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Evaluating temporal controls on greenhouse gas (GHG) fluxes in 
an Arctic tundra environment: An entropy-based approach

Bhavna Aroraa Haruko M. Wainwrighta Dipankar Dwivedia Lydia J.S. Vaughna 
John B. Curtisb Margaret S. Torna Baptiste Dafflona Susan S. Hubbarda

Abstract

There is significant spatial and temporal variability associated with 
greenhouse gas (GHG) fluxes in high-latitude Arctic tundra environments. 
The objectives of this study are to investigate temporal variability in CO2 and 
CH4 fluxes at Barrow, AK and to determine the factors causing this variability 
using a novel entropy-based classification scheme. In particular, we analyzed
which geomorphic, soil, vegetation and climatic properties most explained 
the variability in GHG fluxes (opaque chamber measurements) during the 
growing season over three successive years. Results indicate that multi-year 
variability in CO2 fluxes was primarily associated with soil temperature 
variability as well as vegetation dynamicsduring the early and late growing 
season. Temporal variability in CH4 fluxes was primarily associated with 
changes in vegetation during the growing season and its interactions with 
primary controls like seasonal thaw. Polygonal ground features, which are 
common to Arctic regions, also demonstrated significant multi-year 
variability in GHG fluxes. Our results can be used to prioritize field sampling 
strategies, with an emphasis on measurements collected at locations and 
times that explain the most variability in GHG fluxes. For example, we found 
that sampling primary environmental controls at the centers of high centered
polygons in the month of September (when freeze-back period begins) can 
provide significant constraints on GHG flux variability – a requirement for 
accurately predicting future changes to GHG fluxes. Overall, entropy results 
document the impact of changing environmental conditions (e.g., warming, 
growing season length) on GHG fluxes, thus providing clues concerning the 
manner in which ecosystem properties may be shifted regionally in a future 
climate.
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1. Introduction

Identifying key factors causing temporal variability in CO2 and CH4 fluxes has 
been the subject of considerable research over the past two decades (e.g., 
Arora et al., 2016b; Bousquet et al., 2006; Janssens et al., 2001; Schimel et 
al., 2001). Temporal variability in carbon fluxes has been linked to 
environmental factors such as snowmelt timing, growing season dynamics, 
water table variations and temperature fluctuations (e.g., Arora et al., 2013; 
Grant et al., 2017; Yabusaki et al., 2017). In particular, Zona et al. (2009) 
showed that CH4 fluxes in the growing season were strongly correlated with 
soil temperature and non-linearly correlated with water table depth. Harper 
et al. (2005) showed that decreasing the amount and increasing the timing 
between rainfall events decreased CO2 fluxes over four growing seasons 
(1998–2001). Changes in plant productivity have also been correlated with 
seasonal and annual variability in carbon fluxes (Janssens et al., 2001; Street
et al., 2007).

While several drivers of temporal variability in GHG fluxes have been 
identified, the relationship between GHG fluxes and these drivers shows 
considerable variability in space and time, thereby contributing to significant 
uncertainties in estimating future changes to landscape-level carbon 
budgets. For example, Friborg et al. (2000) indicated that CH4 fluxes were 
related to soil temperature and water table in the late part of the summer, 
whereas the thickness of the thaw layer was the most important control in 
the early part of the season. Similarly, Grogan and Chapin III (1999) 
indicated that climate (temperature) had strong effects on belowground CO2 
release in both summer and winter seasons while the type of vegetation only
impacted summer CO2 efflux. Contrary to these findings, a separate study by
Bubier et al. (2003) suggested that the effect of vegetation type on growing 
season CO2efflux varied significantly between wet and dry years. Together, 



these studies suggest that different environmental factors can become 
important under different spatio-temporal settings. Moreover, recent studies 
have shown that temporal variability in environmental constraints may itself 
be unknown or masked by other variables. For example, Malhotra and Roulet
(2015) showed that temperature sensitivity of CH4 increased with increasing 
thaw, but this trend was not found to be consistent and suggested 
confounding effects of substrate or water limitation on the apparent 
temperature sensitivity. It is thus important to understand the mechanistic 
and site-specific nature of relationships between greenhouse gas fluxes and 
environmental factors, and quantitatively attribute temporal variability to 
specific factors at a given site.

Understanding the variable nature of relationships between GHG fluxes and 
environmental factors is particularly important in Arctic tundra environments
because of the vast amount of soil carbon stored in these regions and the 
potential of these regions to convert from a global carbon sink to a source 
under warmer conditions (Billings et al., 1982; Oechel et al., 2000; Sistla et 
al., 2013). These relationships can be especially complex and difficult to 
interpret in Arctic environments because shifts in the timing of snowmelt and
plant phenology can strongly influence CH4 and CO2 fluxes. For example, 
Mastepanov et al. (2013) showed that the differences in growing season CH4 
fluxes over 2006–2010 could not be explained by corresponding changes in 
driving factors like soil temperature or moisture. Instead, they found 
increases in CH4 fluxes to be related to the date of snowmelt and 
recommended using the first day of snowmelt as a proxy for the start of the 
growing season. Raz-Yaseef et al. (2017) linked spring observations of 
carbon fluxes at a site in Barrow, Alaska (the same site as this study) to the 
delayed release of biogenic gas production from the previous fall season. 
Other studies have suggested that the onset and length of the growing 
season may be shifted by several days in higher latitudes, which can explain 
some of the variability observed in greenhouse gas fluxes in these regions 
(Liston et al., 2002; Stow et al., 2004; Tucker et al., 2001).

Temporal variability in GHG fluxes and their relationship to different drivers 
can be described by simple descriptive statistics (e.g., range, standard 
deviation, coefficient of variation) or advanced statistical methods (e.g., 
principal component analysis, K-means clustering) (e.g., Arora and Mohanty, 
2017; Dwivedi et al., 2013, Dwivedi et al., 2016). However, simple 
descriptive statistics have limited use as different environmental factors may
demonstrate a number of identical descriptive statistical properties (Matejka 
and Fitzmaurice, 2017). Moreover, other statistical methods (e.g., correlation
analysis, K-means clustering, principal components analysis) typically work 
under the assumptions of normality or describe linear relationships between 
variables. Investigating the degree to which environmental factors can 
impact GHG fluxes in Arctic tundra environments thus requires an integrated
approach that can take into account the temporal shifts and complex spatial 
interactions between predictor and response variables. In this context, 



