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Abstract

Inferring patterns of synchronous brain activity from a heterogeneous sample of elec-
troencephalograms (EEG) is scientifically and methodologically challenging. While it
is intuitively and statistically appealing to rely on readings from more than one indi-
vidual in order to highlight recurrent patterns of brain activation, pooling information
across subjects presents non-trivial methodological problems. We discuss some of the
scientific issues associated with the understanding of synchronized neuronal activity
and propose a methodological framework for statistical inference from a sample of
EEG readings. Our work builds on classical contributions in time-series, clustering
and functional data analysis, in an effort to reframe a challenging inferential problem
in the context of familiar analytical techniques. Some attention is paid to compu-
tational issues, with a proposal based on the combination of machine learning and
Bayesian techniques.

Keywords: Consensus Clustering, EEG, Hierarchical Mixture Models, Spectral Clustering.
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1 Introduction

Functional neuroimaging technologies, including MRI, PET, MEG, and EEG, aim to mea-

sure different aspects of brain function as they relate to specific mental processes. This

article focuses on the analysis of Electroencephalography (EEG) data in the context of

neuropsychology studies. EEG is a well-established noninvasive method for measuring

spontaneous and event-related electrical activity across brain regions. The technology cap-

tures voltage fluctuation as signals, which reflect the distributed neuronal activities being

projected on a cortical patch on which an EEG sensor is placed (Teplan 2002). The general

aim of an EEG study is often the identification of neural function and cognitive states.

Diverse biomedical applications include epilepsy, sleep disorders, multiple sclerosis, brain

tumors, lesions, schizophrenia, and mood disorders (Teplan 2002).

Typical analyses in EEG studies focus primarily on inferring group differences in regions

of interest. Such differences are assessed both in the frequency domain, by means of an

amplified Signal-to-Noise Ratio (SNR) (Laufs et al. 2003), and, in the case of studies

involving external stimuli, in the time domain, by means of averaging and smoothing over

repeated applications of the stimuli (Hasenstab et al. 2015).

Beyond differential activation of brain regions, mounting evidence is building a case for

the deeper understanding of neural interactions (Di Martino et al. 2014, Craddock et al.

2013). In this setting, magnetic resonance imaging has become an established workhorse

for the mapping and annotation of the human connectome at the macro-scale. The key to

the success of MRI technologies as a preferred measurement tool in functional connectivity

studies lies in their ability to produce measurements at high spatial resolution. This ability

comes, however, at the cost of low time resolution, and perhaps most importantly, at the

cost of severe hardware limitations, which make MRI studies hard to design in a logistically
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and financially feasible fashion.

On the other end, EEG is thought to provide reliable measurements of neuronal activity

only for the brain cortical regions, with low spatial resolution and often low SNR. However,

compared to other imaging techniques, EEG has the advantage of relying on less bulky

hardware and is associated with robust and extremely non-invasive imaging protocols,

making the technology readily available for implementation and adaptation to a variety of

scientific investigations.

In a seminal contribution, Euan et al. (2015) suggested exploiting EEG’s excellent

temporal resolution by defining the concept of spectral synchronicity. In particular, a

pair of EEG signals are considered spectrally synchronized if they are both dominated by

similar frequency oscillations. This idea formalizes the concept of coordinated neuronal

activity and reflects recent empirical evidence, which suggests that differential patterns

of coordinated neuronal activity may be associated with a range of neuropsychiatric and

neurological processes, including memory formation (Fell and Axamcher 2011) and mental

disorders (Broyd et al. 2008).

From a statistical perspective, multi-subject studies of functional connectivity still pose

substantial methodological challenges. Ideally, statistical inference should provide tools

for the understanding of typical functional connectivity patterns, as well as quantifica-

tion of familiar concepts like sample and population variability, and dependence on clini-

cal phenotypes via regression. Even though some progress in the direction of population

level inference has recently been made in the context of fMRI data (Narayan and Allen

2015; Shou et al. 2014), typical analyses are still reliant on untenable assumptions of time-

independence. The literature is, in fact, substantially silent on the subject of population

level connectivity inference using EEG data. In this work, we aim to solve this problem

and introduce a simple and interpretable technique for the analysis of brain synchronicity
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from a sample of EEG readings.

Inferring patterns of synchronous brain activity from a heterogeneous sample of EEG

measurements is indeed scientifically and methodologically challenging. While it is intu-

itively and statistically appealing to rely on readings from more than one individual in

order to highlight recurrent patterns of brain activation, pooling information across sub-

jects presents non-trivial technical problems. In particular, brain signals variation between

subjects is expected to be highly volatile, with little to no experimental control for inter-

subject synchronization. This observation defines a natural expectation for EEG response

patterns to be highly specific to the sensor-by-subject experimental unit, rendering clas-

sical assumptions for statistical models of pooled signals unlikely to be satisfied in naïve

applications.

