
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Techniques for Improving Resource Usage in Near-Term Quantum Computations

Permalink
https://escholarship.org/uc/item/4w37t06j

Author
Wong, Raymond

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w37t06j
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Techniques for Improving Resource Usage in

Near-Term Quantum Computations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Raymond Garwei Wong

Committee in charge:

Professor Wim van Dam, Chair
Professor Ömer Eğecioğlu
Professor Subhash Suri

September 2018

The Dissertation of Raymond Garwei Wong is approved.

Professor Ömer Eğecioğlu

Professor Subhash Suri

Professor Wim van Dam, Committee Chair

September 2018

Techniques for Improving Resource Usage in Near-Term Quantum Computations

Copyright c© 2018

by

Raymond Garwei Wong

iii

To my family.

iv

Acknowledgements

First, I want to express my gratitude to my advisor Wim van Dam for his guidance

and especially his patience. I can recall many times when I stumbled to meet my goals,

but his hands-off approach meant there was ample time for me to learn from my mistakes

and develop as an independent, knowing I can approach him for advice when needed.

I would also like to thank the Computer Science department for their behind the

scenes support, my doctoral dissertation committee – all of whom I had the pleasure

of working with as a teaching assistant – for their counsel throughout my graduate

studies, and the National Science Foundation. The material presented here is based

upon work supported, in part, by the National Science Foundation under Grant Nos.

0917244 and 1719118. Many thanks to all my colleagues and peers who have made my

time memorable. Finally, my family deserves much credit for my success through their

unconditional support.

v

Curriculum Vitæ
Raymond Garwei Wong

Education

2018 Ph.D. in Computer Science (Expected), University of California,
Santa Barbara.

2012 B.S. in Computer Science, California Polytechnic State University,
San Luis Obispo.

Publications

W. van Dam and R. Wong, Two-qubit Stabilizer Circuits with Recovery I: Existence,
in Proceedings of the Thirteenth Conference on the Theory of Quantum Computation,
Communication and Cryptography, TQC ’18, (Dagstuhl, Germany), pp. 7:1-7:15, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

W. van Dam and R. Wong, Two-qubit Stabilizer Circuits with Recovery II: Analysis,
in Proceedings of the Thirteenth Conference on the Theory of Quantum Computation,
Communication and Cryptography, TQC ’18, (Dagstuhl, Germany), pp. 8:1-8:21, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

vi

Abstract

Techniques for Improving Resource Usage in Near-Term Quantum Computations

by

Raymond Garwei Wong

Quantum computers have many desirable features but are physically challenging to

build. They use quantum physics to solve practically motivated yet classically intractable

problems, and because the experimental technology is still in its infancy, quantum me-

chanical devices are susceptible to errors that compromise data integrity. As a result,

quantum error correction is necessary to protect important information from such unde-

sirable influences, which inevitably increases the resource overhead to ensure a reliable

quantum computation. In this thesis, we develop methods that are relevant to reducing

the utilization of physical resources in a quantum computer. The core operations consid-

ered here are the so-called stabilizer operations, which have fault-tolerant constructions

that are vital to achieving an error-resistant quantum computation. By applying our

practices, we achieve small optimizations that have considerable value when implement-

ing quantum algorithms in the near-term, when small quantum systems are much easier

to manage than a single large quantum system. We cover two techniques to improve the

efficiency of stabilizer operations applied to qubit states.

First, we introduce protocols that can probabilistically recreate an initial input qubit

from the output qubit of specific quantum processes. These protocols are ideally suited

for recovery purposes, and are designed with potentially many nested layers of stabilizer

operations. We subsequently give a precise analysis on the effectiveness of the nested

recovery. By integrating recovery at the optimal nesting depth, the resource usage of

the relevant quantum processes can be reduced by up to half in expectation. Second, we

vii

define a new special arrangement of elementary stabilizer operations for realizing certain

quantum computations, which we call a binary in-tree decomposition. We show that

such implementations lead to a better process for lowering resource consumption. We

then propose an efficient classical algorithm to assemble stabilizer operation sequences

with such binary in-tree form. Finally, we demonstrate the merits of the binary in-tree

structure on several examples.

viii

Contents

Curriculum Vitae vi

Abstract vii

1 Introduction 1
1.1 Benefits of Quantum Computing . 1
1.2 Main Results . 3
1.3 Outline . 4
1.4 Quantum States . 5
1.5 Quantum Operations and Measurements 10
1.6 Quantum Circuits . 11
1.7 Noise . 15

2 Stabilizer Quantum Computation 18
2.1 Stabilizer Formalism . 18
2.2 Universal Quantum Computation . 28

3 Postselected Stabilizer Circuits 37
3.1 Notation . 37
3.2 Basic Definitions . 38
3.3 Properties of Postselected Stabilizer Circuits 40
3.4 Summary . 47

4 Two-qubit Stabilizer Circuits with Recovery 48
4.1 Notation and Conventions . 49
4.2 Postselected Two-to-One Stabilizer Circuits 49
4.3 Two-qubit Recovery Circuits . 53
4.4 Example Routines Featuring Recovery Circuits 62
4.5 Summary . 64

ix

5 Extending the Recovery for Two-qubit Stabilizer Circuits 65
5.1 Nested Recovery Protocol . 65
5.2 Experimentation with Recovery Circuits 70
5.3 Summary . 74

6 Performance Analysis of Nested Recovery 75
6.1 Prelude to Analysis . 75
6.2 Expected Cost . 78
6.3 Minimizing Expected Cost . 80
6.4 Cost Ratio . 83
6.5 Potential Improvements with Commonly Used Resource Qubits 85
6.6 Summary . 86

7 Stabilizer Circuits with Binary In-tree Form: Introduction 91
7.1 Case Study: Four-qubit Quantum Circuit 91
7.2 Basic Concepts, Notation, and Review 94
7.3 Postselected and Delegated Two-Op Circuits 94
7.4 Binary In-tree Decomposition . 97
7.5 Multistep Tree Execution and Expected Cost 100

8 Synthesizing Stabilizer Circuits with Binary In-tree Form 105
8.1 Basic Property of Binary In-tree Unitaries 105
8.2 Stabilizer Matrices and Stabilizer Matrix Forms 107
8.3 Synthesis of Binary In-tree Clifford Circuits 111
8.4 Partial Binary In-tree Form Circuit Synthesis 122
8.5 Examples . 122
8.6 Summary . 131

9 Conclusion 133
9.1 Recovery Circuits . 134
9.2 Stabilizer Circuits with In-tree Form . 134

A Bounded One-Dimensional Random Walk with Difference Equation 138
A.1 Bounded One-Dimensional Random Walk 138
A.2 Random Walk with Difference Equation 140

B Index of Terms 154

Bibliography 157

x

Chapter 1

Introduction

Computers continue to evolve and influence the world in monumental ways. They are

deeply integrated into many functions of society, ranging from our largest financial, en-

ergy, and health institutions to the local businesses and organizations within our com-

munities. Equipped with rich features and capabilities, present computers enable us to

engage in activities not possible or otherwise difficult in the past. However, they are not

without physical limits. The diminishing size of components powering our electronic in-

struments means we may no longer ignore the phenomena encroaching from the quantum

realm. Fortunately, we can exploit these quantum effects to our benefit in a number of

meaningful applications. As hardware reliability steadily improves [50], it is only a mat-

ter of time before quantum computers become more commonplace. Even now, research

and development into a quantum machine is starting to follow a trajectory similar to

classical computer design, dividing into subareas that target different abstraction levels

of the quantum computer system [40].

1.1 Benefits of Quantum Computing

Quantum computers have garnered significant interest in recent years, and the trend

suggests that the potential gains are enough to warrant large investments by industry[1,

1

Introduction Chapter 1

44] and government [2] to researching new quantum technologies. There are several

notable applications for a quantum computer, and it is imperative we mention them to

understand some of the forces driving this development. Many more can be found in

the Quantum Algorithm Zoo [42] by Stephen Jordan, a catalog of different scenarios in

which a quantum computer surpasses a classical computer in speed.

The most widely known and cited example in support of quantum computers is per-

haps Shor’s algorithm for integer factorization and discrete logarithm [67]. The existence

of such a fast algorithm has serious implications in computer security, as confidence

in elliptical curve cryptography and RSA encryption is predicated on the hardness of

factoring and the discrete logarithm. This is not the only problem where we see a su-

perpolynomial speedup over the best known classical solutions. Feynman [29] proposes

that a quantum computer inherently can perform quantum simulations much faster than

classical computers. Problems of physical interest include many-body systems [4, 14] and

quantum chemistry [37, 41].

Elsewhere, Grover’s algorithm permits an O(
√
n) search for an object in an unordered

list of n items [35]. Clever embedding of Grover’s search as a subroutine has also lead to

other impressive algorithms, such as Ramesh and Vinay’s O(
√
n+
√
m) approach to string

matching, where n is the text length and m is the pattern length [60]. A recent survey by

Ambainis [6] documents the quantum advantage in the language of query complexity. In

particular, there exist problems involving partial functions f(x1, . . . , xn) on n variables

in which a quantum computer only needs 1 query to f to solve but Ω(
√
n) classically.

The gap is even larger when f is a total function.

Quantum cryptography is another area with potential. The security properties guar-

anteed by quantum cryptography rely on the no-cloning theorem [74], a fundamental law

that prohibits copying of arbitrary unknown quantum states. One of the earliest pro-

tocols is BB84 by Bennett and Brassard [9] to exchange secret encryption keys between

2

Introduction Chapter 1

multiple parties in a secure fashion. Several more quantum key distribution schemes have

been devised ever since [28, 46, 54], and recent experiments [51, 59, 75] show promise

into the viability of using quantum mechanics for secure communication.

1.2 Main Results

This thesis is broadly concerned with program optimization in the quantum setting.

In the same way we want to improve the memory footprint or runtime of a classical

algorithm, we can identity quantum resources that we wish to utilize more efficiently

in a quantum computation. Unfortunately, devices that store quantum information are

highly sensitive to influences from the environment and faulty hardware. While quantum

error correction provides a measure of protection against unwanted errors, it inevitably

drives up the number of quantum resources necessary to ensure a reliable calculation.

The work presented herein introduces two techniques to reduce the resource demand of

certain quantum processes, and they succeed by taking advantage of how we use stabilizer

operations, a prominent subset of all quantum mechanical transformations.

1.2.1 Nested Recovery Protocol

In addition to error correction, the quantity of resources used is also affected by

quantum mechanics’ probabilistic nature, which implies a quantum algorithm generally

does not provide the correct solution on the every execution. Thus until the desired

answer is obtained, we must successively repeat the entire computation. The impact on

resources is greatest when the quantum subroutine in question is “expensive”, though

depending on the circumstances, there may be ways to circumvent this.

We will show that special kinds of small-scale stabilizer operations are “invertible”

when provided with select types of quantum state inputs. The suggestion is that we can

3

Introduction Chapter 1

recover some of the work that was recently modified and return to a slightly earlier stage

of the process without restarting from the beginning; the remaining elements can be

acquired with relatively little extra effort. The caveat is that these “inversions” are also

probabilistic, so the recovery is not always successful. Luckily, these “inverse” activities

require few resources to proceed and are “invertible” themselves, and we may try to

recover from an unsuccessful recovery. This “recovery of recovery” is the basis for what

we shall call as our nested recovery protocol. The “expensive” subroutine is rerun when

the protocol is unsuccessful at some predetermined nesting limit, but by incorporating

recovery, we contribute to an overall decrease in the average resources consumed.

1.2.2 Binary In-tree Implementation

Our second approach to conserving resources looks at the binary in-tree implementa-

tion of a stabilizer operation, named so for our interpretation of the quantum process as

a directed acyclic graph (DAG) with the shape of a binary tree. The problem of produc-

ing such implementations is somewhat analogous to compiling, where the objective is to

translate a computer program in human-readable code into assembly instructions. In this

situation, we want to convert a stabilizer operation into a special sequence of more basic

units of stabilizer operations. We give an efficient classical algorithm that does exactly

that, and what we see in the ensuing decomposition is a looser coupling of subprocesses.

The relative isolation enables us to restart one task within the larger procedure without

repeating the whole, and hence become more economical with our resources.

1.3 Outline

For completeness, the remainder of this chapter is dedicated to a general overview

on the field of quantum computation; for a more comprehensive introduction and his-

4

Introduction Chapter 1

torical perspective, see Nielsen and Chuang’s text [56]. Chapter 2 contains more specific

background material and gives context to our problem of interest. Chapter 3 provides

basic definitions and some elementary results to set up the primary outcomes found in

Chapters 4 to 8. Details related to our nested recovery protocol are discussed in Chapters

4 to 6, whereas Chapters 7 and 8 examine the binary in-tree implementation of stabilizer

operations. The final chapter offers some concluding words.

1.4 Quantum States

Whereas a classical computer processes strings of 0s and 1s, the basic unit of quantum

information is a quantum bit, or simply qubit. In bra-ket notation, the quantum parallels

of the classical bits are the computational basis qubits |0〉 and |1〉. And even though there

are 2n possibilities, the n bits of a classical computer carry only one such state at any

given moment, so the dimensions of a classical state is still n. In contrast, an n-qubit

quantum state lies in a 2n-dimensional complex vector space. With |0〉 and |1〉 forming

an orthonormal basis, an arbitrary single qubit |ψ〉 can be described as

|ψ〉 = α |0〉+ β |1〉 (1.1)

where α and β are complex numbers that satisfy the normalization condition |α|2 +|β|2 =

1. Notice that a qubit is allowed to take on a quantum superposition – a sum – of other

qubits as seen above. Being vectors, we may alternatively express qubits in column

matrix form, where the matrix versions of |0〉, |1〉, and |ψ〉 are

|0〉 =

1

0

 , |1〉 =

0

1

 , |ψ〉 =

α
β

 . (1.2)

5

Introduction Chapter 1

The Hermitian conjugate (conjugate transpose) of a ket |ψ〉 returns a row vector and is

denoted by a bra 〈ψ|.

A geometric representation of qubits called the Bloch sphere is provided in Figure 1.1.

In this picture, |ψ〉 is parameterized by two angles 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π and

specified as

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (1.3)

The |0〉 and |1〉 basis qubits occupy the north and south poles of the sphere, respectively.

Besides |0〉 and |1〉, other points of considerable interest are

|+〉 =
|0〉+ |1〉√

2
, |−〉 =

|0〉 − |1〉√
2

(1.4)

which lie on the intersection of the x-axis and the unit sphere, and

|+i〉 =
|0〉+ i |1〉√

2
, |−i〉 =

|0〉 − i |1〉√
2

, (1.5)

which fall on the intersection with the y-axis.

The tensor product “⊗” is used to form larger quantum states. When dealing with

two matrices A and B, of dimensions m×n and r× s, the tensor product is the same as

the Kronecker product:

A⊗B =


A1,1B · · · A1,nB

...
. . .

...

Am,1B · · · Am,nB

 . (1.6)

yielding a new matrix A⊗B that has mr rows and ns columns. Some example two-qubit

6

Introduction Chapter 1

|0〉

|+i〉

|+〉

|ψ〉

|1〉

|−i〉

|−〉

z

y

x

θ

φ

Figure 1.1: Bloch sphere representation of a qubit state. The sphere has radius 1, and
the qubit |ψ〉 is a unit vector that has an angle 0 ≤ θ ≤ π with respect to the z-axis
and 0 ≤ φ ≤ 2π with respect to the x-axis.

states that we can produce with |0〉 and |1〉 are

|0〉 ⊗ |0〉 =



1

0

0

0


, |0〉 ⊗ |1〉 =



0

1

0

0


, |1〉 ⊗ |0〉 =



0

0

1

0


, |1〉 ⊗ |1〉 =



0

0

0

1


. (1.7)

More generally, if we have a length n bit vector b1 . . . bn whose decimal value is x =

2n−1b1 + · · ·+ 2bn−1 + bn, then the corresponding quantum state |x〉 = |b1〉 ⊗ · · · ⊗ |bn〉 is

a size 2n × 1 column matrix with a one in row x+ 1 and a zero in the remaining 2n − 1

places. We can formulate any n-qubit state |ψ〉 in this computational basis as

|ψ〉 =
2n−1∑
i=0

αi |i〉 (1.8)

where αi are complex values such that |α0|2 + · · · + |α2n−1|2 = 1. For convenience, the

7

Introduction Chapter 1

tensor product symbol is sometimes omitted, as illustrated by |0〉 |0〉, |0, 0〉, and |00〉.

Another shorthand notation is the repeated n-fold tensor product that appears as a

superscript, such as in |0〉⊗n.

Multiqubit states |ψ〉 that cannot be decomposed into a tensor product of smaller

quantum states |ψ〉 = |ψ1〉 ⊗ |ψ2〉 are said to be entangled ; otherwise we say |ψ〉 is a

product state. The most common entangled two-qubit state is the Einstein-Podalsky-

Rosen (EPR) pair

1√
2

(|00〉+ |11〉) . (1.9)

Entanglement is one of the fundamental differences that enable quantum computers to

attain the speedups mentioned previously [43].

Since quantum systems are represented mathematically as objects in a vector space,

naturally there will be an inner product between quantum states. For starters, the inner

product between two computational basis vectors |i〉 and |j〉 is 〈i|j〉 = 1 when i = j and

0 otherwise. The inner product between arbitrary quantum states |ψ1〉 =
∑

i αi |i〉 and

|ψ2〉 =
∑

j βj |j〉 is then

〈ψ1|ψ2〉 =
∑
i,j

α∗iβj 〈i|j〉 =
∑
i

α∗iβi. (1.10)

Besides the inner product, there also exists an outer product written |ψ1〉〈ψ2| for two

vectors |ψ1〉 and |ψ2〉. This forms a linear operator defined by

(|ψ1〉〈ψ2|) |ψ3〉 = 〈ψ2|ψ3〉 |ψ1〉 . (1.11)

All the quantum states presented so far are classified as pure states. Such a vector is

indicated by the ket |ψ〉, or by the density matrix |ψ〉〈ψ| using the outer product. An

8

Introduction Chapter 1

n-qubit mixed state ρ is defined as a weighted distribution of n-qubit pure states |ψi〉:

ρ =
∑
i

pi|ψi〉〈ψi| (1.12)

where pi are probabilities (not complex amplitudes) that sum to unity. This means the

system has probability pi of being in the state |ψi〉. Any n-qubit quantum system, pure

or mixed, has a 2n × 2n density matrix description, and a defining quality of a density

matrix ρ is the fact that its trace equals one i.e. tr (ρ) = 1.

There is a simple criterion to differentiate between pure and mixed states. Single

qubit systems also have a nice graphical determinant. If we consider the single qubit

Pauli matrices

I =

 1 0

0 1

 , X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 , (1.13)

we can rewrite a single qubit ρ as

ρ =
1

2
(I + xX + yY + zZ) (1.14)

where the real coefficients (x, y, z) ∈ R3 form the Bloch vector of ρ. Throughout, we use

I to stand for the identity operator; its dimensions should be clear from context. The

Bloch vector allows us to visualize ρ in the Bloch sphere as a vector with coordinates

(x, y, z) in the standard basis and whose norm satisfies
√
x2 + y2 + z2 ≤ 1. In other

words, the vector endpoint stays within the unit sphere’s interior if the qubit ρ is mixed

and on the surface if pure. For multiqubit density matrices ρ, the distinction between

pure and mixed is given by the trace operation on ρ2: a pure state means tr (ρ2) = 1 and

tr (ρ2) < 1 when mixed. Note that density matrices are positive semidefinite and have

9

Introduction Chapter 1

nonnegative eigenvalues λi. Diagonalizing a density matrix ρ shows that tr (ρ2) =
∑

i λ
2
i .

Lastly, the scalar complex constants of quantum states called global phases serve no

practical purpose, so we may treat, for instance, eiπ/4 |ψ〉 and |ψ〉 as being the same.

1.5 Quantum Operations and Measurements

Quantum operators describe changes in a quantum state. Without the application

of quantum operators, qubits remain static. The operations are linear, and one of the

primary types that we encounter are unitary transformations, which are reversible unlike

most boolean logic functions. The usual definition states that a matrix U is unitary if and

only if the Hermitian conjugate U † is also the inverse, meaning U † = U−1. Then given an

initial density matrix ρ, the state of a quantum system after some process described by

a unitary matrix U is ρ′ = UρU †. A property of unitary operators is that they preserve

the inner product i.e. tr (ρ) = tr (ρ′) = 1.

In addition to unitary operations, we depend on measurements that probe a quantum

system to reveal information about its state. Measurements are generally destructive in

the sense that they are, for the most part, irreversible. A special kind are projective mea-

surements. These measurement processes are often characterized by a set of orthogonal

projectors {Pm = |ψm〉〈ψm| } that fulfill the completeness relation

I =
∑
m

Pm. (1.15)

We immediately see from this definition that Pm = P †m and P 2
m = Pm (the latter meaning

idempotent). Each basis state |ψm〉 is associated with an observable result m to help us

identify the specific action that took place. More precisely, given a quantum state |ψ〉,

the probability of projecting onto |ψm〉 is 〈ψ|Pm|ψ〉. If we detect m during measurement,

10

Introduction Chapter 1

then the state of the quantum system after measurement is

|ψ′〉 =
Pm |ψ〉√
〈ψ|Pm|ψ〉

. (1.16)

If we consider the superposition of |ψ〉 in the {|ψm〉} basis, then the measurement causes

the superposition to collapse onto the |ψm〉 state. The division is necessary for |ψ′〉 to

stay normalized.

These postulates of quantum mechanics extend to a density operator ρ. The proba-

bility of observing m is tr (Pmρ), and the postmeasurement state becomes

ρ′ =
PmρPm
tr (Pmρ)

(1.17)

since tr (Pmρ) = tr (PmρPm). This holds due to the invariance of the trace operation

under cyclic permutations, and the idempotence of the projection operators. As usual, we

can build up larger quantum operators using the tensor product, and may even construct

a combination of unitaries and projectors e.g. X⊗|0〉〈0|. This forms a two-qubit operator

that performs a Pauli X on qubit one and projects qubit two onto |0〉.

1.6 Quantum Circuits

There exist several models for expressing quantum computations, some of which, like

quantum Turning machines and quantum random access machines, are simply ported

over from classical computation theory [53]. Then there are others – adiabatic quantum

computing [22] and topological quantum computing [55] – that are less abstract and a

little more suggestive of the physical means to carry out the computation. In this thesis,

we shall follow quantum circuits, essentially the quantum analogue of boolean circuits.

As such, quantum circuits describe a quantum computation as a sequence of elementary

11

Introduction Chapter 1

quantum logic gates and measurements that act on an array of qubits. The qubits are

usually initialized to some well-defined state. The only measurements considered here

are with respect to the Pauli Z or computational basis, which involve the projectors

|0〉〈0| = I + Z

2
, |1〉〈1| = I − Z

2
. (1.18)

A Z-measurement will therefore return one classical bit b of information, and the post-

measurement qubit will be |b〉.

We have already seen some quantum gates for single qubits: the Pauli spin matrices.

They play a central role in several areas of quantum computing, in part because they

satisfy the following relationships:

XY = iZ, Y X = −iZ, (1.19)

Y Z = iX, ZY = −iX, (1.20)

ZX = iY, XZ = −iY. (1.21)

The Pauli gates are also Hermitian i.e. X = X†, Y = Y †, Z = Z† to yield

X2 = Y 2 = Z2 = I. (1.22)

The Pauli X and Z unitaries also go by the name of bit flip and phase flip gates, since

X |0〉 = |1〉 and Z |+〉 = |−〉. A few other quantum gates of particularly special interest

are the Hadamard (H), Phase (P), and π/8 (T) operators:

H =
1√
2

 1 1

1 −1

 , P =

 1 0

0 i

 , T =

 1 0

0 eiπ/4

 . (1.23)

12

Introduction Chapter 1

A nice way of thinking about single qubit unitary operations are as 3-dimensional rota-

tions of the qubit vector in the Bloch sphere e.g. P and T rotate a qubit about the z-axis

by π/2 and π/4, respectively. More general x, y, and z-axial spins are defined by

Rx(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

 cos θ
2
−i sin θ

2

−i sin θ
2

cos θ
2

 , (1.24)

Ry(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

 cos θ
2
− sin θ

2

sin θ
2

cos θ
2

 , (1.25)

Rz(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

 1 0

0 eiθ

 . (1.26)

In fact, there exist four real numbers α, θ, φ, γ such that any 2× 2 unitary matrix U is

decomposable into four parts as

U = eiαRz(θ)Ry(φ)Rz(γ). (1.27)

Beyond single qubit operations, we require multiqubit gates. Among the most useful

are controlled-operations, and the one that we will see most is the two-qubit Controlled-

NOT (CNOT) gate. We can gain a firmer grasp of controlled-operations via an explana-

tion of the Controlled-NOT. In particular, one of the two qubits is designated the control

qubit, and the other being the target. The control qubit acts like a guard and dictates

whether the Pauli X gate is applied to the target qubit or not. That is, a bit flip on the

target qubit occurs if the control qubit is |1〉. In the computational basis, the CNOT is

governed by the following action:

CNOT |a〉 |b〉 = |a〉 |a+ b mod 2〉 (1.28)

13

Introduction Chapter 1

assuming the first (leftmost) qubit is the control. We can determine the matrix to this

two-qubit operation on adjacent qubits using the rule above:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.29)

The Controlled-NOT is simple, but the basic function of all controlled-operations

follow the same principle. In general, there could be many control and target qubits.

Suppose we have an (n+ k)-qubit controlled-U gate, where U is some unitary operation

on the last k qubits. Then U is applied if the first n control qubits are all |1〉s. This is

easiest to see from the three-qubit Toffoli gate (denoted CCX). To be specific, we have

CCX |b1〉 |b2〉 |b3〉 = |b1〉 |b2〉Xb1· b2 |b3〉 , (1.30)

so the Pauli X gate activates if b1 · b2 = 1. This outcome occurs whenever both control

qubits are |1〉. Not surprisingly, we may also apply quantum gates conditional on classical

measurement results. For example, we can perform a phase flip Z on the second qubit if

the Z-measurement on the first qubit returns a bit b = 1.

Other common two-qubit operations include the SWAP gate to interchange two

qubits, the Controlled-Z (CZ), and the Controlled-Y (CY). The latter two work the same

as Controlled-NOT, but instead apply Paulis Z and Y , respectively. To avoid confusion,

we sometimes add bracketed superscripts that explicitly reference the qubits involved,

such as CNOT(i,j) to mean control qubit i and target qubit j. Otherwise, CNOT, CZ,

and CY are controlled-Pauli gates that act on neighboring qubits e.g. CNOT(i,i+1). The

gate identity SWAP(i,j) = CNOT(i,j)CNOT(j,i)CNOT(i,j) is also worth remembering.

14

Introduction Chapter 1

|ψ〉 • H Z •

|0〉 H • Z •

|0〉 X Z |ψ〉

Figure 1.2: Example of a quantum circuit. The circuit displayed here imple-
ments a technique called quantum teleportation [10]. The double lines after the
Z-measurements represent classical bits. The final two operations of quantum tele-
portation are to apply Pauli X on qubit three if the second measurement returns a
bit b2 = 1, and Pauli Z if the first measurement returns a bit b1 = 1.

Finally, we have quantum circuit diagrams. A quantum circuit diagram, such as the

one depicted in Figure 1.2, illustrates how a large and complex procedure is implemented

by a series of basic quantum operations. Each wire represents a qubit, and the diagram

is read left to right to indicate the passage of time. The images for several quantum

circuit components discussed here are summarized in Table 1.1.

1.7 Noise

The biggest hurdle to building quantum computers is perhaps noise, a generic label

to describe a set of error-causing processes that arise due to computer design flaws and

manufacturing defects. The primary culprits of quantum error are no different than

classical error: (1) faulty computer parts, and (2) the environment, because of imperfect

shielding of idle qubits in data storage. This latter source of noise leads to a process

called quantum decoherence. Since a classical computer stores bits, the main problems are

isolated to bit flip errors, and bit erasure errors in a communications channel. However,

the errors we see disturbing a quantum system are more diverse. In addition to the bit

flip, there is also the phase flip error, which is especially relevant, for instance, when we

have a qubit in the state |+〉. These two flip operations are simply seen as an application

15

Introduction Chapter 1

of the Pauli X and Z gates, respectively. Because Y = iXZ, the Pauli Y gate represents

a simultaneous bit-and-phase flip error.

Much like the classical noise model, errors that afflict individual qubits are assumed

to be independent. Even if noise affect multiple qubits, the independence assumption is

a good approximation [56]. Beyond bit flip and phase flip, there is another type of error

unique to quantum computing that frequently appears in the literature: depolarizing

noise. This error operation replaces a density matrix ρ with the completely mixed state

I/2 with some probability p. The following equation describes this action on a qubit ρ:

ED(ρ) =
pI

2
+ (1− p) ρ =

(
1− 3p

4

)
ρ+

p

4
(XρX + Y ρY + ZρZ) . (1.31)

Geometrically, the completely mixed state inhabits the center of the Bloch sphere. An-

other way to imagine depolarizing noise is that it causes an X, Y , or Z error with equal

weighting. The second identity of ED is actually no mere coincidence, since any single

qubit error can be decomposed as a linear combination of the Pauli matrices I, X, Y ,

and Z [33]. This allows quantum error correction methods to handle arbitrary single

qubit errors by virtue of managing X and Z flips. The downside is that quantum error

correction is not cheap, and generally entails a sizable price. More details on this will

emerge as we progress to later chapters.

16

Introduction Chapter 1

Quantum Circuit Component Circuit Diagram

Pauli X gate X

Pauli Y gate Y

Pauli Z gate Z

Hadamard gate H H

Phase gate P P

π/8 or T gate T

z-axis rotation gate Rz(θ) Rz(θ)

Single qubit gate G G

CNOT(i,i+1)
•

SWAP(i,i+1) ×
×

Two-qubit gate U U

Controlled-U gate:
two control, two target

qubits

•
•

U

Measurement in Pauli Z
basis that returns 0 or 1

Z 0/1

Classically conditioned
single qubit gate G

Z •

G

Table 1.1: Diagrams for various quantum circuit components.

17

Chapter 2

Stabilizer Quantum Computation

In this chapter, we cover the fundamentals of stabilizer quantum computation. We start

with the stabilizer formalism, a mathematical device for understanding a large class of

quantum states and operations, otherwise known as stabilizer states and stabilizer op-

erations. The stabilizer operations in particular come highly recommended due to their

ability to suppress the spread of quantum errors during the execution of quantum al-

gorithms. For this reason, the magic state approach is a well established method for

achieving universal quantum computation (UQC). Under this model, we draw from an

elementary set of stabilizer and non-stabilizer operations to implement more complicated

procedures, and associate with each non-stabilizer operation a resource “cost” that re-

flects the degree of difficulty to carry out the operation. The magic state model relates

this resource cost of non-stabilizer operations to non-stabilizer quantum states.

2.1 Stabilizer Formalism

Quantum computers are still in the early stages of development, and many researchers

around the world are actively seeking various methods to engineer these devices [50]. In

an ideal world, every module of the computer would operate in perfect condition, and we

would have complete control over every aspect of the quantum system. While the reality

18

Stabilizer Quantum Computation Chapter 2

is that defects are an unavoidable part of life, we can at least prepare solutions to help

us handle a few unwelcome surprises.

In this section, we review the stabilizer theory to combating errors. The additional

software layer brought in by quantum error correcting and fault-tolerant procedures is

vital as the gate failure rates for all physical implementations are high enough to require

their assistance. Otherwise we have no assurances to the quality of results from long

quantum computations. Moreover, the notion of a quantum resource described later in

this chapter is easier to comprehend given an understanding of quantum error correction

and the associated overhead. The extra labor necessary to sustain a stable quantum

computer draws further significance to the techniques of this thesis.

2.1.1 Pauli Operators

The foundation of the stabilizer formalism is built on the anticommuting properties

of the Pauli matrices

{A,B} = AB +BA = 0 (2.1)

for all A,B ∈ {X, Y, Z} and A 6= B. The equation {A,B} = AB + BA is known as

the anticommutator of two operators A and B, and it is a trivial task to arrive at the

anticommutation relation above using the identity XY = iZ.