entropy methods have proven to be useful in determining the relative 
contributions of hydrologic interactions, vegetation structure, spatial 
zonation and other environmental factors to system dynamics (Arora et al., 
2016a; Brunsell and Wilson, 2013; Dwivedi and Mohanty, 2016; Ruddell et 
al., 2013). Moreover, considering the fact that environmental data are 
naturally stochastic and nonlinear (Reimann and Filzmoser, 2000), we chose 
to employ trans-information – a nonlinear entropy technique – to extract 
dependencies between GHG fluxes and environmental variables. Trans-
information is defined as a measure of the amount of information that one 
random variable (e.g., a primary environmental control like soil temperature)
contains or explains about another random variable (e.g., GHG fluxes). The 
main advantage of using trans-information over other techniques is that it is 
a non-parametric approach that can integrate complex, multivariate datasets
without making assumptions regarding the nature of functional 
dependencies implicit in these datasets (Arora et al., 2016a; Costa et al., 
2002). Identifying these dependencies can be particularly useful for 
developing upscaling strategies, closing the gap with field observations as 
well as improving the representation of soil carbon stocks and their response
to climate change in community land models. In addition, several studies 
have emphasized the power and strength of trans-information and entropy-
based analyses in comparison to other commonly-used statistical 
approaches such as correlation analysis and classification methods (e.g., 
Battiti, 1994; Mogheir et al., 2004; Strehl et al., 2000). Considering these 
advantages, we use a novel classification scheme (described in more detail 
below) that uses trans-information to disentangle the complex relationships 
between environmental variables and GHG fluxes under different spatio-
temporal settings.

The objectives of this study are to characterize temporal variability in CO2 
and CH4 fluxes and investigate possible controls of such variations at a high-
Arctic location near Barrow, Alaska using a novel entropy-based classification
scheme. To reach these objectives, we chose a set of topographic locations 
across the site where we have measurements of soil, vegetation and climate 
parameters as well as greenhouse gas fluxes during three growing seasons 
(2012–2014). The remainder of this paper is organized as follows. Section 
2describes the Barrow field site, lists a set of potential factors that may 
impact GHG flux variations based on previous site investigations, and 
documents field datasets and observations available for the entropy analysis.
Details of the entropy-based classification scheme are provided in Section 3. 
Section 4 presents the entropy analysis results for CO2and CH4 fluxes and an 
example for extending the use of the classification scheme to other variables
of interest. A summary of the important findings is provided in Section 5.

2. Study site and datasets

2.1. Site description



Our study site is located within the Barrow Environmental Observatory (BEO) 
(71.3°N, 156.61°E) in Arctic Alaska (Fig. 1a). The study site in Barrow, AK has
been the subject of intensive investigation of climate change impacts on 
ecosystem processes as part of the Department of Energy's (DOE) Next 
Generation Ecosystem Experiments (NGEE-Arctic) project. Although 
comprehensive descriptions of the NGEE-Arctic “Barrow” site can be found 
elsewhere (Hubbard et al., 2013; Liljedahl et al., 2012, Liljedahl et al., 2011), 
we will briefly summarize the environmental conditions of the site for 
completeness.

Fig. 1. a) Location of Barrow, Alaska, USA; b) LiDAR-based elevation map showing the locations of the 
intensive site 0 and site 1 transects (solid lines), A–D plots (open circles) as well as the automatic 
chamber stations (closed circles); and c) Schematic of different polygon types and features (modified 
from Wainwright et al., 2015). Details of the data collection efforts are presented in more detail 
elsewhere (Hubbard et al., 2013; Torn et al., 2013).

The landscape of the Barrow Peninsula is characterized by thaw lakes, 
drained thaw-lake basins (DTLB) and ice-wedge polygonal tundra (Hinkel and
Nelson, 2003; Lara et al., 2015). The region has mostly continuous 
permafrost with thickness greater than 350 m at some locations (Sellman et 
al., 1975), and thaw depth varying between 20 and 70 cm (Shiklomanov et 
al., 2010). According to the DTLB classification by Hinkel et al. (2003), the 
majority of the Barrow site is located in the interstitial tundra, where ice-
wedge polygons are prevalent. Ice-wedge polygons are initiated by the frost 
cracks of the ground due to extreme cold temperature. The growth of ice 
within the cracks creates wedge-shaped ice in the ground after repeated 
infiltration of water and freeze-expansion processes (Leffingwell, 1915; 
MacKay, 2000). Depending on the growth or degradation state of the ice 



wedges, the polygons can be characterized as high-, flat- or low-centered 
(Fig. 1c) (MacKay, 2000). In particular, low-centered polygons have low, wet 
centers bordered by well-defined, topographically higher and dryer edges; 
high-centered polygons have topographically higher, well-drained centers 
and no clearly raised edges; while flat-centered polygons have an 
intermediate relief between high- and low-centered polygons (Vaughn et al., 
2016).

Climate at the Barrow site is generally representative of wet coastal tundra 
regions. The mean annual air temperature and annual precipitation (1901–
2007) at the site are −12 °C and 113.5 mm, respectively (Hubbard et al., 
2013). Precipitation occurs in the form of rainfall between June and 
September, with a maximum in August. Snowmelt usually occurs in late May 
to early June and freeze-up occurs in late September to October (Sturtevant 
et al., 2012). Vegetation at the site consists primarily of mosses, lichens and 
vascular plants such as Carex aquatilis and Eriophorum sp.

2.2. Factors regulating GHG fluxes at the site

Multiple factors potentially contribute to the temporal variability observed in 
GHG fluxes at the Barrow Site. Based on knowledge from previous 
investigations at the site, this study considers the following factors:

• Geomorphology: The geomorphology of the Barrow site is dominated by 
ice-wedge polygons, as indicated above. Several studies have shown that 
polygon-based microtopography can have a significant impact on water 
distribution and storage across the Arctic landscape (Engstrom et al., 2005; 
Helbig et al., 2013; Liljedahl et al., 2012; Minke et al., 2009). In particular, 
high-centered polygons represent a well-drained laterally-connected trough 
network (Liljedahl et al., 2016). In contrast, low-centered polygons decrease 
lateral connectivity and release storage water later in the summer as soil 
thaw progresses and opens new subsurface flow paths. These differences in 
microtopography and lateral drainage at the landscape-level can in turn 
influence plant distribution, microbial respiration, soil redox conditions, and 
consequently GHG fluxes. For example, Newman et al. (2015) documented 
significant variability in geochemical concentrations such as Fe2+, NO3

−, and 
PO4

3−across polygon types and features that can potentially impact GHG 
dynamics at the site. In addition, investigations conducted at Barrow have 
highlighted the co-variability of below-ground properties such as active layer
depth, salinity distribution and permafrost conditions with polygon-based 
microtopography (Dafflon et al., 2016; Gangodagamage et al., 2014; 
Hubbard et al., 2013). Past investigations have also taken advantage of the 
unique property suites associated with different polygon types to identify 
‘functional zones’ and their relationship to effective carbon flux (Wainwright 
et al., 2015). Because of the documented influence of geomorphic features 
on properties that influence carbon cycling at the Barrow site, we consider 
polygon types (low, high, or flat) and features (polygon center, edge, or 



trough) as factors that also influence the GHG temporal fluxes in our 
entropy-based analysis.