Our approach is based on the definition of cortical maps, identifying areas of syn-

chronous neuronal activity specific to individual subjects and experimental epochs, in-

tended as time intervals. Synchronized cortical regions are estimated via a mixture model

of eigen-Laplacian vectors, obtained from appropriately constructed dissimilarity matrices.

As the experiment evolves in time, subject and time-specific cerebral maps form a longi-

tudinal ensemble. In this context, we posit that pooled information, within and between

subjects, is amenable to statistical analysis via a hierarchical model involving mixture prob-

abilities (Lock and Dunson 2013), which we call Multilevel Integrative Clustering (MIC).

Our framework supports both the definition of coordinated neuronal activity via a mix-

ture approach, and the formulation of probability statements describing inter-subject and

intra-subject variability via the familiar toolset of hierarchical modeling.

Our manuscript is organized as follows. In Section 2 we describe a general framework

for integrative clustering at the epoch, subject and population levels. In Section 3 we assess

the operative characteristics of our proposed approach through experiments on engineered
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data. In Section 4 we apply the proposed framework to the analysis of a resting-state EEG

study on typically developing (TD) children and children diagnosed with Autism Spectrum

Disorder (ASD). We conclude with a critical discussion and potential extensions in Section

5.

2 Multilevel Integrative Clustering (MIC)

In the following discussion we proceed to characterize coordinated neuronal activity via

time-varying pairwise distances between the time series associated with a set of EEG sen-

sors or electrodes. Our approach builds on Euan et al. (2015), who define synchronicity

in relation to pairwise similarities between the power spectral densities of electrode-level

signals. In §2.1, we describe a data meta-processing step aimed at obtaining stable time-

varying estimates of the EEG spectral profiles. In §2.2, instead of directly operating on

spectral densities, we model a set of related d-dimensional eigen-Laplacians via a multilevel

model for clustering areas of synchronous neuronal activation. Inferential and computa-

tional details are discussed in §2.3 and §2.4.

2.1 From EEG Signals to eigen-Laplacian Matrices

Let {Zτ , τ = 0,±1,±2, . . .} be a zero mean, weakly stationary time series, with auto-

covariance CZ(h) = E(Zτ , Zτ+h), (h = 0,±1,±2, . . .). The second order properties of the

series may be described by the spectral density function φZ(ω) of Zτ as in Brillinger (1981),

so that:

φZ(ω) = 1
2π

∞∑
τ=−∞

CZ(τ) exp(−iτω), ω ∈ [0, π].
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Intuitively, φZ(ω) may be interpreted as the variance contributed to the entire series by

oscillations in a narrow frequency band around ω ∈ [0, π]. The spectral analysis of neural

signals is an important workhorse in EEG studies, as frequency bands are thought to be

associated with specific cognitive, perceptive and cellular phenomena (Teplan 2002).

EEG time-series signals are usually collected in relation to a geodesic net of p elec-

trodes. Upon collection, raw signals are segmented into 1024ms time intervals for EEG

preprocessing, which typically includes bandpass filtering, electrode and segments rejec-

tion, and artifacts inspection. Similar pipelines are common for EEG analysis, which can

improve the SNR for spectral analysis (Bigdely-Shamlo et al. 2015).

Let i = 1, . . . , n index n study subjects, j = 1, . . . , p index p EEG electrodes, and s`i,

`i = 1, . . . , qi, index qi-1024ms segments retained after data quality control. The filtered

EEG data can be seen as an ensemble of time-series segments Yij(s`i), each composed of a

number of measurements reflective of analog-to-digital sampling rates, typically 256/512Hz.

We are interested in the time-dynamics of neuronal synchronicity through a notion of

time-varying spectral density via local stationarity (Florian and Pfurtscheller 1995; Rosen

et al. 2012). In our formulation we fully acknowledge common pre-processing practices,

which sees qualifying EEG segments being concatenated and re-referenced without time

labelling. This practice typically leads to latent gaps in the post-processed series, providing

a non-standard inferential framework for time-varying spectral estimation.

In order to obtain time-varying stable estimates of electrode-specific spectra, we operate

on a combined set of γ adjacent segments (s`i , . . . , s(`i+γ)), which we define as epochs.

Furthermore, adjacent epochs smooth over the original time domain by overlapping over a

δ ∈ (0, 1) fraction of segments. For each subject i, electrode j and epoch t ∈ {1, 2, . . . , Ti},

we obtain estimates φ̂ij(ω, t) of the epoch-specific spectral density by averaging segment

specific spectral density estimates obtained as in Ombao et al. (2001). The details of this
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procedure are reported in a supplementary document. Our approach stems from the idea

introduced by Hasenstab et al. (2015) in the context of time-domain analyses. The use of

overlapped sliding windows in the estimation of a time-dependent power spectral density

mediates between the need for stable estimates and the potential for non-stationarity over

the entire duration of the study. A study of inferential robustness to smoothing choices is

reported in §3.

