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A new Lagrangian-Eulerian finite element method for modeling contaminant transport 
in fractured porous formations 

Jens T. Birkholzer, Kenzi Karasaki 
Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, California, USA 

ABSTRACT: Fracture network simulators have been extensively used in the past for obtaining a better under­
standing of flow and transport processes in fractured rock. However, most of these models do not account for 
fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores 
can have a major impact on the spreading of contaminants. In the present paper a new finite element code 
TRIPOL Y is introduced which combines a powerful Lagrangian-Eulerian approach for solving flow and 
transport in networks of discrete fractures with an efficient method to account for the diffusive interaction 
between the fractures and the adjacent matrix blocks. The code is capable of handling large-scale fracture­
matrix systems comprising individual fractures and matrix blocks of arbitrary size, shape, and dimension. 

INTRODUCTION 

In fractured reservoirs the transport of contaminants 
mainly occurs in a small volume of high-permeabi­
lity interconnected fractures. However, most of the 
capacity for storing a pollutant is provided by the 
pore system of the rock matrix. Due to the much 
slower transport in the matrix, strong concentration 
gradients may occur from the fractures into the 
porous blocks. This can lead to significant solute 
transfer between fractures and matrix and may 
strongly influence the concentration field in a frac­
tured porous formation. 

Generally, the numerical simulation of flow and 
transport processes in fractured porous rock can be 
performed with either discrete models or continuum 
models. Discrete models describe the spatial struc­
ture of the fracture-matrix system in great detail and 
thus allow for a more accurate simulation than con­
tinuum models. However, the discretization and 
computational effort is very large, and often discrete 
models are limited to the fracture network only, not 
taking into account the rock matrix. Such discrete 
models, which may be called fracture network 
models, have often been used in the past, e.g. for 
studying dispersion phenomena or deriving equi­
valent continuum parameters. However, the numeri­
cal solution of advection-dispersion in fractures can 
become a crucial task, since natural fracture net­
works are very heterogeneous with regard to flow 
velocities, and numerical problems such as artificial 
dispersion or oscillations may occur. 

In recent years Lagrangian-Eulerian schemes have 
been used more and more to avoid such numerical 
problems in the solution of the advection-dispersion 
equation, especially for advection-dominated prob­
lems (e.g. Neuman 1984). The idea is to decompose 
the advection-dispersion equation in two parts, one 
controlled by pure advection and the other by dis­
persion. The advected concentration profiles are cal­
culated by Lagrangian approaches such as particle 
tracking methods, whereas the dispersed concentra­
tion profiles are solved by conventional numerical 
techniques (FDM, FEM) on Eulerian grids. Karasaki 
( 1986) introduced a Lagrangian-Eulerian finite ele­
ment code TRINET for transport in two- or three­
dimensional fracture networks (Segan and Karasaki, 
1993). This code is capable of handling heteroge­
neous fracture networks without numerical. prob­
lems. However, like most fracture network models, 
it does not account for solute exchange between 
fractures and porous rock. In the present paper, the 
code of Segan and Karasaki is extended to simulate 
transport processes in discrete fractures embedded in 
porous matrix blocks. 

Several attempts have been made in the past to 
include fracture-matrix interaction in discrete frac­
ture models. A straightforward technique would be 
to fully discretize both the fractures (planar elements 
in 3D-space) and the matrix blocks (volume ele­
ments in 3D-space), and simultaneously solve for 
solute transport in the entire domain. However, due 
to the strong heterogeneity of the fractured porous 
formation, a very fine discretization is needed in the 



matrix blocks, especially at the fracture-matrix inter­
face. Thus, simulation runs become very costly in 
terms of computer time and space; even for small­
scale problems reasonable limits may be exceeded. 

