3

17
5.

vp
r

11
98

6
92

96
35

00
23

80
29

74
20

76
29

72
20

80
15

2
35

1
76

20
4

79
20

2
79

20
2

75
19

1

25
2.

eo
n

42
3

41
7

67
51

62
44

62
44

23
9

95
5

92
18

4
92

19
7

84
19

7
86

19
6

25
3.

pe
rl

bm
k

85
72

17
48

14
42

40
0

14
52

39
0

14
50

39
0

10
7

20
6

58
10

2
60

10
7

60
10

7
60

10
2

gr
ap

hi
cs

17
56

10
80

14
0

90
16

0
80

14
0

60
74

74
42

42
44

44
44

44
43

43

m
pg

de
c-

in
itd

ec
38

28
26

04
36

0
24

2
41

0
20

2
36

0
19

8
79

10
0

47
54

48
57

48
57

47
54

m
pg

en
c-

vh
fil

te
r

71
12

37
24

17
72

19
0

16
70

19
0

16
70

19
0

26
5

62
8

14
2

10
0

15
4

98
15

4
98

14
1

97

m
p3

-p
sy

ch
44

10
48

28
28

40
30

84
30

20
31

92
28

62
29

50
19

2
35

0
13

2
21

4
13

5
22

3
13

5
22

3
13

0
21

9

m
p3

-a
lig

n
17

06
2

16
09

2
21

50
11

62
19

02
11

04
21

58
11

62
12

1
12

6
69

54
71

56
71

56
69

54

m
pg

en
c-

id
ct

29
60

19
36

37
0

21
2

37
0

19
2

41
0

20
0

87
10

8
53

61
54

62
54

62
52

59

m
pg

de
c-

vh
fil

te
r

11
26

48
4

27
0

60
25

0
60

25
0

60
15

5
25

2
82

68
84

70
84

70
79

68



Optimizing control flow in loops using interval and dependence analysis 215

Fig. 16 Effect of transformation on time for PowerPC

Fig. 17 Effect of transformation on code size for PowerPC

5.4 ARM

The results of experiments on ARM are summarized in Table 8. The first half of Table 8
shows the result of measured time before and after transformation for 4 different optimiza-
tion options. The second half of Table 8 shows the result of code size before and after
transformation for the same 4 optimization options plus another optimization for code size
(-Os). The speedup and the code size ratio have been shown graphically in Figs. 18 and 19.

The experiments were run on an ARM evaluation board TS-7250 from Technologic Sys-
tems [12] with a 200 MHz ARM9 which its characteristics are shown in Table 9. We used
arm-linux-gcc compiler version 3.4.4 in order to generate executables. In the best case, we
observed application speedup of 5.77X. On average, we observed application speedup of
2.04X. On average we observed 3.23X increase on code size.



216 M.A. Ghodrat et al.

Ta
bl

e
8

R
es

ul
to

f
ex

pe
ri

m
en

ts
fo

r
A

R
M

—
tim

e
an

d
co

de
si

ze
(s

ha
de

d:
or

ig
in

al
;w

hi
te

:t
ra

ns
fo

rm
ed

)

B
en

ch
m

ar
k

T
im

e
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

C
od

e
si

ze
(o

ri
gi

na
la

nd
tr

an
sf

or
m

ed
)

N
o

-O
1

-O
2

-O
3

N
o

-O
1

-O
2

-O
3

-O
s

m
pe

g4
24

26
63

7
13

80
47

6
12

65
45

8
12

78
45

7
33

5
28

17
17

4
12

87
18

7
12

91
18

6
12

43
16

2
11

08

qs
dp

cm
16

60
14

02
35

33
29

50
34

60
27

50
32

36
25

13
23

2
26

41
11

9
12

52
13

9
14

36
14

7
15

45
10

8
11

06

gi
m

p
85

23
70

28
59

22
46

04
63

29
49

47
63

29
49

56
20

3
21

68
10

5
97

9
10

2
95

6
10

1
92

7
11

8
90

6

12
2.