Following the approach by Euan et al. (2015), desynchronicity is measured by total

variation distance (TVD) between a pair of spectral densities estimated at each epoch, so

that, for subject i, desynchronicity between electrode j and electrode k at epoch t is defined

as:

dit(φ̂ij, φ̂ik) = 1−
∫

min{φ̂ij(ω, t), φ̂ik(ω, t)} dω.

For each subject and epoch, these pairwise distances produce a p× p dissimilarity matrix

Di(t) =
[
dit(φ̂ij, φ̂ik)

]
, summarizing information on differential synchronicity between the

p electrodes from different cortical regions.

Before clustering, each matrix is represented in the eigen-space spanned by the largest

d eigenvectors of the graph-Laplacian associated with an affinity matrix Ai(t) = 1−Di(t).

More precisely, we take a graph cuts view of clustering and construct a normalized graph-

Laplacian Gi(t) = diag [Ai(t)1p]1/2 Ai(t) diag [Ai(t)1p]1/2, representing a weighted undi-

rected graph between EEG electrodes. In this setting, we follow (Ng et al. 2001) and

summarize the information in Gi(t) with its largest d eigenvectors Xi(t) ∈ Rp×d.

This strategy is intuitively motivated by the analysis of the isolated connected compo-

nents “ideal case”, in which Ajk(t) > 0 iff components j and k belong to the same cluster,

and Ajk(t) = 0 otherwise. In this simplified setting, considering K clusters, the first K

columns of Xi(t) have non-zero elements corresponding to connected components in Ai(t).

Row-wise, Xi(t) is piece-wise constant, suggesting K-means as a simple clustering rule to
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recover the connected components.

In reality, we work under the assumption that Gi(t) is a perturbation of the “ideal

case” and in §2.2 we exploit this intuition to develop model-based clustering of electrodes

at the epoch, subject and population level. Crucially, we avoid using a mixture model

of spectral densities; instead model-based clustering of EEG signals over potentially non-

convex manifolds is achieved using simpler location/scale-mixture models involving vectors

in Rd.

2.2 Hierarchical Mixture Priors and Multilevel Inference

Let Xij(t) ∈ Rd, be a d-dimensional eigen-Laplacian vector associated with the EEG signal

for subject i, (i = 1, 2, . . . , n); electrode j, (j = 1, 2, . . . , p); at epoch t = 1, 2, . . . , Ti. In

practice, we observe subject-specific epochs timi
, (mi = 1, 2, . . . , Ti). However, without loss

of generality and for ease of notation, we maintain the lighter epoch indexing t throughout

the manuscript.

Within subject, at epoch t, we conceptualize synchronous patterns of cortical activ-

ity, by clustering electrodes according to the following mixture model. Denoting with

f{· | ·} a generic density with respect the the Lebesgue measure on B
(
Rd
)
, we assume

that each eigen-Laplacian vector Xij(t) is sampled from a K-components mixture distri-

bution, indexed by parameters θik(t) and mixture probabilities pijk(t) ∈ [0, 1], such that:

Xij(t) ∼
K∑
k=1

pijk(t)f{Xij(t) | θik(t)},
K∑
k=1

pijk(t) = 1. (1)

We find it convenient to re-express this sampling model with the equivalent hierarchical
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representation, mixing over cluster labels Lij(t) ∈ {1, 2, . . . , K}, s.t.:

Xij(t) | Lij(t) = k ∼ f{Xij(t) | θik(t)},

Pr{Lij(t) = k} = pijk(t).
(2)

In this setting, echoing the clustering “ideal case” discussed in the previous section, we

exploit the connection between K-means and Gaussian mixtures and represent the sam-

pling density in (1) as a K-component location/scale mixture of Gaussian distributions.

Specifically, let µik(t) ∈ Rd be a d-dimensional mean vector, and σ2
ik(t) > 0 be a variance

parameter. We assume:

f{Xij(t) | θik(t)} = N{µik(t), σ2
ik(t)Id}. (3)

Given the sampling model in (2), our proposed approach for the integration of information

at the subject and population levels follows a conceptually simple strategy, building directly

on the setting of multilevel modeling (Gelman and Hill 2007). Crucially, we maintain that

mixture means and variances are independent across subjects and epochs, but posit that

cluster configurations, conceptualizing synchronicity of brain regions, are likely to adhere

to patterns of similarity within and between subjects.

We make this idea precise by specifying a hierarchical prior for the mixture probabilities,

pijk(t). This is achieved by defining conditionally exchangeable mixture configurations,

where epoch-level clusters Li(t) are obtained, a priori, as a stochastic perturbation of a

time stable subject-level clustering, indexed by Ci. Similarly, subject level configurations,

Ci, are obtained as a stochastic perturbation of a population-level cluster, indexed by S.

