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Abstract

A Finite Element Method for Modeling Surface Growth and Resorption of Deformable Bodies
with Applications to Cell Migration

by

Guy Leshem Bergel

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Panayiotis Papadopoulos, Co-chair

Professor Robert L. Taylor, Co-chair

Surface growth/resorption is the process wherein material is added to or removed from the
boundary of a physical body. As a consequence, the set of material points constituting the body
is time-dependent and thus lacks a static reference configuration. In this dissertation, kinematics
and balance laws are formulated for a body undergoing surface growth/resorption and finite defor-
mation. This is achieved by defining an evolving reference configuration termed the intermediate
configuration which tracks the set of material points constituting the body at a given time.

An extension of the Arbitrary Lagrangian-Eulerian finite element method is introduced to
solve the discretized set of balance laws on the grown/resorpted body, alongside algorithmic
implementations to track the evolving boundary of the physical body. The effect of accreting
material with no prior history of deformation onto a body undergoing rigid motions as well as a
loaded body is discussed. Moreover, the correlation between growth/resorption rate and the spatial
and temporal convergence of the finite element approximations of fields are illustrated.

The numerical implementation for surface growth and resorption is used to simulate a migrating
cell which moves in an apparent "treadmilling" motion on a substrate by polymerizing and de-
polymerizing microfilaments along its boundary. An example is presented which defines a surface
growth law based on the nucleation and dissociation of chemical species, and the steady-state
treadmilling velocity is computed for various assumed cell shapes. Lastly, simulation results are
shown for an idealized cell colliding with external barriers, leading to a re-orientation of the surface
growth/resorption direction. The effects of dynamic contact on the surface growth/resorption as
well as the stress and deformation are discussed.
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Chapter 1

Introduction

1.1 Motivation and Prior Works
Surface growth and resorption occur in numerous biological phenomena and engineering applica-
tions, such as the accretion of seashells and antelope horns [1, 2], bone erosion [3], electrodeposition
[4], epitaxial growth of thin films [5], built-up structures [6], and metal solidification [7]. In con-
trast to volumetric growth where addition of mass is manifested through a global balance law that
modifies the density of material points, surface accretion or resorption uniquely define the evolution
of the boundary in terms of the addition or removal of finite layers of mass [8].

Among the first works on surface accretion of elastic bodies, [9] studied a simple example of
an isotropic linear elastic sphere subjected to an incrementally increasing self-weight as each layer
is deposited over time. The authors in [9] note that the accretion of layers onto a loaded body
introduces a discontinuity in the stress along the newly formed interface. The continuity of material
along the growth interface implies that the body must contain residual stresses upon unloading, as
shown in Figure 1.1. The authors conclude that the state of the body at any given time depends
on the manner in which material is deposited onto its surface, and is thus incremental in nature.
The same notion of stress discontinuities was introduced in [10] by constructing a hypothetical
case where an arbitrary subdomain of an infinite elastic medium is cut, and subsequently endowed
with a displacement relative to its parent domain. A state of self stress is subsequently generated
once the domains are re-connected. Both [9] and [10] arrived at the same conclusion that material
placed onto a deformed or loaded body can introduce residual stress in order to fit without any gaps
or overlaps.

The authors in [11] and [12] postulate that the formation of residual stresses due to layered
accretion introduces energy that can only be released by cutting the body into disjoint parts.
Although the spatial representation of a simply connected body at any fixed point in time consists
only of continuous material without overlaps or holes, its corresponding stress-free reference
configuration contains disjoint segments. This implies that a mapping between configurations
cannot solely rely on the reference coordinates of a material point. A classic hypothetical example
supporting this claim was constructed in [13]. Suppose a sphere is accreting layers on its boundary
while simultaneously undergoing a compressive pressure. If the displacement due to the applied
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Unstressed configurations

Growth increment
Initial configuration

Overlap along
growth interface

Body force

Load removal
(residual stresses)

Removal of
residual stresses

Figure 1.1: Residual stresses resulting from the self-gravitation of an accreting sphere

pressure is equal and opposite to that of the accreting growth, the boundary will remain stationary.
This example indicated that the spatial coordinates of an accreted layer at the time of attachment
are thus not a valid identifier of its reference configuration. The work in [14] separately came to the
same conclusion by asserting that caseswherematerial is either attached to the same point in space at
different times, or is continuously deposited at the same point, define a reference configuration that
cannot be described by conventional Lagrangian mechanics. Both works argued that deformation
mappings must inherit information about the accretion history of a physical body, such as the time
of existence of a given material point. Various other notable works constructed similar arguments
to define the current state of an accreting body with respect to its growth history. Both [15] and [1]
assert similar claims to that of [14] and [13], namely that the spatial representation of an accreting
body must necessarily have a time-dependent component which captures the history of growth
in some sense. In [16], concepts of mixture theory were used to justify the use of a "natural"
stress-free configuration, with similar ramifications as those stated in [11] and [12]. Additionally,
[7] and [17] argue that the spatial description of a growing body can be represented by rate-type
constitutive and kinematic laws that obey certain properties such as non-dissipativeness.

Although a complete theory of surface growth and resorption remains largely elusive, various
numerical and analytical examples that capture these effects have been successfully implemented.
The work in [18] introduces a kinematic description of discrete accretion and resorption increments
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on the surface of deformable bodies based on the theory of the Arbitrary Lagrangian-Eulerian
(ALE) finite element method as described in [19]. This technique is implemented in [20] and
[21] to simulate a one-dimensional treadmilling cell. These works provide a fundamental basis
for describing discrete kinematics of a body undergoing surface growth with an emphasis on
an ALE finite element implementation, and hence is of particular importance to the theory and
fundamentals presented herein. The work of [6] analyzes the effects of surface growth on a winding
composite cylinder undergoing finite deformation. In [22], balance laws are derived for a rigid
body undergoing surface growth, and applies the theory to a snowball rolling downhill. In [23],
various closed-form solutions of the boundary-value problem of an accreting body are formulated.
These authors define a material metric tensor that characterizes the coupling between growth and
deformation, and subsequently analyze the residual stress profile of an accreting cylinder in plane
strain. The works of [24, 3, 25, 26] developed a thermomechanical set of balance laws based on
concepts from configurational mechanics, and applied the formulations to model the accretion of
antlers triggered by nutrients, as well as bone erosion and ossification. In [27, 4, 5], numerical
methods are developed that utilize an Eulerian grid to solve a global set of boundary-value problems
while tracking the growth and resorption front using the level set method. Examples implemented
in these works include etching, lithography, electrodeposition of copper, and epitaxial growth of
thin films.

1.2 Objectives and Outline
The current work offers a general approach to simulating complex surface growth/resorption phe-
nomena on deformable bodies without restrictions on the geometry of the domain that exist in the
prior implementations of [18, 20]. The primary goals of the current work are as follows:

• Formulate a kinematic description and finite element implementation that can capture the
evolution in the shape of a two-dimensional body undergoing surface growth/resorption,

• Demonstrate the effect of surface growth/resorption on the stresses and deformations within
the body,

• Assess the spatial and temporal convergence properties for a body undergoing surface
growth/resorption and finite deformation,

• Apply the proposed algorithm to cell migration.

The preliminary framework in Chapter 2 introduces the kinematics and balance laws of a
deformable body undergoing surface growth/resorption. In Chapter 3, the weak forms of the
balance laws are presented, and the spatial and temporal discretizations are formulated. The
general algorithmic procedure is described within the framework of the Arbitrary Lagrangian-
Eulerian (ALE) finite element method. Additionally, examples are presented that demonstrate
consistency for a growing/resorpting body undergoing rigid motions, and the spatial and temporal
convergence rates of a hollow elliptical cylinder with an imposed internal pressure and surface

3



growth or resorption on the outer surface. In Chapter 4, the biological phenomenon of cell
migration is introduced. The dynamics and kinetics that drive cell movement are described in
terms of the molecular interactions, and its correlation to the observed cell motion is highlighted
within the context of surface growth and resorption. Furthermore, simulation results are presented
that correlate the evolution of chemical concentrations of a surface-bound variable to cell shape.
The last such example features an idealized migrating cell encountering multiple barriers. The
examples in this chapter demonstrate the usefulness of the proposed algorithms in solving complex
surface growth/resorption problems occurring in real-world phenomena. A summary of the findings
from the work presented in this dissertation as well as potential future extensions of the current
research are discussed in Chapter 5. The details of the algorithmic implementation are provided in
Appendix A, and the structure of the code used to produce the results is highlighted in Appendix B.
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Chapter 2

Continuum Mechanics of Surface Growth
and Resorption

2.1 Overview
In this chapter, the physical characteristics of a body undergoing surface growth/resorption and
deformation are introduced. A kinematic description of a growing and deforming body is defined in
Section 2.2. Additionally, the physical balance laws are introduced in their global and local forms in
Section 2.3 in the context of a growing/resorpting deformable body. Lastly, the notion of extended
fields in the newly grown and accreted regions is described and the associated initial/boundary-value
problem is stated.

2.2 Kinematics
Consider a physical body which is elastically deforming while simultaneously exchanging mass
with the surrounding region through its boundary. In such a setting, material that is passing through
the boundary ultimately alters the region which constitutes the body. The motion of material points
must hence be defined relative to an evolving reference configuration due to the fact that the
existence of these points within the body is itself time-dependent. In the ensuing developments,
the motion of a body undergoing concurrent surface growth/resorption and deformation will be
defined in terms of an evolving reference configuration termed the intermediate configuration.

The domain of a body with imposed surface growth and resorption is defined in the three-
dimensional Euclidean point space E3 at the reference time τ and current time τ+ t asRτ andRτ+t ,
respectively. The superscripts τ and τ + t denote the time associated with a specific configuration
or variable. The position vectors of particles inRτ andRτ+t are denoted xτ and xτ+t , respectively.
The part of the reference domain boundary that undergoes surface growth is denoted Γτg ; the part
that undergoes surface resorption is denoted Γτa , where it naturally follows that Γτg ∩ Γτa = ∅. The
set containing all portions of the boundary undergoing surface growth and/or resorption is denoted
∂Rτ

g = Γ
τ
g t Γ

τ
a , where the symbol t denotes the disjoint union.
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Figure 2.1: Kinematics of surface growth

As shown in Figure 2.1, surface growth and resorption is characterized by a diffeomorphic
boundary transformation defined as χg : ∂Rτ ×R 7→ M2. This mapping results in a new boundary
∂R̃τ+t , which encloses a volume R̃τ+t termed the intermediate configuration. The resulting surface,
M2, is a simply connected two-dimensional manifold embedded in E3, and represents the positions
along the intermediate configuration boundary ∂R̃τ+t . The mapping χg is assumed to be bijective,
hence the growth and resorption surfaces remain always disjoint. Moreover, the portion of the
boundary which does not undergo surface growth/resorption remains unaltered, and hence χg

maps these points to their identical positions.
As a consequence of the surface transformation, the interior of the intermediate configuration

contains a subset of material points that did not exist in Rτ, which constitute the domain of the
growth region Gτ+t . The homeomorphism χg : Gτ+t

× R 7→ E3 maps each grown material point
from its initial time of existence τ + tg ∈ (τ, τ + t] and position xτ+tg to its location in the grown
region Gτ+t of the intermediate configuration. The manifold Gτ+t

is a simply-connected three-
dimensional surface embedded in a four-dimensional space-time (the time dimension signifies the
progression of surface growth, which is assumed to be continuous) which is formed by newmaterial
as it is extruded along the direction of growth. Its image formed by χg generates a growth region
in the intermediate configuration which is defined purely through its spatial position in E3. The
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subset of points that were contained within the interior ofRτ and are now outside the boundary of
R̃τ+t defines the resorption domainAτ+t in the intermediate configuration. The region that remains
unaltered by χg is denotedMτ+t . The two-dimensional manifold Γτg separates the unaltered domain
Mτ+t and growth domain Gτ+t . The intermediate configuration can be formally defined as

R̃τ+t = Gτ+t tMτ+t t Γτg . (2.1)

A unique characteristic of the intermediate configuration is that it contains subdomains that
have reference configurations defined at different times. For instance, the set of material points in
Mτ+t is always defined by the material existing at time τ. In contrast, Gτ+t contains material that
has come into existence at varying times in the range (τ, τ + t]. Although these regions accrete at
different times, together they form the intermediate configuration as a continuous manifold in E3

which evolves only when material accretes or resorpts through its boundary.
The intermediate configuration introduces a means of tracking and evolving the boundary of

a growing/resorpting body independent of other sources of motion such as elastic deformation.
Through this definition of an evolving reference configuration, it can be assumed that variables
associated with material points can be continuously mapped to the spatial configurationRτ+t . This
notion of a configuration constituting the grown and existing material in an intermediate state was
similarly explored in prior works. For instance, [23] defines a material manifold endowed with its
own metric which describes the combined history of surface growth and deformation. Moreover,
the associated manifold defined in [13] corresponds to an arbitrary intermediate domain in which
both pre-existing and grown material form a continuum corresponding to the evolving reference
configuration.

The deformation of the physical body is defined as the homeomorphism χd : R̃τ+t × R 7→ E3.
It can be reasonably assumed that this mapping has the conventional properties of being bijective
since the configurations R̃τ+t andRτ+t share the same material points. The total motion occurring
in the interval (τ, τ + t] which includes both deformation and surface growth is defined as

χ =


χd in Mτ+t

χd ◦ χg in Gτ+t

undefined in Aτ+t

, (2.2)

where the ◦ symbol is defined as the functional composition, emphasizing that χ depends on the
motion of material between R̃τ+t andRτ+t , as well as between Gτ+t

and Gτ+t for accreted material
points. To ensure continuity of material, the total motion also maintains continuity along the growth
interface, i.e.,

JχK = 0 on Γτg , (2.3)

where JχK denotes the Euclidean vector norm of the difference in the material motion across a
given surface. In enforcing the continuity of the motion along the growth interface, it is inherently
assumed thatmaterial accretes onto the surfacewithout having to deform at the instant of attachment.

From a practical perspective, the motion defined in Equation (2.2) implies that any given
material point which comes into existence at time τ + tg ∈ (τ, τ + t] with initial position xτ+tg must
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have an associated mapping χg that is explicitly prescribed based on an assumed knowledge of
prior deformation induced on the body within the range (τ, τ+ tg]. In order to properly describe the
deformation at the current time τ + t, the transformation χd must therefore map the material point
and its associated initial position xτ+tg (through the dependence on χg) to its current spatial position
xτ+t . Consequently, at a given position xτ+tg , the mapping χd is defined locally with respect to the
physical configuration of the body as it appears at the instant of time τ + tg at which the material
point comes into existence.

The incremental deformation gradient Fτ+t
τ+tg is defined as the tensor that maps a tangent vector of

a material point at the location xτ+tg and configuration corresponding to its initial time of existence
in the closed interval τ + tg ∈ [τ, τ + t] to the current configuration Rτ+t , and hence takes the
following form:

Fτ+t
τ+tg =


∂χd

∂xτ in Mτ+t

∂χd

∂x̃τ+t
∂χg

∂xτ+tg in Gτ+t

undefined in Aτ+t

undefined on Γτg

. (2.4)

The superscript and subscript times in the deformation gradient defined in Equation (2.4) denote
the reference time associated with the point xτ+tg , and the current time τ + t, respectively. For
material in the growth region Gτ+t , the gradient of χg is taken with respect to the coordinates
defining the physical body at the reference time τ + tg. Therefore, the deformation gradient of an
accreted material point at the current time τ + t which comes into existence at time τ + tg depends
on its deformation occurring relative to the configuration of the body at τ + tg.

A variant of the kinematics as presented in [18] maps the physical deformation χd from
the reference configuration onto the intermediate configuration, and χg maps the surface of the
intermediate configuration to the current configuration based on the applied surface growth and/or
resorption. The inherent assumption is that the grown region simply attaches to the body in a
stress-free state with no initial deformation. Here, the current configuration Rτ+t accounts for all
deformation occurring in the interval (τ, τ + t] in both the grown and ungrown domainsMτ+t and
Gτ+t , respectively. In the present context, the intermediate configuration simply tracks the set of
material points at a given time, and thus does not correspond to an ungrown deformed state as it
does in [18].

The material displacement of a given point at the current time τ + t relative to its position at the
initial time of existence is defined as

uτ+t
τ+tg =


χ − xτ in Mτ+t

χ − xτ+tg in Gτ+t

undefined in Aτ+t

. (2.5)

In the case where the initial deformation just after τ occurs simultaneously with the initial surface
growth/resorption on Γτg and Γτa , the jump in the material displacement vanishes along the Γτg , that
is,

Juτ+t
τ+tgK = 0 on Γτg . (2.6)
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The jump condition in Equation (2.6) does not hold when the initial configuration Rτ is in a
deformed state since material is assumed to accrete onto the boundary without any prior his-
tory of deformation. This scenario results in a discontinuity in the material displacement along
the initial growth interface Γτg . Such a setting naturally occurs in the discretization of surface
growth/resorption, and is elaborated in greater detail in Section 3.5.

The material velocity is defined as the material time derivative (fixing the coordinates xτ for
points inMτ+t and xτ+tg for points in Gτ+t) of the total motion

v =
dχ
dt

. (2.7)

In Equation (2.7), d/dt denotes the material time derivative. Neglecting the presence of shock
waves, and assuming that surface growth and resorption are continuous in time, the jump in the
material velocity likewise vanishes on Γτ, that is,

JvK = 0 on Γτg . (2.8)

The growth/resorption velocity is defined as

vg =
dχg

dt
. (2.9)

Growth is defined to occur when vg · ñ > 0 and resorption occurs when vg · ñ < 0, where ñ is the
outward-facing unit normal vector on ∂R̃τ+t . The surface motion χg results in a net mass change
rate of

dM
dt
=

∫
∂R̃τ+t

ρ̃vg · ñ da , (2.10)

where ρ̃ is the mass density in R̃τ+t .

2.3 Balance Laws
The current configuration resembles a physical body in the traditional sense where each material
point in the domain is associated with an inverse mapping to a single point in a given reference
configuration, which in the case of surface growth, is the intermediate configuration R̃τ+t . It is
therefore convenient to derive the physical balance laws in the current configuration. Note that
although the material itself is continuous along the initial growth interface Γτg , no such continuity
requirement exists for the deformation gradient defined in Equation (2.4). The balance laws are
thus not well-defined on Γτg , and are assumed to hold only inMτ+t and Gτ+t

1. It is assumed that all
time-dependent variables are evaluated at time τ + t, and the superscript and subscript times will
be selectively omitted for brevity when possible.

The mass density ρ is defined as a local measure at a given spatial position x in the current

1Discontinuities in the deformation gradient along the growth interface are approximated by steep gradients in the
discretized setting (as elaborated in Chapter 3), and thus lead to well-defined global balance laws.
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configuration Rτ+t through the limit

ρ = lim
δ→0

m(Lδ)

vol(Pδ)
, (2.11)

where m(Lδ) is the mass of the region Lδ ⊂ Rτ+t defined as

m(Lδ) =

∫
Lδ

dm =
∫
Lδ
ρ dv , (2.12)

and vol(Pδ) is the volume of a sphere Pδ ⊂ E3 centered at x with radius δ > 0. The mass density
in Equation (2.11) characterizes the mass per current volume of a given material point existing in
Rτ+t . In principle, the accreting material has no knowledge of the mass density near the boundary
of the existing body. Therefore, ρ is not well-defined on the growth boundary Γτg since its value
can be discontinuous along this interface.

Considering an arbitrary volume P ⊂ Rτ+t , global mass balance is stated as

d
dt

∫
P
ρ dv =

∫
P̄

(
dρ
dt
+ ρ divv

)
J dv̄

=

∫
P

(
dρ
dt
+ ρ divv

)
dv = 0 .

(2.13)

Here, J is the determinant of the deformation gradient defined in Equation (2.4), P̄ ⊂ R̃τ+t tGτ+t
,

and dv̄ is the differential volume of a material region in R̃τ t Gτ+t
. Although the domain of the

growth region in the intermediate configuration is time-dependent, the representation of a given
point that comes into existence at a time τ + tg ∈ (τ, τ + t] in the growth domain Gτ+t

does not
depend on time after τ + tg since the point occupies this region only in its original state. Pulling
back to the time-independent regions of R̃τ+t t Gτ+t

thus allows interchanging time differentiation
and volume integration in Equation (2.13). By the localization theorem,

dρ
dt
+ ρ divv = 0 . (2.14)

It is assumed that Equation (2.14) holds for each material point existing in the interior ofRτ+t since
mass is conserved in this region. Linear momentum balance is stated as

d
dt

∫
P
ρv dv =

∫
P
ρb dv +

∫
∂P

t da . (2.15)

Upon enforcing mass balance as stated in Equation (2.14), the relation between the traction and
Cauchy stress Tn = t, and divergence theorem, the balance of linear momentum is

∫
P
ρ

dv
dt

dv =
∫
P
ρb dv +

∫
P
divT dv . (2.16)
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where b is the body force per unit mass and T is the Cauchy stress tensor. Interchanging differenti-
ation and integration in Equation (2.16) uses the same assumptions as was done in Equation (2.13).
Using Equation (2.16), the point wise form of linear momentum is

ρ
dv
dt
= ρb + divT . (2.17)

Angular momentum is stated as

d
dt

∫
P

x × ρv dv =
∫
P

x × ρb dv +
∫
∂P

x × t da . (2.18)

Invoking mass balance and the relation between the traction and Cauchy stress, it follows that

∫
P
ρ

(
x ×

dv
dt

)
dv =

∫
P

x × ρb dv +
∫
P

(
e[TT ] + x × divT

)
dv , (2.19)

where e[TT ] is the permutation tensor acting on the transpose of the Cauchy tensor. Inserting the
results of Equation (2.19) into Equation (2.18) and invoking linear momentum balance leads to the
standard result that imposing

T = TT (2.20)

automatically satisfies angular momentum.
Mechanical energy balance is derived via the theorem of expended work, which is stated for

some region P ⊂ Rτ+t as

d
dt

∫
P

1
2
ρv · v dv +

∫
P
T · D dv =

∫
∂P

t · v da +
∫
P
ρb · v dv , (2.21)

where D is the symmetric part of the spatial velocity gradient dv/dx. The above follows directly
from the balances of mass, and linear/angular momentum.