ta
ch

yo
n

27
60

23
50

94
00

57
66

85
66

57
33

85
66

57
66

16
7

76
1

71
21

6
78

19
3

78
18

7
77

18
4

18
6.

cr
af

ty
17

46
16

96
73

66
68

33
79

00
73

00
78

66
73

00
17

3
32

1
98

18
0

10
2

18
3

10
2

18
3

96
17

2

18
6.

cr
af

ty
15

26
14

53
55

33
52

00
53

33
51

00
32

33
28

00
30

4
44

6
17

1
25

5
11

8
30

2
22

2
44

2
11

0
30

4

30
0.

tw
ol

f
14

10
14

03
11

90
11

90
13

56
13

00
13

56
13

00
70

75
37

42
37

41
37

41
40

49

17
5.

vp
r

37
00

35
00

26
66

25
00

27
00

25
00

25
33

24
00

42
2

14
00

23
2

74
3

20
0

63
3

25
7

11
14

19
5

62
6

17
5.

vp
r

71
66

52
66

39
66

30
00

38
00

30
00

36
00

30
00

11
1

24
9

57
12

3
68

15
6

68
15

6
60

12
5

25
3.

pe
rl

bm
k

11
37

28
3

43
86

91
3

50
23

87
3

50
23

87
0

10
0

19
6

46
82

47
83

46
82

45
81

gr
ap

hi
cs

17
58

87
9

60
80

30
40

46
66

23
30

46
66

23
33

74
73

35
34

38
33

38
33

30
30

m
pg

de
c-

in
itd

ec
36

00
20

33
14

00
69

6
11

96
66

0
12

00
66

0
68

92
35

44
33

41
33

41
29

38

m
pg

en
c-

vh
fil

te
r

99
93

49
80

26
80

13
90

26
00

71
6

25
90

71
3

27
4

71
3

11
2

26
7

94
10

4
94

10
4

86
86

m
p3

-p
sy

ch
63

10
70

30
61

13
68

63
61

50
10

13
0

N
/A

N
/A

16
9

32
2

13
0

22
7

12
0

22
0

11
5

22
0

11
1

20
9

m
p3

-a
lig

n
28

50
28

00
26

56
26

26
33

96
33

73
24

70
24

46
12

3
12

8
57

58
61

57
61

57
56

56

m
pg

en
c-

id
ct

18
20

10
26

70
66

36
33

60
66

34
00

60
66

34
00

72
96

40
50

38
46

38
46

34
43

m
pg

de
c-

vh
fil

te
r

30
30

12
80

65
00

19
00

71
00

19
00

71
00

16
00

14
6

24
3

69
71

55
54

55
53

51
49



Optimizing control flow in loops using interval and dependence analysis 217

Fig. 18 Effect of transformation on time for ARM

Fig. 19 Effect of transformation on code size for ARM

This technique is not always rewarding as can be seen from the result for B12 on ARM9
processor (Fig. 18). This is due to high number of memory array accesses inside the original
loop. In the original loop, each array access is loaded once through out the loop. When
partitioned in a series of loops (after transformation), each loop partition will have its own
memory loads, which makes it more expensive compared to the original code.

5.5 Full application speed-up

To investigate the benefit of our proposed transformation on a whole application, we tested
our transformation on 3 applications, namely mpeg decoder, mpeg encoder and qsdpcm on



218 M.A. Ghodrat et al.

Table 9 ARM9 board
specification 200 MHz ARM9 processor with MMU

32 MB of High Speed SDRAM

32 MB Flash disk used for RedBoot boot-loader,

Linux kernel and root file system

Linux Kernel 2.6.20

USB Flash drive supported

10/100 Ethernet interface

2 USB 2.0 Compatible OHCI ports (12 Mbit/s Max)

Fig. 20 Full application
performance improvement

Fig. 21 Full application code
size increase

all the 4 previously mentioned instruction sets: SPARC, x86, PowerPC and ARM. For this
experiment we only used gcc -O3 for compilation and as before we hand transformed all
the places in code which our transformation could be applied. Figure 20 shows the result of
the performance improvement for the three mentioned application. In the best case we get
15% speedup for the mpeg-dec on X86. On average we get 5% performance improvement.
Figure 21 shows the result of the code size increase for the three mentioned application. In
the worst case we get 21% code size increase for the qsdpcm on PowerPC. On average we
get 6% code size increase.

