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Abstract

Engineering large-scale data center applications built
from thousands of commodity nodes requires both
an underlying network that supports a wide variety
of traffic demands, and low latency at microsecond
timescales. Many ideas for adding innovative func-
tionality to networks, especially active queue manage-
ment strategies, require either modifying packets or
performing alternative queuing to packets in-flight on
the data plane. However, configuring packet queuing,
marking, and dropping is challenging, since buffering in
commercial switches and routers is not programmable.

In this work, we present NetBump, a platform for
experimenting with, evaluating, and deploying a wide
variety of active queue management strategies to net-
work data planes with minimal intrusiveness and at low
latency. NetBump leaves existing switches and endhosts
unmodified by acting as a “bump on the wire,” examin-
ing, marking, and forwarding packets at line rate in tens
of microseconds to implement a variety of virtual active
queuing disciplines and congestion control mechanisms.
We describe the design of NetBump, and use it to imple-
ment several network functions and congestion control
protocols including DCTCP and 802.1Qau quantized
congestion notification.

1. INTRODUCTION

One of the ultimate goals in data center networking
is predictable, congestion-responsive, low-latency com-
munication. This is a challenging problem and one
that requires tight cooperation between endhost pro-
tocol stacks, network interface cards, and the switch-
ing infrastructure. While there have been a range of
interesting ideas in this space, their evaluation and de-
ployment have been hamstrung by the need to develop
new hardware to support functionality such as Active
Queue Management (AQM) [13, 24], QoS [51], traffic
shaping [20], and congestion control [1,2,21,30]. While
simulation can show the merits of an idea and sup-
port publication, convincing hardware manufacturers
to actually support new features requires evidence that

a particular technique will actually deliver promised
benefits for a range of application and communication
scenarios.

We consider a model where new AQM disciplines can
be deployed and evaluated directly in production data
center networks without modifying existing switches or
endhosts. Instead of adding programmability to exist-
ing switches themselves, we instead deploy “bumps on
the wire,” called NetBumps, to augment the existing
switching infrastructure.1 Each NetBump exports a
virtual queue primitive that emulates a range of AQM
mechanisms [13, 14] at line rate that would normally
have to be implemented in the switches themselves.

NetBump provides an efficient and easy way to de-
ploy and manage active queue management separate
from switches and endhosts. NetBumps enable AQM
functions to be incrementally deployed and evaluated
by their placement at key points in the network. This
makes implementing new functions straightforward. In
our experience, new queuing disciplines, congestion con-
trol strategies, protocol-specific packet headers (e.g. for
XCP [21]), and new packets (for a new congestion con-
trol protocol we implement) can be easily built and
deployed at line rate into existing networks. Developers
can experiment with protocol specifics by simply mod-
ifying software within the bump.

The NetBump requirements are: rapid prototyping
and evaluation, ease of deployment, support for line
rate data processing, low latency (i.e. tens of µs),
packet marking and transformation for a range of
AQM and congestion control policies, and support
for distributed deployment to support data center
multipath topologies. We require low latency since
we target LAN switches, rather than WAN router
deployments. We greatly reduce the latency imposed
by NetBump because our functionality is limited to
modifications of packets in flight, with no actual
queuing or buffering done within NetBump. We expect
these bumps on the wire to be part of the production
network that will form a proving ground to inform

1The “bump on the wire” term here is unrelated to previous
work about IPsec deployment boxes [22].
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eventual hardware development (see Fig. 1 for an
example deployment scenario).

There are several implementation choices for build-
ing NetBumps. While it is possible to develop custom
silicon for such functionality, the time to market is long
(2-3 years) and the non-recurring engineering costs are
often prohibitive for functionality that does not have a
pre-existing market. Programmable network processors
have been a hot topic for number of years [45]. However,
their utility has been hampered by a difficult program-
ming model, which is also the case for FPGA-based
designs that are programmed in Verilog or VHDL. The
complexity of these approaches prevent experimenting
with novel network programming ideas.

On the other hand, software programmable routers
like Click [23] and RouteBricks [8] provide a power-
ful and easy-to-program language for implementing in-
network datapath extensions that are ideal for support-
ing NetBump. We implemented NetBump on Route-
Bricks, and found that its underlying NIC device driver
batches packets to support higher throughput at the
cost of higher latency. We also considered an alternative
implementation based on a user-level, zero-copy, kernel-
bypass network API. User-level networking is not a new
idea, and commercial implementations are nearly 20
years old. However, we found that it performed well,
and was able to support custom active queue manage-
ment of minimum-sized 64-byte packets at a rate of
14.17Mpps (i.e. 10Gbps line rate) with one CPU core
at 20-30µs. In part this performance is the result of
NetBump’s simpler packet handling model supporting
pass-through functionality on the wire, as compared to
general-purpose software routers.

The primary contributions of this paper are: 1) the
design of a “bump on the wire” specifically focusing
on evaluating and deploying new buffer management
packet processing functions, 2) a simple virtual Active
Queue Management (vAQM) implementation to indi-
rectly manage the buffers of neighboring, unmodified
switches, 3) the evaluation of several new programs
implemented on top of NetBump, including an imple-
mentation of IEEE 802.1Qau-QCN L2 congestion con-
trol, and 4) an extensible and distributed traffic update
and management platform for remote physical switch
queues.

2. MOTIVATION

In this section we first present an example of Net-
Bump functionality in action, and then motivate our
requirements for a low-latency implementation.

2.1 NetBump Example

In Fig. 2, we show a simple network where two source
hosts H1 and H2 each send data to a single destination
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Figure 1: Deployment scenario in the data
center. “NetBump-enabled racks” include Net-
Bumps in-line with the Top-of-Rack (ToR)
switch’s uplinks, and monitor output queues at
the host-facing ports.
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Figure 2: An example of NetBump at ToR
switch, monitoring downstream physical queues.

host Hd (in flows F1 and F2, respectively). H1 and H2

are connected to Switch0 at 1Gbps. Switch 0 has a
10Gbps uplink to a NetBump (through the aggregation
layer), and on the other side of the NetBump is a second
10Gbps link to Switch1. Destination host Hd is at-
tached to Switch1 at 1Gbps. Flows F1 and F2 each have
a maximum bandwidth of 1Gbps, and since host Hd has
only a single 1Gbps link, congestion will occur on Hd’s
input or output port in Switch1 if rate(F1)+rate(F2) >

1Gbps. Without NetBump, assuming Switch1 imple-
ments a drop-tail queuing discipline, packets from F1

and F2 will be interleaved in Hd’s physical queue until
the queue becomes full, at which point Switch1 will drop
packets arriving to the full queue. This leads to known
problems such as burstiness and lack of fairness.