The commutator [A,B] = AB −BA is a closely related idea for which we say A and

B commute if and only if

[A,B] = AB −BA = 0. (2.2)

Generally speaking, two unitaries A and B may neither commute nor anticommute, but

19

Stabilizer Quantum Computation Chapter 2

is always one of the two cases whenever A and B are Pauli operators. For example,

[X ⊗X,Z ⊗ Z] = (XZ ⊗XZ)− (ZX ⊗ ZX) (2.3)

= (−Y ⊗ Y) + (Y ⊗ Y) = 0. (2.4)

Although X and Z anticommute, the presence of two anticommuting positions contribute

to commuting Pauli operators overall. This observation holds for larger systems n: if

g and h are n-qubit Pauli matrices, then g and h commute if and only if the number

of anticommuting positions is even. The stabilizer formalism depends on this crucial

property of Pauli operators for designing quantum error-correcting codes.

2.1.2 Groups of Pauli Operators

When we look past individual Pauli operators, we find that the stabilizer formalism

has a strong connection to group theory. If we collect all n-fold tensor products of the

single qubit Pauli matrices, and allow overall factors ±1 and ±i, then the set over these

operators form the Pauli group on n qubits

P(n) = {ikg1 ⊗ · · · ⊗ gn | gj ∈ {I,X, Y, Z}, k ∈ {0, 1, 2, 3}}. (2.5)

The matrices in P(n) are closed under multiplication, and it is fairly obvious that this set

has |P(n)| = 4n+1 elements. Note that for any n-qubit density matrix ρ, we can always

expand it as a linear combination

ρ =
1

2n

∑
cg (2.6)

where g is a Pauli operator with overall factor +1 and c = tr (gρ) is a real number.

20

Stabilizer Quantum Computation Chapter 2

Inside the Pauli group are abelian subgroups of varying sizes, or stabilizer groups. A

property of commuting matrices is that they have common eigenspaces, and hence eigen-

vectors. Pauli operators only have eigenvalues ±1 but generally many more eigenvectors

– quantum states – to each eigenvalue. At the smallest level n = 1, the eigenvectors and

eigenvalues of the single qubit Pauli matrices X, Y , and Z are

X |+〉 = |+〉 , X |−〉 = − |−〉 , (2.7)

Y |+i〉 = |+i〉 , Y |−i〉 = − |−i〉 , (2.8)

Z |0〉 = |0〉 , Z |1〉 = − |1〉 . (2.9)

These six qubits should look familiar: they are precisely the intersection points between

the Bloch sphere and the x, y, z axes (see Figure 1.1). But instead of listing every element

one by one, we can describe a stabilizer group S ⊆ P(n) more compactly as k mutually

commuting Pauli operators {s1, . . . , sk}. In group theory terminology, the si matrices

are the generators, and the group is denoted with angle brackets S = 〈s1, . . . , sk〉. When

dealing with stabilizer groups, we prefer the generating set to be as small as possible.

This requires the k member set to be independent : a Pauli operator s1 is independent of

{s2, . . . , sk} if and only if s1 6∈ 〈s2, . . . , sk〉. Therefore a set of generators {s1, . . . , sk} is

independent if and only if each si is independent of the other k − 1 operators. This also

means that every subgroup S generated by k independent and commuting Pauli matrices

has exactly |S| = 2k elements.

The main feature of every stabilizer group S is a special vector space VS of n-qubit

states. To be exact, VS contains all quantum states |ψ〉 such that g |ψ〉 = |ψ〉 for all g ∈ S.

The number of elements in S control the dimensions of VS . Specifically, if |S| = 2k, then

VS has dimensionality 2n−k [56]. The responsibility of VS will become clear when we look

at the stabilizer formalism applications to quantum error correction.

21

Stabilizer Quantum Computation Chapter 2

2.1.3 Stabilizer States

Informally, stabilizer states are the eigenvectors to sets of commuting Pauli operators.

A more precise definition is the following.

Definition 1 (Stabilizer State) Let S be a stabilizer group with 2n elements. Then

an n-qubit quantum state |ψ〉 is a stabilizer state of S if g |ψ〉 = |ψ〉 for all g ∈ S.

The converse has been proven to hold: if |ψ〉 is an n-qubit stabilizer state, then there is a

stabilizer group S with 2n elements such that g |ψ〉 = |ψ〉 for all g ∈ S [3]. The association

between S and |ψ〉 is furthermore unique (up to a global phase), thus forming a bijection

between the set of size 2n stabilizer groups and set of stabilizer states. It should also be

clear from the definition that no set S will ever contain −I.

We may also define certain mixtures of stabilizer states solely with stabilizer group

generators. If S = 〈s1, . . . , sk〉 for independent si, then we say the n-qubit quantum state

ρ =
1

2k

k∏
i=1

(I + si) (2.10)

is a pure stabilizer state |ψ〉〈ψ| = ρ when k = n and a stabilizer mixed state when

k < n. The latter kind should not be confused with mixed stabilizer states, which are

more generic mixtures of stabilizer states that may not follow Equation 2.10. The nice

quality is that both pure and stabilizer mixed states are efficiently representable by the

k generators as a simple rectangular array. If we wish to count the number of pure

stabilizer states on n qubits, we recommend the following proposition.

Proposition 1 (Aaronson and Gottesman [3], Prop. 2) The number of pure n-qubit

stabilizer states is given by the expression

2n
n−1∏
k=0

(
2n−k + 1

)
= 2(1/2+o(1))n2

. (2.11)

22

Stabilizer Quantum Computation Chapter 2


s1 I I I X X X X
s2 I X X I I X X
s3 I I I I X I X
s4 I I I Z Z Z Z
s5 I Z Z I I Z Z
s6 I I I I Z I Z


Figure 2.1: An array storing six independent and commuting Pauli operators si on
seven qubits. The tensor product symbols between I, X, and Z are omitted for
brevity. The six Pauli operators generate a stabilizer group of 26 = 64 elements and
define the Steane code, one of the earliest discovered quantum error-correcting codes.

We already know the six single qubit stabilizer states located on the extremities of

the x, y, and z axes. For the next four values n = 2, 3, 4, 5, Proposition 1 informs us

there are 60, 840, 15120, and 332640 stabilizer states. An example two-qubit stabilizer

state is the EPR pair (|00〉+ |11〉)/
√

2 with the stabilizer group S = 〈X ⊗X,Z ⊗ Z〉 =

{I ⊗ I,X ⊗X,Z ⊗ Z,−Y ⊗ Y }.

2.1.4 Clifford Group Operations

The Clifford group of n-qubit unitaries C(n) forms a subset of all possible unitary

operations and is defined as the normalizer of the Pauli group P(n). In more precise

notation and terms, the elements of the Clifford group map the Pauli group to itself

under conjugation:

C(n) =
{
U ∈ U(2n) | UP(n)U † = P(n)

}
(2.12)

where U(2n) is the group of 2n × 2n unitary matrices.

The Clifford group is generated entirely by three quantum gates that we have already

seen: the Hadamard, Phase, and Controlled-NOT gates, and the interesting part about

Clifford operators is the effect they have on the vector space VS of a stabilizer group S.

23

Stabilizer Quantum Computation Chapter 2

Suppose we have a quantum state |ψ〉 ∈ VS and a Clifford unitary C. Then for all items

g ∈ S, we have

C |ψ〉 = Cg |ψ〉 = CgC†C |ψ〉 . (2.13)

Since we know CgC† is another Pauli operator, we may treat C |ψ〉 as being an eigenvector

of CgC†. The result is a transformation of S to another group S ′ that fixes a different

vector space VS′ of quantum states. We only have to remember how the three Clifford

group generators affect a Pauli operator. For the Controlled-NOT, we return

CNOT(X ⊗ I)CNOT = X ⊗X, CNOT(I ⊗X)CNOT = I ⊗X,

CNOT(Z ⊗ I)CNOT = Z ⊗ I, CNOT(I ⊗ Z)CNOT = Z ⊗ Z,
(2.14)

whereas for the single qubit Hadamard and Phase gates, we perform

HXH = Z, HZH = X, PXP † = Y, PY P † = −X. (2.15)

It is, however, good to keep in mind that each Clifford unitary preserves the structure

of the Pauli group, and is therefore uniquely determined by its mapping on the 2n Pauli

operators X(i) and Z(i), which apply Pauli X and Z gates on qubit i and the single qubit

identity elsewhere. We may use this fact to conceive an analogous formula to Proposition

1 to count the size of C(n).

Proposition 2 (Calderbank et al. [17]) The number of n-qubit Clifford unitaries is

given by the expression

|C(n)| = 2n
2+2n

n∏
k=1

(
4k − 1

)
. (2.16)

24

Stabilizer Quantum Computation Chapter 2

• H •

H • •

Z

Figure 2.2: Example three-qubit unitary stabilizer or Clifford circuit.

According to Proposition 2, we gather there are |C(1)| = 24 single qubit, |C(2)| =

11520 two-qubit, and |C(3)| = 92897280 three-qubit Clifford operations. Evidently, the

size of |C(n)| grows faster than the number of pure n-qubit stabilizer states.

2.1.5 Stabilizer Circuits

Stabilizer circuits are quantum circuits that are limited to certain quantum gates and

measurements and are the subject of many research activities.

Definition 2 (Stabilizer Circuit) A stabilizer circuit is a quantum circuit that con-

sists only of the following three kinds of components: (1) Clifford group gates, (2) mea-

surements in the Pauli Z basis, and (3) classically conditioned Clifford group gates.

Measurements in the Pauli X or Y basis are technically valid, but is a minor detail as

we can always convert them in some way to the Z basis. On the other hand, if we

exclude measurements entirely from a stabilizer circuit, then we form what is typically

termed a unitary stabilizer circuit, or alternatively, a Clifford circuit (Figure 2.2). Since

no measurements are involved, Clifford circuits implement group unitary operations only

and are always reversible. Drawing on prior knowledge about Clifford matrices, we arrive

at an alternative definition of stabilizer states with respect to such circuits: an n-qubit

quantum state |ψ〉 is a stabilizer state if and only if |ψ〉 is the result of an n-qubit Clifford

circuit acting on the input |0〉⊗n.

25

Stabilizer Quantum Computation Chapter 2

2.1.6 Gottesman-Knill Theorem

Simulating general quantum systems on classical computers is difficult due to the

exponential explosion of variables to maintain, but the story changes completely for

stabilizer circuits and stabilizer states. The next theorem represents one of the hallmarks

of the stabilizer formalism.

Theorem 1 (Gottesman [34], Thm. 1) A classical computer can simulate in polyno-

mial time a quantum computation with the following elements: (1) preparation of |0〉 / |1〉

qubits, and (2) stabilizer circuits.

The three types of activities under Definition 2, along with stabilizer state prepa-

ration, are collectively known as stabilizer operations. Stabilizer circuits with stabilizer

state inputs alone are enough to produce highly entangled states, such as the n-qubit

|GHZ〉 =
|0〉⊗n + |1〉⊗n√

2
. (2.17)

That we can forgo the 2n−1 complex amplitudes of a stabilizer state means we may study

a number of quantum systems within reasonable time bounds on a classical computer.

The Gottesman-Knill theorem is a byproduct of the generator representation of sta-

bilizer states. By storing the generators as rows in a matrix, we may treat each column a

qubit, and the Hadamard, Phase, and Controlled-NOT as column operations on the Pauli

I, X, Y , Z strings. Measurements are a bit more involved, but worst case may require

a Gaussian elimination-like process. For an n-qubit system, Aaronson and Gottesman

[3] report an O(n2) time algorithm, while Anders and Briegel [7] further improve the

simulation to O(n log n) for typical applications using so-called graph states. In Chapter

8, we will revisit this generator array when we look at a matrix decomposition problem

for Clifford unitaries.

26

Stabilizer Quantum Computation Chapter 2

2.1.7 Application to Error Correction and Fault Tolerance

Error detection and correction, both classical and quantum, work by adding redun-

dancy to allow the possibility of recovery from corrupted data units. The most prominent

quantum error correcting codes are stabilizer codes, and as the name suggests, stabilizer

codes are derived from the stabilizer formalism. The premise is to encode the quantum

state that we want to protect into the vector subspace VS defined by a stabilizer group S

of the Pauli group. An [[n, k, d]] stabilizer code thus encodes k data qubits into n physical

qubits and is determined by the n− k independent and commuting generators of S. The

coding space VS obviously has dimension 2k; there must be an n-qubit basis codeword

in VS to every k-qubit basis state. The third attribute d is the distance and decides the

limits of what the code can do. For example, a code that is able to detect and correct

errors on up to t qubits must have minimum distance 2t + 1. The requirement is less

severe for detection only: a code that detects t errors will need minimum distance t + 1

[33]. Some of the earliest stabilizer codes are the [[9, 1, 3]] Shor code, [[7, 1, 3]] Steane

code, and [[5, 1, 3]] code. The CSS (Calderbank-Shor-Steane) subclass of stabilizer codes

is founded by importing classical linear codes carrying certain properties. The encoding

and decoding of data qubits depend on stabilizer circuits only.

Once we have an encoded state, we want the ability to perform computations in a

manner that minimizes the propagation of errors. Quantum gates that achieve this prop-

erty are said to be fault-tolerant, and the use of stabilizer codes means we can reliably

apply Clifford group operations with the least amount of damage. Provided the hard-

ware’s error rate is below some preset value specific to the underlying architecture, the

threshold theorem says arbitrary long quantum computations with fault-tolerant logical

operations are possible [5]. By logical operations, we mean a unitary that acts on the

space of physical qubits but has a different effect on the encoded state. For example,

27

Stabilizer Quantum Computation Chapter 2

|ψ〉 • • H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

|0〉 H • •

|0〉

|0〉

Figure 2.3: Stabilizer circuit to encode a qubit |ψ〉 into the nine-qubit Shor code [56].
The Shor code can correct any single-qubit bit flip and phase flip error.

X⊗ 7 represents the logical bit flip operation for a qubit in the Steane code. Fault toler-

ance schemes with “high” threshold values around 1% per gate already exist, but they

do not come cheaply [31]. As Fowler et al. [31] explains, we may need on the order of

104 physical qubits to implement one logical qubit able to withstand the error rates of

current devices. We will discover later that even this number is but a small fraction of

the physical qubits involved in the overall picture.

2.2 Universal Quantum Computation

In spite of the stabilizer formalism’s many strengths, there is one important hurdle

that stabilizer operations are unable to overcome on their own: sufficient conditions for

universal quantum computation. The analogous issue arises when we are confronted

with only {AND,OR} operators to construct boolean circuits, which are known to be

non-universal. Unfortunately, the power of stabilizer circuits have a lower ceiling than

28

Stabilizer Quantum Computation Chapter 2

what we may have initially imagined. To elaborate, Aaronson and Gottesman [3] prove

that the problem of simulating stabilizer circuits belongs to a complexity class called ⊕L

(parity-L), and membership in ⊕L means that stabilizer operations are not universal even

for classical computation. Due to this inherent limitation of the stabilizer formalism, we

must augment the set of stabilizer operations with non-stabilizer logic devices to enable

the construction of more arbitrary quantum circuits. In the same way {NOT,AND,OR}

creates an adequate set of boolean operations, we may add special quantum gates to form

a more diverse universal gate set with the Clifford group.

2.2.1 Universal Gate Sets

If we want to stay faithful to Clifford operators for the reasons stated earlier, then we

must find the additional quantum gates necessary to achieve UQC. According to Shi [66],

not much is required. In particular, any single qubit quantum gate outside the Clifford

group C(1) is sufficient to form a universal gate set with the Controlled-NOT, Hadamard,

and Phase gates. The most popular by far in the quantum computing literature is the

π/8 or T gate to form the so-called universal Clifford+T basis, which we denote

GT = {CNOT, H, T}. (2.18)

Since the T operation is the same as Rz(π/4), this means that T 2 = P . A preference for

the T gate is also not unfounded, as there is a nice construction to fault-tolerantly apply

π/4 rotations on stabilizer encoded qubits [56].

Some other well-known non-Clifford quantum gates are

V1 =
I + 2iX√

5
, V2 =

I + 2iY√
5

, V3 =
I + 2iZ√

5
(2.19)

29

Stabilizer Quantum Computation Chapter 2

to form the universal Clifford+V basis

GV = {CNOT, H, P, V1, V2, V3}. (2.20)

Sadly, many single qubit non-Clifford gates are not as ideal as the T gate and do not

carry the same fault-tolerant properties. But regardless of our selection, we will see

momentarily in Subsection 2.2.3 that the price to build non-Clifford gates is significantly

higher than that of Clifford operations.

2.2.2 Gate Synthesis

The quest for UQC does not end merely by discovering a universal gate set. If we

glance at GT (or GV), the first thought that comes to mind is that GT is finite. Now

the problem is readily apparent: the set of unitary operations is uncountable, so a finite

universal gate set cannot possibly accommodate every possibility. For instance, the single

qubit z-rotation Rz(θ) alone is parameterized by an angle θ ∈ [0, 2π]. Luckily, we do not

have to discard GT and everything we know about universal gate sets quite yet. If an

exact implementation is out of the question, the next best option is an approximation:

we apply a different operation V that is not quite the same as the target unitary U but

is fully expressible as a sequence of elements from GT . As long as the “error” between

the two operations is within an acceptable value ε, then we are satisfied with the final

result. It is actually in this sense that we say a quantum gate set is universal. The fact

that any single qubit rotation can be approximated to arbitrary accuracy by H and T

gates alone lies at the core of the universality proof for GT [56].

The challenge of approximating U with an implementable V over a universal gate

set G is called the approximate synthesis problem. The G of interest does not have to be

GT , and often times U takes the form of a 2 × 2 matrix. This task is sometimes better

30

Stabilizer Quantum Computation Chapter 2

understood by splitting the question into two parts. First, given a desired error accuracy

ε, figure a unitary V decomposable into gates from G such that

D(U, V) ≤ ε (2.21)

where D is some distance function between two matrices. A frequently used measure is

the trace distance defined as

D(U, V) =
1

2
tr

[√
(U − V)† (U − V)

]
. (2.22)

The second part is to assemble a quantum circuit V = Vl · · ·V1 such that Vi ∈ G. Both

steps are nontrivial, which is why the Solovay-Kitaev theorem [23] is one of the most

remarkable results to come out of this study. Informally, it says that if G is a universal

gate set for single qubit quantum gates, then the sequence length l of the approximating

matrix scales with O(log3.97(1/ε)). The runtime is similarly O(log2.71(1/ε)).

Ever since, the subject has only grown. Recent years have seen major progressions by

incorporating number theoretic ideas, with many paying special attention to the single

qubit gate set {H,T}. To name a few, Kliuchnikov, Maslov, and Mosca (KMM) [47]

design an algorithm that uses O(log(1/ε)) gates and two helper or ancilla |0〉 qubits to

approximate single qubit unitaries to arbitrary accuracy. The algorithm also executes in

O(log2(1/ε) log log(1/ε)) operations. Around the same time, the same individuals KMM

release an algorithm for exact synthesis of certain 2 × 2 unitaries that is optimal in the

number H and T gates [48]. Ross and Selinger [63] instead give a solution to approximate

single qubit z-rotations that does not require ancilla qubits and uses the fewest number

of gates but does depend on a factoring oracle. Other universal bases [11, 62] have also

been considered with similar success. Given these advances, we can tell that the focus is

31

Stabilizer Quantum Computation Chapter 2

|ψ〉 • P T |ψ〉

|π
4
〉 Z •

(a)

|ψ〉 • Rz((−1)vθ) |ψ〉

|θ〉 Z v

(b)

Figure 2.4: (a) The combination of |π4 〉 and a two-qubit stabilizer circuit permits
an implementation of the non-Clifford T gate. (b) More general z-rotations on an
arbitrary qubit |ψ〉 are possible by initializing |θ〉 such that 0 < θ < π/2.

no longer limited to generating any approximating sequence of gates, but to return an

optimal or near-optimal sequence, especially in regard to non-Clifford gates.

2.2.3 State Distillation and Quantum Resource States

At this point, we know which quantum gates with stabilizer operations enable uni-

versal quantum computation, and we know of algorithms to synthesize quantum circuits

over a universal basis. All we have left is to pursue some manner of acquiring the chosen

non-Clifford gates. The model we consider utilizes an indirect method to achieving such

operations using specially prepared qubits e.g. |H〉 = cos
(
π
8

)
|0〉 + sin

(
π
8

)
|1〉, the +1

eigenstate of the Hadamard gate.

To illustrate this, suppose we initialize a single qubit in the non-stabilizer state

|π
4
〉 = HP † |H〉 =

|0〉+ ei
π
4 |1〉√

2
. (2.23)

Then we may implement the T gate with the simple two-qubit stabilizer circuit in Figure

2.4a. The way in which we carry out the T operation with |π
4
〉 generalizes to other angles

0 < θ < π/2. If we inject the non-stabilizer qubit state

|θ〉 =
|0〉+ eiθ |1〉√

2
, (2.24)

32

Stabilizer Quantum Computation Chapter 2

then depending on the outcome in Figure 2.4b, the effect is either Rz(θ) or Rz(−θ); the

qubit |ψ〉 is rotated by +θ if v = 0 and by−θ otherwise. Small modifications to the Figure

2.4b stabilizer circuit allow us to additionally perform Rx(θ) and Ry(θ) operations. This

approach to T means an approximation to any single qubit unitary U is possible given a

supply of |H〉 (or |π
4
〉) qubits and stabilizer operations. We begin to see reasons why non-

stabilizer states may serve as some sort of resource for universal quantum computation,

but the previous demonstration does not fully justify this type of special treatment yet.

If we have the ability to freely create |H〉 qubits, then there is no point to valuing |H〉

or any non-stabilizer state more than |0〉 and |1〉.

To understand why non-stabilizer states have such high value, we need to consider

the process by which we prepare qubits. In general, state preparation is error-prone, so

the initial qubits are usually flawed in some way. Stabilizer states are the exception.

The hardware we design is normally set to prepare |0〉 to good accuracy. Then with

the help of stabilizer codes and fault-tolerant Clifford operations, all stabilizer states are

attainable to precise levels. On the other hand, the preparation of a non-stabilizer state

is more difficult. For this reason, an initial non-stabilizer qubit is typically modeled as

a noisy (and hence mixed) state ρ rather than a pure element like |H〉. We just need

to ensure the quality of the initialization process is not too poor, or ρ will end up as

a mixture of stabilizer states, which renders the qubit unsuitable for UQC. The border

separating the two types is easy to visualize: the six single qubit stabilizer states form

an octahedron within the Bloch sphere (see Figure 2.5). Thus if the initial qubit’s Bloch

vector ends outside the octahedron, we still have a chance at implementing non-Clifford

gates, albeit imperfectly. However, if the Bloch vector resides inside the octahedron, the

qubit state is no more useful than a stabilizing state.

What is encouraging is that we may employ a technique called state distillation [16]

to further improve the non-stabilizer state quality. The premise is quite simple: prepare

33

Stabilizer Quantum Computation Chapter 2

z

y

x

Figure 2.5: Octahedron formed by the six single qubit stabilizer states.

many identical copies of a non-stabilizer mixed qubit ρ, then measure the generators of

some error-detecting stabilizer code. If the syndrome measurement indicates no error,

then the distillation is successful and the output is a smaller number of higher quality

qubits ρ′. Otherwise, we discard the product and start over. We recursively apply the

distillation on outputs from previous rounds until the final qubits achieve the desired

level of fidelity with the ideal pure state.

As far as we know, current state distillation protocols are only able to target the

purification towards a select number of non-stabilizer pure states, which have come to

be known as magic states. These include |θ〉 qubits at angles θ = π/2l for l = 2, 3, 4, . . .

[36], and the eigenstate

|K〉〈K| = 1

2

(
I +

1√
3

(X + Y + Z)

)
(2.25)

of the Clifford gate K = eiπ/4PH [16].1 This may not be obvious, but two |K〉 qubits

are enough to prepare |π
6
〉 and hence implement Rz(±π/6). We should also note that

1Bravyi and Kitaev [16] define T = eiπ/4PH and consequently |T 〉. We use |K〉 to avoid conflicts
with the T gate, which is connected to the other magic state |H〉.

34

Stabilizer Quantum Computation Chapter 2

z

y

x

Figure 2.6: The Bloch vector of H-type magic states (purple) go through the edges
of the stabilizer octahedron, while the Bloch vector of K-type magic states (red) go
through the faces.

given any magic state |ψ〉, there is no fundamental difference between |ψ〉 and G |ψ〉 for

realizing UQC, where G is a Clifford gate. Figure 2.6 depicts the relationship between

several so-called H-type (G |H〉) and K-type (G |K〉) magic states with respect to the

stabilizer octahedron. Although any one of these previously mentioned qubits is enough

for UQC, Duclos-Cianci and Poulin [25] suggest that utilizing a variety of magic states

may be more efficient when trying to handle certain complex transformations. The latest

distillation schemes by Haah et al. [36] gives hope that we may someday distill many

more non-stabilizer qubits of interest.

The main drawback of state distillation is efficiency. Compared to the physical de-

mand of protecting data qubits, the overhead to deliver universal fault-tolerant quantum

computation is much higher. In the magic state model, physical qubits are used in two

ways. One set is treated like a quantum register that stores quantum information for

later processing. The other set is consumed over the course of performing an actual com-

putation on the register i.e. to implement non-Clifford gates, and magic state distillation

comprises a substantial portion of the cost. An analysis by Fowler et al. [31] suggests

that with current devices, we must have about 800000 physical qubits ready to generate

35

Stabilizer Quantum Computation Chapter 2

one logical |π
4
〉. These 800000 physical qubits consist of noisy |π

4
〉 qubits to input into

the purifier, and stabilizer states to help with the encoding. Moreover, large quantum

computations often entail many non-Clifford gates. For example, to fault-tolerantly run

Shor’s algorithm on a 2000 bit number requires ∼1012 logical |π
4
〉 states [31]. In com-

parison, about 4000 logical qubits and hence ∼107 total physical qubits are sufficient for

data protection, meaning most of the physical resources are devoted to implementing the

algorithm [31]. For this reason, non-stabilizer qubits are treated as precious quantum

resources for UQC.

There are two general avenues for improvement: (1) designing more efficient state

distillation protocols, and (2) reducing the number of resource states needed during a

quantum computation. Research on state distillation has been quite active over the past

decade [15, 19, 21, 25, 36, 39, 52], whereas the earlier gate synthesis algorithms address

the second area for specific gate sets. In this thesis, we target the second problem but

in a more abstract manner. Starting in Chapter 4, we will explore an approach to help

manage the cost of some expensive quantum computations.

36

Chapter 3

Postselected Stabilizer Circuits

The previous chapter introduced stabilizer quantum computation, and the model by

which we may obtain UQC with stabilizer operations at the core. For this chapter, we

focus on stabilizer circuits with postselected Pauli measurements, or postselected stabilizer

circuits as we call them. By adding postselection, the circuit output is accepted only

when some predetermined measurement values are detected.

We produce some important results regarding postselected stabilizer circuits that we

will repeatedly reference throughout this thesis. We identify a useful equivalence relation

involving such circuits, and provide a single condition that determines whether any two

such circuits belong to the same equivalence class with respect to this relation. Next we

look at the consequences of allowing a circuit input to contain a stabilizer qubit e.g. |0〉

as part of its initial state. We show that such inputs limit the set of circuit outputs that

we should expect when we pass it through a postselected stabilizer circuit.

3.1 Notation

We review some notation concerning Pauli operators. We use X(i), Y (i), and Z(i) to

mean a Pauli operator that applies a single qubit X, Y , or Z gate on qubit i, and the

single qubit identity gate otherwise. For example, if we are told we have an n = 4 qubit

37

Postselected Stabilizer Circuits Chapter 3

system, then Z(2) = I ⊗ Z ⊗ I ⊗ I. The symbol I indicates an identity matrix, but

the dimensions are not always specified. In some cases, I may be 2 × 2, and in others,

given parameters n and k, may be 2n−k× 2n−k. Its size should be clear from context but

will be stated explicitly whenever necessary: we write I⊗k with a tensor product in the

superscript to mean the k-qubit or 2k × 2k identity matrix.

3.2 Basic Definitions

We concentrate on stabilizer circuits with arbitrary state inputs, irrespective of the

possible applications to magic state distillation. By widening our scope to gain a more

abstract understanding, we discover other quantum processes with potential room for

resource improvement. For now we start with a few definitions. As a reminder, a Z-

measurement on one qubit returns one bit b ∈ {0, 1}, and the state of the qubit afterwards

is |b〉. Applying Z-measurements on k qubits returns a length k bit string v ∈ {0, 1}k, so

the k measured qubits become |v〉 = |v1 . . . vk〉.

Definition 3 (Postselected n-to-k Stabilizer Circuit) A postselected n-to-k stabi-

lizer circuit (C, v) is a quantum circuit that implements an n-qubit Clifford unitary C,

followed by Z-measurements on the last n− k > 0 qubits for an outcome v ∈ {0, 1}n−k.

The next definition establishes two more related terms.

Definition 4 (Probability and Output) Let (C, v) be a postselected n-to-k stabilizer

circuit and let ρ be an n-qubit state. Then the probability Qv of outcome v on the

transformed state CρC† is

Qv(C, ρ) = tr
(
(I ⊗ 〈v|)CρC†(I ⊗ |v〉)

)
. (3.1)

38

Postselected Stabilizer Circuits Chapter 3

C

...
...

k-qubit
output ϕ

n-qubit
input ρ

Z v1

...
... n− k bits

Z vn−k






Figure 3.1: Given an n-qubit state ρ, a postselected n-to-k stabilizer circuit
(C, v) describes a quantum process in which we apply a Clifford unitary C, mea-
sure the last n − k qubits in the Pauli Z basis, then postselect on an outcome
v = v1 . . . vn−k ∈ {0, 1}n−k. The unmeasured k-qubit state ϕ = Φv(C, ρ) is the
output of the postselected stabilizer circuit on ρ.

If Qv(C, ρ) > 0, then the output Φv of the postselected stabilizer circuit (C, v) on ρ is

Φv(C, ρ) =
(I ⊗ 〈v|)CρC†(I ⊗ |v〉)

Qv(C, ρ)
. (3.2)

Figure 3.1 contains the diagram of a postselected n-to-k stabilizer circuit. Measure-

ments on all n qubits is not forbidden, although this is no different than preparing an

n-qubit stabilizer state. Notice also in Definition 3 that the circuit concludes with mea-

surements on the last n− k qubits. This appears limiting, but a simple argument shows

why this assumption is allowed. If we recall from Section 1.6, a SWAP is implemented

by three CNOT gates, which implies SWAP is also a Clifford operation. Supposing we

permit measurements on any of the qubits, we can always make rearrangements using a

combination of SWAPs until the measurements align with the last n− k qubits. Figure

3.2 illustrates this modification for a postselected four-to-two stabilizer circuit. It is easy

to see that the state of the unmeasured qubits remains the same in both versions, and

the addition of a permutation circuit still leaves a stabilizer circuit.

Having said that, it is perhaps no surprise that different postselected stabilizer circuits

are capable of producing the same output on a given input ρ. In the following definition,

39

Postselected Stabilizer Circuits Chapter 3

C
Z v1

Z v2

(a)

=⇒ C
×

× Z v1

Z v2

(b)

Figure 3.2: We may append a permutation circuit of SWAPs after a Clifford gate
C to transform the postselected stabilizer circuit in (a) to the one in (b), where
Z-measurements are applied on the last two qubits.

we give two equivalence relations – one weaker and one stronger – that are applicable on

the set of postselected stabilizer circuits.

Definition 5 (Clifford Equivalent and Equivalent) Two postselected n-to-k stabi-

lizer circuits are Clifford equivalent (C1, v1) ∼ (C2, v2) if and only if there is a k-qubit

Clifford gate U such that for all n-qubit states ρ, we have the equality

(I ⊗ 〈v1|)C1ρC
†
1(I ⊗ |v1〉) = U(I ⊗ 〈v2|)C2ρC

†
2(I ⊗ |v2〉)U †. (3.3)

Note that a Clifford equivalence implies that the probabilities of observing v1 or v2 are the

same i.e. Qv1(C1, ρ) = Qv2(C2, ρ). We say two postselected stabilizer circuits are simply

equivalent, (C1, v1) ≡ (C2, v2), if and only if U = I in Equation 3.3.

