UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Styles Of Thinking: From Algebra Word Problems To Programming Via Procedurality

Permalink
https://escholarship.org/uc/item/4w08145w

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Authors

Ehrlich, Kate
Soloway, Elliot
Abbott, Valerie

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4w08145w
https://escholarship.org
http://www.cdlib.org/

STYLES OF THINKING: FROM ALGEBRA WORD
PROBLEMS TO PROGRAMMING
VIA PROCEDURALITY'

Kate Ehrlich
Elliot Soloway
Valerie Abbott

Department of Computer Science
Yale University
P.O. Box 2158
New Haven, Connecticut 06520

1. ABSTRACT

Algebra word problems are often surprisingly hard for
college students to solve. However, more students are able to
solve these problems correctly when asked to write a computer
program, than when asked to write an equation. We have also
found that programmers, with the same level of math
experience as nom-programmers, do consistently better on the
algebra word problems, after only one semester of an
introductory programming class. We argue that some of the
difficulty associated with the algebra word problems can be
traced to misconceptions about what the algebraic expression
represents. Students often appear to use an algebraic
expression as if it were a static description rather than as
denoting an active operation being performed by one number to
get another number. Although programmers may be equally
prone to such misconceptions, it seems that experience with
programming helps them to overcome these misconceptions, by
encouraging them to develop a more active, procedural view of
the problem.

2. INTRODUCTION

In recent work, Clement and Lockhead [Clement, Lochhead,
and Monk, 1980| have demonstrated that there is a class of
apparently simple algebra word problems that students find
very difficult to solve correctly. A typical problem is shown as
Example 1 in Table 2-1.

When Clement et al gave this problem to a group of
engineering students they found that only 63% of the group
gave the correct response of S == 6P. The most common wrong
answer was: 6S == P, the reversal of the correct answer. In
apother problem, also shown in Table 2-1, in which there are
two integrals, only 27% of the class were able to produce a
correct answer. These findings are very robust and have been
replicated in a number of studies (e.g. Soloway et al, 1982;
Clement et al, 1980; , Kaput, 1979).

Clement and his colleagues [Soloway et al,, 1982, Clement,
Lochhead, and Monk, 1980|. carried out videotaped interviews
with some of these students to try and find the source of the
errors They identified two principal kinds of strategies that
students were using to solve the problems. Some students used
a syntactic, word order matching strategy, in which the order
of key words, such as "student” and "professor” and the
numbers from the problem description, were mapped directly
onto the order of symbols appearing in the equation. Paige and
Simon [Paige and Simon, 1968] have also argued for the
weaknesses inherent in this kind of direct transiation sirategy.

Another strategy that students adopted can be characterized
as "static comparison”. For instance, one student described the
equation in the following manner:

There's six times as many studemts, which means it's six

students to one prof and this (points to 6S) i six times

as many students as there are professors (points to LP).

This work was smpported by the National Science Foundation, under NSF
Grant [ST-81-14840.

What's wrong with these strategies! Their main problem is
that students seem to have a static, descriptive view of algebra.
For instance, students who espouse the strategy denoted as
"static comparison” seem to want the algebraic expression to
represent directly the relative sizes of the objects in the
problem. In so doing, they treat the variables such as S and P
as standing for "students” or "professors” rather than for the
number of students or the number of professors. But, algebra
does not function as a description in the same way as English
provides descriptions. The correct equation, S == 6P does not
describe the sizes of the groups, rather it denotes an equivalence
relation that would obtain if one of the groupe, the professors,
were made six times larger. In this way, the algebraic
expression represents an active operation that is performed on
one number to obtain another number.

3. MPACT OF PROGRAMMING:

PROCEDURALITY

If the correct conception of algebra is an active, procedural
one, then putting students in an environment that encourages
them to adopt a more procedural approach should help them to
generate correct solutions to the algebra word problems.
Programming is such an environment. I[ndeed, Papert [Papert,
1971] has claimed for some time that learning to program can
enhance problem solving skills.