Instead, as NetBump forwards packets from its in-
put to its output port, it estimates the occupancy of a
virtual queue associated with Hd’s output port buffer.
When a packet arrives, Hd’s virtual queue occupancy
is increased by the packet’s size. Because NetBump
has the topology information and knows the speed of
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the link between Switch1 and Hd (§ 3.1), it computes
the estimated drain rate, or the rate that data leaves
Hd’s queue. By integrating this drain rate over the time
between subsequent packets, it calculates the amount of
data that has left the queue since the last packet arrival.

Within NetBump, applications previously requiring
new hardware development can instead act on the
virtual queue. For example, to implement a Ran-
dom Early Detection (RED) queuing discipline, the
NetBump shown in Fig. 2 maintains a virtual output
queue for each physical queue in Switch1. This virtual
queue maintains two parameters, MinThreshold and
MaxThreshold, as well as a weighted estimate of the
current downstream queue length. According to the
RED discipline, packets are sent unmodified when
the moving average of the queue length is below the
MinThreshold, the packets are marked (or dropped)
probabilistically when the average is between the two
thresholds, and packets are unconditionally marked (or
dropped) when it is above MaxThreshold.

Note that in this example, just as in all the network
mechanisms presented in this paper, packets are never
delayed or queued in the NetBump itself. Instead, Net-
Bump marks, modifies, or drops packets at line rate as
if the downstream switch directly supported the func-
tionality in question. Note also that NetBump is not
limited to a single queuing discipline or application–it
is possible to compose multiple applications (e.g. QCN
congestion control with Explicit Congestion Notifica-
tion (ECN) marking [11]). Furthermore, AQM func-
tionality can act only on particular flows transiting a
particular end-to-end path if desired.

2.2 Design Requirements

The primary goal of NetBump is enabling rapid and
easy evaluation of new queue management and conges-
tion control mechanisms in deployed networks with min-
imal intrusiveness. We next describe the requirements
that NetBump must meet to successfully reach this goal.

Deployment with unmodified switches and end-

hosts: We seek to enable AQM development and
experimentation to take place in the data center
or enterprise itself, rather than separate from the
network. This means that NetBump works despite
leaving switches and endhosts unmodified. Thus a
requirement of NetBump is that it implements a virtual
Active Queue Management (vAQM) discipline that
tracks the status of neighboring switch buffers. This
will differ from previous work that applies this technique
within switches [13, 24], as our implementation will be
remote to the switch.

Distributed deployment: Modern networks increas-
ingly rely on multipath topologies both for redundancy
in the face of link and switch failure, and for improving

throughput by utilizing several, parallel links. Left un-
addressed, multipath poses a challenge for the NetBump
model since a single bump may not be able to monitor
all of the flows heading to a given destination. Therefore
a requirement for NetBump is that it supports enough
throughput to manage a sufficient number of links, and
that it supports a distributed deployment model. In a
distributed model, multiple bumps deployed throughout
the network coordinate with each other to manage flows
transiting them. In this way, a set of flows taking sepa-
rate network paths can still be subjected to a logically
centralized, though physically distributed, AQM policy.

Ease of development: Rather than serving as a final
deployment strategy, we see NetBump as an experimen-
tal platform, albeit one that is deployed directly on the
production network. Thus rapid prototyping and recon-
figuration are a requirement of its design. Specifically,
the platform should export a clear API with which users
can quickly develop vAQM applications using C/C++.

Minimizing latency: Many data center and enter-
prise applications have strict latency deadlines, and any
datapath processing elements must likewise have strict
performance guarantees, especially given NetBump’s
target deployment environment of data center networks,
whose one-way latency diameters are measured in
microseconds. Since the throughput of TCP is in
part a function of the network round-trip time [40],
any additional latency imposed by NetBump can affect
application flows. To show this effect, we measured the
completion times of two flows–one in which a single byte
is exchanged between a sender-receiver pair, and one
where 1MB is exchanged between that same pair. Fig. 3
shows the normalized completion times of each flow as
a function of one-way middlebox latency. Perhaps not
surprising, adding even tens of microseconds of one-
way latency has a significant impact on flow completion
times when the baseline network RTT is very small.

Forwarding at line rate: Although data center
hosts still primarily operate at 1Gbps, 10Gbps has
become standard at rack-level aggregation. Deploying
a NetBump inline with top-of-rack uplinks and between
10Gbps switches will require an implementation that
can support 10Gbps line rates. The challenge then
becomes keeping up with packet arrival rates: 10Gbps
corresponds to 14.88M 64-byte minimum sized packets
per second, including Ethernet overheads.

3. DESIGN

In this section we describe the design of the primary
NetBump vAQM pipeline, including how this design
can scale to support faster links and a distributed de-
ployment for multi-path data center designs. We discuss
our implementation choices in § 5.

3.1 The NetBump Pipeline
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Figure 3: Effect of middlebox latency on com-
pletion time of short (1 Byte) and medium-sized
(1MB) TCP flows. Baseline (direct-connect)
transfer time was 213µs (1B), 9.0ms (1MB),
others are through a NetBump with configurable
added delay.
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Figure 4: The NetBump pipeline.

The core NetBump pipeline consists of four algo-
rithms: 1) packet classification, 2) virtual queue (VQ)
drain estimation, 3) packet marking/dropping, and
optionally 4) extensible packet processing.

Virtual Queue Table Data Structure: Each Net-
Bump maintains a set of virtual queues, which differ
from physical queues in that they do not store or buffer
packets. Instead, as packets pass through a virtual
queue, it maintains state on what its occupancy would

be if it were actually storing packets. Thus each vir-
tual queue must keep track of 1) the number and sizes
of packets transiting it, 2) the packet arrival times,
and 3) the virtual rate at which they drain from the
queue. Note that packets actually drain at line rate (i.e.
10Gbps), however a virtual queue could be configured
with a virtual drain parameter of 1Gbps or 100Mbps.

The virtual queue table is a simple data structure
kept by the NetBump that stores each of these three
parameters for each virtual queue supported by that

bump. For the AQM functionality we consider, we only
need to know the virtual queue occupancy and drain
rate, and so each virtual queue keeps 1) the size in bytes
of the queue, 2) the time the last packet arrived to the
queue, and 3) the virtual queue drain rate. These values
are updated when a packet arrives to the virtual queue.

