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Abstract

Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse 

health outcomes. Because personal air measurements of PAHs are labor intensive and costly, 

spatial PAH exposure models are useful for epidemiological studies. However, few studies provide 

adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we 

collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice 

in winter, 2009, in order to characterize PAH source contributions and develop spatial models that 

can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model 

was constructed, including such variables as roadway, traffic, land-use, vegetation index, 

commercial cooking facilities, meteorology, and population density. Cross validation of the model 

resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH 

concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most 

dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and 

wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of 

the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, 
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other key variables explaining the variance included meteorological factors (9%), population 

density (15%), and roadway length (21%). In winter, the variance was also explained by traffic 

density (16%). In this study, source characterization confirmed the dominance of traffic and other 

fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model 

identified key predictors of PAH concentrations. Gas-phase PAH source characterization and 

exposure estimation is of high utility to epidemiologist and policy makers interested in 

understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.

Keywords

air pollution; polycyclic aromatic hydrocarbon; source; land-use regression; spatial model; 
Thiessen polygons

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) in ambient air are a common environmental 

hazard in urban areas. Exposure to PAHs is associated with systemic inflammation in adults 

and increases the risk of cardiopulmonary and lung cancer mortality (Ahmed et al., 2013; 

Delfino et al., 2010; Grant, 2009; Lee et al., 2011; Lewtas, 2007). Maternal PAH exposure 

has also been associated with adverse perinatal outcomes, including low birth weight, 

intrauterine growth retardation, and in-utero fetal death (Dejmek et al., 1999; Dejmek et al., 

2000; Perera et al., 1999; Perera et al., 1998; Wu et al., 2010). Emissions of PAHs to the 

atmosphere are primarily a result of incomplete combustion of fossil fuels and other organic 

materials (Lewtas, 2007). Major sources include heavy traffic, petroleum spills, commercial/

restaurant cooking, smelting operations, coal burning, as well as wood and other biomass 

burning. Such sources of PAH emissions have been documented in numerous source 

apportionment studies across different countries (Chen et al., 2009; Khan et al., 2015; 

Teixeira et al., 2015; Tobiszewski and Namiesnik, 2012).

Ambient concentrations of PAHs can be highly variable spatially (Zhu et al., 2011). 

Centrally located monitors may therefore underestimate exposure and inter-person 

variability (Wilson et al., 2005). In recent years, land-use regression (LUR) models have 

become the state-of-the-art method to estimate ambient air pollutant concentrations (Jerrett 

et al., 2005). These models estimate local pollutant concentrations using spatially-resolved 

variables reflecting emission intensity, proximity to sources, and atmospheric dispersion 

(Hoek et al., 2008). The LUR approach has also been extended to model the spatial variation 

of air concentrations, with a range of applications including traffic related air pollutants, 

particulate matter (PM), and volatile organic compounds (Ryan and LeMasters, 2007). In 

contrast, only few studies have developed LUR models to predict organic compounds (e.g. 

PAH) (de Hoogh et al., 2013; Jedynska et al., 2015; Saraswat et al., 2013; Vienneau et al., 

2013).

Studies aimed at developing spatial models of PAH concentrations have previously been 

conducted (Jedynska et al., 2014; Noth et al., 2016). Few studies, however, have developed 

LUR models to estimate ambient concentrations of PAHs (Noth et al., 2013). A study in the 

eastern U.S. modeled particle-bound benzo-pyrene and coronene based on 50 two-day 
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samples collected at different times (Polidori et al., 2010). The models utilized four variables 

(temperature, wind speed, inverse distance to interstate roadways, and atmospheric stability) 

and explained approximately 66% of the variance in PAH concentrations (4-6 ring PAHs). A 

study in the western U.S. developed models that explained 80% of the spatial and 18% of 

the temporal variability in daily PAH concentrations (particle-bound 4-, 5- and 6-ring PAHs) 

using spatial and temporal variables, and a random effect (Noth et al., 2011). However, 

characterization of temporal variability in this model relied on continuous ambient 

measurements at a central site, which may not be available for other study regions. Another 

U.S. study developed a model using phenanthrene concentrations from pine needle samples 

across 91 locations (Noth et al., 2013). This model included eight spatial variables and was 

able to explain 56% of the variability in phenanthrene concentrations. However, instead of 

measuring ambient PAHs, airborne phenanthrene concentrations were indirectly measured 

from pine needles with data collected only in the winter season.

Among the studies that model ambient PAH concentrations, all studies modeled particle- as 

opposed to gas-phase PAHs (Jedynska et al., 2014; Noth et al., 2016; Polidori et al., 2010). 

The focus of previous studies on particle-bound PAHs was likely due to the concern with 

carcinogenicity of benzo-a-pyrene, one of the most common particle-bound PAH congeners 

(ATSDR, 1999). However, gas-phase PAHs are also potentially toxic, and sometimes orders 

of magnitude higher in terms of their concentration relative to the particle phase. Therefore, 

the paucity of empirical data on the temporal and spatial distribution of gas-phase PAHs 

represents a major shortcoming in our understanding of airborne exposures to PAH and their 

associated health risks (Chen et al., 2009).

Another major shortcoming of previous studies on urban air monitoring of PAHs is the very 

limited numbers of sampling sites with concurrent measurements, likely constrained by the 

labor-, equipment-, and time-intensive nature of PAH sampling (Noth et al., 2011; Polidori 

et al., 2010). This creates challenges in exposure modeling due to the difficulty in separating 

temporal variability from spatial variability. In addition, all published studies on PAH 

modeling use linear modeling techniques, without considering potential non-linear 

relationship between pollutant concentrations and independent variables (Li et al., 2013). 

Further, previous studies did not appropriately specify the spatial correlations among 

different sampling locations, although accounting for the spatial structure may improve 

model performance (Li et al., 2012).

The primary objective of this study was to characterize gas-phase PAH concentrations, 

examine their emission sources, and model their spatial and temporal distribution in 

southern California by season at a high spatial resolution. We conducted gas-phase PAH 

measurements simultaneously over four one-week periods at over 35 locations in the Los 

Angeles metropolitan area in southern California in both a warm and a cool season. 

Emission contributions were also examined in terms of their source. LUR models were 

developed for PAH concentrations by season using Thiessen polygons and roadway and 

traffic data, land-use patterns, and meteorological data.
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2. Methods

2.1 Study Area

This study was conducted in the Los Angeles Metropolitan Area, California. This region 

contains some of the most polluted places in the country (ALA, 2011). The urban core of the 

area (Los Angeles-Long Beach-Santa Ana) encompasses the nation's largest marine port 

complex, housing six major commuter and truck transport freeways (AAPA, 2010). The 15 

million registered on-road vehicles in the greater Los Angeles Basin are among the largest 

contributors to fresh emissions of PAHs (Eiguren-Fernandez et al., 2007). At the time of 

PAH sampling, the study region had a population density of 2,702 inhabitants per km2 

(U.S.C.B., 2010).