Total energy balance is stated as

d
dt

∫
P

(
ρε +

1
2
ρv · v

)
dv =

∫
∂P

(
t · v + h

)
da +

∫
P

(
ρb · v + ρr

)
dv . (2.22)

Considering adiabatic processes (no heat flux/source, i.e., h = r = 0), and utilizing the theorem of
expended work and mass balance, ∫

P
T · D dv =

∫
P
ρ

dε
dt

dv , (2.23)

thus leading to the point wise relation

T · D = ρ
dε
dt

. (2.24)
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In summary, the initial/boundary-value problem is formally stated as follows:

Find the mass density ρ : Rτ+t × I 7→ R+ and material velocity v : Rτ+t × I 7→ E3 in the
time interval I = (τ, τ+ t] that satisfy Equations (2.14) and (2.17) inRτ+t ×I, subject to the initial
conditions {

ρ = ρ0(x), in Rτ

v = v0(x), in Rτ , (2.25)

the boundary conditions {
v = v̄(x, t), on Γτ+t

vi
× I

t = t̄(x, t), on Γτ+t
qi × I

, (2.26)

the prescribed surface motion of the intermediate configuration

vg = v̄g(x, t), on ∂R̃τ+t
g × I , (2.27)

the growth/resorption extensions{
ρ = ρ̂(x, t), on ∂R̃τ+t

g × I
v = v̂(x, t), on ∂R̃τ+t

g × I
, (2.28)

and a constitutive law that obeys Equations (2.20) and (2.24).
In Equation (2.26), the ith component of the surface with prescribed Neumann and Dirichlet

boundary conditions are denoted Γqi and Γvi , respectively. These subdomains satisfy the traditional
requirements 

∂Rτ+t = Γτ+t
v ∪ Γτ+t

q

Γτ+t
q =

3⋃
i=1
Γτ+t

qi ; Γτ+t
v =

3⋃
i=1
Γτ+t
vi

Γτ+t
qi ∩ Γ

τ+t
vi
= ∅

. (2.29)

The surface growth/resorption velocity in Equation (2.27) defines the motion of a non-material
interface existing between the body and its external environment as material enters or exits the
physical domain. In contrast, the conventional Neumann and Dirichlet boundary conditions on Γq
and Γv, though also defined on the surface, uniquely determine the way in which the body deforms
rather than defining the material which constitutes the body. Although surface growth/resorption
and conventional Neumann/Dirichlet boundary conditions each define their own distinct charac-
teristics of the initial/boundary-value problem, they are not necessarily mutually exclusive. For
instance, when Neumann/Dirichlet boundary conditions are prescribed on a growing/resorpting
surface, the fields defined for the set of material points constituting Γq and/or Γv are constrained to
satisfy the corresponding boundary values at the instant they accrete to or resorpt from the surface.
Since Γq and Γv are prescribed on a non-material interface, it is assumed that the portion of the
surface constituting Neumann/Dirichlet boundary conditions is prescribed within the entire time
interval I.

The surface growth or resorption velocity in Equation (2.27) can either be imposed or solved
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through a separate set of balance laws. The latter case may be pertinent when it is important
to quantify the surface growth/resorption velocity in terms of the evolution of certain physical
phenomena occurring directly on the interface such as a phase change or polymerization reaction.
In this case, the normal growth/resorption velocity can be defined in terms of a surface-bound scalar
variable ϕ representing a field such as the concentration of a given molecule. The balance law of
the variable ϕ is posed for a subset of the closed surface defining the intermediate configuration
boundary Γ̃ ⊂ ∂R̃τ+t as

dΓ̃
dt

∫
Γ̃

ϕ dγ =
∫
∂Γ̃

(
ϕvg · ν Γ̃ − q̃ · ν Γ̃

)
ds +

∫
Γ̃

f (ϕ) dγ , (2.30)

where ν Γ̃ defines the tangent on the boundary of the curve Γ̃, q̃ is the non-convective flux of the
primary variable ϕ, and f (ϕ) quantifies the reaction and source terms. Additionally, dΓ̃/dt denotes
the time derivative with respect to points on the non-material surface Γ̃. It is assumed that the
growth velocity is normal to the curve Γ̃ (i.e., no tangential surface growth velocity), and hence,
the first term on the right-hand side of Equation (2.30) vanishes, leading to

dΓ̃
dt

∫
Γ̃

ϕ dγ =
∫
∂Γ̃
−q̃ · ν Γ̃ ds +

∫
Γ̃

f (ϕ) dγ , (2.31)

Applying Reynolds’ transport theorem on a surface [28, Chapter 3], [29, 30, 31], the left-hand side
in Equation (2.31) simplifies to

dΓ̃
dt

∫
Γ̃

ϕ dγ =
∫
Γ̃

(
dΓ̃ϕ
dt
− vΓ̃ · gradΓ̃ϕ − 2Hϕ(v + vg) · ñ

)
dγ +

∫
∂Γ̃
ϕvΓ̃ · ν Γ̃ ds . (2.32)

Here, H is the mean curvature and ñ is the outward-facing unit normal vector on the curve Γ̃. The
last term in Equation (2.32) represents the convection of the variable ϕ across the boundary, which
is assumed to exist when ∂Γ̃ , ∅ and the tangential component of the material velocity vΓ̃ , 0.

Assuming q̃ = −KgradΓ̃ϕ where K is a constant positive diffusion coefficient, Equation (2.30)
is further simplified via the surface divergence theorem [28, Chapter 3], [32] under the assumption
of normal surface growth, and is thus expressed as∫

Γ̃

(
dΓ̃ϕ
dt
+ ϕ divΓ̃vΓ̃ − 2Hϕ (v + vg) · ñ

)
dγ =

∫
Γ̃

(
divΓ̃

[
KgradΓ̃ϕ

]
+ f (ϕ)

)
dγ . (2.33)

Upon using the localization theorem, the strong form of Equation (2.33) becomes

dΓ̃ϕ
dt
+ ϕ divΓ̃vΓ̃ − 2Hϕ(v + vg) · ñ = divΓ̃

[
KgradΓ̃ϕ

]
+ f (ϕ) . (2.34)

The normal growth/resorption velocity is assumed to hold the generic functional form vgn = vg · ñ =
v̂gn(ϕ, Ûϕ). Supposing that ∂R̃τ+t is a closed surface, the initial-value problem for the surface-bound
variable ϕ is stated below:
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Find ϕ : ∂R̃τ+t × I 7→ R+ in the time interval I = (τ, τ + t] that satisfies Equation (2.34) on
∂R̃τ+t × I, subject to the initial conditions:

ϕ = ϕ0(x), on ∂R̃τ . (2.35)

2.4 Concluding Remarks
In this chapter, the kinematics of surface growth was introduced. The complete description of
motion for a body consists of a surface growth/resorption transformation χg mapping the boundary
of a reference domain ∂Rτ to an intermediate configuration ∂R̃τ+t which encloses a new volume
containing the material points and fields existing at time τ + t, a homeomorphism χg mapping
grown particles from their positions at the instant they come into existence onto the growth region
of the intermediate configuration Gτ+t , and lastly, a deformation motion χd mapping all material
points existing at the current time τ+ t in the intermediate configuration to the current configuration
Rτ+t . The deformation gradient mapping a material tangent vector from its initial configuration
onto the current configuration was defined based on the material gradient of the total motion at a
given point, which includes both χd and χg for accreted regions.

Using the kinematics describing growth, the global balance of mass, linear momentum, angular
momentum, and total energy were posed for a growing/resorpting body. Additionally, a global bal-
ance law was derived for a surface-bound scalar variable ϕ, such that the surface growth/resorption
velocity can be defined through the evolution of a surface variable, vg = v̂g(ϕ, Ûϕ). The set of point
wise balance laws were posed using the localization theorem, and the formal initial/boundary-
value problem was stated for a deformable body undergoing surface growth/resorption. In the
next chapter, an algorithmic implementation based on the Arbitrary Lagrangian-Eulerian finite
element method will be introduced to numerically solve the set of discretized balance laws for a
two-dimensional body.
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Chapter 3

Finite Element Approximation

3.1 Overview
This chapter focuses on the numerical solution strategy to solve the balance laws presented in
Chapter 2. The weak forms of the balance laws are derived in Section 3.2 using a weighted
residual formulation. The spatially and temporally discretized weighted residuals are presented
in Section 3.3. The meshing algorithm is briefly described in Section 3.4. Lastly, two examples
are presented in Section 3.5: The first consisting of an elliptical cylinder undergoing surface
growth and resorption without any imposed loads or deformations, and the second consisting of
a hollow elliptical cylinder with an internal applied pressure and surface growth/resorption on
its outer surface. These examples illustrate the consistency for a set of trivial model problems,
and highlight the numerical and physical characteristics of a deforming body undergoing discrete
surface growth/resorption at different length and time scales.

3.2 Weak Forms
In this section, theweak forms of the governing balance laws are presented in two spatial dimensions.
Consider the spaces of weight functions σ and densities ρ defined as follows:

S =
{
σ ∈ H0(Rτ+t)

}
,

P =
{
ρ ∈ H0(Rτ+t) | ρ > 0, ρ(x, τ) = ρ0(x)

}
,

(3.1)

where Hm(Rτ+t) is the Sobolev space of order m in the space variables for all scalar functions
defined in Rτ+t . The weighted residual form of mass balance is stated as

Rρ =
∫
Rτ+t

σ

(
dρ
dt
+ ρ divv

)
dv = 0 . (3.2)
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The space of weight functions ξ and velocities v are defined as

X =
{
ξ ∈ H1(Rτ+t) | ξi = 0 on Γτ+t

vi
, i = 1, 2

}
,

V =
{
v ∈ H1(Rτ+t) | v(x, τ) = v0(x), vi = v̄i(x, t) on Γτ+t

vi
, i = 1, 2

}
,

(3.3)

whereHm(Rτ+t) defines the Sobolev space of orderm for the space variables of all two-dimensional
vector functions defined inRτ+t . The weighted residual for the balance of linear momentum is

Rv =

∫
Rτ+t

ξ ·

(
ρ

dv
dt
− ρb − divT

)
dv +

2∑
i=1

∫
Γτ+tqi

ξi(ti − t̄i) da = 0 . (3.4)

Upon employing the product rule and divergence theorem, the reduced weighted residual for the
balance of linear momentum becomes∫

Rτ+t

(
ξ · ρÛv +

∂sξ

∂x
· T

)
dv =

∫
Rτ+t

ρb dv +
2∑

i=1

∫
Γτ+tqi

ξi t̄i da . (3.5)

Lastly, considering the space of surface-bound weight functions ω and variable ϕ, define

W =
{
ω ∈ H1(∂R̃τ+t)

}
,

O =
{
ϕ ∈ H1(∂R̃τ+t) | ϕ > 0, ϕ(x, τ) = ϕ0(x)

}
.

(3.6)

Upon using the divergence theorem on the surface, the weighted residual for the surface balance
law in Equation (2.34) takes the form∫
∂R̃τ+t

(
ω

dΓ̃ϕ
dt
+ωϕ divΓ̃vΓ̃ − 2H ωϕ(v+ vg) · n

)
da =

∫
∂R̃τ+t

(
−gradΓ̃ω ·KgradΓ̃ϕ+ω f (ϕ)

)
da .

(3.7)
The full statement of weak form of the initial/boundary-value problem is as follows:

Given the data t̄, b, a constitutive law satisfying Equations (2.20) and (2.24), a growth law for
vg, and prescribed growth/resorption extensions of the velocity and density on ∂R̃τ+t

g × I, find the
mass density ρ ∈ P , material velocity v ∈ V , and ϕ ∈ O, such that Equations (3.2), (3.5) and (3.7)
are satisfied for any σ ∈ S, ξ ∈ X , and ω ∈ W .
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3.3 Discretization

3.3.1 Spatial Discretization of the Balance Laws
Define a spatially discretized domain Ω and its boundary ∂Ω occupying the two-dimensional and
one-dimensional Euclidean space (respectively) as

Ω =

nel⋃
e=1
Ωe ,

∂Ω ⊆

nsurf_el⋃
e=1

∂Ωe ,

(3.8)

and its corresponding representation in the intermediate configuration,

Ω̃ =

nel⋃
e=1
Ω̃e ,

∂Ω̃ ⊆

nsurf_el⋃
e=1

∂Ω̃e ,

(3.9)

where an attached superscript e denotes a single element subdomain, and nel and nsurf_el are
the total number of interior and boundary elements, respectively.

Considering the classical Bubnov-Galerkin semi-discretization approach, the interpolated vari-
ables for a given finite element Ωe are defined as

ρe
h(x, t) =

nem∑
i=1

N̄e
i (x)ρ

e
i (t) = N̄

e
ρ̂e; σe

h(x) =
nem∑
i=1

N̄e
i (x)σ

e
i = N̄

e
σ̂e ,

ve
h(x, t) =

nen∑
i=1

Ne
i (x)v

e
i (t) = N ev̂e; ξ e

h(x) =
nen∑
i=1

Ne
i (x)ξ

e
i = N e ξ̂

e
,

ϕe
h(x
Γ, t) =

nsn∑
i=1

¯̄Ne
i (x
Γ)ϕe

i (t) =
¯̄N eϕ̂e; ωe

h(x
Γ) =

nsn∑
i=1

¯̄Ne
i (x
Γ)ωe

i =
¯̄N eω̂e ,

(3.10)

where nen, nem, and nsn are the number of element nodes, density degrees of freedom per element,
and boundary element nodes, respectively. Moreover, ρ̂e, σ̂e, v̂e, ξ̂ e, ϕ̂, and ω̂ are the nodal values
ordered in vector form. The element interpolation matrices are defined as follows
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N̄
e
=

[
N̄e

1 N̄e
2 . . . N̄e

nem

]
,

N e =

[
Ne

1 0 Ne
2 0 . . . Ne

nen 0
0 Ne

1 0 Ne
1 . . . 0 Ne

nen

]
,

¯̄N e =
[

¯̄Ne
1

¯̄Ne
2 . . . ¯̄Ne

nsn

]
.

(3.11)

The spaces of admissible functions are

Ph =
{
ρh ∈ H0(Ωe) | ρh(x, τ) = ρ0(x), ρh(x, t) > 0

}
,

Sh =
{
σh ∈ H0(Ωe)

}
,

Vh =
{
vh ∈ H

1(Ωe) | vh(x, τ) = v0(x), vi(x, t) = v̄i(x, t) on Γτ+t
vi
, i = 1, 2

}
,

Xh =
{
ξ h ∈ H

1(Ωe) | ξi(x, t) = 0 on Γτ+t
vi
, i = 1, 2

}
,

Oh =
{
ϕh ∈ H1(∂Ω̃e)

}
,

Wh =
{
ωh ∈ H1(∂Ω̃e)

}
.

(3.12)

Using the interpolated variables, the weak balance of mass is

M̄
e �
ρe + F̄

e
ρ̂e = 0 , (3.13)

where
�
ρe is the discretized material time derivative of the density in vector form, i.e.,

�

ρe =
ρ̂e

n+1 −
ˆ̃ρe

n

∆tn+1
. (3.14)

Here, the subscripts n or n + 1 attached to a given variable indicates that it is evaluated at tn or tn+1
(respectively), and ∆tn+1 = tn+1 − tn is the time increment. Additionally, M̄ and F̄ are defined as

M̄
e
=

∫
Ωe

(N̄
e
)T N̄

e dv ,

F̄
e
=

∫
Ωe

(N̄
e
)T N̄

e
(∆ev̂e) dv .

(3.15)

Here, ∆e is the divergence operator acting on N e defined as

∆e =
[

dN̄e
1

dx1

dN̄e
1

dx2
. . .

dN̄e
nen

dx1

dN̄e
nen

dx2

]
. (3.16)
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The discretized weak form of the balance of linear momentum is

Me
�

ve + Fe
int − Fe

ext = 0 , (3.17)

where Me, Fe
int and Fe

ext are defined as

Me =

∫
Ωe

(N e)T (N̄
e
ρ̂e)N e dv ,

Fe
int =

∫
Ωe

(Be)TT̂
e

dv ,

Fe
ext =

∫
Ωe

(N e)T (N̄
e
ρ̂e)b dv +

∫
∂Ωe∩Γτ+tq

(N e)T t̄ da +
∫
∂Ωe\Γτ+tq

(N e)T t da ,

(3.18)

and
�
ve is the discretized material time derivative of the velocity (equivalent to the material accel-

eration), which is expressed as
�

ve =
v̂e

n+1 −
ˆ̃ve

n

∆tn+1
. (3.19)

Additionally, T̂ is the Cauchy stress in vector form, and Be is a gradient operator acting on N e

defined as

Be =


dNe

1
dx1

0 . . .
dNe
nen

dx1
0

0 dNe
1

dx2
. . . 0 dNe

nen

dx2
dNe

1
dx2

dNe
1

dx1
. . .

dNe
nen

dx2

dNe
nen

dx1


. (3.20)

The discretized surface balance is expressed as

¯̄Me
�

ϕe + ¯̄Leϕ̂e + ¯̄K eϕ̂e − ¯̄Fe = 0 . (3.21)

In Equation (3.21),
�
ϕe is the discretized time derivative of the concentration with respect to fixed

coordinates of the boundary ∂Ω̃, which is expressed as

�

ϕe =
ϕ̂e

n+1 − ϕ̂
e
n

∆tn+1
. (3.22)
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The surface arrays are defined as

¯̄Me =

∫
∂Ω̃e

( ¯̄N e)T ¯̄N e dγ ,

¯̄Le =

∫
∂Ω̃e

( ¯̄N e)T ¯̄N e
(

¯̄∆ev̂e − 2H(v̂e
n + vgn)

)
dγ ,

¯̄K e =

∫
∂Ω̃e

K( ¯̄Be)T ¯̄Be dγ ,

¯̄Fe =

∫
∂Ω̃e

( ¯̄N e)T f̂
e

dγ .

(3.23)

In Equation (3.23), v̂e
n and vgn are the normal components of the material and growth/resorption

velocity, respectively. The discrete element divergence and gradient operators ¯̄∆e and ¯̄Be (respec-
tively) are equivalent for a one-dimensional curve embedded in a two-dimensional Euclidean space,
and are defined as

¯̄∆e = ¯̄Be =
[

d ¯̄Ne
1

dxΓ
d ¯̄Ne

2
dxΓ . . .

d ¯̄Ne
nsn

dxΓ

]
. (3.24)

The mean curvature H in Equation (3.23) for a given node along the surface of a mesh is determined
by computing the central difference of the neighboring tangent vectors,

H =
1
2
( t̂R − t̂L) · n

l
, (3.25)

where t̂R and t̂L are the tangent vectors of the right and left neighboring nodes (computed as the
average tangent vectors of the surface elements adjacent to the right and left nodes), and l is the
total length of the surface elements adjacent to the given node. It is assumed that the out-of-plane
curvature is zero (i.e. the surface is flat in this direction), therefore the mean curvature is simply
half of the in-plane curvature.

Considering the standard assumption that ξ̂ e, σ̂e, and ω̂e are arbitrary, Equations (3.13), (3.17)
and (3.21) lead to a coupled nonlinear system of equations for the solution vectors ρ̂e, v̂e, and ϕ̂e.
The global solution of the fields ρ̂ and v̂ is obtained for the entire finite-element domain through
an assembly of Equations (3.13) and (3.17) for each Ωe. The global system of equations for the
density is stated as

M̄
�
ρ + F̄ ρ̂ = 0 , (3.26)

where M̄ and F̄ are defined as

M̄ =

nel

A
e=1

∫
Ωe

(N̄
e
)T N̄

e dv ,

F̄ =
nel

A
e=1

∫
Ωe

(N̄
e
)T N̄

e
∆eve dv .

(3.27)
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Global linear momentum balance is stated as

M
�v − F̂ = 0 , (3.28)

where M and F̂ are defined as

M =

nel

A
e=1

[ ∫
Ωe

(N e)T (N̄
e
ρ̂e)N e dv

]
,

F̂ =
nel

A
e=1

[ ∫
Ωe

−(Be)TT̂
e

dv +
∫
∂Ωe∩Γq

(N e)T t̄ da +
∫
Ωe

(N e)T (N̄
e
ρ̂e)b dv

]
.

