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Abstract
The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer’s 
disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenera-
tive diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative 
diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We rep-
licated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia 
with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson’s disease 
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(PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, 
the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank sup-
ported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple 
neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway 
as drug-target.

Keywords Alzheimer’s disease · Frontotemporal dementia · Dementia with Lewy bodies · Progressive supranuclear palsy · 
Parkinson’s disease · Amyotrophic lateral sclerosis · Multiple sclerosis · Neurodegenerative disease · Longevity · PLCG2 · 
Phospholipase C Gamma 2

Introduction

The protein product of the phospholipase Cγ2 (PLCG2) gene 
is involved in the transmembrane transduction of immune 
signals [30, 42, 45] that determine the fate and function of 
various immune cell types, both in the periphery and the 
brain [42, 45]. It is known that gain-of-function mutations 
in the PLCG2 gene cause autoimmune disorders [40, 46, 
58, 59] and resistance to treatment of chronic lymphocytic 
leukemia [56].

In 2017, a genome-wide association (GWA) study of 
Alzheimer’s disease (AD) showed that the rare nonsyn-
onymous variant in the PLCG2 gene (rs72824905-G; 
p.Pro522Arg; NC_000016.9:g.81942028C > G) reduced 
AD risk (OR = 0.68, p = 5.4 × 10−10) [47]. In both mouse 
and human brain tissues, PLCG2 has been shown to be over-
expressed > 6-log fold in microglia compared to other brain 
cells [12]. Further, PLCG2 has higher expression levels in 
pathologically affected brain regions of AD patients, which 
seems to be driven by microgliosis [7]. Since microglia are 
the brain’s immune cells, these findings suggest an impor-
tant role for PLCG2 in the neural immune response. Next to 
PLCG2, GWA studies of AD identified additional immune- 
and microglia-related genes that associate with AD, e.g. the 
triggering receptor expressed on myeloid cells 2 (TREM2) 
gene and pathway analysis based on these same GWA stud-
ies indicate that the immune system plays a key role in the 
development of AD [47]. Likewise, human genetic studies 
imply the immune system plays a role in other neurodegen-
erative diseases such as frontotemporal dementia (FTD) [3], 
Parkinson’s disease (PD) [13], and multiple sclerosis (MS) 
[17, 20, 41]. We reasoned that next to AD, PLCG2-related 
immune signaling may be involved in the etiology of these 
other neurodegenerative diseases. This led us to question 
whether the rs72824905-G variant in PLCG2 is also associ-
ated with a reduced risk of other neurodegenerative diseases.

Here, we tested whether rs72824905-G protects against 
other neurodegenerative diseases. We first tested whether 
rs72824905-G associates with reduced risk of AD, FTD, 
dementia with Lewy bodies (DLB), progressive supranu-
clear palsy (PSP), PD, amyotrophic lateral sclerosis (ALS) 
and MS. Since a reduced risk of neurodegenerative diseases 

could lead to an increased likelihood to survive to old age, 
we tested whether rs72824905-G associated with longevity.

Materials and methods

Study populations and genotyping

We present a short description of 16 cohorts, often includ-
ing multiple sites or studies, which contributed to this 
manuscript in Suppl. Table 1, Online Resource. Studies 
were approved by corresponding ethics committees and 
informed consent was obtained for all participants (Suppl. 
Table 1, Online Resource). Study characteristics (age, per-
centage female, apolipoprotein E (APOE) status and age) 
are described in Suppl. Table 2, Online Resource. In most 
cohorts, the average age of the controls was lower than that 
of cases (Suppl. Fig 3, Online Resource). We determined 
rs72824905-G genotypes (NC_000016.9:g.81942028C > G, 
p.Pro522Arg) using direct genotyping with a variety of gen-
otyping arrays or TaqMan genotyping. If direct genotyping 
was not available, we used imputation to 1000 Genomes 
phase I version 3 [15] or the Haplotype Reference Consor-
tium (HRC) reference panels [37]. Details on genotyping or 
imputation by study can be found in Suppl. Table 3, Online 
Resource. We studied participants from European descent.