2.2 Sampling Methods

PAH samples were collected using the Fan-Lioy passive PAH sampler (FL-PPS) in south 

Los Angeles County and Orange County during two separate weeks in summer (July 10-18 

and July 24-August 1) and winter (November 13-21 and December 4-12) in 2009 (Fan et al., 

2006). The total sampling domain was approximately 3,500 km2 in area. The sampling sites 

were residential outdoor locations of a subset of pregnant women who enrolled in our 

prospective Air Pollution and Birth Outcomes Study as well as the locations of 11 South 

Coast Air Quality Management District (SCAQMD) stations. Note, samples collected at 

SCAQMD sites were not collected by the SCAQMD stations, rather these were merely 

additional locations where our own team collected measurements. Each sampler collected in 

this study was deployed for a one-week period (maximum variability was 24 h). For summer 

and winter sampling periods, over 85% of samples represented repeated measures (collected 

at the same site). Though we were unable to collect repeated measurements at all sites due to 

issues of willingness and availability of participants, recruitment of additional participants in 

nearby locations allowed us to nonetheless collect a similar number of measurements for 

both seasons. Overall, we obtained valid measurements at 40 sites in summer and 39 sites in 

winter.

The small and light-weight passive PAH sampler provides a cost-effective and convenient 

means of monitoring ambient PAH concentrations simultaneously at multiple sites. 

However, using passive samplers comes with limitations, including the ability to measure 

only gas-phase PAHs and uncertainty in measurements of medium molecular weight PAHs 

such as fluoranthene and pyrene. Nevertheless, analyses have still shown medium molecular 

weight PAH congeners to exist mostly in the gas phase (Chen et al., 2009).

2.3 Lab analysis

Eight PAHs were selected for testing, including naphthalene (NAP), acenaphthylene 

(ACEN), acenaphthene (ACE), anthracene (ANT), fluorene (FLN), phenanthrene (PHE), 

fluoranthene (FL), and pyrene (PY). Abbreviations are also listed in Table 1, along with 

physical characteristics of each congener. These compounds are more abundant in the 

ambient air of urban environments. A significant fraction of these species are distributed in 

the gas phase for various ambient conditions.
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The samples were analyzed directly by thermal desorption. This method is less labor 

intensive compared to traditional solvent extraction methods and yields lower detection 

limits since the entire sample is transferred to gas chromatography/mass spectrometry 

(GC/MS) for analysis. During sample analysis, adsorption units were removed from the FL-

PPS holder and then stacked in a 7-in. long with 1/2-in. i.d. stainless steel thermal desorption 

tube. Known amounts of PAH standards (d8-naphthalene, d10-phenanthrene, and d10-pyrene) 

were spiked on the sampler adsorption units before analysis in order to monitor the variation 

of the analytical system. Thermal desorption was conducted by a Temkar 2000 Thermal 

Desorber according to the following conditions: 20 min sample tube desorption time, 250 °C 

desorption temperature, 40 cm3/min desorption flow rate, 0 °C Cryofocus internal trap 

temperature, 295 °C desorption preheat temperature, 300 °C injection/desorption 

temperature, 8 min internal trap desorption time, 40 cm3/min desorption flow rate, and 

300 °C transfer line temperature. The split injection mode was used for FL-PPS analysis 

because the GC split flow was used to transfer the analyte from the internal trap to the GC 

column.

A Varian 3900/2000 GC/MS system (Varian,Walnut Creek, CA) equipped with a SPB-5 

capillary column (30 m × 0.25 mm i.d. × 0.5 μm film thickness) was used for the PAH 

analysis. The injection volume was 1 μL, splitless, with an injector temperature of 300 °C 

and carrier gas flow rate of 1.2 mL/min. The oven temperature program was 45 °C (1 min), 

ramped at 20 °C/min to 150 °C, ramped at 5 °C/min to 200 °C, then 20 °C/min to 300 °C (1 

min). The molecular ion of each PAH was used for quantification. The method detection 

limits (MDLs) for PAHs were 1-3 ng/m3 (estimated as 3 times the standard deviation of the 

response derived from analysis 7 FL-PPS7 “blanks” over a sampling duration of 24 hours).

2.4 Descriptive Data Analysis and Source Characterization

We analyzed data and developed models using R 3.1 (R Foundation for Statistical 

Computing, Vienna, Austria). Exploratory data analysis was performed, including summary 

statistics, box plots, identification of outliers, histograms for normality testing, correlation 

analyses, and scatter plots.

To characterize the source contributions to measured PAH concentrations, we applied 

molecular diagnostic ratios (DRs), a widely used method for determining the sources of 

PAH congeners (Khan et al., 2015; Tobiszewski and Namiesnik, 2012). This conventional 

method is considered less complicated and easier to interpret, in comparison to other 

methods such as positive matrix factorization and chemical mass balance models. DRs were 

calculated using the concentrations of specific PAH congeners that are chemically similar 

and assumed to behave similarly in the environment. The DR of various congeners provides 

a chemical “fingerprint” of identified distinct emission sources. Previously, DRs have been 

used to distinguish diesel and gasoline combustion, crude oil processing products, and 

various biomass burning processes (Tobiszewski and Namiesnik, 2012; Yunker et al., 2002).

In this analysis, two separate DRs were calculated to distinguish between pyrogenic and 

petrogenic sources. Pyrogenic PAHs are produced from high-temperature combustion of 

fossil fuels and biomass such as automobile engines, power plants, and wood burning, 
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whereas petrogenic PAHs originate from petroleum, including crude oil, fuels, lubricants, 

and their derivatives (Stogiannidis and Laane, 2015).

For source identification using the FL/(FL+PY) ratio, a value < 0.4 was used to indicate the 

dominance of petrogenic sources, a value between 0.4-0.5 to indicate fossil fuel combustion, 

and a value > 0.5 to indicated either wood, grass or coal combustion. To identify diesel 

source emissions, the FLN/(FLN+PY) ratio was used. A value > 0.5 indicated diesel 

sources, whereas a lower value indicated petrogenic source. DRs and corresponding source 

interpretations applied in this study represent standard applications that have been 

commonly used and reported elsewhere (Khan et al., 2015; Tobiszewski and Namiesnik, 

2012).