• Vegetation: At the Barrow site, lower elevation areas (with higher water 
table) are occupied by vascular plants, particularly the graminoids Carex 
aquatilis and Eriophorum sp. (Sturtevant et al., 2012; Zona et al., 2011). In 
contrast, mosses (mainly Sphagnum sp.) and lichens dominate the higher 
elevation areas, with lower water table. Note that graminoids are known for 
transporting CH4 via roots and stems such that CH4 emissions have been 
correlated with vascular plant cover, sedgeheight and root density (Davidson
et al., 2016; Sturtevant et al., 2012; von Fischer et al., 2010). Standing water
is frequently observed at the site, which can confer a competitive advantage
to graminoid productivity as compared to mosses (Grant et al., 2017) and 
thereby further increase CH4 emissions. Ebullitive and diffusive fluxes from 
standing water can also contribute to methane emissions (Bastviken et al., 
2004; Walter et al., 2007). In contrast, CO2 emissions are typically expected 
to decrease in inundated conditions, but the response also depends on thaw 
conditions, hydrological connectivity and plant biomass (Grant et al., 2017; 
Mauritz et al., 2017).

• Soil characteristics: At Barrow, Oberbauer et al. (2007) showed that a 
standard warming treatment (rise in mean air temperature by 1–2 °C) using 
small open chambers increased net CO2 uptake in wet regions but increased 
losses from dry regions. Model simulations further indicated that CO2 and 
CH4 emissions are strongly controlled by permafrost thaw and soil moisture 
gradients (Lawrence et al., 2015). We therefore considered several soil 
physical and thermal properties as potential controls on GHG fluxes.

• Climatic conditions: Climate has long been recognized as an important 
driver of GHG fluxes. For the Barrow site, several lines of evidence indicate 
that the mean annual air temperatures have increased by approximately 
3 °C since 1950 (Chapin et al., 2005; IPCC, 2013; Lachenbruch and Marshall, 
1986). Warmer air temperatures in Barrow may act to increase the thickness
of soil that thaws on an annual basis, and the potential for further GHG 
release into the atmosphere (Atchley et al., 2016; Harp et al., 2016; Oechel 
et al., 1995). Moreover, studies have used temperature records and satellite 
data (normalized difference vegetation index) to suggest the lengthening of 
the growing season in high latitude Arctic regions (Myneni et al., 1997; 
Sharratt, 1992). More recently, Zona et al. (2016) suggested that soil 
temperatures were poised near 0 °C for more than 90 days in wetter regions 
of Barrow resulting in strong CH4 emissions beyond the conventional growing
season.

• Temporal dynamics: GHG fluxes are likely to be highly heterogeneous and 
dependent on many factors at the Barrow site. The goal of this study is to 
understand temporal variability in GHG fluxes in the presence of interactions
and feedbacks amongst the many primary controls. For example, a recent 
study by Dafflon et al. (2017) has documented the increase in correlation 



between vegetation greenness and thaw layer electrical measurements (a 
proxy for soil moisture and temperature) over the growing season, 
highlighting the covariability of vegetation and soil properties. The strength 
of this correlation was also found to be annually variable.

While Barrow has been the subject of several previous site investigations, 
these studies have focused mostly on a single year of GHG dynamics and/or 
analyzed topographic positions as the dominant control on variability. 
Although Dafflon et al. (2017) incorporated two years of autonomous 
measurements from electrical resistivity tomography, vegetation indices 
from a few weeks of optical camera operation, and other autonomous and 
manual point measurements, they did not include GHG flux dynamics in their
study. Instead, their work was focused on quantifying the covariability of 
active layer depth, soil properties and vegetation dynamics using 
geophysical monitoring techniques. Our study explicitly investigates GHG 
variability across three successive growing seasons (2012–14) and evaluates
multiple factors controlling this variability including, but not limited to, 
polygon geomorphology. Specifically, we consider how geomorphic, soil, 
vegetation and climate properties or dynamics influence CO2 and CH4 
temporal variability through the growing seasons (intra-annual) and across 
years (inter-annual).

2.3. Datasets

Data from two transects and four representative plots were chosen for 
analysis in this study (Fig. 1b). These locations were chosen based on the 
availability of temporally-resolved data and their spatial coverage of different
geomorphic features, soil and vegetation characteristics (Table 1). In 
particular, surface fluxes of CO2 and CH4 were available for 2012 and 2013 
from four 160 m × 160 m plots (A–D). The sampling scheme was organized as
follows: four chambers were used within each plot, covering all three polygon
features (center, edge and trough) and different polygon types as 
represented by plots A-D, resulting in a total of forty eight (= 4 × 3 × 4) 
chambers. In particular, plot A lies within a low-centered polygon, plot B 
within a high-centered polygon and plot C within a flat-centered polygon, 
while plot D lies within a transitional polygon (i.e., transitional between the 
drained thaw-lake basins and a low-centered polygon) (Herndon et al., 2015; 
Lara et al., 2015). Additionally, to capture temporal variability in CO2 and CH4

fluxes, data were available for 2014 from two 500 m transects that traverse a
broad range of polygon types and features (Hubbard et al., 2013; Wainwright
et al., 2016). Twenty three chambers covering different polygon types and 
features were sampled across each transect, resulting in a total of forty six 
chambers. Note that for sampling any polygon that lacked a clear edge 
delineation (e.g., high-centered polygon), we placed the chamber at the 
upper limit of the slope between the raised center and the trough (Fig. 1c). 
While a possible bias in the analysis of inter-annual variability is that 
sampling locations varied from 2012 and 2013 to 2014, the implementation 
of the entropy classification scheme (described in more detail below) is such 



that it considers the distribution of these flux measurements (histograms) 
rather than absolute values and can thereby overcome this limitation of the 
sampling design. Moreover, concurrent measurements of several 
environmental variables including soil moisture (reported as % saturation), 
soil temperature and information on the presence or absence of vegetation 
mats (moss or litter on the ground surface) were also collected along the two
transects and four representative plots (Table 1). Based on these available 
measurements, we selected variables to represent primary controls on 
carbon fluxes at the site (Table 2).
Table 1. Details of the field measurements used for the entropy analysis.