Study populations of AD, FTD, DLB and PSP patients

We compared rs72824905-G genotypes in a total of 4,985 
AD patients and 9,238 controls from eight cohorts. All sam-
ples were independent from Sims et al. [47], but include the 
samples from Conway et al. [7]. We compared in total 2,437 
FTD patients with 10,647 controls from four studies and two 
consortia. Further, we studied 1446 DLB patients with 5509 
controls from five cohorts and 882 PSP patients with 3187 
controls from five cohorts. Details on sample size by cohort 
and which cohort contributed to which analysis can be found 
in Suppl. Table 2, Online Resource.
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Study populations of ALS, PD and MS patients

To study the association of rs72824905-G with ALS, PD and 
MS, we obtained summary statistics from existing GWAS 
meta-analyses, see Suppl. Table 1, 2, 3, Online Resource, 
for study descriptions. We present results of a combined 
total of 28,448 PD patients that were compared with 108,438 
controls: data from 27,595 PD patients and 106,951 con-
trols from the International Parkinson Disease Genomics 
Consortium (IPDGC) [39] were combined with data from 
853 PD patients and 1,487 controls from the Mayo Clinic. 
Furthermore, we studied 10,953 ALS patients and 20,673 
controls, which represents the subset of the data presented 
by van Rheenen et al. [54], for which rs72824905-G was 
imputed with sufficient quality (imputation quality > 0.3). 
Last, we studied 4476 MS patients and 5714 controls which 
were previously described by Dankowski et al. [8].

Study populations of longevity

We investigated the association of rs72824905-G with 
longevity in five different cohorts; in total, we compared 
3516 individuals who reached at least 90 years with 9677 
control individuals who died before age 90 years or were 
last screened before 90 years (Suppl. Table 1–3, Online 
Resource). The data from Tesi et al. [51] were included in 
this study. A subset of 1136 Dutch long-lived individuals 
for whom follow-up data until death were available [22] was 
included. In this subset, we compared the survival of carriers 
of rs72824905-G with non-carriers.

Studies of dementia and longevity by‑proxy 
in the UK Biobank

The UK Biobank is a study of genetic and health of a half 
million people from the United Kingdom [49]. Information 
from parents or first-degree relatives can be used as a proxy-
phenotype for the participants [34]. In this study, we used 
maternal and paternal history of Alzheimer’s/dementia as 
proxy for dementia [34, 36] and the reported age of the par-
ents (at completing the survey or death) as proxy phenotype 
for longevity [44]. In the UK Biobank, the rs72824905-G 
variant was imputed using the available genotyping arrays 
and the HRC-reference panel as previously described [25]. 
The maternal and paternal by-proxy phenotypes were ana-
lyzed separate using the genotypes of the participants and 
the results were meta-analyzed.

We compared rs72824905-G genotypes of 32,262 partici-
pants whose mother was reported to have dementia with the 
genotypes of 346,999 participants whose mothers did not 
have dementia. Likewise, we compared 16,968 participants 
whose father had dementia with 358,468 whose fathers did 
not have dementia.

For the analysis of longevity-by-proxy, we chose the age 
of 90 years as a cut-off for the minimum age reached by 
the parents. By principle, phenotype by-proxy analyses suf-
fer from dilution effect [34, 36]; therefore, a more extreme 
parental age cut-off of 95 years was also studied. In this 
analysis, we compared 35,256 UK Biobank participants who 
had a mother who reached at least 90 years (7790 moth-
ers reached the age of 95 years) with 342,810 participants 
whose mother did not reach 90 years of age. Likewise, we 
compared 17,558 UK Biobank participants with a father 
who reached at least 90 years (3,043 fathers reached the age 
of 95 years) with 353,100 participants whose father did not 
reach 90 years of age.

Statistical analysis

R (version 3.5.1) was used for all analysis [50]. Logistic 
regression models were fitted within studies to assess the 
association of rs72824905-G with AD, FTD, DLB, and PSP 
patients, and long-lived individuals, compared to controls. 
For each study, we calculated the odds ratio’s (OR) and 
95% confidence intervals (CI). We accounted for popula-
tion substructure by adjusting for principal components or 
by comparing cases and controls from the same study or 
country of origin. We meta-analyzed the effect estimates 
(log(OR)) from the studies using inverse-variance fixed-
effect meta-analyses (R-package ‘rmeta’ v3.0). The fraction 
of variance that is due to heterogeneity was estimated by 
the  I2 statistic [21]. We visualized survival of rs72824905-
G carriers compared to non-carriers using Kaplan–Meier 
curves. Differences in survival were tested using a Cox pro-
portional hazards model correcting for (age at inclusion, sex 
and relatedness).