Since PY is used in both of the DR equations applied in this study, a sensitivity analysis was 

carried out to determine the extent to which PY measurement error could impact each DR, 

and in turn impact our source characterization results. Specifically, both DRs were 

calculated using measured PY in addition to measured PY±10% and PY±20%. Results using 

these percent deviations were then compared to the results that were based off of our true PY 

measurements.

We did not use the DR based on AN and PHE concentrations to define pyrogenic versus 
petrogenic source characterization, because this alternative ratio has been criticized in terms 

of its reliability due to the reported differential in photochemical reactions rates of the two 

congeners, and therefore was not utilized in this analysis (Tobiszewski and Namiesnik, 

2012).

Instead of taking averages across seasons, we determined the season-specific DRs for each 

single site (with 2 winter DRs and 2 summer DRs per site) to better understand the 

frequency with which PAH samples were influenced by various sources. The resulting DRs 

were then investigated for seasonal variability. DRs were not calculated for sample sites if 

the PAH species measurements required to calculate the DRs were below the MDL for one 

or both species in the DR equations. This did not affect the number of winter samples 

analyzed, however it resulted in the exclusion of approximately 50% of summertime 

samples. To assess the sensitivity to source strength characterization, DR analyses for 

summertime were also carried out using DRs for all samples (zero excluded samples).

Source contribution results using DRs were assessed in three ways. First, DR values for all 

sample sites were calculated. The percent of samples influenced by each source based on 

each site's DR value was then calculated. To provide insight about source strength, the mean 

total PAH concentration across sites within each source category and within each season was 

calculated. Additionally, total PAH mass associated with each source type was summed and 

mass fractions for each source type were calculated. The mass fraction for a given source 

type was calculated relative to the sum of PAH mass across all sites within a season. For 

instance, if 10 of 40 sites were associated with the fossil fuel source in winter, the fossil fuel 

contribution for winter would be reported as 25%, the mean would be the mean of total PAH 

concentrations for the 10 sites, and the mass fraction would be the sum of total PAH mass 

for the 10 sites divided by the sum of total PAH mass for the 40 sites.
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2.5 Spatial Model Variables

Based on prior knowledge, we examined two major categories of variables (emissions-

related; meteorological) that potentially contribute to PAH concentrations. Emissions-related 

variables included data on roadway characterization (proximity to freeways; length of total 

roadways), traffic densities, land-use, population density, and remote-sensing based 

vegetation index. The meteorological variables included wind speed, temperature, relative 

humidity, and atmospheric stability.

2.5.1 Roadway and Traffic-Related Variables—We obtained roadway data for the 

study region from ESRI StreetMap™ North America 10.0. This dataset was bundled with 

ArcGIS® software products and included 2003 TeleAtlas® street data. We obtained 2002 

annual average daily traffic (AADT) count data from the California Department of 

Transportation (Caltrans) with continuous coverage of total traffic counts on freeways, 

highways, and major arterial roads. AADT was produced by Caltrans based on a 

combination of measurements and modeled values. This is an alternative to the more limited 

approach of using only traffic counts.

In this study, we calculated AADT-derived traffic density and road length within a buffer, 

and distance to freeways/highways. Traffic densities were calculated using the density 

plotting feature of Spatial Analyst in ArcInfo GIS 9.1, which calculates the density of point 

features around each output raster cell (ESRI, Redlands, CA). Previous studies indicate that 

ultrafine particles and carbon monoxide drop to near-background levels at 200 m downwind 

from major roadways during daytime hours (10 AM – 6 PM) and up to 2,000 m downwind 

during pre-sunrise hours (4:00 – 7:30 AM) (Hu et al., 2009). There is no perfect cut point to 

define the size of a traffic influenced zone, because changes in roadway pollution dispersion 

depend greatly on atmospheric stability and wind patterns. Therefore, we used the buffering 

decaying analysis method to empirically find the optimal buffer distance with the maximum 

Pearson's correlation with PAH concentrations. Traffic density was defined as the average 

number of vehicles that occupy one kilometer of road space, expressed in vehicles per 

kilometer, and was calculated using AADT with an optimal buffering distance of 500 m. 

Road length within the buffer of 700 m had the maximum correlation with aggregated PAH 

concentrations and was selected as a covariate.

2.5.2 Land-Use Type—Southern California Association of Governments (SCAG) 2008 

land use data at the parcel level were used to identify land use composition around sampling 

locations. We classified the original 108 land-use types into four major categories: 

transportation; agriculture, open space and vacant; industrial; and residential. We calculated 

the percentage of area for each land-use category within different buffer sizes (50 m-15 km) 

around each sampling location.

2.5.3 Population Density—We obtained block level population data from the U.S. 

Census 2000. Population kernel density was calculated in ArcGIS (version 10.0; ESRI, 

Redlands, CA) using a 5,000 m search radius and a 30 m resolution.
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2.5.4 Vegetation Index—We obtained 30 × 30 m Enhanced Thematic Mapper Plus (ETM

+) data from Landsat's thematic mapper for three to five cloud-free days in each sampling 

period. From the ETM+ data, we extracted normalized difference vegetation index (NDVI) 

using Environment for Visualizing Images (ENVI) software (ITT Visual Information 

Solutions, Boulder, CO). NDVI was calculated using a standard algorithm and data of the 

near infrared band and red band (ENVI, 2011). NDVI is useful for assessing the density of 

vegetation, with a scale of 0 to 1; 0 indicating sparse vegetation and 1 indicating dense 

vegetation. According to NASA, nearly all satellite vegetation indices employ this difference 

formula to quantify the density of plant growth on the Earth (NASA, 2017). Further details 

on NDVI can be found on the NASA website (NASA, 2017).

2.5.5 Other Spatial Data—We obtained InfoUSA 2008 business database from InfoUSA 

from the Southern California Association of Government (SCAG). The InfoUSA data listed 

detailed commercial data based on specific North American Industry Classification System 

(NAICS) codes. For analysis, we assessed full-service restaurants, limited-service 

restaurants, cafeterias, grill buffets, and buffets, snack and nonalcoholic beverage bars, food 

service, contractors, caterers, and mobile food services.

2.5.6 Meteorological Data—Hourly ambient parameters including temperature, relative 

humidity, wind speed, and wind direction were obtained from the nearest weather 

monitoring station operated by National Weather Service and South Coast Air Management 

District. These meteorological data were aggregated into weekly averages. We additionally 

obtained atmospheric stability class data every three hours at 40 × 40 km resolution from the 

nearest (EDAS) modeling grid of the National Oceanic and Atmospheric Administration. 