1. Packet Classification: As packets arrive to the
NetBump, they must first be classified to determine
into which virtual queue they will be enqueued. This
classification API is extensible in NetBump, and can be
overridden by a user as needed. A reasonable scheme
would be to map packets to virtual queues correspond-
ing to the downstream physical switch output buffer
that the packet will reside in when it leaves the bump.
In this case the virtual queue is emulating the down-
stream switch port directly. Note that virtual queues
do not have to be associated in this way, though they
are for most of the applications we consider in this work.

To make this association, NetBump requires two
pieces of information: the mapping of packet destina-
tions to downstream output ports, and the speed of the
link attached to that port. The mapping is needed to
determine the destination virtual queue for a particular
packet, and the link speed is necessary for estimating
the virtual queue’s drain rate. There are a variety of
ways of determining these values. The bump could
query neighboring switches (e.g. using SNMP) for their
outgoing link speeds, or those values could be statically
configured when the bump is placed in the network. For
software-defined networks based on OpenFlow [15, 33],
the central controller could be queried for host-to-
port mappings and link speeds, as well as the network
topology. In our evaluation, we statically configure
the NetBump with the port-to-host mapping and link
speeds.

2. Queue Drain Estimation: The purpose of the
queue drain estimation algorithm is to calculate, at the
time a packet is received into the bump, the occupancy
of the virtual queue associated with the packet (Fig. 5).
The virtual queue estimator is a leaky bucket that is
filled as packets are assigned to it, and drained ac-
cording to a fixed drain rate determined by the port
speed [49].

Lines 1-6 implement the leaky bucket. First, the
elapsed time since the last packet arrived to this virtual
queue is calculated. This elapsed time is multiplied by a
physical port’s rate to calculate how many bytes would
have left the downstream queue since receiving the last
packet. The physical port’s drain rate comes from the
link speed of the downstream switch or endhost. This
amount is then subtracted from the current estimate
(or set to zero, if the result would be negative) of queue
occupancy to get an updated occupancy. If this is the
first packet to be sent to that port, then the default
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Function Description

void init(vQueue *vq, int drainRate); Initializes a virtual queue and set the given drain rate.
vQueue * classify(Packet *p) const; Classifies a packet to a virtual queue.

void vAQM(Packet *p, vQueue *vq); Updates internal vAQM state during packet reception.
int estimateQlen(vQueue *vq) const; Returns an estimate of a virtual queue’s length.
int process(Packet *p, vQueue *vq); Defines packet processing. Modify, duplicate, drop, etc.
int forward(Packet *p) const; Gets the output port (Optional, for multi-NIC bumps).

Table 1: The NetBump API.

Procedure vAQM(Packet *pkt, vQueue *VQ):
1 if (VQ→lastUpdate > 0) {
2 elapsedTime = pkt→timestamp – VQ→lastUpdate
3 drainAmt = elapsedTime * VQ→rate
4 VQ→tokens –= drainAmt
5 VQ→tokens = max(0, VQ→tokens)
6 }
7 VQ→tokens += pkt→len
8 VQ→lastUpdate = pkt→timestamp

Procedure RED(Packet *pkt, vQueue *VQ):
9 VQ→avg = calculateAvg(v→tokens)
10 if (VQ→avg > VQ→MaxThresh) {
11 VQ→tokens –= pkt→len
12 drop(pkt)
13 } else if (VQ→avg > VQ→MinThresh) {
14 calculate probability ρ

15 with probability ρ:
16 mark(pkt)
17 }

Figure 5: The queue drain estimation algorithm
and the implementation of RED.

queue occupancy estimate of 0 is used instead. Lastly,
the “last packet arrival” field of the virtual queue is
updated accordingly.

A key design decision in NetBump is whether to cou-
ple the size of the virtual queue inside the bump with
the actual size of the physical buffer in the downstream
switch. If we knew the size of the downstream queue,
then we could set the maximum allowed occupancy of
the virtual queue accordingly. This would be challeng-
ing in general, since switches do not typically export the
maximum queue size programmatically. Furthermore,
for shared buffer switches, this quantity might change
based on the instantaneous traffic in the network. In
fact, by assuming a small buffer size in the virtual queue
within NetBump, we can constrain the flow of packets to
reduce actual buffer occupancy throughout the network.
Thus, assuming small buffers in our virtual queues has
beneficial effects on the network, and simplifies Net-
Bump’s design.

3. Packet Marking/Dropping: At line 9 in Fig. 5,
NetBump has an estimate for the virtual queue occu-
pancy. Here a variety of actions can be performed,
based on the application implemented in the bump.
The example code shows a general random-early drop
(RED) application [16]. In this example, there is a
“min” limit that results in packet marking, and a “max”
limit that results in packet dropping. Packet marking
takes the form of setting the ECN bit in the header, and
dropping is performed simply in software.

4. Extensible Processing Stage: In addition to the
vAQM estimation and packet marking/dropping func-
tionality built into the basic NetBump pipeline, devel-
opers can optionally include arbitrary additional packet
processing. NetBump developers can include exten-
sions to process packet streams. This API is quite
simple, in that the extension is called once per packet,
which is represented by a pointer to the packet data and
length field. Developers can read, modify, and adjust
the packet arbitrarily before re-injecting the packet back
into the NetBump pipeline (or dropping it entirely).

Packets destined to particular virtual queues can be
forwarded to different extensions, each of which runs in
its own thread, coordinating packet reception from the
NetBump pipeline through a shared producer-consumer
queue. By relying on multi-core processors, each ex-
tension can be isolated to run on its own core. This
has the advantage that any latency induced by an ex-
tension only affects the traffic subject to that exten-
sion. Furthermore, correctness or performance bugs in
an extension only affects the subset of network traffic
enqueued in the virtual queues serving that extension.
This enables an incremental “opt-in” experimental plat-
form for introducing new NetBump functionality into
the production network.

An advantage of the NetBump architecture is that
packets travel a single path from the input port to the
output port. Thus, unlike multi-port software routers,
here packets can remain entirely on a single core, and
stay within a single cache hierarchy. The only point
of synchronization is the shared vAQM data structure,
and we study the overhead of this synchronization and
the resulting lock contention in § 6.2.5.
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3.2 Scaling NetBump

Managing packet flows in multipath environments re-
quires that NetBump scale with the number of links
carrying a particular set of flows. This scaling operates
within two distinct regions. First, supporting additional
links by adding NICs and CPU cores to a single server,
and second, through a distributed deployment model.