Other workers consider global flow and transport 
processes only for the fracture network, while using 
simplified approaches for the fracture-matrix inter­
action. A very simple model is to work with a retar­
dation factor associated to the fractures. This 
approach, however, is not very exact, since it is not 
able to describe the time-dependence of the fracture­
matrix interaction. A better representation has been 
achieved by simulating the local transport in the 
matrix with a simple analytical solution for one­
dimensional diffusion into a semi-infinite half-space 
(e.g. Bibby 1981). This approach is good in appro­
ximating the short-term response to perturbations 
when steep gradients occur at the fracture-matrix 
boundary, but does not accurately describe the long­
term behavior, since the accumulation of solute in 
matrix blocks of limited size cannot be modeled. 

In this paper we solve the fracture-matrix inter­
action with an efficient numerical technique adopted 
from dual-porosity models (e.g. Huyakom et al. 
1983, Birkholzer 1994). Again, fractures and matrix 
blocks are treated as two different systems, and the 
interaction is modeled by introducing sink/source 
terms in both systems. We assume that transport in 
the matrix can be approximated as a one-dimen­
sional process, perpendicular to the adjacent fracture 
surfaces. However, the geometrical shape and size of 
the individual matrix blocks is now described by so­
called proximity functions which determine the frac­
tion of matrix volume within a certain distance from 
the adjacent fractures. It has been shown that this 
method is very accurate in simulating the short-term 
as well as the long-term behavior in the matrix 
(Birkholzer, 1994). 

The fracture network simulator TRINET after 
Segan and Karasaki (1993) and the above mentioned 
fracture-matrix interaction technique have been 
combined and incorporated in a new code 
TRIPOLY. It features a direct solution scheme for 
the coupled fracture-matrix equations to avoid itera­
tive procedures. In the following sections we 
describe the numerical solution and present two 
sample applications. We shall demonstrate that 
TRIPOL Y allows for detailed studies in complex 
fracture-matrix systems. 

2 GOVERNINGEQUATIONS 

In the following paragraphs, the governing equations 
and the numerical solution shall be presented only 
for the transport part. The flow problem is similar 
but less complicated and at this point we assume that 
it has been solved. The model at the present time is 

limited to two-dimensional fracture-matrix systems; 
however, the approach can be extended easily to 
three-dimensional problems. 

We assume that the global transport processes 
take place only in the fracture network; the rock 
medium does not contribute to those processes. 
However, local concentration differences between 
the fractures and the matrix lead to a local solute 
exchange at the interface and portions of the solute 
may be stored in the matrix pores. 

2.1 Fractures 

In the Eulerian formulation, the advection-dispersion 
equation for single fractures is given by 

ac ac a 2c W 01 + w 02 

-+q--D--+ =0 (21) 
at ax· ax' 2 (2b) ' . 

where Cis concentration, q is velocity, Dis the dis­
persion coefficient, (2b) is the fracture aperture and 
x' is a coordinate defined along the fracture axis. 
W01 and W02 denote diffusive losses from the frac­
ture into the adjacent matrix blocks via fracture wall 
one and two, respectively. 

2.2 Matrix Block 

As the transport in the matrix is much slower than 
the spreading in the fractures, it can be approximated 
as a one-dimensional process, perpendicular to the 
adjacent fractures. Thus we can formulate a one­
dimensional diffusion equation for each matrix 
block in the domain (see figure 1) 

nM acM __ 1_nMDM ~(A(s) acM J = 0 
at A(s) as as ' 

(2.2) 

where eM is concentration in the matrix, nM is poro­
sity, DM is molecular diffusion coefficient and s is a 
local coordinate perpendicular to the adjacent frac­
tures. The latter is zero at the fracture-matrix inter­
face. Its upper limit is s=S, which is the maximum 
orthogonal distance of any location inside the block 
to the nearest fracture. A(s) is the interface area for 
transport in the matrix blocks at a distance s from 
the surface. For s=O this area is equal to the block 
surface, and for blocks of limited extent, it steadily 
decreases when approaching the block center (s=S). 