3.3 Properties of Postselected Stabilizer Circuits

We now present some general properties of postselected stabilizer circuits. The first

one is obvious and involves just a minor stabilizer circuit manipulation.

Lemma 1 Let (C1, v) be a postselected n-to-k stabilizer circuit. Then there exists a

Clifford unitary C2 such that (C2, 0
n−k) ≡ (C1, v).

40

Postselected Stabilizer Circuits Chapter 3

Proof: The proof is straightforward and easiest to explain using circuit diagrams.

When |vj〉 = |1〉, we may alter the circuit using |1〉 = X |0〉 so that the postselection is on

bit value 0. An example of this transformation on a postselected three-to-one stabilizer

circuit with v = 10 is depicted below:

C1 Z 1

Z 0

= C1 X Z 0

Z 0

The dashed box enclosing C1 and the trailing X gate forms a new Clifford gate C2, thus

yielding a new postselected stabilizer circuit (C2, 0
2) ≡ (C1, v = 10).

Hence if we know (C1, v1) ∼ (C2, v2), we may use the same arguments to obtain

postselected stabilizer circuits such that v1 = v2. However if we are only provided (C1, v1)

and (C2, v2) without any prior knowledge of their relationship, then some extra steps are

necessary to determine whether the two will be Clifford equivalent. The next proof is

inspired from earlier work by Reichardt [61].

Lemma 2 Let (C1, v1) and (C2, v2) be postselected n-to-k stabilizer circuits. If

C†1 (I ⊗ |v1〉〈v1|)C1 = C†2 (I ⊗ |v2〉〈v2|)C2, (3.4)

then (C1, v1) ∼ (C2, v2).

Proof: Without loss of generality, assume v1 = v2 = 0n−k by Lemma 1. We start

by simply rewriting Equation 3.3, that for all n-qubit states ρ, there is a k-qubit Clifford

gate U such that

C1Π1ρΠ1C
†
1 = (U ⊗ I⊗n−k)C2Π2ρΠ2C

†
2(U † ⊗ I⊗n−k) (3.5)

41

Postselected Stabilizer Circuits Chapter 3

where Π1 = C†1(I⊗k⊗|0n−k〉〈0n−k|)C1 and Π2 = C†2(I⊗k⊗|0n−k〉〈0n−k|)C2 are projection

operators. Equation 3.5 is true if Π1 = Π2 (which we now refer to as Π), and we instantly

recognize that Π is a product of n− k projectors

Π =
1

2n−k

n−k∏
i=1

(I⊗n + si) (3.6)

where {s1, . . . , sn−k} are independent and commuting n-qubit Pauli matrices that gener-

ate a stabilizer group S = 〈s1, . . . , sn−k〉. This assertion stems from

I⊗k ⊗ |0n−k〉〈0n−k| = 1

2n−k

n−k∏
i=1

(
I⊗n + Z(k+i)

)
, (3.7)

meaning S =
〈
C†1Z

(k+1)C1, . . . , C
†
1Z

(n)C1

〉
=
〈
C†2Z

(k+1)C2, . . . , C
†
2Z

(n)C2

〉
.

Since we can expand any n-qubit density matrix ρ as a linear combination of 4n Pauli

operators with real coefficients, only those terms in the expansion that commute with all

n−k generators si will survive the projection by Π. The reason is as follows. If a matrix

g ∈ P(n) commutes with a generator si, then

(
I⊗n + si

2

)
g

(
I⊗n + si

2

)
=

(
I⊗n + si

2

)(
I⊗n + si

2

)
g =

(
I⊗n + si

2

)
g (3.8)

where the change from the middle to the right expression is due to idempotence. On the

other hand, any anticommuting g ∈ P(n) leads to cancellation:

(
I⊗n + si

2

)
g

(
I⊗n + si

2

)
=

(
I⊗n + si

2

)(
I⊗n − si

2

)
g = 0. (3.9)

As such, we define Pk to be the set of n-qubit Pauli operators g = g1 ⊗ · · · ⊗ gk ⊗ I⊗n−k

such that gi ∈ {I,X, Y, Z}. Let P ′k = {C†1gC1 | g ∈ Pk}. Consequently, each element

h ∈ P ′k belongs to the normalizer of S and commutes with every s ∈ S. In this manner,

42

Postselected Stabilizer Circuits Chapter 3

if h = C†1gC1 for some g ∈ Pk, then we obtain

C1

(∑
s∈S

sh

)
C†1 = g1 ⊗ · · · ⊗ gk ⊗ |0n−k〉〈0n−k|. (3.10)

For each operator h ∈ P ′k, we define coefficients

ch = tr

(∑
s∈S

shρ

)
. (3.11)

We are ready to see how Π affects ρ. When we apply the projection, the linear

expansion turns into

ΠρΠ =

(
1

2n−k

∑
s∈S

s

)
ρ

(
1

2n−k

∑
s∈S

s

)
=

1

23n−2k

∑
h∈P ′k

ch

(∑
s∈S

sh

)
. (3.12)

We know beforehand that for each h ∈ P ′k, that there is a matrix g ∈ Pk such that

C1hC
†
1 = g. We have a similar occurrence with C2. For each h ∈ P ′k, there is an

h′ ∈ Sh = {sh | s ∈ S} and g′ ∈ Pk such that either C2h
′C†2 = g′ or C2h

′C†2 = −g′. This

implies an appropriate k-qubit Clifford unitary U exists to satisfy Equation 3.5. To find

such a desired gate U , we only have to track the 2k elements r1, . . ., rk, t1, . . ., tk ∈ P ′k

such that C1riC
†
1 = X(i) and C1tiC

†
1 = Z(i). Then we select U that fulfills

(U ⊗ I⊗n−k)C2riC
†
2(U † ⊗ I⊗n−k) = X(i) (3.13)

(U ⊗ I⊗n−k)C2tiC
†
2(U † ⊗ I⊗n−k) = Z(i) (3.14)

for all ri and ti. The value of C1hC
†
1 = (U⊗I⊗n−k)C2hC

†
2(U †⊗I⊗n−k) for the other h ∈ P ′k

is preset given the 2k associations above. Since the unnormalized postmeasurement

qubits are the same after C1 and (U ⊗ I⊗n−k)C2, we deduce that (C1, 0
n−k) ∼ (C2, 0

n−k),

or more generally, that (C1, v1) ∼ (C2, v2).

43

Postselected Stabilizer Circuits Chapter 3

We may expand on Lemma 2 and show that extra |0〉 qubits do not add to the power

of a postselected stabilizer circuit. The original result attributed to Reichardt [61], and

Campbell and Browne [18] applies to postselected n-to-one stabilizer circuits. We give a

statement that covers the more general n-to-k.

Lemma 3 Let ρ be an n-qubit state. Suppose a postselected (n+1)-to-n stabilizer circuit

(C1, v) produces a potentially unnormalized n-qubit density matrix

ρ′ = (I ⊗ 〈v|)C1 (ρ⊗ |0〉〈0|)C†1(I ⊗ |v〉) (3.15)

with nonzero probability tr(ρ′) > 0. Then there exists an n-qubit Clifford unitary C2 such

that one of the following holds: (1) ρ′ = C2ρC
†
2, or (2) ρ′ = C2 (ρ′1 ⊗ |v′〉〈v′|)C

†
2, where

ρ′1 is an unnormalized (n− 1)-qubit density state and v′ ∈ {0, 1}.

Proof: Let (−1)vg = C†1Z
(n+1)C1 be an (n+1)-qubit Pauli operator. Then applying

C1 and postselecting on v is the same as performing a projection, then applying C1:

ρ′ ⊗ |v〉〈v| = C1

(
I⊗n+1 + g

2

)
(ρ⊗ |0〉〈0|)

(
I⊗n+1 + g

2

)
C†1. (3.16)

We will show, as seen in [61], that we may eliminate the projection with g, or convert it

to a projection on the first n qubits only. There are essentially three possibilities:

1. If g = Z(n+1), then the projection has no effect. The other case g = −Z(n+1) is not

possible by tr(ρ′) > 0. Then for each n-qubit h ∈ {X(1), . . . , X(n), Z(1), . . . , Z(n)},

there is an n-qubit Pauli operator h′ such that

C1(h⊗ I)C†1 = h′ ⊗ I and C1(h⊗ Z)C†1 = (−1)vh′ ⊗ Z, or (3.17)

C1(h⊗ Z)C†1 = h′ ⊗ I and C1(h⊗ I)C†1 = (−1)vh′ ⊗ Z. (3.18)

44

Postselected Stabilizer Circuits Chapter 3

This implies there is a separate n-qubit Clifford unitary C2 that also obeys the

above equalities C2hC
†
2 = h′ for all h. For this reason, we may eliminate the

projection and replace C1 with C2 ⊗Xv.

2. If g = g1 ⊗ · · · ⊗ gn+1 anticommutes with Z(n+1), then gn+1 ∈ {±X,±Y }. Suppose

gn+1 = X without loss of generality. Let h = g1⊗ · · · ⊗ gn, and U = Λ(n+1)(h) be a

Clifford gate that applies h controlled on qubit n+ 1. According to [61], we have

I⊗n+1 + g

2
= U †

(
I⊗n ⊗ I +X

2

)
U. (3.19)

It is not difficult to see why Equation 3.19 holds. Seeing how

CZ = (CZ)†, CZ = (I ⊗H) CNOT (I ⊗H) , (3.20)

CY = (CY)†, CY = (I ⊗ P) CNOT
(
I ⊗ P †

)
, (3.21)

we may use our existing knowledge about CNOT to realize

CZ (X ⊗ Z) CZ = X ⊗ I (3.22)

CY (X ⊗ Y) CY = X ⊗ I. (3.23)

However, the initial U has no effect because the last qubit is |0〉, so we project |0〉

onto |+〉 and end with

ρ′ ⊗ |v〉〈v| = C1U
† (ρ⊗ |+〉〈+|)UC†1. (3.24)

From here, we use similar reasoning from Case 1 to replace C1U
† with C2 ⊗HZv,

or simply remove the projection and C1 altogether and proceed with C2 ⊗Xv.

45

Postselected Stabilizer Circuits Chapter 3

3. The g matrix is either h⊗ I or h⊗Z, where h 6= I⊗n is an n-qubit Pauli operator.

Assume g = h⊗ I first. Then there are n-qubit Clifford gates C2 and C3 so that

C1 =
(
C2 ⊗ I

)(
I⊗n−1 ⊗ SWAP(n,n+1)

)(
C3 ⊗ I

)
(3.25)

and C†3Z
(n)C3 = (−1)vh. From here, we know

C3

(
I⊗n + h

2

)
=
(
I⊗n−1 ⊗ |v〉〈v|

)
C3 (3.26)

and we thus have

(
I⊗n−1 ⊗ |v〉〈v|

)
C3ρC

†
3

(
I⊗n−1 ⊗ |v〉〈v|

)
= ρ′1 ⊗ |v〉〈v|. (3.27)

The SWAP(n,n+1) gate moves |v〉 in Equation 3.27 to position n+ 1 and brings |0〉

to position n, achieving ρ′ = C2 (ρ′1 ⊗ |0〉〈0|)C
†
2. The other case is similar except

we insert a CNOT before SWAP:

C1 =
(
C2 ⊗ I

)(
I⊗n−1 ⊗ CNOT(n,n+1)

)(
I⊗n−1 ⊗ SWAP(n,n+1)

)(
C3 ⊗ I

)
. (3.28)

Projecting with h ⊗ Z on ρ ⊗ |0〉〈0| has the same effect as projecting with h ⊗ I,

so we basically still apply (I⊗n−1 ⊗ |v〉〈v|)C3 like before. Since qubit n is |0〉 after

the SWAP gate, the CNOT changes nothing, and the outcome is the same.

Therefore one of the two conditions hold.

A trivial example of the second scenario in Lemma 3 is C1 = I⊗n−1 ⊗ SWAP(n,n+1).

This suggests we may exchange (C1, v) for a postselected n-to-(n − 1) stabilizer circuit

to generate ρ′1 from ρ. Starting in Chapter 4, we further examine postselected stabilizer

circuits that yield a single qubit output.

46

Postselected Stabilizer Circuits Chapter 3

3.4 Summary

We proved some nice features about postselected stabilizer circuits. The Clifford

equivalence condition of Lemma 2 is especially helpful when we take a detailed look at

two-qubit stabilizer circuits in the next chapter.

47

Chapter 4

Two-qubit Stabilizer Circuits with
Recovery

We have so far mentioned some general properties of postselected stabilizer circuits, but

none of which offer anything specific to help us resolve our resource concerns. That

being said, let us now focus exclusively on two-qubit stabilizer circuits with one Z-

measurement, the smallest quantum circuit available for producing qubits not possible by

Clifford unitaries only. Because the set of stabilizer states is closed under Clifford group

operations, we furthermore assume circuit inputs of non-stabilizer qubits only to produce

other, more diverse non-stabilizer qubits. Our intent is to explore these processes from a

different angle, outside the realm of state distillation, and simply examine their behavior

on more arbitrary non-stabilizer inputs. Only by understanding how a stabilizer circuit

responds to such qubits may we gain better insight into formulating an effective strategy

for resource management. We will soon discover that despite limiting the problem size

to a mere two qubits, we encounter some encouraging ideas that are worth pursuing in

larger settings.

With this in mind, we start by refining some implementation details initially provided

by Reichardt [61] to identify three configurations characterizing all postselected two-to-

one stabilizer circuits. These three forms suggest that in addition to Pauli measurements

48

Two-qubit Stabilizer Circuits with Recovery Chapter 4

and postselection, single qubit Clifford gates and at most one CNOT or SWAP are enough

to realize any such procedure acting on two qubits. When the input set is further confined

to certain product states, we discover an interesting connection between stabilizer circuits

of the single CNOT variety: there are “recovery circuits” that can recuperate a product

state input qubit from a corrupted stabilizer circuit output qubit. At the end of the

chapter, we prove Theorem 3, which informally states the following: any postselected

two-to-one stabilizer circuit (C, v) realizable by one CNOT has recovery circuits, and

that all such recovery circuits of (C, v) are equivalent to one-and-another.

4.1 Notation and Conventions

Before continuing, we establish some conventions for use here and in the few chapters

ahead. Given the scale of our circuits, we let I stand for the single qubit identity,

CNOT = CNOT(1,2), and SWAP = SWAP(1,2). Once we start the discussion on recovery

circuits, we use the symbol ψ as a convenient substitute for the density matrix |ψ〉〈ψ|.

This results in more elegant notation overall. Given a postselected two-to-one stabilizer

circuit (C, v), at times we may say run circuit C, which translates to an application of

the unitary C on a two-qubit input ρ, followed by one Z-measurement on the second

qubit. This is often followed by details on what course of action to take condition on v

(or otherwise not v). The term circuit C thus references the stabilizer circuit piece only

of the postselected circuit, including the measurement at the end.

4.2 Postselected Two-to-One Stabilizer Circuits

While there are many two-qubit Clifford gates (|C(2)| = 11520) relative to the input

size (n = 2), the number of actual circuits we need to consider is 30 [61]. The reason

49

Two-qubit Stabilizer Circuits with Recovery Chapter 4

C
Z v

(a)

ρ

{
C

ϕ

Z v

(b)

Figure 4.1: (a) A postselected two-to-one stabilizer circuit (C, v) consists of a stabilizer
circuit component C that ends with one Z-measurement, and a postselected bit value
v. (b) The qubit ϕ = Φv(C, ρ) is the output of a postselected two-to-one stabilizer
circuit (C, v) on the two-qubit input ρ.

is a natural consequence of Lemma 2. More precisely, it states that two postselected

stabilizer circuits (C1, v1) and (C2, v2) are Clifford equivalent if

C†1 (I ⊗ |v1〉〈v1|)C1 = Π = C†2 (I ⊗ |v2〉〈v2|)C2. (4.1)

Since |v1| = |v2| = 1 in this situation, our operator Π involves exactly one projector:

Π =
I ⊗ I + s

2
(4.2)

where s is a two-qubit Pauli operator. We have 15 unique possibilities for s, and 30

different two-to-one circuits total after accounting for the bit. As such, we can introduce

three forms in the following theorem to represent all two-to-one circuits (C, v).

Theorem 2 (van Dam and Wong [69], Lemma 4) For each postselected two-to-one

stabilizer circuit (C, v), there are single qubit Clifford gates G1 and G2 such that either

1. (C, v) ∼ (I ⊗G1, 0)

2. (C, v) ∼ ((I ⊗G1)SWAP, 0)

3. (C, v) ∼ (CNOT(G1 ⊗G2), 0).

50

Two-qubit Stabilizer Circuits with Recovery Chapter 4

Proof: First, a Clifford equivalence (C1, v1) ∼ (C2, v2) is invariant with respect to

Clifford circuits that execute prior to the gates C1 and C2 i.e. (C1, v1) ∼ (C2, v2) if and

only if (C1U, v1) ∼ (C2U, v2) for any Clifford unitary U . We partition the 15 nontrivial

Pauli operators into the following sets:

PA = { g1 ⊗ g2 | g1, g2 ∈ {X, Y, Z}} (4.3)

PB = { I ⊗X, I ⊗ Y, I ⊗ Z } (4.4)

PC = {X ⊗ I, Y ⊗ I, Z ⊗ I }. (4.5)

We look at g = Z ⊗ Z first. Suppose there is a bit v′ such that

CgC† = (−1)v
′
I ⊗ Z. (4.6)

Knowing CNOT (Z ⊗ Z) CNOT† = I ⊗ Z, we obtain

(C, v) ∼ (CNOT, v + v′ mod 2) (4.7)

by Lemma 2. For the remaining two-qubit Pauli operators g ∈ PA, suppose CgC† =

±I ⊗ Z. Choose single qubit Clifford gates G1 and G2 such that

(G1 ⊗G2)g(G†1 ⊗G
†
2) = Z ⊗ Z. (4.8)

Define C ′′ = C(G†1 ⊗G
†
2). Then C ′′(Z ⊗ Z)C ′′† = (−1)v

′
I ⊗ Z for some bit v′. The rest

follows from previous arguments to conclude

(C ′′(G1 ⊗G2), v) = (C, v) ∼ (CNOT(G1 ⊗G2), v + v′ mod 2). (4.9)

51

Two-qubit Stabilizer Circuits with Recovery Chapter 4

G1 • G3

G2 Z 0

(a)

G1

G2 Z 0

(b)

× G1

× G2 Z 0

(c)

Figure 4.2: Any postselected two-to-one stabilizer circuit (C, v) may be represented
by another resembling circuit (a), circuit (b), or circuit (c). The choice of single qubit
Clifford gates G1, G2, and G3 depend on the Clifford gate C and bit value v.

For the operator I ⊗ Z ∈ PB, assume C (I ⊗ Z)C† = (−1)v
′
I ⊗ Z. Then (C, v) ∼

(I ⊗ I, v+ v′ mod 2). Coverage of the remaining five Pauli operators from PB and PC is

similar to the above.

To finish, suppose (C, v) ∼ (I ⊗ G, v + v′ mod 2), where G is a single qubit Clifford

gate. If v + v′ mod 2 = 1, then (C, v) ∼ (I ⊗ G, 1) ≡ (I ⊗XG, 0). The same reasoning

applies when (C, v) ∼ ((I ⊗ G)SWAP, 1). If (C, v) ∼ (CNOT(G1 ⊗ G2), 1), then we

include (I ⊗X)CNOT(G1⊗G2) = CNOT(G1⊗XG2). The other case v+ v′ mod 2 = 0

follows directly from Lemma 2.

Corollary 1 Let (Ceq, veq) ∼ (C, v). Then (C, 1 − v) is Clifford equivalent to a slightly

modified version (C ′eq, v
′
eq) of (Ceq, veq):

(Ceq, veq) ∼ (C, v) (C ′eq, v
′
eq) ∼ (C, 1− v)

(I ⊗G1, 0) (I ⊗XG1, 0)

((I ⊗G1)SWAP, 0) ((I ⊗XG1)SWAP, 0)

(CNOT(G1 ⊗G2), 0) ((I ⊗X)CNOT(G1 ⊗G2), 0)

(4.10)

Due to Theorem 2, we have a remarkably much easier time studying two-to-one

circuits. We may substitute (C, v) with another that likely uses fewer gates but behaves

in exactly the same way. Because there are many identities on Pauli operators and

52

Two-qubit Stabilizer Circuits with Recovery Chapter 4

Clifford gates, G1 and G2 are not unique. For example,

((CNOT(Z ⊗ I), 0) ≡ ((Z ⊗ I)CNOT, 0) ∼ (CNOT, 0). (4.11)

Of the 30 postselected circuits that we observed, it is easy to see that there are 18 varieties

of (CNOT(G1 ⊗ G2), 0), and 6 each for (I ⊗ G1, 0) and ((I ⊗ G1)SWAP, 0). If we want

to separate the circuits by the stricter kind of equivalence “≡”, the number of classes

is multiplied by 24 e.g. 18 · 24 = 432 for ((G3 ⊗ I)CNOT(G1 ⊗ G2), 0), since there are

|C(1)| = 24 choices of G3.

4.3 Two-qubit Recovery Circuits

For any quantum circuit involving measurements, there is usually one subset of out-

comes that is preferred more than others. If we are less than fortunate, convention

dictates that we discard the output and rerun the circuit on new input instances until

we succeed. This is not much of an issue when the overhead to prepare more initial state

copies is low, but can become problematic otherwise. If the cost associated with state

preparation is a barrier to large computations, any method that alleviates this burden

is highly desirable. It turns out when our two-qubit input ρ is a tensor product state,

i.e. ρ = ϕ⊗ |ψ〉〈ψ|, we have an alternative: there exist operations capable of reusing an

undesirable output to try and recovery ϕ.

This input selection also means the only configuration worth considering from Theo-

rem 2 is (CNOT(G1⊗G2), 0); the other two arrangements lead to rather trivial outputs.

We can easily see that when (C, v) ∼ (I ⊗ G1, 0), the output of (C, v) on ϕ1 ⊗ ϕ2 is

essentially ϕ1. The output is always an input, and the same is similarly true for all

postselected circuits (C, v) ∼ ((I ⊗G1)SWAP, 0).

53

Two-qubit Stabilizer Circuits with Recovery Chapter 4

Definition 6 (Interacting Postselected Stabilizer Circuit) A postselected two-to-

one stabilizer circuit (C, v) is interacting if and only if there are single qubit Clifford gates

G1 and G2 such that (C, v) ∼ (CNOT(G1 ⊗ G2), 0). We say circuit C is interacting if

and only if (C, 0) is interacting.

With that, we define the notion of a recovery circuit.

Definition 7 (Recovery Circuit) Let (C, v) be an interacting postselected stabilizer

circuit. Then a postselected two-to-one stabilizer circuit (C ′, v′) is a recovery circuit of

(C, v) if and only if for all two-qubit states ϕ⊗ ψ, we have

ϕ = Φv′ (C
′,Φ1−v(C,ϕ⊗ ψ)⊗ ψ) . (4.12)

Notice that the first input qubit to (C ′, v′) is the output of (C, 1−v) on ϕ⊗ψ. In this

context, since we are targeting v instead of 1−v, then we say circuit C is successful upon

measuring v on the second qubit of C (ϕ⊗ ψ)C†. Otherwise circuit C is unsuccessful,

and the recovery circuit provides a second chance at obtaining the output of (C, v) on

ϕ⊗ψ. Assuming |ψ〉 is relatively cheaper to prepare than ϕ, the presumption is that an

implementation of C ′ is much simpler to pursue than the initialization process of ϕ. Our

next lemma presents one way on how to design such a recovery circuit to (C, v).

Lemma 4 Every interacting postselected stabilizer circuit (C, v) has a recovery circuit.

Proof: Let (C, v) ∼ (CNOT(G1 ⊗G), 0), where G1 and G are single qubit Clifford

gates. By Corollary 1, we know

(C, 1− v) ∼ ((I ⊗X)CNOT(G1 ⊗G), 0) ≡ (CNOT(G1 ⊗G), 1) (4.13)

54

Two-qubit Stabilizer Circuits with Recovery Chapter 4

which means there is a single qubit Clifford gate G2 such that

(C, 1− v) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗G), 1). (4.14)

We shall show that ((G†1⊗ I)CNOT(G2⊗G), 0) is a recovery circuit of (C, v). Figure 4.3

includes reference diagrams to aid comprehension.

If ϕ1 ⊗ ψ is the initial state, consider ϕ′1 ⊗ ψ′ = G1ϕ1G
†
1 ⊗GψG†. Let (x1, y1, z1) be

the Bloch vector of ϕ′1 and (x, y, z) be the Bloch vector of |ψ′〉. For ease of notation, we

define symbols

ϕ′2 = Φ1(CNOT, ϕ′1 ⊗ ψ′) (4.15)

ϕ2 = G†2ϕ
′
2G2 = Φ1−v(C,ϕ1 ⊗ ψ). (4.16)

Then the Bloch vector (x2, y2, z2) of ϕ′2 becomes

x2 =
x1x+ y1y

1− z1z
, y2 =

y1x− x1y

1− z1z
, z2 =

z1 − z
1− z1z

. (4.17)

Now suppose ϕ3 = Φ0(CNOT(G2 ⊗ G), ϕ2 ⊗ ψ). For postselected stabilizer circuits

that basically apply a single CNOT, the equations for computing the output’s Bloch

vector are essentially the same:

x3 =
x2x− y2y

1 + z2z
, y3 =

y2x+ x2y

1 + z2z
, z3 =

z2 + z

1 + z2z
, (4.18)

where (x3, y3, z3) represents the Bloch vector of ϕ3. Using x2 + y2 + z2 = 1, we can show

x3 =
x1x

2 + xy1y − xy1y + x1y
2

1− z1z + z1z − z2
= x1. (4.19)

55

Two-qubit Stabilizer Circuits with Recovery Chapter 4

ϕ1 G1 ϕ′1 • ϕ′2 G†2 ϕ2

|ψ〉 G |ψ′〉 Z 1

(a)

ϕ2 G2 • G†1 ϕ1

|ψ〉 G Z 0

(b)

Figure 4.3: Suppose (C, 1−v) ≡ ((G†2⊗I)CNOT(G1⊗G), 1). This equivalence allows
us to study (C, 1−v) via its substitute in (a) and come up with the recovery circuit in

(b). We include intermediate states like ϕ′1 and ϕ′2 = G2ϕ2G
†
2 in (a) to signify stages

in the circuit.

Likewise, y3 = y1 and z3 = z1, which means ϕ3 = ϕ′1 = G1ϕ1G
†
1. The postselected

stabilizer circuit ((G†1 ⊗ I)CNOT(G2 ⊗G), 0) is therefore a recovery circuit of (C, v).

Between (C, v) and its recovery circuit (C ′, 0), where C ′ = (G†1 ⊗ I)CNOT(G2 ⊗G),

there is a relatively straightforward relationship between the probability that circuit C

would have been successful and the probability that circuit C ′ will be successful.

Corollary 2 Let ϕ1 ⊗ ψ be a two-qubit state and let C ′ = (G†1 ⊗ I)CNOT(G2 ⊗ G)

be a two-qubit Clifford unitary such that (C ′, 0) is a recovery circuit of an interacting

postselected stabilizer circuit (C, v). Then

Q0(C ′,Φ1−v(C,ϕ1 ⊗ ψ)⊗ ψ) =
(1− z2)/4

1−Qv(C,ϕ1 ⊗ ψ)
(4.20)

where z = 〈ψ|G†ZG |ψ〉.

Proof: We assume for simplicity that C = CNOT and v = 0, which implies

G1 = G2 = G = I. Let z1 = tr(Zϕ1) and z = 〈ψ|Z |ψ〉. Also let ϕ2 = Φ1(C,ϕ1 ⊗ ψ).

Then the probability of not observing v = 0 is

Q1(C,ϕ1 ⊗ ψ) =
1− z1z

2
. (4.21)

56

Two-qubit Stabilizer Circuits with Recovery Chapter 4

From what we saw in Lemma 4, we know that the Bloch vector z-component of ϕ2 is

z2 = tr(Zϕ2) =
z1 − z
1− z1z

. (4.22)

The probability of recovering ϕ1 is now clear:

Q0(C ′, ϕ2 ⊗ ψ) =
1 + z2z

2
=

1− z1z + z1z − z2

4
(

1−z1z
2

) (4.23)

=
(1− z2)/4

1−Q0(C,ϕ1 ⊗ ψ)
(4.24)

since the circuits perform a single measurement.

Another implication of the proof to Lemma 4 is that Φ1−v(C,ϕ1 ⊗ ψ) is the same as

ϕ1, up to a single qubit Clifford gate, whenever |ψ〉 is an eigenstate of the Pauli X, Y , or

Z matrix (a stabilizer qubit). This is simply a special case of Lemma 3 from Chapter 3.

Since the behavior of (C, v) under these circumstances is no different than non-interacting

circuits, it does not warrant the use of circuit C ′ = (G†1 ⊗ I)CNOT(G2 ⊗ G) to try and

perform a recovery. It is also quite evident by now that there is only one type of recovery

circuit, especially given our construction in Lemma 4.

Lemma 5 All recovery circuits are interacting postselected stabilizer circuits.

Proof: Let (C, v) be an interacting postselected stabilizer circuit. Suppose (C ′, v′)

is a recovery circuit of (C, v) but is not interacting. Then (C ′, v′) is Clifford equivalent to

some postselected stabilizer circuit (I ⊗ G, 0) or ((I ⊗ G)SWAP, 0), where G is a single

qubit Clifford gate. In both cases, we can easily find a two-qubit state ϕ ⊗ ψ such that

(C ′, v′) fails to recover ϕ on the input Φ1−v(C,ϕ⊗ ψ)⊗ ψ.

We should mention that Lemma 4 promises existence of a recovery circuit but gave no

guarantees about uniqueness. Moving forward, we want to prove that all recovery circuits

57

Two-qubit Stabilizer Circuits with Recovery Chapter 4

of an interacting postselected circuit (C, v) are equivalent with one another. This way,

we dispel concerns that one amongst many has a better chance of succeeding than the

others. We start by showing a basic fact about any two recovery circuits of (C, v).

Lemma 6 Let (C1, v1) and (C2, v1) be recovery circuits of an interacting postselected

stabilizer circuit (C, v). Then

C†1(I ⊗ |v1〉〈v1|)C1 = C†2(I ⊗ |v2〉〈v2|)C2. (4.25)

Proof: It is easier to prove the contrapositive: we show the recovery by (C2, v2) will

fail on one particular pair of qubits ϕ2 and |ψ〉, although many exists that are equally as

good. Let

Π2 = C†2(I ⊗ |v2〉〈v2|)C2 =
I ⊗ I + s

2
(4.26)

be a projection operator, where s = s1⊗ s2 ∈ P(2) is a two-qubit Pauli operator with an

overall factor ±1, and neither s1 = I nor s2 = I. Let g, h ∈ P(2) also be two-qubit Pauli

operators with factors ±1 such that [s, g] = 0 (they commute) and s = gh. The qubits

ϕ2 and |ψ〉 we choose shall have Bloch vectors

ϕ2 : (x2, y2, z2) =

(√
2

17
,

√
5

17
,

√
10

17

)
(4.27)

|ψ〉 : (x, y, z) =

(√
1

11
,

√
3

11
,

√
7

11

)
. (4.28)

Let ϕ1 be a qubit so that ϕ2 = Φ1−v(C,ϕ1 ⊗ ψ). Let ϕ′1 = Φv2(C2, ϕ2 ⊗ ψ).