Locatio
n

Time of
measureme

nt

Measured variables Minimum/maximum
number of data

points available for
analysis

Plots A–
D

June 2012–
Sept 2012

CO2 flux, CH4 flux, soil temperature (5 and 
10 cm), soil moisture (5 cm depth), organic 
matter depth, thaw depth

152–155

Plots A–
D

June 2013–
Oct 2013

CO2 flux, CH4 flux, soil temperature (5, 10 and 
20 cm), air temperature, soil moisture (10 and 
20 cm), surface layer type, standing water 
depth

327–344

Site 0
and site

1

July 2014–
Sept 2014

CO2 flux, CH4 flux, soil temperature (5 and 
10 cm), air temperature, soil moisture (10 and 
20 cm), surface layer type, standing water 
depth, thaw depth

108–113

Table 2. Measured variables were selected to represent primary controls that may affect carbon fluxes 
at the Barrow site.

Primary controls on CO2 and CH4

fluxes
Selected variables for entropy-based analysis

Geomorphology Polygon type, polygon feature, polygon type x feature

Time Intra-annual variability, Inter-annual variability

Soil characteristics
Soil temperature, saturation, organic matter depth, 
thaw depth

Vegetation Surface layer type(a), standing water depth

Climatic conditions Air temperature

a. This describes whether the surface layer of the plot had standing water, a vegetation mat or both a 
vegetation mat and standing water.

2.3.1. Field measurements

CO2 and CH4 fluxes were measured using opaque static chambers (25 cm 
diameter, 15–20 cm height), seated on cylindrical PVC bases extending 
approximately 10 cm below the soil surface. To minimize soil disturbance, we



installed bases at the beginning of each summer and left them in place 
throughout the sampling season. At the top rim of each base, a 3 cm-deep, 
water-filled trough formed an air-tight seal with the chamber, which was 
vented according to Xu et al. (2006) to minimize pressure excursions due to 
the Venturi effect. In inundated locations, we used a floating chamber that 
was constructed from 25 cm diameter PVC encircled by a flat styrofoam 
collar. Below this collar, the bottom rim of the chamber base extended 4 cm 
below the water surface. As with non-floating measurements, the chamber 
rested in a 3 cm-deep water-filled channel in the base's top rim to create an 
airtight seal. For each flux measurement, we monitored CO2 and CH4 
concentrations in the chamber every 5 s over 4–8 min with a Los Gatos 
Research (LGR), Inc. Portable Greenhouse Gas Analyzer, and calculated the 
flux of each gas as the slope of the linear portion of the concentration versus
time curve. Apart from a manual evaluation, two other metrics – a slope 
standard error > 0.05 and the percent relative standard error (PRSE) > 5 – 
were used to evaluate flux measurement quality. PRSE is defined as 
100 × (slope standard error) / (slope estimate) as used in Sileshi (2014). Note 
that R2 was not used here because some fluxes are close to zero, which will 
give a low R2 even if the measurement is high-quality. Instead, this set of two
metrics – the slope standard error and PRSE - avoid biasing the dataset 
towards either high or low flux values. Since opaque chambers limited 
photosynthesis during the measurement period, CO2 fluxes were equivalent 
to ecosystem respiration.

In addition to GHG fluxes, we concurrently measured soil temperature and 
moisture. Volumetric soil moisture was measured using a MiniTrase TDR (Soil
moisture Equipment Corp). Soil temperature was measured at multiple 
depths (5, 10 and 20 cm) with a hand-held thermocouple probe (Cooper-
Atkins AquaTuff 352). Air temperature was also measured with a 
thermocouple probe and represents measurements made inside the LGR 
chamber. Thaw depth was measured using a tile probe and organic matter 
depth was analyzed using soil cores collected at the site during the same 
sampling campaign. Standing water depth was measured using a ruler as an 
average of multiple measurements of the depth of the surface layer of water.
Further details on data acquisition are provided elsewhere (Torn et al., 2013; 
Vaughn and Torn, 2018).

3. Methods

3.1. Shannon's informational entropy

We used the information theory metrics of Shannon's entropy to examine the
temporal variability in carbon fluxes as a function of environmental factors, 
geomorphic features and other primary controls (Shannon, 1948a, Shannon, 
1948b). Previous studies have successfully used these metrics to 
characterize temporal variability in climatological, geochemical, and other 
complex data series (e.g., Arora et al., 2016b; Balzter et al., 2015; Kawachi 
et al., 2001; Rajsekhar et al., 2012). In information theory, Shannon's 



entropy is regarded as a measure of variability or randomness in the data, 
which is analogous to the lack of information about the system (Brunsell et 
al., 2008; Singh, 2013, Singh, 1997). Shannon's entropy (H) of a random 
variable (such as time-series data) is calculated as:

where, B is the set of measurements and Pi denotes the probability of 
outcome as i varies from 1 to B. Using the histogram bin width based on 
Scott's choice method (Scott, 1979), the discrete data interval i was 
determined. Eq. (1) suggests that the value of entropy varies according to 
the distribution of Pi's associated with the set B chosen to represent the 
random variable. This implies that by increasing the number of constraints, 
or by specifying more information about the random variable, the range of 
entropy decreases. Therefore, process components that add information to 
the system reduce Shannon's entropy and are able to explain the variability 
in the data series. This concept forms the basis of our study.

Eq. (1) further indicates that there is no upper bound for entropy because if 
any Pi tends to 0, log(.) will tend to infinity. Therefore, we normalize entropy 
as (Dwivedi, 2012):

such that the normalized marginal entropy (HN) varies between 0 and 100. 
Entropy is maximum when all events are equally probable and all Pi’s are 
equal, such that.

Thus,

3.2. Entropy as a classification tool for GHG flux data

We employ an entropy classification scheme that exploits the property that if
we add information to the system, the entropy of the system should 
decrease. In this study, CO2 and CH4 fluxes are the variables of interest. The 
addition of information to each of these random variables is done in the form
of classifying flux data under different categories. For this purpose, we first 



select the classifying factor and then decide the categories under which the 
GHG flux data can be analyzed.

The classifying factor can comprise of any of the selected variables (e.g., 
polygon type, soil temperature, intra-annual variability) that represent 
possible controls on GHG fluxes at the site (Table 2). The categories under 
which flux is classified will then depend on the attributes of the selected 
variable itself. Fig. 2 demonstrates the overall approach of the entropy 
classification scheme where each of the selected variables or classifying 
factors is partitioned into different categories. For example, polygon type is 
categorized as low-, flat- or high-centered polygons, while intra-annual 
variability is categorized as June, July, August, September or October (based 
on the growing season data available for each year). The classifying factor 
that results in a lower value of entropy explains the maximum variability in 
the random variable. Therefore, the environmental factor, temporal or 
geomorphic feature that leads to this lowest entropy value is considered to 
be the most important control impacting GHG fluxes at the site.