In TRIPOL Y, the interface area is defined as a 
polynomial of s, following the concept of proximity­
functions which was originally proposed by Pruess 
and Karasaki (1982). The proximity-function Prox(s) 
expresses the total fraction of matrix volume V(s) 
within a distance s from the adjacent fractures, divi­
ded by the total block volume V 



Prox(s) = V(s)N . (2.3) 

Then, the interface area is simply the derivative of 
the proximity-function, multiplied with the total 
block volume 

dV(s) dProx(s) 
A(s)=--=V . 

ds ds 
(2.4) 

For regularly shaped blocks, proximity-functions can 
easily be calculated from analytical expressions. For 
irregular blocks, a random procedure is needed to 
derive proximity functions. A number of points are 
randomly distributed in each block, and the vertical 
distance to the nearest fracture is measured. Then, 
the value of the proximity-function at the coordinate 
s is given by the fraction of points within a distance 
s from the fracture surfaces, divided by the total 
number of points. Finally, the results of the random 
procedure are approximated by a best-fit-polyno­
mial. Such a polynomial has to be determined for 
each matrix block in the domain. 
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Fig. 1: One-dimensional concentration profile in 
matrix blocks 

Two boundary conditions are needed to solve the 
diffusion problem in eq. (2.2). First, the concentra­
tion in fractures and matrix blocks is equal at the 
fracture-matrix interface 

(2.5) 

Second, there is a zero-flux boundary condition at 
s=S, i.e. in the middle of the matrix blocks 

acM 
as(s=S)=O. (2.6) 

These boundary conditions imply that the diffusion 
equations for individual blocks are independent from 
each other; the local concentration profile in the 
matrix is only affected by the concentration in the 
adjacent fractures. 

The diffusive solute exchange per unit fracture 
wall area is finally obtained by applying Fick' s law 
at the interface between fractures and porous blocks 

WD =nMDMaCM 

OS s=O 

(2.7) 

In fact, W0 in eq. (2.7) is the coupling term between 
eq. (2.1) of the fractures and eq. (2.2) of the indivi­
dual matrix blocks, respectively. 

3 LAGRANGIAN-EULERIAN SCHEME FOR 
THE FRACTURE NETWORK 

TRIPOL Y treats the advective-dispersive transport 
in the fracture network with a mixed Eulerian­
Lagrangian finite element scheme. Prior to that, the 
flow field is solved with a simple Galerkin finite 
element method. Note that the flow field simulation 
is done for the fracture network only; the matrix 
blocks are assumed to be impermeable. 

According to the Lagrangian-Eulerian method, 
the advection-dispersion equation (2.1) is decom­
posed in two parts, one controlled by pure advection, 
the other controlled by dispersion-diffusion. The 
advective concentration profile is calculated by a 
particle tracking technique, whereas the dispersed 
concentration profile is solved by a Galerkin finite 
element method on the Eulerian grid. Often, adap­
tive gridding schemes are combined with the advec­
tion part, introducing new grid nodes around sharp 
concentration fronts. However, numerical dispersion 
may occur when the advected front is projected back 
to the fixed Eulerian grid. Furthermore, the accuracy 
of the results depends on the number of particles in 
the model. Following the work of Segan and 
Karasaki (1993 ), TRIPOL Y features two major 
improvements compared to the above mentioned 
methods. First, the advective tracking in the fracture 
network is performed for nodal concentrations and 
not for particles. Therefore, the number of particles 
introduced in the model is not an issue. Second, 
numerical dispersion is avoided by creating new 
Eulerian grid points instead of interpolating the 
advected profile back to the fixed Eulerian grid. 



The advective transport is performed in two steps, 
both using the method of characteristics. In a first 
step, the Single Step Reverse Particle Tracking 
method (SPRT) is applied, calculating the concen­
trations of fixed nodes by mapping back their char­
acteristic. The advected concentration of node j at 
time t+dt, C(xj,t+dt. t+dt), is given by that of point Xj,t 
which is tracked backward along the flow path 

t+dt 

xj,t = xj,t+dt- J q dt j=1,2, ... J (2.8) 

C(x j,t+dt, t + dt) = C(x j,t, t), (2.9) 

where Xj,t+dt is the location of node j, C(xj,t. t) is the 
concentration at Xj,t and time t, dt is time step size 
and J is the number of nodes. If the tracked point, 
Xj.r. does not correspond to a fixed node, a linear 
interpolation scheme is used to determine C(xj,r. t). 