(3.29)

The global vector of the surface-bound variable ϕ̂ is obtained for the entire surface of the finite-
element domain through the assembly of Equation (3.21) for each individual surface ∂Ω̃e. The
system of equations for the global balance of ϕ̂ is stated as

¯̄M �
ϕ + ¯̄Lϕ̂ + ¯̄K ϕ̂ − ¯̄F = 0 , (3.30)

where the assembled global matrices ¯̄M , ¯̄L, ¯̄K , and ¯̄F are defined as

¯̄M =

nsurf_el

A
e=1

∫
∂Ω̃e

( ¯̄N e)T ¯̄N e dγ ,

¯̄L =
nsurf_el

A
e=1

∫
∂Ω̃e

( ¯̄N e)T ¯̄N e
(

¯̄∆ev̂e − 2H(v̂en + vgn)

)
dγ ,

¯̄K =
nsurf_el

A
e=1

∫
∂Ω̃e

K( ¯̄Be)T ¯̄Be dγ ,

¯̄F =
nsurf_el

A
e=1

∫
∂Ω̃e

( ¯̄N e)T f̂
e
(ϕ̂) dγ .

(3.31)

3.3.2 Temporal Discretization of the Balance Laws
The time discretization of Equations (3.26), (3.28) and (3.30) is highlighted below. For brevity,
the reference time τ is omitted, and the current time is denoted as tn+1. Additionally, the subscript
n + 1 attached to a variable or domain indicates that it is associated with the time tn+1.

The density, velocity, and surface variable are coupled using a staggered solution algorithm.
Considering a finite element mesh with N nodes in which S nodes lie on the surface, the staggered
algorithm maintains global matrices that are N × N , 2N × 2N , and S × S for balances of mass,
linear momentum, and surface-bound variable, respectively. This avoids solving a global (3N +
S) × (3N + S) system of equations that would be required using a monolithic solution strategy
at the cost of performing multiple iterations to generate a global solution at tn+1. However, the
convergence and accuracy of the field variables using this solution methodology depends on the
initial guess and time increment. In the results presented in this work, the time increment and
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tolerance in the convergence of the fields are chosen to be sufficiently small to maintain stability
of the staggered iterations. The algorithmic details of the staggering scheme used in this work is
provided in Appendix A.1.

A staggered trapezoidal method is used to obtain the mass density based on Equation (3.13) for
a given time tn+1. With this solution strategy, the density at time tn+1 can be determined implicitly
with the following system of equations:

M̄n+1(ρ̂n+1 − ˆ̃ρn) = −
∆tn+1

2

(
F̄n ˆ̃ρn + F̄n+1ρ̂n+1

)
, (3.32)

where ˆ̃ρn is the global vector of the density at time tn in the intermediate configuration, and
∆tn+1 = tn+1 − tn is the current time increment size. The arrays M̄n+1 and F̄n+1 correspond to their
equivalent global matrices in Equation (3.27) evaluated at time tn+1. Since the velocity and density
at tn+1 are solved in a staggered manner, the velocities at tn+1 and tn are known in Equation (3.27).
Therefore, the density of the current staggered iteration is the only unknown in Equation (3.32).

The velocities at time tn+1 are obtained using the Newmark-β time integration scheme as
introduced in [33], with γ = 1/2, corresponding to the trapezoidal method. This leads to a
discretized system of equations which are generally nonlinear functions of the velocity at tn+1.
Therefore, the residual at the k th iteration is defined as follows:

R̂(vk
n+1) = M k

n+1

(
v̂k

n+1 −
ˆ̃vn

)
−
∆tn+1

2

(
F̂

k
n+1 +

ˆ̃Fn

)
= 0 . (3.33)

The solution for the velocities that satisfies Equation (3.33) is obtained iteratively usingNewton’s
method which is defined for the k th iteration as

v̂k+1
n+1 =

ˆ̃vn −

[
DR̂(vk

n+1)

]−1
R̂(vk

n+1) , (3.34)

where DR̂(v̂k
n+1) is the tangent matrix evaluated at the current iterate of the material velocity v̂k

n+1
and ṽn is the material velocity at time tn in the intermediate configuration. Since the velocity
at tn+1 is obtained in a staggered manner, the current density at tn+1 is assumed to be known
when computing the global matrices in Equation (3.29). Therefore, v̂n+1 is the only unknown in
Equation (3.33).

Once the solution vector of velocities v̂n+1 is obtained, the accelerations and displacements are
directly determined using the Newmark-β time integration scheme,{

ân+1 =
2
∆tn+1

(
v̂n+1 − ˆ̃vn

)
− ˆ̃an

ûn+1 = ˆ̃un + ∆tn+1 ˆ̃vn +
1−2β

2 ∆t2
n+1

ˆ̃an + β∆t2
n+1 ân+1

. (3.35)

The value of β is chosen as 1/4, thus corresponding to the trapezoidalmethod for both displacements
and velocities.

The material displacements at a given point can be formulated incrementally by additively
separating the contribution from each time step as follows
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un+1 = un + ∆un+1

= un−1 + ∆un + ∆un+1

= uk + ∆uk+1 + . . . + ∆un+1 ,

(3.36)

where for a given time step tn+1, the displacement increment is defined as ∆un+1 = xn+1 − x̃n, and
∆uk corresponds to the initial change in coordinates of a material particle that comes into existence
at tk < tn+1. With this definition, the temporally discretized deformation gradient according to
Equation (2.4) becomes

Fn+1
k =

∂χd,n+1

∂xn
Fn

k I

=

(
I +

∂∆un+1
∂xn

)
Fn

k I

=

(
I +

∂∆un+1
∂xn

) (
I +

∂∆un

∂xn−1

)
Fn−1

k I

=

(
I +

∂∆un+1
∂xn

) (
I +

∂∆un

∂xn−1

)
. . .

(
I +

∂∆uk+1
∂xk

)
I

(3.37)

for a material which comes into existence at time tk . In Equation (3.37), I is the mixed identity
tensor. The spatial coordinates of the body are updated based on the incremental displacement as
follows

xn+1 = x̃n + ∆un+1 . (3.38)

Note that the description of the discrete deformation gradient in Equation (3.37) is equivalent to
the implementation used for the updated Lagrangian finite element method. The total deformation
gradient Fn+1 is generally necessary to compute the stress for hyperelastic materials, however, the
total displacement un+1 is not required since the coordinates are updated incrementally according
to Equation (3.38). Therefore, the array of nodal displacements that is stored for each time step is
the increment ∆un+1. With this in mind, the displacement update using the Newmark-β integration
scheme is

∆ûn+1 = ∆tn+1 ˆ̃vn +
1 − 2β

2
∆t2

n+1
ˆ̃an + ∆t2

n+1β ân+1 . (3.39)

The tangent matrix in Equation (3.34) is derived by computing the Fréchet derivative of the
residual for the discretized balance of linear momentum in Equation (3.33) with respect to the
material velocity at tn+1. Assuming the body forces and tractions do not depend on the material
velocity, the elemental tangent matrix is computed as

DR̂
e
(vk

n+1) = D

[ ∫
Ω

e,k
n+1

(
(N e)TN eN̄

e
ρ̂e

n+1 + (B
e)TT̂

e
n+1

)
dv

]
(vk

n+1) . (3.40)
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In general, integration with respect to the spatial configuration can be pulled-back to a static refer-
ence configuration, and the expression shown on the right-hand side of Equation (3.40) simplifies
to ∫

Ωe
0

D
[
(N e)TN eN̄

e
ρ̂e

0,n+1 + (B
e)TT̂

e
n+1Je

n+1

]
(vk

n+1) dV , (3.41)

where Ωe
0 is the undeformed configuration of the material element, Je

n+1 = det(Fe
n+1) is the

determinant of the total deformation gradient at tn+1, and ρ̂e
0,n+1 is the mass density at tn+1 given as

a function of the referential ordinates. In the case where the domain itself depends on the addition
or removal of mass along the surface, Ωe may contain material that came into existence at different
times. In this setting, the pull-back of the given element to its reference domain Ωe

0 is non-trivial,
and this domain itself may contain gaps or overlaps in an unstressed state. An approximate tangent
can be computed by simply differentiating the terms inside the integral in Equation (3.40), leading
to

DR̂
e
(vk

n+1) u

∫
Ωe

D
[
(N e)TN eN̄

e
ρ̂e

n+1 + (B
e)TT̂

e
n+1

]
(vk

n+1) dv . (3.42)

The tangent shown inEquation (3.42) is sufficiently accurate for caseswhen thematerial deformation
is small, although it inherits errors as the kinematics become increasingly nonlinear. The tangent
matrix in Equation (3.42) is sufficient for the simulations conducted in this dissertation. In the most
extreme cases when the deformation becomes large, other approximate gradient methods such as
Broyden’s method [34, Chapter 11] may be used, although this was not explored in the current
work.

Assuming a stress-deformation constitutive law that is explicitly a function of the gradient of the
material displacements at the current iterate uk

n+1, and accounting for the temporal discretization
shown in Equation (3.35), the derivative in Equation (3.42) further simplifies to

DR̂
e
(vk

n+1) u

∫
Ωe

[
(N e)TN eN̄

e
ρ̂e

n+1 + (B
e)T

[
DT̂

e
n+1(u

k
n+1)

]
β∆t2

n+1

]
dv , (3.43)

where DT̂
e
(uk

n+1) is the Fréchet derivative of the Cauchy stress with respect to the current iterate
of the material displacements.

For a body in equilibriumwhere inertia does not play a significant role, the incremental material
displacement ∆u becomes the primary variable rather than the material velocities. In this setting,
the value of ∆un+1 at a given time tn+1 is obtained by solving the nonlinear system of equations,
which is expressed for the k th iteration as

F̂
k
n+1(∆u

k
n+1) = 0 . (3.44)

Note that Equation (3.44) does not involve any time integration since the acceleration is zero.
The updated value of the surface-bound variable ϕ̂n+1 at the time tn+1 is computed using the

backward Euler method, and thus must satisfy the residual defined for the k th iteration as
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R̂ϕ(ϕ̂
k
n+1) =

¯̄M k
n+1(ϕ̂

k
n+1 − ϕ̂n) + ∆tn+1

[
¯̄Lk

n+1 +
¯̄K k

n+1

]
ϕ̂k

n+1 − ∆tn+1
¯̄F(ϕ̂k

n+1) = 0 , (3.45)

Due to the staggering of the global variables, the material velocity at tn+1 shown in Equation (3.31)
is decoupled from the solution of ϕ̂n+1. With the additional assumption that normal surface growth
is explicitly a function of ϕ, the only unknown in Equation (3.45) is the surface-bound variable at
the current time, ϕ̂n+1.

3.3.3 Discretization of Surface Growth
In general, it can be impractical to know the domain of the intermediate configuration and the
growth/resorption extensions for the entire time domain I. For this reason, it is convenient to
"freeze" time and evaluate the weighted residual only in space. The fields are thus evaluated for the
entire spatial domain at discrete time intervals. Consequently, new material accreting on a body
undergoing surface growth must do so in a discrete manner based on the selected time increment.

It is convenient to assume that the time interval ∆tn+1 between two adjacent discrete time steps
(tn, tn+1] corresponds to a single instantaneous accretion/resorption increment. Moreover, each
discrete time step is associated with a set of material points constituting a new reference state
of the body. Therefore, the regions comprising the intermediate configuration at tn+1, namely
Mtn+1 and Gtn+1 , are determined based on the single growth increment occuring in (tn, tn+1], as
schematically shown in Figure 3.1. It is additionally assumed that time-dependent Dirichlet and
Neumann boundary conditions evolve in the same discrete manner prescribed by the increment
size. In the case where surface growth/resorption takes place only on traction-free surfaces, as
assumed in the examples presented in Section 3.5, no deformation occurs in the growth area during
the interval (tn, tn+1]. Therefore, the initial position of a given accreting particle is determined
based solely on the growth velocity, and χg trivially maps points from the initial positions at tn
to their identical current positions tn+1. Assuming that the accreting particles have no associated
residual stresses, the points that constitute the region Gtn+1 are deposited in a stress-free state in the
intermediate configuration. The displacements of material points relative to their state of initial
existence are zero, and correspondingly, F tn+1

tn = I in Gtn+1 . For bodies containing points with
non-zero velocity, material that is accreted at some time tg ∈ (tn, tn+1] in a stress-free state is
assumed to have a velocity equal to that of the nearest point on the boundary of the body at time
tn. In essence, grown material is taken to move rigidly with the surface it is created from in the
discrete interval (tn, tn+1] during which its accretion occurs. Accordingly, the material acceleration
of all points in the growth region Gtn+1 is the zero vector. With the aforementioned simplifications,
the discretization strategy closely mirrors that of [18].

The resorption of the surface replaces the fields such as densities and velocities on the original
boundary Γtn

a with those located at the positions of Γ̃tn+1
a as an initial solution in the intermediate

configuration, as shown in Figure 3.1. The set of material points,Mtn+1 , that belong to the interior
of the body carry all fields from the previous ungrown state onto the new intermediate configuration.
This new reference state has an initial solution in Mtn+1 and on Γ̃tn+1

a that conforms to the physical
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Figure 3.1: Discretization of surface growth/resorption: Particles entering the body (shown
schematically as green circles) between the discrete time increment (tn, tn+1] are assumed to instan-
taneously accrete at tn+1 in a deformation-free/stress-free state, with velocities (shown as arrows)
equal to the nearest neighbor of the ungrown boundary at tn. Particles exiting the body (shown
schematically as gray circles) between the discrete time increment (tn, tn+1] are assumed to instan-
taneously resorpt at tn+1. The new resorpted boundary coincides with locations previously located
inside the body (shown as red circles).

balance laws in its prior ungrown state, whereas the newly grownmaterial in Gtn+1 and Γ̃tn+1
g contains

no prior history. Thismismatch between the fields inMti+1 andGtn+1 ismanifested by discontinuities
in the deformation gradient along the growth interface Γtn

g .
The discretization of growth and resorption into finite increments which depend only on the

state of the body at the evaluated time steps entails a connection between the increment size and the
physics that the proposed numerical scheme aims to capture. Although discretized/discontinuous
and continuous surface growth are fundamentally different processes, the numerical examples in
Section 3.5 will illustrate that differences in the fields become negligible as the step size decreases
and the growth increments appear increasingly continuous.
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3.4 Meshing Algorithm
The incremental application of surface growth and resorption, as highlighted in the preceding
section, requires an algorithm that can track boundary motion and adjust the surrounding mesh
accordingly. Eulerian grids in conjunction with the level-set method have been used in the past
to simulate surface growth phenomena, such as electrodeposition of copper and epitaxial growth
of thin films [27, 5]. These implementations require infrastructure to activate/deactivate nodes,
enforce boundary conditions along a moving interface, and solve multiple balance laws in different
phases. Alternatively, surface growth/resorption applications can be modeled using an extension
of the Arbitrary Lagrangian-Eulerian (ALE) method that isolates the domain of interest to a single
phase (assumed here to be a solid), thus neglecting interactions with the ambient environment, as
also done in [18]. The extended ALE method utilizes a mesh that conforms to the interface of
the growing/resorpting domain, thus inherently capturing the combined motion of a body due to
deformation and growth/resorption. In such a setting, the boundary of the mesh evolves based
on the imposed mass flux across the surface, whereas the interior mesh is optimized to maintain
various parameters, such as its initial shape or spatial uniformity. Given either an imposed surface
growth/resorption velocity or one that is obtained through the solution of an interfacial variable
such as ϕ in Equation (2.34), the mesh motion of the interior domain is obtained by solving
Equation (3.17) with fixed boundary velocity.

3.5 Examples

3.5.1 Overview
In this section, two highly idealized examples are presented to demonstrate the numerical con-
sistency and spatial/temporal convergence of the proposed surface growth/resorption algorithm.
The first example consists of an ellipsoidal cylinder undergoing surface growth/resorption and
rigid body motions, while the second example involves a hollow elliptical cylinder with an imposed
time-dependent pressure on its inner boundary and surface growth/resorption on its outer boundary.
In both cases, the material constitution is a neo-Hookean hyperelastic model of the form

T =
µ

J
(
b − i

)
+ λ

logJ
J

i , (3.46)

where J = det(F), b = FFT is the left Cauchy-Green tensor, i is the spatial rank-two identity
tensor, and λ, µ are material parameters akin to the Lamé constants of linear elasticity with values
selected as 7.1E+02 MPa and 1.8E+02 MPa (respectively), which are typical for various plastics.
With these parameters, the material is compressible with an infinitesimal Poisson’s ratio of ν = 0.4
under small deformation.
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Figure 3.2: Surface growth/resorption under rigid-body motions: Discretized ellipse in its initial
state
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Figure 3.3: Surface growth/resorption under rigid-bodymotions: Temporal evolution of growth/re-
sorption and material velocities for Case 1 (left) and Case 2 (right), and the corresponding surface
positions (shown in 2 s intervals with bold line indicating initial and final positions). Note that the
initial and final positions for Case 1 coincide.
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3.5.2 Surface Growth and Resorption under Rigid-Body Motion
The first example consists of an ellipse with major and minor axes of diameters 80 mm and
40 mm, respectively. The discretized domain is shown in Figure 3.2. The mesh consists of 1044
bilinear quadrilaterals, and numerical integration of the weak forms is performed using a 2 × 2
Gauss-Legendre quadrature.

Two cases are examined:

1. Time-dependent uniform normal growth velocity:

vg · n = 5.2e-4 t − 7.8e-5 t2 + 2.6e-6 t3 m/s

2. Constant uniform growth velocity vgy = 1.0e-3 m/s throughout the external boundary and a
constant material velocity vy = 5.0e-4 m/s

The uniformly imposed growth/resorption and material velocities are plotted in Figure 3.3. Both
cases assume a time step ∆t = 1 s for t ∈ (0, 20] s and an initial density ρ = 1.0e3 kg/m3. The
ellipse is assumed to be in the state of plane strain with no external loading.

In both cases, the elliptical cylinder experiences addition or removal of particles under rigid-
body motions. In the first case, the domain expands and contracts as the surface undergoes
time-dependent accretion and resorption. In the second case, material is deposited onto the top
end and simultaneously removed from the bottom end, while the body is treadmilling with a
constant velocity in the y-direction. It is assumed that there are no stresses at the instant that
material comes into existence in the growth region G. In addition, The stresses on the ablating
surface Γ̃a are equivalent to the values corresponding to the same positions in the interior of the
ungrown body. Therefore, both cases result in a stress-free state as material is deposited or removed
from the body. These simple cases confirm that for an initially unstressed body experiencing
surface growth/resorption under isothermal conditions, elastic deformation is solely dependent on
externally applied forces, and cannot be generated by surface growth or resorption alone.

3.5.3 Growth and Resorption of Elliptical Cylinder Undergoing Finite De-
formation

In this section, simulation results of a hollow elliptical cylinder undergoing a constant growth/re-
sorption velocity and a temporally increasing pressure along its outer and inner boundaries (re-
spectively) are presented. The cross-section of the cylinder consists of an initial uniform 1.5 m
inner radius, as well as 2 m and 3 m minor and major outer radii, respectively. The applied outward
pressure is prescribed as

p(t) = 107 t Pa ,

within the range t = (0, 1.0] s.
Two separate simulations are conducted: in the first, the body undergoes surface growth (Case

1), while in the second, surface resorption (Case 2). The geometry and loading for the two cases
are shown in Figure 3.4. The prescribed normal growth and resorption velocities are 0.5 m/s and
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−0.1 m/s, respectively. Plane strain is assumed. Inertial effects are ignored for simplicity, thus
displacement increments are updated rather than the velocity increments, as detailed in Algorithm 2
of Appendix A.1. Appealing to double symmetry, only one quadrant of an ellipse is used to conduct
the simulationwith the origin located at the center of the ellipse, as is shown in Figure 3.4. Themesh
consists of 28841 bilinear quadrilateral elements and is biased towards the outer surface exposed
to growth or resorption. A 2 × 2 Gauss-Legendre quadrature is used to numerically integrate the
weak forms. Additionally, a time increment of 0.025 s is used.

X

Y

-2 0 2

-2

0

2

Symmetry BCs

Growth/Resorption surface

Applied pressure, p(t)

Symmetry BCs x

y

Figure 3.4: Hollow elliptical cylinder: Loading and growth/resorption configuration (graded mesh
used in simulation is shown for upper right quadrant). Coarse mesh shown for illustrative purposes.

Accreted material is added in a stress-free state in the intermediate configuration. As mentioned
in [23] and [35], material can, in principle, accrete with an inherited non-zero stress due to processes
such as chemical reactions or phase changes. These effects are neglected in the current example
since the knowledge of the underlying physical phenomena which produce surface growth and
resorption are not considered.

The effects of surface growth and resorption on the final state of the deformations and stresses
are highlighted in Figure 3.5 at the final time 1 s. The original set of material points is bounded by
the solid red curve. The accretion of material leads to an increase in strength as is evidenced in the
lower overall von Mises stress and pressure of the grown cylinder relative to the ablated one. The
results in Figure 3.5 also indicate that the majority of load is taken by the material that constitutes
the original boundary at t = 0 s for the grown cylinder, rather than redistributing throughout the
new accretion along the boundary. The abrupt change in the von Mises stress and pressure is most
pronounced along the minor radii, where steep gradients between the original boundary and the
accreted regions exist. The cylinder undergoing resorption does not consist of any newly added
material. The points of maximum and minimum stress therefore remain on the outer major and
minor axes (respectively) throughout the resorption process.