For MS, the results originate from a single study, which 
used ancestry principal components (PCs) to adjust for 
population stratification [8]. The statistical methods of 
the GWAS meta-analyses of ALS and PD were previously 
described [39, 54]. In short, individual cohorts calculated 
logistic regression models and then summary statistics of 
cohorts were combined using inverse-variance fixed-effect 
meta-analyses. PCs were used to adjust for population strati-
fication. Analysis in the UK Biobank were performed using 
logistic regression models adjusted for genotyping array and 
the first 12 PCs. Effect estimates of the paternal and mater-
nal analysis were combined using inverse-variance fixed-
effect meta-analysis (R-package ‘rmeta’ v3.0). We reported 
two-sided p values and considered p values < 0.05 as signifi-
cant; p values are not corrected for multiple testing.

Power analysis

For all diseases studied, we performed power analysis using 
the online tool Genetic Association Study (GAS) power 
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Calculator implementing the methods described in Skol 
et al. [48]. We calculated power of our analysis to attain a p 
value of 0.05 and used the total number of cases and controls 
from our analysis. We assumed an additive model, a minor 
allele frequency of 0.009 and a disease frequency of 0.01 
for all diseases (higher disease frequency assumption would 
lead to higher power estimates). We report the power for an 
OR between 1 and 2. This corresponds to protective OR (the 
inverse OR = 1/OR) between 0.50 and 1.

Results

An overview of study sample, contributing studies, cor-
rections applied by study and counts of carriers split by 
case–control status is shown in Table 1.

Association with brain diseases

We replicated the association of rs72824905-G in PLCG2 
with a reduced AD risk (OR = 0.57, p = 6.0 × 10−4, I2 = 0%). 
In addition, we found that rs72824905-G associated with a 
reduced risk of both DLB (OR = 0.54, p = 0.045, I2 = 0%) 
and FTD (OR = 0.61, p = 0.011, I2 = 0%). In contrast, we 
found no evidence that rs72824905-G is associated with 
PSP (OR = 1.46, p = 0.19, I2 = 0%), ALS (OR = 1.07, 
p = 0.52, I2 = 0%), PD (OR = 1.18, p = 0.10, I2 = 0) and MS 
(OR = 0.99, p = 0.95). The association of rs72824905-G 
with these seven brain diseases is shown in Fig. 1. In Suppl. 
Figs. 2–7, Online Resource, we show the association esti-
mates for each study separately in the meta-analyses for AD, 
DLB, FTD, PSP, ALS and PD (the MS study consisted of 
a single study).

Association with longevity

In line with a reduced risk of neurodegenerative diseases, 
we found that rs72824905-G associated with a 1.49 (95% 
CI 1.12–1.98) increased likelihood (p = 6.3 × 10−3, I2 = 0%) 
to reach the age of 90  years. Although no heterogene-
ity was observed between studies, it is of interest that a 
cohort of centenarians who were selected based on being 
100 years old and cognitively healthy (description of ‘100-
plus Study’ in Suppl. Table 1, Online Resource) was most 
enriched with rs72824905-G (OR = 2.36, 95% CI 1.34–4.15, 
p = 2.8 × 10−3) (Suppl. Fig 8, Online Resource). Next, we 
tested whether carrying the rs72824905-G variant was 
associated with longer survival after the age of 90 years in 
1,136 Dutch long-lived individuals of which 96.3% were 
followed until death [median age at inclusion 93.2, IQR 
91.6–95.0 years, 63% female; mean survival after inclusion 
was 3.3 years; inter quartile range (IQR) 1.4–5.8 years]. 
We found that 28 carriers survived a median of 4.7 years 

(IQR = 1.9–7.4) while 1108 non-carriers survived a median 
of 3.3 years (IQR = 1.4–5.8) (Suppl. Fig 9, Online Resource). 
However, the difference was not significant (HR 0.75, 95% 
CI 0.51–1.09, p = 0.078), likely due to the low number of 
rs72824905-G carriers in the analysis, as a consequence of 
variant rareness (MAF ~ 1%).