In a second step, Continuous Forward Particle 
Tracking (CFPT) is performed in the vicinity of 
sharp fronts. The node j is tracked forward along the 
streamline to the point Xj,t+dt. and the concentration 
at this point and time t+dt, C(xj,t+dt. t+dt), is given by 
that at point j and time t 

t+dt 

xj,t+dt = xj,t + J q dt 

C(x j,t+dt, t + dt) = C(x j,t, t) . 

j=1,2, ... J (2.10) 

(2.11) 

If the tracked point, Xj,t+dt. does not correspond to a 
fixed node, a new Eulerian node is created to pre­
serve the exact location of the front. This avoids the 
use of some interpolation scheme when mapping 
back from the Lagrangian grid to the Eulerian grid, 
and numerical dispersion is minimized. If the sharp 
front has passed through the area, the created nodes 
are not needed anymore and can be eliminated. 
Thus, at every time step the element catalog has to 
be revised and nodal points have to be renumbered. 
Of course, the geometry of the fracture network 
itself has to preserved, and original nodes located in 
fracture intersections cannot be eliminated. 

For both backward and forward tracking, a com­
plete mixing procedure is applied in fracture inter­
sections. This makes the performance of TRIPOL Y 
sensitive to the time step length. During large time 
steps, particles are advected along various fracture 
segments. Then, extensive branching takes place, 
and the computation becomes very inefficient. On 
the other hand, if time steps are chosen too small, a 
large number of time steps are needed to move a 
concentration front throughout the model area. To 
avoid these problems, TRIPOL Y features an adap­
tive time step control which optimizes the time step 
length with regard to the above mentioned criteria. 

The new concentration profile at the end of the 
advection stage becomes the initial-value for the dis­
persion-diffusion calculation in the second stage. 
The equation is solved with a standard Galerkin 
finite- element scheme using linear shape functions. 
As already mentioned, the simulation is performed 
with the new Eulerian grid which contains both the 
fixed nodes and the newly generated nodes. 

Note that the solute exchange terms W01 and W02 

are only included in the dispersion-diffusion part, 
not in the advective part. Thus, the advective prob­
lem is solved without taking the retarding effects of 
matrix diffusion into account. A correction is made 
in the second stage while solving the dispersion part. 
This procedure gives rise to some numerical disper­
sion for large time steps. 

4 SOLUTION SCHEME FOR THE MATRIX 
BLOCKS 

Each individual matrix block in the domain is asso­
ciated with a one-dimensional diffusion equation, 
describing the local transport in the matrix. As the 
concentration profiles in matrix blocks do not direct­
ly affect each other, the different diffusion equations 
are independent. However, each of these equations is 
coupled to the advection-dispersion equation of the 
fracture network via the solute exchange terms W0

. 

TRIPOL Y features a direct solution technique for 
this coupled equation system, originally proposed for 
dual-porosity models (Huyakom et al. 1983; Birk­
holzer 1994). 

In each time step, the independent matrix diffu­
sion equations are solved prior to the solution of the 
dispersion-diffusion equation of the fracture net­
work. Thus, the fracture concentrations of the cur­
rent time step are still unknown at this stage which 
means that boundary condition (2.5) must be treated 
as a variable. However, as shown later, it is possible 
to evaluate the mass transfer term (2.7) in linear 
dependence of the unknown fracture concentrations. 
Then, the mass transfer terms of all matrix blocks 
are inserted into equation (2.1) and a linear solver 
can be applied to obtain the nodal concentrations of 
the fracture network. Finally, the concentration pro­
files of the porous matrix blocks are evaluated by a 
backward substitution. 