Fig. 2. An overview of the entropy classification scheme showing the primary controls, associated 
classifying factors and categories used for analyzing GHG fluxes in this study. As an example, the 
figure shows that inter-annual variability was categorized as 2012, 2013 and 2014. For variables where
these categories were not obvious (e.g., thaw depth), a probability density function was used (see Fig. 
3). Abbreviations: LCP, low centered polygon; FCP, flat centered polygon; HCP, high centered polygon.

The entropy classification scheme is implemented through the following 
steps:

(1) Calculate the marginal (H) and maximum entropy (max(H)) of the 
random variable Vunder consideration using Eqs. (1), (3), respectively. Here,



the marginal entropy for CO2 flux variable, for example, refers to the entropy
computed for all CO2 flux values grouped together (i.e. without any 
classification). However, marginal entropy values alone do not provide 
sufficient information about factors controlling temporal variability in CO2 
fluxes. We therefore proceed to the next step.

(2) Identify a set of classifying factors (F1, F2, ….Fs) that possibly explain the 
variability observed in V, where the exponent S refers to the number of 
factors considered in the analysis. In our study, certain variables were 
selected to represent potential controls on GHG flux variability at the Barrow
site (Table 2). Here, the choice of these factors was also based on the 
availability of temporally-resolved data (Table 1).

(3) Each of these classifying factors is then partitioned into different 
categories. For factors where these categories are not obvious, individual 
probability density functions (pdfs) can be used to derive representative 
groups. While this approach was used on multiple environmental factors, Fig.
3 shows the pdfs of only a selected subset of environmental factors to 
illustrate this approach.

Fig. 3. Frequency distribution of selected subsets of environmental factors – thaw depth, standing 
water depth and air temperature – from observations for the given year (2012, 2013 or 2014). The 
histograms were used to divide the range of the environmental factors into different intervals or 
categories for the entropy-based classification scheme. Because datasets varied across years, 
histograms for each year were used to define these categories. Note that histograms of standing water
depth do not include cases where only vegetation mats were present.

(4) Calculate the joint probability H(V, F1, F2, ….Fs) and the conditional 
probability H(V|Fc) of the random variable when the data is classified 
according to different categories for each factor Fc (c ε 1:s). Details of these 
probability calculations are provided in Supporting Information (S1).



(5) The quantity of information shared between the two variables (in this 
case, GHG flux and each classifying factor) is then obtained by calculating 
H(V) − H(V|Fc), which is also known as trans-information (T). For comparing 
entropy values across different factors, we used a normalized measure of 
trans-information (TN).

(6) Here the objective is to maximize TN (or minimize entropy) to identify 
factors that explained the most variability in data.

To appreciate the value of trans-information, the equation reported in step 
(5) can be interpreted as follows: here, H(V) represents the uncertainty (or 
information) about CO2 or CH4 fluxes before observing any classifying factor 
(F) and the conditional entropy H(V|Fc) represents the uncertainty in the 
fluxes after accounting for the factor, the difference between H(V) and H(V|
Fc) thus represents the uncertainty that is reduced by observing the factor. 
Therefore, trans-information represents the amount of variability in GHG 
fluxes that is reduced when F is known. The strength of this classification 
scheme lies in its ability to identify primary controls that cause significant 
variability in GHG fluxes across years. The implementation of the 
classification scheme is such that it can be used on data sets of different 
lengths and can analyze different spatial settings (as is this case with our 
sampling campaign) (Dwivedi and Mohanty, 2016; Gaur and Mohanty, 2013).
To further account for the effect of different numbers of data points and 
comparing entropy values across years, we calculated the difference 
between the normalized trans-information (TN) and the normalized entropy of
the flux variable for that year (HN, year):

such that D describes the variability in GHG flux due to the classifying factor 
for that year. The greater the difference (or the greater the ‘D value’), the 
more informative is that factor for explaining variability in the fluxes. In 
particular, D values greater than 0 indicate significant variability in GHG 
fluxes due to that factor, while values less than 0 indicate insignificant 
variability. Apart from GHG fluxes, we also demonstrate the applicability of 
the entropy classification scheme to other variables of interest, in particular 
soil temperature at 5 cm depth (see Section 4.4).

3.3. Kruskal-Wallis significance testing

Statistical significance was evaluated using the two-sided, two-sample 
Kruskal-Wallis test (also termed the Mann-Whitney-Wilcoxon test) (Kruskal 
and Wallis, 1952; Mann and Whitney, 1947). The Kruskal-Wallis significance 
test is the non-parameteric equivalent of the analysis of variance test and 
provides a more elegant solution when data are suspected to be from a non-
normal distribution. Here, the Kruskal-Wallis significance test was used to 
determine if a particular category resulted in a significant separation of the 
median GHG flux values by testing the null hypothesis that there is no 



difference in the median GHG flux values across categories of a particular 
classifying factor, against the alternative that they do not have equal 
medians. The Kruskal-Wallis test results were considered significant at a 
pvalue equal to or less than 0.05.

4. Results

4.1. Site trends in CO2 and CH4 fluxes

Fig. 4 shows the mean fluxes of CO2 and CH4 across polygon types for 2012, 
2013 and 2014 growing season. While mean CO2 fluxes show minor 
differences across polygon types (small range of variation), mean CH4 fluxes 
show clear patterns with highest fluxes being associated with LCPs. The 
temporal patterns for both CO2 and CH4 fluxes show more variability. In 
particular, GHG fluxes show an increase from 2012 to 2013 and then a 
decrease from 2013 to 2014. One exception to this trend is that CO2 fluxes 
show a consistently increasing pattern from 2012 to 2014 for HCPs. In fact, 
the highest ecosystem respiration in 2014 is associated with HCPs. To 
investigate possible controls of such variations, we describe multi-year 
trends in measured soil moisture and soil temperaturevalues at the site (Fig. 
5). Fig. 5 suggests that 2013 was a relatively dry growing season as 
compared to 2012 or 2014, whereas soil temperature values indicate that 
2014 was a relatively cold year. In a simplistic view, the characteristics of 
these years suggest that flat-centered polygons may become important 
sources of CO2 during warm and dry years as opposed to high-centered 
polygons which contribute to CO2 efflux during cold and wet years. However, 
it is not yet clear if soil moisture or soil temperature characteristics alone, or 
in combination with other environmental factors control GHG flux variations 
under different spatio-temporal settings.

Fig. 4. Spatial and temporal variability in measured arithmetic mean a) CO2 and b) CH4 fluxes at the 
site during the growing season for three successive years. Abbreviations: LCP, low centered polygon; 
FCP, flat centered polygon; HCP, high centered polygon.



Fig. 5. Box plots of measured a) saturation and b) soil temperature values collected during 2012, 2013 
and 2014 growing season. The top and bottom of the box represent the 25th and 75th percentiles, 
respectively, the central red line is the median, the whisker-lines indicate the 99% interval, and stars 
indicate outliers.