Association with by‑proxy dementia and longevity

In line with the protection against AD, the by-proxy analy-
sis showed that PLCG2 variant carriers had a reduced risk 
of having a parent with dementia, OR = 0.88 (0.81–0.95, 
p = 1.9 × 10−3) (Fig. 2). Next, we tested the association of 
rs72824905-G with longevity-by-proxy. Carriers of the 
rs72824905-G variant did not have an increased likelihood 
of having a parent who reached 90 years of age compared 
to non-carriers (OR = 1.05, p = 0.24). However, carriers 
did have an increased likelihood of having a parent who 
reached 95 years (OR = 1.19, p = 2.1 × 10−2). The threshold 
of 95 years was chosen as too few parents reached the age 
of 100 years.

Power analysis

Power analysis (Suppl. Fig 10, Online Resource) showed 
that the PD, MS and ALS analysis had adequate statisti-
cal power (power > 0.8) to detect a protective association 
(p = 0.05) with an OR ~ 0.68 (the OR for AD reported in 
Sims et al. [47].). The PSP analysis had the lowest statistical 
power (0.32 at the expected OR = 0.67).

Discussion

A recent study showed the protective effect against AD risk 
of the p.Pro552Arg nonsynonymous amino acid change in 
PLCG2 (rs72824905-G) [47]. We replicated this protective 
effect in independent AD patients and controls. Addition-
ally, we found that the variant also protected against FTD 
and DLB, but not against ALS, PD and MS. The analysis 
of PSP was inconclusive because of insufficient power. We 
also found that rs72824905-G associated with increased 
likelihood of longevity, which is according to expectations, 
since overall dementia is the leading cause of death at older 
age [1]. Indeed, the strongest effect of PLCG2 variant was 
observed in cognitively healthy centenarians, individuals 
where an absence of dementia and extreme longevity is com-
bined. Our findings were supported by analyses of by-proxy 
phenotypes for dementia and longevity in the UK Biobank. 
Taken together, the association of the rs72824905-G variant 
with a decreased risk of multiple dementia types and the 
increased risk of longevity warrants thorough investigation 
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Table 1  Study sample description

Consortium or combined cohort name corresponds to the name used in the figures of this manuscript. Studies/sites included or reference to 
cohort shows the studies combined to form one site (if more then one). Additional information on studies included can be found in supplemen-
tary Table 2. If studies/sites include a reference, the exact methods described in the reference were used to obtain the genotypes and association 
results
AD Alzheimer’s disease, FTD frontotemporal dementia, DLB dementia with Lewy bodies, PSP progressive supranuclear palsy, PD Parkinson’s 
Disease, ALS Amyotrophic Lateral Sclerosis, MS multiple sclerosis, MAF Minor allele frequency, ADC Amsterdam Dementia Cohort, NBB 
Netherlands Brain Bank, LASA Longitudinal Aging Study Amsterdam, GEHA Genetics of Healthy Ageing Study, NL, AgeCoDe German Study 
on Ageing, Cognition and Dementia in Primary Care Patients, GBC Gothenburg Birth Cohort Studies, IFGC International FTD-Genomics Con-
sortium, IPDGC The International Parkinson Disease Genomics Consortium, KKNMS German Competence Network Multiple Sclerosis, LLS 
Leiden Longevity study, RiMoD-FTD Risk and modifying factors in Frontotemporal Dementia, UCLA/UCSF Genetic Investigation in Fronto-
temporal Dementia and Alzheimer’s Disease (GIFT) Study
a The number of carriers and minor allele frequency were calculated in a subset of 21092 cases and 23896 controls. No combined estimate of 

Trait Consortium or combined 
cohort name

Studies/sites included Corrections Cases Controls

N N-carriers MAF N N-carriers MAF

AD Amsterdam UMC ADC, NBB, LASA PC1-3 1893 24 0.63 2571 64 1.24
Brain compendium Keogh et al. [29] None 277 0 0 362 6 0.83
Mayo Clinic Conway et al. [7] None 1477 19 0.64 1487 29 0.98
NDRU cohort NDRU cohort None 527 7 0.66 343 8 1.17
Spanish cohorts Valdecilla Cohort, Fundació ACE, 

Oviedo, Sant Pau (SPIN cohort), San 
Sebastian

None 23 0 0 746 10 0.67

Swedish studies GBC Studies, Clinical AD cohort 
sweden.