It is inherently assumed that material is instantaneously deposited at each discrete time step.
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Figure 3.5: Hollow elliptical cylinder: Contours of the pressure (left), and von Mises stress (right)
for surface growth (top) and resorption (bottom)

Therefore, the size of the time step relative to a fixed growth velocity dictates the length scale
in which accretion takes place. For instance, selecting a coarse time step of ∆t = 0.1 s leads to
visibly discrete growth increments. This is illustrated in Figure 3.6 for the circumferential, radial,
and longitudinal components of the Cauchy stress along a vertical and horizontal section of the
ellipse at t = 1 s. The observed "stair-stepping" pattern in the stress occurs due to the physical
mismatch between the pre-existing material containing history of its own deformation and that of
the newly added material which accretes onto the boundary with no stresses or deformations. The
discontinuities are more prominent in the circumferential and longitudinal directions than they are
in the radial direction. These discontinuities in the circumferential and longitudinal stress occur
due to the contradicting effects of non-zero stresses that develop on the outer surface as the cylinder
is loaded, and the stress-free state in which the material is initially deposited. On the contrary,
the radial stress is zero along the outer surface due to the traction free boundary conditions, and
hence maintains a continuous profile. Therefore, once each finite layer attaches to the cylinder,

31



Y-coordinate along vertical section (m)
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0 ×107

Circumferential stress
Radial stress
Longitudinal stress

2.0 2.5 3.0 3.5
X-coordinate along horizontal section (m)

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0
2.5
3.0 ×107

St
re

ss
(P

a)

Figure 3.6: Hollow elliptical cylinder: Circumferential, radial, and longitudinal components of
the Cauchy stress along the minor radius (top) and major radius (bottom) for surface growth

it primarily resists subsequent loading by deforming along the circumferential and longitudinal
direction. Note that the mismatch in stresses between the grown and ungrown regions is more
prominent along the minor radius than they are along the major radius since the circumferential
stresses are greatest in this region. In addition to the discontinuity at each growth increment, the
slope of the circumferential stress within the oldest growth increment nearly matches the region
near the original boundary at t = 0 s whereas the newer increments consist of sequentially lower
slopes. The outer-most layer of material exhibits near-zero slope in the circumferential component
of the stress due to the assumed stress-free initial condition applied uniformly within the newly
grown material. These trends highlight that the slopes of the stress across the growth interface
nearly match, despite the fact that the stresses themselves are discontinuous.

As a physical consequence of the stress mismatch generated by growth or resorption increments,
the cylinder maintains residual stresses upon unloading, as highlighted in Figure 3.7. The inner and
outer surface are both traction-free once the body is unloaded, thus requiring the radial stress to be
zero on these surfaces. However, the radial component of the Cauchy stress increases quadratically
through the thickness of the cylinder cross-section, reaching a maximum near the center of the
section thickness. The circumferential and longitudinal stresses are tensile along the inner surface
and compressive at the outer surface thus implying that the unloaded section along the radius has
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Figure 3.7: Hollow elliptical cylinder: Circumferential, radial, and longitudinal components of
the Cauchy stress along the minor radius (top) and major radius (bottom) for unloaded grown
cylinder

the tendency to bend.
The numerical results presented in [18] highlighted the same stair-stepping phenomenon exhib-

ited in Figures 3.6 and 3.7 for one-dimensional spatial domains with the distinction that each growth
interface align precisely with element boundaries. In this setting, the sharp discontinuities that
appear at each growth interface are exactly captured. Although this distinction enhances the overall
accuracy of the solution, the method does not easily extend to a generalized two-dimensional body.
With the assumption that the discontinuities are approximated by steep gradients, the mesh motion
is performed irrespective of prior locations of the growth interface. In this setting, it is assumed
that the fields near each growth interface can be accurately represented as the mesh element size
approaches zero.

Although the choice of time step affects the size of the growth increments and character of the
solution, the discontinuities lose prominence and the solution converges to a single smooth curve as
the size of the growth increments become infinitesimal relative to the scale of the physical domain.
This convergence is highlighted in Figures 3.8 and 3.9 for three time steps: 0.1 s, 0.05 s, and
0.025 s. The fields of the resorpting body corresponding to case 2 are shown in dashed lines, and
are also temporally convergent.
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Figure 3.8: Hollow elliptical cylinder: Temporal refinement of pressure along the minor radius
for surface growth and resorption

Uniform h-refinement of the mesh leads to a spatially convergent solution in the norm of
the stored elastic energy of the error, as is shown in Figure 3.10. Solutions from six meshes were
obtained with 741, 1711, 3081, 4851, 7021, and 28441 elements. The errors are taken relative to the
solution of the finest mesh2 (28441 elements) for each corresponding time step, and are computed
based on the difference in displacement gradients. As expected, a strong positive correlation exists
between temporal and spatial refinement for the grown cylinder due to the discontinuous nature of
the solution for coarse time steps. In contrast, the resorpted cylinder exhibits nearly equal errors
for a given mesh regardless of time step, thus indicating that temporal discretization does not play
a significant role in the spatial convergence rate for the case of surface resorption.

The convergence rates for the biased mesh used in these simulations (Figure 3.2) depends on
the metrics used to characterize the level of refinement of the spatial discretization. The results in
Table 3.1 compares the convergence rates of the grown cylinder using four element size metrics:
minimum, average, volume-averaged, and maximum element lengths. The difference in the norm
of the stored energy of a neo-Hookean material asymptotically approaches that of a linear elastic

2To the author’s knowledge, no known analytical solution exists in closed-form for a body undergoing finite
deformation and surface growth/resorption. Therefore, it is assumed that the solution of the finest mesh is the "exact"
solution.
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Figure 3.9: Hollow elliptical cylinder: Temporal refinement of von Mises stress along the minor
radius for surface growth and resorption

material (also referred to as the energy norm) when the deformations are considered infinitesimal.
Therefore, the theoretical convergence rate for a uniform grid and bilinear elements is 1. In an
average sense, the convergence rates shown in Table 3.1 approach the theoretical value as the time
discretization becomes refined.

3.6 Concluding Remarks
In this chapter, weak forms were developed based on the set of global balance laws presented
in Chapter 2. The spatial discretizations were formulated within the context of the finite ele-
ment method. Temporal discretization of the balance laws was developed, and an incremental
interpretation of the deformation gradient based on the concept of the updated Lagrangian finite
element method was introduced to describe the evolution of a domain consisting of an evolving
set of material points. Additionally, an algorithm was proposed to numerically track the evolving
growth/resorption front and assign fields in the intermediate configuration of the body.

Two examples were presented based on the proposed algorithm. The first example consisted
of a body undergoing an imposed surface growth/resorption velocity with no applied stresses or
deformations. In this example, no deformations or stresses were incurred by the body due to the
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Figure 3.10: Hollow elliptical cylinder: Spatial refinement convergence rates for surface growth
and resorption using average element length

growth and resorption. This verified that surface growth/resorption alone cannot induce stresses
onto a body undergoing rigid-body motions. The second example consisted of a hollow elliptical
cylinder in plane strain with an imposed internal pressure and external surface growth/resorption.
The accretion of material onto the domain generated discontinuities in the fields along the growth
interface due to the mismatch between the fields in the existing body and those on the accreted
portions which contain no history of prior deformation. It was illustrated that as the time step is
reduced, the accretion increments become infinitesimal, and the stress becomes spatially smoother
in the growth area. Although the spatial convergence rate was sub-optimal with large accretion
increments, it approached the expected value as the time step (and correspondingly the size of the
accretion increments) was refined. This study established that the numerical accuracy for surface
growth problems strongly depends on the size of the accretion increments relative to the scale of
the entire domain.
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∆t = 0.1 ∆t = 0.05 ∆t = 0.025

Minimum element length 0.31 0.39 0.67

Average element length 0.56 0.70 1.22

Volume-averaged element length 0.65 0.82 1.43

Maximum element length 0.92 1.14 2.02

(a) Surface growth

∆t = 0.1 ∆t = 0.05 ∆t = 0.025

Minimum element length 0.56 0.56 0.57

Average element length 1.02 1.03 1.05

Volume-averaged element length 1.16 1.18 1.20

Maximum element length 1.62 1.64 1.68

(b) Surface resorption

Table 3.1: Hollow elliptical cylinder: Spatial refinement convergence rates based on element
length scale metric
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Chapter 4

Application of Surface Growth/Resorption
to Cell Migration

4.1 Overview
The work and results presented in this chapter showcase a novel approach for simulating cell
migration through the use of the surface growth/resorption algorithm discussed in Chapters 2
and 3. The simulations illustrate the evolution of a cell’s shape in a changing environment, and
relate this surface phenomenon to the fields within the cell’s interior. The models and numerical
framework developed herein are among the first to relate cell migration to surface growth/resorption
within a computational mechanics framework (alongside the recent works of [20, 21]) and hence
serve as prototypes for future biomechanical modeling of cell migration. The mechanisms and
kinetics of cell migration is described in Section 4.2, with a simple example illustrating the relation
between cell shape and the concentration of certain proteins in Section 4.3. In Section 4.4, a
viscoelastic model based on the works of [36, 37] is reviewed, and is utilized in conjunction with a
mechanically-driven surface growth law in Section 4.5 to illustrate the effect of cell collision on its
direction of migration.

4.2 Actin-Based Cell Motility
Whilemany types of cells swim through biological fluids, some cells’ primarymotion is achieved by
crawling on an underlying substrate. Neutrophils/macrophages (white blood cells), and keratocytes
(epithelial cells) aid in the immune response to infection and prevent metastasis of cancerous cells
by performing functions such as ingestion of pathogens. Connective tissue cells such as fibroblasts
aid morphogenic development and remodeling of damaged structures. All these functions are
achieved through a directed crawling motion of individual cells and groups of cells [38], [39,
Chapter 16].

The coordinated migration of cells consists of four primary steps occurring in tandem: exten-
sion/protrusion, adhesion, translocation, and contraction, as shown in Figure 4.1 [40, Chapter 18].
The primary mechanism driving the extension/protrusion phase is thought to be the polymerization
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Figure 4.1: Side view of cell in its crawling stages

reaction of a bio-polymer termed actin (also termed F-actin or filamentous actin) along the leading
edge of the cell termed the lamellipodium (or in certain cells can also occur in filopodia or pseu-
dopodia) [41, 42]. Once the leading edge extends toward the direction of migration, it adheres to the
underlying substrate via adhering molecules such as integrin. The adhesion was found to be most
prominent in the lamellipodium, where it provides the traction force that resists the forward protru-
sion of the cell through cell-substrate binding [43]. Strong adhesion leads to persistent migration
since it allows for actin filaments to remain stationary relative to the underlying substrate [38]. The
position of a given material point of actin thus moves rearward as the cell progresses forward in
a process termed retrograde flow. In addition to polymerization of actin, myosin motors near the
cell cortex and within the cytoskeleton also enable retrograde flow by binding to actin filaments,
producing forces by hydrolyzing the organic molecule adenosine triphosphate (ATP) as they move
along individual actin filaments [43]. Through this process, acto-myosin contractile bundles pull
the cell cortex forward leading to translocation of the cell body. The consumption of ATP alters
its chemical composition to adenosine diphosphate molecules (ADP) in higher proportion near
the cell rear, which attract actin depolymerizing factors (ADF) such as cofilin [44]. This protein
is primarily responsible for dissociating filamentous actin into individual G-actin (globular actin)
monomers, which eventually flow within the cytosol fluid back to the leading edge where they
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can polymerize onto actin filaments again [45]. Lastly, the contractile forces in conjunction with
weakened viniculin-rich focal adhesions enable the cell to swiftly contract its rear [44, 43].

4.2.1 Surface Growth Driven by Extension/Protrusion of Cell Membrane

Cell nucleus

De-polymerization 
(resorption/ablation) Polymerization (growth)

Cytoskeleton (hatched region)

Cell movement

Actin filaments break-
down into indvidual 
molecules at the rear
end  of the lamella

Actin monomers 
flow toward the
leading edge

Dendritic growth 
of filaments

Branched network
of actin filaments

Capping protein

Lamellipodium

Figure 4.2: Top view of cell migration mechanism via polymerization of actin filaments

The polymerization along the lamellipodium/filopodium and depolymerization within the cy-
toskeleton together constitute a surface growth/resorption phenomenon at the nanoscale which
leads to the apparent "treadmilling" motion of the entire cell on the microscale. Polymerization
reactions of monomeric G-actin proteins on the order of several nanometers combine to form fila-
ments tens of microns in length, thus resulting in a pushing motion in the lamellipodium. Within
the cytoskeletal region, the actin filaments form a cross-linked network of polymers with linear
densities on the order of several hundred per micron, in all encompassing a region approximately
tens of microns in length and width, as shown in Figures 4.2 and 4.3 [38, 46]. Understanding the
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Figure 4.3: Tomogram showing top view of nascent actin filaments at the leading edge of the
lamellipodium (image length and width are both approximately 1µm). Image taken from [44].

dynamics and kinetics of actin is crucial in developing the correlation between polymerization, and
the generation of protrusions leading to persistent migration.

The polymerization reactions are initiated by activating proteins such as WASp, and nucleator
proteins such as the arp2/3 complex [38]. Actin filaments are polarized such that polymerization is
preferential on its barbed end facing the leading edge of the cell, and less preferential on its pointed
end. The polymerization and depolymerization of actin on the filament’s barbed and pointed ends,
respectively, depends on the concentration of G-actin in the surrounding cytosol fluid. Once a
critical maximum G-actin concentration is reached, the barbed end grows at a rapid rate whereas a
G-actin concentration below a critical concentration slows the growth of the barbed end and leads
to depolymerization of the pointed end [38]. Once the actin polymerizes at its barbed end, it grows
at a characteristic 70° angle relative to its parent branch in the lamellipodium, and forms parallel
bands in filopodia of cells such as fibroblasts [47, 44, 41].

The elastic Brownian ratchet (EBR) model proposed in [42, 48] and reviewed in [38] offers
a plausible explanation for understanding, both quantitatively and qualitatively, the nature of the
protrusive force generated by growing actin filaments. This model proposed that the microscale
dynamics of nascent actin filaments and the plasma cellular membrane are dominated by Brownian
motion, which is induced by thermal fluctuations. This random motion implies that some actin
filaments will be in direct contact with the membrane (attached filaments), while others will
contain a small gap between the membrane and the end of the filament (working filaments).
Working filaments are actively extending the cell towards the direction of migration by pushing the
membrane. Once the working filament loses contact with the membrane, it can either be capped
by capping proteins, or it can continue to grow if the G-actin concentrations are high enough and
there is a sufficient gap to fit a single monomer. The attached filaments are in contact with the
membrane and are in tension until they dissociate and hence become working filaments. The EBR
model inherently assumes that new branches of actin filaments form prior to attachment, and hence,
simply attach to existing filaments with no orientational preference [38].
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The relation between growth/protrusion velocity of the lamellipodium and load that resists
forward migration of the cell has been examined in numerous experiments, among which include
[49, 50, 51]. In [51], bundles of actin such as those occurring in protruding filopodia are grown
in vitro by providing monomeric G-actin for polymerization. The growth occurs until the actin
filaments encounter a barrier. The stall force resulting in no net growth was correspondingly
measured, and determined to be representative of the stall force for a single actin filament. The
authors of [51] concluded that bundles of actin have a net compressive strength representative
of a single filament, hence providing no combined strengthening. The authors of [49] measured
the polymerization force of a network of actin filaments that were grown in vitro through the
use of an atomic force microscope (AFM) cantilever that essentially acts as a deformable spring.
The observed velocity of the AFM tip was inversely proportional to the load, with an exponentially
increasing sensitivity as the measured force increased until the velocity reached zero, corresponding
to the stall force. This identical trend between the growth velocity and resisting load was replicated
in [50] with a migrating keratocyte cell colliding onto an AFM cantilever. The relation between
growth velocity and protrusion force was constructed numerically using the EBR model in [48].
However, the results indicated a large decrease of the growth velocity with low resistance forces,
which is contrary to the trends shown experimentally in [49, 50]. Other models such as the
autocatalytic model developed in [52, 53, 54] provide a force-velocity relation that more closely
captures experimental data at lower forces, however, discrepancies in the precise trends still exist.

Although the understanding of specific micro-mechanisms that drive protrusion and generate
forces remains an active research topic, various works have related the overall shape and curvature
of the leading edge to the underlying chemical kinetics of persistently migrating cells such as
keratocytes using mathematical models and numerical simulations. In [46], transient differential
equations were developed that determined the growth velocity and leading edge shape as a function
of actin densities of left and right oriented filaments. The numerical solutions match the exper-
imental observations which correlate high concentrations of actin to a flatter leading edge, and
consequently, more persistent migration. Similar trends were observed in [55]. The authors assert
that strong localization of actin-binding proteins such as vasodilator-stimulated phosphoroprotein
(VASP) along the leading edge allows for efficient polymerization of actin, which corresponds to
higher growth velocities. The level of polymerization also has a direct effect on the coherence and
shape of the cell. The results in [55] correlate the efficient polymerization of actin to a smooth and
flat leading edge which allows the keratocyte to migrate persistently while maintaining a canoe-like
shape. On the contrary, cells that do not polymerize efficiently were observed to have a diffused
VASP concentration with less uniform localizations throughout the cytoskeleton thus generating a
less coherent "D" shaped cell with rough edges. The authors of [55] subsequently matched the ex-
perimental observations with numerical results that consist of phenomenological rate equations for
total density of left and right oriented actin filaments as functions of VASP association/dissociation
rates, lateral flow, and branching and capping. Various other notable mathematical models, nu-
merical simulations, and experimental observations on the relation between actin polymerization,
persistent growth/migration, and the resulting cell shape include [56, 57, 58].
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4.3 Phenomenological Model of Cell Migration
Although much of the biophysics of migrating cells remains unknown, numerical models of cell
migration have been introduced in various prior works. In [58], a two-dimensional model of a
migrating cell is constructed that accounts for various intracellular interactions, such as orientation
of F-actin and concentrations of myosin and G-actin, and their effects on cell shape and orientation.
A collection of later works focused on the concentrations of extracellular chemo-attractants and the
resulting coordinated migration patterns [59, 60].

In this section, simulations of the cell migration of a fish epidermal keratocyte are conducted
through a surface balance law of the form shown in Equation (3.7). The concentration of G-actin
present throughout the lamellipodium correlates to the polymerization rate, as highlighted in [46].
Therefore, the variable ϕ is interpreted as the concentration of G-actin on the surface of the cell.
The intracellular mechanics is ignored for simplicity. With the assumption that the cell treadmills
in the +y direction, the source term f (ϕ, x∂R̃) is expressed as

f (ϕ, x∂R̃) = n(x∂R̃) − dϕ ,

n(x∂R̃) = nmax
y − ymin

ymax − ymin
+ nmin ,

(4.1)

where n(x∂R̃) is a linear nucleation term that favors high G-actin density at the leading edge of the
cell, and d is a constant dissociation term. The peak nucleation has a value of nmax which occurs
at the highest point on the cell, ymax . Likewise, the lowest nucleation nmin occurs at the minimum
y-coordinate of the cell, ymin. Between the two extreme points, the nucleation term is simply a
linear interpolation between nmax and nmin. This nucleation profile is schematically shown as a
function of the surface coordinates of the cell in Figure 4.4.

Figure 4.4: Nucleation profile of G-actin along the surface of a keratocyte migrating in the +y
direction. The domain of the cell lies on the xy-plane and the height along the z-axis corresponds
to the value of the nucleation of G-actin along the surface of the cell.

Healthy keratocyte cells generally migrate in a given direction with little variation in total area
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and shape [46]. The growth/resorption velocity of a migrating cell with no change in shape is
characterized by the graded radial extension (GRE) model [61]. This model assumes that the
surface growth velocity has the following form:

vgn = V · n , (4.2)

where V is the overall treadmilling velocity of the cell, as shown in Figure 4.5. By definition, this
treadmilling velocity V is constant in space, although it can vary in time. Based on the GREmodel,
the shape of the cell is assumed from the outset and convected with a normal growth velocity of
the form shown in Equation (4.2). It is important to note that the GRE model is phenomenological
in nature; more specifically, it neglects the individual mechanism that drive the polymerization
of actin leading to the observed treadmilling motion, including among others, interactions of the
cellular cytosol fluid and plasma membrane with the F-actin network in the lamellopodium and
chemical kinetics of actomyosin bundles [61, 48, 46].

V

vgn = V · n
Surface growth
Surface resorption

Figure 4.5: Treadmilling surface growth/resorption velocity definition based on the graded radial
extension model

The overall treadmilling velocity is constant along the surface of the cell, and is defined in terms
of the G-actin density as

V = αd

∫
∂R̃ ϕ dΓ∫
∂R̃ dΓ

, (4.3)

where α is a proportionality constant and d represents the unit vector of the direction of cell
migration. Note that vgn is frame-invariant under the assumption that both V and n transform as
vectors in Euclidean space, V′ = QV and n′ = Qn for any proper orthogonal rotation Q.