3.2.1 Multi-link NetBump

For multipath environments in which packets headed
to a single destination might travel over multiple paths,
it is possible to scale NetBump by simply adding new
NICs and CPU cores. For example, a top-of-rack switch
with two 10Gbps uplinks would meet these require-
ments. Here, a single server is only limited in the num-
ber of links that it can support by the amount of PCI
bandwidth and the number of CPU cores. Each pair
of network interfaces supports a single link (10Gbps
in, and 10Gbps out), and PCIe gen 2 supports up to
three such bi-directional links. In this case, “Multi-link”
NetBump is still conceptually simpler than a software-
based router, since packets still follow a single-input,
single-output path. Each supported link is handled
independently inside the bump, and we can assign to it
a dedicated CPU core. The only commonality between
these links is the vAQM table, which is shared across
the links.

3.2.2 Distributed NetBump

For multi-path environments, where NetBumps must
be physically separated, or for those with more links
than are supported by a single server, we consider a dis-
tributed NetBump implementation. Naturally, if mul-
tiple NetBumps contribute packets to a shared down-
stream buffer, they must exchange updates to maintain
accurate vAQM estimates. Note that the vAQM ta-
ble maintains queue estimates for each of neighboring
switch’s ports (or a monitored subset).

In this case, where we assume the topology (adja-
cency matrix and link speeds) to be known in advance,
NetBumps update their immediate neighbor bumps
about the traffic they have processed (Fig. 6). Hence,
updates are not the queue estimate itself, but tuples
of individual packet lengths and physical downstream
switch and port IDs, so that forwarding tables need not
be distributed. Each source NetBump sends an update
to its monitoring neighbors at a given tunable frequency
(e.g. per packet, or batched), and each destination

NetBump calculates a new queue estimate by merging
its previous estimate with the traffic update from its
neighbor, according to the algorithm in Fig. 5. In this
design, updates are tiny; 4B per monitored flow packet
(i.e. 2B for packet size and 2B for the port identifier).
This translates to about 3MB/s of control traffic per
10Gbps monitored flow. Note also that updates can
be transmitted on a dedicated link, or in-band with
the monitored traffic. We chose the latter for our
Distributed NetBump implementation.

The above technique introduces two possible sources
of queue estimation error: 1) batching updates causes
estimates to be slightly stale, and since packet sizes
are not uniform, the individual packet components of
a virtual queue and their respective order would not
necessarily be the same, and 2) the propagation delay
of the update. Despite this incremental calculation, the
estimation naturally synchronizes whenever the buffer
occupancy is near its empty/full boundaries.

4. DEPLOYED APPLICATIONS

In this section, we describe the design and implemen-
tation of several vAQM and congestion control applica-
tions we developed with NetBump.

4.1 Random Early Detection

The first vAQM scheme we implemented is Random
Early Detection (RED) [12]. The goal of RED is to
keep the average queue length low while achieving high
throughput. RED buffer management consists of two
parts: estimation of the average queue size using an
exponentially-weighed moving average, and a decision
on dropping or marking a packet. The packet mark or
drop rate increases linearly from zero, when the average
queue length is at MinThresh, to a maximum probabil-
ity when the average queue length reaches MaxThresh.
Our implementation is based on the algorithm proposed
in the original RED paper. This vAQM stage maintains
MinThresh and MaxThresh watermarks (with values of
20 and 60 packets, respectively), a wq setting of 0.1, and
varies maxp. We based these values on previous work
by Floyd et al. [42].

4.2 Data Center TCP
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We next implemented Data Center TCP (DCTCP) [2]
on NetBump. The purpose of DCTCP is to improve
the behavior of TCP in data center environments,
specifically by reducing queue buildup, buffer pressure,
and incast. It requires changes to the endhosts as
well as network switches. A DCTCP-enabled switch
marks the ECN bits of packets when the size of
the output buffer in the switch is greater than the
marking threshold K. Unlike RED, this marking
is based on instantaneous queue size, rather than a
smoothed average. The receiver is responsible for
signaling back to the sender the particular sequence
of marked packets (see [2] for a complete description),
and the sender maintains an estimate α of the fraction
of marked packets. Unlike a standard sender that cuts
the congestion window in half when it receives an ECN-
marked acknowledgment, a DCTCP sender reduces its
rate according to: cwnd ← cwnd∗(1−α/2). We support
DCTCP in the endhosts by using a modified Linux TCP
stack supplied by Kabbani and Alizadeh [18].

Implementing DCTCP in NetBump was straightfor-
ward, and relied on much of the same code as RED.
Here, instead of computing a smoothed queue average
of the downstream physical queue occupancy, we mark
based on the instantaneous queue size. Next, we set
both LowThresh and HighThresh to the supplied K
(chosen to be 20 packets, based on the authors’ guide-
lines [2]). We experimented with other values of K,
and found that changing this value had little noticeable
effect on aggregate throughput or rate convergence.

4.3 Quantized Congestion Notification

We also implemented the IEEE 802.1Qau-QCN L2
Quantized Congestion Control (QCN) algorithm [1].
QCN-enabled switches monitor their output queue
occupancies and upon sensing congestion (using a com-
bination of queue buildup rate and queue occupancy),
they send feedback packets to upstream Reaction

Points. The Reaction Points are then responsible for
adjusting the sending rate according to a prescribed
formula. For every QCN-enabled link, there are two
basic algorithms:

Congestion Point (CP): For every output queue,
the switch calculates a feedback measure (Fb) whenever
a new frame is queued. This measure captures both
the rate at which the queue is building up (Qδ), as
well as the difference (Qoff) between the current queue
occupancy and a desired equilibrium threshold (Qeq,
assumed to be 20% of the physical buffer). If Q de-
notes the current queue occupancy, Qold is the previous
iteration, and w is the weight controlling rate build-up,
then:

Qoff = Q − Qeq Qδ = Q − Qold

Fb = −(Qoff + wQδ)

Based on Fb, the switch probabilistically generates a
congestion notification frame proportional to the sever-
ity of the congestion (the probability profile is similar
to RED [12], i.e. it starts from 1% and plateaus at
10% when |Fb| ≥ Fbmax). This QCN frame is destined
to the upstream reaction point from which the just-
added frame was received. If Fb ≥ 0, then there is no
congestion and no notification is generated.