Let Cij ∈ {1, 2, . . . , K} be the cluster label for electrode j at the level of subject

i. Furthermore, let βi(t) ∈ [1/K, 1] be an adherence parameter, quantifying conformity
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between cluster assignments at epoch t and the subject-level label Ci = (Ci1, . . . , Cip)′. We

assume,

Pr{Lij(t) = k | cij} ≡ νc{k, cij, βi(t)} =

 βi(t) if cij = k

1−βi(t)
K−1 otherwise

, (4)

where the probability νc{·, ·, ·} is defined implicitly. This prior defines a probabilistic an-

chor, relating epoch level patterns of synchronicity at the subject level via simple and

interpretable parameters βi(t). The underlying assumption is that epoch-level patterns of

synchronicity are allowed to vary dynamically with t, but that variation in cluster config-

urations is anchored at the subject-level by a consensus pattern Ci.

A similar anchoring strategy is pursued at the population level. Specifically, let Sj ∈

{1, 2, . . . , K} be a population level cluster label for electrode j, and αi ∈ [1/K, 1] be an

adherence parameter, quantifying conformity between cluster assignments for subject i and

population level labels S = (S1, . . . , Sp)′. We assume,

Pr(Cij = k | sj) ≡ νs(k, sj, αi) =

 αi if sj = k

1−αi

K−1 otherwise
, (5)

where probability νs(·, ·, ·) is defined implicitly. The model is completed by specifying

population level prior proportions:

Pr(Sj = k) = πk, (k = 1, 2, . . . , K).

To build intuition about the nature of these priors, we note that, if αi = 1, we expect cluster

assignments for subject i to match exactly the population-level labels with probability 1.

In contrast, for αi approaching the value 1/K, electrode clustering configurations Ci, for

subject i, are drawn independently of the population level labels S. Similar considerations

11



apply to βi(t), as these paratmeters relate subject- and epoch-level cluster configurations.

This modeling strategy is loosely related to the idea of consensus clustering (Nguyen and

Caruana 2007), as applied to the integration of multi-source data. Our specific formulation

is a direct generalization to multilevel models of the approach taken by Lock and Dunson

(2013) to the integration of heterogeneous genomic data.

In our multilevel setting, the conditional posterior distribution for epoch-level cluster

labels Lij(t) is easily defined as:

Pr{Lij(t) = k | Xij(t), cij, sj,θi(t)} ∝ f{Xij(t) | Lij(t) = k,θi(t)}Pr{Lij(t) = k | cij}

= f{Xij(t) | θik(t)}νc{k, cij, βi(t)}.
(6)

This form highlights how inference on Lij(t) integrates information from both data Xi(t) at

epoch t, and subject-level clustering Ci (assumed stable across epochs), through a weighting

scheme proportional to the size of the adherence parameter βi(t).

At the subject-level, conditional posterior probabilities of cluster membership weigh

epoch level configurations Li(t) = (Li1(t), Li2(t), . . . , Lip(t))′ with population level configu-

rations S, through adherences αi as follows:

Pr{Cij = k | `ij(1), . . . , `ij(Ti), sj} ∝ Pr{`ij(1), . . . , `ij(Ti) | Cij = k}Pr{Cij = k | sj}

= ∏Ti
t=1 νc{`ij(t), k,βi} νs(k, cj, αi).

(7)

Finally, at the population level, overall consensus labels S are determined according to the

following conditional posterior probability:

Pr(Sj = k | c1j, . . . , cnj,Π,α) ∝ πk
n∏
i=1

νs(k, cij, αi). (8)
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2.3 Posterior Inference

We discuss posterior inference for the model in § 2.2 on the basis of MCMC samples from

the target distribution. Even though multilevel modeling of cluster labels is a somewhat

non-standard approach in a hierarchical setting, conditionally conjugate analysis is indeed

possible, resulting in significant simplifications in computation and inference.

Specifically, we consider a standard Dirichlet prior for population-level proportions, so

that Π = (π1, π2, . . . , πK)′ ∼ Dirichlet(η). Epoch-level means and variances, are chosen to

be conjugate to the graph Laplacian likelihood in (3). Letting θik(tim) = (µik(tim)′, σ2
k(tim))′,

we assume that θik(tim) ∼ NΓ−1(µ0, λ0, ξ01, ξ02). Finally, subject-level adherence param-

eters αi and epoch-level adherence parameters βi(tim) are assigned truncated Beta priors,

with left truncation at 1/K, so that:

αi ∼ TBeta(ai, bi, 1/K), and βi(t) ∼ TBeta(ci, di, 1/K).

A justification for these truncated Beta priors may be obtained by considering the form

of the marginal allocation probabilities at subject and epoch level. Given Π, subject-level

allocation probabilities are expressed as:

pik = Pr(Cij = k | πk) = πkαi + (1− πk)
1− αi
K − 1 .

Similarly, at the epoch level, we have:

Pr{Lij(t) = k | Π} =
∑
cij

Pr{Lij(t) = k | cij}Pr(cij | Π) = βi(t)pik + (1− pik)
1− βi(t)
K − 1 .

At both levels, an adherence value of 1/K corresponds to allocation probabilities, which
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are independent of higher-level clustering realizations.