The numerical procedure highlighted in Algorithm 1 of Appendix A.1 was used to solve for
the G-actin density ϕ using backward Euler with a time step of ∆t = 0.01 s. For simplicity, the
intracellular physics was not modeled, hence material velocities and densities v and ρ were not
solved for. The entire mesh consists of 972 bilinear quadrilateral elements, which contains 72
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piecewise linear surface elements. The balance law for the G-actin concentration is numerically
integrated using a two-point Gauss-Legendre quadrature. The new position of the boundary ∂R
was determined based on the growth law in Equation (4.2) once the value of ϕ̂ j

n+1 was obtained
for a given staggered iteration j. In this example, the only unknown is the global vector of G-actin
concentrations ϕ̂. Since the positions of the surface depend on the surface growth velocity (and
hence the G-actin concentration), the global coordinates and ϕ̂ are updated in a staggered manner.
The process of updating the positions of the boundary, re-solving for ϕ̂ j

n+1, and determining v j
g,n+1

was repeated until the change in the updated coordinates converges to a user-specified tolerance,
which is generally 2-3 orders of magnitude smaller than the length scale of the domain.

Figure 4.6 illustrates the evolution of a treadmilling keratocyte within a 120 s time frame for
the parameters listed in Table 4.1. The domain includes lamellipodium and cytoskeleton regions
where the F-actin density is most prominent. The initial G-actin density along the cell boundary
varies linearly in the same manner that the nucleation does, and has the form (for a given point
on the boundary): ϕ0 = n(x∂R̃)/d. Although the cell evidently maintains its shape throughout
the migration process, the actin filaments along the surface are all propelled towards the rear edge
of the cell, predominantly along the portions where the angle between the normal vector and the
treadmilling direction vector d is greatest.

Symbol Name Value

nmax
* Maximum G-actin nucleation 10.0 /µms

nmin Minimum G-actin nucleation 0.01 /µms

d * Dissociation constant 0.1 /s

α Treadmilling velocity proportionality constant 3.0e-04 µm/s

K Diffusion constant 1.0e-06 µm2/s
* Taken from [46] with some modifications

Table 4.1: Parameters used for treadmilling cell

To determine the steady-state G-actin density and its sensitivity to cell shape, a series of 15
simulations were conducted by varying the radius of curvature at the leading point of the cell
labeled in Figure 4.7 between 3.5µm and 85µm. The results shown in Figure 4.7 indicate that
the treadmilling velocity V based on Equations (4.1) to (4.3) increases as the leading edge of the
cell becomes flatter. This phenomenon was widely studied in prior works, such as [46, 55], which
attributed the change in leading edge curvature to changes in concentrations of WASp proteins
and F-actin density within the cell. Here, the results indicate a similar trend purely based on the
variation in cell geometry.
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Figure 4.6: Treadmilling shown in 20 s intervals with respect to (a) laboratory frame and (b) fixed
points along cell boundary

Figure 4.7: Relation between magnitude of treadmilling velocity at steady-state and radius of
curvature at the leading edge for various cell shapes

4.4 Viscoelastic Constitutive Law
The ability of actin to grow or resorpt on the leading and trailing edges of the cell cytoskeleton
relies on the stresses and deformation of individual actin filaments as well as the homogenized fields
throughout the actin network. A constitutive law was developed in [62, 63, 36, 37] to capture the
mechanics of the cytoskeleton based on the properties of individual filaments and the homogenized
isotropic actin network. The constitutive framework used herein is summarized in Sections 4.4.1
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and 4.4.2.

4.4.1 Microscale Model of Actin as a Semi-flexible Biopolymer
The cytoskeleton of migrating cells consists of cross-linked semi-flexible polymer chains in the
form of actin filaments, intermediate filaments, and bundles of bound actin microtubules which on
the cell scale, form a viscoelastic gel. In living cells, non-uniform distributions of actin-binding
proteins and external stimuli such as motor protein activity determine the rheological properties of
the cytoskeletal network [64]. Models such as the active polar gels developed in [65, 66] aim to
capture the hydrodynamics of the viscoelastic actin network by treating it as an anisotropic nematic
liquid crystal composed of polarized microfilaments undergoing ATP hydrolysis and other active
chemical reactions. The works of [67, 68] provide numerical examples where the active gel model
was used to simulate the in vivo mechanical response of the cell.

In vitro experiments such as [69, 70, 71] characterized the entropic properties of the actin bio-
polymer networks on the microscale in terms of the cross-linker and F-actin concentrations, and
linked these qualities to the observed viscoelastic response on the cell-scale. The works of [71, 70]
associated the short-term linear response of in vitro grown actin to the entropic stretching of actin
filaments, dominated by the presence of cross-links, which are chemicals that bind multiple chains
of protein filaments to form junctions. In this regime, the deformation of a tightly-linked network
with high cross-linker and F-actin concentrations is dominated by stretching of the filaments on the
microscale due to the decrease in available conformations of the filaments, and hence, a decrease in
entropy [72, Pages 607–617]. The nonlinear response of the actin networkswas hypothesized in [71]
to take place when unbinding and rupture of cross-links occurred, leading to longer filaments with
more available conformations and higher entropy whose deformations are dominated by bending
due to thermal fluctuations.

The physical characteristics and mechanical behavior of actin filaments are encompassed by
a theory that describes semi-flexible biopolymers termed worm-like chains (WLC), which was
first proposed in terms of discrete segments in [73], and later adapted to describe entire polymers
chains in various works such as [72, Pages 607–617], [62, 36, 74, 75, 76]. This theory assumes
that the size of the individual monomers are vastly smaller in magnitude compared to the full
contour length of the polymer chain that they combine to form, hence appearing as a continuous
rod on the entire polymer chain scale. Additionally, the persistence length of worm-like chains, a
characteristic length scale which defines the lower limit where thermal fluctuations induce bending,
is significantly larger than the size of the individual segments/monomers it is composed of. Such
polymers consist of apparently continuous individual segments which can resist bending, and are
termed semi-flexible due to their relatively stiff mechanical response and straight appearance, as
opposed to the natural tendencies observed in softer polymers to form entangled chains [74].

The Holzapfel-Ogden β-model developed in [62] derives the mechanical response of worm-like
chains through a series of closed-form analytical expressions based on energy principles described
in [75, 76] and the equilibrium of an extensible semi-flexible rod. The relation between filament
force f and the total stretch relative to the filaments ends λ is expressed as
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r
L
= 1 +

f
µ0
−
(1 + 2 f /µ0)(1 + f /µ0)

β(1 − r0/L)
{1 + f L2/(π2B0) + ( f L)2/(π2B0µ0)}β

, (4.4)

where the current end-to-end distance between cross-links r is defined as

r = λλ0r0 , (4.5)

and the bending modulus B0 is defined as

B0 = LpkbT . (4.6)

Equation (4.4) defines an implicit equation for the filament force f at its ends given a stretch λ. The
values of the parameters in Equations (4.4) and (4.6) aswell as their physical relevance is highlighted
in Table 4.2. These parameters are chosen based on the experimental observations as well as data
fits, both of which were conducted in [37]. The closed-form expression in Equation (4.4) is based
on the theory of Cosserat rods with both extensional and bending energies, and is derived in [62].

Symbol Name Values Physical relevance
λ0 Initial pre-stretch 1.012 Stretch corresponding to zero

force
r0 Unstressed end-to-end distance 1.0 µm End-to-end distance

corresponding to zero force
L Contour length 1.048 µm Total initial arc length of actin

filament
µ0 Extension modulus 38.6 nN Material constant describing

sensitivity of filament to tensile
deformation

β Extensional exponent 0.438 Varies the sensitivity of load to
changes in the stretch

Lp Persistence length 16 µm Maximum length scale for which
the direction of tangent vector
along polymer are correlated;
also minimum length scale for
which thermal fluctuations induce
polymer bending.

kb Boltzmann constant 1.38E-23 J/K Relates the probability of energy
states to total entropy

T Temperature 294.4 K Approximate ambient
temperature

Table 4.2: Typical values (obtained from [62, 63] and Table 2 of [36]) and physical relevance of
parameters in force-extension relation for worm-like polymer chain shown in Equation (4.4)

The relation between the force and extension is sensitive to each of the parameters listed in
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Table 4.2 and can vary from purely entropic in nature to purely mechanical. The extension modulus
µ0 controls the degree to which mechanical response can dominate. For instance, a high extension
modulus correlates to an inextensible filament dominated by entropic stretching, as shown in
Figure 4.8a. The natural tendency of actin filaments is to increase entropy and become more
disordered, according the Second Law of Thermodynamics. Therefore, an increasing force must be
applied as the filament extends in order to initially stretch the filament since this implies a decrease
in the entropy and hence, the number of possible conformations [74]. Likewise, the force required to
stretch the inextensible filament to its full contour length is infinite since this corresponds to a single
straight conformation with zero entropy. The extensibility provided through a finite extensional
modulus permits mechanical stretching of the filament once it reaches a straight conformation. In
such a setting, decreasing the extensional modulus leads to a lower force required to mechanically
stretch the filament.

The persistence length of the filament (defined in Table 4.2) controls the entropic response.
As is highlighted in Figure 4.8b, a persistence length close to the contour length of the filament
leads to a softer response in the low-stretch regime, with an exponentially increasing sensitivity
of the force to the stretch as the filament reaches its contour length. On the contrary, a filament
with a high persistence length relative to its contour length exhibits a purely mechanical response
dominated by a gradual hardening at higher stretches. The extensional exponent β has a similar
effect as the persistence length, as is shown in Figure 4.8b. An increase in the extensional exponent
generates a sharper increase in stiffness with a relatively small transition between entropic and
mechanical stretching as the filament end-to-end distance approaches its contour length whereas
small extensional exponents lead to a smooth transition between entropic and purely mechanical
behavior. However, unlike the extension modulus and persistence length, the extensional exponent
is not a measurable quantity of individual actin filaments. Therefore, the value of β is selected to
fit experimental data of entire actin networks, and can vary from case-to-case [36].

4.4.2 Continuum-level Representation of Actin Network
The closed-form expression of the filament model proposed in [62] and reviewed in Section 4.4.1 is
ideal for a finite element application due to the fact that it does not require a sophisticated numerical
algorithm to resolve the mechanics on the individual filament scale (the interested reader is referred
to [77] for an alternative approach that does incorporate multiscale numerical algorithms to resolve
the filament mechanics). This model was incorporated into a continuum-level constitutive law in
[36, 37] to describe mechanics of a cell-scale actin network, which is reviewed below.

Assume a multiplicative split of the macroscale deformation gradient F into isochoric and
spherical parts,

F = F̄F sph , (4.7)

where F sph = J1/3I , F̄ = J−1/3F, and J = det(F). The deformation of the actin filaments only
affects the macroscopic isochoric deformation, therefore its motion is defined by F̄. With this
assumption, suppose a semi-flexible actin filament exists in a reference configuration R0 whose
individual kinematics are described by an isochoric macroscale deformation gradient F̄. Tangent
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(a) (b)

(c)

Figure 4.8: Relation between filament force and stretch for different (a) extension moduli, (b)
persistence lengths, and (c) extensional exponents

vectors dx in the spatial configurationR are thus defined by a linear mapping acting on referential
tangent vectors dX as

dx = F̄dX , (4.8)

as shown in Figure 4.9. The microstretch λ̄ is defined as

λ̄ = | |dx| | = dX · C̄dX , (4.9)

where C̄ = F̄
T
F̄. The homogenized stretch at a given material point is computed by integrating

the microstretch over a representative unit sphere (based on the non-affine microsphere model
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highlighted in [78]) and hence takes the following form:

λ = 〈λ̄〉 =
1
|S |

[ ∫
S
λ̄p da

]1/p
. (4.10)

In Equation (4.10), the averaging operator is denoted by 〈·〉. Additionally, S denotes the domain of
the unit sphere, and p is an averaging parameter. The averaging scheme in Equation (4.10) implies
that the microstretch λ̄ is not equivalent to the homogenized stretch λ, therefore, the deformations
of the actin network are non-affine relative to the macroscale deformation [36]. The non-affinity of
deformation modes in semi-flexible polymers occurs when the material microstructure consists of
disordered fibers, which energetically favors bending rather than stretching generally leading to a
softer macroscopic response [74, 79].

A 21-point quadrature was proposed in [78, 80] to approximate the homogenized stretch in
Equation (4.10) by imposing

〈t〉 = 0, 〈t ⊗ t〉 =
1
3
I (4.11)

on the discrete averaging operator, where t is an orientation vector on an undeformed unit sphere.
The first requirement ensures that the integral of any linear vector function vanishes on a spherical
domain as it should, while the latter constraint imposes the isochoric component of a tensor such
as the Cauchy stress on an undeformed sphere to be the zero tensor. The integration weights and
corresponding directions for the 21-point numerical integration scheme are derived in [80].

Figure 4.9: Mapping of a worm-like chain from reference configuration to spatial configuration

The elastic (equilibrium) and viscous (non-equilibrium) response is decoupled by assuming an
additive decomposition of the Helmholtz free energy [81, 82, 83]
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Ψ(C, Γ1, ..., Γm) = Ψ
eq(C) +

m∑
i=1
Ψ

neq
i (C̄, Γi) , (4.12)

where m denotes the total number of non-equilibrium terms, and Γi is the vector of internal state
variables corresponding to the ith term. Assuming the decomposition of the deformation gradient
in Equation (4.7), the equilibrium portion of the Helmholtz free energy is additively decomposed
as

Ψ
eq(C) = Ψ

eq
sph(J) + Ψ

eq
iso(C̄) . (4.13)

With this assumption, the second Piola-Kirchhoff stress tensor S is determined from the derivative
of the Helmholtz free energy with respect to the right Cauchy-Green tensor C and is thus additively
decomposed in the same manner

S = 2
∂Ψ

∂C
= Seq + Sneq , (4.14)

with

Seq = 2
∂Ψeq

∂C
,

Sneq = 2
∂Ψneq

∂C
.

(4.15)

The non-equilibrium portion of the stress is defined in terms of the "fictitious" stress of each term
Qi as

Sneq =

m∑
i=1

Qi, Qi = 2J−2/3Dev
[
∂Ψ

neq
i

∂C̄

]
. (4.16)

The equilibrium portion is likewise split into isochoric and spherical components

Seq = S
eq
sph + S

eq
iso , (4.17)

with

S
eq
sph = J

dΨeq
sph

dJ
C−1 ,

S
eq
iso = 2J−2/3Dev

[dΨeq
iso

dC̄

]
,

(4.18)

where Dev(·) is the deviatoric projection of a given tensor. With the assumption that all processes
remain isothermal, the Clausius-Planck inequality is expressed in point-wise form as

1
2
S · ÛC − ÛΨ ≥ 0 , (4.19)

where the dot over any symbol denotes the material time derivative. Expanding the time derivative
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of the second term using chain rule, Equation (4.19) becomes

1
2

[
S − 2

∂Ψ

∂C

]
· ÛC −Dint ≥ 0 , (4.20)

where the internal dissipation is defined in terms of the vector of state variables Γ as

Dint =

m∑
i=1

∂Ψneq

∂Γi
· ÛΓi . (4.21)

A material is defined to be viscoelastic if it is derived from the potential in Equation (4.12) and has
a vanishing non-equilibrium Helmholtz free energy and stress (Ψneq and Sneq, respectively) for all
equilibrium states. In addition, a material complies with the Second Law of Thermodynamics if it
unconditionally satisfies the inequality in Equation (4.20).

The transient evolution of the fictitious non-equilibrium stresses Qi are assumed to be the linear
ordinary differential equations postulated in [82, 81], which take the following form for the ith

non-equilibrium term:
ÛQi +

Qi

τi
= θi ÛS

eq
iso , (4.22)

where τi is the relaxation time and θi is a free energy parameter that relates to the relaxation time [37].
As highlighted in [82], the evolution of the non-equilibrium stress prescribed by Equation (4.22)
has several advantages:

1. Evolution equation is directly derived from the equivalent form used for infinitesimal kine-
matics and hence can be interpreted through a spring-dashpot model.

2. Incremental objectivity is trivially satisfied since stress evolution is prescribed in the reference
configuration.

3. Linearity of the time-dependent terms allows to express the non-equilibrium stresses in
convolution form.

4. Ensures a symmetric non-equilibrium tangent, since it derives directly from the form of the
isochoric stress.

5. Reduces to traditional finite deformation elasticity when rates approach zero (equilibrium
process).

The linearity of Q in time as shown in Equation (4.22) inherently assumes that the fictitious
stresses remain close to thermal equilibrium. Moreover, it is assumed that the stresses and de-
formations computed according to Equation (4.22) comply with the positive dissipation inequality
shown in Equation (4.22), though no rigorous proof of this assertion exists within the context of
finite deformation [84]. The notion of non-equilibrium processes derived through a viscoelastic
potential of the same form as Equation (4.12) was examined in [83], where a quadratic evolution
law was postulated that sufficiently satisfies the positive dissipation inequality of Equation (4.20)
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while reducing to linear evolution laws similar to the form of Equation (4.22) for deformations near
thermal equilibrium. Although not implemented herein, nonlinear evolution laws such as the one
proposed in [83] could be of importance in capturing the dynamics of cell migration, and thus, is a
potential topic for future work.

The isochoric equilibrium portion of the Helmholtz free energy, Ψeq
iso, is directly related to the

free energy of the individual filament ψ,

Ψ
eq
iso = nψ(λ) , (4.23)

where n is the filament density. Assuming that the filament end-to-end distance r is work-conjugate
to the filament force f ,

f =
dψ
dr

, (4.24)

and hence, through chain-rule,
dψ
dλ
= ψ′ = r0λ0 f . (4.25)

With the relation inEquation (4.25), Seq
iso corresponding to themacroscale stresses can be determined

based on the microscale filament force f ,

S
eq
iso = Dev[S̃] , (4.26)

where
S̃ = J−2/3nr0λ0λ

1−p f 〈λ̄p−2 t ⊗ t〉 , (4.27)

and t is an undeformed unit vector as defined in Equation (4.11). Assuming the material is quasi-
incompressible, the constraint J = 1 is enforced using a spherical Helmholtz free energy of the
following form

Ψ
eq
sph =

1
2
Λ(J2 − 1 − 2ln J) , (4.28)

hence leading to the following definition of the spherical stress

S
eq
sph =

1
2
Λ(J2 − 1)C−1 , (4.29)

where Λ is a user-specified penalty parameter.
To obtain the update relation for the fictitious stress, both sides of Equation (4.22) can be

multiplied by exp(t/τi), thus resulting in

d
dt

{
exp

[
t
τi
Qi

]}
= exp

[
t
τi

]
θi ÛS

eq
iso . (4.30)

Here, the product rule was used to simplify the terms on the left-hand side. For a given time
tn+1 and time increment ∆tn+1 = tn+1 − tn, the current value of the fictitious stress Qi,n+1 can be
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represented in terms of the stress at tn by integrating both sides of Equation (4.30) from tn to tn+1:

exp
[
tn+1
τi

]
Qi,n+1 = exp

[
tn
τi

]
Qi,n +

∫ tn+1

tn
exp

[
t
τi

]
θi ÛS

eq
iso dt . (4.31)

Upon employing the midpoint rule to approximate the integral in Equation (4.31) and re-arranging
terms, the update equation for the fictitious stress at tn+1 is expressed as

Qi,n+1 = H i,n + θiexp
[
−
∆tn+1
2τi

]
S

eq
iso,n+1 , (4.32)

where the history term is defined as

H i,n = exp
[
−
∆tn+1
2τi

] {
exp

[
−
∆tn+1
2τi

]
Qi,n − θiS

eq
iso,n

}
. (4.33)

The tangent in the reference configuration is

Cn+1 = C
eq
sph,n+1 +

{
1 +

m∑
i=1

θiexp
[
−
∆tn+1
2τi

]}
C

eq
iso,n+1 , (4.34)

where

C
eq
sph = ΛJ2C−1 ⊗ C−1 − Λ(J2 − 1)C−1 � C−1 ,

C
eq
iso = J−4/3Dev[C̃] +

2
3

J−2/3Tr S̃ P̂ −
2
3

(
C−1 ⊗ S

eq
iso + S

eq
iso ⊗ C−1

)
.

(4.35)

The fourth order tensor C−1 � C−1 is defined in components as(
C−1 � C−1

)
ABCD

=

(
C−1

ACC−1
BD + C−1

ADC−1
BC

)
. (4.36)

The fourth order tensors C̃ and P̂ are defined, respectively, as

C̃ =

[
ψ′′nλ2(1−p) − ψ′(p − 1)nλ1−2p

]
〈λ̄p−2 t ⊗ t〉 ⊗ 〈λ̄p−2 t ⊗ t〉

+ (p − 2)nψ′λ1−p〈λ̄p−4 t ⊗ t ⊗ t ⊗ t〉 ,

(4.37)

and
P̂ = C−1 � C−1 −

1
3

(
C−1 ⊗ C−1

)
. (4.38)

Lastly, the material tangent C can be pushed forward to the spatial configuration as follows

c =
1
J
(F ⊗ F ⊗ F ⊗ F) · C , (4.39)
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where the symbol (·) represents the contraction operation which maps a fourth-order material tensor
to a fourth-order spatial tensor.

4.4.3 Viscoelasticity of Actin Networks Undergoing Oscillatory Loading
Amplitude and frequency sweep experiments are commonly used to determine the time and length
scales dominating the viscoelastic response of in vitro actin networks [37, 85, 70]. These experi-
ments typically apply a sinusoidal pure shear deformation to a macroscale actin network to measure
loss and storage moduli associated with the offset between the applied strain and stress, as well as
the relaxation times and viscosity coefficients that define transient evolution of the non-equilibrium
stresses. In [37], the relaxation times τi, the free energy parameters θi, and the F-actin density
n were fit to experimental data of amplitude and frequency sweeps for both one and three non-
equilibrium terms. Under pure shear for a characteristic material point, the authors demonstrated
reasonable accuracy of the storage and loss moduli as functions of frequency and amplitude. For
the purposes of this work, it assumed that a single non-equilibrium term is used, with a relaxation
time of 2 s and free energy parameter of 0.835, coinciding with the values obtained in [37].