To prove the recovery by (C2, v2) will fail, we merely need to verify that the Bloch

vector of ϕ′1 resulting from all 18 choices of s are different, which implies ϕ′1 6= ϕ1

58

Two-qubit Stabilizer Circuits with Recovery Chapter 4

whenever C†1(I ⊗ |v1〉〈v1|)C1 6= Π2. This job requires us to track the three coefficients

cs = tr (s (ϕ2 ⊗ ψ)) , cg = tr (g (ϕ2 ⊗ ψ)) , ch = tr (h (ϕ2 ⊗ ψ)) . (4.29)

Performing a projection Π2 on the two-qubit state ϕ2 ⊗ ψ leads to

tr (Π2 (ϕ2 ⊗ ψ) Π2) =
1 + cs

2
, (4.30)

tr (gΠ2 (ϕ2 ⊗ ψ) Π2) =
cg + ch

2
. (4.31)

Renormalizing by (1 + cs)/2 yields the following as a Bloch vector component of ϕ′1:

v =
cg + ch
1 + cs

. (4.32)

We need to substitute in values for cs, cg, and ch to prove our assertion. The most

convenient choices for g and h are two-fold tensor products with one identity matrix e.g.

s = −Z ⊗ Z, g = Z ⊗ I, h = −I ⊗ Z, and s = X ⊗X, g = X ⊗ I, h = I ⊗X, and etc.

This selection means cs = cgch. If we look at the coefficients from the first example with

s = −Z ⊗ Z, then cg = z2 and ch = −z. We get the following components v for each

possibility of s:

s cs g cg h ch v

X ⊗X x2x X ⊗ I x2 I ⊗X x 0.5841

X ⊗ Y x2y X ⊗ I x2 I ⊗ Y y 0.7338

X ⊗ Z x2z X ⊗ I x2 I ⊗ Z z 0.8957

Y ⊗X y2y Y ⊗ I y2 I ⊗X x 0.7252

Y ⊗ Y y2y Y ⊗ I y2 I ⊗ Y y 0.8296

59

Two-qubit Stabilizer Circuits with Recovery Chapter 4

(continuation of table):

s cs g cg h ch v

Y ⊗ Z y2z Y ⊗ I y2 I ⊗ Z z 0.9354

Z ⊗X z2x Z ⊗ I z2 I ⊗X x 0.8678

Z ⊗ Y z2y Z ⊗ I z2 I ⊗ Y y 0.9205

Z ⊗ Z z2z Z ⊗ I z2 I ⊗ Z z 0.9708

−X ⊗X −x2x X ⊗ I x2 −I ⊗X −x 0.0463

−X ⊗ Y −x2y X ⊗ I x2 −I ⊗ Y −y −0.2183

−X ⊗ Z −x2z X ⊗ I x2 −I ⊗ Z −z −0.6260

−Y ⊗X −y2x Y ⊗ I y2 −I ⊗X −x 0.2879

−Y ⊗ Y −y2y Y ⊗ I y2 −I ⊗ Y −y 0.0280

−Y ⊗ Z −y2z Y ⊗ I y2 −I ⊗ Z −z −0.4501

−Z ⊗X −z2x Z ⊗ I z2 −I ⊗X −x 0.6055

−Z ⊗ Y −z2y Z ⊗ I z2 −I ⊗ Y −y 0.4083

−Z ⊗ Z −z2z Z ⊗ I z2 −I ⊗ Z −z −0.0792

Neither are any of the values v the same if we multiple each one by −1, which may come

about from an application of a single qubit Pauli gate on ϕ′1. Thus (C2, v2) is not a

recovery circuit if Equation 4.25 does not hold.

With Lemma 6 in place, we can now guarantee that not any one recovery circuit will

outperform another.

Lemma 7 Let (C, v) be an interacting postselected stabilizer circuit, and let

C ′′ = (G†1 ⊗ I)CNOT(G2 ⊗G) (4.33)

60

Two-qubit Stabilizer Circuits with Recovery Chapter 4

be a two-qubit Clifford unitary such that

(C, 1− v) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗G), 1). (4.34)

Then (C ′, v′) is a recovery circuit of (C, v) if and only if (C ′, v′) ≡ (C ′′, 0).

Proof: In the reverse direction, equivalence of postselected stabilizer circuits means

both produce the exact same output at the same success rate for all two-qubit states ρ.

This certainly includes all two-qubit product states ϕ2 ⊗ ψ, where ϕ2 is the output of

(C, 1− v) on another input ϕ1 ⊗ ψ.

In the forward direction, Lemma 2 and Lemma 6 do most of the work: (C ′, v′) ∼

(C ′′, 0). We just need to prove equivalence with “≡”. We look back at the definition

of Clifford equivalent postselected stabilizer circuits, where we must have a single qubit

Clifford gate G′ such that

(I ⊗ 〈v′|)C ′ρC ′†(I ⊗ |v′〉) = (G′ ⊗ 〈0|)C ′′ρC ′′†(G′† ⊗ |0〉) (4.35)

for all two-qubit states ρ. If it is indeed the case that they are strictly Clifford equivalent

i.e. G′ 6= I, then (C ′, v′) cannot have been a recovery circuit of (C, v) because the output

from (C ′, v′) on ρ will be rotated by G′. Thus the two must be equivalent (with “≡”).

From Lemmas 4 and 7, we reach the second main result of this chapter.

Theorem 3 (van Dam and Wong [69], Thm. 12) For each interacting postselected

stabilizer circuit (C, v), there is a recovery circuit (C ′, v′) of (C, v). Moreover, all recovery

circuits of (C, v) are equivalent to (C ′, v′).

Corollary 3 Every recovery circuit (C ′, v′) has its own recovery circuit (C ′′, v′′). Fur-

thermore, there exist recovery circuits of (C ′, v′) such that v′′ = v′.

61

Two-qubit Stabilizer Circuits with Recovery Chapter 4

Proof: The first claim is a given since recovery circuits are interacting postselected

stabilizer circuits themselves by Lemma 5. If the initial recovery circuit (C ′′, v′′) we

construct already satisfies v′′ = v′, then we are done. Otherwise, v′′ = 1−v′, so (C ′′, v′′) ≡

((I ⊗X)C ′′, v′).

4.4 Example Routines Featuring Recovery Circuits

Recovery circuits appear in the literature, where the most prominent use case for our

recovery technique is a state injection process to implement non-Clifford operations. For

instance, the programmable ancilla rotation (PAR) of [41] uses qubits of the type

|θ〉 =
|0〉+ eiθ |1〉√

2
(4.36)

and an interacting circuit CNOT to rotate |q〉 = α |0〉+β |1〉 about the Z-axis by an angle

θ. This is demonstrated in Figure 4.4a. On the chance that the Z-measurement returns

1, then instead of |q + θ〉 = α |0〉+eiθβ |1〉, the output becomes |q − θ〉 = α |0〉+e−iθβ |1〉,

which is |q〉 rotated by −θ. Jones et. al [41] suggest pairing |q − θ〉 with |2θ〉 as a direct

line to |q + θ〉, but we can alternatively break this down into two smaller steps if |θ〉 are

the only states available. We first run the CNOT circuit on |q − θ〉 ⊗ |θ〉. If we measure

0, then we recover |q〉, and we proceed with rerunning circuit CNOT on |q〉 ⊗ |θ〉.

The method by Duclos-Cianci and Svore [26] is similar. The idea is to use the same

interacting circuit CNOT to first generate “ladder” qubit states of the kind

|Hi〉 = cos (γi) |0〉+ sin (γi) |1〉 , cot (γi) = coti+1 (π/8) (4.37)

for i ≥ 0, then inject the “ladder” qubits into a similar circuit to perform phase rotations

on some qubit |q〉. The production starts by supplying two copies of the magic state

62

Two-qubit Stabilizer Circuits with Recovery Chapter 4

α |0〉+ β |1〉 • α |0〉+ eiθβ |1〉

|θ〉 = |0〉+eiθ|1〉√
2

Z 0

(a)

|Hi〉 • |Hi+1〉

|H0〉 Z 0

(b)

Figure 4.4: The postselected stabilizer circuit (CNOT, 0) appears in both [26] and
[41], with each one supplying a different input set to circuit CNOT. The qubit |H0〉
in (b) is the +1 eigenstate of the H gate, and the process of generating |Hi+1〉 in [26]
starts with |H0〉 ⊗ |H0〉. For (a), a qubit |θ〉 leads to a +θ rotation about the z-axis
on the first qubit α |0〉+ β |1〉 upon measuring 0.

|H0〉 = H |H0〉 to the CNOT circuit in Figure 4.4b. Each time we gain a new state |Hi〉,

we can reuse the qubit in an attempt to create the next |Hi+1〉. If the attempt fails,

then the output of (CNOT, 1) on |Hi〉 ⊗ |H0〉 is |Hi−1〉. Given that the recovery circuit

of (CNOT, 0) is itself, the method to recover |Hi〉 from |Hi−1〉⊗ |H0〉 is no different than

the procedure to create it.

In addition to pure qubits, our notation for the two-qubit state ϕ ⊗ ψ throughout

the previous section indicates that ϕ is allowed to be mixed, and it can even be part of

a larger entangled system. As a quick demonstration, suppose we have the situation as

illustrated in Figure 4.5a. Let (C ′, v′) be a recovery circuit of (C, v) and let

UρU † =
1

2n
(PI ⊗ I + PX ⊗X + PY ⊗ Y + PZ ⊗ Z) (4.38)

where PL are Pauli operator sums on the first n− 1 qubits. While the proof to Lemma 4

is generalizable to include the unused portions PL of the entangled state, the math is

simpler and works out the same if we trace out the first n − 1 qubits, keeping only the

last qubit ϕ = tr1,n−1

(
UρU †

)
that we need for the two-qubit circuit. If we are unlucky,

then qubit n becomes ϕ′ = Φ1−v(C,ϕ ⊗ ψ), but we can try to regain ϕ by executing

circuit C ′ on ϕ′ ⊗ ψ. If the recovery is successful, then we have another opportunity at

the output Φv(C,ϕ ⊗ ψ). In all likelihood, this is a less lengthy process than preparing

63

Two-qubit Stabilizer Circuits with Recovery Chapter 4

Uρ

...
...

ϕ
C

|ψ〉 Z v



(a)

ϕ
C

ϕ′

|ψ〉 Z 1− v

ϕ′

C ′
ϕ

|ψ〉 Z v′

(b)

Figure 4.5: Recovery circuits also work when one of the qubits is entangled with
another system. In (a), we trace out all but the nth qubit of UρU † to get ϕ ⊗ ψ as
input to circuit C. If we measure 1− v as pictured in the top circuit of (b), then we
execute circuit C ′ on ϕ′⊗ψ to try and recover ϕ. We succeed with the recovery if we
measure v′.

another copy of ρ and running the circuit of U again; by some estimates, a synthesis of

U over a universal gate set may require an exponential number of gates [32]. This is a

stark contrast to C ′, which consists of one CNOT possibly surrounded by some single

qubit Clifford gates.

4.5 Summary

We have shown that two-qubit stabilizer circuits require nothing more than a few

Clifford gates to perform a job. These simplifications shed light into the reciprocal

nature between interacting circuits. Despite measurements generally being irreversible,

we find an exception when handling a two-qubit product state ϕ ⊗ ψ. That is, we can

use a pure qubit |ψ〉 in conjunction with a specific circuit to salvage the resource qubit

ϕ. In the next chapter, we follow-up on Corollary 3 and extended the recovery procedure

given here to employ multiple recovery circuits.

64

Chapter 5

Extending the Recovery for
Two-qubit Stabilizer Circuits

Recovery circuits are attractive because they describe a simple manner in which we

may “invert” a two-qubit stabilizer operation on non-stabilizer qubits ϕ and ψ. Be

that as it may, recovery circuits are not perfect: the nature of our “inverse” operation

means that a successful recovery is not guaranteed on every try. On such occasions, we

have two choices: stop and reset, or proceed with a secondary recovery attempt on the

output of the unsuccessful recovery trial. If the subsequent effort is successful, then we

rerun our primary recovery operation; if not, then we are once again left with the same

predicament. Based on this observation, we may stitch together multiple circuit layers to

form one nested recovery protocol that extends the lifetime of the recovery process. Due

to the way our protocol is structured, we show in Theorem 4 that the circuits’ recovery

success rates are recursively related. We conclude with a couple numerical experiments

showcasing the benefits of this technique.

5.1 Nested Recovery Protocol

Let (C1, v1) be a postselected two-to-one stabilizer circuit, and suppose we want the

output of (C1, v1) on two qubits ϕ1⊗ψ. Then by repeated application of Corollary 3, we

65

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

can derive a depth k protocol on k−1 interacting postselected stabilizer circuits such that

(Ci, vi) is a recovery circuit of (Ci−1, vi−1). The minimum depth value is k = 2, which

stands for a protocol without recovery, and we may assume without loss of generality

a desirable outcome vi = 0 for all k − 1 circuits. Thus when circuit C1 is unsuccessful

i.e. measure the value 1, we fall back on circuit C2. If circuit C2 is also unsuccessful, we

depend on circuit C3, and so on all the way down to circuit Ck−1. In more detail, our

protocol works as follows.

Depth k Nested Recovery Protocol:

1. Prepare the initial two-qubit state ϕ1 ⊗ ψ. Let (C1, 0), . . . , (Ck−1, 0) be interacting

postselected stabilizer circuits such that (Ci, 0) is a recovery circuit of (Ci−1, 0).

2. Run circuit C1 on ϕ1⊗ψ. If we measure 0, then we declare success. Otherwise, let

ϕ2 be the output of (C1, 1) on ϕ1 ⊗ ψ.

3. Run circuit C2 on ϕ2⊗ψ. If we measure 0, then we recover ϕ1 and we repeat step 2.

Otherwise we get the output ϕ3 of (C2, 1) on ϕ2 ⊗ ψ.

4. Repeat step 3 as necessary for other circuits Ci. That is, let ϕi be the output of

(Ci−1, 1) on ϕi−1⊗ψ. Run circuit Ci on ϕi⊗ψ. On measuring 0, the output is ϕi−1

and we rerun circuit Ci−1 on ϕi−1 ⊗ ψ. Otherwise, we move forward with circuit

Ci+1 on ϕi+1 ⊗ ψ.

5. If circuit Ck−1 is unsuccessful on ϕk−1 ⊗ ψ, then we declare failure and stop.

This process is repeated until we secure the target output ϕ0 = Φ0(C1, ϕ1⊗ψ), which

requires preparing a new copy of ϕ1 each time. But by adding more circuits, we prolong

our attempts at gaining ϕ0 while reducing the number of times we rerun the computation

on a new ϕ1. Notice also that the circuit layers are organized in a nested manner, creating

66

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

success C1 Ci−1 Ci Ci+1 Ck−1 fail

L(i) 1− L(i)

Figure 5.1: The behavior of our depth k protocol corresponds to a bounded random
walk over the integers {0, . . . , k} and starts at position 1. The random walk ends upon
reaching 0 or k, with 0 representing success and k representing failure. The transition
from i to i− 1 is the success probability of the ith circuit Ci in the protocol.

a depth k protocol that contains within a depth k − 1 protocol. Since the depth affects

the number of |ψ〉 qubits spent on each invocation, we need to be somewhat prudent with

increasing the depth so as to not render the recovery more expensive than to restart.

Given the description above, we model our depth k protocol as a one-dimensional

random walk on k + 1 integers {0, . . . , k}, starting at location 1. A step onto the left

boundary 0 translates to success, and a step onto the right boundary k indicates failure.

The success probability of circuit Ci is the left step transition probability from position i

to i−1. Movement in either direction consumes one resource qubit |ψ〉. Not surprisingly,

the recovery probability for every circuit C2 to Ck−1 is computable from the first success

probability Q0(C1, ϕ1 ⊗ ψ). The next theorem is an extension of Corollary 2.

Theorem 4 (van Dam and Wong [70], Lemma 7) Let (C1, 0), . . . , (Ck−1, 0) be in-

teracting postselected stabilizer circuits such that (Ci, 0) is a recovery circuit of (Ci−1, 0).

Then given a two-qubit state ϕ1 ⊗ ψ and outputs ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success

probability of circuit Ci is

L(i) = Q0(Ci, ϕi ⊗ ψ) =


Q0(C1, ϕ1 ⊗ ψ) if i = 1

(1− z2)/4

1− L(i− 1)
if i ∈ {2, . . . , k − 1}

(5.1)

where z ∈ {〈ψ|X |ψ〉 , 〈ψ|Y |ψ〉 , 〈ψ|Z |ψ〉}.

67

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

Proof: We primarily need to explain why the numerator stays the same at every

step i, since we can infer the form from Equation 4.20 of Corollary 2. Suppose

(C1, 1) ≡ ((G†2 ⊗ I)CNOT(G1 ⊗G), 1) (5.2)

where G, G1, and G2 are single qubit Clifford gates. This means we have equivalences

(C1, 0) ∼ (CNOT(G1 ⊗G), 0) (5.3)

(C2, 0) ≡ ((G†1 ⊗ I)CNOT(G2 ⊗G), 0). (5.4)

Next, there is a Clifford gate G3 such that (C2, 1) ≡ ((G†3 ⊗ I)CNOT(G2 ⊗G), 1), which

then implies (C3, 0) ≡ ((G†2 ⊗ I)CNOT(G3 ⊗G), 0). Continuing in this manner, we find

single qubit Clifford gates Gi and G†i+1 satisfying

(Ci, 1) ≡ ((G†i+1 ⊗ I)CNOT(Gi ⊗G), 1) (5.5)

(Ci+1, 0) ≡ ((G†i ⊗ I)CNOT(Gi+1 ⊗G), 0) (5.6)

for all i ≥ 1. We study the effects of each postselected circuit (Ci, 1) on ϕi ⊗ ψ and

(Ci+1, 0) on ϕi+1 ⊗ ψ via the equivalent postselected circuits just described.

Consider the qubits |ψ′〉 = G |ψ〉 and ϕ′i = GiϕiG
†
i . From our Gi+1 selection, this

means that

ϕ′i+1 = Φ1(CNOT, ϕ′i ⊗ ψ′) = Gi+1ϕi+1G
†
i+1 (5.7)

ϕ′i = Φ0(CNOT, ϕ′i+1 ⊗ ψ′). (5.8)

Observe that both gates Gi and G†i+1 to the control qubit in ((G†i+1⊗I)CNOT(Gi⊗G), 1)

are always neutralized by the recovery circuit ((G†i ⊗ I)CNOT(Gi+1 ⊗ G), 0). In other

68

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

words, at each step i, we always apply CNOT on qubits ϕ′i and |ψ′〉 as if the rotations

by Gi and G†i+1 never took place. In Chapter 4, we saw (C1, 0) ∼ (CNOT(G1 ⊗ G), 0)

and (C2, 0) ∼ (CNOT(G2 ⊗ G, 0) pave the way to Equation 4.20. We apply the same

arguments between (Ci, 0) and (Ci+1, 0) to obtain the recurrence above.

Lucky for us, the form of the success probability equation L(i) in Theorem 4 is a

familiar one in mathematics called a rational difference equation. We shall use this

connection to help us assess the protocol more thoroughly in Chapter 6. Before then, we

narrow the success probability of each circuit Ci to a more specific range.

Corollary 4 Let (C1, 0), . . . , (Ck−1, 0) be interacting postselected stabilizer circuits such

that (Ci, 0) is a recovery circuit of (Ci−1, 0). Then given a two-qubit state ϕ1 ⊗ ψ and

outputs ϕi = Φ1(Ci−1, ϕi−1 ⊗ ψ), the success probability of circuit Ci is bounded above

and below by

1−
√

1− 4λ

2
≤ L(i) = Q0(Ci, ϕi ⊗ ψ) ≤ 1 +

√
1− 4λ

2
(5.9)

where λ =
1− z2

4
and z ∈ {〈ψ|X |ψ〉 , 〈ψ|Y |ψ〉 , 〈ψ|Z |ψ〉}.

Proof: Assume Ci = CNOT for simplicity. Then z = 〈ψ|Z |ψ〉 and zi = tr(Zϕi).

This gives

1− |z|
2

≤ L(i) =
1 + ziz

2
≤ 1 + |z|

2
(5.10)

since zi ∈ [−1, 1]. But we can also say

1 +
√

1− 4λ

2
=

1 + |z|
2

,
1−
√

1− 4λ

2
=

1− |z|
2

(5.11)

which implies the inequality.

69

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

Note that only positive values of λ ≤ 1/4 are relevant under our circumstances because

λ = 0 if z = ±1, which occurs whenever G |ψ〉 = |0〉 or |1〉 prior to CNOT (see proof to

Theorem 4 for greater details about the single qubit Clifford gate G). We have similar

implications when

L(i) =
1 +
√

1− 4λ

2
>

1

2
or L(i) =

1−
√

1− 4λ

2
<

1

2
. (5.12)

Equality with either limit for all i suggests one of the input qubits ϕ1 or |ψ〉 is a stabilizer

state. By Lemma 3, we may exchange the postselected stabilizer circuit (C1, 0) for some

single qubit operation, and the protocol is no longer suitable for this domain. On the other

hand, we cannot completely eliminate the case of λ = 1/4, which causes L(i) = 1/2. This

situation applies to all |ψ〉 qubits belonging to the Bloch sphere equator. We generally

assume that |ψ〉 is not one four single qubit stabilizer states {|+〉 , |−〉 , |+i〉 , |−i〉}.

Finally, observe that with Theorem 4, we may essentially treat our depth k protocol

more abstractly as a sequence of numbers L(1), . . . , L(k − 1), generated entirely by a

recurrence relation L(i) defined on two real values

λ =
1− z2

4
, γ = L(1) = Q0(C1, ϕ1 ⊗ ψ) (5.13)

where z depends on C1 and |ψ〉. The depth k only serves to indicate a stopping point

when generating that sequence, so our protocol is basically controlled by λ, γ, and k.

This observation will come in handy when we present our analysis in Chapter 6.

5.2 Experimentation with Recovery Circuits

Since our depth k protocol behaves like a random walk, we may conduct simulations

of the Markov process to obtain a better estimate for Nk, the expected number of |ψ〉
70

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

resources needed to create one ϕ0 = Φ0(C1, ϕ1⊗ψ). Let d be the cost to prepare a single

instance of ϕ1 relative to the cost of |ψ〉. Then the cost of one trial is the same as d plus

the number of |ψ〉 qubits used before halting, regardless of outcome. The costs from all

trials are tallied and divided by the number of successes to obtain Nk. We compare this

value against the expected cost without recovery, which is simply N2 = (d+1)/L(1). We

assume for the sake of simplicity that C1 = CNOT, which means C2 = CNOT, and so

forth for the other k − 3 circuits.

Another variable that we keep constant is L(1) = 1/2. Since we fix the first success

probability, Nk is dependent on the parameter z = 〈ψ|Z |ψ〉 that appears in the recovery

success rate of Theorem 4. Generally, we need a different ϕ1 with each choice of |ψ〉 to

maintain the same L(1) as well as the same output ϕ0. Usually different ϕ1 means dif-

ferent costs d, but we will ignore this momentarily and assume the preparation overhead

d for each ϕ1 is the same for the purposes of a broader comparison of Nk across different

|ψ〉 resources. In the first set of experiments, we include only one recovery circuit (k = 3).

The following table summarizes the expected costs for four samples of z obtained over

the course of 100000 trials:

d N2 N3 : z =
√

0.96 N3 : z =
√

0.50 N3 : z =
√

0.04 N3 : z = 0

10−1 2.2 3.20 3.18 3.15 3.15

100 4.0 4.99 4.75 4.51 4.50

101 22 22.7 20.5 18.2 18.0

102 202 200.4 177.9 155.1 157.7

103 2002 1988.9 1750.7 1521.9 1498.7

104 20002 19816.4 17488.0 15215.4 14998.7

105 200002 198246.6 174852.6 151946.3 149719.3

The first row with d = 0.1 should be interpreted as ϕ1 being cheaper to create than |ψ〉.

71

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

We clearly see an improvement when factoring in recovery in the face of large relative

preparation overhead between ϕ1 and |ψ〉. We also see a trend of lower costs as z grows

smaller, when |ψ〉 is moving closer to the xy-plane in the Bloch sphere. This is due to

the differences in the recovery success rate at circuit C2, which are 0.02, 0.25, 0.48, and

0.5, respectively.

In the second batch of experiments, we maintain d = 1000 but vary the number of

circuits parameterized by k. Again, L(1) = 1/2 and we run 100000 trials. Data for Nk

is compiled together in the table below, starting with k = 3:

k Nk : z =
√

0.96 Nk : z =
√

0.50 Nk : z =
√

0.04 Nk : z = 0

3 1981.7 1753.2 1522.9 1501.6

4 1982.9 1720.5 1372.2 1336.9

5 1982.4 1716.5 1302.9 1255.2

6 1987.5 1710.9 1266.6 1206.2

7 1982.5 1715.3 1246.7 1174.7

8 1989.2 1714.9 1232.5 1151.5

9 1994.5 1714.6 1224.9 1133.9

10 1991.7 1717.0 1221.5 1120.8

20 2002.5 1727.3 1220.2 1072.9

30 2006.3 1734.6 1231.4 1064.5

40 2023.5 1743.7 1240.8 1066.3

50 2025.6 1762.5 1250.7 1071.4

60 2044.1 1768.7 1255.3 1077.8

Observe that the value of Nk continues to lower noticeably for some of the |ψ〉 cases as

more circuits are added before increasing again. This behavior is no surprise since at some

72

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

Figure 5.2: The success probability between circuit Ci and circuit Ci+1 defined recur-
sively in Theorem 4 drops more dramatically as z moves closer to 1. This leads to a
greater expected cost Nk of our protocol since the recovery is less likely to succeed rel-
ative to other choices of z. On the other end of the spectrum, the success probability
of each circuit Ci is uniform when z = 0.

point, the penalty to sustain the recovery process will exceed the overhead of repeating

the computation. If we look at the success probabilities for the first seven circuits of

the protocol for each of the four z samples in Figure 5.2, we also see the success rates

decrease to some lower boundary as i increases, with the exception of when z = 0. This

is precisely what we predicted in Corollary 4. For the four z values we tested, the lower

bounds are

z =
√

0.96 : 0.0101, z =
√

0.50 : 0.1464, (5.14)

z =
√

0.04 : 0.4, z =
√

0.00 : 1/2. (5.15)

The drop in probabilities from circuit C1 to circuit C3 is quite significant when z is close

to 1 (and 1 − z2 is small), so the chance of recovery at circuit C3 is only slightly larger

than 0. This explains why there is no apparent change in Nk between one recovery

circuit (k = 3) versus two (k = 4) for the case z =
√

0.96. The ideal situation is to know

beforehand how many circuits to include to minimize resource usage.

73

Extending the Recovery for Two-qubit Stabilizer Circuits Chapter 5

5.3 Summary

Using Corollary 3, we derived a depth k protocol that employs up to k− 1 two-qubit

stabilizer circuits to prolong the recovery of an expensive input qubit ϕ1. Experiments

corroborate the belief that as the cost of ϕ1 increases, then so too are the benefits of

this scheme. To further improve on the |ψ〉 resource consumption, we must identify the

optimal nesting depth to minimize the expected cost. Fortunately, the success probability

of each circuit in the protocol can be determined recursively and resembles a rational

difference equation. As such, we are able to deliver a more comprehensive look into the

protocol’s effectiveness in Chapter 6.

74

Chapter 6

Performance Analysis of Nested
Recovery

At this stage, we are confident enough to say that recovery circuits will make a nice

addition to our quantum computational toolkit, but the extent of its impact is not yet

fully known. Validated by the experiments in Section 5.2, we continue the evaluation

of recovery circuits in this chapter. More precisely, we pursue a rigorous examination

of the nested recovery protocol from Chapter 5 to answer questions about its optimal

nesting depth. We do this by modeling our protocol as a bounded random walk with a

special transition function to obtain exact expressions for calculating the expected cost

(Theorem 5). Through our analysis, we learn that for a startup cost d to initialize the

input two-qubit state, that a protocol of depth o(d) is optimal and attains the desired

minimization of resources (Theorem 6). Under this assumption, we discover up to a

factor of two savings is achievable over a protocol that ignores recovery (Theorem 7).

6.1 Prelude to Analysis

To facilitate the presentation of our analysis, recall from Theorem 4 that for our depth

k protocol, that our success probability function L(i) (Equation 5.1) is in fact a rational

difference equation parameterized by two numbers. If ϕ1 ⊗ ψ is the initial two-qubit

75

Performance Analysis of Nested Recovery Chapter 6

state, and (C1, 0) is the first postselected stabilizer circuit in the protocol, then we may

simplify Equation 5.1 by setting

λ =
1− z2

4
, γ = L(1) = Q0 (C1, ϕ1 ⊗ ψ) (6.1)

where z = 〈ψ|G†ZG |ψ〉, and G is a C1 dependent single qubit Clifford gate. Since

the k − 1 probabilities L(1), . . . , L(k − 1) of our protocol can be determined as long as

we know (λ, γ, k), throughout this chapter, we will usually say that an instance of our

protocol is set according to an assignment on these three values.

Being parameters of L(i), there are certain constraints that λ and γ must comply

with in order for the L(i) numbers to be valid probabilities. According to the equations

above, λ must lie between 0 and 1/4. Another way to imagine λ is the amount of

overlap that G |ψ〉 makes with respect to the Bloch sphere xy-plane, rescaled by 1/4,

since 1 − z2 = x2 + y2 for the Bloch vector (x, y, z) of any pure qubit. Knowing λ, we

then need γ to adhere to the conditions that we identified in Corollary 4. We establish

the concept of a probability specification to serve that very purpose, allowing us to

specify a rational difference equation solely with respect to these two values. Formally,

a probability specification is defined as follows.

Definition 8 (Probability Specification and Boundary) Let (λ, γ) be a pair of real

numbers. Given λ, define

α =
1 +
√

1− 4λ

2
, β = 1− α =

1−
√

1− 4λ

2
. (6.2)

Then (λ, γ) is a probability specification if and only if 0 ≤ λ ≤ 1/4 and β ≤ γ ≤ α.

A probability specification is restricted if and only if 0 < λ < 1/4 and β < γ < α. The

values (α, β) are the boundaries of the probability specification.

76

Performance Analysis of Nested Recovery Chapter 6

Before we explain the motivation behind a restricted probability specification, let us

introduce a few convenience functions, as well as detail the version of rational difference

equations that we depend on.

Definition 9 (Intermediate Functions) Let (α, β) be the boundaries of a probability

specification (λ, γ). The following are the intermediate functions of (λ, γ):

A1(i) = αi − βi, B1(i) = A1(i+ 1)− γA1(i), (6.3)

A2(i) = αi + βi, B2(i) = A2(i+ 1)− γA2(i). (6.4)

Definition 10 (Rational Difference Equation (RDE)) Let (λ, γ) be a probability

specification. Then the following is a rational difference equation (RDE) with param-

eters (λ, γ):

L(i) =
λB1(i− 2)

B1(i− 1)
=


γ if i = 1

λ

1− L(i− 1)
otherwise

(6.5)

where B1(i) is an intermediate function of (λ, γ).

There are some obvious yet important qualities that we immediately notice about

RDEs. The proof simply follows from λ = αβ.

Lemma 8 Let (λ, γ) be a probability specification, let (α, β) be its boundaries, and let

L(i) be an RDE with parameters (λ, γ). Then the three statements below are true:

1. if λ = 1/4, then L(i) = β = γ = α = 1/2.

2. if γ = α, then L(i) = α.

3. if γ = β, then L(i) = β.

77

Performance Analysis of Nested Recovery Chapter 6

We have already touched on λ = α > 1/2 and λ = β < 1/2 in Section 5.1. That is

to say, these two cases correspond to situations when either input qubit ϕ1 or |ψ〉 is a

stabilizer state, which yields ϕ1 or |ψ〉 as the output (up to a single qubit Clifford gate).

The same is also true when λ = 0. Hence we define a restricted probability specification

as satisfying both 0 < λ < 1/4 and β < γ < α.

6.2 Expected Cost

To gain a better estimate for the optimal depth, we need to define an expected cost

function that accurately captures the resource requirements of our protocol. There are

essentially three main ingredients to computing the expected cost.

Definition 11 (Success Probability (NRP)) The success probability for a depth k

protocol is the probability of declaring success before declaring failure.

Definition 12 (Startup Cost) Consider a depth k protocol that starts by running cir-

cuit C1 on a two-qubit state ϕ1 ⊗ ψ. Then the startup cost is the cost to prepare one ϕ1

qubit relative to the cost of |ψ〉 qubit.

Definition 13 (Expected Demand) Consider again a depth k protocol that starts by

running circuit C1 on two qubits ϕ1 ⊗ ψ. Then the expected demand is the expected

number of |ψ〉 states used in each execution, regardless of the final success or fail outcome.