A Gibbs sampler targeting the posterior distribution is easily devised, by iterating

through a transition sequence of full conditional posteriors. Specific details about the form

of the conditional posterior densities are reported in a supplementary document.

At each level of the model, the posterior probability associated with set of clustering

labels, for generality say p(C | Y), and the corresponding MCMC samples, summarize our

knowledge about potential partitions of cortical regions into synchronously activated areas.

Based on the information in this posterior, we may be interested in selecting a representative

partition, say C∗. Following Dahl (2006), we avoid using the naïve maximum a posteriori

(MAP) estimate and instead consider a point estimator based on least squares. More

precisely, consider an MCMC sample ofM p−dimensional label configurations, {C(r) : r =

1, 2, . . . ,M}. For each sample, we define a p×p adjacency matrixA
(
C(r)

)
=
[
A
(
C(r)

)
ij

]
=[

I(C(r)
i = C

(r)
j )

]
. Let Ā be an estimate of the posterior mean E[A | Y ]. The least square

estimate C∗ is selected from posterior realizations which minimize the following Frobenius

norm

C∗ = min
r=1,...,M

|| A
(
C(r)

)
− Ā ||2.

Uncertainty about clustering estimates can be obtained from the posterior distribution,

locally by quantifying pairwise relative frequencies of synchronization or globally via the

distribution of D = ||A(r) − Ā||2. Examining this quantity facilitates direct comparison

between subject and population level clustering results, allowing for low dimensional as-

sessment of cluster quality, population and individual-level variability.

Computation and inference for MIC is performed under the R environment. A readily

compiled package is available from the corresponding author’s GitHub page.
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2.4 Number of Clusters and Identifiability

Posterior inference as described in §2.3 presumes a known number of clustersK and a known

number of eigen-Laplacian components d. For given d, selection of the number of mixture

components, K, may be based on information criteria. In our simulation studies we find

that the Bayesian Information Criterion (BIC) (Schwarz et al. 1978) tends to outperform

more complicated indices. Our findings are in agreement with Steele and Raftery (2010),

who observed that BIC outperforms many other criteria including ICL, DIC, and AIC,

especially in the case of Gaussian mixture models.

The choice of d is less trivial, even though, some theoretical results point to the inclusion

of the first K eigenvectors as being sufficient in the task of separating K groups, (Ng et al.

2001). Guided by this general principle, we perform a joint search on the dimensionality

of the eigen-Laplacian d, and the number of clusters K simultaneously. More precisely,

within a specific dimension d, the optimal value of (K | d) is determined by the maximal

BIC. Starting from low dimensions, usually K = d = 2, we allow for up-transitions on

dimensionality, when K∗ | d > d. Stopping rules, aiming at achieving stable solutions

around the equality of d∗ = K∗ are determined heuristically. Details are reported in

Algorithm 1. Crucially, we avoid complete enumeration over all (d,K) combinations, and

propose a search strategy which is linear in the maximum number of clusters. Our empirical

studies in §3 show good performance and fast convergence to well behaved solutions.

For given d and K, simulation based procedures, including MCMC, are usually prone to

label switching (Celeux et al. 2000). In the setting of the model proposed in §2.2 the same

phenomenon may occur both within and between data levels. An important aspect of

simulation-based inference in multilevel clustering is, therefore, the enforcement of corre-

spondence between component labels of epochs, subjects and population level clustering.
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Algorithm 1 (d,K) Selection
1: Set d = 2, K = 2;
2: current_BIC = BIC(d,K);
3: while d ≤max_d do
4: while BIC(d,K + 1) ≥ current_BIC do
5: current_BIC = BIC(d,K + 1);
6: K = K + 1;
7: if d ≥ K then
8: break;
9: else

10: d = K, K = K − 1;
11: current_BIC = BIC(d,K);
12: return (d,K)

Possible remedies include artificial identifiability constraints, relabeling procedures, and

label invariant loss functions (Jasra et al. 2005). Within the multilevel setting, we proceed

with online class relabeling or alignment. More precisely, we operate within population

and subject-level indexes to find permutations of labels that maximize adherence with the

population level clustering. Specifically, all newly sampled labels are permuted to insure

maximal alignment with the population indexes. If A0 is an adjacency matrix as defined in

§2.3, representing the current state of the population level labels S, and Aq is an adjacency

matrix representing the current state of any other level clustering, optimal alignments are

obtained by maximizing tr (A′0Aq) over k! possible permutations.

3 Monte Carlo Studies

To investigate the operating characteristics of the proposed framework, we simulate EEG

signals with the desired oscillation features from a mixture of AR(2) processes. We seek

to evaluate: (1) the sensitivity of MIC results to differing sliding window size, γ, at a
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fixed overlapping percentage, δ, (2) the accuracy of estimated quantities for varying group

adherence, and (3) the performance of the model selection strategy proposed in Algorithm 1.