We defined EDAS-class E, F and G as a stable category, and A, B, C, and D as unstable and 

neutral. The percent of time with stable air conditions was calculated for each sampling 

period.

2.6 Spatial Model Development

In order to identify proper covariates during model development, we conducted stepwise 

backward elimination. Specifically, we applied the following steps: (1) the variance inflation 

factor (VIF) for each covariate was generated and the covariates with VIF>10 were removed 

as predictive covariates; (2) all covariates were used to assess initial model performance 

(R2), and then each covariate was removed as a predictive covariate one-by-one in order to 

assess how their removal impacted the performance metric (R2); (3) the covariate (when 

removed) that resulted in the highest model performance (highest increase in R2) was 

removed; (4) steps (2) to (3) were repeated until no covariates were removed from the 

models.

Because of their log-normal distribution, PAH concentrations were log-transformed before 

model development. Thiessen polygons were constructed around the sampling locations to 

derive a spatial weight matrix (SWM). This was accomplished using the Analysis Toolbox 

of ArcGIS 10.1. Thiessen polygons generated for the samples are depicted in Figure 1 

(subject locations not shown due to privacy), covering a total area of approximately 3,000 

km2. In the SWM, an entry (i, j) is 1 if Thiessen polygon i is a neighbor of Thiessen polygon 
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j and 0 if not. The SWM represents the spatial influence of neighbors. A spatial mixed 

regression model was constructed using spatial covariates as well as a SWM:

g(μu) = μ0 + ∑i = 1
m f i(xu

i , df ) + f swe(region(s)) + ε (1)

where μ0 is the model intercept, xu
i ∈ X are the covariates, fi(…) is the smooth function 

consisting of series basis functions (representing the non-linear relationship), df is degrees of 

freedom that controls the smooth degree of the curve fit, and m is the number of covariates. 

For normal distribution of the log-transformed concentrations, the link function is g(μu) = μu. 

εc∼N(0, Σc), SWM, i.e. ∑c = [σi j
c ] represents the spatial autocorrelation that was 

incorporated into the model. ε represents the normal residual, ε∼N(0, σ2). fswe(region(s)) is 

the spatial effect embedded within the model that represents spatial autocorrelation.

Specifically, the spatial effect was modeled using the following formula:

f swe(r) | f swe(r′), r ≠ r′ N( 1
N ∑r′ ∈ δr

f swe(r′), τ2/Nr) (2)

where δr denotes the set of neighbors (r′) to region r and Nr = |δr| denotes the number of 

adjacent spatial units. This formula illustrates that any sample point within a certain region r 
will be affected by their neighboring regions (r′ ∈ σr). τ2 is a priori variance that is weakly 

informatively determined using inverse gamma distribution (Gelman, 2006). The neighbor 

topology is determined by the SWM. A spatial random effect was used within the model and 

embedded as a random additive term within the model (Umlauf et al., 2015).

This model was applied to the aggregate of the six species with the highest molecular weight 

(univariate and multivariate analysis), which excluded NAP and PHE. Importantly, these 

were excluded from modeling because these species were present in concentrations that 

were disproportionately high relative to all other species. Incorporating these species would 

have therefore produced PAH prediction models that were exclusively driven by these two 

species (and mostly by NAP), without giving insight as to the distribution of lower level 

PAH congeners, which was of interest in this study. By excluding these species, we were 

therefore able to estimate the distribution of lower concentration (less studied) PAH 

congeners. Models were constructed separately for summer and winter seasons and for 

annual averages. Both linear and non-linear models were applied and their results were 

compared.

2.7 Spatial Model Evaluation

Leave-one-out cross validation (LOOCV) was employed to evaluate model performance. 

LOOCV uses a single observation from the original sample as the validation data and the 

remaining observations as the training data. This was repeated such that each observation in 
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the sample was used once as the validation data. To evaluate model performance using 

LOOCV analysis, we specifically assessed R2, inter-quartile range of prediction errors, the 

square root of the mean of the squared prediction errors, and box plots of precision errors.

2.8 Exposure Mapping

To illustrate the spatial pattern of PAH predictions across a subset of our study region, an 

exposure map was created for summer and winter. PAH estimates were generated by 

applying the previously described non-linear multivariate model to a subset of data that was 

collected during a previous study of 140,024 birth certificate locations in 2007 within Los 

Angeles County (Wu and Kleeman, 2016). The continuous exposure surface of PAH 

concentrations was generated for Los Angeles County using ordinary krigging in the Spatial 

Analysis Toolbox of ArcGIS 10.1. For this process, a spherical semivariagram model was 

specified with an output cell size of 500 m. PAH concentration estimates were not extended 

into Orange County since no PAH estimates were available for subject locations in Orange 

County from our previous project.

3. Results

3.1 Descriptive Analysis

Table 1 depicts physical characteristics and summary statistics for all eight PAH congeners 

as well as total PAH concentrations measured during summer and winter. Winter exhibited 

the highest PAH concentrations when compared to summer. The average (standard 

deviation) concentration for summer and winter was 236.5 ng/m3 (153.6 ng/m3) and 299.1 

ng/m3 (163.3 ng/m3), respectively. The ratio of standard deviation to mean concentration 

was high for both seasons, with the ratio in summer (0.65) being higher than that of winter 

(0.55) on average.

Figure 2 depicts average concentrations of all eight congeners during summer and winter. 

Concentrations of gas-phase PAHs were overwhelming dominated by NAP (85-90%) and 

PHE (3-9%). As shown, the seasonal pattern of PAH concentrations persists even in the 

absence of NAP and PHE. In general, winter had higher PAH concentrations than summer. 

For the congeners ACEN, FLN, and PHE, concentrations differed by a factor of two or 

more. The only exceptions were for the congeners AN and PY, which had higher 

summertime concentrations.

Table 2 presents the Pearson correlation coefficients for eight PAH congeners, showing the 

correlation between species varied by season. In summer, the most correlated PAHs were 

FLN-ACE (0.81), PHE-FL (0.79), and PHE-FLN (0.52). In winter, the species showing the 

highest correlation were PHE-FLN (0.68) and PHE-FL (0.62), which were the correlated 

summer species, as well as FLN-FL (0.59) and PY-FL (0.51). Generally, lighter weight 

congeners tended to correlate better with other light congeners. The same tendency existed 

for heavier congeners. During summer, the first sampling period showed several more PAH 

congener concentrations to be highly correlated, including PY-FLN (0.85), PY-ACE (0.82), 

PY-PHE (0.62), and PHE-ACE (0.52). No other sampling periods showed additional high 

correlations between congeners.
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Table 3 lists descriptive statistics of the spatial variables and the total PAH concentrations of 

the six heavier congeners (for model use) by season and the corresponding correlations 

between total PAHs and the spatial variables. There was a roughly two-fold difference 

between summer (15.6 ng/m3) and winter (30.2 ng/m3) average PAH concentrations. Higher 

spatial variability was observed in the summer than in the winter, with a standard deviation 

to mean concentration ratio of 0.71 for summer and 0.49 for winter.