It’s worth mentioning that like any other compiler optimization (e.g. most of the compiler
optimization techniques mentioned in Table 4), our technique is applicable to certain part of
code, which may or may not be part of the hot spots. So, the gain that we can get on the full
application speedup varies a lot. Even though, there are compiler optimization techniques



Optimizing control flow in loops using interval and dependence analysis 219

that by enabling some hardware techniques can gain a lot (like all the loop parallelization
techniques), no single software-only compiler optimization can give us huge speed-ups on
all the benchmarks, when taking the entire application into account.

5.6 Additional remarks

1. Experiments with GCCs increasing levels of optimizations (none, -O1, -O2, -O3) show
that the proposed optimization techniques yields additional performance improvements
when applied in conjunction with existing compiler optimizations in vast majority of
cases. This is due to dataflow optimizations which will be enabled because of the removal
of the conditional expressions from loop bodies. In the few cases where this is not true
(e.g., 186.crafty in Intel or PowerPC or qsdpcm in PowerPC), the difference is within
measurement noise. Or sometimes, it is because more optimization (i.e. -O2, -O3) will
not give more benefits comparing to -O1. This was shown for example in 122.tachyon in
both Figs. 12 and 14.

Furthermore, this is a well known effect of interactions between compiler optimiza-
tions and is indeed also visible without our transformations (e.g., 175.vpr for SPARC and
qsdpcm for Intel x86 and PowerPC) as shown in Tables 5, 6 and 7.

2. Note that since there are real runtime results on real machines, they naturally factor in
any possible performance effects of code size increase on caching. Thus the speedups are
the real effect of the transformation on actual running code.

3. The code size increase reported in Sects. 5.1, 5.2, 5.3 and 5.4 are only for the loop kernels.
4. The domain space partitioning algorithm might produce lots of spaces for a given nested

conditional expression. If the loop is partitioned based on all these spaces, then the loops
overhead will create a diminish return for performance gain. A similar argument has
been presented in [4]. What should be done in these cases is to drop all those spaces
which have a size smaller than a constant threshold, in this way they will be merged with
unknown spaces and the original code will be generated for them in the code generation
step.

5. Given profiling information, our method can be applied to a general loop that has variable
lower and upper bounds: (1) Separate out the part of domain space with the profiled
upper/lower bounds, (2) apply the method presented in this paper and generate optimized
code for this carved out space, and finally (3) for the remaining part of the domain space,
use the original code. As an example, consider the loop shown here:

for (i=lb;i<ub;i++)
{

if (Cexpr)
st_then;

else
st_else;

}

If profiling information shows that there is an interval [Lp,Up] (Lp and Up are two
constant integers) such that lb ≤ Lp ≤ Up ≤ ub, we can transform the code as follows:

if ( (lb <= Lp) && (Up <= ub) )
{

for (i=lb;i<Lp;i++) {
// Original loop body

}



220 M.A. Ghodrat et al.

for (i=Lp;i<Up;i++) {
// Transformed loop body based on the constant values of

[Lp,Up] and Cexpr
}
for (i=Up;i<ub;i++) {

// Original loop body
}

}
else
{

for (i=lb;i<ub;i++) {
// Original loop body

}
}

6 Conclusion

Given the stringent design constraints, performance requirements of embedded systems and
as software is becoming a larger fraction of engineering effort, the importance of aggres-
sive compiler optimizations also increases. Hence, it is acceptable for a compiler intended
for embedded computing to take longer to execute but perform aggressive compiler opti-
mizations. We have presented a new loop transformation technique, intended for embedded
compilers. The transformation technique optimizes loops with nested conditional blocks
and it decomposes the loop nests in a way that conditional testing is eliminated. Applying
the proposed transformation technique on the loop kernels taken from Mediabench, SPEC-
2000, mpeg4, qsdpcm and gimp, on average we measured a 2.34X speedup when running
on a UltraSPARC processor, a 2.92X speedup when running on an Intel Core Duo proces-
sor, a 2.44X speedup when running on a PowerPC G5 processor and a 2.04X speedup when
running on an ARM9 processor. In addition to ARM9 which is a representative of an embed-
ded processor, we used high-end processors because better compilers are available, so as to
avoid the possibility that our technique looks better than it should because of poor optimiza-
tions done by the compiler. Also, these processors are representative of high-end embedded
processors (Intel Core Duo has an embedded version, so do PowerPC and SPARC). On aver-
age, we measured a code size increase of 2.51X for SPARC, 2.34X for Intel x86, 2.31X for
PowerPC and 3.23X for ARM. Note that despite the size increase, the overall performance
is still improved by the above factors, i.e., cache performance degradation, if any, due to the
increased code size is already factored into the results, since we measured actual runtime
of the original and transformed code. Performance improvement, taking the entire applica-
tion into account, was also promising: for 3 selected applications (mpeg-enc, mpeg-dec and
qsdpcm) we measured 15% speedup on best case (5% on average) for the whole application.

Acknowledgements This work was in part supported by grant #0749508 from the National Science Foun-
dation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Iso mp3 sources. Available as http://www.mp3-tech.org/programmer/sources/dist10.tgz
2. Falk H, Marwedel P (2003) Control flow driven splitting of loop nests at the source code level. In:

Proceedings of DATE, pp 410–415

http://www.mp3-tech.org/programmer/sources/dist10.tgz


Optimizing control flow in loops using interval and dependence analysis 221

3. Ghodrat MA, Givargis T, Nicolau A (2005) Equivalence checking of arithmetic expressions using fast
evaluation. In: Proceedings of the CASES, pp 147–156

4. Ghodrat MA, Givargis T, Nicolau A (2007) Short-circuit compiler transformation: Optimizing condi-
tional blocks. In: Proceedings of the 12th Asia and South Pacific design automation conference (ASP-
DAC 2007), pp 504–510

5. Issenin I, Dutt N (2006) Data reuse driven energy-aware mpsoc co-synthesis of memory and communi-
cation architecture for streaming applications. In: CODES-ISSS 2006, pp 294–299

6. Kennedy K, Allen R (2001) Optimizing compilers for modern architectures: A dependence-based ap-
proach. Morgan Kaufmann, San Mateo

7. Lee C et al (1997) Mediabench: A tool for evaluating and synthesizing multimedia and communications
systems. In: International symposium on microarchitecture, pp 330–335

8. Moore RE (1966) Interval analysis. Englewood Cliffs, Prentice-Hall
9. Muchnick SS (1997) Advanced compiler design and implementation. Morgan Kaufmann, San Mateo

10. Standard Performance Evaluation Corporation Spec cpu2000. Available as http://www.spec.org/
cpu2000/

11. Stobach P (1988) A new technique in scene adaptive coding. In: Proceedings of EUSIPCO
12. Technologic systems http://www.embeddedarm.com/products/board-detail.php?product=TS-7250
13. The GCC Team. Gnu compiler collection. Available as http://gcc.gnu.org/
14. The GIMP Team. Gnu image manipulation program. Available as http://www.gimp.org/
15. Wolfe M (1995) High-performance compilers for parallel computing. Addison-Wesley, Reading
16. Wolfe M (2005) How compilers and tools differ for embedded systems. In: Proceedings of the CASES,

p 1

http://www.spec.org/cpu2000/
http://www.spec.org/cpu2000/
http://www.embeddedarm.com/products/board-detail.php?product=TS-7250
http://gcc.gnu.org/
http://www.gimp.org/

	Optimizing control flow in loops using interval and dependence analysis
	Abstract
	Introduction
	Previous work
	Proposed transformation
	Preliminaries

	Technical approach
	Interval set computation
	Dependence vector computation
	Example

	Iteration space partitioning
	Code generation

	Experiments
	SPARC
	Intel x86
	PowerPC
	ARM
	Full application speed-up
	Additional remarks

	Conclusion
	Acknowledgements
	Open Access
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