Reaction Point (RP): Since the network generates
signals for rate decreases, QCN senders must probe
for available bandwidth gradually until another no-
tification is received. The reaction point algorithm
has two phases: Fast-Recovery (FR) and Additive-
Increase (AI), similar, but independent from, BIC-
TCP’s dynamic probing.

The RP algorithm keeps track of the sending Target
Rate (TR) and Current Rate (CR). When a congestion
control frame is received, the RP algorithm immediately
enters the Fast Recovery phase; it sets the target rate
to the current rate, and reduces the current rate by an
amount proportional to the congestion feedback (by at
most 1/2). Barring further congestion notifications, it
tries to recover the lost bandwidth by setting the cur-
rent rate to the average of the current and target rates,
once every cycle (where a cycle is defined in the base
byte-counter model as 100 frames). The RP exits the
Fast Recovery phase after five cycles, and enters the Ad-
ditive Increase phase, where the RP continually probes
for more bandwidth by adding a constant increase to
its target rate (1.5Mbps in our implementation), and
again setting the current sending rate to the average of
the CR and TR.

5. IMPLEMENTATION

NetBump can be implemented using a wide variety of
underlying technologies, either in hardware or in soft-
ware. We evaluated three such choices: 1) the stock
Linux-based forwarding path, 2) the RouteBricks soft-
ware router, and 3) a user-level application relying on
kernel-bypass network APIs to read and write packets
directly to the network. We call this last implementa-
tion UNetBump. We show in Fig. 7 the latency distribu-
tions of these systems when forwarding 1500B packets
at 10Gbps (except Linux with 9000B). The baseline for
comparison being a simple loopback.

All of our implementations are deployed on HP
DL380G6 servers with two Intel E5520 four-core CPUs,
each operating at 2.26GHz with 8MB of cache. These
servers have 24 GB of DRAM separated into two 12GB
banks, operating at a speed of 1066MHz. For the
Linux and UNetBump implementations, we use an 8-
lane Myricom 10G-PCIE2-8B2-2S+E dual-port 10Gbps
NIC which has two SFP+ interfaces, plugged into a
PCI-Express Gen 2 bus. For RouteBricks, we used an
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Figure 7: Forwarding latency of baseline,
UNetBump, Linux, RouteBricks (batching fac-
tor of 16, and a Click burst factor of 16), both
with and without an outlier queue.

Intel E10G42AFDA dual-port 10Gbps NIC (using an
82598EB controller) with two SFP+ interfaces.

5.1 Linux

The Linux kernel natively supports a complete IP
forwarding path, including a configurable set of queuing
disciplines that are managed through the“traffic control
(tc)”extensions [26]. Linux tc supports flow and packet
shaping, scheduling, policing, and dropping. While tc
supports a variety of queuing disciplines, it does not
support managing the queues of remote switches. This
support would have to be added to the kernel. In our
evaluation we used Linux kernel version 2.6.32. We
found that the latency overheads of the Linux forward-
ing path were very high, with a mean latency above
500µs, and a 99th percentile above 1500µs. Further-
more, our evaluation found that Linux was not able
to forward non-Jumbo frames at speeds approaching
10Gbps (and certainly not with minimum-sized pack-
ets). Based on these microbenchmarks, we decided not
to further consider Linux as an implementation alter-
native.

5.2 RouteBricks

RouteBricks [8] is a high-throughput software router
implementation built using Click’s core, extensive ele-
ment library, and specification language. It increases
the scalability of Click in two ways–by improving the
forwarding rate within a single server, and by federat-
ing a set of servers to support throughputs beyond the
capabilities of a single server. To improve the scalabil-
ity within a single server, RouteBricks relies on a re-
architected NIC driver that supports multiple queues
per physical interface. This enables multiple cores to
read and write packets from the NIC without imposing
lock contention, which greatly improves performance [7,

9, 31, 53]. Currently, RouteBricks works only with the
ixgbe device driver, which delivers packets out of the
driver in fixed-size batches of 16 packets each. We
built a single-node RouteBricks server using the same
HP server architecture described above, but with the
Intel E10G42AFDA NIC (the only available NIC that
RouteBricks driver patch still supported). This server
used the Intel ixgbe driver (version 1.3.56.5), with a
batching factor of 16.

The use of this batching driver improves throughput
by amortizing the overhead of transferring those packets
over an entire batch, rather than on a packet-by-packet
basis. This enables RouteBricks to support very high
line rates, however the use of batching increases latency
on an individual packet basis.2 We also tried a batching
factor of 1 and found that the throughput dropped be-
low 10Gbps. Indeed RouteBricks was designed for high
throughput, not low-latency. There is nothing in the
Click or RouteBricks model that precludes low-latency
forwarding, however for this work we chose not to use
RouteBricks.

5.3 UNetBump

In user-level networking, instead of having the ker-
nel deliver and demultiplex packets, the NIC instead
delivers those packets directly to the application. This
is typically coupled with kernel-bypass support, which
enables the NIC to directly copy packets into a memory
region mapped to the application. User-level network-
ing has been further developed to better support vir-
tualization by enabling individual flows to bypass the
hypervisor and terminate directly in a guest VM [27].

User-level networking is a well-studied approach that
has been implemented in a number of commercially-
available products. Myricom offers Ethernet NICs with
user-level networking APIs that we use in our eval-
uation. Intel supports user-level, kernel-bypass net-
working via the PF RING/DNA driver [41]. SolarFlare
offers a set of “Solarstorm” NICs with this functional-
ity [48], as does SMC [47]. There have been at least
two efforts to create an open and cross-vendor API to
user-level, kernel-bypass network APIs [39, 43]. In this
paper, we re-evaluate the use of user-level networking
to support low-latency applications, especially those re-
quiring low latency variation. Note that it is possible
to layer the RouteBricks/Click runtime on top of the
user-level, kernel-bypass APIs we use in UNetBump.

6. EVALUATION

Our evaluation seeks to answer the following ques-
tions: 1) How expressive is NetBump? 2) How easy is
it to deploy applications? 3) How effective is vAQM es-

2Despite extensive debugging with the help of the Route-
Bricks authors, we could not lower this latency further.
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Figure 8: Two-rack 802.1Qau-QCN and DCTCP

Testbed

timation in practice? 4) What are the latency overheads
and throughput limitations of NetBump?