In the following paragraph, the solution procedure 
will be described briefly. The individual matrix dif­
fusion equations are solved by a one-dimensional 
standard Galerkin finite element procedure. Since 
this method is widely used in groundwater hydrau­
lics, it will not be explained in this paper. Applica­
tion of the Galerkin technique to equation (2.2) 
finally yields a tridiagonal set of equations for each 
matrix block which can be represented in the fol­
lowing manner 



bl cl 0 0 0 eM 
I di-WiD 

a2 b2 c2 0 0 eM 
2 d2 

0 a3 0 

0 0 • eM n = dn 

0 CN-2 0 

0 0 bN-1 CN-1 e~-~ dN-1 

0 0 0 aN bN e~ dN 

C~ is the current value of concentration at node n 
of the one-dimensional solution domain, N is the 
number of nodes in the domain and an, bn, Cn and dn 
are known coefficients. Node number 1 is associated 
with the block surface (i.e. s=O) and boundary condi­
tion (2.5), node N is associated with the center of the 
block (i.e. s=S) and boundary condition (2.6). Linear 
shape functions are used with an implicit finite dif­
ference approximation for the time integration. 

Wj0 denotes the solute exchange between the 
fractures and the matrix per unit interface area, asso­
ciated with node j in the fracture domain. According 
to boundary conditions (2.5) and (2.6), an 
inflow/outflow of solute is only possible at node 1 of 
the matrix domain, i.e. at the fracture-matrix inter­
face. Both the value of the solute exchange and the 
nodal concentrations are unknowns at this point. 

Using the general Thomas algorithm (Thomas 
1949), one can factorize the tridiagonal matrix into a 
product of lower and upper bidiagonal matrices and 
perform a forward elimination. After setting wN=bN, 
the following steps are performed 

un =an /wn, for n=N,2 (2.12) 

(2.13) 

(2.14) 

for n= N -1,2 (2.15) 

For n=1 and with g1=C~, one finally obtains the 
following expression for the solute exchange 

(2.16) 

Using boundary condition (2.5), the unknown con­
centration of the first matrix node in equation (2.16) 
can be replaced by the unknown concentration Cj of 
fracture node j. Apart from this concentration, all 
remaining coefficients in equation (2.16) are known. 
Inserting (2.16) into equation (2.1) and performing 
this procedure for all matrix blocks finally gives an 
equation system for the fracture domain which can 
be solved directly for the fracture concentrations. 

Once the fracture concentrations Cj are obtained, 
the one-dimensional concentration distributions in 
the matrix blocks can be readily determined by per­
forming a backward substitution as follows 

(2.17) 

(2.18) 

This completes the solution cycle for the present 
time step. 

5 COUPLING THE FRACTURE NETWORK 
AND THE MATRIX BLOCKS 

As stated in previous paragraphs, we describe the 
solute transport in each individual matrix block by a 
one-dimensional diffusion equation. However, the 
assumption of only one concentration profile being 
associated to each matrix block requires that all the 
fractures adjacent to that specific block have a con­
stant concentration value (according to boundary 
condition (2.5)). Of course, this cannot be guaran­
teed in the numerical scheme. TRIPOL Y solves this 
problem by assigning a number of one-dimensional 
concentration profiles to each block, depending on 
the number of finite element fracture nodes located 
on the fracture-matrix interface of the block. Physi­
cally, all these profiles should have the same concen­
tration value in the center of the block. However, 
this requirement cannot always be met since the dif­
ferent diffusion equations associated to a matrix 
block are solved independently, and the resulting 
profile is mainly influenced by the concentration at 
the fracture-matrix interface. Our simulation results 
show, though, that the concentration differences at 
the block centers are very small, and that the effect 
of such differences is negligible with respect to the 
solute transfer between fractures and matrix blocks. 