That being said, we now give a precise definition of the expected cost. Intuitively, it

expresses the expected number of |ψ〉 qubits utilized before the protocol succeeds.

Definition 14 (Expected Cost (NRP)) The expected cost for a depth k protocol is

N = (d+ s)/p, where d represents the startup cost, p is the protocol’s success probability,

and s is the expected demand.

78

Performance Analysis of Nested Recovery Chapter 6

As we stated earlier, certain combinations of λ and γ bear no significance due to

the kinds of input qubits they imply. Therefore we ignore cases when λ = α > 1/2,

λ = β < 1/2, and λ = 0, where α and β are the boundaries of the probability specification

(λ, γ). This leaves us with two options: (λ, γ) is a restricted probability specification,

and λ = 1/4. The latter of the two means L(i) = β = γ = α = 1/2 and corresponds to a

uniform random walk on the number line. We treat this separate from the more generic,

former situation. In the next lemma, we present the success probability and expected

demand for a protocol in the generic case.

Lemma 9 Let A1(i) and B2(i) be intermediate functions of a restricted probability spec-

ification (λ, γ). Then the success probability for a depth k protocol set to (λ, γ) is

p =
γA1(k − 1)

A1(k)
. (6.6)

The expected demand for a depth k protocol set to the same parameters is

s =
A1(k − 1) (γ − 2λ) + (k − 1)A1(1)B2(k − 1)

(A1(1))2A1(k)
. (6.7)

Proof: The proof follows from Lemma 14 in Appendix Section A.2. To summarize,

we model our protocol as a random walk with an RDE set to (λ, γ) as the transition.

With that in mind, we finally have the pieces necessary to compute the expected cost

for both a restricted (λ, γ) and λ = 1/4.

Theorem 5 (van Dam and Wong [70], Lemma 15) The expected cost for a depth

k protocol with startup cost d and set to a restricted probability specification (λ, γ) is

N(k) =
dA1(k)

γA1(k − 1)
+

(k − 1)B2(k − 1)

γA1(1)A1(k − 1)
+

γ − 2λ

γ (A1(1))2 (6.8)

79

Performance Analysis of Nested Recovery Chapter 6

where A1(i) and B2(i) are intermediate functions of the probability specification (λ, γ).

The expected cost for a protocol with the assignment λ = 1/4 is

N(k) =
k2 + kd− k

k − 1
. (6.9)

Proof: The proof is straightforward from N(k) = (d+s)/p, Lemma 15 in Appendix

Section A.2, and Lemma 9 above.

6.3 Minimizing Expected Cost

We want to find the integer depth kopt ≥ 2 that minimizes the expected cost N(k).

We initially distinguish this from the problem of solving the global minimum Nmin =

min
k≥2

N(k), and finding the real number kmin such that Nmin = N(kmin). Fortunately, there

is evidence to suggest that N(k) has a single critical point. Figures 6.1 and 6.2 show

the expected cost for several protocols set to varying restricted probability specifications

(λ, γ) and startup costs d. The data provides a convincing argument to assume our

expected cost function has one global minimum. This means if we find kmin, we can

easily obtain kopt.

There is good reason to utilizing kopt − 1 max circuits: if the depth is too shallow,

then we are stopping prematurely and not taking full advantage of the recovery option; if

the depth is too deep, then we put more work into performing the recovery than desired.

In the latter event, it is wiser to start over with new copies of ϕ1 and |ψ〉.

6.3.1 Optimal Depth: Generic Case

Given the nature of N(k) from Theorem 5, we devote most of our efforts to answering

kopt for a protocol set to a restricted probability specification (λ, γ). By the end of our

80

Performance Analysis of Nested Recovery Chapter 6

analysis, we propose that kopt scales logarithmically with respect to the startup cost d.

Let (α, β) be the boundaries of (λ, γ). Then the first derivative in its entirety is

N ′(k) = − ln(α/β) ((α− β)2d+ (k − 1)(1− 2γ))λk−1

(α− β) (αk−1 − βk−1)2 γ

+
(αk + βk − γαk−1 − γβk−1)

(α− β) (αk−1 − βk−1) γ
. (6.10)

Seeing how N ′(k) is transcendental, we rely on a combination of numerical and analytical

approaches to justify our claim. A quick look at the limits of N ′(k) reveals the behavior

of N(k) falls within our expectations. That is, observe that the derivative is unbounded

on one side:

lim
k→1+

N ′(k)→ −∞ (6.11)

and that it reaches a constant in the other direction:

lim
k→∞

N ′(k) = lim
k→∞

− ln(α/β) ((α− β)2d+ (k − 1)(1− 2γ))

(α− β)
(

1− (β/α)k−1
)(

(α/β)k−1 − 1
)
γ

+

(
α + (β/α)k−1 β −

(
1 + (β/α)k−1

)
γ
)

(α− β)
(

1− (β/α)k−1
)
γ

=
α− γ

(α− β) γ
> 0 (6.12)

since β < γ < α. This is typical of a function with at least one minimum. If we let

k′ = k − 1 and make some rearrangements, we can rewrite N ′(k) as

N ′(k′) = −
ln(α/β)

(
(α− β)2 d+ (1− 2γ) k′

)
(α− β)

(
1− (β/α)k

′
)(

(α/β)k
′ − 1

)
γ

+
(α− γ) (α/β)k

′
+ (γ − β) (β/α)k

′
− α + β

(α− β)
(

1− (β/α)k
′
)(

(α/β)k
′ − 1

)
γ

. (6.13)

81

Performance Analysis of Nested Recovery Chapter 6

We come up with a lower bound of N ′(k′) by dropping the term (γ − β)(β/α)k
′ ≤ 1:

N ′lb(k′) =
(α− γ) (α/β)k

′
− α + β − ln(α/β)

(
(α− β)2 d+ (1− 2γ) k′

)
(α− β)

(
1− (β/α)k

′
)(

(α/β)k
′ − 1

)
γ

(6.14)

which may be used to locate an upper bound of kmin. Starting with N ′lb(k′) = 0, we get

(
α

β

)k′
= ln

(
α

β

)(
1− 2γ

α− γ

)
k′ +

ln (α/β) (α− β)2 d+ α− β
α− γ

. (6.15)

Making the substitution

−t = k′ +
ln (α/β) (α− β)2 d+ α− β

ln (α/β) (1− 2γ)
(6.16)

turns Equation 6.15 into

t

(
α

β

)t
= − 1

t0

(
α

β

)− t1
t0

(6.17)

where

t0 = ln

(
α

β

)(
1− 2γ

α− γ

)
, t1 =

ln (α/β) (α− β)2 d+ α− β
α− γ

. (6.18)

The solution t to Equation 6.17 indicates that

kmin ≤ kup = −
W

(
− ln (α/β)

t0

(
α

β

)− t1
t0

)
ln (α/β)

− t1
t0

+ 1 (6.19)

where W is the product log or Lambert W -function. The product log function is defined

as the inverse of f(x) = xex, so x = W (xex). If in addition γ = 1/2, then N ′lb(k′) = 0 is

82

Performance Analysis of Nested Recovery Chapter 6

easier to solve, leading to

kup =
ln
(
ln (α/β) (α− β)2 d+ α− β

)
− ln (α− 1/2)

ln (α/β)
+ 1. (6.20)

Figures 6.3 and 6.4 contain plots of kmin found using conventional optimization tech-

niques. Aside from smaller values of the startup cost d, the graphs provide a compelling

case that kopt = Θ(log d). Equation 6.20 is a good starting point to begin a search for

the exact value of kopt.

6.3.2 Optimal Depth: Special Case

The derivative of N(k) when λ = 1/4 is much simpler by comparison:

N ′(k) =
(k − 1)2 − d

(k − 1)2
. (6.21)

The roots are 1±
√
d, of which only one is positive. From what we can gather, the optimal

depth has a sublinear relationship with respect to the startup cost in both domains.

Theorem 6 (van Dam and Wong [70], Thm. 16) Let d be the startup cost of a pro-

tocol set to a probability specification (λ, γ). Then the optimal depth is kopt ∈
{
d1 +

√
de, b1 +

√
dc
}

such that N(kopt) = min(N(d1 +
√
de), N(b1 +

√
dc)) when λ = 1/4, and

kopt = Θ(log d) when (λ, γ) is a restricted probability specification.

6.4 Cost Ratio

To determine the effectiveness of our recovery protocol, we compare N(2) – the

method with no recovery whatsoever – against N(kopt). We look at the N(2)/N(kopt)

cost ratio under the kopt assumptions of Theorem 6.

83

Performance Analysis of Nested Recovery Chapter 6

Theorem 7 (van Dam and Wong [70], Thm. 17) Let kopt be the optimal depth of

a protocol with startup cost d. Then

lim
d→∞

N(2)

N(kopt)
≤ 2. (6.22)

Proof: We consider a restricted probability specification (λ, γ) first. Let (α, β) be

its boundaries, and let A1(i), B2(i) be its intermediate functions. Given that N(2) =

(d+ 1)/γ, the exact ratio is

N(2)

N(k)
=

(d+ 1)A1(k − 1) (A1(1))2

dA1(k) (A1(1))2 + (k − 1)B2(k − 1)A1(1) + (γ − 2λ)A1(k − 1)
. (6.23)

In addition to A1(i) ≤ 1 and B2(i) ≤ 2 for all integers i ≥ 0, we can factor out αk−1 from

the top and bottom to say

N(2)

N(kopt)
=

(A1(1))2
(

1− (β/α)kopt−1
)

(d+ 1)

(A1(1))2
(

1− (β/α)kopt
)
αd+O(kopt)

(6.24)

where we ignore lower order terms in the denominator. Since in this case kopt = Θ(log d)

and β < α, our conclusion now is more apparent:

lim
d→∞

(A1(1))2
(

1− (β/α)Θ(log d)
) (

1 + 1
d

)
(A1(1))2

(
1− (β/α)Θ(log d)

)
α + Θ(log d)

d

=
1

α
. (6.25)

The λ = 1/4 instance is very much the same. For simplicity, we use kmin = 1 +
√
d:

lim
d→∞

N(2)

N(kmin)
= lim

d→∞

2d
√
d+ 2

√
d

d
√
d+ 2d+

√
d

=
1

α
(6.26)

since α = 1/2.

84

Performance Analysis of Nested Recovery Chapter 6

6.5 Potential Improvements with Commonly Used

Resource Qubits

According to Theorem 7, the best scenario is when λ = 1/4, which translates to

α = 1/2 and an expected cost reduction by up to half. We achieve this when performing

phase rotations with a single CNOT and |ψ〉 = |θ〉 = (|0〉 + eiθ |1〉)/
√

2 at angles 0 <

θ < π/2 and θ 6= π/4. The probability of rotating in either +θ or −θ direction is both

1/2. An alternative to recovery is to try a correction with |2θ〉, but this turns out to be

less optimal due to the preparation of |2θ〉 from two |θ〉 qubits. Observe that if we fail

with |2θ〉, then we need to prepare and succeed with |22θ〉. If unsuccessful for a second

straight time, then we need to succeed with |23θ〉, and so on up to some max power of

2 exponent j. Since the optimal depth is about
√
d for startup cost d, the gap between

2j and
√
d+ 1 may be large, meaning this is worse than following the recovery protocol

directly. Besides, the process to generate |2jθ〉 is probabilistic and basically identical to

our nested recovery protocol. If we are successful in creating |2jθ〉, and 2j >
√
d + 1,

then the effort that went into producing this qubit could have been redirected towards a

successful recovery in the first place.

One particular example that may benefit are the V -basis gate implementations from

[11]. Take the non-Clifford operation

V3 =
1 + 2i√

5

 1 0

0 −3
5
− i4

5

 , (6.27)

as an example. The idea is to inject |θ1〉 such that cos(θ1) = 7
√

2/10 and sin(θ1) =
√

2/10

after performing T . Bocharov, Gurevich, and Svore [11] show that single qubit unitary

approximations in the Clifford+V universal basis has the potential to be lower than

85

Performance Analysis of Nested Recovery Chapter 6

Clifford+T . If we have a long sequence of Clifford+V gates Ul · · ·U1, then including

recovery for V gate implementations towards the end of the Ul · · ·U1 circuit may prove

helpful. More research is needed to determine one way or the other.

The upper limit savings for other resource qubits is more modest in comparison.

Assuming (C1, 0) ≡ (CNOT, 0) and |ψ〉 = |H〉 to yield 1/α ≈ 1.172, Theorem 7 says that

no recovery is upwards to about 17% |H〉 states more expensive. Direct use of the other

magic state |K〉 in (CNOT, 0) means 1/α ≈ 1.267, but compared to |H〉, there are yet to

be significant applications that directly use |K〉, besides the creation of |π/6〉 [16]. This

starts from |K〉 ⊗ |K〉, so our recovery operation is not beneficial in this use case.

6.6 Summary

We conducted an analysis to better understand the influence our nested recovery

protocol may have on a quantum computation. We determined the optimal depth at

which our protocol performs best, and showed that integrating recovery is conducive to

conserving resources. Although the reduction factor is at most two, this applies to the

most useful of our two-qubit applications – phase rotations. Even if the changes for one

instance are small, the protocol is flexible enough to insert into several places of a larger

existing scheme to further improve our resource economy. The savings will accumulate,

so the overall reduction can feel substantial. We present a scenario on how the recovery

protocol may be incorporated in the next couple chapters, and provide small examples

in which our recovery protocol is able to make a slight contribution.

86

Performance Analysis of Nested Recovery Chapter 6

(a)

(b)

Figure 6.1: This figure contains plots of the expected cost N(k) for protocol instances
set to λ = 1/8 and varying starting probabilities γ. Although the curve of γ = 0.84355
in (a) appear to reach a constant, the close-up in (b) suggests otherwise. Notice how
every curve has a minimum at a point k > 1 before a region of continuous increase.

87

Performance Analysis of Nested Recovery Chapter 6

(a)

(b)

Figure 6.2: Additional data of the expected cost N(k) to support the assertion of a
single global minimum. The values are generated for protocol instances set to various
restricted probability specifications.

88

Performance Analysis of Nested Recovery Chapter 6

(a)

(b)

Figure 6.3: The data for kmin suggests a protocol set to a restricted probability spec-
ification (λ, γ) should stop at a max depth proportional to log(d) to keep costs to a
minimum, where d is the startup cost.

89

Performance Analysis of Nested Recovery Chapter 6

(a)

(b)

Figure 6.4: Additional data in support of kmin = Θ(log d) for a protocol set to a
restricted probability specification (λ, γ) and startup cost d.

90

Chapter 7

Stabilizer Circuits with Binary
In-tree Form: Introduction

Given our deeper understanding of two-qubit stabilizer circuits, we may use such objects

as the basic building block for larger computations. In particular, we examine postse-

lected n-to-one stabilizer circuits, and the problem of implementing Clifford unitaries as

a sequence of smaller Clifford gates that exhibit a “binary in-tree” structure. We show

this type of decomposition leads to a more efficient process for generating qubits from

n-qubit stabilizer circuits and n-qubit product states. In the next chapter, we describe

an algorithm to synthesize Clifford circuits with such “binary in-tree” constructions.

7.1 Case Study: Four-qubit Quantum Circuit

We start with a motivating example. Consider the quantum circuit in Figure 7.1a.

Assume that after the U gate, the first qubit is needed for a future computation, while

the other three qubits remain idle. If we want to draw a flow diagram to reflect the qubit

dependencies in this circuit, one possible illustration is the directed acyclic graph (DAG)

in Figure 7.1b. The graph node %1 encapsulates the first qubit of U |q1, q2, q3, q4〉, and

the four arrows signify its dependence on the initial |qi〉. Because the second to fourth

qubits are, in a sense, no longer active after U , there are no corresponding graph nodes

91

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

|q1〉

U
|q2〉

|q3〉

|q4〉

(a)

|q1〉

|q2〉

|q3〉

|q4〉

%1

(b)

Figure 7.1: (a) Example of a quantum circuit with in-tree form. The second to fourth
wires are shortened to indicate the point in time when the qubits become idle. (b) If
we interpret the node %1 as the first qubit after the gate U , we can draw the qubit
dependencies as a directed graph that is also an in-tree.

alongside %1. We see from Figure 7.1b that the DAG is reminiscent of an in-tree: a

directed, rooted tree in which the edges are reversed, so that every node has a pointer

to its parent but not vice versa [68].1 Borrowing the usual tree terminology, we say the

initial |qi〉 are leaves, and %1 is the root.

Suppose now that U = (U3 ⊗ I)(U1 ⊗ U2), where Ui are smaller quantum gates. The

new circuit is portrayed in Figure 7.2a. In addition to what we know about the first

qubit after U , assume further that U3 acts on the first and third qubits only after U1

and U2. Some wires in the circuit diagram are deliberately shortened to highlight the

inactivity of certain qubits after a period of time. Using the more detailed blueprint in

Figure 7.2a, we obtain the DAG in Figure 7.2b, where we add graph nodes %2 and %3 to

represent the first and third qubits of (U1 ⊗ U2) |q1, q2, q3, q4〉. The DAG in Figure 7.2b

now resembles a binary in-tree, where each node has at most two incoming references.

Notice how the graph produced between Figures 7.1b and 7.2b rely heavily on the

abstraction level or amount of the details that we know (or wish to see). Both are equally

valid, and the one we choose to utilize depends on the task at hand. For example,

the logical picture in Figure 7.1a is likely better when delivering high level algorithmic

1Tutte uses the term arborescence converging to some root.

92

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

|q1〉

U
|q2〉

|q3〉

|q4〉

=

|q1〉
U1

U3|q2〉

|q3〉
U2

|q4〉

(a)

|q1〉

|q2〉

|q3〉

|q4〉

%2

%3

%1

(b)

Figure 7.2: If we know U = (U3⊗ I)(U1⊗U2), where each Ui is a nontrivial quantum
gate on two qubits only, then we can draw the qubit dependencies as a directed graph
resembling a binary in-tree. The nodes %2 and %3 are interpreted as the first and third
qubits after applying U1 ⊗ U2.

descriptions. On the other hand, the decomposition of U in Figure 7.2a can reveal novel

ideas for running the quantum circuit, as we shall explain.

The real benefit to this arrangement comes into play when we apply measurements

on qubits two to four. This is perhaps the most convincing element we add to solidify

the in-tree image. Such circuits typically have one subset of outcomes that is preferred

more than others. If we defer measurements until after U , it is not immediately clear

how we may recuperate from a “failure”. As is usually the case, we discard the qubits

and start over, preparing four new copies of |qi〉. Now consider the alternative where we

measure qubit two after applying U1. If the outcome is part of a desirable set, we may

move forward to the next measurement on qubit four. If, on the contrary, the outcome

is part of an undesirable set, then we prepare new copies of |q1〉 and |q2〉 and rerun the

subcircuit again. Notice when we repeat the application of U1, we leave |q3〉 and |q4〉

untouched. If the measurement on qubit two is considered a success, we may hold onto

the output until the other subcircuit also yields a positive outcome. And so by executing

the quantum circuit in this multistep tree fashion, the parallel subcircuits can run in

relative isolation from one another, preventing unsuccessful subroutines from having any

ill-effects on the successful ones.

93

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

|q1〉

U
|q2〉 Z 0

|q3〉 Z 0

|q4〉 Z 0

(a)

|q1〉
U1

U3|q2〉 Z 0

|q3〉
U2

Z 0

|q4〉 Z 0

(b)

Figure 7.3: Given the decomposition U = (U3 ⊗ I)(U1 ⊗ U2), we may move up two
measurements in circuit (a) to create two independent parallel units in the first half
of circuit (b).

7.2 Basic Concepts, Notation, and Review

The meaning of X(i), Y (i), Z(i) is the same: apply the Pauli X, Y , Z gate on qubit

i, and the single qubit identity otherwise. We adopt the same convention H(i) and P (i)

for the Clifford gates Hadamard and Phase. The symbol I is once again an identity

operator whose dimensions fluctuate with context, but will include a tensor superscript

to indicate its size when needed i.e. I⊗k for the k-qubit identity. We let P±(n) be the

subset of nontrivial n-qubit Pauli operators with factors ±1 e.g. P±(1) = {±X,±Y,±Z}.

Since the input size is no longer limited to n = 2, we default back to CNOT(i,j) for the

Controlled-NOT with control qubit i and target qubit j. The same applies to SWAP(i,j)

to exchange qubits i and j. Given a Pauli operator g, we define its weight w to be the

number of characters not equal to I e.g. w(X ⊗ I ⊗Z⊗Y) = 3. For convenience, we use

{n} to stand for {1, . . . , n}, a set containing the first n positive integers.

7.3 Postselected and Delegated Two-Op Circuits

To precisely capture our notion of stabilizer circuits with binary in-tree form, we need

to reserve special notation with respect to Clifford operators. Specifically, we desire a

94

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

system for expressing n-qubit Clifford gates that affect fewer than n qubits. Since every

non-leaf node in a binary in-tree has no more than two inbound edges, we have the

following definition.

Definition 15 (Clifford Two-operator) An n-qubit Clifford two-operator F (i, j) is

an n-qubit Clifford gate that acts nontrivially on at most two qubits i and j. We assume

i < j without loss of generality, and we let Ft stand short for Ft(it, jt).

We typically use the more compact notation Ft in the presence of a two-operator

sequence (Fk · · ·F1 over Fk(ik, jk) · · ·F1(i1, j1)) unless there is a special circumstance

where the indices must be indicated explicitly.

Since the Clifford group is generated by the Controlled-NOT, Hadamard, and Phase

gates, every Clifford unitary C can be described by a sequence (circuit) of two-operators

C = Fk · · ·F1. Some examples for an n = 4 qubit system are F (1, 4) = CNOT(4,1),

F (1, 3) = H ⊗ I ⊗ I ⊗ I, and

F (2, 4) = P (2)P (4)H(2)H(4)CNOT(2,4)SWAP(2,4). (7.1)

If C = H ⊗H ⊗H ⊗ I, then we must split C across more than one two-operator. One

potential breakdown is C = F (3, 4)F (1, 2), where

F (1, 2) = H ⊗H ⊗ I ⊗ I (7.2)

F (3, 4) = I ⊗ I ⊗H ⊗ I. (7.3)

When F (i, j) is a tensor product of n − 1 (or n) single qubit identity gates, one (or

both) of the qubit indices can act as a wildcard and chosen according to the situation.

To convey this better, consider trying to assign I ⊗ I ⊗H ⊗ I to a two-operator F (i, j).

We require i = 3 or j = 3, but may select 1, 2, or 4 for the other index. Mainly there

95

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

is little consequence to writing F (1, 3), F (2, 3), or F (3, 4) as long as the qubit that is

acted upon nontrivially is captured accurately in the notation, and so any of these three

should suffice. Unfortunately, the current definition of postselected stabilizer circuit is

not quite fitting, so we need similar ideas specially catered for two-operators to handle

the current problem.

Definition 16 (Postselected Two-Op Circuit) A postselected n-qubit two-op cir-

cuit (F (i, j), v) is a stabilizer circuit that implements an n-qubit two-operator F (i, j),

followed by one Z-measurement on qubit j for an outcome v ∈ {0, 1}.

Definitions for the probability of v and the output are almost identical to Definition 4

for postselected stabilizer circuits. We add the abbreviations “tc” and “sc” to distinguish

between the two kinds.

Definition 17 (Probability and Output (TC)) Let (F (i, j), v) be a postselected n-

qubit two-op circuit and let ρ be an n-qubit state. Then the probability Qtc
v of outcome v

on the transformed state F (i, j)ρF †(i, j) is

Qtc
v (F (i, j), ρ) = tr

(
AF (i, j)ρF †(i, j)A†

)
(7.4)

where A = I⊗j−1 ⊗ |v〉〈v| ⊗ I⊗n−j. If Qtc
v (F (i, j), ρ) > 0, then the n-qubit output Φtc

v of

a postselected two-op circuit (F (i, j), v) on an input ρ is

Φtc
v (C, ρ) =

AF (i, j)ρF †(i, j)A†

Qtc
v (F (i, j), ρ)

. (7.5)

We set the number of output qubits to be the same as the number of input qubits by

leaving in the measured qubit |v〉. If F1 and F2 are n-qubit two-operators, then it is easier

to describe a process in which we pass the output ρ2 of (F1, v1) on ρ1 directly as input

96

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

to (F2, v2), where one of the constituent qubits in ρ2 is |v1〉. Unsurprisingly, postselected

two-op circuits are effectively postselected two-to-one stabilizer circuits, leading to the

next definition.

Definition 18 (Delegated Two-Op Circuit) Let (F (i, j), v) be a postselected n-qubit

two-op circuit, and let g1, g2, h1, h2 be n-qubit Pauli operators such that

F (i, j)X(i)F †(i, j) = g1, F (i, j)Z(i)F †(i, j) = h1, (7.6)

F (i, j)X(j)F †(i, j) = g2, F (i, j)Z(j)F †(i, j) = h2. (7.7)

Note that by definition of two-operators, that the weights of g1, g2, h1, and h2 are at most

two. Then a delegated two-op circuit of (F (i, j), v) is a postselected two-to-one stabilizer

circuit (CF (i,j), v) such that

CF (i,j) (X ⊗ I)C†F (i,j) = g1,i ⊗ g1,j (7.8)

CF (i,j) (Z ⊗ I)C†F (i,j) = h1,i ⊗ h1,j (7.9)

CF (i,j) (I ⊗X)C†F (i,j) = g2,i ⊗ g2,j (7.10)

CF (i,j) (I ⊗ Z)C†F (i,j) = h2,i ⊗ h2,j. (7.11)

We now lay the foundations for describing Clifford unitaries that are implemented by

stabilizer circuits with a binary in-tree figure.

7.4 Binary In-tree Decomposition

We only consider n-qubit stabilizer circuits with n − 1 Pauli Z-measurements and

postselection to produce a single qubit output. For the moment, we limit the input to

n-qubit product states ρ = ϕ1 ⊗ · · · ⊗ ϕn. Given a postselected stabilizer circuit (C, v),

97

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

we desire a Clifford circuit C = Fk · · ·F1, where Ft are two-operators, that displays the

same in-tree qualities as Figure 7.2a. If C does not permit such a decomposition, then

we may consider an equivalent circuit (C ′, v′) ≡ (C, v) whose unitary C ′ does have such

an implementation. Using Lemma 1, we may assume v = v′ = 0n−1 and simplify the

equivalence between postselected stabilizer circuits.

Definition 19 (Equivalent Clifford Unitaries) Two n-qubit Clifford unitaries C1

and C2 are equivalent with respect to the first qubit if and only if

(
I ⊗ 〈0n−1|

)
C1ρC

†
1

(
I ⊗ |0n−1〉

)
=
(
I ⊗ 〈0n−1|

)
C2ρC

†
2

(
I ⊗ |0n−1〉

)
(7.12)

holds for all n-qubit states ρ. We denote this equivalence by C1 ∼1 C2.

As we explained earlier, our circumstances might recommend one arrangement of

Clifford gates over the other: if C1 ∼1 C2 but C2 has a tree-like configuration, then there

may be greater benefits to the circuit of C2 when accounting for measurements. To forge

a concrete definition of binary in-tree form, we re-examine the quantum circuit in Figure

7.2a. We recognize right away that a crucial element of the in-tree structure is related

to qubit participation. That is, as time progresses, certain qubits must enter an idle

condition while other qubits remain part of the later computation. To help with this

distinction, we first introduce the following term.

Definition 20 (Inactive Qubit) Consider an n-qubit two-operator sequence Fk · · ·F1.

Then the qth qubit is inactive relative to Fk · · ·F1 if and only if q 6∈ {i1, j1, . . . , ik, jk}.

The definition of inactivity will allow us to start characterizing Clifford unitaries with

the decomposition of a binary in-tree. The problem is that Definition 20 applies to qubits

only, and we need to establish another feature that covers the gates within the sequence.

98

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

Definition 21 (Binary Connected) A two-operator sequence Fk · · ·F1 is binary con-

nected if and only if qubit it or qubit jt is inactive relative to the subsequence Fk · · ·Ft+1

for all indices t ∈ {k− 1}.

Note that we may always modify each Ft slightly so that qubit jt is the inactive qubit.

The last matter we should address is the sequence length. We already know that after

every Ft, we disregard one qubit due to inactivity. Eventually, those qubits will undergo

measurements. To increase modularity in the circuit, the Section 7.1 study suggests we

spread measurements across different places whenever possible so as to create multiple

stages or in-tree layers. Given the previous definitions, we can easily identify suitable

locations for a measurement: it is precisely after every two-operator Ft on the inactive

qubit. Since there are n− 1 measurements total, we arrive at the final requirement.

Definition 22 (Binary In-tree Clifford Unitary) A Clifford unitary C on n > 1

qubits is a binary in-tree unitary if and only if there are n− 1 two-operators Ft such that

C = Fn−1 · · ·F1 is binary connected and in−1 = 1.

A binary in-tree decomposition, or a Clifford circuit with binary in-tree form, thus

corresponds to a binary in-tree Clifford unitary. If the sequence length k is smaller than

n−1, then we may supplement the sequence with identity operators Ft = I to fill the gap.

The indices it and jt are chosen to satisfy the binary connected constraint. We propose

this solution only to accommodate the n− 1 measurements by giving a clear indication

of which qubit to measure following each two-operator. If k ≥ n and each Ft 6= I, then

the two-operator sequence cannot be in binary in-tree form. Consequently, operations

like C = G1 ⊗ · · · ⊗Gn, where Gi are single qubit Clifford gates, are guaranteed to have

at least one binary in-tree decomposition. For such unitaries, the pairing of single qubit

Clifford gates to Ft can be arbitrary. Figure 7.4 shows a couple legal possibilities. Note

that since we currently restrict inputs to n-qubit product states ϕ1⊗· · ·⊗ϕn, the output

99

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

|q1〉 I I G1

|q2〉 I G2 I

|q3〉 I I

|q4〉 I

(a)

|q1〉 I G1

|q2〉 G2

|q3〉 I I

|q4〉 I

(b)

Figure 7.4: The dashed boxes represent two-operators. When the circuit consists of
many single qubit Clifford gates, there are no pairing restrictions, hence both (a) and
(b) sequences are valid and implement the same operation.

is trivially G1ϕ1G
†
1 for such occasions, and we may actually simplify the circuit to a

one-qubit procedure. As a result, our primary interest are binary connected sequences

in which every Ft has a Controlled-NOT.

In Definition 22, we also enforce in−1 = 1 so that qubit one forms the tree root

and becomes the output when we add measurements on qubits two to n. This is not

mandatory for a Clifford circuit to demonstrate an in-tree structure, but does simplify

the criteria. Besides, we can always permute the qubits prior to measurement while

maintaining the in-tree form, so demanding in−1 = 1 is acceptable. For brevity, we write

C = Fn−1 · · ·F1 for a binary in-tree unitary C with the assumption that in−1 = 1.

7.5 Multistep Tree Execution and Expected Cost

By now, we should be familiar with the multistep tree execution protocol for a bi-

nary connected circuit sequence: we perform a Z-measurement after every two-operator

Ft on the inactive qubit and proceed to Ft+1 when the measurement is successful. If

unsuccessful, we repeat the prerequisite computations leading up to Ft. This obviously

excludes any subcircuits that may run independently (see Figure 7.2a for an example).

100

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

For any n-qubit binary in-tree Clifford unitary C = Fn−1 · · ·F1, the new strategy converts

a procedure implemented by the postselected stabilizer circuit (C, 0n−1) into a series of

postselected two-op circuits (F1, 0), . . ., (Fn−1, 0). We shall assume that for each Ft, that

qubit jt is inactive. Formally, the main step consists of the following instructions.

Multistep Tree Execution:

1. Let ρt = ϕ1 ⊗ · · · ⊗ ϕn be an n-qubit state. If t = 1, then ρ1 is the initial state;

if t > 1, then ρt is the output of (Ft−1, 0) on ρt−1. Apply Ft on ρt and perform a

Z-measurement on the inactive qubit jt.

2. If the outcome is 0, proceed to the next two-operator (if any left).

3. If the outcome is 1, prepare another ρt by replacing qubits it and jt with new

instances of ϕit and ϕjt . The other n − 2 qubits unaffected by Ft are left alone.

Repeat Instruction 1.