Consider two types of actin: long filaments with low F-actin concentration (cases (a) and (b)
for high and low amplitude shear, respectively), and short filaments with high F-actin concentration
(cases (c) and (d) for high and low amplitude shear, respectively), as summarized in Table 4.3. The
parameters for cases (a) and (b) are taken from experiments of in vitro actin and the corresponding
data fits in [36] with an averaging parameter p = 13.12, as computed in [37]. Cases (c) and (d)
use typical actin lengths and concentrations observed along the leading edge of the lamellipodium,
based on [48, 86]. The F-actin density is computed using [36, Equation 51] with an F-actin
concentration of 500µM of F-actin [86]. In addition, the averaging parameter is assumed to be
13.12, as was used in cases (a) and (b). For comparison, the unstressed end-to-end distance of the
short filament actin network is selected as 97.5% of the full contour length, which is higher than
the 95% assumed for cases (a) and (b).

The actin network in cases (a)-(d) is modeled using a single four-node quadrilateral element
with a time step of 0.01 s and an imposed pure shear, leading to a point-wise deformation gradient
of the form [

F
]
=


1 γ 0
0 1 0
0 0 1

 sin(ωt) . (4.40)

Themaximum amplitude of the shear deformation, γ, is chosen as 3% for cases (b) and (d), and 12%
for cases (a) and (c). The angular frequency, ω, is π/10 for all cases. With these selections, case
(a) precisely matches the numerical validation of the experimental results (both conducted in [37]),
hence serving as a verification of algorithmic consistency for the present work. Inertia is neglected
in the present setting, hence limiting the transient response to the viscoelasticity of the material.
Additionally, it is assumed that the out-of-plane thickness of actin networks is generally small
compared to the in-plane dimensions, as observed in lamellipodial actin networks [87, 46]. Based
on these observations, the out-of-plane shear and normal stresses are approximately zero, which
is enforced through the iterative procedure highlighted in [88, Chapter 6], [89]. The enforcement
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of plane stress enables out-of-plane deformation, thus preventing an over-constrained system of
equations which leads to element locking [90, Chapter 4].

Case Shear Strain
amplitude

Density (1/µm3) Length (µm) Unstressed
end-to-end distance
(µm)

(a) 0.12 14.31 1.048 1.0
(b) 0.03 14.31 1.048 1.0
(c) 0.12 4000.0 0.20 0.195
(d) 0.03 4000.0 0.20 0.195

Table 4.3: Parameters for shear stress/strain cases

Based on the selected parameters in Table 4.3, the viscoelastic response of the actin network is
significantly affected by the internal structure defined by the filament length and F-actin concentra-
tion, as well as the external loading, as shown in Figures 4.10 and 4.11. Under 3% shear deformation
(denoted as γ), the shear stress-strain curve (also termed Lissajous curve) shown in Figures 4.11b
and 4.11d indicates that both the long-length low-density and the short-length high-density actin
networks exhibit elliptical hysteresis profiles typical of small deformation viscoelasticity. As a re-
sult, the time evolution of the in-plane shear stress component Txy of the Cauchy stress maintains a
sinusoidal profile similar to the applied shear deformation, γ. In contrast, an applied shear deforma-
tion of 12% generates shear stress that follows a perturbed sinusoidal time evolution, as highlighted
in Figures 4.10a and 4.10c. The corresponding Lissajous curves in Figures 4.11a and 4.11c exhibit
a sharp rise in slope starting near 10% strains due to the entropic effects of filament stretching
discussed in Section 4.4.1. In both the 3% and 12% maximum shear strain amplitude loading,
the short-length high-density actin network produces stresses that are several orders of magnitude
higher than the long-length low-density actin network. This magnification in stresses arises as a
result of the higher filament density, which is linearly proportional to the Helmholtz free energy,
and hence, the stresses.

4.5 Cell Collisions

4.5.1 Motivation
Contact inhibition of locomotion (CIL) is the general phenomenon inwhich intercellular interactions
lead to an apparent change in migration velocity of individual as well as collective groups of cells
[91, 92, 93]. The proper efficiency of cells undergoing CIL is a strong indicator of healthy tissues.
Moreover, identifying cells that exhibit irregular CIL aids in the detection of cancer metastasis
[92]. These interactions consist of cells colliding onto one another, and subsequently adhering
and/or re-orienting upon contact [92]. The molecular mechanisms leading to cell separation and
re-orientation upon contact is not entirely known. In [92], the authors hypothesize that separation
can be initiated by a combination of internalized disassembly and/or rupture of cell-cell adhesions,
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(a) (b)

(c) (d)

Figure 4.10: Comparison of shear stress and strain evolution for cases (a)-(d) shown in Table 4.3

and simultaneous re-orientation of the leading edge thus forming new protrusions in a direction
where the cell is free to migrate. Various simulations have been conducted in recent years that focus
on the overall shape and motion of cells undergoing binary contact (single collision of two cells) as
well as interactions among clusters of cells [94, 95]. This section focuses on the treadmilling of a
single cell subject to external barriers, with a mechanically-driven re-orientation of its protruding
edge. A surface growth/resorption law is introduced in Section 4.5.2 to relate the change in
treadmilling direction to the contact forces. Simulation of a simple cell migrating, encountering
external barriers, and re-orienting its growth is presented in Section 4.5.3.

4.5.2 Surface Growth Law for Colliding Cell
The surface growth/resorption law is based on the GRE model, which assumes that the body grows
and ablates without changing shape, as described in Section 4.3. The growth/resorption can thus
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(a) (b)

(c) (d)

Figure 4.11: Comparison of Lissajous curves for cases (a)-(d) shown in Table 4.3

be characterized by a spatially constant treadmilling velocity V , with a time-dependent evolution
of the following form

d
dt

(
m̄V

)
= α(| | tc | |, t)

tc

| | tc | |
, (4.41)

m̄ =
∫
∂R̃

ρs da . (4.42)

In Equations (4.41) and (4.42), ρs is the surface density defined on ∂R̃, m̄ is the total surface mass,
α is a user-specified function of the magnitude of the contact force | | tc | | and time t, and tc is the
net contact force in the intermediate configuration defined as

tc =

∫
∂R̃

t da . (4.43)
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It is convenient to assume that the surface density on the boundary ∂R̃ is directly related to the
mass density ρ through the following relation:

ρs = ρ lg , (4.44)

where lg is an assumed parameter which represents the average thickness of growth increments.
Each side of Equation (4.41) has units of force. The factor α modulates the sensitivity of the

overall treadmilling velocity to external forces. For instance, a high value of α would suggest
a rapid re-orienting of the treadmilling velocity away from the contact surface whereas a low α
can generate a prolonged deceleration upon contact. This concept of interdependency between
forces and surface growth/resorption was studied in prior works such as [24, 25, 3, 26]. In these
works, the concept of configurational forces was applied to surface growth/resorption phenomenon
to characterize the non-material motion of the surface in terms of changes in free energy of the
body, and hence, to mechanical forces. In the present context, it is assumed that the physical laws
governing individual mechanisms that lead to the change in treadmilling velocity are not explicitly
solved for. As a consequence, the growth/resorption velocity governed by Equation (4.41) is purely
phenomenological.

The relation shown in Equation (4.41) is invariant under Galilean transformations χ̃+ of the
form

x̃+ = c(t) + Q ¯̃x , (4.45)

where c(t) defines a constant translational velocity c = v0t, Q is a time-independent proper
orthogonal rotation in the intermediate configuration, and ¯̃x is a point traveling with velocity V .
The force per length given by the relation in Equation (4.41) from a reference frame of an observer
undergoing a motion χ̃+ is

d
dt

(
m̄+

d χ̃+

dt

)
= α+(| | t+c | |, t)

t+c
| | t+c | |

. (4.46)

The treadmilling velocity V and average contact force tc, and the scalars m̄ and α are assumed
to transform as V+ = QV , t+c = Qtc, α+ = α, and m̄+ = m̄, respectively. Evaluating the time
derivatives, the left-hand side of Equation (4.46) simplifies to

d
dt

(
m̄+

d χ̃+

dt

)
=

d
dt

(
m̄+(v0 + QV )

)
= m̄+

(
Q

dV
dt

)
+

dm̄+

dt
(QV )

=
d
dt
(m̄+V+) .

(4.47)

Note that Equation (4.41) is not invariant for a general transformation where Q̂ = Q(t) since the
time derivative of χ̃+ under such a transformation would contain the rotation rate term dQ̂/dt. In
this case, the treadmilling velocity and its rate experienced from a reference frame of an inertial
observer do not transform invariantly for any proper orthogonal rotation, i.e., V+ , Q̂V and
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dV+/dt , Q̂dV/dt for all Q̂.

4.5.3 Example of Cell Colliding with Multiple Barriers
The example presented here focuses on the effect of collision on a single cell’s stresses and
deformations within the cytoskeletal actin network, as well as the resulting re-orientation of the
protruding edge. The hydrodynamics of the cytosol fluid and actin filaments, and interactions with
the cell’s external environment among which include extracellular adhesion and protein transport
are not considered. In addition, the membrane is assumed to play a negligible role in the overall
mechanical response of the cell, and is hence ignored. The constitutive model of individual
filaments and the homogenized actin network reviewed in Sections 4.4.1 and 4.4.2 is used with
parameter values listed in Table 4.2 and case (a) in Table 4.3. The cell is assumed to be in plane
stress, as discussed in Section 4.4.3. The growth region is initially deformation-free and stress-free
(both equilibrium and non-equilibrium stresses). As a consequence of the assumption of stress-free
growth, newly accreted material has no initial displacements or accelerations. The contact of a
single cell is enforced through a penalty-type formulation, with modifications for surface growth as
described in Appendix A.6. The value of the penalty parameter is selected to be sufficiently low to
reflect the finite stiffness of other cells. In this setting, the inexact contact constraint acts as a stiff
Hookean spring by allowing a small amount of contact penetration to occur. Friction and adhesion
between the cell, substrate, and contact surface is neglected for simplicity.
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Figure 4.12: Treadmilling and colliding cell: Initial configuration and discretized mesh

The geometry used to simulate the migrating cell is a circle with a 20 µm radius, and initial
coordinates of the center at the origin. The mesh consists of 4032 four-node bilinear quadrilateral
elements. A nine-point Gauss-Lobatto quadrature rule is used, which contains sampling points on
the corner nodes and mid-edges of each element. This ensures that the integration points along the
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growth region will always capture the fields in the newly grown regions regardless of time step, as is
described in Appendix A.5. Two barriers are placed, one inclined slightly above the initial position
of the cell with a slope of 1/20 and the other at a constant vertical height of −22 µm relative to
the initial center of the domain. In the context of CIL, these barriers represent stationary clusters
of cells pushing against the cell of interest when contact occurs. The initial configuration of the
geometry, as well as the mesh and barrier locations, is shown in Figure 4.12. Other parameters are
listed in Table 4.4.

Parameter name Value
Initial treadmilling velocity [5, 5] µm/s
Initial material velocity [0, 0] µm/s

Initial density † 1.05 g/cm3

Growth density 1.05 g/cm3

α value 2.0e-10 µN
Average growth increment thickness, lg 1.0µm

Maximum time step 5.0e-2 s
Minimum time step 5.0e-4 s

Incompressibility penalty parameter, Λ 1.0e-5 µPa
Contact penalty parameter, ε 5.0e-9 µN/µm3

† Based on the evidence presented in [96], the density of typical cells
is assumed to be approximately 5-10% higher than water.

Table 4.4: Treadmilling and colliding cell: Model parameters for colliding cell example

The simulation of the treadmilling cell was conducted for a total of 3.9 s. Three collision
events occurred between the cell and the external barriers, with initial contact at approximately
0.67 s, 1.81 s, and 2.98 s, as schematically shown in Figure 4.13. The time-lapse of the cell as it
treadmills and collides with external barriers is shown in Figure 4.14. The temporal evolution of
the simulation step size, and the volume-averaged fields are shown in Figures 4.15 to 4.18. Upon
first contact at approximately 0.67 s, both inertia and re-orientation of the surface growth and
resorption leads to a change in apparent motion toward the lower barrier. Note that the release of
the contact constraint generates transient oscillations in the acceleration, a classic feature inherent
in the Newmark integration scheme [97]. During the second collision event, the re-orientation of
cell’s leading edge overcomes the effects of inertial impact and drives the cell away from the barrier.
In this setting, the net surface growth/resorption direction is opposite of the material displacement
and velocities between the second and third collision. The last contact event results in a net increase
in the material velocity and incremental displacement as it is propelled away from the barrier by
the final re-orientation of surface growth and resorption.

In contrast to elastic contact of non-growing bodies, the mechanisms driving accretion of new
material can persist during contact. For instance, a plausible hypothesis to explain the separation of
cells during CIL involves the continual polymerization of actin filaments along the contact interface
which eventually leads to the re-orientation of the protruding edge [92]. In the current setting,
material accretion at the contact point leads to larger penetration gaps due to the finite stiffness
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Bottom surface

Top surface

Time (s)

Figure 4.13: Treadmilling and colliding cell: Schematic motion of treadmilling cell (horizontal
scale is exaggerated for clarity). Arrows indicate direction of treadmilling velocity post-initial
contact.

of the barrier. This, in turn, produces higher reactionary tractions on the cell as it grows towards
the barrier. The profiles in Figures 4.19 and 4.20 illustrate that both the von Mises stress and the
absolute pressure near the contact point increase until this region switches from surface growth to
resorption. Once the contact point resorpts away from the interface, the tractions decrease until the
cell is no longer in contact with the barrier.

Upon re-orienting the surface of growth and resorption, discontinuities form in the acceleration
field along the interface of the new leading edge, as shown in Figure 4.21. This phenomenon
occurs due to the assumption that newly formed material does not inherit information about the
acceleration of the prior existing material.3 Since acceleration on either side of the interface is
different, the inertial forces also differ. This mismatch thus generates transient stress concentrations
in the absence of any applied loading, as illustrated in the bottom of Figure 4.21.

The overall deformation is small relative to the cell’s full scale, which approximately main-
tains its initial shape even after multiple contact events. This result is in contrast to experimental
observations such as those of [55], which point to significant changes in cell shape upon encoun-
tering an external barrier. A possible reason for this discrepancy is that the in vitro mechanics of
actin networks that is used to represent the treadmilling cell in this dissertation is vastly different
than that of in vivo cells due to numerous factors, among which include inhomogeneities of actin
orientations, chemical reactions of various proteins, and spatial variation of filament lengths and
densities [64, 71]. Although experiments of the mechanical behavior of in vivo actin networks are
in their nascent phase, future breakthroughs may help improve the modeling of cell treadmilling.

3Discontinuities are also present in the gradient of the incremental displacement, which leads to discontinuous
stresses as noted in Section 3.5.3 On the other hand, the material velocities do not inherit discontinuities, since accreted
material has an initial motion which is identical to the existing material point nearest to it.
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Figure 4.15: Treadmilling and colliding cell: Time step evolution

Figure 4.16: Treadmilling and colliding cell: Evolution of average incremental material displace-
ment (top), average material velocity (middle), and average material acceleration (bottom)
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Figure 4.17: Treadmilling and colliding cell: Evolution of treadmilling velocity

Figure 4.18: Treadmilling and colliding cell: Evolution of average von Mises stress (top) and
average absolute pressure (bottom)
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Figure 4.20: Treadmilling and colliding cell: von Mises stress (top) and pressure (bottom) profiles
taken along cross-section of cell orthogonal to contact surface during first cell-barrier collision

Figure 4.21: Treadmilling and colliding cell: Acceleration magnitude (top) and von Mises stress
(bottom) at the time t = 1.198 s during cell treadmilling after the first collision
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4.6 Concluding Remarks
In this chapter, the process of cell migration within the context of surface growth and resorption
was introduced. The dynamics and kinetics of actin filaments and its correlation to the protrusion
of the cell’s leading edge was described. An example was provided which formulated a surface
growth law relating the concentration of G-actin monomers to the cell-scale apparent treadmilling
speed. In this example, it was shown that the magnitude of the steady-state cell treadmilling velocity
was higher for an assumed cell cytoskeleton geometry that consisted of a flatter (lower absolute
curvature) leading edge of the lamellipodium.

The second part of the chapter focused on the relation between cell migration and the stress
fields within the cytoskeleton. A viscoelastic constitutive law for a continuum-level isotropic actin
network based on the works of [36, 37] was reviewed. In addition, the fundamental properties of
this constitutive law and their effect on the force experienced by individual filaments as well as
the macro-scale stress and strain of the actin network were highlighted. An example consisting
of an idealized migrating cell that encounters external barriers was presented. In this example, a
traction-based growth law was introduced to account for the change and re-orientation of the cell
treadmilling velocity occurring during cell-barrier contact. Simulation results illustrated that the
evolution of the material fields along the contact interface depend on the surface growth/resorption
velocity and its rate of change in both direction and magnitude.
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Chapter 5

Conclusion

5.1 Closing Remarks
In this dissertation, a new approach to representing and simulating surface growth/resorption of
deformable bodies is presented. A brief summary of contributions of the current work is listed
below:

• Physical description of a deforming body undergoing surface growth/resorption

– The total motion of the body is characterized in terms of a non-material surface
growth/resorption transformation χg which defines the new interface of the body, the
mapping χg which maps material from its initial location and time of existence to
the intermediate configuration, and the deformation mapping χd which describes the
motion of material points relative to the intermediate configuration.

– The global balance laws and their local equivalents are posed with respect to the
current configuration, with the assumption that newly accreted regions attach to the
prior existing material in an initially stress-free state.

• Numerical algorithm

– Discretized weak forms are solved on a non-material mesh which convects based on
the surface growth/resorption velocities. With this strategy, the fields at a given node
or element is based on its spatial location rather than a fixed material point or region.
Therefore, the general form of the proposed algorithm provides a framework that can
be used to model a deformable body undergoing any arbitrary two-dimensional surface
growth/resorption motion with either a fixed-connectivity mesh (as done in this work),
or with an adaptively evolving mesh.

• Applications of surface growth/resorption

– The accretion of stress-free material onto a loaded body generates a discontinuous
stress profile along the interface. This was illustrated in a model problem presented in
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Section 3.5.3 which consists of a cylinder undergoing simultaneous growth/resorption
and deformation. The effect of the discontinuities is most prominent when the time step
size is large relative to the surface growth velocity, which leads to a finite amount of
instantaneously deposited material at each step. Therefore, the numerical accuracy of
the fields depends both on the individual element size and the temporal refinement of
the surface motion.

– The fields on a body undergoing surface growth-driven dynamic contact depend on the
way in which the surface growth/resorption velocities evolve, as was illustrated for an
idealized treadmilling cell in Section 4.5. These rudimentary findings could provide the
framework for future numerical studies on the effects of contact-inhibited locomotion
of cells.

5.2 Potential Future Research Topics
Based on the results and progress of the work documented in this dissertation, there are several
recommended potential topics of future research, which are summarized below:

• Methods development

– Introduce a numerical scheme that can simulate surface growth/resorption that is con-
tinuous in time. Incorporating such an algorithm into the numerical scheme provided in
this work can potentially offer insight into the differences in characteristics between dis-
crete/discontinuous and continuous surface growth. This may possibly be accomplished
by predicting the distribution of initial positions of grown material at a given time step
tn+1, and computing the deformation gradient based on an assumed deformation history
occurring within the range (tn, tn+1]. Corrections can be subsequently applied based on
the actual deformation computed between the prior and current time steps.

– Improve understanding of the relation between extensions of the velocity, stress, and
density in the growth region, and the overall evolution of the deforming and growing/re-
sorpting body

– Incorporate time integration schemes that decouple the step size from the time-scale of
surface growth or resorption. This could potentially be accomplished through multi-
stage integration such as Runge-Kutta methods, which predict the state at tn+1 based on
multiple intermediate steps.