4.2. Evaluating temporal controls of CO2 fluxes

To classify CO2 fluxes according to the selected geomorphic feature or 
environmental factors, we calculated the trans-information and the 
corresponding difference (D) with the marginal entropy value of CO2 for that 
year as outlined in the classification scheme above. Fig. 6 shows the plot of 
this difference D when CO2 fluxes are classified on the basis of polygon types
and features. As is evident from the figure, both LCP edges and HCP centers 
show D values greater than 0 for 2012. Fig. 6 further shows that LCP edges 
as well as HCP edges and troughs have D values greater than 0 for 2013, 
while only LCP edges show this pattern for 2014. Therefore, only LCP edges 
consistently show D values greater than 0 for all years. This suggests that 
significant variability is associated with CO2 fluxes in LCP edges across years.
However, only higher topographic positions (i.e., LCP edges and HCP centers)
show D values greater than 0 across years as compared to lower topographic
positions (i.e., LCP centers and troughs). One reason for this variability could 
be that higher topographic positions typically have lower soil moisture 
content (such as LCP edges) or have well-drained oxic soils (such as HCP 
centers) in comparison to lower elevation regions (Fig. S1, Supplementary 
Information) (Hubbard et al., 2013; Wainwright et al., 2015). Changes in 
oxygen availability and soil moisture content in higher topographic positions 
can cause significant variations in ecosystem respiration. Fig. 5, Fig. 7 
confirm that the overall soil moisture range shows considerable variability 
across years and especially within the LCP edges. Further note that results 
associated with plot D, which lies within a transitional region and is 
represented by cyan filled symbol, demonstrated atypical response for LCP 
edges across all years, possibly due to its waterlogged condition and 
different hydrological characteristics than typical LCPs (Fig. 6).



Fig. 6. Normalized difference (D) values for CO2 flux across polygon types and features. Normalized 
Dvalues greater than 0 at a particular location indicate significant variability in CO2 fluxes at that 
location. Cyan filled symbols are used to separate plot D results from plot A because of their distinct 



hydrological characteristics. Abbreviations: LCP, low centered polygon; FCP, flat centered polygon; 
HCP, high centered polygon; C, center; E, edge; T, trough.

Fig. 7. Box plot of saturation within a) LCP edges and b) LCP centers collected during 2012, 2013 and 
2014. The top and bottom of the box represent the 25th and 75th percentiles, respectively, the central
red line is the median, the whisker-lines indicate the 99% interval, and stars indicate outliers.

To further characterize temporal variability at the site, Fig. 8 shows the plot 
of the normalized difference D when CO2 fluxes are classified according to 
polygon types and intra-annual variability. As expected, higher D values and 
consequently higher variability is associated with LCPs for both 2012 and 
2013 (Fig. 8a). In contrast, all D values for 2014 are below 0. As suggested in
the previous section and shown in Table 3, CO2 flux patterns within 2014 
show consistently different trends (Kruskal–Wallis test, p < 0.0001) as 
compared to 2012 or 2013. Fig. 8b demonstrates that early growing season 
months (June 2012 and July 2013) have D values greater than 0, as well as 
late growing season months (September 2012 and October 2013) have D 
values above 0. 2014 again shows a different pattern for CO2 flux variability 
wherein the peak growing season (August) has D values greater than 0. For 
2012 and 2013, these results indicate that the early and late growing season
periods cause significant variability in CO2 fluxes. Fig. 9a confirms that 
although the highest ecosystem respiration across years is associated with 
August, the lower CO2 flux values show considerable variability across early 
and late growing season months. Moreover, the Kruskal-Wallis test indicates 
a substantial separation (p < 0.0001) of mean CO2 fluxes across growing 
season months, but demonstrates insignificant separation (p > 0.05) of CO2 
fluxes as a function of other vegetation-related parameters (e.g., the 
presence or absence of vegetation, standing water depth) (Table 3). This 
implies that early and late season dynamics or lengthening of the growing 
season may be responsible for significant variability in CO2 fluxes at the site. 
Other site-specific and regional investigations have reported progressively 
earlier spring snowmelt date and later onset of autumn snow 
accumulation(Cox et al., 2017; Sharratt, 1992; Tucker et al., 2001; Zona et 



al., 2016). In their study, Oechel et al. (1995) described significant 
differences in ecosystem respiration and net CO2fluxes at Barrow during the 
late growing seasons of 1991 and 1992 as compared to measurements made
in the International Biological Program in 1971 over a comparable period, 
and attributed these changes to increased air temperatures and resulting 
decrease in soil moisture content. This significant variability in CO2 fluxes in 
2012 and 2013 may therefore be related to recent temperature trends and 
increasing length of the growing season, but additional work is needed to 
substantiate these associations. Further note that 2014 was a colder year in 
comparison to 2012 and 2013 (Fig. 5b) and reported CO2 flux patterns 
consistently different from previous years at the site.

Fig. 8. Normalized difference (D) values for CO2 flux across a) polygon types and b) growing 
seasonmonths. Normalized D values greater than 0 indicate significant variability in CO2 fluxes at that 
location or for that month. Cyan filled symbols are used to separate plot D results from plot A because 
of their distinct hydrological characteristics. Abbreviations: LCP, low centered polygon; FCP, flat 
centered polygon; HCP, high centered polygon.

Table 3. D values for CO2 flux computed on the basis of different classifying factorsa.



aShaded cells show where data are not available.
bA significant separation of means with p < 0.05.
⁎p < 0.0001.



Fig. 9. Box plots of a) CO2 and b) CH4 flux values for the 2013 growing season. The top and bottom of 
the box represent the 25th and 75th percentiles, respectively, the central red line is the median, the 
whisker-lines indicate the 99% interval, and stars indicate outliers.

A summary of the entropy results identifying the governing controls on CO2 
flux variability is provided in Table 3. The table shows the classifying factors 
used (column 2), the categories under which the classification was 
performed (column 3), and the specific category that resulted in a difference 
between transfer entropy and CO2 entropy to be greater than 0 (columns 4 
to 6). The last column indicates if a particular category resulted in D values 
that were consistently greater than 0 across all years. This column is 
important to understand where the variability in the data was constantly 
higher and can help with developing a strategic plan for sampling in multi-
year studies or identifying controls that should be included in modeling GHG 
fluxes. For ease of interpretation of the table, we present an example 
wherein soil temperature is used as a classifying factor and is subdivided into
several categories. Results from Table 3 suggest that low soil temperature 
(<10 °C) is a recurring factor causing variability in CO2 trends across years at
a significance level of 0.05.