3.1 Simulation setup for spectrally specified EEGs

We make an effort to tailor the simulation of engineered time series in a way that mimics

a sample of EEG readings typically seen in practice. To this end, we note that EEGs are

often expected to feature oscillation patterns at different frequency bands: delta (0.5-4 Hz),

theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-50 Hz). Waveforms that

are subdivided into bandwidths are thought to correspond to region-related activities on

the cortex, both normally and pathologically. Our strategy, aims to simulate this spectral

distinguishability by allowing each spectrum to exhibit concentrated (peak-shaped) energy

in at most two frequency bands. Given a family of spectra, EEG time-series are simulated

from a linear mixture of second order auto-regressive AR(2) processes. Details about

the data generating mechanism are reported in a supplementary document. Furthermore,

we represent potential non-stationarity by generating time-series as realizations from a

piecewise stationary process, alternating randomly between two spectral configurations: a

main-state (Fig 1(a)), and an off -state shown in Fig 1(b). The main-state has a time span

tmain ∼ exp(λ), with λ = .05s, followed by the off -state which has a time span toff ∼ N(5, 1).

Fig 1 (c) depicts this piecewise-stationarity for one electrode from the simulated samples.

Cluster labels are generated as follows:

1. At the population level, we structure cluster labels Sj, (j = 1, . . . , p = 100) to

partition 100 sensors into 4 balanced clusters.

2. Draw α from a Uniform(0.5, 1) distribution. For i = 1, . . . , 9, and j = 1, . . . , 100;

generate subject level labels Cij ∈ {1, 2, 3, 4} with probabilities Pr(Cij = Sj) = α and
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Pr(Cij 6= Sj) = 1− α.

3. Given Cij, generate piecewise stationary processes for 50 seconds, according to the

main-state / off-state mechanism described previously.

Our Monte Carlo study is based on 100 datasets. The number of subjects, electrodes and

segments were chosen to mimic the sampling structure in our case study. Note that in this

setting, knowledge of the timing of on-state, off-state would result in perfect agreement

of cluster labels within subject. Our simulation is therefore engineered to detect specific

sensitivity to alternative metapreprocessing strategies.

3.2 Operating characteristics

In §2.1 we introduced a pre-processing step to smooth over the duration of the EEG record-

ings in order to obtain time-stable estimates of spectral densities. Because the time-series

literature is substantially silent on the estimation of time-varying spectra in series with

latent gaps, we set out to assess robustness of our procedure to alternative meta-processing

strategies. In particular, we assess sensitivity of window size, γ ∈ {4, 6, 8, 10}, at a fixed

δ = 0.5 fraction of overlap between epochs.

In all 100 realizations, Algorithm 1 successfully selected the correct number of clusters

(K = 4). Search paths differed by length across simulations. We observe two possibilities

in our data: a searching path of length 7 that directly jumps to d = 4 after K = 4 is

selected optimally at d = 2; and another path of length 10, which explores d = 2, 3 and 4

sequentially before d and K coincide at 4, Fig 2(a). This confirms our intuition that the

complexity of the proposed search strategy is O(p), as opposed to a complete enumeration

strategy, which would require max(d) × p runs. We also find that results are relatively
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robust in terms of the fit, estimated adherence parameters α, and clustering accuracy.

Detailed results are provided in a supplementary document.

We investigate the performance of MIC under varying degrees of subject-specific vari-

ability, by examining estimates of adherence between subject and population-level cluster-

ing. Fig 2(b) depicts posterior medians α̂i = E(αi | X) and their 95% credible intervals,

based on the 2.5 and 97.5 percentiles, against the true α’s. Posterior estimates are gen-

erally close to their true values, and over 99% of the credible intervals cover the true α’s.

For clarity, in both panels we report findings for γ = 8, as our findings indicate very low

sensitivity to metapreprocessing variations.

Clustering accuracy, defined as the percentage of correctly classified electrodes, is as-

sessed both at the subject and population level, Fig 2(c). Estimated subject-level clusters

tend to be recovered accurately ( > 90%), regardless of α values. As expected, accuracy in

the recovery of population level patterns relies on the magnitude of subject-level adherence

to the population, with accuracy approaching 100% as α→ 1.

We investigate the relationship between subject-level and population-level clustering

variance estimates as a function of adherence and meta-processing strategy, Fig 2(d). Our

summaries focus on a measure of global variance D, as defined in §2.3. More precisely,

denoting the clustering variance by DS at the population level, and by DCi
at the level of

subject i, we consider the average difference in clustering variance, defined as:

∆D = E(DS | X)− 1
n

∑
i

E(DCi
| X).

As the adherence simulation truth approaches a level of complete agreement (α → 1),

the average difference in clustering variance ∆D converges to zero, indicating that average

subject-level and population-level cluster variances reach similar magnitudes over strongly
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adherent clustering patterns. Finally, because variance estimates are likely to be vulner-

able to alternative pre-processing strategies, we investigate sensitivity to changes in the

smoothing bandwidth, γ. In our simulation studies, clustering variance estimates tend to

be robust to reasonable alternative smoothing patterns, Fig 2(d). This feature is likely to

be useful in many applications, where it is usually hard to develop meta-processing gold

standards.