None 564 6 0.53 3480 61 0.88

UCLA/UCSF GIFT Chen et al. [6] None 224 0 0 249 10 2.01
Combined AD 4985 56 0.56 9238 188 1.02

DLB Amsterdam UMC ADC, NBB, LASA PC1-3 189 2 0.53 2571 64 1.24
Brain compendium Keogh et al. [29] None 97 1 0.52 362 6 0.83
Mayo Clinic Conway et al. [7] None 306 2 0.33 1487 29 0.98
NDRU cohort NDRU cohort None 622 8 0.64 343 8 1.17
Spanish cohorts Valdecilla Cohort, Fundació ACE, 

Oviedo, Sant Pau (SPIN cohort), San 
Sebastian

None 232 3 0.65 746 10 0.67

Combined DLB 1446 16 0.55 5509 117 1.06
FTD Amsterdam UMC ADC, NBB, LASA PC1-3 231 1 0.22 2571 64 1.24

Brain compendium Keogh et al. [29] None 93 2 1.08 362 6 0.83
IFGC Ferrari et al. [11] None 1360 22 0.81 5059 118 1.17
RiMoD-FTD (Consortium) None 255 3 0.59 1660 38 1.17
Spanish cohorts Valdecilla Cohort, Fundació ACE, 

Oviedo, Sant Pau (SPIN cohort), San 
Sebastian

None 366 1 0.14 746 10 0.67

UCLA/UCSF GIFT Chen et al. [6] None 132 2 0.76 249 10 2.01
Combined FTD 2437 31 0.64 10,647 246 1.19

PSP Brain compendium Keogh et al. [29] None 17 1 2.94 362 6 0.83
Mayo Clinic Conway et al. [7] None 231 9 1.95 1487 29 0.98
NDRU cohort NDRU cohort None 613 11 0.9 343 8 1.17
UCLA/UCSF GIFT Chen et al. [6] None 12 0 0 249 10 2.01
Combined PSP 873 21 1.20 2441 53 1.09

PD IPDGC Nalls et al. [39] ≥3PCs 27,595 340a 0.81a 106,951 391a 0.81a

Mayo Clinic Conway et al. [7] None 853 18 1.06 1487 29 0.98
MS KKNMS Dankowski et al. [3] PC1 and 2 4476 82 0.92 5714 107 0.94
ALS Project MinE Van Rheenen et al. [8] PC1-4 10,953 214 0.98 20,673 385 0.93
longevity AgeCoDe AgeCoDe None 462 14 1.52 861 19 1.12

Amsterdam UMC 100-Plus Study, LASA, NBB PC1-3 293 16 2.73 2571 64 1.24
Danish studies Multiple Danish studies None 853 10 0.59 2793 33 0.59
Leiden Longevity Study LLS, GEHA-NL None 1138 28 1.23 743 11 0.74
GBC Studies GBC Studies None 770 16 1.04 2709 45 0.83
Combined longevity 3516 84 1.19 9677 172 0.89



242 Acta Neuropathologica (2019) 138:237–250

1 3

of the molecular mechanisms underlying this protective 
effect.

Thus far, the common APOE ɛ4 allele and the rare 
TREM2.R47H variant are strong genetic risk factors shared 
across AD, FTD and DLB (not TREM2 [55]). [2, 11, 18, 27, 
47] The HLA-locus and the microtubule-associated protein 
tau (MAPT) loci (not individual variants) also have (sug-
gestive) effects on the risks of AD, FTD and DLB [3, 11, 
18, 43]. The APOE gene has been implied in a multitude of 
pathways [52], TREM2 and HLA are involved in immunity 
[2], and MAPT encodes the tau protein. These shared genetic 
risk factors indicate a partial overlap in AD, DLB and FTD 
etiology. It is of interest that, like the PLCG2 variant, APOE 
and the HLA-DR locus were also associated with longev-
ity [4, 10, 28, 38]. A possible explanation is that APOE, 
PLCG2 and HLA are involved in the processing of accumu-
lated aging-associated proteins [9]. In line with this hypoth-
esis, rs72824905-G is associated with reduced  pTau181 in the 
CSF of memory clinic patients with pathologic Aβ1-42 CSF 
levels (L. Kleineidam et al. submitted). It is well known that 
having a dementia-associated neurodegenerative disease is 
associated with shorter life-span [57]. Conversely, resilience 
to diseases is associated with a longer life-span [24]. It is 
likely that the association of rs72824905-G with longevity 
is due to the protection against dementia-associated neuro-
degenerative diseases. However, with the available data we 