3.2 Source Characterization

Figure 3 presents results of the DR analysis using FL and PY congeners in terms of the 

percent of samples influenced by each source as well as the mean PAH concentrations across 

different source types. For both summer and winter seasons, all three sources contributed 

substantially to total PAH concentrations. Seasonal variability in source profiles was 

noticeable, with fossil fuel sources more predominant in winter samples (28%) than in 

summer samples (18%). Similarly, the wood, grass, or coal source was more influential 

across winter samples (60%) than summer samples (38%). Taken together, pyrogenic 

sources (fossil fuel + wood, grass, coal sources) were predominant in 56% and 88% of 

samples during summer and winter, respectively. In contrast, petrogenic sources accounted 

for 44% (summer) and 12% (winter) of samples. DRs for all samples collected during the 

two sampling periods in summer (N=80) and two periods in winter (N=78) for both DR 

analyses are provided in table S1.

Results for the DR analysis using FLN and PY congeners indicated a strong influence of 

diesel emissions (>59% of samples) for both seasons. This suggests a larger fossil fuel 

contribution than that estimated by the DR that uses FL and PY. A potential explanation for 

this difference was elucidated by our sensitivity analysis below, which explored the impact 

of ±10% and ±20% changes in PY congener concentrations.

Sensitivity analyses demonstrated that PY measurement uncertainties of ±10% and ±20% 

could have a noticeable impact on source characterization results when applying the DR that 

uses FL and PY congeners, but not when applying the DR that uses FLN and PY congeners. 

In the former case, the impact was mostly in winter. Using this DR, PY±10% showed the 

proportion of samples with a predominant fossil fuel contribution in summer to range from 

15-18%. This range did not increase at PY±20%. In winter, however, fossil fuels 

predominantly influenced 18-32% of samples with PY±10% and 18-36% of samples with 

PY±20%, respectively. In terms of the wood, grass, or coal source, the proportion of samples 

dominated by this source in summer ranged narrowly (35-40%) with a ±20% deviation in 

PY. In winter, however, 10% and 20% deviations in PY had a considerable impact, 

producing ranges of 56-76% and 47-77% of samples dominated by this source, respectively.

Though uncertainties in PY impacted individual source category results in winter, taken 

together, the proportion of samples influenced by pyrogenic sources (fossil fuel + wood, 

grass, or coal sources) did not vary substantially during summer (48-55%) or winter 

(83-98%) even when PY±20% was tested. Similarly, the proportion of samples influenced 

by the petrogenic source did not vary greatly. In summer, the proportion of samples 

influenced by the petrogenic source ranged from 45-53% at PY±20%. In winter, PY±10% 
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and PY±20% resulted in this source influencing between 6-12% and 2-17% of samples, 

respectively.

The DR that uses FL and PY congeners to identify diesel sources was not sensitive to tested 

changes in PY. Variations in PY (both PY±10% and PY±20%) had negligible impacts on the 

proportion of samples showing a predominant diesel source influence. Source contribution 

results based on mass fraction analyses showed general agreement (similar source 

distribution) with the results described in this section for both seasons. In summer, 

petrogenic sources accounted for the majority of total PAH mass (51.3%), followed by the 

wood, grass, or coal source (37.2%) and fossil fuel source (11.4%). In winter, the wood, 

grass, or coal source was predominant (67.9.2%), followed by fossil fuel (23.4%) and 

petrogenic (8.8%) sources. When taken together, pyrogenic sources accounted for 48.7% 

and 91.2% of PAH mass in summer and winter, respectively.

When looking at mean PAH concentrations across different source types, the same pattern 

emerges. Such results are also labeled in Figure 3. Petrogenic sources have the highest mean 

concentration (287.6 ng/m3) in summer, followed by the wood, grass, or coal source (250.3 

ng/m3) and fossil fuel source (164.4 ng/m3). In winter, the wood, grass, or coal source 

exhibited the highest mean concentration (331.5 ng/m3), followed by the fossil fuel (247.7 

ng/m3) and petrogenic (227.2 ng/m3) sources.

A sensitivity analysis that calculated DRs for all summertime samples (rather than excluding 

below MDL species) showed little change in mean PAH concentration compared to the 

previously described results. Only the wood, grass, or coal source was impacted, showing a 

slightly reduced (8.4%) mean concentration of 229.2 ng/m3 after all samples were included.

3.3 PAH Predictors

In the summertime, the proportion of heavy industrial land-use was significantly correlated 

with PAH levels, while in the winter traffic density and other emission related factors (i.e. 

high-density residential land-use, agriculture land-use, and park and recreational land-use) 

were significantly correlated with PAHs. Meteorological factors (relative humidity, wind 

speed, and atmospheric stability) had no significant association with the total PAH 

concentrations.

3.4 Univariate Analyses

Table 4 presents the results of univariate analyses, including both linear and non-linear 

models, each with vs. without spatial autocorrelation, for total PAH concentrations by 

season. The incorporation of spatial autocorrelation significantly improved model 

performance, especially during wintertime and for linear models. For example, roadway 

length was a weak predictor in the models that did not incorporate spatial autocorrelation for 

winter PAH concentrations (R2≤0.01). However, the R2 increased to 0.76 when spatial 

autocorrelation was taken into account.

In univariate models (Table 4), non-linear models performed better than linear models for 

half of the predictors and worse for one predictor (population density) when no 

autocorrelation was considered; they performed better for even more predictors when 
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autocorrelation was included. However, the improvement of the nonlinear model was not 

remarkable except for relative humidity in winter with no autocorrelation (R2=0.28 in non-

linear model vs. R2=0.02 in linear model) and temperature in winter with autocorrelation 

(R2=0.69 in non-linear model vs. R2=0.47 in linear model). The highest R2 values were 

observed in the winter non-linear PAH models with spatial autocorrelation for traffic-related 

variables (R2>0.70) and for the number of cooking facilities. Compared to winter PAH 

models (R2 ranged 0.18-0.79 with autocorrelation and 0-0.28 without autocorrelation), much 

lower R2 values were observed from summer PAH models (R2 ranged 0.01-0.34 with 

autocorrelation and 0-0.18 without autocorrelation).