– Couple the current ALE implementation with Eulerian front-tracking approaches which
solve for fields outside of the growing/resorpting body

• Application to cell migration

– Incorporate effects of focal adhesion to the cell-barrier simulation. This may be impor-
tant in providing the cell with a capacity to resist changes in momentum when coming
into contact with external barrier.
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– Include dynamic effects of actin filament motion such as those mentioned in [76] to the
constitutive model of the actin network

• Other applications

– Develop adaptive meshing capabilities to efficiently discretize domains whose shape is
significantly altered throughout the growth or resorption process. This can widen the
applicability of the proposed algorithm toward a variety of industrial applications such
as additive manufacturing.
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Appendix A

Numerical Algorithms

A.1 Surface Growth/Resorption Algorithm
In this section, the algorithmic procedure for updating the surface growth/resorption velocity, as
well as the other field variables such as the material velocity, density, and stress is schematically
illustrated. The pseudo-code shown in Algorithms 1 and 2 emphasizes the order in which each of
the procedures is executed. Details of the algorithms and concepts specific to surface growth are
further elaborated in Appendices A.3 to A.5.
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Algorithm 1: Surface growth/resorption algorithm for dynamic bodies
1: Initialize field variables
2: Set n = 0
3: while n < n_steps do . Begin time loop
4: t ← τ + n∆t . Update current time
5: Initialize ρ̂0

n+1 =
ˆ̃ρn

6: Initialize v̂0
n+1 =

ˆ̃vn
7: Initialize ˆ̃ϕ0

n+1 =
ˆ̃ϕn

8: Set j = 0
9: j ← j + 1
10: while j < num_staggered_iterations do . Begin staggered iterations
11: if vg depends on ϕ then
12: Set k = 0
13: while k ≤ itermax and | |resid | |2 ≥ tol do . Solve Equation (3.45)
14: Compute residual and tangent based on Equation (3.45)
15: Solve for increment← Compute ϕ̂ j,k+1

n+1
16: k ← k + 1
17: end while
18: end if
19: Convect mesh based on: x̃ j

n+1 = xn + v j
g,n+1∆t . See Appendix A.3

20: Project fields in M onto new mesh . See Appendix A.4
21: Generate growth and resorption initial fields in G, Γ̃g, and Γ̃a . See Appendix A.5
22: Solve for ρ̂ j

n+1 based on Equation (3.32) assuming v̂n+1 = v̂ j−1
n+1

23: Assign ρ̂n+1 = ρ̂
j
n+1

24: Initialize v̂ j,0
n+1

25: Set k = 0
26: while k ≤ itermax and | |resid | |2 ≥ tol do . Solve Equation (3.33)
27: Update displacements and accelerations
28: Update Cauchy stress, deformation gradient, and any state variables
29: Compute residual and tangent based on Equation (3.33)
30: Solve for increment← Compute v̂ j,k+1

n+1
31: k ← k + 1
32: end while
33: Update current positions based on v j

n+1.
34: j ← j + 1 . Update staggered step
35: end while
36: n← n + 1 . Update simulation step
37: end while
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Algorithm 2: Surface growth/resorption algorithm for quasi-static (non-inertial) bodies with no
body forces
1: Initialize field variables
2: Set n = 0
3: while n < n_steps do . Begin time loop
4: t ← τ + n∆t . Update current time
5: Initialize ∆û0

n+1 = ∆
ˆ̃un

6: Initialize ˆ̃ϕ0
n+1 =

ˆ̃ϕn
7: Set j = 0
8: j ← j + 1
9: while j < num_staggered_iterations do . Begin staggered iterations
10: if vg depends on ϕ then
11: Set k = 0
12: while k ≤ itermax and | |resid | |2 ≥ tol do . Solve Equation (3.45)
13: Compute residual and tangent of Equation (3.45)
14: Solve for increment← Compute ϕ̂ j,k+1

n+1
15: k ← k + 1
16: end while
17: end if
18: Convect mesh based on: x̃ j

n+1 = xn + v j
g,n+1∆t . See Appendix A.3

19: Project fields in M onto new mesh . See Appendix A.4
20: Generate growth and resorption initial fields in G, Γ̃g, and Γ̃a . See Appendix A.5
21: Initialize ∆û j,0

n+1
22: Set k = 0
23: while k ≤ itermax and | |resid | |2 ≥ tol do . Solve Equation (3.44)
24: Update displacement increments
25: Update Cauchy stress, deformation gradient, and any state variables
26: Compute residual and tangent based on Equation (3.44)
27: Solve for increment← Compute ∆û j,k+1

n+1
28: k ← k + 1
29: end while
30: Update current positions based on ∆û j

n+1.
31: j ← j + 1 . Update staggered step
32: end while
33: n← n + 1 . Update simulation step
34: end while

83



A.2 Orthogonal Projection
The procedure described in this section is used to track the growth/resorption front (Appendix A.5)
as well as the contact interface (Appendix A.6).

Consider a one-dimensional curve with the local coordinate ξ embedded in a two-dimensional
Euclidean space. Consider a point outside the curve with Cartesian coordinates defined by the
vector r and a curve whose points are characterized by the vector ρ(ξ). Moreover, this curve is
discretized with piecewise linear functions, as shown in Figure A.1.

r

ρ(ξ)

x

ξ

ξ̂
y

(x1, y1)

(x2, y2)Point of interest

Figure A.1: Initial set-up for a closest point projection of a point onto a one-dimensional piecewise
linear curve.

A distance function F(ξ) can be defined as

F(ξ) =
1
2
| |r − ρ(ξ)| |22 . (A.1)

Here, | | · | |2 denotes the Euclidean vector norm. Seeking a minimum of the above function also
obtains the point along the curve described by ρ for which its distance from r is minimized.

The above equation can generally be nonlinear, thus requiring a root-finding algorithm to obtain
a solution. However, restricting the curve ρ to one-dimensional piecewise linear functions that
are C0 leads to a linear equation in ξ. One issue that arises when optimizing Equation (A.1)
with C0 functions is that their derivative is not well-defined at the intersections of the piecewise
linear segments. To circumvent this difficulty, an individual optimization of Equation (A.1) is
performed for each piecewise linear segment that is within a user-specified distance from the point
r by constraining the solution space to ξ̂ ∈ [0, L], where L is the length of a given segment. The
final solution is then chosen as the minimum over all of the distances computed by the optimization
of each individual segment. The optimal solution on a given segment is determined by a single
iteration using Newton’s method:
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ξ̂ = ξ̂0 +

[
dρ(ξ̂0)

dξ

]T (
r − ρ(ξ̂0)

)
, (A.2)

where ξ̂0 is an initial guess of the solution, and ρ(ξ) is defined for a given segment as

ρ(ξ) =

[ (
1 − 1

L ξ
)
x1 +

( 1
L ξ

)
x2(

1 − 1
L ξ

)
y1 +

( 1
L ξ

)
y2

]
. (A.3)

Here, the start point and end point have coordinates (x1, y1) and (x2, y2) respectively. The length is
defined as L =

√
(x2 − x1)2 + (y2 − y1)2. The constraint is applied in an indirect manner. If ξ̂ < 0,

it is assigned as 0. Likewise, ξ̂ = L if the above solution is greater than the length. It is assumed
that the solution ξ always exists. Moreover, If the solution of Equation (A.1) is not unique, it is
assumed that only one of the segments where the solution ξ̂ lies is chosen to determine the distance
between the point at r and the surface.

A.3 Mesh Motion Algorithm
In this section, the procedure for convecting the mesh of a growing/resorpting body is described.
This task is performed once the growth velocities are known along the entire surface for a given
time, as highlighted in Algorithms 1 and 2 of Appendix A.1.

Γg

Γa

Γv

Γq

v = vg

v · n = 0

v · n = 0

v = vg

Γg

Γa

χg

Γ̃a

Γ̃g

BVP for mesh

R̃τ+tRτ Rτ

Figure A.2: Schematic of boundary-value problem to determine mesh motion based on surface
growth velocity

With a known surface growth velocity at a given time τ + t, the boundary is convected by
the specified growth and resorption velocities, as is schematically illustrated in Figure A.2. On
portions of the surface ∂Rτ that do not have a prescribed surface growth or resorption, the condition
v · n = 0 is enforced to allow only tangential motion of the mesh. If Neumann or Dirichlet portions
of the boundary (Γq and Γv respectively) coincide with the growth/resorption surface, these regions
are assumed to convect onto the boundary of the newly grown surface as well. In this case, the
boundary conditions are applied on a different set of material points at time τ + t than they are at
time τ.
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In order to alleviatemesh distortion, the interiormeshmust convect during the growth/resorption
phase as well. In this work it is assumed, that the mesh connectivities (and correspondingly, the
number of elements and nodes) remain unaltered as it convects. To accomplish this task with
minimal change in mesh distribution and uniformity, linear momentum balance is solved on the
interior mesh with the boundary conditions v = vg on Γa and Γg, and v · n = 0 elsewhere. The
initial velocities in the interior are set to zero, and the density and material constants are set by the
user. Note that the material constitution assigned to the mesh is not physical, since it correlates to
a non-material mesh motion. Once the initial data are known, the new mesh velocities vm

n+1 at a
discrete time tn+1 are solved iteratively using the backward Euler time integration scheme,

Mmv̂m
n+1 − ∆tn+1F̂

m
n+1 = 0 , (A.4)

where Mm and F̂
m
n+1 are defined as

Mm =

nel

A
e=1

[ ∫
Ωe

(N e)T (N̄
e
ρ̂m,e)N e dv

]
,

F̂
m
n+1 =

nel

A
e=1

[ ∫
Ωe

−(Be)TT̂
m,e
n+1 dv

]
.

(A.5)

In Equation (A.5), ρ̂m,e and T̂
m,e
n+1 are the fictitious element density and stress (ordered in vector

form), respectively. A neo-Hookean constitutive law is used to define the fictitious stress on the
mesh, which is defined as

Tm =
µm

Jm (b
m − i) + λm logJm

Jm i . (A.6)

In Equation (A.6), the Jacobian of the mesh motion is defined as Jm = det(Fm), bm = Fm(Fm)T is
the left stretch, and µm, λm are the constants defining the elastic properties of themesh. Additionally,
i is the identity tensor in the spatial configuration of themesh. The deformation gradient of themesh
Fm is obtained for a given time tn+1 based on the gradient of the incremental mesh displacement
defined by ∆um

n+1 = xm
n+1 − xm

n relative to the positions at time tn

Fm = I +
∂∆um

n+1
∂xn

. (A.7)

The growth/resorption velocities on Γa and Γg, and the normal velocities on the other portions of
Γ are known from the outset and are thus not included in Equation (A.4). Once the mesh velocities
vm

n+1 are known, the new nodal coordinates are updated as follows

xm
n+1 = xm

n + ∆tvm
n+1 . (A.8)

The solution scheme above relies on the knowledge of the surface growth and resorption
velocities vg at time tn+1. In cases where the growth/resorption velocities are functions of the
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deformations or material velocities, vg can change in time. The simplest strategy to determine
the new growth/resorption velocities is an explicit update of vg,n+1 which solely relies on the
deformation or material velocities at tn, and hence there exists an inherent lag in the update
of the growth velocities. Alternatively, the growth velocities at tn+1 can be obtained implicitly.
This is achieved by iteratively obtaining a value of vg, convecting the mesh, and solving for the
new material densities and velocities at tn+1 until the difference in the coordinates at an iteration
reaches a minimum tolerance. The procedures for the explicit and implicit schemes are illustrated
schematically in Figure B.3 and Figure B.4, respectively. Although the implicit scheme provides a
more accurate growth/resorption velocity, it incurs a significantly higher computation cost due to
the repetitive staggered solves for the growth/resorption and material fields.

x−
i

x+
i

xproj

xi

xavg

Γnew

Γold

θ > θmin

Apply new BCs on this surface

Figure A.3: Surface smoothing algorithm for a given node based on position averaging and
closest-point projection.

Poisson smoothing provides an alternative to obtaining the mesh motion by solving a set of
local balance laws at each node. This algorithm is based on the works of [98] and [99]. The
authors in these works define a potential whose minimization achieves a combination of optimal
mesh smoothness, orthogonality, and weighted volume. The optimization of the mesh smoothness
is equivalent to solving the Poisson equation along lines of equipotential on the mesh. A finite
difference approximation can easily be obtained for a given node in terms of the coordinates of its
nearest neighbors by swapping the physical variables with a set of parametrized variables defined
on a square grid and solving the same differential equation for the new coordinates of the mesh.
This method offers a distinct advantage in that it does not require a numerical algorithm to obtain a
solution since its closed form is already defined on a regular grid, and can thus be used for any set
of mesh coordinates. In conjunction with the Poisson smoothing in the interior, a simple surface
smoothing procedure can be implemented by averaging a boundary node’s neighbor positions and
projecting the averaged point onto the mesh boundary, as is illustrated in Figure A.3. The combined
surface and interior smoothing algorithm is shown in Algorithm 3. Although this method is far
more computationally efficient than solving a global balance law to determine the mesh motion, it
is not as robust in maintaining a uniform mesh, especially in cases where the boundary is highly
deformed. The interior/surface smoothing procedure was used in test problems not shown in this
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Algorithm 3: Mesh smoothing algorithm
1: for c = 0 to num_cycles do . Number of surface-interior smoothing cycles
2: for xi ∈ ∂Ω do . Surface smoothing
3: Obtain left and right neighbors, x−i and x+i
4: Compute angle θ between the two vectors x−i − xi and xi − x+i .
5: if θ > θmin then . Anything less than θmin is considered a corner node
6: Average neighbor positions, xi = 0.5(x+i + x−i )
7: Perform closest point projection to map xi onto ∂Ω
8: end if
9: end for
10: for xi ∈ Ω do . Interior smoothing
11: Obtain neighbors in all directions
12: Perform Poisson smoothing on xi until desired convergence
13: end for
14: end for
15: Re-assign Γa,Γg,Γv, and Γq based on new nodal locations of surface

work. This procedure was also used to smooth the initial meshes of the simulations conducted in
Sections 3.5.2 and 4.5.3 (meshes are shown in Figures 3.2 and 4.12).

A.4 Field Projection Algorithm
In this section, the procedure for projecting fields between the ungrown and grownmesh is described.
This step is performed once the new positions of the grown/resorpted body is known relative to its
ungrown state, as highlighted in Algorithms 1 and 2 of Appendix A.1.

The projection solves for the new field variables by performing a global least-squares optimiza-
tion in the spatially discretized intermediate configuration∫

Ω̃

| | f̃ − f | |22 dv = min , (A.9)

where f̃ is the global vector of a given field variable in the new mesh (defined in the intermediate
configuration), and f is the fixed global solution of the same field variable on the old mesh (defined
in the ungrown configuration). This leads to the discretized system of equations

M f̃ = b (A.10)
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for the unknown nodal vector f̃ , where

M =
nel

A
e=1

[ ∫
Ωe

(N e)TN e dv

]
,

b =
nel

A
e=1

[ ∫
Ωe

f e dv

]
.

(A.11)

The array of shape functions N e is equivalent to N e in Equation (3.11) when solving for vector-
valued variables and N̄ e when solving for scalar variables. When projecting tensors with more than
two components such as the deformation gradient and Cauchy stress, each component is solved
separately as a scalar field.

The integral in b is evaluated by searching for the element in the old (ungrown) mesh Ω which
contains the coordinates of a given integration point xip in the current mesh Ω̃. This search is
performed for every integration point in Ω̃ using the ray-casting point-in-polygon search algorithm.
Selecting a point xip, a fictional line is extended along a user-specified direction with a length that
is longer than the side lengths of neighboring elements. If this line intersects the edges of a given
element an odd number of times, the point is inside the element. Additionally, if the ray intersects
the edge of an element an even number of times but is co-linear with two adjacent element nodes,
the point lies on the edge of the element. This procedure is graphically illustrated in Figure A.4.

Edge interior point

Exterior point Rays

Fully interior point

Element of interest

Figure A.4: Ray-cast performed for a fully interior, edge interior, and exterior node.

Once the element e∗ encompassing xip in the old mesh Ω is found, the natural coordinates x∗ in
the isoparametric frame are determined by solving the vector-valued equation

N e(ξ)x̂e − xip = 0 (A.12)

for the isoparametric variable ξ . Here, N e(ξ) is the typical array of shape functions for two
dimensions defined by Equation (3.11) and x̂e is vector of nodal coordinates for the element e∗.
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For four-noded quadrilateral elements, the shape functions N e(ξ) are nonlinear in ξ and are thus
obtained using Newton’s method.

The contribution of f e for elements in the intermediate configuration that contain newly accreted
material lacks a physical meaning, since the field f is defined in the ungrown configuration. The
value of f must exist, however, to obtain a global solution for the projected field f̃ . In this setting,
a "fictitious" assumed field is generated in the growth regions by simply assigning the value at xip
in those locations to the identical value at the closest point of the ungrown mesh boundary ∂Ω.
Although it is also possible to simply prescribe the values of f as zero (or alternatively as the actual
extension solutions), the sharp discontinuities in the distribution of f along the growth front can
lead to significant errors in the projected values near the growth interface.

Algorithm 4: L2 projection for mesh of body undergoing surface growth/resorption
1: for Ωe ∈ Ω̃ do . Elements in intermediate configuration
2: for x̃ip ∈ Ω

e do . Integration points of an element
3: if x̃ip < G then . Only project points common to both meshes
4: Find x∗ and e∗ based on mesh of Ω
5: Interpolate within e∗ to find field f at x∗
6: else
7: Construct assumed field at x̃ip
8: end if
9: Assemble Me and f e into global system
10: end for
11: end for
12: Solve for f̃

A.5 Front-tracking Algorithm
In this section, the algorithmic implementation for the evolution of a surface based on its growth/re-
sorption velocity is discussed. This procedure is carried out when the growth velocity vg and
the corresponding positions of the grown boundary are known at a given time, as indicated in
Algorithms 1 and 2 of Appendix A.1.

The algorithm used for tracking the grown configuration is based on flagging mesh nodes and
element integration points as "growth" or "resorption" by projecting the given points onto the
ungrown surface of the prior time step using the orthogonal projection procedure described in
Appendix A.2. The pseudo-code of these algorithms for a given growth/resorption increment is
shown in Algorithms 5 and 6.

Some elements can bisect the ungrown boundary as shown in Figure A.5. This occurs as a
result of the misalignment of the mesh with prior discrete growth boundaries, which is a feature
that is difficult to avoid for general two-dimensional surface motions. In this setting, the values
at the integration points and nodes are projected from existing fields at the prior time step if they
are placed within the interior of the old boundary, or they are assigned a corresponding growth
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Node

Integration point

Existing material

Grown material

∂Ωold

Ωe

Existing material Grown material

FEM approximation

Growth extension

fR

fL

L R

Figure A.5: Node and integration point flagging for a single element based on distance relative
to the ungrown boundary ∂Ωold (left), and an example of the approximated field along an element
edge using continuous interpolation functions (right)

extension value. For fields defined on nodes in the grown region, the values within the element are
interpolated using the standard finite element interpolation functions. As highlighted in Figure A.5,
this interpolation scheme introduces an error for elements intersecting the growth boundary since
the discontinuity in the value of the field4 cannot be captured by smooth interpolation functions.
As the element size is refined, the accuracy of the transition between growth and prior fields is
expected to improve as well, as was highlighted in Section 3.5.3. While some numerical methods
such as XFEM [100] specialize in the numerical treatment of discontinuities within elements, they
are not an appealing option to use for problems involving surface growth since each discrete growth
increment introduces a new discontinuity in the fields, which becomes a burdensome task for a
simulation with hundreds or thousands of time steps.

In some cases, elements bisecting the ungrown boundary may not contain any integration
points in the growth region. This is typical for problems involving small time steps and/or growth
increments relative to the element sizes near the boundary. Integration schemes which sample
element nodes such as the two-dimensional 3 × 3 Gauss-Lobatto quadrature rule can capture the
growth extension fields of quantities defined at integration points for any arbitrary time step, as
is illustrated in Figure A.6. This numerical scheme was used in Section 4.5.3. It is important,
however, to note that any numerical quadrature scheme will entail a finite integration error since
the locations and weights of these methods are derived from smooth polynomials.

4Some fields such as the mass density have a specified value independent of the fields in the existing body, which
produce discontinuities along the growth interface. Other fields depend on the state of the body prior to growth. For
instance, the material velocities are assumed to have extensions that are constant in the growth region with a value
equivalent to that of the nearest node of the ungrown mesh. In this case, the field is continuous along the growth
interface, but consists of a discontinuous slope.
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Existing material

Grown material

∂Ωold

Ωe

Existing material

Grown material

∂Ωold

Ωe

Figure A.6: Node and integration point flagging for 2 × 2 Gauss-Legendre quadrature (left) and
3 × 3 Gauss-Lobatto quadrature (right)

Algorithm 5: Front-tracking for nodes
1: for x̃i ∈ Ω̃ do . Interior and boundary nodes in intermediate configuration
2: Compute x∂Ωold

. Closest point projection of x̃i onto surface of ungrown mesh
3: Compute r x = x̃i − x∂Ωold

4: Compute n∂Ωold
. Outward-facing unit normal at x∂Ωold

5: if r x · n∂Ωold
> 0 then . Growth

6: Flag node at x̃i as growth node
7: Prescribe growth extension
8: else if r x · n∂Ωold

< 0 and xi ∈ ∂Ω then . Resorption
9: Flag node at x̃i as resorption node
10: Prescribe resorption extension
11: else if r x · n∂Ωold

== 0 and | |vg | | > 0 then . Tangential resorption
12: Flag node at x̃i as resorption node
13: Prescribe resorption extension
14: end if
15: end for

A.6 Contact Constraint under Surface Accretion
Contact between a deformable body and a rigid barrier is enforced via the penalty method for
normal contact [101, Chapter 6]. The weak balance of linear momentum in Equation (3.5) contains
an additional term, and hence becomes∫

Rτ+t

(
ξ · ρÛv +

∂sξ

∂x
· T

)
dv =

∫
Rτ+t

ρb dv +
∫
Γτ+tq

(
ξ · t̄ − εξ · gn̄

)
da , (A.13)

where ε > 0 is a user-specified penalty parameter and gn̄ is the normal gap vector defined as
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Algorithm 6: Front-tracking for integration points in elements
1: for Ωe ∈ Ω̃ do . Elements in intermediate configuration
2: for x̃ip ∈ Ω

e do . Integration points of an element
3: Compute x∂Ωold

. Closest point projection of x̃ip onto surface of ungrown mesh
4: Compute r x = x̃i − x∂Ωold

5: Compute n∂Ωold
. Outward-facing unit normal at x∂Ωold

6: if r x · n∂Ωold
> 0 then . Growth

7: Flag node at x̃i as growth node
8: Prescribe growth extension
9: end if
10: end for
11: end for

gn̄ =

{ [
(x∂R − x̄) · n̄

]
n̄ if (x∂R − x̄) · n̄ < 0

0 otherwise .
(A.14)

In Equation (A.14), x̄ and n̄ are the position vector and unit outward facing normal on the fixed
barrier (respectively), and x∂R is a given position vector of a material point in the current config-
uration along the boundary ∂R. The penalty term εgn̄ in Equation (A.13) acts as a traction that
prevents penetration of the boundary ∂R, and hence, carries a negative sign (compressive) when
the constraint is active.