In previous research (Clement et. al., 1980, Soloway et al.,
1982|, we found that significantly more students could solve the
problems correctly when the problem was presented in the
context of writing a computer program thaa in the context of
an equation. We have also conducted videotaped interviews
with some of the students who were unable to write the
equation [Soloway et al., 1982]. In several cases, we found that
the same student was able to solve the problem in the context
of a computer program but not in the context of an equation,
even when there were only a few minutes separating the two
solutions. These results support the claim that it is easier to
write a program to solve a certain class of problems that to
write an equation.

4. PROGRAMS VS EQUATIONS: THE
CONTRIBUTION OF PROCEDURAL
WORDING
In the study reported in [Soloway et al., 1982|, the

instructions for the two versions of the problem are worded a

little differently. In particular, the instructions for the program

version are themselves more procedural than the instructions
for the equation version. Thus, it may be that the critical
factor in the study was the wording of the instructions rather
than any difference between writing an equation or a program.

If the wording was the critical factor, however, there should be

a difference between the two kinds of wording for non-

programmers as well as programmers.

In the new study we used three versions of the algebra word
problem; these are shown in Table 4-1. The equation and the
program version are the ones used in the previous study; the

125

function version is new. We ran this study with students who
had no programming experience as well as with students who
bad taken at least one programming course. The programmers
received all three versions, while the non-programmers were
given the equation and the function versions of the problem.
Each student saw only one version of the problem.

The data, which are shown in Table 4-2, show that the
procedural wording of the instructions had no effect on
accuracy for the non-programmers. The programmers, on the
other hand, did write more correct equations when given the
procedural instructions than when given the original, equation
version. As in the previous study, there was also a significant
improvement for writing programs over writing equations with
non-procedural instructions. The results show that the
procedural wording of the instructions only improves
performance il students have had programming experience.
One implication of these results is that procedural wording
alone is not sufficient to induce people to adopt a more active
view of algebra; people need experience in a procedural domain
such as programming.

6. TRANSFER EFFECTS FROM

PROGRAMMING TO ALGEBRA

The results of the previous study suggest that it is
experience with programming rather than the procedurality of
the instructions that is critical. In the next study we cxamined
more directly whether programmers do better on the algebrs
word problems than non-programmers, when the problems are
presented in the standard non-procedural context.

We constructed a large diagnostic test containing 17 algebra

EXAMPLE 1

Given the following statement:

“There are sux times s many students a8 professors st this
University”

Write an equation to represeat the above statement. Use S
for the number of studeats aad P for the number of
professors.

e Result: 83% correct
o Typical wrong answer: 6S = P

EXAMPLE 2

Givea the following statement:

"At Mindy's restauraat, for every four people who order
cheesecake, there are (ive people who order strudel”

Write aa equatios to represent the above statement. Use C
for the number of cheesecakes ordered and S for the number
of strudels ordered.

o Result: 27% correct
= Typical wrong answer: 4C == 55

Table 2-1:
EXAMPLES OF ALGEBRA WORD PROBLEMS

126

PROBLEM

'At Mindy's restauront, for cvery [owr people who order
checaccake there are [ive people who order strudel. *

1. EQUATION
Write a mathematical equation to represeat the above
statement.

2. PROGRAM

Write a computer program which caa be used Lo calculate
the number of cheesecakes ordered whem supplied with the
number of strudels ordered.

3. FUNCTION

Write a mathematical function which can be used to
calculate the number of cheesecakes ordered whea supplied
with the aumber of strudels ordered.

Table 4-1:
EXAMPLES OF WORDING

word problems as well as filler items. The test was
administered to 28 people with no programming experience and
32 people who had just completed a semester of an
introductory programming course. The groups were equated
for level of math experience and in many other respects had
similar academic backgrounds. Many of the people taking the
programming course had majors in non-scientific subjects such
as History or English, while some of the non-programmers had
majors in fields such as psychology which includes some math
experience in the form of statistics.