3.5 Multivariate Analyses

Table 5 shows the non-linear multi-variate models to predict season-specific and annual 

average PAH concentrations. Concentrations of PAHs in winter were more influenced by 

traffic emissions. In general, the wintertime model performed better than that of summer, as 

shown by respective LOOCV results (R2=0.79 for winter, R2=0.61 for summer). In the 

wintertime, traffic density and spatial autocorrelation accounted for approximately 32% and 

45% of the variance in PAH concentrations, respectively, while meteorological variables 

contributed less than 4% to the overall variance explained. In the summertime, emission-

related variables including roadway length, meteorological variables (temperature and wind 

speed), and spatial autocorrelation accounted for 29%, 15%, and 24% of the variance in 

PAH concentrations, respectively. The annual model had the worst performance among the 

three models (LOOCV R2=0.61 in summer, 0.79 in winter, and 0.43 in annual averages). 

Coefficients for covariates in both the linear univariate and multivariate PAH models can be 

found in Table S2.

3.6 Exposure Mapping

Figures 4 and 5 illustrate the spatial pattern of PAH predictions during summer and winter in 

Los Angeles. In summer, the mean and standard deviation of estimated PAH concentrations 

across our 140,024 subject locations was 18.0 ng/m3 and 6.2 ng/m3, respectively, with a 

range of 6.8-46.6 ng/m3. Concentration estimates in summer exhibited a clear influence of 

vehicle traffic as concentrations were visibly highest near major roadways. The map also 

appears to exhibit a subtle non-linear influence of population density, with higher 

concentrations in the low and medium population suburban areas and lower concentrations 

in the more highly populated regions surrounding downtown. In winter, PAH estimates were 

higher overall, ranging from 17.1-49.8 ng/m3 with a mean and standard deviation of 28.8 

ng/m3 and 6.6 ng/m3, respectively. For winter, traffic density still exhibited a strong 

influence on concentration estimates, although concentrations were more homogenously 

dispersed. High traffic and high population areas such as Downtown Los Angeles showed 

the highest predictions. Other concentration hotspots such as West Covina tended to 

encompass major roadways and roadway intersections.

4. Discussion

This study demonstrated that meteorological and traffic parameters can be used to estimate 

gas-phase PAH concentrations. Spatial models included optimal spatial covariates, with non-
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linear functions, and a better characterization of spatial structure, and performed reasonably 

well in predicting both summer (LOOCV R2=0.66) and winter (LOOCV R2=0.77) PAH 

concentrations. The ability to estimate PAH concentrations spatially using readily available 

data is of high utility to epidemiologists investigating the relationship between PAH 

exposure and diseases. To our knowledge, this is the first study that developed models to 

estimate gas-phase PAH concentrations by season in a large metropolitan area.

Our results demonstrated that a better characterization of spatial structure of autocorrelation 

contributed to improvement in model performance, accounting for a significant portion of 

the variance in PAH concentrations in both summer (19.1%) and winter (55.6%) seasons. 

Such autocorrelation suggests common influences of PAH concentrations and in turn the 

utility of local PAH measurements for better understanding relative PAH exposure of nearby 

locations where additional measurements are otherwise lacking. Our results are consistent 

with other studies that have demonstrated spatial autocorrelation to improve model 

performance by accounting for spatial variance that cannot fully be captured by physical or 

environmental factors in a model (Christakos, 1990; Mercer et al., 2011).

Traffic- and road-related variables were also major predictors of PAHs (15.7-21.4% of 

variability), including traffic density and roadway length within a 700 m buffer. 

Meteorological variables (temperature and wind speed) were not major predictors, although 

still contributed to PAH estimation (∼10% of variance explained). The likely reason 

meteorological variables did not account for a larger fraction of the variance in PAH 

concentrations is the limited variation in weather that occurred during the specific (within 

season) sampling windows. Variables related to commercial cooking and population density 

were least important, and only explained the summertime variance. Additionally, we found 

that non-linear models did not always improve model predictions in univariate models 

(especially with spatial correlation incorporated), which may be partly due to the limited 

number of samples we had.

Due to the small sample size in this study, we modeled spatial autocorrelation using 

Thiessen polygon rather than spatial covariance methods such as kriging or variograms since 

a larger sample size is more desirable for the latter approach. In addition, an assumption of 

spatial homogeneity and high sampling density is required for kriging and semivariograms 

to have an accurate estimation of the variogram (Burrough, 1986; Mcbratney and Webster, 

1986). Furthermore, our spatial random effect modeling approach based on the Markov 

random field can deal well with the sparse samples without the assumption of regional 

homogeneity. In fact, Thiessen polygons are often used to determine density of point 

samples and to build meshes for space-discretized analyses (Seidel, 1995).

Since the samples used in this study are sparse, we took several steps to avoid the potential 

overfitting issue. We limited the degrees of freedom in our non-linear models to be five in 

order to prevent overfitting of the non-linear associations; the results of the multivariate 

models illustrated reasonable associations (Tables 4 & 5). We also visually examined the 

results of the spatial effects. Lastly, strict LOOCV was applied, producing reasonable results 

(Table 5).
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Our data showed NAP as the predominant congener of total gas-phase PAH concentrations, 

which is consistent with another study in California by Eiguren-Fernandez et al. (2004). 

Substantial seasonal variability of PAH concentrations existed, with winter exhibiting much 

higher average concentrations. This is similar to previous reports in California and 

elsewhere, and is likely due to reduced atmospheric mixing height, reduced photochemical 

degradation, and increased burning of wood and fossil fuels for domestic heating during cool 

months (Eiguren-Fernandez et al., 2004; Manoli et al., 2016). Seasonal variability in PAH 

concentrations reinforces the importance of taking season into account for the development 

of spatial PAH models in this study as well as future works, particularly for studies 

investigating short-term or sub-chronic health effects. Greater pollution heterogeneity in this 

region has been observed in other studies for NOx, and is likely due to the decreased 

stability of the atmosphere in summer, leading to more rapid dispersion of pollutants and 

consequently greater concentration gradients between sources (Li et al., 2012; Mercer et al., 

2011).

Correlation matrices for seasonally averaged PAH congeners showed moderate to high 

correlation of PHE with FL and FLN for both cool and warm seasons. The highest 

correlations were mostly between congeners of similar molar mass. This is due to 

similarities in chemical fate and transport as well as sources. Dissimilar seasonal 

correlations also existed, with FLN-ACE highly correlated in summer and FLN-FL and PY-

FL correlated in winter. Many congeners exhibited weak correlations with one another. In 

general, weak correlations between congener concentrations, and variable correlations 

between seasons, reflects the variability in PAH sources (pyrogenic versus petrogenic) 

(Nasher et al., 2013). This is reinforced by source characterization results in this study, 

which suggested variability in emissions sources.