We soon find that only by following this multistep policy may we extract any real benefit

from the in-tree structure. On top of that, the recovery technique of Chapter 5 may be

applicable whenever one of n− 1 measurements is unsuccessful. If we do not execute the

procedure in a multistep manner, then we default to the basic single step process.

Basic Execution:

1. Let ρ = ϕ1 ⊗ · · · ⊗ ϕn be the initial n-qubit state. Apply C on ρ and perform

Z-measurements on qubits two to n.

2. If the outcome is not 0n−1, prepare a new copy of ρ and repeat Instruction 1.

The basic strategy applies to all Clifford unitaries C, regardless of whether or not C has

a binary in-tree implementation.

101

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

Given ρ = ϕ1 ⊗ · · · ⊗ ϕn, we now compare the expected cost of both approaches to

create an output qubit ϕ′ = Φsc
0n−1(C, ρ). Neither is difficult to determine. We explain

how to compute the expected cost when dealing with a postselected stabilizer circuit

first. As always, we presume there is a fundamental resource necessary to prepare non-

stabilizer states e.g. magic state |H〉, and the cost is measured with respect to such a

resource. The price of any stabilizer state is zero.

Definition 23 (Expected Cost (SC)) Consider a procedure given by a postselected n-

to-one stabilizer circuit (C, v). Let d be the cost of an n-qubit state ρ. Then the expected

cost to produce an output qubit ϕ of (C, v) on ρ is

Esc(ϕ) =
d

Qsc
v (C, ρ)

. (7.13)

The expected cost of an individual postselected two-op circuit is not much different.

Definition 24 (Expected Cost (TC)) Consider a procedure given by a postselected

n-qubit two-op circuit (F (i, j), v). Let ρ = ϕ1 ⊗ · · · ⊗ ϕn be an n-qubit state, and let di

and dj be the cost of ϕi and ϕj, respectively. Then the expected cost to produce an n-qubit

output ρ′ of (F (i, j), v) on ρ is

Etc(ρ
′) =

di + dj
Qtc
v (F (i, j), ρ)

. (7.14)

Observe that the expected cost for a two-operator based process only depends on the

initial costs of the two qubits ϕi and ϕj. The expected cost of ρ′ is also computable via

a delegated two-op circuit, which we denote Edc (instead of Esc).

Proposition 3 (Wong, unpublished) Suppose there are two procedures, one based on

a postselected two-op circuit (F (i, j), v), and another based on its delegated two-op circuit

102

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

(CF (i,j), v). Let ρ = ϕ1 ⊗ · · · ⊗ ϕn be an n-qubit state, and let di and dj be the cost of

ϕi and ϕj, respectively. Then the expected costs Esc and Edc to produce an output ρ′ of

(F (i, j), v) on ρ and an output ϕ′ of (CF (i,j), v) on ϕi ⊗ ϕj are the same:

Etc(ρ
′) = Edc(ϕ

′). (7.15)

Proof: The proof is quite trivial. We may assume i = 1 and j = 2 without loss of

generality. Then F (i, j) = C ⊗ I⊗n−2, where C is a two-qubit Clifford unitary. The rest

is easy to see.

In the end, the multistep process translates to lower expected cost.

Theorem 8 (Wong, unpublished) Let ϕ′ be the output of a postselected n-to-one sta-

bilizer circuit (C, 0n−1) on an n-qubit state ρ = ϕ1 ⊗ · · · ⊗ ϕn. Suppose C = Fn−1 · · ·F1

is a binary in-tree Clifford unitary. Then the expected cost to produce ϕ′ ⊗ |0n−1〉〈0n−1|

under the multistep tree execution strategy is at most the expected cost to produce ϕ′ under

the basic strategy.

Proof: Let di be the cost of ϕi. Without loss of generality, assume n = 3, since the

expected cost calculations are recursive. As such, assume also that i1 = 2 and j1 = 3

for the first two-operator F1, and that j2 = 2. Let ρ′ be the output of (F1, 0) on ρ. To

improve readability, set p1 = Qtc
0 (F1, ρ) and p2 = Qtc

0 (F2, ρ
′). Then

Etc

(
ϕ′ ⊗ |0n−1〉〈0n−1|

)
=

d1 +
d2 + d3

p1

p2

(7.16)

=
d1p1 + d2 + d3

p1p2

(7.17)

≤ d1 + d2 + d3

p1p2

= Esc(ϕ
′) (7.18)

since p1p2 = Qsc
02 (C, ρ). This argument extends naturally to larger values of n.

103

Stabilizer Circuits with Binary In-tree Form: Introduction Chapter 7

By the time we reach the final postselected two-op circuit, n−2 measurements would

have passed, meaning the majority of the ϕ1 ⊗ · · · ⊗ ϕn input for (Fn−1(1, jn−1), 0) are

|0〉 states. The relevant qubits ϕ1 and ϕjn−1 are likely outputs of other delegated two-op

circuits themselves. As a result, the evaluation of qubit costs d1 and djn−1 will expand

into Equation 7.14, much like in the proof of Theorem 8. Examples of expected cost

improvements under the multistep tree policy are provided in Chapter 8.

104

Chapter 8

Synthesizing Stabilizer Circuits with
Binary In-tree Form

With the groundwork in Chapter 7, we aim to synthesize n-qubit stabilizer circuits with

binary in-tree form. For that reason, we present a classical algorithm to assemble binary

connected sequences of Clifford gates. That is to say, given an input Clifford unitary C,

the algorithm returns a Clifford circuit implementing a binary in-tree unitary Cbt such

that Cbt ∼1 C, if one exists. Otherwise, there is no such equivalent operation. In that

case, any previously known algorithm is sufficient to construct a circuit e.g. Aaronson and

Gottesman [3] that does not take on the form of a binary in-tree. Our solution is efficient

from the computational complexity standpoint: it completes in worst-case polynomial

time O(n5), where n is the number of qubits. Afterwards, we apply the algorithm on

some examples to demonstrate the improvements in expected resource cost for a few

quantum processes.

8.1 Basic Property of Binary In-tree Unitaries

Unfortunately, not all Clifford unitaries are susceptible to a binary in-tree decomposi-

tion. To determine if such a binary in-tree form circuit exists, we can build a test around

the following quality.

105

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Lemma 10 Let C = Fn−1 · · ·F1 be an n-qubit binary in-tree Clifford unitary. For all

indices t ∈ {n− 1}, there is an n-qubit Pauli operator g ∈
〈
C†tZ

(2)Ct , . . . , C
†
tZ

(n)Ct

〉
such that 1 ≤ w(g) ≤ 2, where Ct = Fn−1 · · ·Ft.

Proof: Keep in mind that in−1 = 1. Since we will postselect on the 0n−1 outcome,

we follow the stabilizer group
〈
Z(2), . . . , Z(n)

〉
. We prove the statement by enumerating

in the reverse order t = n− 1 to 1, and checking the C†tZ
(k)Ct generators at each step t.

Clearly, we have

1 ≤ w
(
F †n−1Z

(n−1)Fn−1

)
≤ 2 (8.1)

when t = n − 1. Suppose this holds for all indices greater than t. Then for the current

iteration t, assume without loss of generality that between qubits it and jt of the two-

operator Ft, that jt is the inactive qubit relative to Fn−1 · · ·Ft+1. In other words, jt 6∈

{ 1, jn−1, . . . , it+1, jt+1 }. This means when we arrive at iteration t, the generator Z(jt) is

left untouched by all Ct′ = Fn−1 · · ·Ft′ with t′ > t. Therefore

1 ≤ w
(
C†tZ

(jt)Ct

)
= w

(
F †t Z

(jt)Ft

)
≤ 2 (8.2)

for every t ∈ {n− 1}.

The smallest size n for which there is no equivalent binary in-tree unitary to an

interested Clifford operation C is n = 4. Figure 8.1 offers a circuit implementing one

such instance that performs

C†Z(2)C = Y ⊗X ⊗ Y ⊗X, (8.3)

C†Z(3)C = Z ⊗ I ⊗X ⊗X, (8.4)

C†Z(4)C = X ⊗ Y ⊗X ⊗ Y. (8.5)

106

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

P H

• P • H

• P • H X

H • P • H X

Figure 8.1: The unitary implemented by the Clifford circuit above does not have an
equivalent operation with a binary in-tree decomposition.

It is easy to see that each Pauli operator in the stabilizer group generated by these three

elements has weight at least three.

8.2 Stabilizer Matrices and Stabilizer Matrix Forms

Lemma 10 provides a basis for an algorithm to synthesize Clifford circuits with binary

in-tree form. To that end, we rely on objects which we refer to as stabilizer matrices.

Recall from Section 2.1 that the n-qubit Pauli group P(n) contains several stabilizer

groups S. If S is generated by k independent and commuting n-qubit Pauli operators si,

then we can store the generators as rows in a k × n matrix

R =


s1,1 · · · s1,n

...
. . .

...

sk,1 · · · sk,n

 (8.6)

which we call a stabilizer matrix on {s1, . . . , sk}. We may view R as an alternative

to the 2n × 2n density matrix of a stabilizer (mixed) state ρ. Such representations

enable an efficient simulation of stabilizer circuits with ρ as input. The Controlled-

NOT, Hadamard, and Phase gates translate to column operations on R and follow the

107

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

conjugation rules in Equations 2.14 and 2.15. Row operations can be an interchange,

or component-wise multiplication of Pauli gates from one row to another, both of which

leave the group S – and ρ – unchanged. Throughout our use of stabilizer matrices, the

terms row and generator, and column and qubit are interchangeable. The weight function

w accepts as input both rows and columns of Pauli operators from R.

There are efficient procedures to produce various matrix forms on the stabilizer group

generators. A familiar one is Audenaert and Plenio’s row echelon form [8], which is

effectively the analog of row echelon form for linear algebra matrices.1 The algorithm to

obtain a stabilizer matrix in row echelon form is also similar to Gauss-Jordan elimination.

In the next definition, the leading Pauli gate of an n-qubit row g = g1 ⊗ · · · ⊗ gn is the

leftmost gate gi ∈ P±(1) (i.e. gi 6= I). A trivial row means the n-qubit identity.

Definition 25 (Row Echelon Form) A stabilizer matrix is in row echelon form if

1. all nontrivial rows are above all trivial rows

2. the leading Pauli gate of a nontrivial row is either

i. to the right of the leading Pauli gate in the row above, or

ii. directly below but anticommutes with the leading Pauli gate in the row above.

An example stabilizer matrix in row echelon form is

R =



X Z X Y Y Y Y

I I X X X Z Z

I I I Z Z X X

I I I I I I I


(8.7)

where the solid boxes indicate the leading Pauli gates from each row.

1In their paper [8], Audenaert and Plenio use the term row-reduced echelon form instead.

108

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

For our work, we add another round of row operations after placing a stabilizer matrix

in row echelon form. Like in Gauss-Jordan elimination, the second round starts from the

bottom-most generator and works its way back up. If the ith row is g = g1⊗· · ·⊗gn 6= I,

and its leading Pauli gate is gj for some column j, then the second round eliminates all

instances of gj above row i in column j. This is illustrated in an example below, where

we use the third row operator to eliminate the Z in the first row (dashed box):



X X Z · · ·

I X X · · ·

I I Z · · ·
...

...
...

. . .


=⇒



X X I · · ·

I X X · · ·

I I Z · · ·
...

...
...

. . .


. (8.8)

When the matrix has anticommuting leading Pauli gates gj and hj in rows i and i + 1,

then we clear all nontrivial Pauli gates above row i along column j. For instance, we

remove all X, Y and Z characters (dashed box) from column three below:



Z I I X Z · · ·

I X I Z X · · ·

I I Z Y Y · · ·

I I I X Z · · ·

I I I Z X · · ·
...

...
...

...
. . .


=⇒



Z I I I I · · ·

I X I I I · · ·

I I Z I I · · ·

I I I X Z · · ·

I I I Z X · · ·
...

...
...

...
. . .


. (8.9)

In this manner, we transform the stabilizer matrix to resemble closer to the reduced row

echelon form of linear algebra matrices.

Definition 26 (Reduced Row Echelon Form (RREF)) A stabilizer matrix is said

to be in reduced row echelon form (RREF) if

109

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

1. it is in row echelon form

2. every leading Pauli gate g is the only g in its column

3. every anticommuting pair of leading Pauli gates g and h from the same column are

the only nontrivial Pauli gates in its column.

The following is an example stabilizer matrix in reduced row echelon form:

R =



X I I I X X

I Z I I I I

I I Z Z X X

I I X X Z Z

I I I I I I


. (8.10)

While row echelon form facilitates the identification of independent generators, RREF

facilitates the identification of weight one generators. It is easy to see how the second

assertion holds. Suppose there is an n-qubit Pauli operator g ∈ S = 〈s1, . . . , sk〉 such

that w(g) = 1. Let j be an index such that gj ∈ P±(1). When the stabilizer matrix is

in row echelon form, there will be one operator g′ in row i such that g′j = gj. If g′ 6= g,

then g′ is the product of g along with Pauli operators contained in rows below i. As

such, there exists one or more columns k > j such that g′k ∈ P±(1). The second round

eliminates all such gates g′k from row i, eventually changing g′ to g.

A natural side effect is that at the conclusion of these modifications, when g′ has

become g, that column j in the stabilizer matrix will also be of weight one. An example

can be seen in Equation 8.10, where we have one Z in the second row and column of R.

Due to the special role that weight one generators will play in our forthcoming synthesis

algorithm, we have the following definition.

110

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Definition 27 (Doubly Weight One (dw-one) Entry) Let R be a stabilizer matrix.

An entry Ri,j in row i and column j is doubly weight one (dw-one) if and only if row i

and column j are weight one and Ri,j ∈ P±(1).

This will be useful in identifying other Pauli operators of weight greater than one.

8.3 Synthesis of Binary In-tree Clifford Circuits

We present Algorithm BinaryTree to synthesize Clifford circuits with binary in-tree

form, using stabilizer matrices to obtain such circuits. In short, we search for a Pauli

operator g of weight w(g) = 2 belonging to a particular stabilizer group generated by

n− 1 independent and commuting n-qubit Pauli operators. If such an element g exists,

then we know which two qubits i and j to apply a two-operator F (i, j). If in addition g is

dependent on two Pauli operators h1 and h2 of the group such that w(h1) = w(h2) = 1,

then F (i, j) consists entirely of single qubit Clifford gates. If not, F (i, j) needs at least

one Controlled-NOT. Most of the effort goes into deciding whether the sequence requires

a two-operator of the latter kind; the details are found in Subroutine BinConnSeq. Before

we get there, we introduce some smaller procedures that will appear in the main portion

of the algorithm. Pseudocode for the majority of subroutines is provided.

8.3.1 Synthesis Algorithm

First we have Commute(g, S). It determines whether a Pauli operator g commutes

with every Pauli operator in S. Usually S will consist of n−1 stabilizer group generators

for an n-qubit system. The next subroutine we have is Disjoint(g, I). We start by

creating I′, the set of locations in g = g1 ⊗ · · · ⊗ gn with nontrivial Pauli gates, and

compare it to I. We only care whether I′ and I are disjoint.

111

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Subroutine 1:

Input: 1. n-qubit Pauli operator g

2. set of commuting n-qubit Pauli operators S

Output: True or False

Determine if an n-qubit Pauli operator g commutes with every operator in S.

procedure Commute(g, S)

for s ∈ S do

if [g, s] 6= 0 then return False

return True

Subroutine 2:

Input: 1. n-qubit Pauli operator g = g1 ⊗ · · · ⊗ gn

2. set of integers I

Output: True or False

Determine if there is a single qubit Pauli gate gi ∈ P±(1) such that i ∈ I.

procedure Disjoint(g = g1 ⊗ · · · ⊗ gn, I)

I′ ← { i ∈ {n} | gi ∈ P±(1) }

return True if I ∩ I′ 6= ∅, else return False

We utilize both Commute and Disjoint in a subroutine Search(S, I), where S =

{s1, . . . , sk} is again a set of stabilizer group generators. Let 〈S〉 stand for 〈s1, . . . , sk〉,

the group generated by the members of S. We first enumerate the Pauli operators

g = g1 ⊗ · · · ⊗ gn ∈ P±(n) such that w(g) = 2 and filter them into a separate set called

candidates. Then for each candidate, we ignore it if it does not commute with each

member of S, or has a nontrivial Pauli gate gi at an index i ∈ I. We shall see later that I

is connected to the matrices h ∈ 〈S〉 of weight w(h) = 1. That is, given such an operator

h = h1 ⊗ · · · ⊗ hn, if hj ∈ P±(1), then j ∈ I.

112

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Subroutine 3:

Input: 1. set of independent and commuting n-qubit Pauli operators S

2. set of integers I

Output: an n-qubit Pauli operator g satisfying (1) and (2) below,

or null if no such operator exists

Search for an n-qubit Pauli operator g = g1 ⊗ · · · ⊗ gn ∈ 〈S〉 such that:

1. w(g) = 2

2. g is independent of the elements s ∈ 〈S〉 such that w(s) = 1.

procedure Search(S, I)

for g ∈ candidates← { g ∈ P±(n) | w(g) = 2} do

if not Commute(g, S) or not Disjoint(g, I) then skip

R′ ← RREF(StabilizerMatrix(S ∪ {g}))

if row(R′, |S|+ 1) = I⊗n then return g

return null

For those g ∈ candidates that do pass the initial if guard, we decide if each is depen-

dent only on those operators h ∈ 〈S〉 of weight w(h) > 1. We do this by creating a new

stabilizer matrix R′ on the combined set S ∪ {g} and placing R′ in RREF. We know g is

dependent if the last row of R′ is the n-qubit identity:

RREF





s1,1 · · · s1,n

...
. . .

...

sk,1 · · · sk,n

g1 · · · gn




=



s′1,1 · · · s′1,n
...

. . .
...

s′k,1 · · · s′k,n

I · · · I


(8.11)

at which point we return g. Multiple satisfying operators may exist in candidates, but

we will touch on this more in Lemma 11. We use row(R, i) to return the ith row of R.

113

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Supposing Search(S, I) successfully returns an operator g ∈ 〈S〉 such that w(g) = 2,

let i and j be the indices of g with nontrivial single qubit Pauli gates. Then during

Select(S, I), we simply pick an appropriate two-operator F (i, j) that maps the weight

two g to a weight one Z(j) under conjugation: F (i, j)gF †(i, j) = Z(j). If no such g exists,

then we signal an error. This will propagate to the calling Subroutine BinConnSeq

and consequently causes all activity to halt. The error indicates that we are unable to

continue and build a binary connected two-operator sequence.

Subroutine 4:

Input: 1. set of independent and commuting n-qubit Pauli operators S

2. set of integers I

Output: a two-operator F (i, j), or an error

Select an n-qubit two-operator F (i, j) satisfying certain constraints with respect

to a set of n-qubit Pauli operators S and a set of integers I.

procedure Select(S, I)

result← Search(S, I)

if result = null then halt with error

g = g1 ⊗ · · · ⊗ gn ← result

Let i, j ∈ {n} \ I be indices such that gi, gj ∈ P±(1) and i < j

return F (i, j) such that F (i, j)gF †(i, j) = Z(j)

The procedure BinConnSeq(C) represents the core of the algorithm. Given an n-

qubit Clifford unitary C, the objective is to produce a binary connected circuit sequence

C1 = Fk · · ·F1 with the following property: there are single qubit Clifford gates C2 =

G1 ⊗ · · · ⊗ Gn such that C2C1 ∼1 C. The procedure fails if Select signals an error,

which occurs whenever Search is unable to find a weight two Pauli operator fitting our

requirements.

114

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

In the beginning, we create R, a stabilizer matrix in RREF on the set of Pauli

operators {C†Z(2)C, . . . , C†Z(n)C}. We next examine the number of weight one rows in

R. This determines whether the binary connected sequence needs a two-operator with a

Controlled-NOT. The answer is an affirmative if we enter the while loop, at which point

Select tries to return an appropriate F (i, j). The first argument we pass to Select is a

set of the n − 1 matrix rows, obtained through rows, while the second argument is the

columns corresponding to the dw-one entries of R.

Subroutine 5:

Input: an n-qubit Clifford unitary C

Output: a binary connected two-operator sequence, or an error

Try to build a binary connected two-operator sequence C1 = Fk · · ·F1 such

that (G1 ⊗ · · · ⊗Gn)C1 ∼1 C, where Gi are single qubit Clifford gates.

procedure BinConnSeq(C)

Setup: C1 ← I⊗n

R← RREF(StabilizerMatrix({C†Z(2)C, . . . , C†Z(n)C}))

while | { i ∈ {n− 1} | w(row(R, i)) = 1} | < n− 1 do

F (i, j)← Select(rows(R), { j ∈ {n} | Ri,j is dw-one})

Update sequence: C1 ← F (i, j)C1

Update matrix: R← RREF(ApplyClifford(R, F (i, j)))

Let j ∈ {n} be the column such that col(R, j) = I⊗n−1

if j 6= 1 then Update sequence: C1 ← SWAP(1,j)C1

return C1 = Fk · · ·F1

The next step ApplyClifford(R,F (i, j)) performs column operations on R in ac-

cordance with F (i, j) from Select. Afterwards, we place the updated R in RREF and

repeat until all rows have weight one. Since R is a stabilizer matrix on n−1 independent

115

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Pauli operators, there will be one column of I characters. We want this on column one,

hence the potential SWAP at the end.

Lemma 11 Suppose during the execution of Subroutine BinConnSeq on an n-qubit Clif-

ford unitary C, the while loop completed k rounds of updates on the stabilizer matrix R.

Let R[t] be the state of R at the end of round t, and let I[t] = {j ∈ {n} | R[t]
i,j is dw-one}

be the columns of the dw-one entries of R[t]. Then I[0] ⊂ I[1] ⊂ · · · ⊂ I[k].

Proof: We start with R[0] already in RREF. On the first iteration t = 1, suppose

we discover a Pauli operator g = g1 ⊗ · · · ⊗ gn ∈
〈
rows(R[0])

〉
matching our demands.

Specifically, w(g) = 2, and its two gates gi1 , gj1 ∈ P±(1) are located at indices i1, j1 6∈ I0.

We choose a two-operator F1 to satisfy F1gF
†
1 = Z(j1), so only columns i1 and j1 are

modified during ApplyClifford(R[0], F1). After RREF finishes to produce R[1], we find

that not only do the dw-one entries of R[0] carry into R[1], but that R[1] will have an

extra dw-one entry that is absent from R[0]. More precisely, Z(j1) is a row operator of

R[1], which means I[0] ⊂ I[1]. An example of this occurrence is demonstrated below for

n = 4, with g = I ⊗ Z ⊗ Z ⊗ I in the solid box, I[0] = {4}, and F1 = CNOT(2,3):

R[0] =


I X X I

I Z Z I

I I I Z

 =⇒ R[1] =


I X I I

I I Z I

I I I Z

 .

There exists the possibility of another operator h = h1 ⊗ · · · ⊗ hn ∈
〈
rows(R[0])

〉
also of weight w(h) = 2 and Pauli gates hi1 , hj1 ∈ P±(1). If this is the case, then

F1hF
†
1 ∈ {±X(i1),±Y (i1),±Z(i1)} since g and h must commute, and another dw-one

entry will appear in column i1 of R[1]. Since we repeat this process on each iteration, it

becomes clear that on round t, we enact changes on two columns it, jt ∈ {n} \ I[t−1] of

R[t−1] so that jt ∈ I[t]. As a result, I[0] ⊂ I[1] ⊂ · · · ⊂ I[k].

116

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

One peculiarity that we need to better address is the last couple steps of BinConnSeq,

where we may append a SWAP gate to the running sequence of two-operators.

Lemma 12 Let Fk · · ·F1 be a two-operator sequence given by Subroutine BinConnSeq

on an n-qubit Clifford unitary C. If Fk is a SWAP gate, then k − 1 < n− 1.

Proof: Let R[t] be the state of the stabilizer matrix R after round t of the while loop,

and let I[t] = {j ∈ {n} | R[t]
i,j is dw-one}. If we append a SWAP gate, then 1 ∈ I[k−1]. For

this to occur, there must have been a round t ≤ k− 1 when two Pauli operators g and h

of weight w(g) = w(h) = 2 were impacted by the same two-operator Ft, and for which

it = 1 and jt > 1. Otherwise, it, jt > 1, or the round impacted only one operator g. In

both cases, the dw-one entries are away from column 1. Therefore |I[t]| − |I[t−1]| ≥ 2,

which implies k − 1 < n− 1 complete cycles.

We now prove that BinConnSeq returns a binary connected sequence.

Lemma 13 Suppose Subroutine BinConnSeq finishes without error on an n-qubit Clif-

ford unitary C. Then the two-operator sequence Fk · · ·F1 given by BinConnSeq is binary

connected with k ≤ n− 1.

Proof: Assume C is not realized by SWAP and single qubit Clifford gates only so

the while loop is not bypassed. Let R[t] be the state of the stabilizer matrix R at the

end of round t, and let I[t] = {j ∈ {n} | R[t]
i,j is dw-one}. We show that for each Ft chosen

during a round t, that qubit jt is inactive relative to Fk · · ·Ft+1 for all t ∈ {k− 1}. This

is the same as proving I[t] is the set of inactive qubits relative to Fk · · ·Ft+1.

Let us assume the last member Fk is not a SWAP gate first. We begin with the first

participant F1 and the qubits i1 and j1 > i1 affected by F1. By design, we choose F1 in

such a way that j1 6∈ I[0] but j1 ∈ I[1]. By Lemma 11, column j1 also belongs to every I[t]

for rounds t ≥ 2. This means qubit j1 is inactive relative to F2, and every subsequent Ft

117

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

because it, jt ∈ {n} \ I[t−1] for all t ∈ {2, . . . , k}. This argument for j1 extends to jt for

every two-operator Ft in the Fk · · ·F1 sequence. That is because each Ft is picked in a

way so that between it ≥ 1 and jt > 1, we add jt to I[t]. Moreover, |I[t]| − |I[t−1]| ≥ 1 for

every round t, which means k ≤ n− 1 complete cycles by the while loop. Lastly, we get

in−1 = 1 if k = n− 1, since |{n} \ I[n−2]| = 2, of which one of them is 1.

Now suppose Fk is a SWAP gate. Already, k ≤ n − 1 by Lemma 12. We know

ik = 1 and jk > 1 for the last qubit pair of Fk. Recall also that column jt > 1 for all

two-operators Ft in Fk−1 · · ·F1. We need to show jt 6= jk for all t ∈ {k− 1} to show

each qubit jt is inactive relative to Fk. This is easy to see by inspection of R[k−1]: before

adding SWAP(1,jk), column jk is populated only by I characters and has weight zero,

which means jk 6∈ I[k−1]. But for all t ∈ {k− 1}, we have jt ∈ I[k−1]. Thus Fk · · ·F1 is

binary connected for both endings.

Subroutine 6:

Input: an n-qubit Clifford unitary C ′

Output: n single qubit Clifford gates Gi

Select Clifford gates Gi so that (G1 ⊗ · · · ⊗Gn)C ′ ∼1 I.

procedure Finalize(C ′)

Setup: g1 ⊗ · · · ⊗ gn ← C ′X(1)C ′†

h1 ⊗ · · · ⊗ hn ← C ′Z(1)C ′†

R← RREF(StabilizerMatrix({C ′Z(2)C ′†, . . . , C ′Z(n)C ′†}))

G1 ← single qubit Clifford gate such that G1g1G
†
1 = X and G1h1G

†
1 = Z

for i = 2 to n do

r1 ⊗ · · · ⊗ rn−1 ← col(R, i)

Gi ← single qubit Clifford gate such that Giri−1G
†
i = Z

return C2 = G1 ⊗ · · · ⊗Gn

118

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

With the circuit from BinConnSeq, we cap off the algorithm with a layer of single

qubit Clifford gates. This last stage is necessary to ensure the final sequence imple-

ments a Clifford unitary that is equivalent to the given Clifford operation C. Altogether,

Algorithm BinaryTree proceeds as follows.

Algorithm 7:

Input: an n-qubit Clifford unitary C

Output: a binary in-tree Clifford unitary Cbt, or an error

Try to build a Clifford circuit implementing a binary in-tree unitary Cbt ∼1 C.

procedure BinaryTree(C)

C1 = Fk · · ·F1 ← BinConnSeq(C)

C2 = G1 ⊗ · · · ⊗Gn ← Finalize(C1C
†)

return Cbt = C2C1

Before we present the main theorem, we need to examine some details concerning its

runtime and input representation.

8.3.2 Runtime Considerations

Algorithm BinaryTree is efficient, provided we supply alternative representations of

the input Clifford unitary C in place of a 2n×2n matrix. One option are the 2n mappings

on the Pauli operators X(i) and Z(i), but a more standard one is perhaps any Clifford

circuit to C. Aaronson and Gottesman [3] have already demonstrated how to synthesize

a Clifford circuit with O(n2/ log n) total CNOT, H, P gates implementing any such

unitary C from the 2n mappings. Column operations for the Clifford group generators

can be accomplished in O(n) time to obtain the initial stabilizer matrix in O(n3/ log n).

Subroutine RREF, like Gaussian elimination, requires O(n3) operations, implying that the

initialization of BinConnSeq takes O(n3) steps.

119

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

The most time-consuming part of BinConnSeq is Search. There are a max of
(
n
2

)
=

O(n2) candidates to enumerate. For each candidate, we need to test its commutation and

dependence relation with n− 1 other Pauli operators, which takes O(n2) +O(n3) and so

a worst-case scenario of O(n5) for Search. If Search returns successfully, luckily there

are only 2 · 32 = 18 rules to remember for the two-operator F (i, j) selection in Select.

Since while may loop O(n) times, the worst-case time complexity of BinConnSeq is

already estimated at O(n6). Updating the stabilizer matrix at the end of while takes

O(n) +O(n3) steps, considerably less than Search.

We can recommend one easy enhancement to improve the runtime of Search. In

practice, if the reduced row echelon form of stabilizer matrix R is maintained at the end

of each iteration for use in the next execution of Search, then the commutation and

dependence check may be done simultaneously in time O(n2). We only have to perform

pairwise row operations between each generator and the candidate in the last row. If the

candidate does not commute with every member nor is dependent on the elements of S,

then we move on. Overall, Search can complete in O(n4) steps.

The initialization presented in the pseudocode of Finalize is more for clarity so we

are able to split and describe the algorithm in terms of smaller pieces. In actuality,

we can simply maintain and update all n + 1 Pauli operators Z(1), . . ., Z(n), and X(1)

from the start, as opposed to just Z(2), . . ., Z(n). As a result, the worst-case runtime of

Algorithm BinaryTree is O(n5) steps.

8.3.3 Main Result

Assuming that we provide the appropriate representation for the input Clifford uni-

tary C, and that we perform Algorithm BinaryTree with all the refinements mentioned

earlier, then our theorem states the following.

120

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Theorem 9 (Wong, unpublished) Upon completion without error on an n-qubit Clif-

ford operation C, Algorithm BinaryTree returns a binary in-tree unitary Cbt ∼1 C.

Moreover, Algorithm BinaryTree finishes in time O(n5).

Proof: The time complexity argument is already stated above in Subsection 8.3.2.

Let Cbt = C2C1, where C1 = Fk · · ·F1 is a binary connected two-operator sequence from

BinConnSeq, and C2 = G1 ⊗ · · · ⊗ Gn consists of single qubit Clifford gates. Lemma 2

confirms Cbt ∼1 C because

〈
C†btZ

(2)Cbt, . . . , C
†
btZ

(n)Cbt

〉
=
〈
C†Z(2)C, . . . , C†Z(n)C

〉
(8.12)

and the G1 gate rotates the first qubit to the correct orientation. We need to verify Cbt

is a binary in-tree unitary. If k = n− 1, then C1 is such by Lemma 13.

If k < n− 1, we need n− 1− k two-operator assignments to complete the sequence.

After BinConnSeq, we add only single qubit Clifford gates G1, . . . , Gn, some of which can

be absorbed into the earlier two-operators in C1 = Fk · · ·F1. Without loss of generality,

assume that it = n − t and jt = n − t + 1 for every two-operator Ft in C1 = Fk · · ·F1.