Figure 2 illustrates the concept of coupling the 
fracture network and the matrix blocks. Each matrix 
block in the model area is defined by its material 
properties (such as porosity and molecular diffu­
sion), by geometrical parameters (interface function 
and block size S) and by the fracture nodes of the 
surrounding fractures. At the same time, each node 
of the fracture network is connected to a certain 
number of blocks, i.e. one block for dead-end-nodes, 
two blocks for nodes in between fracture intersec­
tions, and more than two blocks for fixed nodes 
located on fracture intersections. Each of those node­
block connections is related to a one-dimensional 
concentration distribution in the matrix. For each 
connection the solute exchange is calculated accor­
ding to equation (2. 7), and the resulting exchange 
rate is introduced into equation (2.1 ). 
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Fig. 2: Coupling fractures and matrix blocks 

The adaptive gridding scheme gives rise to some 
problems regarding the fracture-matrix interaction. 
New fracture nodes, which are created during the 
tracking procedure, have to be connected to the adja­
cent blocks, and matrix concentration profiles have 
to be assigned to those nodes. We assume that the 
matrix concentration profile of a new node-matrix 
connection can be obtained by linear interpolation 
from the profiles associated to the next upstream 
node and the next downstream node. Extensive 
bookkeeping is needed to keep track of introducing 
and eliminating new nodes. 

6 SAMPLE PROBLEMS 

In this section we present two sample problems. The 
first problem is very simple; it is basically used to 
verify TRIPOL Y in comparison to an analytical 
solution. The second problem demonstrates the 
codes ability to solve more complex flow and trans­
port problems. 

6.1 Longitudinal Transport in a Single Fracture 
with Transverse Matrix Diffusion 

This problem concerns longitudinal transport along a 
single fracture and transverse diffusion into the adja­
cent matrix blocks. An analytical solution was deve-

loped by Tang et al. in 1981. Figure 3 schematically 
illustrates the problem. A contaminant source with 
C= 1 is located in the fracture on the left boundary of 
the model area at x=O. The fracture aperture is 104 

m. The solute is transported in the fracture due to 
advection and dispersion, with a flow velocity in the 
fracture of 0.01 rnld and a longitudinal dispersivity 
along the fracture axis of 0.5 m. Molecular diffusion 
in the fracture is chosen to 1.382 x 104 m2/d. During 
the relatively fast transport in the fracture, part of the 
solute diffuses in a slow process into the adjacent 
porous matrix. Matrix parameters are 0.01 for the 
porosity and 1.382 X 10"5 m2/d for the effective 
molecular diffusion coefficient. We assume that the 
system shown in figure 3 is part of a fractured 
porous formation comprising parallel fractures with 
a distance of 2.4 m. Thus, the matrix blocks have an 
infinite length and their width is 2.4 m. 

For the simulation with TRIPOLY, the fracture is 
discretized with 10 line elements of constant length. 
Due to the adaptive gridding, a refined discretization 
adjacent to the contaminant source is not necessary. 
The code implicitly takes care of refining the mesh 
wherever it is needed. 

C= 

Fig. 3: Schematic description of Example 1 

Figure 4 shows the simulation results compared to 
the results of the analytical solution of Tang (1981). 
The three curves exhibit concentration profiles along 
the fracture for three time steps: 97 days, 995 days 
and 9991 days. The solid curve represents the analy­
tical solution, the square symbols indicate the 
TRIPOL Y results at the nodes of the finite element 
mesh. Note that the original discretization is very 
course; original nodes are at locations 0.0 m, 0.1 m, 
0.2 m etc. All the nodes in between the original ones 
have been added within the adaptive gridding proce­
dure. The matrix blocks are discretized with 8 line 
elements. 

As to the relatively simple geometry of this 
example, it is not possible to verify the codes ability 
to simulate diffusive transport in matrix blocks of 
complex shape. However, this has been successfully 
demonstrated in other studies (e.g. Birkholzer 1994). 
Here, our major goal is to check the performance of 
the Lagrangian-Eulerian scheme in combination with 



the fracture-matrix interaction tool. Altogether, the 
analytical solution and the numerical results match 
quite well. There is evidence for certain numerical 
dispersion, especially for time step 9991 days. How­
ever, the spatial and temporal discretization is very 
coarse in our simulation. Much better results can be 
obtained by refining the original mesh. 
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Fig. 4: Concentration along the fracture 
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6.2 Transport in a complex fracture-matrix system 