cannot exclude that rs72824905-G has an independent effect 
of rs72824905-G on the risk of longevity and/or the risk 
of maintaining cognitive health. In line with this observa-
tion, we anecdote one cognitively healthy centenarian who 
is homozygous for the APOE ɛ4 risk allele, but also car-
ried the rs72824905-G allele. On MRI scan and amyloid 
scan (PiB-PET), this person has some global atrophy and 
only amyloid-β positivity in the precuneus and in the frontal 
lobes (Fig. 3). At the age of 90 years, the dementia risk for 
homozygous carriers of the APOE ɛ4 genotype is approxi-
mately 80% [53] and virtually all are amyloid positive by age 
90 [26]. The literature reports only a handful of centenarians 
who are homozygous for the APOE ɛ4 allele [14, 16, 23]. 
It is unknown if these individuals were cognitively healthy. 
This case shows that cognitively healthy aging in the pres-
ence of the APOE ɛ4ɛ4 genotype is possible, likely due to 
the protective effect of other genetic variants, such as the 
rs72824905-G variant in PLCG2 [26, 53].

The mechanism that explains the protective effect of 
rs72824905-G variant in the PLCG2 gene is currently 
unclear. We find that the associations of the rs72824905-G 
variant with disease risk differ between diseases that have 
overlapping pathological features. For example, we observe 
that carrying the rs72824905-G variant is protective against 
DLB, but not against PD, while a common characteristic for 
both diseases is the presence of α-synuclein-positive Lewy 

MAF can be given
Table 1  (continued)

Fig. 1  Association results of rs72824905-G with seven brain diseases and longevity. *P values < 0.05. Numbers (N) of cases (patients or long-
lived individuals) and controls studied. The figure shows the odds-ratio (box) of the rs72824905-G with the 95% confidence intervals (whiskers)

Fig. 2  Association results of rs72824905-G with dementia by-proxy and longevity by-proxy analysis in the UK Biobank. *P values < 0.05. The 
figure shows the odds-ratio (box) of the rs72824905-G with the 95% confidence intervals (whiskers)
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bodies. The same holds for pathologies associated with the 
FTD-ALS and PSP spectrum of diseases (e.g. TDP-43, FUS 
inclusions as well as aggregations of tau). The observation 
that our results do not point to a single pathological condi-
tion does not preclude that PLCG2 is involved in a single 
biological process. In fact, determining the involvement of 
the PLCG2-related pathway might be an asset in pathologi-
cal classifications of diseases, e.g. differentiating between 
DLB and PD. Thus far, only one publication investigated 
the functional effect of the rs72824905-G variant in in vitro 
experiments [35]. The authors suggest that in the mouse 
and human brain, PLCɣ2 is expressed in microglia [12]. 
They show that PLCɣ2 mRNA co-localized with microglia-
specific markers in healthy brain tissue and is expressed in 
microglia near amyloid-β plaques in an APP mouse model 
[35]. Furthermore, functional characterization of PLCɣ2 
with the p.Pro552Arg amino acid substitution suggested only 
a slight increase in activity compared to wild-type PLCɣ2 
[35]. While additional functional experiments will be needed 
to confirm these findings, these experiments suggest that 
the functional changes induced by the PLCɣ2 p.Pro552Arg 
genetic variant may be subtle and, therefore, difficult to pin-
point. This is according to expectations, as major changes 
to the immune system will most likely be harmful. Indeed, 
known germline mutations in PLCG2 cause the immune 
disorders PLAID (PLCG2-associated antibody deficiency 
and immune dysregulation) and APLAID (autoinflammatory 

PLAID) [40, 46, 59] while somatic variants in PLCɣ2 are 
associated with resistance to treatment of leukemia [56] 
(reviewed in Koss et al. [32].). The mutations that cause 
PLAID and APLAID contribute to a strong hyperactivation 
of PLCɣ2 upon activation. In the case of APLAID (caused 
by a p.Ser707Tyr substitution), the auto-inflammation has 
been suggested to be partially driven by PLCɣ2-dependent 
activation of the pyrin (PYD)-domain-containing protein 
3 (NLRP3) inflammasome [5]. The potential of PLCG2 to 
activate the inflammasome is further supported by in vitro 
experiments [31]. The NLRP3 inflammasome is a crucial 
signaling node in microglia that ultimately controls the mat-
uration of pro-inflammatory interleukin (IL)-1β and IL-18 
[19] and has been linked to a multitude of neurodegenerative 
diseases [60]. Although functional studies will need to eluci-
date the effects of the rs72824905-G on PLCɣ2 function, we 
speculate that subtle changes in the NLRP3 inflammasome 
activation may explain its protective effect.