4 A Case Study on Resting State Brain Activity

Our study originates from an experiment aimed at understanding children’s neurocognitive

development. The study was carried out in the department of Psychiatry at UCLA and aims

to cluster spectrally synchronized EEG signals recorded during resting-state. We provide

technical background information about the study design and measurement structure in a

web-based supplement. Here we investigate neuronal synchronicity in a group of typically

developing (TD) children. We contrast group inference for the TD cohort against patterns

of synchronicity in a cohort of children diagnosed with Autism Spectrum Disorder (ASD) in

§ 4.1. To our knowledge this is the first attempt at population level-inference for neuronal

synchronicity in the setting of EEG studies.

4.1 MIC Analysis of TD and ASD Children

Autism Spectrum Disorder (ASD) describes a neurodevelopmental condition, character-

ized by social communication deficits, presence of repetitive behaviors, and/or restricted

interest. Clinical presentation is highly variable, with heterogeneity in relation to medical

conditions, behavioral challenges, and degree of intellectual impairments (Parr et al. 2011).

Such behavioral and neurophysiological heterogeneity poses serious challenges to the study
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of the neurophysiological substrate. In this respect, resting-state EEG is a particularly

advantageous, and therefore popular, brain imaging choice (Wang et al. 2013).

Here we perform a comparative study between age-matched TD and ASD cohorts, under

the framework of Multilevel Integrative Clustering (MIC). The study includes 9 participants

(29-60 months of age) from the TD group, and 10 participants (27-99 months of age) from

the ASD group. During the experiment, EEG was recorded at 250Hz using 129 channel

geodesic nets with Ag/AgCl electrodes. Recordings took place while participants watched

videos of bubbles and other non-social images on a computer monitor for 2 to 6 minutes.

Starting with the TD cohort, our analysis follows the scheme detailed in § 2.1 and con-

siders epochs composed of γ = 6 contiguous 1024ms segments, allowing for a δ = 0.5 overlap

between epochs. This choice was based on both substantive and empirical considerations.

In particular, we consider a smoothing strategy that guarantees good average adherence.

A sensitivity analysis to differential smoothing choices was carried out with respect to both

the epoch length and the percent of overlap. For fixed K = d = 5 we observe only small

changes in the estimated adherence parameters α̂i = E(αi | X) (Figure 3). Furthermore,

the search strategy outlined in Algorithm 1 selects K = 5 clusters in all but one of the

smoothing configurations, where K is taken to be 6.

For the TD group, Figure 4 illustrates the full depth of multilevel inferences available

from the MIC analysis. More precisely, cluster labels, representing patterns of spectrally

synchronized neuronal activity, are projected onto a scalp map at the population, subject,

and epoch levels. The first row represents the population-level cluster (1.a), together with

two subject-level maps in (1b) [worst population adherence] and (1c) [best population

adherence]. Variability within-subject is illustrated in the second row, where we compare

subject-level inference for a specific subject with subject’s epoch estimates. Specifically,

(2b) reports the worst adherence epoch and (2c) reports the best. At the population level,
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we identify 5 spectrally synchronized areas, corresponding to the following cortical regions:

frontal, left parietal and left temporal, top-right parietal and right temporal, right-posterior

and right parietal, left posterior and occipital.

An informal comparison between TD and ASD groups is carried out in Figure 5. At

the population level, the least square estimates of cortical clusters are remarkably similar

between the two cohorts, with the exception of an asymmetrical partition on the posterior

and occipital regions, where a small cluster was isolated from the rest and leaning towards

the left hemisphere for ASD, but towards the right hemisphere for TD.

Further, we examine local and global sources of cluster variability in both groups. At the

electrode level, we report the entropy associated with posterior cluster label probabilities

in Figure 5: (1.b) for ASD and (2.b) for TD.

Perfect partitions, e.g. an electrode assigned to cluster k with probability one, yields

0 entropy, whereas uniform assignment probabilities yield entropy equal to 1. We observe

that the mid-, right-frontal and mid posterior regions are the most stable regions for both

groups. Compared to the ASD group, the TD cohort exhibits more stable regions, for

example, in the left-temporal (speech and language related), left-central, as well as some

regions in the posterior and occipital areas of the cortex. The high entropy observed

on the left-hemisphere among ASD children coincides with the abnormal left-hemispheric

asymmetry findings in the literature on individuals with ASD (Stroganova et al. 2007,

Burnette et al. 2011).

We gain more insight into the nature of variability of synchronized neuronal patterns by

examining global sources of cluster variance at the subject-specific and population levels.