The second example concerns advective-dispersive 
transport in a complex fracture network including 
diffusion into the porous matrix blocks. The fracture 
network of our example comprises two orthogonal 
sets of 600 fractures each in a 10 m x 10 m square 
flow region. We assume that the fractures have uni­
form properties, i.e. uniform angles between the 
fractures and the x -direction, a fracture aperture of 
0.8 X 10"4 m, a fracture length of 1.0 m and a longi­
tudinal dispersivity of 0.05 m. The matrix blocks in 
the domain have identical hydraulic properties, with 
a porosity of 0.02 and a molecular diffusion coeffi­
cient of 0.2 x 10·8 m2/s. However, the size and shape 
of the blocks varies significantly. 

Figure 5 shows the flow domain with 5668 frac­
tures embedded in 2337 matrix blocks. Dead-end 
fractures have been removed. The original finite ele­
ment mesh comprises 3520 nodes. However, this 
number increases within the simulation due to adap­
tive gridding. Two no-flow boundary conditions are 
given at the upper and lower boundaries. The left 
boundary is associated with a hydraulic head of 
0.1 m, the right boundary is associated with a 
hydraulic head of 0.0 m. We assume that the left 
boundary of the model area, which is initiatly clean, 
is contaminated with a Dirichlet-type boundary con­
dition C=l. Solutes released at this boundary are car­
ried through the model area and leave at the right 
(outflow) boundary. 
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Fig. 5: Fracture network of example 2 

Figure 6 shows the contaminant concentration in 
each matrix block at time 0.5 x 107 s. For the sake of 
visualization, average concentration were calculated 
out of the one-dimensional concentration profiles 
associated with each block. Without matrix diffusion 
particles would cross the entire model area within 
less than 106 s. However, due to the diffusive 
exchange between fractures and matrix pores the 
transport is retarded and solutes in the fractures just 
begin to reach the outflow boundary at 0.5 x 107 s. 
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The contaminant build-up in the matrix is slower 
than in the fractures. Moreover, the concentrations in 
the blocks vary significantly, due to the different 
block sizes. Large blocks which offer a larger pore 
volume for storing contaminants are fairly clean 
whereas some smaller blocks are contaminated. 



Results of another time step are presented in 
figure 7. After 3.0 x 107 s almost all of the fractures 
have concentrations values close to 1. However, the 
average concentrations of the matrix blocks show a 
different picture. Although many of the smaller 
blocks are already contaminated, there are a number 
of large blocks which are still fairly clean. This 
means that significant concentration differences bet­
ween the fractures and the matrix can be obtained, 
and part of the solute diffuses from the fractures into 
the matrix pores. This process may continue for a 
long time because the diffusive transport in the 
matrix is very slow. 
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Figures 6 and 7 clearly demonstrate that the indivi­
dual matrix blocks exhibit a very different response 
to perturbations in the fracture network, simply due 
to their variability in size and shape. This effect may 
even be enforced by spatially varying material pro­
perties. As presented in a companion paper by 
Jansen et al. (1996), the observed phenomenon has a 
strong impact on the assignment of equivalent con­
tinuum parameters for the matrix blocks, a problem 
which is associated with the use of dual-porosity 
models. 

SUMMARY AND CONCLUSIONS 

A new finite element simulator TRIPOL Y is presen­
ted for studying solute transport in discrete fracture­
matrix systems. The advection-dominated flow in 
the fracture network is solved by a mixed Lagran­
gian-Eulerian scheme, while the diffusive transport 
in porous matrix blocks is modeled by a one-dimen­
sional finite element scheme. The heterogeneous 
components, fractures and matrix, are treated as two 

different systems, coupled by a solute exchange 
term. However, no iterative procedures are needed, 
since a direct solution technique is applied. The code 
is capable of modeling solute transport in complex 
fracture-matrix systems comprising individual frac­
tures and matrix blocks of arbitrary size and shape. 
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