We need assignments on gates G1, . . ., Gn−1−k covering qubits 1, . . ., n− k. Here is our

solution: for each k < u ≤ n− 1, we define Fu to consist of Gn−u on qubit iu = n−u, an

identity gate I on qubit ju = n− u+ 1, as well as identity gates on the remaining n− 2

qubits. It is possible for Gn−u = I. This final sequence Fn−1 · · ·F1 is obviously binary

connected and therefore implements a binary in-tree unitary.

8.3.4 Final Remark

Because we focus on n-qubit product states ρ = ϕ1⊗· · ·⊗ϕn, there are opportunities

to trim the input problem size. That is, if C = C1 ⊗ C2, where C1 acts on the first k

121

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

qubits, then we only synthesize a Clifford circuit for C1. The separation of C means

Z-measurements on qubits k + 1 to n have no effect on the first k qubits. This tensor

product will manifest in the beginning of Subroutine BinConnSeq, when

R =

 R1 I ′

I ′′ R2

 (8.13)

where R1 is a (k−1)×k stabilizer matrix and R2 is an (n−k)× (n−k) stabilizer matrix.

The blocks I ′ and I ′′ contain entirely of I symbols.

8.4 Partial Binary In-tree Form Circuit Synthesis

We may insert Algorithm BinaryTree as a subroutine within a larger stabilizer circuit

synthesis algorithm. The idea is quite simple. We prioritize Clifford circuits with binary

in-tree form and will attempt at such a configuration first. If Algorithm BinaryTree fails

part way, then we keep the running binary connected sequence and invoke a different

algorithm to assemble the remaining circuit. The resulting decomposition, given an n-

qubit Clifford unitary C, is C2Fk · · ·F1, where Fk · · ·F1 comes from BinaryTree, and

C2 is some other n-qubit Clifford unitary that acts trivially on k of the n qubits. The

implementation of C2 is handled by a second algorithm e.g. Aaronson and Gottesman

[3]. Figure 8.2 displays an example stabilizer circuit where the subcircuit on the last four

qubits exhibits a binary in-tree structure.

8.5 Examples

We demonstrate Algorithm BinaryTree on two Clifford unitaries described by Duclos-

Cianci and Svore [26], then show that following the multistep tree execution strategy of

122

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

P H

• P • H

• P • H X

• H • P • H X

•

•

Figure 8.2: We may install Algorithm BinaryTree in a larger synthesis algorithm to
construct a subcircuit with binary in-tree form that appears in the beginning of the
entire stabilizer circuit.

Section 7.5 improves the expected cost to produce various non-stabilizer resource qubits.

The stabilizer circuits of the two unitaries have three use cases, the first of which is

provided in Figure 8.3a. The goal is to generate a qubit in the non-stabilizer state

|ψ0〉 = cos (φ0) |0〉+ sin (φ0) |1〉 , cos(2φ0) =
6 + 5

√
2

6 + 6
√

2
, 2φ0 ≈ 0.4456 (8.14)

from four magic states |H〉. Let C [1] be the Clifford unitary implemented by the Clifford

circuit of Figure 8.3a. This unitary abides by the transformation

X ⊗ X ⊗ Z ⊗ I

Z ⊗ I ⊗ X ⊗ X

I ⊗ I ⊗ Z ⊗ Z

7−→

I ⊗ Z ⊗ I ⊗ I

I ⊗ I ⊗ Z ⊗ I

I ⊗ Z ⊗ I ⊗ Z.

(8.15)

We immediately see that there is a weight two element among the three Pauli operators

on the left, which will be the starting point for our synthesis algorithm. If we follow

Algorithm BinaryTree to completion, then we obtain the circuit in Figure 8.3b, including

123

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

|H〉 H • • |ψ0〉

|H〉 H • Z 0

|H〉 • • H Z 0

|H〉 Z Z 0

(a)

|H〉 • H • |ψ0〉

|H〉 H Z 0

|H〉 • H Z 0

|H〉 Z 0

(b)

Figure 8.3: (a) Stabilizer circuit to produce a resource qubit |ψ0〉 as seen in [26]. (b)
Stabilizer circuit with binary in-tree form also producing the same qubit |ψ0〉.

measurements. This implements a binary in-tree Clifford unitary C
[1]
bt ∼1 C

[1] such that

X ⊗ X ⊗ Z ⊗ I

Z ⊗ I ⊗ X ⊗ X

I ⊗ I ⊗ Z ⊗ Z

7−→

I ⊗ Z ⊗ I ⊗ I

I ⊗ I ⊗ Z ⊗ I

I ⊗ I ⊗ I ⊗ Z.

(8.16)

Between C [1] and C
[1]
bt , we change the mapping of the third Pauli operator I ⊗ I ⊗Z ⊗Z

while maintaining the same mapping for the other two, yet it leads to completely different

gate sequences in the final quantum circuit.

In the second usage case, we see that Duclos-Cianci and Svore employ the same

stabilizer circuit from Figure 8.3a to create another non-stabilizer qubit

|ψ1〉 = cos (φ1) |0〉+ sin (φ1) |1〉 , cos(2φ1) =
3 +
√

2

1 + 3
√

2
, 2φ1 ≈ 0.57. (8.17)

124

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

|H〉 H • • |ψ1〉

|H〉 H • Z 0

|+〉 • • H Z 0

|H〉 Z Z 0

(a)

|H〉 • H • |ψ1〉

|H〉 H Z 0

|H〉 H Z 0

(b)

Figure 8.4: (a) Stabilizer circuit to create |ψ1〉 from [26]. (b) Stabilizer circuit with
binary in-tree form that also outputs |ψ1〉. The qubit |+〉 is not necessary to generate
|ψ1〉, leading to a simpler circuit on three |H〉 qubits.

The difference lies in the initial state, and is an example of when the synthesis algorithm

helps with circuit simplification. By Lemma 3, we may eliminate |+〉 entirely from the

Figure 8.4a circuit to obtain the three-qubit circuit in Figure 8.4b also producing |ψ1〉.

Looking at the binary in-tree form circuit in Figure 8.3b, we see that qubit three becomes

another |H〉 after measuring 0 on qubit four. But since this observation occurs with

probability 1/2, the probability of the 03 outcome in Figure 8.4a is half the probability

of the 02 outcome in Figure 8.4b, which doubles the expected cost of |ψ1〉.

For the last case, the stabilizer circuit in Figure 8.5a applies a four-qubit Clifford

unitary C [2] on four magic |H〉 states, then measures the last three qubits and postselects

on 03 to return

|ψ2〉 = cos (φ2) |0〉+ sin (φ2) |1〉 , cos(2φ2) =
6
√

2

11
, 2φ2 ≈ 0.69. (8.18)

125

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

|H〉 H |ψ2〉

|H〉 • • H Z 0

|H〉 • Z 0

|H〉 • Z 0

(a)

|H〉 H • |ψ2〉

|H〉 • H Z 0

|H〉 • Z 0

|H〉 Z 0

(b)

Figure 8.5: (a) Stabilizer circuit to produce |ψ2〉 from [26]. (b) Stabilizer circuit with
binary in-tree form to produce |ψ2〉 from four |H〉 qubits.

Note that π
8
≈ 0.392 and π

4
≈ 0.785, so the 2φi angles of the |ψi〉 qubits are fairly

distributed between π
8

and π
4
. In this instance, C [2] performs the following action:

X ⊗ X ⊗ X ⊗ X

I ⊗ Z ⊗ Z ⊗ I

I ⊗ I ⊗ Z ⊗ Z

7−→

I ⊗ Z ⊗ I ⊗ I

I ⊗ I ⊗ Z ⊗ I

I ⊗ I ⊗ Z ⊗ Z.

(8.19)

while the stabilizer circuit in Figure 8.5b implements a binary in-tree Clifford unitary

C
[2]
bt ∼1 C

[2] that sends

X ⊗ X ⊗ X ⊗ X

I ⊗ Z ⊗ Z ⊗ I

I ⊗ I ⊗ Z ⊗ Z

7−→

I ⊗ Z ⊗ I ⊗ I

I ⊗ I ⊗ Z ⊗ I

I ⊗ I ⊗ I ⊗ Z.

(8.20)

126

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

|H〉 • |ϕ1〉

|H〉 Z 0
⇒
|H〉 • |ϕ2〉

|ϕ1〉 H Z 0
⇒
|ϕ2〉 H • |ψ0〉

|H〉 H Z 0

Figure 8.6: Procedure to generate |ψ0〉 with three delegated two-op circuits and four
|H〉 states. If we measure 1 at any of the three steps, then we restart from the first
circuit on the left with two new |H〉 copies. Adding recovery for the last two-qubit
stabilizer circuit additionally improves the average |H〉 cost.

According to Theorem 8, we should detect noticeable gains in the expected cost

when we execute the stabilizer circuits of Figures 8.3b, 8.4b and 8.5b in accordance

with the multistep tree protocol of Section 7.5. We briefly walkthrough the expected

cost calculations for |ψ0〉 and |ψ1〉, as the computation is very similar for |ψ2〉. For the

postselected four-to-one stabilizer circuit
(
C [1], 03

)
, the probability of the successful 03

outcome is Qsc
03

(
C [1], |H〉⊗ 4) = 3(2 +

√
2)/32 ≈ 0.32, which implies an average

Esc(|ψ0〉) =
4 · 32

3(2 +
√

2)
≈ 12.5 (8.21)

|H〉 qubits per |ψ0〉 under the basic execution policy. Now for the binary in-tree unitary

C
[1]
bt = CNOT(1,2)H(2)H(1)CNOT(1,3)H(3)CNOT(3,4), (8.22)

let (F1, 0), (F2, 0), (F3, 0) be postselected two-op circuits. We assign

F1 = CNOT(3,4) F2 = CNOT(1,3)H(3) F3 = CNOT(1,2)H(2)H(1). (8.23)

Then we may obtain |ψ0〉 with the corresponding delegated two-op circuits by carrying

out the procedure in Figure 8.6 (with CF1 = CNOT(1,2), CF2 = CNOT(1,2)H(2), etc.).

By Proposition 3, we can simply follow the process in Figure 8.6 to compute the

expected cost of |ψ0〉 under the multistep tree execution method. To stress the fact

127

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

that we are working with delegated two-op circuits, we use “dc” instead of “sc” e.g.

Edc for the remainder of this section. The probability of succeeding on the first step

is Qdc
0

(
CNOT(1,2), |H,H〉

)
= 3/4, so the expected cost to generate an output |ϕ1〉 of(

CNOT(1,2), 0
)

on |H,H〉 is

Edc(|ϕ1〉) =
1 + 1

Qdc
0

(
CNOT(1,2), |H,H〉

) =
8

3
. (8.24)

Next we have
(

CNOT(1,2)H(2), 0
)

, the delegated two-op circuit of (F2, 0). The two-qubit

input for this circuit is |H,ϕ1〉, yielding

Qdc
0

(
CNOT(1,2)H(2), |H,ϕ1〉

)
=

1 + 3
√

2

6
√

2
≈ 0.6179. (8.25)

If |ϕ2〉 represents the output of
(

CNOT(1,2)H(2), 0
)

on |H,ϕ1〉, then its expected cost is

Edc (|ϕ2〉) =
1 + 8/3

Qdc
0

(
CNOT(1,2)H(2), |H,ϕ1〉

) =
22
√

2

1 + 3
√

2
≈ 5.935. (8.26)

For this particular setup, |ψ1〉 = |ϕ2〉. Lastly, we arrive at
(

CNOT(1,2)H(2)H(1), 0
)

, the

delegated two-op circuit of (F3, 0). The input is similarly |ϕ2, H〉. The probability of

obtaining |ψ0〉 in the final step is therefore

Qdc
0

(
CNOT(1,2)H(2)H(1), |ϕ2, H〉

)
=

3 + 3
√

2

2 + 6
√

2
≈ 0.6907, (8.27)

leading to the new and reduced |ψ0〉 expected cost

Edc (|ψ0〉) =
1 + 22

√
2

1+3
√

2

Qdc
0

(
CNOT(1,2)H(2)H(1), |ϕ2, H〉

) =
2 + 50

√
2

3 + 3
√

2
≈ 10.039. (8.28)

128

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

The other value Edc(|ψ2〉) following the multistep approach is determined in the same

fashion. The expected costs for all three qubits are summarized in the table below:

Output State Previous Cost Esc New Cost Edc

|ψ0〉 12.5 |H〉 10.04 |H〉

|ψ1〉 12.95 |H〉 5.94 |H〉

|ψ2〉 11.64 |H〉 9.82 |H〉

The biggest improvement is in the creation of |ψ1〉, where the new expected cost is less

than half of the previous technique by Duclos-Cianci and Svore.

Small additional reductions are possible by incorporating the recovery techniques

of Chapter 5. This mainly applies to |ψ0〉 and |ψ2〉, as we expend enough resources

toward the end these processes that recovery might play a supporting role. We perform

simulations with a single recovery step (nested recovery protocol of depth k = 3) when

we fail to create |ψ0〉 and |ψ2〉 on the last delegated two-op circuit; we also see the same

numbers using Theorem 5. The averages lower slightly in both cases:

Output State No Recovery New Cost With Recovery New Cost

|ψ0〉 10.04 |H〉 9.45 |H〉

|ψ2〉 9.82 |H〉 9.64 |H〉

Ultimately, the |ψi〉 qubits, like |H〉, are consumed to generate “ladder” resource

states that we first referenced in Chapter 4. To create |ψi〉-type ladder states on top

of |H〉-type ladder states, we simply start with |ψi〉 ⊗ |H〉 as input for the postselected

stabilizer circuit
(

CNOT(1,2), 0
)

. For example, if |ψ1
0〉 is the output of

(
CNOT(1,2), 0

)
on |ψ0〉 ⊗ |H〉, then |ψ2

0〉 is the output of
(

CNOT(1,2), 0
)

on |ψ1
0〉 ⊗ |H〉. Given |ψ2

0〉,

129

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

we have a path to create |ψ3
0〉. Continuing in this manner, |ψi+1

0 〉 is then the output of(
CNOT(1,2), 0

)
on |ψi0〉 ⊗ |H〉.

Duclos-Cianci and Svore show that by leveraging such a warehouse of qubits, we can

approximate Rz(θ) for any θ ∈ (0, π/2) to accuracy 10−12 < ε < 10−4 with better scaling

than Solovay-Kitaev’s algorithm [26]. We run the same simulation pattern in [26] to

observe how the offline costs Eoff are affected by the new numbers in the table above.

The offline cost is defined as the number of |H〉 qubits used in the approximation of

Rz(θ) to error ε. To give a sense of how Eoff is determined, suppose for θ = π/100 and

ε = 10−10, we used 4 |H〉-type, 6 |ψ0〉-type, 7 |ψ1〉-type, and 3 |ψ2〉-type ladder states.

To generate the appropriate ladder qubits (e.g. |ψ4
1〉), suppose we used an additional 280

|H〉 states. If |ψi〉 are obtained following the basic execution protocol, this leads to

Eoff = 280 + 1 · 4 + 12.5 · 6 + 7 · 12.95 + 3 · 11.64 = 484.57 (8.29)

|H〉 qubits in this instance. On the other hand, |ψi〉 qubits that are created according to

the multistep tree policy with recovery yield

Eoff = 280 + 1 · 4 + 9.45 · 6 + 7 · 5.94 + 3 · 9.64 = 411.2 (8.30)

as the offline cost. Data points for the basic strategy are presented in Figure 8.8a, and

data points for the multistep approach with recovery are contained in Figure 8.8b. While

the scaling remains practically unchanged, the actual costs to perform the approximations

do shift down for the better, as seen in Figure 8.7. The lower line with slope ∼1.8158 and

intercept ∼0.3361 represents the linear fit of the data in Figure 8.8b. The top line with

slope ∼1.7186 and intercept ∼0.78745 is the linear fit of the numbers in Figure 8.8a. The

average difference in cost turns out to be about 50.4 |H〉 qubits.

130

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

Figure 8.7: Comparison of the offline cost Eoff fit lines from Figure 8.8. The scaling
(slope) between the two approaches are basically the same, but the average shift
represents about 50.4 |H〉 qubits.

8.6 Summary

We studied n-qubit stabilizer circuits with n − 1 Pauli measurements, and gave an

efficient classical algorithm, BinaryTree, to synthesize stabilizer circuits with binary in-

tree form. Like the nested recovery protocol, binary in-tree decomposition is bounded to

specific stabilizer operations. Nevertheless, when such a configuration exists, we showed

that it leads to better expected resource costs, as long as we follow a multistep process to

execute the proposed quantum operation. It is not difficult to see that the improvements

are a natural consequence of the circuit’s increased modularity, potentially allowing par-

allel subunits of activity. Finally, we demonstrated the utility of the binary in-tree form

on concrete examples.

131

Synthesizing Stabilizer Circuits with Binary In-tree Form Chapter 8

(a)

(b)

Figure 8.8: Simulation data of the offline cost Eoff to approximate Rz(θ) to accuracy
10−12 < ε < 10−4 using |H〉-type and |ψi〉-type ladder qubits. The base qubits |ψi〉 are
generated either from (a) the basic execution process or (b) the multistep execution
process with recovery.

132

Chapter 9

Conclusion

In this thesis, we explored two ideas concerning stabilizer operations. First we considered

the invertibility of two-qubit stabilizer circuits with one Z-measurement when given in-

puts ϕ⊗ψ, where ψ is a pure non-stabilizer state. Then we gave an illustration in which

we portrayed certain quantum circuits as possessing tree-like qualities. This viewpoint

lead to our characterization of stabilizer circuits with binary in-tree form. Investigations

into both approaches produced some notable outcomes, namely (1) a probabilistic pro-

tocol for recovering qubits, and (2) a multistep process to generate an output ϕ′ of a

postselected n-to-one stabilizer circuit (C, 0n−1) on an input ϕ1 ⊗ · · · ⊗ ϕn. The C of

interest in the second result is a binary in-tree unitary. Since the recovery and multistep

options are based on two-to-one qubit processes, both techniques are readily adoptable

in the present moment, when physical control of large quantum systems is difficult.

Over time, we expect hardware developments will lead to better tools to yield near

perfect qubits outright. Although state distillation may become practically obsolete in

such events, our techniques might be able to withstand this change. It is not hard to

see that our methods and analyses are applicable even when we replace the underlying

cost unit from non-stabilizer states to arbitrary quantum states or another resource. In

this sense, our work may stay relevant even as technology progresses. We offer some final

thoughts regarding future work around these two topics.

133

Conclusion Chapter 9

9.1 Recovery Circuits

To be of greater practical value, one direction of interest is to study the impact of

imperfect |ψ〉 qubits on the recovery process. A numerical experiment with magic states

|ψ〉 = |H〉 in [26] indicates a decay for certain error rates, but whether this observation is

retained for arbitrary non-stabilizer |ψ〉 states is unknown. A related question is how the

optimal depth may be affected by the presence of errors, where we expect the optimal

depth kopt to decrease but by what amount.

The more compelling problem is whether something resembling recovery circuits can

easily be extended for larger stabilizer circuits, since our two-qubit setting is appropriate

for only a limited number of scenarios. This question has been answered to an extent for

the Clifford+T gate set in [12, 13, 58], where we assume |ψ〉 = |π
4
〉. The objective is to

construct a multiqubit circuit of Clifford+T gates and Z-measurements to approximate

an arbitrary single qubit unitary U up to some error ε. If the measurements are unfavor-

able, then there is a backup operation that either returns the qubits to the initial state,

or directly tries to approximate U with a secondary circuit. It is worth investigating

whether recovery processes similar to the one in Chapter 4 exist on general |ψ〉 resources,

and if so, whether the reduction factor can grow beyond two.

9.2 Stabilizer Circuits with In-tree Form

Binary in-tree form is rather prohibitive, and beneficial for only some important cases.

In the long run, we want in-trees with greater breadth. Unfortunately, trying to obtain

more arbitrary in-tree configurations is more difficult than it may seem. To understand

the meaning behind such a claim, we look at a complexity problem that might bear some

relevance to synthesizing stabilizer circuits with general in-tree form.

134

Conclusion Chapter 9

9.2.1 One Possible Generalization of In-Tree Form

For the moment, let us continue the focus on n-qubit stabilizer circuits, with n − 1

Pauli Z-measurements, and n-qubit product states ϕ1 ⊗ · · · ⊗ ϕn. At the very least,

we may treat any n-qubit Clifford operation C as an n-ary in-tree unitary, where, like

the four-qubit example in Figure 7.1, we draw one root qubit dependent on all n leaf

qubits. Depending on its implementation, we may upgrade the classification to an m-

ary in-tree unitary, where m < n. This means if C = Cl · · ·C1, then each Clifford

operator Ct acts nontrivially on at most m qubits. Following each application of Ct on

d ≤ m qubits, we perform Z-measurements on d − 1 qubits that are inactive relative

to Cl · · ·Ct+1. The objective then is to determine an equivalent m′-ary in-tree unitary

C ′ = C ′l′ · · ·C ′1 ∼1 C such that m′ is as small as possible. The reason being that if m′ is

small, then l′ and the number of in-tree layers is likely to be bigger, so there is greater

potential for resource conservation. The generalization for stabilizer circuits with n− k

measurements to produce a k-qubit output, on the other hand, is less obvious.

9.2.2 Potential Challenges to Circuit Synthesis

To assemble an n-qubit Clifford circuit C = Cl · · ·C1 with m-ary in-tree form, one

option is to use a stabilizer matrix with n − 1 rows and n columns like in Algorithm

BinaryTree. However, the determination of each Ct is more complicated when m > 2.

In the preceding chapters, when m = 2, we only had to find one Pauli operator of weight

two because we apply one Z-measurement after every two-operator. If we now want a

gate Ct that affects d ≤ m qubits, then we need to pick d−1 independent Pauli operators

to go with d − 1 measurements. Each element must have weight at most d, and the I,

X, Y , Z symbols for these d−1 operators must appear in d common places (to influence

the same d qubits). For the remaining n− d locations, we require I.

135

Conclusion Chapter 9

It is not clear how the selection of such d − 1 operators will take place. And even

though we know we want m to be as small as possible, determining what values d and m

to even start such a selection does not appear to be a simple task. Consider the following

decision problem:

Minimum Distance Problem with Stabilizer Groups (MD-S): Given a stabilizer

group S of n-qubit Pauli operators and a positive integer m, is there a nontrivial operator

g ∈ S such that w(g) ≤ m?

We can store the generators of S in a stabilizer matrix like we have always done up to

this point. However this is essentially the same as the Minimum Distance Problem (MD)

from classical coding theory, which is known to be NP-complete [71]:

Minimum Distance Problem (MD): Given a binary k × n matrix M and a positive

integer w, is there a nonzero vector x ∈ {0, 1}n of weight ≤ w such that Mxᵀ = 0?

The reduction from MD to MD-S to prove NP-hardness is straightforward: for any k×n

binary matrix M , we replace all 0 entries with the symbol I, and all 1 entries with

X. Then we set m = w. Consequently, there is no known efficient solution to obtain

the minimum weight Pauli operator of S for a general integer m. Then again, we are

not certain if stabilizer matrices are the best approach to synthesize Clifford circuits

with arbitrary in-tree form. Thus we cannot say with guarantee that no such efficient

synthesis algorithm exists.

9.2.3 Future Considerations

One ambitious undertaking is to develop classes of Clifford operations, some of which

are susceptible to an in-tree implementation with more than one layer. This is similar to

the path that classical and quantum coding theory has followed, where there are many

different families of codes that have varying properties and designed to fulfill specific

136

Conclusion Chapter 9

purposes. The difficulty at the moment is there is not much theoretical basis to start

such a classification. While this is certainly not ideal, it is an interesting research question

whether this type of development is indeed possible for Clifford operations.

137

Appendix A

Bounded One-Dimensional Random
Walk with Difference Equation

In this appendix, we study a particular category of random walks with applications to

our nested recovery protocol analysis in Chapter 6. Specifically, we analyze a broad class

of bounded one-dimensional random walk instances whose transitions are characterized

by a rational difference equation (Definition 10). We determine two quantities regarding

these bounded random walks: (1) the success probability P (Definition 28), and (2) the

expected number of steps S (Definition 29), so that we may answer some interesting

questions about our nested recovery protocol described in Chapter 5. Our solutions for

P and S are summarized in Lemmas 14 and 15.

A.1 Bounded One-Dimensional Random Walk

A bounded one-dimensional random walk is a random walk over a finite integer set

{0, . . . , k}, as seen in Figure A.1. For these types of Markov chains, there is a probability

L(i) of moving from i to i− 1 and a probability 1−L(i) of moving from i to i+ 1 for all

interior points i ∈ {1, . . . , k−1}. On the other hand, if i is a boundary 0 or k, then there

is no lateral movement whatsoever, and we remain at that location. We may interpret an

arrival on either endpoint to signal the end of the current random walk process. There

138

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

0 1 2 3 4 5 6

L(3) 1− L(3)

Figure A.1: A one-dimensional random walk over the integers {0, . . . , 6}. For some
position i ∈ {1, . . . , 5}, there is a probability L(i) of stepping to i−1 and a probability
1− L(i) of stepping to i+ 1. We remain stationary if i ∈ {0, 6}.

are two quantities from [24] that we want to compute for these random walks, and the

details of each are provided in the following definitions.

Definition 28 (Random Walk Success Probability) Consider a random walk over

the integers {0, . . . , k}. Define P (i) to be the probability that the walk, starting at i,

successfully reaches 0 before it reaches k. Then the P (i) probabilities are described by

P (i) =


1 if i = 0

0 if i = k

L(i)P (i− 1) + (1− L(i))P (i+ 1) otherwise

(A.1)

where L(i) is the probability of a left step from i to i− 1.

Definition 29 (Random Walk Expected Number of Steps) Similar to Definition

28, define S(i) to be the expected number of steps that the walk, starting at i, takes to

reach 0 or k. Then the S(i) expectations are described by

S(i) =


0 if i = 0 or i = k

L(i)S(i− 1) + (1− L(i))S(i+ 1) + 1 otherwise

(A.2)

where L(i) is the probability of a left step from i to i− 1.

According to [24], we have P (i) = (k − i)/k and S(i) = ki− i2 when L(i) = 1/2.

139

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

A.2 Random Walk with Difference Equation

For this section, we derive closed-form expressions for the success probability P (i) and

the expected number of steps S(i) for bounded random walks with a rational difference

equation (RDE) as the transition. Due to the nature of our RDEs, we arrive at two sets

of formulas which we provide in Lemmas 14 and 15 below. To the best of our knowledge,

there are no published works with the kind of results presented here for these types of

random walks. As a reminder, the RDEs that we utilize are parameterized by two real

numbers (λ, γ) called a probability specification (Definition 8), which also determines a

set of intermediate functions (Definition 9).

Lemma 14 If the left step probabilities of a random walk over {0, . . . , k} are determined

by an RDE on a restricted probability specification (λ, γ), then the following are solutions

to Equations A.1 and A.2 of the random walk:

P (i) =
A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1)
(A.3)

S(i) =
A1(k − i) (γλi−1 − 2λi) i+ (k − i)A1(i)B2(k − 1)

A1(1)A1(k)B1(i− 1)
(A.4)

where A1(i), B1(i), and B2(i) are intermediate functions of (λ, γ).

Lemma 15 The solutions to Equations A.1 and A.2 are P (i) = (k − i)/k and S(i) =

ki− i2 for a uniform random walk over {0, . . . , k}.

Lemma 15 is already covered in [24], so we show how to reproduce it using material

from our framework of derivations. Since the constant transition L(i) = p > 1/2 and

L(i) = p < 1/2 is of little importance to us in Chapter 6, most of our activity is dedicated

to proving Lemma 14 for RDEs decided by a restricted probability specification.

140

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

A.2.1 Intermediate Function Identities

As the algebra may become difficult to manage, the next set of identities will play an

important part in the developments to come.

Lemma 16 Let (λ, γ) be a restricted probability specification. Then we have the following

identities on its intermediate functions A1,2(i) and B1,2(i):

i. A1,2(i+ 1) = A1,2(i)− λA1,2(i− 1)

ii. B1,2(i+ 1) = B1,2(i)− λB1,2(i− 1)

iii. A1(j)A1(i) = A2(j + i)− λiA2(j − i)

iv. A2(j)A1(i) = A1(j + i)− λiA1(j − i)

v. B1(i)A1(i+ 1)A1(1) + λB1(2i) = B1(2i+ 2)− 2λi+1A1(1) + γλiA1(1)

vi. B1(j − i)A1(i) = B2(j)− λiB2(j − 2i)

vii. λiA2(j − 2i)A1(1) + A2(j − i+ 1)A1(i) = A2(j − i)A1(i+ 1)

viii. λiB2(j − 2i− 1)A1(1) +B2(j − i)A1(i) = B2(j − i− 1)A1(i+ 1)

Proof: Note that λ = αβ and A2(1) = α + β = 1 for the boundaries (α, β) of a

probability specification (λ, γ). The first item is obvious from

A1(i)− λA1(i− 1) = αi − βi − αβ
(
αi−1 − βi−1

)
(A.5)

= (1− β)αi − (1− α) βi (A.6)

A2(i)− λA2(i− 1) = αi + βi − αβ
(
αi−1 + βi−1

)
(A.7)

= (1− β)αi + (1− α) βi (A.8)

141

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

and the second one follows immediately. The next two are just as easy to show:

A1(j)A1(i) = αj+i + βj+i − αjβi − αiβj (A.9)

= αj+i + βj+i − αiβi
(
αj−i + βj−i

)
(A.10)

A2(j)A1(i) = αj+i − βj+i − αjβi + αiβj (A.11)

= αj+i − βj+i − αiβi
(
αj−i − βj−i

)
. (A.12)

The fifth identity looks a little more involved, but we just need to prove

B1(i)A1(i+ 1) = A1(i+ 1)A1(i+ 1)− γA1(i+ 1)A1(i) (A.13)

= A2(2i+ 2)− 2λi+1 − γA2(2i+ 1) + γλi (A.14)

= B2(2i+ 1)− 2λi+1 + γλi (A.15)

B2(2i+ 1)A1(1) = A2(2i+ 2)A1(1)− γA2(2i+ 1)A1(1) (A.16)

= A1(2i+ 3)− λA1(2i+ 1)− γA1(2i+ 2) + γλA1(2i) (A.17)

= B1(2i+ 2)− λB1(2i) (A.18)

and the result becomes clear. The following covers vi:

B1(j − i)A1(i) = A1(j − i+ 1)A1(i)− γA1(j − i)A1(i) (A.19)

= A2(j + 1)− λiA2(j − 2i+ 1)− γA2(j) + γλiA2(j − 2i) (A.20)

= B2(j)− λiB2(j − 2i) (A.21)

while vii is based on iv. That is, observe that the first term expands into

λiA2(j − 2i)A1(1) = αiβi (A1(j − 2i+ 1)− αβA1(j − 2i− 1)) (A.22)

142

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

and that the second term similarly converts into

A2(j − i+ 1)A1(i) = A1(j + 1)− αiβiA1(j − 2i− 1). (A.23)

This will allow us to smoothly arrive at

λiA2(j − 2i)A1(1) + A2(j − i+ 1)A1(i) = A2(j − i)A1(i+ 1). (A.24)

The last one is a consequence of vii.

A.2.2 Fundamental Matrix

We now start the general framework for computing P (i) and S(i) as seen in Lemmas

14 and 15, with Kemény and Snell’s work [45] as an initial guide. At the heart of

proving these statements is a tool known as the fundamental matrix. To define the

fundamental matrix, we need to look at the transition matrix of the random walk first.

A one-dimensional random walk on integers {0, . . . , k} is also called an absorbing Markov

chain, where the endpoints 0 and k serve as absorbing states. It has k−1 transient (non-

absorbing) states, and we may write down the transition matrix in canonical form as

2︷︸︸︷ k − 1︷︸︸︷
I O

W U


}

2

}
k − 1

(A.25)

where O contains all zeroes and I is the 2 × 2 identity. Each row sums to 1, and the

first two rows represent transitions from the left and right boundaries 0 and k. The

143

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

block matrices W and U contain transition probabilities from transient to absorbing and

transient to transient states, respectively. If L(i) is the probability from i to i − 1 and

R(i) = 1 − L(i), then W is a matrix of mostly zeroes with the exception of two spots:

W1,1 = L(1) and Wk−1,2 = R(k − 1). On the other hand, U is not as sparsely populated

as W . To be precise, the rows and columns are arranged such that

Ui,j =


L(i) if j = i− 1

R(i) if j = i+ 1

0 otherwise.