As noted in [101, Chapter 6], the weak form in Equation (A.13) derives from the minimization
of a potential (or Hamiltonian when kinetic energy is present) subject to the inequality constraint

(x∂R − x̄) · n̄ ≥ 0 , (A.15)

which imposes impenetrability. The penalty method approximates the contact constraint shown
above with a traction that increases with the amount of penetration, and depends on the penalty
parameter ε .

The time and space discretization leads to the following system of equations on the element
level

Me
�

ve + Fe
int − Fe

ext + Ge
c = 0 . (A.16)

The constraint vector is defined as

Ge
c =

∫
Ξe
ε(N e)T ĝe

n̄ da , (A.17)

where Ξe = ∂Ωe ∩ Γe
c , Γe

c is the contact surface, and ĝn̄ is the discretized gap vector of length
2nen × 1 in two dimensions defined at each node. The gap vector is evaluated for nodes that
are flagged for contact, which is determined by performing an orthogonal projection of each node
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along ∂R onto the boundary of the rigid barrier using the orthogonal projection and front-tracking
algorithms described in Appendices A.2 and A.5. Rather than evaluating the set of contact nodes
for each global Newton iteration, this set of nodes remains fixed for each given time step. With
this modification, the discrete gap vector ĝn̄ is non-zero for all nodes initially flagged for contact,
regardless of the orthogonal distance between a given node and the barrier for the current iterate.
As argued in [101, Chapter 6], this modification alleviates the "flip-flopping" of nodes between
contact and free, which leads to an improved convergence rate.

The iterative scheme in Equation (3.34) to update the velocities for a given iteration relies on
the Fréchet derivative of the discrete gap function to form the tangent matrix, which for a given
element e is expressed as

DGe
c(vn+1) = 2β∆t

∫
Ξe
ε(N e

n̄)
TN e

n̄ da , (A.18)

where the element matrix N e
n̄ is defined as

N e
n̄ =

[
Ne

1 n̄x 0 Ne
2 n̄x 0 . . . Ne

nen n̄x 0
0 Ne

1 n̄y 0 Ne
2 n̄y . . . 0 Ne

nen n̄y

]
. (A.19)

The tangent shown above holds both for small deformations as well as nonlinear kinematics in the
present case, since the master surface that determines the contact tractions is a fixed barrier, which
is consistent with the observations made in [102]. It is well-known that as the penalty parameter ε
approaches infinity, the solution satisfying the approximate contact constraint in Equation (A.13)
approaches the solution that globally adheres to the exact constraint in Equation (A.15) (as reviewed
in [101, Chapter 6]). In practice, ε is set sufficiently high to prevent significant penetration, while
remaining low enough to ensure the solvability of Equation (A.18).

For non-growing elastic bodies undergoing dynamic contact, the traction that prevents pen-
etration through an external surface depends on the deformation and inertia of the body at the
instant of contact. When a body undergoing surface growth reaches an external barrier, the contact
tractions prevent further accretion of material. The ensuing stresses and deformation thus arise
from the inability of the body to grow in a desired manner. In a temporally discretized setting,
the intermediate configuration is subjected to surface growth and resorption without the effects of
external barriers. In order to relate the mechanical fields occurring due to contact to the surface
accretion, any penetration that occurs in the intermediate configuration is pushed away from the
barrier via the contact tractions arising from Gc, as is illustrated in Figure A.7. As the body is
pushed away from the barrier, material can continue to accrete onto a growing surface facing the
barrier leading to further penetration in the intermediate configuration of the subsequent steps. In
reality, the surface growth rate can be affected by its inability to accrete in a given direction. This
was illustrated with the cell migration example in Section 4.5.2, where the magnitude of the surface
growth of the cell in the direction of the barrier decreased upon contact, leading to an eventual
reversal of the growth velocity away from the contact surface.

The shock induced onto a body at the instant of impact during dynamic/inertial contact typically
requires significant temporal refinement, since this discontinuous process in time is essentially
approximated by numerical integration schemes such as Newmark-β that assume regularity in the
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Figure A.7: Enforcement of contact for a body undergoing surface growth through the deformation
mapping from the intermediate configuration

solution. However, the moments followed and preceded by impact may not be as sensitive to
the time step, especially in circumstances such as the treadmilling cell in Section 4.5 where the
body is not exposed to any external loads while moving between barriers. To improve the overall
computational efficiency, the time step throughout the simulation is adapted based on the proximity
of the treadmilling cell to the contact surface. When the cell approaches a barrier, the current
coordinates of the body are obtained based on the growth and material velocities with a given time
step. If contact occurs, the time step is reduced by a user-specified factor and the simulation step is
restarted. This process repeats until none of the updated points with a reduced time step penetrate
the barrier. If there are points on the boundary of the body that are in contact when the time step
reaches a minimum value set by the user, the step proceeds without any further reduction in size.
This continual reduction process allows the simulation time to gradually "slow down" as the body
reaches the contact interface. When the body fully rebounds and is no longer in contact, the time
step is increased until reaching the maximum user-specified value.
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Appendix B

Code Structure

B.1 Overall Structure
The finite element code used in this dissertation was written in C++-14. The code relies on the
Eigen library [103] for sparse matrix storage and linear algebra solution algorithms, the TinyXML2
library [104] for XML input file parsing, and gtest (Googletest) [105] for unit testing and black-box
testing. Meshes are generated using gmsh [106]. The UML class collaboration and inheritance
diagrams in Appendix B.3 are generated by Doxygen [107]. Results are output to text files in two
forms:

1. Summary files contain limited information in certain time steps, based on the desired post-
processed fields determined by the user.

2. Visualization files contain all pertinent information to visualize simulation results in Tecplot
360.

Namespaces encapsulate the different classes and functions based on their use. The description of
each namespace is provided below:

• Input/Output: Input parsing, post-processing, and output for visualization

• FEM: Implementation of numerical quadrature, interpolation of nodal variables, wrapper
methods for Eigen sparse matrices, and various other generic algorithms

• Mesh: Mesh optimization algorithms, storage of mesh parameters and data structures

• Model: Storage and implementation of model fields and balance laws

• Debug: Definitions and implementations of macros for unit tests and black-box tests for use
with gtest

The main procedural class/method descriptions and other primary data structures are provided
below:
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• MeshBase

– Stores array of element nodes, node neighbor lists, node element lists, element/surface
connectivity arrays, and all mesh parameters

– Performs mesh optimization, orthogonal projections, and front tracking procedures

• ModelBase

– Derives from MeshBase
– Primary class for storing and updating all field variables such as density, velocity and
displacement

– Primary implementer of surface growth and resorption
– State is deep-copied for use in time integration procedures. The instance named
old_model contains the state (implemented purely as a "const" class in every method
where it is called) at the old time step tn when updating to the new time step tn+1 whereas
the trial_model instance is used in the iterative/staggered procedures to update the trial
fields.

• ModelParams

– Public data structure storing relevant parameters defining the model in ModelBase
– Some parameters include time step, material constants and type, number of quadrature
points, contact parameters, and various other factors

• ModelArrays/ModelSurfArrays

– Stores, substructures, and updates sparse matrices used for solving bulk and surface
balance laws and L2-projections

• ScalarParam/VectorParam

– Data structure storing the nodal arrays of scalar, and vector fields
– Contains methods for interpolating fields and their derivatives at a point in a given
element

• Tensor/Tensor4

– Data structures storing a single second-order or fourth-order tensor
– Contain overridden operators to handle tensor arithmetic

• ScalarElemParam/TensorParam/Tensor4Param

– Data structure storing the global arrays of scalar, second-order, and fourth-order tensor
fields defined at the integration points

97



• ScalarVar/VectorVar

– Derive from ScalarParam and VectorParam
– Data structure storing scalar and vector primary variables that are solved for
– Contain linear and nonlinear solver parameters

• MaterialBase

– Abstract base class with virtual methods defined for linear elastic, hypoelastic, neo-
hookean, and viscoelastic materials

– Derivedmaterial classes are instantiated through the polymorphic factory design pattern
– Stores and updates element-level quantities such as the Cauchy stress and deformation
gradient, and computes element tangent matrices

– Scope is limited to time integration procedure

• ChemicalKineticsBase

– Abstract base class with virtual methods defined for the following types of chemical
kinetics: elastic brownian ratchet, simple nucleation-dissociation, Meinhardt activator-
inhibitor-depleted model, and activator-depleted model

– Derived chemical kinetics classes are instantiated through the polymorphic factory
design pattern

– Stores and updates surface element-level quantities such as surface specie concentration,
and computes surface element tangent matrices

– Scope is limited to time integration procedure

• ContactImplementer

– Performs methods to track nodes in contact and compute contact tractions and tangent
matrix

– Scope is limited to time integration procedure

• ModelFollowerTangent

– Computes tangent for nodes with imposed follower loads
– Scope is limited to time integration procedure

• ModelCore

– Top-level implementation class of ModelBase
– Operates on a single unique instance of ModelBase to run simulation
– Generates and outputs post-processed fields
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B.2 UML Sequence Diagrams
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model_core : ModelCore base_model : ModelBase

update_model()

sd Update Model

alt

[non-staggered]

<<create>>
old_model : ModelBase

set_boundary_values(time)

update_balance_laws(old_model)

ref

[Partial_Staggered]

Partial Staggered Update (old_model)

ref

Full Staggered Update (old_model)

[Full_Staggered]

simulation_step

Update Balance Laws
 (old_model)

ref

update_surface_growth()

updated_fields

grown_surface

Figure B.2: UML sequence diagram of update model procedure

model_core : ModelCore base_model : ModelBase

sd Partial Staggered Update (old_model)

loop

[iters < max_staggered_iterations]

trial_model : ModelBase<<create>>

[ time_reduction_criteria = = true ] reduce_time_step()

[ time_increase_criteria = = true ] increase_time_step()

update_balance_laws(old_model)
Update Balance Laws
 (old_model)

ref

updated_fields

updated_time_step

update_surface_growth()

grown_surface

Figure B.3: UML sequence diagram of partial staggered procedure
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model_core : ModelCore base_model : ModelBase

sd Full Staggered Update (old_model)

loop

[iters < max_staggered_iterations]

trial_model : ModelBase<<create>>

[ time_reduction_criteria = = true ] reduce_time_step()

[ time_increase_criteria = = true ] increase_time_step()

update_balance_laws(old_model)
Update Balance Laws
 (old_model)

ref

updated_fields

updated_time_step

update_surface_surface_growth()

grown_surface

reset_coordinates
(old_model)

Figure B.4: UML sequence diagram of full staggered procedure

FEM_arrays : ModelArrays

sd Material Tangent (material_model)

alt

[FollowerLoad = = true] follower_tangent : ModelFollowerTangent

[else if Contact == true]

contact_implementer : ContactImplementer

compute_tangent_matrix_lin_mom(material_model)

tangent_matrix_lin_mom

<<create>>

<<create>>

track_boundary()

set_contact_nodes()

compute_follower_tangent()

follower_tangent

compute_contact_tangent()

contact_tangent

Figure B.5: UML sequence diagram of material tangent update procedure
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 : ModelBase  FEM_arrays : ModelArrays

sd Update Balance Laws (old_model)

 FEM_surf_arrays : ModelSurfArrays

loop

[iters < newton_iterations]
compute_mass_bal_resid(old_model)

[non-staggered = = false] reset_density(old_model)

compute_tangent_matrix_mass()

tangent_matrix_mass

update_density()

loop

[iters < newton_iterations]
reset_elem_fields(old_model)

[non-staggered = = false] reset_lin_mom_fields(old_model)

update_lin_mom_pimary_fields(old_model)

<<create>>
material_model : MaterialBase

update_elem_fields(old_model)

updated_elem_fields

compute_tangent_matrix_lin_mom(material_model)

tangent_matrix_lin_mom
Material Tangent
(material_model)

ref

update_velocity()

loop

[iters < newton_iterations]
compute_surface_chemical_bal_resid(old_model)

compute_surface_tangent_matrix_chemical(surface_chemical_kinetics)

surface_tangent_matrix_chemical

update_surface_vars()

<<create>>
surface_chemical_kinetics : ChemicalKineticsBase

update_balance_laws(old_model)

updated_fields

Figure B.6: UML sequence diagram of balance laws update procedure
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B.3 UML Class Diagrams
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Model::ModelParams
+ dt
+ dt_original
+ max_dt
+ min_dt
+ cutback_factor
+ increase_factor
+ dt_update_iters
+ n_lin_mom_iters
+ print_status
+ damping_coefficient
+ displacement_alpha
+ displacement_beta
+ num_ip
+ quadrature_type
+ material_type
+ material_growth_type
+ body_force_type
+ body_force_viscosity
+ chemical_kinetics_type
+ surface_chemical_kinetics_type
+ model_smoothing
+ enable_contact
+ enforce_velocity_contact
+ enforce_mass_flux_contact
+ velocity_contact_sensitivity
_factor
+ mass_flux_contact_sensitivity
_factor
+ velocity_contact_sensitivity
_exponent
+ mass_flux_contact_sensitivity
_exponent
+ ModelParams()
+ recompute_time_step()
- initialize()
- assign_quadrature_type()
- assign_num_ip()

Model::MaterialFactory
 

+ MaterialFactory()
+ createMaterial()

 +material_factory

Model::IntegratorParameters
+ integrator_type
+ linear_solver_type
+ nonlinear_solver_type
+ nonlinear_solver_max
_iters
+ nonlinear_solver_abs_tol
+ nonlinear_solver_acceptable
_abs_tol
+ nonlinear_solver_print
_residual
+ print_status
+ IntegratorParameters()

 +model_smoothing_integrator
_params

Model::ChemicalKineticsFactory
 

+ ChemicalKineticsFactory()
+ create_surface_chemical
_kinetics()

 +chemical_kinetics
_factory

Model::ContactParameters
+ penalty_parameter
+ sensitivity_factor
+ sensitivity_exponent
+ gap_tolerance
+ search_distance_threshold
+ gap_distance_threshold
+ max_sine_contact_angle
+ print_status
+ active_contact
+ penalty_scaling_type
+ master_surface
+ master_nodes

 

 +contact_parameters

Model::ChemicalKineticsParameters
+ association_factor
+ dissociation_factor
+ capping_factor
+ diffusion_coefficient
+ growth_nucleation_factor
+ growth_dissociation
_factor
+ resorption_nucleation
_factor
+ resorption_dissociation
_factor
+ ChemicalKineticsParameters()
+ ChemicalKineticsParameters()
- initialize_SimpleEBR()
- initialize_SimpleND()
- initialize_GrowthResorption
SimpleND()
- initialize_M_Model()
- initialize_AD_Model()

 +chemical_kinetics
_parameters

+surface_chemical
_kinetics_parameters

Model::MaterialParameters
+ plane_elasticity_type
+ plane_stress_rel_tol
+ plane_stress_acceptable
_rel_tol
+ plane_stress_abs_tol
+ plane_stress_max_iters
+ alpha
+ lamda
+ mu
+ viscosity
+ n_fibers
+ anisotropy_eq_coefficient
+ anisotropy_neq_coefficient
+ viscous_stress
+ MaterialParameters()
+ MaterialParameters()
- initialize()

 +material_params
+model_smoothing_material

_params

Figure B.8: UML collaboration diagram of ModelParams class (diagrams of data structures in
red boxes are truncated for clarity)
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Model::MaterialBase
# quadrature_type
# plane_elasticity_type
# displacement
# def_grad
# def_grad_zz
+ MaterialBase()
+ update_stress()
+ compute_tangent()
+ compute_stored_energy()
+ update_model_vars()
+ compute_def_grad()
# vol_avg_J_old()
# vol_avg_J()
# compute_db_stabilization
_tangent()

Model::AnisotropicViscoelastic
- lamda
- mu
- viscosity
- anisotropy_eq_coefficient
- anisotropy_neq_coefficient
- dt
- fiber_viscous_stretch
- reference_fiber_orientation
- cauchy_stress
- velocity
+ AnisotropicViscoelastic()
+ update_stress()
+ compute_stress()
+ compute_tangent()
+ compute_material_tangent()
+ compute_stored_energy()
+ update_model_vars()
- update_viscous_stretch()

Model::BiopolymerViscoelastic
- params
- dt
- viscous_stress_old
- pk2_iso_inf_old
- cauchy_stress
- velocity
- plane_stress_max_iters
- plane_stress_rel_tol
- plane_stress_acc_rel_tol
- plane_stress_abs_tol
- state
- viscous_stress_new
- pk2_iso_inf_new
- pressure_avg
+ BiopolymerViscoelastic()
+ update_stress()
+ compute_stress()
+ compute_tangent()
+ compute_stored_energy()
+ update_model_vars()
- compute_homogenized_vars()
- compute_microstructure_vars()
- compute_viscous_stress()
- vol_avg_pressure()
- vol_avg_pressure_tangent()
- compute_full_material
_tangent()

Model::ExplicitHypoElastic
- dt
- alpha
- cauchy_stress
- velocity
+ ExplicitHypoElastic()
+ update_stress()
+ compute_stress()
+ compute_tangent()
+ compute_material_tangent()
+ compute_stored_energy()
+ update_model_vars()

Model::LinearElastic
- dt
- mu
- lamda
+ LinearElastic()
+ update_stress()
+ compute_stress()
+ compute_tangent()
+ compute_material_tangent()
+ compute_stored_energy()
+ update_model_vars()

Model::NeoHookean
- dt
- mu
- lamda
+ NeoHookean()
+ update_stress()
+ compute_stress()
+ compute_tangent()
+ compute_material_tangent()
+ compute_stored_energy()
+ update_model_vars()

Figure B.9: UML inheritance diagram of MaterialBase class

Model::ChemicalKineticsBase
# mass_flux_params
+ ChemicalKineticsBase()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()

Model::AD_Model
- activator_concentration
- depletor_concentration
- signal
- params
+ AD_Model()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()

Model::GrowthResorptionSimpleND
- growth_concentration
- resorption_concentration
- growth_nucleation_factor
- growth_dissociation
_factor
- resorption_nucleation
_factor
- resorption_dissociation
_factor
- diffusion_coefficient
+ GrowthResorptionSimpleND()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()

Model::M_Model
- dt
- noise_factor
- wp_value
- activator_concentration
- global_inhibitor_concentration
- local_inhibitor_concentration
- surface_length
- surface_integrated
_activator
- params
+ M_Model()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()
+ update_curvature_factor()

Model::SimpleEBR
- attached_filaments
- working_filaments
- association_factor
- dissociation_factor
- capping_factor
- diffusion_coefficient
+ SimpleEBR()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()

Model::SimpleND
- concentration
- signal
- params
+ SimpleND()
+ compute_reaction()
+ compute_diffusion()
+ compute_reaction_tangent()
+ compute_diffusion_tangent()
+ compute_mass_flux_vel()
+ compute_mass_flux_vel
_tangent()

Figure B.10: UML inheritance diagram of ChemicalKineticsBase class

105


	Contents
	List of Figures
	List of Tables
	List of algorithms
	List of Symbols
	Introduction
	Motivation and Prior Works
	Objectives and Outline

	Continuum Mechanics of Surface Growth and Resorption
	Overview
	Kinematics
	Balance Laws
	Concluding Remarks

	Finite Element Approximation
	Overview
	Weak Forms
	Discretization
	Spatial Discretization of the Balance Laws
	Temporal Discretization of the Balance Laws
	Discretization of Surface Growth

	Meshing Algorithm
	Examples
	Overview
	Surface Growth and Resorption under Rigid-Body Motion
	Growth and Resorption of Elliptical Cylinder Undergoing Finite Deformation

	Concluding Remarks

	Application of Surface Growth/Resorption to Cell Migration
	Overview
	Actin-Based Cell Motility
	Surface Growth Driven by Extension/Protrusion of Cell Membrane

	Phenomenological Model of Cell Migration
	Viscoelastic Constitutive Law
	Microscale Model of Actin as a Semi-flexible Biopolymer
	Continuum-level Representation of Actin Network
	Viscoelasticity of Actin Networks Undergoing Oscillatory Loading

	Cell Collisions
	Motivation
	Surface Growth Law for Colliding Cell
	Example of Cell Colliding with Multiple Barriers

	Concluding Remarks

	Conclusion
	Closing Remarks
	Potential Future Research Topics

	Bibliography
	Numerical Algorithms
	Surface Growth/Resorption Algorithm
	Orthogonal Projection
	Mesh Motion Algorithm
	Field Projection Algorithm
	Front-tracking Algorithm
	Contact Constraint under Surface Accretion

	Code Structure
	Overall Structure
	UML Sequence Diagrams
	UML Class Diagrams