Overall, CO2 fluxes at the Barrow site show considerable temporal variability 
at the site. This variability is attributed to factors that impact soil (e.g., 
temperature, moisture conditions) and/or vegetation dynamics (e.g., growing
season length). Significant variability in ecosystem respiration was also 
associated with higher topographic positions. Moreover, CO2flux patterns in 
2014 were found to be consistently different than those observed in 2012 or 
2013. Unlike 2014, 2013 which had characteristically low soil moisture 
content did not show significantly different patterns for CO2 fluxes when 
compared to 2012 (e.g., using inter-annual variability as a classifying factor 
in Table 3). This clearly indicates that soil moisture characteristics alone 
were not significant controls (p > 0.05) on CO2 flux variability at the site, but 
may act in tandem with the unique property suites of higher topographic 
positions (such as LCP edges) or higher air temperatures (e.g., Oechel et al., 
1995) to impact CO2 efflux from the site.

4.3. Evaluating temporal controls of CH4 fluxes

To investigate the temporal patterns in CH4 fluxes at the site, we followed 
the same procedure of classifying flux data according to different factors 
(Table 4). Table 4 indicates that HCP centers show consistently high 
variability in CH4 fluxes across years. Variability is also observed in FCP 
centers and edges for both 2012 and 2014 but not for 2013 (Fig. 10a). These
polygon types and positions are associated with different CH4 production 
pathways (via CO2 reduction) as compared to LCPs where acetate cleavage is
the main production mechanism (Vaughn et al., 2016). Consistent with the 
previous findings, we therefore attribute this variability in CH4 fluxes to 
topographic position or geomorphic controls. The Kruskal-Wallis test also 
substantiates these findings demonstrating a significant separation 
(p < 0.0001) of mean CH4 fluxes across topographic positions.



Table 4. D values for CH4 flux computed on the basis of different classifying factorsa.

aShaded cells show where data are not available.
bA significant separation of means with p < 0.05.
⁎p < 0.0001.

Fig. 10. Normalized difference (D) values for CH4 flux across a) polygon types and features as well as b)
growing season months. Normalized D values greater than 0 indicate significant variability in CH4 
fluxes at that location or for that month. Cyan filled symbols are used to separate plot D results from 
plot A because of their distinct hydrological characteristics. Abbreviations: LCP, low centered polygon; 
FCP, flat centered polygon; HCP, high centered polygon; C, center; E, edge; T, trough.



Another factor associated with high variability (p < 0.0001) in CH4 fluxes 
across years is the presence or absence of vegetation (Table 4). Fig. S2 
further expands on these results to demonstrate the impact of vegetation 
type and ponded conditions on CH4 emissions, however a complete analysis 
of ebullitive fluxes versus fluxes from submerged vegetation or assessing the
impact of plant height is beyond the scope of this study. However, growing 
season (intra-annual) variability does not seem to be a recurring factor 
causing variability in CH4 profiles at the site (Table 4). Nevertheless, Fig. 9b 
demonstrates the variability in CH4fluxes across growing season months for 
the 2013 sampling campaign. Similar to Fig. 9b, but comprehensively 
including other years in the analysis, Fig. 10b demonstrates that vegetation 
changes within the growing season result in D values greater than 0 and 
thereby significant variability in CH4 fluxes, albeit at different times. The 
reasons for this discrepancy will be described below.

Table 4 further suggests that regions with greater thaw depths (45 to 60 cm) 
and lower soil moisture (<40% saturation) show significant variability in CH4 
fluxes across years. Note that thaw depths are significantly linked to 
topographic position and consequently with soil moisture and vegetation 
cover. In particular, low topographic positions (such as LCP centers) have 
greater thaw depths, higher water table and are typically vegetated with 
vascular plants (Kumar et al., 2016; Walker et al., 2008). In contrast, higher 
topographic positions (such as HCP centers) are associated with shallower 
thaw depths, lower saturation and less vegetation cover. Thus, when thaw 
depth and vegetation cover are considered to be classifying factors (Table 
4), variability in CH4 fluxes can be attributed to low topographic positions 
(such as LCP centers) based on its association with greater thaw depths and 
vegetative cover. In contrast, when polygon type and feature as well as 
saturation are considered as classifying factors, variability in CH4 fluxes can 
be attributed to high topographic positions (such as HCP centers). The 
Kruskal-Wallis test also shows substantial differences (p < 0.0001) in mean 
CH4 fluxes when classified according to most of these factors (e.g., 
saturation, vegetation cover). Taken together, these results attribute 
variability to both high and low topographic positions, and this is because the
temporal relationships between vegetation and primary controls (e.g., soil 
moisture, thaw depth) change during the growing season and in distinct 
ways for the different topographic positions. Earlier in the growing season, 
the lower topographic positions have greater thaw depth and higher soil 
moisture, which can result in an earlier activation of the ecosystem for CH4 
fluxes (Zona et al., 2009). In contrast, the ground is still largely frozen in the 
higher topographic positions and the water availability to the plants is lower 
resulting in lower CH4 fluxes from these regions. However, later in the 
season, CH4 emissions from higher topographic positions can increase as 
thawing progresses. These results also match with findings from Dafflon et 
al. (2017) that demonstrated the changing relationship between vegetation 
and soil moisture as well as between vegetation and thaw layer thickness 



during the growing season using above- and below-ground geophysical 
monitoring approaches. Fig. 10b further confirms these changing dominant 
controls with D values becoming greater than 0 at different times within the 
growing season. The variability in CH4 fluxes at the Barrow site can therefore 
be attributed to both direct (e.g., plant productivity) and indirect impacts 
(e.g., vegetation-thaw relationship) of vegetation changes during the 
growing season.

4.4. Using entropy for monitoring and predicting GHG fluxes

Studies on quantifying carbon fluxes typically suffer from insufficient 
observations across relevant spatial and temporal scales and a lack of 
knowledge about dominant environmental variables that can consistently 
represent this variability across scales. The entropy classification scheme 
can bring a range of benefits to data acquisition and model development, 
particularly with identifying a set of primary controls that can describe 
variability in GHG fluxes. These primary controls can then be used as 
deterministic variables for developing relationships or designing upscaling 
techniques for estimating footprint- or global-scale GHG fluxes from field-
scale measurements. Furthermore, as the need for long-term data 
acquisition becomes more urgent in the face of changing climate, the 
entropy classification scheme can be applied to identify uncertainties (or 
randomness) in existing observations and design an efficient data acquisition
strategy for subsequent years. Here, we present an example of applying the 
entropy classification scheme to identify a set of factors that cause 
variability in environmental data. Specifically, we consider the case of soil 
temperature at the Barrow site which has been associated with variability in 
CO2 trends while the nature of its relationship with CH4 fluxes is more 
uncertain (Table 3, Table 4). Although this example is focused on designing 
sampling strategies geared towards GHG flux determination and future 
predictions, the following approach is generic enough for identifying 
dominant controls that can describe variability in other variables of interest.