More precisely we consider the full posterior distribution of the Frobenius norm of differ-

ential affinity, between individual draws and the least square adjacency (§ 2.3). Figures 5,

(1.c) for ASD and (2.d) for TD, highlight how in the TD group, subject-level clusters com-
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bine to reduce overall variance at the population level. In ASD children we observe higher

global heterogeneity, with subject-level variability spreading over a wider range, when com-

pared to the TD cohort. This observation echoes some of our previous findings in EEG

studies of implicit-learning in ASD and TD children (Hasenstab et al. 2015; Hasenstab,

Sugar, Telesca, Jeste and Senturk 2016; Hasenstab, Telesca, Sugar, DiStefano and Şentürk

2016).

5 Discussion

This paper proposes what to our knowledge is the first comprehensive statistical framework

for population level inference of spectrally synchronized brain activity from a heterogeneous

sample of EEG readings. A hierarchical model allows for the estimation of population

level synchronicity patterns, with full consideration of intra- and inter-subjects variability.

Crucially, information is borrowed at the latent level of cluster membership indicators.

Dependent mixtures are based on a hierarchical Dirichlet prior, indexed by interpretable

and informative parameters, which measure cluster adherence at all levels of the hierarchy.

Our approach melds non-parametric dimension reduction and fully model-based tech-

niques through a graph-partitioning representation of clustering. This two-stage approach

is likely to be useful in several experimental settings involving EEG measurements, where

different scientific goals and different data meta-processing concerns may require substan-

tial subject-matter input in the definition of similarity between cortical regions.

In our study we operate within the context of spectral synchronicity. It is however

important to point out that alternative measures of neuronal affinity, for example partial

correlation, coherence, and mutual information, are also amenable to MIC analysis. In

this sense, the proposed framework is quite general and can be adapted to handle alterna-
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tive neuroimaging data platforms, such as functional Magnetic Resonance Imaging (fMRI).

This consideration also applies, with possible minor adjustments, to the integration of

multiple imaging modalities. This flexibility traces back to the hierarchical prior, which

relates cluster labels rather than cluster-specific parameters (location and scale for exam-

ple), so that complex data alignment issues are resolved within a higher level of modeling

abstraction. Clearly, technical preprocessing pipelines may differ substantially between and

within modalities. Therefore, important analytic details should be thoughtfully engineered

in practice.

Our simulation results in § 3.2, show that inference is robust to reasonable variants in the

meta-processing strategies. In our experiments, simple information criteria like BIC tend do

do well in the selection of the number of clusters K, when combined with a search over the

number of eigen-Laplacians d. Our model, of course, offers a very simple representation of

cluster variability within- and between-subjects. Therefore, modeling refinements are likely

needed in applications where one can expect a strong dynamic evolution of synchronicity

patterns; such as the setting of stimulus-based EEG studies. Additionally, potentially

useful extensions include a formal treatment of group comparison and regression.
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(a) Main-state (b) Off-state (c) Spectral realization

Figure 1: Simulated spectral configurations: (a) main-state spectral densities. (b) off-state
spectral densities. (c) Segment-by-segment normalized power spectral densities for a piecewise
stationary process simulated from cluster 4.
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(a) (b)

(c) (d)

Figure 2: Simulation results: (a) Path-length for the search in Algorithm 1 for varying smooth-
ing configurations in γ. (b) Estimated adherence parameters α̂’s and 95% credible intervals
against the data generating truth. (c) Clustering accuracy against generating α’s at the subject-
and population-level. (d) Average difference in clustering variance against true α’s.
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(a) (b)

Figure 3: Sensitivity to smoothing: (a) Estimated adherence parameters α̂i and their average
for varying smoothing configurations γ ∈ {4, 6, 8, 10, 12}, δ = γ/2. (b) Estimated adherence
parameters α̂i and their average for varying smoothing configurations δ ∈ {0, 1, . . . , 5}, γ = 6.
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(1.a) TD Population (1.b) TD subject 2 (1.c) TD subject 5

(2.a) TD subject 8 (2.b) TD subject 8 - Epoch 6 (2.c) TD subject 8 - Epoch 15

Figure 4: TD cohort synchronicity: (1.a) Population-level posterior least square cluster. (1.b)
Individual map for subject 2 (α̂i = .73). (1.c) Individiual map for subject 2 (α̂i = .95). (2.a).
Individual map for subject 8. (2.b) Clustering for subject 8, epoch 6 (β̂i(t) = .48). (2.c) Clustering
for subject 8, epoch 15 (β̂i(t) = .99).
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(1.a) ASD Population (1.b) ASD entropy (1.c) ASD cluster variance

(2.a) TD Population (2.b) TD entropy (2.c) TD cluster variance

Figure 5: Group contrasts, ASD (1) vs TD (2): (1.a) TD-cohort posterior least square
synchronicity. (1.b) TD-cohort normalized posterior entropy. (1.c) TD-cohort global cluster vari-
ance at the subject- and population-level. (2.a) ASD-cohort posterior least square synchronicity.
(2.b) ASD-cohort normalized posterior entropy. (2.c) ASD-cohort global cluster variance at the
subject- and population-level.
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