To answer these, we built and deployed a set of
NetBump prototypes in our experimental testbed. We
started by evaluating the baseline latency and latency
variation of the range of implementation choices. Based
on these measurements, we proceeded with construction
of UNetBump, a fully-functional prototype based on
user-level networking APIs. We then evaluate a range
of AQM functionalities with UNetBump.

6.1 Testbed Environment

Our experimental testbed consists of a set dual-
processor Nehalem server described above, using either
Myricom NICs, or in the case of RouteBricks, the Intel
NIC. The Myricom NICs use the Sniffer10G driver
version 1.1.0b3. We use copper direct-attach SFP+
connectors to interconnect the 10Gbps endhosts to our
NetBumps. Experiments with 1Gbps endhosts rely on
a pair of SMC 8748L2 switches that each have 1.5MB
of shared buffering across all ports. Each SMC switch
has a 10Gbps uplink that we connect to the appropriate
NetBump.

We evaluate NetBump in three different contexts.
The first is in microbenchmark, to examine its through-
put and latency characteristics. Here we deploy Net-
Bump as a loopback (simply connecting the two ports to
the same host) to eliminate the effects of clock skew and
synchronization. The second simply puts a NetBump
inline between two machines, and tests NetBump’s op-
eration at full 10Gbps. Separating the source and des-
tination to different machines enables throughput mea-
surement with real traffic.

The third testbed, Fig. 8, evaluates NetBump in a
realistic data center environment in which it might be
deployed right above the top-of-rack switch. Here, we
have two twelve-node racks of endhosts, each connected
to a 1Gbps switch. A 10Gbps uplink connects the two
1Gbps switches and the NetBump is deployed inline
with those uplinks. In this case, the NetBump actually
has four 10Gbps interfaces–two to the uplinks of each
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Figure 9: Latency percentiles imposed by

UNetBump vs. offered load. Baseline is the

loopback measurement overhead.

of the two SMC 1Gbps switches, and two that connect
to a second NetBump. We use this testbed to evaluate
802.1Qau-QCN, with one NetBump acting as the Con-
gestion Point (CP) and the other as the Reaction Point
(RP).

6.2 Microbenchmarks

6.2.1 NetBump Latency

A key metric for evaluation is the latency overhead.
To measure this, we use a loopback testbed and had a
packet generator on the client host send packets onto
the wire, through the NetBump, and back to itself. To
calibrate, we also replace the NetBump with a simple
loopback wire, which gives us the baseline latency over-
head of the measurement host itself. We subtract this
latency from the observed latency with the NetBump in
place, giving us the latency of just the NetBump. We
generated a constant stream of 1500-byte packets sent
at configurable rates (Fig. 9).

For UNetBump, the latency is quite low for the ma-
jority of forwarded packets. There is a jump in latency
at the tail due to NIC packet batching when they arrive
above a certain rate. There is no way to disable this
batching in software, even though we were only using
a single CPU core which could have serviced a higher
packet rate without requiring batching. The forwarding
performance of UNetBump was sufficient to keep up
with line rate using minimum-sized packets and a single
CPU core.

6.2.2 vAQM Estimation Accuracy

To evaluate the accuracy of the vAQM estimation,
we ran iperf sessions between two hosts, connected in
series by a NetBump and another pass-through machine
(which records the timestamps of incoming frames).
Since we cannot export physical buffer occupancy of
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Figure 10: Downstream vAQM estimation accu-

racy.

commercial switches, we use the frame timestamps and
lengths from the downstream pass-through machine to
recreate the output buffer size over time, knowing the
drain-rate. Fig. 10 shows the NetBump virtual queue
size vs. the actual downstream queue. The estimate
was within two MTUs 95% of the time.

6.2.3 Distributed NetBump

We also measured the accuracy of queue estimation
when multiple NetBumps exchange updates to estimate
a common downstream queue. In the first experiment,
measure the effect of update latency on queue estimate
accuracy. We varied the timestamp interleaving of two
TCP iperf flows that share a downstream queue in
order to simulate receiving delayed updates from a
neighboring NetBump. Fig. 11 shows the CDF of the
difference between the delayed inter-bump estimation
and the in-sync version; Even when update latency was
25µs, the difference was always under 2MTU.

Next, we show the accuracy of NetBump’s queue es-
timating of a downstream queue, based solely on up-
dates from its neighbor. In our implementation, the
updates are transmitted in-band with the monitored
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Figure 11: CDF of the absolute difference

between the queue estimate with delayed up-

dates and the in-sync version. The combined

throughput is rate-limited to 5Gbps, and the

downstream buffer is 40KB.

traffic. Fig. 12 gives the CDF of the difference be-
tween the actual queue size and the distributed Net-
Bump estimate. We observe that the estimate is within
3MTUs 90% of the time. Note, however, the effect of
update batching: estimates quickly drift when updates
are delayed. Fig. 13 shows a typical relative difference
CDF when background elephant flows are present (i.e.
some flows are observed directly, and others indirectly
through updates).

6.2.4 Effect of assigning CPU affinity

One of the challenges of designing NetBump was not
only maintaining a low average latency, but also re-
ducing variance. Modern CPU architectures provide
separate cores on the same die and physically separate
memory across multiple Non-Uniform Memory Access
(NUMA) banks. This means that access time to mem-
ory banks changes based on which core issues a given
request. To reduce latency outliers, we allocated mem-
ory to each UNetBump thread from the same NUMA
domain as the CPU core it was scheduled to.

Given the significant additional latency that may be
introduced by the unmodified Linux kernel scheduler,
we compare latency of NetBump with and without
CPU-affinity and scheduler modifications. Our control
experiment uses default scheduling. To improve on
this, we exclude all but one of the CPU cores from
the default scheduler, and ensure that the UNetBump
user-space programs execute on the reserved cores.
We then examined the average, 95th, 99th, 99.9th,
and maximum latencies through NetBump compared
to the baseline (Table 2). CPU-affinity had a minor
effect on latency on average, but was most pronounced
on outlier packets. The maximum observed latency
was 17 times smaller with CPU-affinity at the 99.9th
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tual queue size and the Distributed NetBump

estimate using a 1Gbps rate-limited TCP flow

and a 40KB buffer. The estimating NetBump

does not observe the monitored traffic directly.
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Figure 13: Typical distributed NetBump rela-

tive error with background elephant flows.

percentile, showing the importance of explicit resource
isolation in low-latency deployments.