Table 5 presents the results of analyzing soil temperature using the entropy 
classification scheme. In this case, the ultimate aim of the entropy analysis is
to identify potential spatial locations or time periods where data collection 
can be prioritized, which is crucial for subsequent flux analysis. Table 5 
indicates that HCP centers show consistently high variability (p < 0.05) in soil
temperature data across years. In fact, the highest D values in 2012 are 
associated with LCP edges. Therefore, significant variability in soil 
temperature data at shallow depths is associated with higher topographic 
positions. Previous studies have indicated that patterns of albedo, thermal 
conductivity, thicker snow depth and greater vegetative cover act together 
to cause greater heat trapping in the lower topographic positions as 
compared to higher topographic positions (i.e., HCP centers and LCP edges) 
(Gamon et al., 2012; Juszak et al., 2016). The insulating effects of the thicker
snow cover and vegetative layer in low elevation regions and the lack 
thereof in high elevation regions can create soil microclimates that can result



in significant spatial heterogeneity in soil temperature profiles across 
polygon types and features.
Table 5. D values for soil temperature computed on the basis of different classifying factorsa.

aShaded cells show where data are not available.
bA significant separation of means with p < 0.05.
⁎p < 0.0001.

Entropy results further indicate that variability is also observed in vegetated 
and high thaw depth regions as well as in low soil moisture conditions (Table 
5). Therefore, like CH4 flux, variability in soil temperature at 5 cm depth can 
be associated with both low and high topographic positions. This further 
suggests that the relationships between soil temperature and primary 
controls on soil microclimate (e.g., vegetation, thaw depth, air temperature) 
change during the growing season and in distinct ways for the different 
topographic positions. The Kruskal-Wallis test also shows significant 
differences (p < 0.05) in mean soil temperature when classified according to 
most of these factors. Other factors that cause substantial variability 
(p < 0.0001) in soil temperature data are low air temperature and inter-
annual variability. Note that these factors also caused variability in CO2 
fluxes (Table 3). In addition to these classifying factors, we further 
investigated the variability or randomness in soil temperature data collected 



at different depths. As expected, the entropy analysis indicates that soil 
temperature data show significant variability (p < 0.0001) at shallow depth 
(5 cm) as compared to measurements made at relatively deeper depths (10 
or 20 cm).

Overall, significant variability in soil temperature data at the Barrow site is 
associated with geomorphic features where vegetation, snow cover and 
other primary controls contribute to local soil microclimatic conditions, which
can vary both spatially and temporally. In terms of designing an efficient 
data acquisition strategy, the entropy analysis calls for improved sampling in
locations that are characteristically difficult to sample, such as LCP edges or 
ponded locations. Results further indicate that significant variability is 
associated with shallow soil temperature measurements (5 cm), which is also
expected. The analysis thus suggests that the choice of soil depth at which 
soil temperature data (e.g., 10 cm depth) are used will impact predictions of 
GHG fluxes (e.g., Sachs et al., 2008; Subke and Bahn, 2010). Table 5 further 
indicates that considerable variability (p < 0.0001) in soil temperature is 
related to the month of September. This could be related to vegetation 
senescence or the initial freeze-back period, which can have an impact on 
soil microclimatic conditions.

5. Summary and conclusions

We used an entropy-based approach to identify dominant environmental 
factors associated with significant variability in GHG fluxes in Arctic tundra 
environments, where climate changeappears to be rapidly impacting 
ecosystem processes. In particular, we classified growing season flux data 
from 2012 to 2014 using a variety of environmental factors and topographic 
positions across the Barrow site. CO2 fluxes in 2014 were found to be 
significantly different than the other two sampling seasons. Entropy analysis 
indicated that temporal variability in CO2 flux is governed by soil 
temperature variability, vegetation changes during the early and late 
growing season, and changes in soil moisture at higher topographic 
locations. The variability in CH4 flux at the site is primarily associated with 
vegetation changes during the growing season and temporal shifts in 
relationships between vegetation and environmental factors such as thaw 
depth. Polygon types and features were found to be important controls on 
the temporal variability of both CO2 and CH4 fluxes at the site.

There are two interesting conclusions from the entropy analysis on GHG 
fluxes observed here. First, different environmental factors explained 
variability in GHG fluxes under different spatio-temporal settings. For 
example, soil moisture explained the majority of the variability in CO2 fluxes 
across geomorphic features, while soil temperature and early and late 
growing season dynamics explained variability across years. Second, the 
mechanisms with which the environmental factors shape the spatial and 
temporal variability in GHG fluxes may become important to the total GHG 
flux budget considering the changing climate. For example, results suggest 



that recent temperature trends and increasing length of the growing season 
may act to change CO2 fluxes observed at the site. In particular, flat-
centered polygons may become important sources of CO2 during warm and 
dry years, while high-centered polygons may become important during cold 
and wet years. Predictive modeling of the site also concurs that higher 
topographic positions may become net C sources in the future (Grant et al., 
2017). In contrast, the relationship between soil temperature and CH4 flux 
shows a dynamic nature across years and appears to be sensitive to soil 
microclimatic conditions that show considerable spatial and temporal 
heterogeneity. This suggests that the strength and nature of the relationship 
between certain environmental factors and GHG fluxes can vary temporally 
and spatially, and/or the sensitivity of these factors can be masked by other 
variables. Depending on how the harsh Arctic environment impacts these 
environmental controls, the observation of these controls in subsequent 
sampling seasons and the mechanisms with which they impact GHG fluxes 
will provide an important link between climate change and GHG emissions.

Considering that the identification of primary controls on GHG flux variability 
is an important aspect of developing upscaling techniques or reducing model
uncertainty, concepts from the entropy classification scheme can be used for
this purpose. As an example, this study demonstrates the use of entropy 
classification scheme in developing a sampling strategy for subsequent 
years, by which the GHG flux predictions can be inferred with certainty, while
minimizing the amount of data that must be gathered. In particular, we 
recommend high resolution sampling of soil temperature at HCP centers and 
during the month of September. This month marks the time when freeze-
back period begins, which has important implications for vegetation 
senescence and changes in soil microclimatic conditions. Further note that 
our three year dataset had enough natural variability in dominant 
environment factors such as soil moisture and temperature to be useful to 
inform future sampling efforts. For other studies, the ideal number of years 
which can be used to inform sampling efforts may vary depending on the 
range of environmental conditions over which important interactions occur, 
collecting observations at the relevant spatial and temporal scales at which 
these interactions occur and sampling the specific environment of interest.
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