All the problems were presented in a non-programming
context and none of the problems had procedural wording.
Over the 17 problems, the non-programmers got an average of
84.5% of the problems correct while the programmers got aa
average of 75% of the problems correct. This difference
between the groups was significant (t == 4.7, p < 0.0005).
Although the average performance between the two groups
differed by only 109, the significance of the difference reflects
a small but consistent improvement over all the problems for
the programming group.

It may be argued, that although we controlled for level of
math experience, and academic background, the programming
group as a whole were smarter than the non-programmers. I
this is the case, we should expect to find a fairly constant rate
of improvement over all the problems. However, the data do
not support that argument. Some semse of the kind of
advantage conferred by programming experience can be
illustrated by examining one set of problems that were included
in the test.

There are three main forms in which the solution equation
can be expressed. [t can be expressed as a multiple , e.g. 5C =
4S; as a ratio, e.g. C/S == 4/5; or with a single variable on ope
side, e.g. C == 4/5 S. The wrong solutions are most often
expressed in the form of a multiple, the ratio is the form
students seem most familiar with, and the third form is the one
appropriate to the equation written in a computer program.
We included in the test, a set of problems in which people were
given solution {ragments in each of these three forms.

The percent correct completions for the two groups of
subjects are shown imn Table 5-1. When we compared

performance on each version of the problem across the two
groups, we found that there was no reliable difference between

NON-PROGRAMMERS

FUNCTION EQUATION
CORRECT 82 73
INCORRECT 40 49

Equation vs Function: N.S.

PROGRAMMERS
FUNCTION EQUATION PROGRAM
CORRECT 71 48 ”
INCORRECT 32 53 22
Equation vs Function: p < 0.01

Equation vs Program: p < 0.001
Funetion vs Program: N.S.

Table 42:
The number of people given each problem
type who produced a correct and incorrect
solution

NON-PROG PROG

(multiple)

TC=1S8 36% 50§
(ratio)

? C

- = - 68% 78%

} 4 S
(single letter)

7
C s = § 36% 50%

?

Table 6-1: EQUATION FRAGMENT:
Percent correct responses for
each solution type

the programmers and the non-programmers except om the
fragment that had the form of a single letter on the left hand
side (x® = 3.35, p < .10). These data mitigate against claims
that the programmers may have done better because they were
smarter. Moreover, the data suggest that experience with
programming confers quite specific problem solving skills to
other domains such as algebra word problems.

8. CONCLUSIONS

There are a number of reasons why programming may
enhance certain problem solving abilities. These reasons range
from the explicitness required by the syntax of programming
languages, through to the practice of "debugging” and number
checking that is encouraged in programming. However,
perhaps the main benefit of programming is that it provides the
student with a model of an active input/output transformation
which functions as a metaphor of change. It seems clear that
people should be encouraged to develop skills that help them to
construct these kinds of models. The results of the studies we
reported, suggest that these skills are best developed in the
context of learning to program.

References

Clement, J., Lochhead, J., and Soloway, E. . Positive Effects
of Computer Programming On Studente’ Understanding
of Variables and Equationa. Proceedings of the National
ACM Conference, Nashville, Tenn., 1980.

Clement, J.,, Lochhead, J., and Monk, G. Translation
Difficulties in i Mathematics. .American
Mathematical Monthly, 1980, 85(4), 26-40.

Kaput, J. Mathematics and Learning: Roots of Epistemological
Status. In J.Lochhead & J. Clement (Eds.), Cognitive
Process Instruction, : Franklin [nstitute Press, 1979.

Paige, J. and Simon H. Cognitive Processes in Solving Algebra
Word Problems. In Problem Solving Rescarch, Method
and Theory, : John Wiley and Sons, New York, 1968,

Papert, S. Teaching Children to be Mathematicians Versuas
Teaching About Mathematics. Technical Report 249, MIT
Al Lab, 1971.

Soloway, E., Lochhead, J., Clement, J. Does Computer
Programming Enhance Problem Solving Ability! Some
Positive Evidence om Algebra Word Problems. In R.
Seidel, R. Anderson, B. Hunter (Eds.), Computer Literacy,
New York, NY: Academic Press, 1982,

	cogsci_1982_125-127