Results of source characterization showed the dominance of pyrogenic sources during both 

summer and winter seasons, consistent with previous studies (Chen et al., 2009; Khan et al., 

2015; Teixeira et al., 2015). This was the case when assessing source distribution based on 

the percent of samples associated with each source as well as the PAH mass associated with 

each source. Since both assessments were in agreement, we can rule out the possibility that a 

source associated with a low percentage of samples was nonetheless responsible for a high 

fraction of total PAH pollution (or the converse scenario). This conclusion was further 

reinforced when assessing mean PAH concentrations across source types, which showed the 

same source contribution pattern within and across seasons.”

Variability in PAH source contributions existed across seasons, with wintertime showing an 

enriched influence by fossil fuel sources. This finding has been reported elsewhere and can 

be attributed to the use of fossil fuels to heat residential and commercial buildings during the 

cool season (Chen et al., 2009; EIA, 2016).

Winter also showed an increased proportion of samples influenced by wood, grass, or coal 

sources. Although the DR employed here serves as an indicator of wood, grass or coal 

sources, in this study it is not reasonable that coal is a contributing source given the lack of 

coal combustion in the region. Rather, wood and other biomass burning are likely sources. 

Source apportionment analyses in Los Angeles and other major U.S. cities have similarly 
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shown wood and biomass burning to contribute substantially to ambient air pollution (Masri 

et al., 2015; Shirmohammadi et al., 2016). This is largely because wood is still a commonly 

used resource for domestic heating in the winter (AQMD, 2017; EIA, 2014). Wood burning 

also takes place in both summer and winter seasons for recreational purposes (e.g. bon fires 

and camping) in residential areas, State beaches, and campgrounds in the Los Angeles and 

Orange County regions.

Similar to Teixeira et al. (2015), diesel emissions were found to be a substantial contributor 

to PAHs during both warm and cool seasons. Of note, however, according to one DR, diesel 

sources contribute predominantly (nearly two-thirds of samples), whereas, according to the 

other DR, fossil fuels contributed only modestly (nearly one-third). Since diesel sources 

constitute a fossil fuel source, this appears to be a conflicting result. An explanation of this 

discrepancy is elucidated by our sensitivity analysis using the PY congener. The analysis 

also helps explain why wood burning was reportedly so influential, unexpectedly accounting 

for the majority of pyrogenic emissions in our study.

Our sensitivity analysis demonstrated that the DR using FLN and PY congeners was a robust 

indicator of diesel sources. That is, results of the diesel source contribution were not 

sensitive to tested changes in PY concentration. In contrast, the DR that uses FL and PY 

congeners exhibited sensitivity to ±10% and ±20% changes in PY, particularly in winter. 

Since this latter DR did not exhibit much sensitivity in identifying pyrogenic sources as a 

whole, it appears this DR may be better at identifying petrogenic versus pyrogenic sources 

than at identifying the specific fossil fuel fraction of pyrogenic sources. When examining the 

results of both DRs, and comparing the proportion of samples influenced by diesel and 

aggregated pyrogenic sources, the proportion of influenced samples showed much better 

agreement.

In generating PAH exposure maps of the Los Angeles County region, winter PAH 

concentration estimates were higher compared to summer. This is consistent with our 

observational data. Further, PAH estimates averaged by season across 140,024 subject 

locations showed good agreement with measured PAH concentrations.

For winter, concentrations tended to peak near major roadway features, particularly in 

downtown Los Angeles and areas in and near the city of West Covina. Downtown is 

characterized by the convergence of many major roadways such as the Interstate 5, 10, and 

710 freeways, as well as State Routes 110, 101, and 60, whereas West Covina is adjacent to 

the Interstate 605 freeway and State Route 60. Estimates of elevated PAH concentrations in 

these locations are consistent with regional traffic density patterns as described by the 

California Environmental Health Tracking Program, which shows the geographic spread of 

high density traffic areas to be noticeably concentrated around downtown Los Angeles area 

and West Covina perimeter (CEHTP, 2017). In general, PAHs were more spatially 

homogenous across the region compared to summer. As described previously, the higher 

atmospheric stability (less mixing) and reduced atmospheric boundary layer height 

characteristic of winter in this region helps explain the higher wintertime concentrations and 

increased spatial homogeneity of PAHs during this season (Li et al., 2012; Mercer et al., 

2011). In spite of the overall greater atmospheric stability in winter, PAH estimates also 
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showed an influence by wind speed during this season. Winds tend to be higher near the 

coastline compared to adjacent inland areas, which may also help to explain the higher PAH 

concentration estimates of the inland region (USDE, 2017).

In summer, concentration estimates tended to be less uniform, and exhibited a clear 

influence of nearby major roadways and roadway intersections. This is consistent with 

previous studies that have identified narrower impact zones (e.g. 300 m downwind) of 

primary traffic emissions during the day (less stability and more mixing) and a wider impact 

zone (e.g. up to 2600 m) prior to sunrise (more stability and less mixing) (Hu et al., 2009; 

Zhu et al., 2002). Additionally, the summertime pattern of PAH concentrations appeared to 

exhibit the non-linear influence of population density, with slightly higher concentrations in 

the low and medium population suburbs and lower concentrations in the more highly 

populated regions. Lower PAH concentrations in high population regions in summer could 

be due to higher residential land-use, where PAH sources are less predominant (e.g. major 

roadways), particularly given the reduced frequency of wood burning for domestic heating 

during the warm season. This explanation is supported by Figure S1.b, which demonstrates 

through univariate analysis a negative relationship between PAH concentrations and percent 

high-density residential land-use in summer.

Further, these exposure maps reflect the seasonal differences in auto-correlation, which was 

a key predictor in both multi-variate PAH models. That spatial autocorrelation accounted for 

a large fraction of the variance in wintertime PAH concentrations in this study suggests that 

a higher sampling density may be required to capture more localized differences in PAH 

concentrations in this region during the cool season. In summer, by contrast, the majority of 

PAH variability was explained by roadway, population, and land-use variables, suggesting 

that the model was less affected by the limited sampling locations in capturing localized 

differences in PAH concentrations during the warm season.