Strengths and weaknesses

The most important strength of our study is that we investi-
gated the effect of the rs72824905-G variant in seven neu-
rological diseases in more than 53,000 patients and almost 
150,000 controls. The AD cases and controls studied here 
were all independent from the AD patients and controls 
in which the protective effect of rs72824905-G was first 

Fig. 3  MRI scan and PiB-PET scan, of a 102-year-old centenar-
ian carrying the homozygote APOE ɛ4 genotype as well as the 
rs72824905-G allele in PLCG2. MRI scan (Titan 3T MR scanner) 
shows some hippocampal atrophy (MTA grade 2), some global corti-
cal atrophy (GCA-scale grade 1), but pronounced posterior cortical 
atrophy (grade 2), moderate white matter hyperintensities (Fazekas 
grade 2), no lacunar infarcts or microbleeds. PET-PiB (scan after 
admission of 396 MBq C-11 PIB, 20-min image starting 90 min after 

administration): Abnormal retention in the posterior cingulate/pre-
cuneus and frontal lobes. Neuropsychological testing around time of 
scanning showed average performance on global cognitive function-
ing/MMSE, memory, attention, working memory, fluency and visuo-
spatial tests compared to the cohort of cognitively healthy centenar-
ians. The result of the clock drawing test is shown. The patient was 
asked to draw a clock and put the time at 10 before 11



244 Acta Neuropathologica (2019) 138:237–250

1 3

identified [47], but includes the samples used in Conway 
et al. [7] and Tesi et al. [51]. This report offers a robust 
replication of the protection against AD. Some may argue 
that the protective effect observed in FTD and DLB cases is 
driven by misclassified AD cases. However, the effect size of 
rs72824905-G in these cases is very similar to the protective 
effect in AD, which makes it unlikely that the effect can be 
ascribed purely to misclassified AD. Moreover, the age of 
the controls was mostly younger than that of cases, making 
the protection from dementia not a longevity effect.

The large numbers under study were necessary because 
rs72824905-G has a minor allele frequency (MAF) ~ 1% in 
European ancestry populations, which makes it a relatively 
rare genetic variant. Therefore, we ensured that our samples 
provided adequate statistical power to observe a similar pro-
tective effect of rs72824905-G against other neurodegen-
erative diseases. Despite the large sample sizes, we found 
no evidence for this effect in our sample of PD, ALS and 
MS, which makes it unlikely that larger meta-analyses will 
observe an association between rs72824905-G and these 
three diseases. An association of rs72824905-G with an 
increased risk of PSP has been reported previously [7]. In 
our analysis, which includes additional PSP cases, we were 
not able to replicate this finding. Larger studies are needed 
to determine the association with PSP. Including as large as 
possible samples came with the consequence that we were 
not able to correct for population stratification using ances-
try principal components in all studies. Therefore, we used 
PCs were possible and further matching cases and controls 
by study or country of origin. Finally, we indicate that the 
identified effects need to be replicated in other ethnicities in 
which rs72824905-G occurs. We note that in some ethnicities 
rs72824905-G plays no role as the frequency is very low in 
African (MAF = 0.0012) and African-American populations 
(MAF = 0.0004), and is not observed in East Asian [7, 33].

Conclusions

Our study shows that the rs72824905-G allele in PLCG2 
associates with a decreased risk for AD, FTD, DLB and 
concurrently with an increased chance of longevity. The pro-
tective effect of the rs72824905-G allele was not observed 
in ALS, PD and MS cases, which suggests that PLCG2-
associated processes overlap in the etiology of AD, FTD 
and DLB, but not in the etiologies of ALS, PD and MS 
(PSP too little power). Explaining the protective effect of the 
PLCγ2 protein on brain immune function may contribute to 
the design of successful therapeutic intervention strategies 
applicable to those at risk for neurodegenerative diseases.
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