6.2.5 Multicore performance

In UNetBump, basic vAQM estimation can be done
at 10Gbps using only a single CPU core. However, to
support higher link rates, additional cores might be nec-
essary. The NIC itself will partition flows across CPU
cores using a hardware hash function. In this scenario,
a user-space thread would be responsible for handling
each ring pair, and the only time these threads must
synchronize would be when updating the vAQM state
table. To evaluate the effect of this synchronization
on the latency of NetBump in a multi-threaded imple-
mentation, we examined the effect of vAQM table lock
overhead. As a baseline, a single-threaded forwarding
pipeline (FP) has a latency of 29.16µs. Running Net-
Bump with two FPs (two ring pairs in the NIC and each
FP running on its own core) increased that latency by
17.9% to 35.5µs. Further running NetBump with four
FPs on four cores increased the latency by an additional
1.95% to 36.8µs. Thus we find that the synchronization

Latency (µs) Avg 95th 99th 99.9th Max

No Affinity 32 39 76 1,322 3,630
With Affinity 30 42 83 169 208

Table 2: UNetBump latency percentiles vs.

CPU core affinity.

Application # lines of code

NetBump core 940
RED 29

DCTCP 29
QCN 464

Table 3: Coding effort for NetBump and its

applications.

overhead is minimal to gain back a four-fold increase
in computation per packet, or alternatively, a four-fold
increase in supported line rate. A key observation is
that NetBump avoids some of the required synchroniza-
tion overheads found in software routers [7, 9, 32] with
multiple ports, since in NetBump each input port only
forwards to a single output port, preventing packets
from spanning cores or causing contention on shared
output ports.

6.3 Deployed Applications

One metric highlighting the ease of writing new ap-
plications with NetBump is shown in Table 3. Most
of our applications took only 10s of lines of code, and
QCN, which is much more complex, was written in less
than 500 lines of code. The time commitment ranged
from hours to a couple of days in the case of QCN. We
now examine each application in detail.

6.3.1 Random Early Detection

Fig. 14 shows how deploying RED lowers the down-
stream buffer occupancy for a set of flows. Here three
alternatives are compared: RED with two maxp pa-
rameter values, as well as the baseline drop-tail queu-
ing discipline. One observation was that experimenting
with different RED parameters was very easy with Net-
Bump, and thus we could rapidly explore its parameter
space by simply providing different arguments to our
NetBump application’s command line.

6.3.2 Data Center TCP

The next experiment represents a recreation of the
DCTCP convergence test presented by Alizadeh et
al. [2] performed in our two-rack testbed (see Fig. 8).
Five source nodes each open a TCP connection to one
of five destination nodes in 25 second intervals. In the
baseline TCP case (Fig. 15(a)), due to buffer pressure
and a drop-tail queuing discipline, the bandwidth
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Figure 15: The effect on fairness and convergence of DCTCP on five flows sharing a bottleneck link.
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Figure 14: Evaluation of RED with two maxp pa-
rameter settings, showing the effect of reduced
buffering given a higher marking probability.

is shared unfairly, resulting in a wide oscillation of
throughput and unfair sending rate among the flows.
Fig. 15(b) shows the throughput of DCTCP-enabled
endpoints and a DCTCP vAQM strategy in the Net-
Bump. Like in the original DCTCP work, here the fair
sharing of network bandwidth results from the lower
queue utilization afforded by senders appropriately
backing off in response to NetBump-set ECN signals.

Another contribution of reduced queue buildup is bet-
ter support for mixtures of latency-sensitive and long-
lived flows. Fig. 16 shows the CDF of response time for
10,000 RPC-type requests in the presence of two large
elephant flows, comparing stock TCP endpoints with-
out NetBump DCTCP support. This figure recreates a
key DCTCP result: signaling the long flows to reduce
their rates results in smaller queues, lower RTT, and in
the end, shorter response times.

6.3.3 Quantized Congestion Notification

Another example of how the NetBump programming
model enabled easy and rapid prototyping and evalu-
ation of new protocols was deploying 802.1Qau-QCN.
Our implementation of QCN is 464 lines of code, and it
took around 2-3 days to write and debug. Developing
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Figure 16: Baseline TCP (CUBIC) and DCTCP
response times for short RPC-type flows in the
presence of background elephant flows.

QCN within NetBump enabled us to easily tune pa-
rameters and evaluate their effect. This was especially
important given QCN’s novelty, and the lack of other
tools or simulations we could have used to study it.
Using the testbed topology of Fig. 8, we use NetBump0
as the CP, and NetBump1 as the RP. In our RP, we
chose a virtual queue size of 100KB (and Qeq at 20KB).

Through our evaluation, we found that the feedback
control loop tends to be more stable when the frequency
of feedback messages is higher and their effect smaller.
For this reason, we use Fbmax = 32, and plateau the
probability profile at 20%. We also found that due
to the burstiness of the packet arrival rate, we had
to decrease w to 1 to avoid unnecessary rate drops.
Our implementation also needed to consider the relative
flow weights in the entire queue when choosing which
flow to rate limit, rather than just using the current
packet. We use the byte counter-only model of RP in
our implementation. For the Additive Increase phase,
we use cycles of 100 packets, and an increase of 1.5Mbps
(to exaggerate and show the convergence of the virtual
port current rates), and 600 packet cycles for the Fast
Recovery phase.
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Figure 17: QCN with three 1Gbps UDP flows.

With QCN enabled, the RP virtual queue oc-

cupancy never exceeded 40%, as opposed to

persistent drops downstream without.

The throughput of three 1Gbps UDP flows sharing
the same bottleneck link is shown in Fig. 17. Without
QCN, the downstream buffer would be persistently
overwhelmed by the three UDP flows from 5-20s, but
with QCN enabled, congestion is pushed upstream
and the virtual queue occupancy never exceeded 40%,
thereby preventing drops for potential mice flows.

6.4 Evaluation Summary

In this section we have described several vAQM and
congestion control applications built with NetBump.
We found that even though some had been extensively
studied in the literature (e.g. RED), finding the par-
ticular parameters to make them work well in our net-
work required several attempts. NetBump simplified
this design–deploy–evaluate loop. Furthermore, in the
case of QCN, there was little experience available due
to its novelty and lack of deployments. The ability to
develop our implementation in software, while testing
it with real traffic, proved extremely useful.

7. RELATED WORK

This section describes previous work that we build
upon to design and implement NetBump.