A major strength of this study is the collection of simultaneous weekly measurements in 

both summer and winter seasons. This enabled us to understand the spatial variability of 

PAH concentrations by season, and estimate exposure levels across the region. Air pollutant 

concentrations are generally influenced by relative strength and distribution of emission 

sources, metrological factors (e.g. atmospheric stability, wind, precipitation), and local 

spatial features (e.g. elevation, building height). Samples collected in different times reflect 

the combined effects of changes in emission sources and meteorology, which makes it 

difficult to disentangle the individual contributions of each factor. Simultaneous 

measurements at multiple spatial locations, however, minimizes the impact of meteorology 

(all the sampling sites share the same or similar meteorology in each sampling period) and 

thus can effectively reveal the spatial variability of emission sources. The impact of 

meteorology can be determined by implementing multiple measurement campaigns in 

different times of year. Yet, multiple field campaigns with simultaneous measurements can 

be challenging in terms of feasibility and resources, depending on the type and number of 

sampling devices used, and needed manual labor, which limits its application in air pollution 

exposure studies. In the literature, simultaneous field measurements are mostly conducted 

for a small number of pollutants (e.g. NO2, NOx, O3, VOCs), for which portable, easily 

deployable devices are available and lab analysis is relatively inexpensive (Aguilera et al., 
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2008; Saraswat et al., 2013; Su et al., 2010). This may be part of the reason for the lack of 

simultaneous PAH measurement data in the literature.

An additional strength of this analysis is the focus on gas-phase PAHs. Investigating 

emission sources and exposure distribution relating to gas-phase PAH concentrations is of 

particular importance given the toxicity of such species and the current absence of such 

investigation relative to that of particle-bound PAH species.

A limitation of this study is that sampling sites used for model calibration were home 

locations (outdoors) of subjects who participated in our air pollution and birth outcome 

study. Therefore, sites may not have been optimal for capturing pollution hot spots or for 

identifying the spatial distributions of pollutants throughout the greater Southern California 

region. Additionally, only a limited number of sample sites were included in this study. To 

help compensate for these limitations and increase our sample size and distribution, we also 

included SCAQMD monitoring sites in our analysis. Nonetheless, if more samples had been 

collected evenly across the study region, the model predictions could have been further 

improved and some covariates may have explained a higher proportion of the variance.

The use of only gas-phase PAH measurements in this study represents a further study 

limitation. Since particle-bound PAHs were not accounted for, our modeling results could 

not be generalized to directly estimate total PAHs in ambient environments where multiple 

congeners are present in both the gas- and particle-phase. Given the dominance of NAP in 

our measurements, and because this congener exists mostly in the gas phase, our 

measurements should provide a good approximation of total PAH levels for the species 

investigated in this study. Finally, use of DRs to characterize sources is subject to error since 

DR values can change during the environmental fate and transport of PAHs due to chemical 

aging and decay. To minimize erroneous DR values and source interpretations, however, we 

avoided use of less reliable AN and PHE concentrations for DR calculations. Additionally, 

as noted previously, DR results can be sensitive to measurement error. The importance of 

specific PAH sources identified in this study, however, were reinforced by both DR source 

characterization techniques and regression analyses, and were subject to sensitivity analyses.

In future work, the collection of more PAH species, each with a higher number of samples 

temporally and spatially, would be valuable. This would produce a more robust model and 

enable better regional extrapolation. Additionally, it would enable techniques such as 

positive matrix factorization that can better characterize PAH source contributions. Lastly, 

use of active samplers, though more expensive, would enable a higher collection of PAHs, 

which would minimize measurement uncertainty and therefore allow the modeling of 

individual PAH congeners.

5. Conclusions

A spatial mixed regression model was constructed in order to predict summer and winter 

gas-phase PAH concentrations. Cross validation of the model demonstrated good model 

performance (R2 of 0.66 for summer and 0.77 for winter). Meteorological and traffic 
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parameters were both demonstrated to be useful predictors for PAH concentrations, 

explaining about one-third of the variability.

Total PAH concentrations exhibited seasonality, with winter having higher concentrations. 

NAP was overwhelming the greatest contributor to total PAHs during both seasons. 

Pyrogenic sources including diesel emissions appeared to be the dominant contributor to 

total PAH concentrations in both seasons. Winter showed an enriched fossil fuel and wood 

burning contribution.

The ability to estimate PAH concentrations spatially is of high utility to epidemiologists 

investigating the relationship between PAH exposure and disease. The findings in this study 

are important to consider for the development of future PAH exposure models. Additionally, 

results provide insight about PAH sources, which is useful for designing strategies and 

policies aimed at pollution prevention.
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Highlights

• Developed a spatiotemporal regression model to estimate gas-phase PAH 

concentrations

• Applied Diagnostic Ratios to identify potential PAH sources

• Roadway, population, and meteorological variables were key predictors of 

PAHs

• PAHs were highest in winter, with a high contribution from fossil fuels and 

wood burning

• A map was generated to estimate PAH exposure in Los Angeles, CA
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Figure 1. 
Thiessen polygons for construction of spatial weight matrix in Los Angeles and Orange 

counties.
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Figure 2. 
Average concentration of eight PAH congeners in order of increasing molar mass.
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Figure 3. 
Source characterization for total PAHs in winter and summer.
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Figure 4. 
PAH concentration estimates (ng/m3) in Los Angeles County during summer.
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Figure 5. 
PAH concentration estimates (ng/m3) in Los Angeles County during winter.
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Table 5
Non-linear multi-variable regression models with and without spatial autocorrelation for 

total concentrations of six PAH speciesa

Season Predictors (variance explained) R2 : RMSE with (without) 
spatial autocorrelation

LOOCV R2 : RMSE with 
(without) spatial 
autocorrelation

Summer Spatial autocorrelation effect (19.1%); proportion of 
commercial cooking facilities (2.1%); ambient 
temperature (7.1%); ambient wind speed (2.1%); 
population density (15.2%); roadway length within a 
700-m buffer (21.4%)

0.67 : 6.95 ng/m3 (0.57:7.90 
ng/m3)

0.66: 7.00 ng/m3 (0.57: 7.90 
ng/m3)

Winter Spatial autocorrelation effect (55.6%); traffic density 
(15.7%); ambient temperature (2.4%); ambient wind 
speed (9.3%)

0.83:6.61 ng/m3 (0.67: 9.14 
ng/m3)

0.77: 7.76 ng/m3 (0.59: 10.16 
ng/m3)

Annual average Spatial autocorrelation effect (11.6%); season (38.5%); 
proportion of park and recreational land-use (1.2%); 
traffic density (2.8%)

0.54: 10.81 ng/m3 (0.33: 
12.99 ng/m3)

0.53: 10.90 ng/m3 (0.33: 13.00 
ng/m3)

a
Total PAH included fluorene, phenanthrene, anthracene, acenaphthene, fluoranthene, and pyrene
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