(A.26)

In other words, U has nonzero entries only at places immediately adjacent to the main

diagonal. As an example,



1 0 0 0 0

0 1 0 0 0

L(1) 0 0 R(1) 0

0 0 L(2) 0 R(2)

0 R(3) 0 L(3) 0


(A.27)

is the canonical transition matrix for a random walk with k = 4.

Once we obtain the transition matrix in canonical form, the fundamental matrix is

the inverse V = (I−U)−1. According to [45], we can use V to obtain P (i) = (VW)i,1 and

S(i) = (V 1)i, where 1 is a column vector of ones. If S(i) is an expectation in the number

of steps taken, we may even utilize V to calculate the variance (2V − I)V 1 − Sq(V 1),

where Sq(V 1) squares each entry of V 1. The fundamental matrix basically allows us

to gather a number of meaningful statistics that we may want when evaluating a finite

Markov chain.

144

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

The generic form of V = (I−U)−1 for a bounded random walk can be found through

various derivations, but regardless of which method is used, we find it easiest to write an

entry of the fundamental matrix in terms of the following recurrences:

F (i) =


F (i− 1)− L(i)R(i− 1)F (i− 2)

F (0) = 1

F (−1) = 0

(A.28)

F (i, k) =


F (i+ 1, k)−R(i)L(i+ 1)F (i+ 2, k)

F (k, k) = 1

F (k + 1, k) = 0.

(A.29)

TheF (i, k) function mirrors F (i), with k acting as the base. To give an example, if k = 4

and we start with

[
I − U I

]
=


1 −R(1) 0 1 0 0

−L(2) 1 −R(2) 0 1 0

0 −L(3) 1 0 0 1

 (A.30)

then Gaussian elimination eventually yields

V =



F (2, 4)F (0)

F (1, 4)

R(1)F (3, 4)F (0)

F (1, 4)

R(2)R(1)F (4, 4)F (0)

F (1, 4)

L(2)F (3, 4)F (0)

F (1, 4)

F (3, 4)F (1)

F (1, 4)

R(2)F (4, 4)F (1)

F (1, 4)

L(3)L(2)F (4, 4)F (0)

F (1, 4)

L(3)F (4, 4)F (1)

F (1, 4)

F (4, 4)F (2)

F (1, 4)


(A.31)

as our inverse. Substituting an RDE (Equation 6.5) into V leads to Lemma 19, but to

145

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

realize this, we prove some identities on F (i) and F (i, k) first so as to make the algebra

less difficult to handle later on.

Lemma 17 Let F (i) = F (i−1)−αβ F (i−2) with initial conditions F (−1) = 0, F (0) = 1

and positive real numbers α, β such that α + β = 1. Then

F (i) =
i∑

j=0

αi−jβj = αi + αi−1β + . . .+ αβi−1 + βi. (A.32)

Moreover, (α− β)F (i) = αi+1 − βi+1.

Proof: We prove the lemma by induction on i. The base cases are trivial to see:

the first one is an empty sum, and the second one consists of a single term. Assuming

F (l) is true for all l < i, then

F (i) = (α + β)
i−1∑
j=0

αi−1−jβj − αβ
i−2∑
j=0

αi−2−jβj (A.33)

=
i−1∑
j=0

αi−jβj + β
i−2∑
j=0

αi−1−jβj − β
i−2∑
j=0

αi−1−jβj + βi (A.34)

=
i−1∑
j=0

αi−jβj + βi =
i∑

j=0

αi−jβj. (A.35)

For the second identity,

(α− β)F (i) = (α− β)
i∑

j=0

αi−jβj (A.36)

= αi+1 +
i−1∑
j=0

αi−jβj+1 −
i−1∑
j=0

αi−jβj+1 − βi+1 (A.37)

= αi+1 − βi+1 (A.38)

which finishes the proof.

146

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

Lemma 18 Let α, β be positive real numbers such that α + β = 1. Let k ≥ 2 be an

integer. Then the two recurrences

F (i) = F (i− 1)− αβ F (i− 2), F (0) = 1, F (−1) = 0 (A.39)

F (i, k) = F (i+ 1, k)− αβF (i+ 2, k), F (k, k) = 1, F (k + 1, k) = 0 (A.40)

are related by F (i, k) = F (k − i).

Proof: The induction goes in decreasing values of i. Immediately, we see F (k +

1, k) = F (−1) = 0 and F (k, k) = F (0) = 1. Assuming F (j, k) = F (k − j) holds for all

j > i, then

F (i, k) = F (i+ 1, k)− αβF (i+ 2, k) (A.41)

= F (k − (i+ 1))− αβ F (k − (i+ 2)) (A.42)

= F (k − i− 1)− αβ F (k − i− 2) = F (k − i). (A.43)

This completes the proof.

Lemmas 19 and 20 describe what the fundamental matrix V will be in our use cases.

Lemma 19 Let L(i) be an RDE on a restricted probability specification (λ, γ). If L(i)

determines the left step probabilities of a random walk over {0, . . . , k}, then the following

describes the entries of the fundamental matrix V :

Vi,j =


λi−jA1(k − i)A1(j)B1(j − 1)

A1(1)A1(k)B1(i− 1)
if i ≥ j

A1(k − j)A1(i)B1(j − 1)

A1(1)A1(k)B1(i− 1)
otherwise

(A.44)

where A1(i) and B1(i) are intermediate functions of (λ, γ).

147

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

Proof: Let (α, β) be the boundaries of the probability specification (λ, γ). After

we adapt the example matrix in Equation A.31 with Equation 6.5, we check if what we

get for V is in fact the inverse of I − U (the block matrix U comes from the canonical

representation of the transition matrix).

For starters, the non-recursive formulas of the left step L(i) and right step R(i)

probability functions are

L(i) =
λB1(i− 2)

B1(i− 1)
R(i) =

B1(i)

B1(i− 1)
. (A.45)

Looking at Equation A.31, the pattern suggests

Vi,j =



F (j + 1, k)F (i− 1)

F (1, k)

j−1∏
l=i

R(l) if i < j

F (i+ 1, k)F (i− 1)

F (1, k)
if i = j

F (i+ 1, k)F (j − 1)

F (1, k)

i∏
l=j+1

L(l) if i > j.

(A.46)

If we combine L(i)R(i− 1) = λ = αβ, Lemma 17, Lemma 18, along with

i∏
l=j+1

L(l) =
λB1(j − 1)

B1(j)

λB1(j)

B1(j + 1)
· · · λB1(i− 2)

B1(i− 1)
(A.47)

=
λi−jB1(j − 1)

B1(i− 1)
(A.48)

j−1∏
l=i

R(l) =
B1(i)

B1(i− 1)

B1(i+ 1)

B1(i)
· · · B1(j − 1)

B1(j − 2)
(A.49)

=
B1(j − 1)

B1(i− 1)
(A.50)

then we obtain Equation A.44 above.

148

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

We validate Vi,j as the last step in our proof. All rows and columns of I − U have at

most three non-zero entries, all lying near the main diagonal. When we examine row i

of I − U and column j of V such that i < j, we get

((I − U)V)i,j = − λB1(i− 2)

B1(i− 1)

A1(k − j)A1(i− 1)B1(j − 1)

A1(1)A1(k)B1(i− 2)

+
A1(k − j)A1(i)B1(j − 1)

A1(1)A1(k)B1(i− 1)

− B1(i)

B1(i− 1)

A1(k − j)A1(i+ 1)B1(j − 1)

A1(1)A1(k)B1(i)
= 0 (A.51)

by Lemma 16 i. The special case i = 1 < j involves only two terms, but the result

remains the same since A1(2) = A1(1). The other situations follow similarly, where

((I − U)V)i,j = 1 when i = j and ((I − U)V)i,j = 0 when i > j. The same logic applies

if we also look at V (I − U).

Lemma 20 The fundamental matrix V for a uniform random walk over {0, . . . , k} is

Vi,j =


2 (k − i) j

k
if i ≥ j

2 (k − j) i
k

otherwise.

(A.52)

Proof: We have F (i) = (i + 1)/2i as a consequence of α = β = 1/2 by Lemma 8.

For i < j, the entries are

Vi,j =
F (j + 1, k)F (i− 1)

F (1, k)

j−1∏
l=i

R(l) (A.53)

=
k − j
2k−j−1

i

2i−1

2k−1

k

1

2j−i
=

(k − j) i
2−1k

. (A.54)

The other case is similar.

149

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

A.2.3 Identities on Fundamental Matrix Entries

Given the fundamental matrix of a random walk on {0, . . . , k}, we sum across row i

to compute the expected steps S(i). We can separate the summation into two parts, one

that goes from column 1 to column i and another from i+ 1 to k− 1. We show a couple

identities on these two smaller sums before the final proof.

Lemma 21 Let A1(i) and B1(i) be intermediate functions of a restricted probability spec-

ification (λ, γ). Then for all integers i ≥ 0,

J1(i) =
i∑

j=0

λi−jB1(j)A1(j + 1) (A.55)

=
B1(2i+ 2)

A1(1)
− ((2i+ 3)λ− (i+ 1)γ)λi. (A.56)

Proof: Recognizing A1(3) = A2(2)A1(1) + λA1(1) and A1(2) = A1(1), we show

J1(0) =
A1(3)− γA1(2)

A1(1)
− 3λ+ γ (A.57)

=
A1(1) (A2(2) + λ− γ)

A1(1)
− 3λ+ γ (A.58)

= A2(2)− 2λ = A1(1)A1(1). (A.59)

This acts as a base case for an induction on J1(i) = λJ1(i − 1) + B1(i)A1(i + 1). If we

continue forward, then

J1(i) = B1(i)A1(i+ 1) +
λB1(2i)

A1(1)
− ((2i+ 1)λ− iγ)λi (A.60)

=
B1(2i+ 2)

A1(1)
− 2λi+1 + γλi − (2i+ 1)λi+i + iγλi (A.61)

as a result of Lemma 16 v.

150

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

Lemma 22 Let A1(i), B1(i), and B2(i) be intermediate functions of a restricted proba-

bility specification (λ, γ). Let k ≥ 2 be an integer. Then for all integers i ≥ 1,

J2(i) =
i∑

j=1

B1(k − j − 1)A1(j) (A.62)

= (i+ 1)B2(k − 1)− A1(i+ 1)

A1(1)
B2(k − i− 1). (A.63)

Proof: Again, we give a proof by induction. Starting with i = 1,

J2(1) = B1(k − 1− 1)A1(1) +B2(k − 1)−B2(k − 1) (A.64)

= 2B2(k − 1)− A1(1) (B2(k − 1) + λB2(k − 3))

A1(1)
(A.65)

= 2B2(k − 1)− A1(2)

A1(1)
B2(k − 2) (A.66)

using Lemma 16. Assuming J2(j) is true for all j < i, let us look at

J2(i) = B1(k − i− 1)A1(i) + J2(i− 1) (A.67)

= B1(k − i− 1)A1(i) + iB2(k − 1)− A1(i)

A1(1)
B2(k − i). (A.68)

By Lemma 16 vi, we end up with

J2(i) = (i+ 1)B2(k − 1)− λiB2(k − 2i− 1)− A1(i)

A1(1)
B2(k − i). (A.69)

After gathering the last two terms under a common denominator, the numerator becomes

−λiB2(k − 2i− 1)A1(1)−B2(k − i)A1(i) = −B2(k − i− 1)A1(i+ 1) (A.70)

due to Lemma 16 viii.

151

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

A.2.4 Proofs of Lemmas 14 and 15

We are ready to solve Equations A.1 and A.2 for a restricted (λ, γ) and λ = 1/4.

Proof: (Lemma 14) More formally,

S(i) =
k−1∑
j=1

Vi,j =
A1(k − i)J1(i− 1) + A1(i)J2(k − i− 1)

A1(1)A1(k)B1(i− 1)
(A.71)

where J1(i−1) and J2(k− i−1) are defined in Lemmas 21 and 22. Note that J2(k− i−1)

starts the summation index from the right end of the fundamental matrix V and moves

inward. With the help of

A1(i)B2(i) = A1(i)A2(i+ 1)− γA1(i)A2(i) (A.72)

= A1(2i+ 1)− γA1(2i)− λiA1(1) (A.73)

= B1(2i)− λiA1(1) (A.74)

and Lemma 16, we arrive at

A1(i)J2(k − i− 1) = (k − i)A1(i)B2(k − 1) (A.75)

− A1(k − i)
A1(1)

B1(2i) + λiA1(k − i). (A.76)

Then combining it with

A1(k − i)J1(i− 1) =
A1(k − i)
A1(1)

B1(2i) (A.77)

− A1(k − i) ((2i+ 1)λ− iγ)λi−1 (A.78)

we see that a couple terms cancel out, leaving Equation A.4 as desired.

152

Bounded One-Dimensional Random Walk with Difference Equation Chapter A

The derivation of P (i) from fundamental matrix V is easier by comparison. Recall

that P (i) = (VW)i,1, where W is a (k − 1)× 2 matrix with W1,1 = γ and 0 for the rest

of column 1. As such,

P (i) = γVi,1 =
A1(k − i)A1(1)B1(0)γλi−1

A1(1)A1(k)B1(i− 1)
(A.79)

=
A1(1)A1(k − i)γλi−1

A1(k)B1(i− 1)
(A.80)

since B1(0) = A1(1).

Proof: (Lemma 15) The solutions are already discussed in [24], but we reach the

same conclusion by way of Lemma 20. Accordingly,

S(i) =
i∑

j=1

2 (k − i) j
k

+
k−1∑
j=i+1

2 (k − j) i
k

(A.81)

=
2 (k − i)

k

(i+ 1) i

2
+

2i

k

(k − i) (k − i− 1)

2
(A.82)

=
(i+ 1 + k − i− 1) (k − i) i

k
= ki− i2. (A.83)

The P (i) solution is simpler to derive.

Lemmas 14 and 15 play a significant part in achieving our nested recovery protocol

analysis in Chapter 6, but whether they also have value in other areas of mathematics

is unclear. It might be interesting to see if the generic matrix form and recurrence

equations here can be adapted according to some other transition function to possibly

reveal interesting applications unbeknownst to us at the moment.

153

Appendix B

Index of Terms

Page numbers indicate where concept is introduced or defined.

basic execution, 101

binary connected, 99

binary in-tree, 92

binary in-tree Clifford unitary, 99

binary in-tree decomposition, 97

Bloch sphere, 6

Bloch vector, 9

Clifford circuit, 25

Clifford equivalent postselected stabilizer circuits, 40

Clifford operator, 23

Clifford two-operator, 95

delegated two-op circuit, 97

density matrix, 8

doubly weight-one entry, 111

entangled quantum state, 8

equivalent Clifford unitaries, 98

equivalent postselected stabilizer circuits, 40

154

Index of Terms Chapter B

fundamental matrix, 143

global phase, 10

Gottesman-Knill theorem, 26

in-tree, 92

inactive qubit, 98

interacting postselected stabilizer circuit, 53

leading Pauli gate, 108

magic state, 34

mixed quantum state, 9

multistep tree execution, 101

nested recovery protocol, 65

nested recovery protocol expected cost, 78

nested recovery protocol expected demand, 78

nested recovery protocol startup cost, 78

nested recovery protocol success probability, 78

Pauli group, 20

postselected stabilizer circuit, 38

postselected stabilizer circuit expected cost (n-to-one), 102

postselected stabilizer circuit output, 38

postselected stabilizer circuit probability, 38

postselected two-op circuit, 96

postselected two-op circuit expected cost, 102

postselected two-op circuit output, 96

postselected two-op circuit probability, 96

probability specification, 76

probability specification boundaries, 76

155

probability specification intermediate functions, 77

product quantum state, 8

pure stabilizer state, 22

pure quantum state, 8

qubit, 5

random walk, 138

random walk expected number of steps, 139

random walk success probability, 139

rational difference equation, 77

recovery circuit, 54

reduced row echelon form, 109

restricted probability specification, 76

row echelon form, 108

stabilizer circuit, 25

stabilizer formalism, 18

stabilizer group, 21

stabilizer matrix, 107

stabilizer mixed state, 22

stabilizer operation, 26

stabilizer state, 22

stabilizer state, pure, see pure stabilizer state

unitary stabilizer circuit, see Clifford circuit

unitary transformation (operator), 10

universal quantum computation, 28

156

Bibliography

[1] “Applications of quantum computing.” https:

//www.research.ibm.com/ibm-q/learn/quantum-computing-applications.
Accessed: 2018-04-01.

[2] “UK National Quantum Technologies Programme.” http://uknqt.epsrc.ac.uk.
Accessed: 2018-04-01.

[3] S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Phys.
Rev. A 70 (Nov, 2004) 052328.

[4] D. S. Abrams and S. Lloyd, Simulation of many-body fermi systems on a universal
quantum computer, Phys. Rev. Lett. 79 (Sep, 1997) 2586–2589.

[5] D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant
error, in Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of
Computing, STOC ’97, (New York, NY, USA), pp. 176–188, ACM, 1997.

[6] A. Ambainis, Understanding Quantum Algoithms via Query Complexity, in
Proceedings of the International Congress of Mathematicians, ICM ’18, (Berlin,
Germany), International Mathematical Union, 2018.

[7] S. Anders and H. J. Briegel, Fast simulation of stabilizer circuits using a
graph-state representation, Phys. Rev. A 73 (Feb, 2006) 022334.

[8] K. M. R. Audenaert and M. B. Plenio, Entanglement on mixed stabilizer states:
normal forms and reduction procedures, New Journal of Physics 7 (2005) 170.

[9] C. Bennett and G. Brassard, Quantum cryptography: Public key distribution and
coin tossing, in Proceedings of IEEE International Conference on Computers,
Systems and Signal Processing, (New York, NY, USA), pp. 175–179, IEEE, 1984.

[10] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
Teleporting an unknown quantum state via dual classical and
einstein-podolsky-rosen channels, Phys. Rev. Lett. 70 (Mar, 1993) 1895–1899.

[11] A. Bocharov, Y. Gurevich, and K. M. Svore, Efficient decomposition of single-qubit
gates into v basis circuits, Phys. Rev. A 88 (Jul, 2013) 012313.

157

https://www.research.ibm.com/ibm-q/learn/quantum-computing-applications
https://www.research.ibm.com/ibm-q/learn/quantum-computing-applications
http://uknqt.epsrc.ac.uk

[12] A. Bocharov, M. Roetteler, and K. M. Svore, Efficient synthesis of probabilistic
quantum circuits with fallback, Phys. Rev. A 91 (May, 2015) 052317.

[13] A. Bocharov, M. Roetteler, and K. M. Svore, Efficient synthesis of universal
repeat-until-success quantum circuits, Phys. Rev. Lett. 114 (Feb, 2015) 080502.

[14] B. M. Boghosian and W. Taylor, Simulating quantum mechanics on a quantum
computer, Physica D: Nonlinear Phenomena 120 (1998), no. 1 30 – 42.
Proceedings of the Fourth Workshop on Physics and Consumption.

[15] S. Bravyi and J. Haah, Magic-state distillation with low overhead, Phys. Rev. A 86
(Nov, 2012) 052329.

[16] S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates
and noisy ancillas, Phys. Rev. A 71 (Feb, 2005) 022316.

[17] A. R. Calderbank, E. M. Rains, P. M. Shor, and N. J. Sloane, Quantum error
correction via codes over gf(4), IEEE Trans. Inf. Theor. 44 (July, 1998) 1369–1387.

[18] E. Campbell and D. Browne, On the Structure of Protocols for Magic State
Distillation, in Proceedings of the Fourth Workshop on Theory of Quantum
Computation, Communication and Cryptography, TQC ’09, (Heidelberg,
Germany), pp. 20–32, Springer-Verlag Berlin Heidelberg, 2009.

[19] E. T. Campbell and M. Howard, Unified framework for magic state distillation and
multiqubit gate synthesis with reduced resource cost, Phys. Rev. A 95 (Feb, 2017)
022316.

[20] E. T. Campbell and M. Howard, Unifying gate synthesis and magic state
distillation, Phys. Rev. Lett. 118 (Feb, 2017) 060501.

[21] E. T. Campbell and J. OGorman, An efficient magic state approach to small angle
rotations, Quantum Science and Technology 1 (2016), no. 1 015007.

[22] A. Das and B. K. Chakrabarti, Colloquium: Quantum annealing and analog
quantum computation, Rev. Mod. Phys. 80 (Sep, 2008) 1061–1081.

[23] C. M. Dawson and M. A. Nielsen, The solovay-kitaev algorithm, Quantum Info.
Comput. 6 (Jan., 2006) 81–95.

[24] P. G. Doyle and J. L. Snell, Random walks and Electric Networks. Mathematical
Association of America, 1984.

[25] G. Duclos-Cianci and D. Poulin, Reducing the quantum-computing overhead with
complex gate distillation, Phys. Rev. A 91 (Apr, 2015) 042315.

158

[26] G. Duclos-Cianci and K. M. Svore, Distillation of nonstabilizer states for universal
quantum computation, Phys. Rev. A 88 (Oct, 2013) 042325.

[27] B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets,
Phys. Rev. Lett. 102 (Mar, 2009) 110502.

[28] A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67
(Aug, 1991) 661–663.

[29] R. P. Feynman, Simulating Physics with Computers, International Journal of
Theoretical Physics 21 (June, 1982) 467–488.

[30] S. Forest, D. Gosset, V. Kliuchnikov, and D. McKinnon, Exact synthesis of
single-qubit unitaries over clifford-cyclotomic gate sets, Journal of Mathematical
Physics 56 (2015), no. 8 082201.

[31] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes:
Towards practical large-scale quantum computation, Phys. Rev. A 86 (Sep, 2012)
032324.

[32] B. Giles and P. Selinger, Exact synthesis of multiqubit clifford+t circuits, Phys.
Rev. A 87 (Mar, 2013) 032332.

[33] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis,
California Institute of Technology, 1997. http://arxiv.org/abs/quant-ph/9705052.

[34] D. Gottesman, The Heisenberg representation of quantum computers, in Group
theoretical methods in physics. Proceedings, 22nd International Colloquium,
Group22, ICGTMP’98, Hobart, Australia, July 13-17, 1998, pp. 32–43, 1998.
quant-ph/9807006.

[35] L. K. Grover, A fast quantum mechanical algorithm for database search, in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’96, (New York, NY, USA), pp. 212–219, ACM, 1996.

[36] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic State Distillation with
Low Space Overhead and Optimal Asymptotic Input Count, Quantum 1 (Oct.,
2017) 31.

[37] M. B. Hastings, D. Wecker, B. Bauer, and M. Troyer, Improving quantum
algorithms for quantum chemistry, Quantum Info. Comput. 15 (Jan., 2015) 1–21.

[38] M. Howard, J. Wallman, V. Veitch, and J. Emerson, Contextuality supplies the
‘magic’ for quantum computation, Nature 510 (Jun, 2014).

[39] C. Jones, Multilevel distillation of magic states for quantum computing, Phys. Rev.
A 87 (Apr, 2013) 042305.

159

http://xxx.lanl.gov/abs/quant-ph/9807006

[40] N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd,
and Y. Yamamoto, Layered architecture for quantum computing, Phys. Rev. X 2
(Jul, 2012) 031007.

[41] N. C. Jones, J. D. Whitfield, P. L. McMahon, M.-H. Yung, R. V. Meter,
A. Aspuru-Guzik, and Y. Yamamoto, Faster quantum chemistry simulation on
fault-tolerant quantum computers, New Journal of Physics 14 (2012) 115023.

[42] S. Jordan, “Quantum Algorithm Zoo.” https://math.nist.gov/quantum/zoo.
Accessed: 2018-04-01.

[43] R. Jozsa and N. Linden, On the role of entanglement in quantum-computational
speed-up, Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 459 (2003), no. 2036 2011–2032.

[44] J. Kelly, “A Preview of Bristlecone, Google’s New Quantum Processor.”
https://research.googleblog.com/2018/03/

a-preview-of-bristlecone-googles-new.html. Accessed: 2018-04-01.

[45] J. Kemény and J. Snell, Finite markov chains. University series in undergraduate
mathematics. Springer-Verlag New York, 1976.

[46] M. M. Khan, M. Murphy, and A. Beige, High error-rate quantum key distribution
for long-distance communication, New Journal of Physics 11 (2009) 063043.

[47] V. Kliuchnikov, D. Maslov, and M. Mosca, Asymptotically optimal approximation
of single qubit unitaries by clifford and t circuits using a constant number of
ancillary qubits, Phys. Rev. Lett. 110 (May, 2013) 190502.

[48] V. Kliuchnikov, D. Maslov, and M. Mosca, Fast and efficient exact synthesis of
single qubit unitaries generated by Clifford and T gates, Quantum Information and
Computation 13 (2013), no. 7-8 607–630.

[49] E. Knill, Quantum computing with realistically noisy devices, Nature 434 (Mar,
2005).

[50] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. OBrien,
Quantum computers, Nature 464 (Mar, 2010).

[51] S.-K. Liao, W.-Q. Cai, J. Handsteiner, B. Liu, J. Yin, L. Zhang, D. Rauch,
M. Fink, J.-G. Ren, W.-Y. Liu, Y. Li, Q. Shen, Y. Cao, F.-Z. Li, J.-F. Wang,
Y.-M. Huang, L. Deng, T. Xi, L. Ma, T. Hu, L. Li, N.-L. Liu, F. Koidl, P. Wang,
Y.-A. Chen, X.-B. Wang, M. Steindorfer, G. Kirchner, C.-Y. Lu, R. Shu, R. Ursin,
T. Scheidl, C.-Z. Peng, J.-Y. Wang, A. Zeilinger, and J.-W. Pan, Satellite-relayed
intercontinental quantum network, Phys. Rev. Lett. 120 (Jan, 2018) 030501.

160

https://math.nist.gov/quantum/zoo
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

[52] A. Meier, B. Eastin, and E. Knill, Magic-state distillation with the four-qubit code,
Quantum Information and Computation 13 (2013) 195–209.

[53] J. A. Miszczak, Models of quantum computation and quantum programming
languages, Bulletin of the Polish Academy of Sciences, Technical Sciences 59 (Nov,
2011) 305–324.

[54] Y. Mu, J. Seberry, and Y. Zheng, Shared cryptographic bits via quantized
quadrature phase amplitudes of light, Optics Communications 123 (1996), no. 1
344 – 352.

[55] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian
anyons and topological quantum computation, Rev. Mod. Phys. 80 (Sep, 2008)
1083–1159.

[56] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[57] A. Paetznick and B. W. Reichardt, Universal fault-tolerant quantum computation
with only transversal gates and error correction, Phys. Rev. Lett. 111 (Aug, 2013)
090505.

[58] A. Paetznick and K. M. Svore, Repeat-until-success: Non-determistic decomposition
of single-qubit unitaries, Quantum Info. Comput. 14 (Nov., 2014) 1277–1301.

[59] C. J. Pugh, S. Kaiser, J.-P. Bourgoin, J. Jin, N. Sultana, S. Agne, E. Anisimova,
V. Makarov, E. Choi, B. L. Higgins, and T. Jennewein, Airborne demonstration of
a quantum key distribution receiver payload, Quantum Science and Technology 2
(2017), no. 2 024009.

[60] H. Ramesh and V. Vinay, String matching in O(
√
n+
√
m) quantum time, Journal

of Discrete Algorithms 1 (2003), no. 1 103 – 110. Combinatorial Algorithms.

[61] B. Reichardt, Quantum universality by state distillation, Quantum Information
and Computation 9 (2009) 1030–1052.

[62] N. J. Ross, Optimal ancilla-free Clifford+V approximation of z-rotations, Quantum
Information and Computation 15 (2015), no. 11-12 932–950.

[63] N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+T approximation of
z-rotations, Quantum Information and Computation 16 no. 11-12 901–953.

[64] P. Selinger, Efficient Clifford+T approximation of single-qubit operators, Quantum
Information and Computation 15 (2015), no. 1-2 159–180.

[65] P. Selinger, Generators and relations for n-qubit Clifford operators, Logical Methods
in Computer Science Volume 11, Issue 2 (June, 2015).

161

[66] Y. Shi, Both toffoli and controlled-not need little help to do universal quantum
computing, Quantum Info. Comput. 3 (Jan., 2003) 84–92.

[67] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer, SIAM Journal on Computing 26 (1997), no. 5
1484–1509.

[68] W. T. Tutte, Graph Theory. Cambridge University Press, 2001.

[69] W. van Dam and R. Wong, Two-qubit Stabilizer Circuits with Recovery I:
Existence, in 13th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2018) (S. Jeffery, ed.), vol. 111 of Leibniz
International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 7:1–7:15, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[70] W. van Dam and R. Wong, Two-qubit Stabilizer Circuits with Recovery II:
Analysis, in 13th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2018) (S. Jeffery, ed.), vol. 111 of Leibniz
International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany),
pp. 8:1–8:21, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018.

[71] A. Vardy, Algorithmic complexity in coding theory and the minimum distance
problem, in Proceedings of the Twenty-ninth Annual ACM Symposium on Theory
of Computing, STOC ’97, (New York, NY, USA), pp. 92–109, ACM, 1997.

[72] V. Veitch, S. A. H. Mousavian, D. Gottesman, and J. Emerson, The resource theory
of stabilizer quantum computation, New Journal of Physics 16 (2014) 013009.

[73] N. Wiebe and V. Kliuchnikov, Floating point representations in quantum circuit
synthesis, New Journal of Physics 15 (2013) 093041.

[74] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299
(October, 1982).

[75] J. Yin, Y. Cao, Y.-H. Li, S.-K. Liao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu,
B. Li, H. Dai, G.-B. Li, Q.-M. Lu, Y.-H. Gong, Y. Xu, S.-L. Li, F.-Z. Li, Y.-Y.
Yin, Z.-Q. Jiang, M. Li, J.-J. Jia, G. Ren, D. He, Y.-L. Zhou, X.-X. Zhang,
N. Wang, X. Chang, Z.-C. Zhu, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, R. Shu, C.-Z.
Peng, J.-Y. Wang, and J.-W. Pan, Satellite-based entanglement distribution over
1200 kilometers, Science 356 (2017), no. 6343 1140–1144.

162

	Curriculum Vitae
	Abstract
	Introduction
	Benefits of Quantum Computing
	Main Results
	Outline
	Quantum States
	Quantum Operations and Measurements
	Quantum Circuits
	Noise

	Stabilizer Quantum Computation
	Stabilizer Formalism
	Universal Quantum Computation

	Postselected Stabilizer Circuits
	Notation
	Basic Definitions
	Properties of Postselected Stabilizer Circuits
	Summary

	Two-qubit Stabilizer Circuits with Recovery
	Notation and Conventions
	Postselected Two-to-One Stabilizer Circuits
	Two-qubit Recovery Circuits
	Example Routines Featuring Recovery Circuits
	Summary

	Extending the Recovery for Two-qubit Stabilizer Circuits
	Nested Recovery Protocol
	Experimentation with Recovery Circuits
	Summary

	Performance Analysis of Nested Recovery
	Prelude to Analysis
	Expected Cost
	Minimizing Expected Cost
	Cost Ratio
	Potential Improvements with Commonly Used Resource Qubits
	Summary

	Stabilizer Circuits with Binary In-tree Form: Introduction
	Case Study: Four-qubit Quantum Circuit
	Basic Concepts, Notation, and Review
	Postselected and Delegated Two-Op Circuits
	Binary In-tree Decomposition
	Multistep Tree Execution and Expected Cost

	Synthesizing Stabilizer Circuits with Binary In-tree Form
	Basic Property of Binary In-tree Unitaries
	Stabilizer Matrices and Stabilizer Matrix Forms
	Synthesis of Binary In-tree Clifford Circuits
	Partial Binary In-tree Form Circuit Synthesis
	Examples
	Summary

	Conclusion
	Recovery Circuits
	Stabilizer Circuits with In-tree Form

	Bounded One-Dimensional Random Walk with Difference Equation
	Bounded One-Dimensional Random Walk
	Random Walk with Difference Equation

	Index of Terms
	Bibliography