Virtual Queuing and AQM: In virtual queuing
(VQ), metadata about an incoming packet stream is
maintained to simulate the behavior of those packets in
a hypothetical physical queue. We differ from previous
work in that we maintain VQs outside of the switch
itself. VQ provides a basis for a variety of active queue
management (AQM) techniques. AQM manipulates
packets in buffers in the network to enact changes in
the control loop of that traffic, typically to anticipate
and reduce packet drops and queue overflows, or reduce
buffer sizes. A large amount of work examined AQM

in a variety of settings [17, 34]. One proposal, Active
Virtual Queue [24], reduces queue sizes in traffic with
small flows, which typically pose challenges for the
TCP control loop. Random early detection (RED) [16]
signals congestion by dropping packets with a particular
probability as congestion builds, and unconditionally
dropping packets after a certain threshold. Due to the
inefficiency of dropping packets to signal congestion,
the early congestion notification ECN [25] field was
developed to decouple packet drops from congestion
indicators. Several proposals for improving on RED
have been made [4], including Data Center TCP
(DCTCP) [2].

Quantized congestion notification [1,30] was proposed
as an L2 congestion control mechanism. QCN tries to
ensure that a switch buffer stays below a configurable
maximum size. QCN provides congestion control for
non-TCP traffic, and can respond faster than the round-
trip time. Implementations of QCN have been devel-
oped on 1Gbps networks [29], as well as emulated within
FPGAs at 10Gbps networks [37,38]. Our deployment is
done at 10Gbps and distributed across multiple network
hops. Approximate-Fairness QCN (AF-QCN) [19] is
an extension that modifies notifications to input links
weighted by the ratio of their queue occupancy.

Datapath Programming in Software: The Click
Modular Router [23] is a pipeline-oriented, modular
software router consisting of a large number of building
blocks, each performing a simple packet-handling
task. Click’s library of modules can be extended by
writing code in C++ designed to work in the Linux
kernel or userspace. The RouteBricks [8] project has
focused on scaling out a Click runtime to support
forwarding rates in excess of tens of Gbps by relying on
distribution of packet processing across cores, as well
as across a small cluster of servers. ServerSwitch [29],
is another recent software router design that allows
programming commodity Ethernet switching chips
(with matching/modification of standard header fields),
but delegates general packet processing to the CPU
(e.g. for XCP). Besides avoiding the associated la-
tency of crossing the kernel/user-space boundary,
NetBump leverages kernel-bypass to allow arbitrary

packet modification to support new protocol headers
at line rate. A key distinction from these projects
is that Click, RouteBricks and ServerSwitch are all
multi-port software switches focused on packet routing,
while NetBump focuses on pass-through virtual queuing
within a pre-existing switching layer.

SideCar [46], on the other hand, is a recent proposal
to delegate a small fraction of traffic requiring special
processing from the ToR switch to a companion server.
While superficially similar, the redirection and traffic
sampling are not applicable for NetBump’s vAQM use-
case, where low-latency is a key design requirement. For
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these reasons, we consider these efforts to be orthogonal
to this work.

Several efforts have looked at ways of mapping packet
handling tasks necessary to support software routers to
multi-core, multi-NIC queue commodity servers. Egi et
al. [9], and Dobrescu et al. [7] investigate the effects of
casting forwarding paths across multiple cores, and find
that minimizing core transitions is necessary for high
performance. NetBump takes a similar approach to
the “split traffic” and “cloning” functionality described,
in which an entire forwarding path resides on a single
core and cache hierarchy. Manesh et al. [32] study the
performance of multi-queue NICs as applied to packet
forwarding workloads.

Typically the OS kernel translates streams of raw
packets to and from a higher-level interface such as a
socket. While a useful primitive, the involvement of
the kernel can become a bottleneck and an alternative
set of user-level networking techniques have been devel-
oped [5, 10, 50, 52]. Here, user-space programs are re-
sponsible for TCP sequence reassembly, retransmission,
etc. User-level networking is typically coupled with
zero-copy buffering, in which the memory that a packet
is initially stored in is shared with target applications.
Kernel-bypass drivers also enable applications to di-
rectly access packets from NIC memory, avoiding kernel
involvement on the datapath. Commercially-available
NICs already support these mechanisms [6,35,41,47,48].

Datapath Programming in Hardware: Perhaps
the best-known and widely-used hardware forwarding
platform is the NetFPGA [28, 36], a powerful develop-
ment tool for FPGA devices. However, the complexity
of FPGA programming remains a challenge. Two re-
cent projects sought to address this: Switchblade [3]
provides modular building blocks that can support a
wide variety of datapaths, and Chimpp [44] converts
datapaths specified in the Click language into Verilog
code suitable for an FPGA.

In addition, network processors (NPs) [45] have been
used to prototype and deploy new network function-
ality. They have the disadvantage of a difficult-to-use
programming model and limited production runs. Their
primary advantage is their multiple functional units,
providing significant parallelism to support faster data
rates. Commodity CPUs have since greatly increased
their number of cores, and can also provide significant
per-packet processing at high line rates.

8. CONCLUSIONS

In this work, we presented NetBump, a platform for
developing, experimenting with, and deploying alter-
native packet buffering and queuing disciplines with
minimal intrusiveness and at low latency. NetBump
leaves existing switches and endhosts unmodified. It
acts as a “bump on the wire”, examining, optionally

modifying, and forwarding packets at line rate in tens
of microseconds to implement a variety of virtual active
queuing disciplines and congestion control protocols
implemented in user-space. We built and deployed
several applications with NetBump, including DCTCP
and 802.1Qau-QCN. These applications were quickly
developed in hours or days, and required only tens or
hundreds of lines of code in total.

A major barrier to developing and deploying new net-
work functionality is the difficulty of programming the
network datapath. In this work we evaluate NetBump
as deployed on a variety of software-programmable sys-
tems, including Linux and Click/RouteBricks, and a
user-level, kernel-bypass networking networking API.
We found this latter implementation choice, despite be-
ing the oldest, provided the lowest-latency performance,
supporting line-rate forwarding of minimum-sized pack-
ets at 9.5Gbps across each of these applications. The
adoption of multi-core processors, along with kernel-
bypass commodity NICs, provides a feasible platform
to deploy data modifications written in user-space at
line rate. Our experience has shown that NetBump
is a useful and practical platform for prototyping and
deploying new network functionality in real data center
environments.
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