
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Mathematical reasoning with higher-order anti-unifcation

Permalink
https://escholarship.org/uc/item/4w0023k9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 32(32)

ISSN
1069-7977

Authors
Guhe, Markus
Pease, Alison
Smail, Alan
et al.

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4w0023k9
https://escholarship.org/uc/item/4w0023k9#author
https://escholarship.org
http://www.cdlib.org/


Mathematical reasoning with higher-order anti-unifcation

Markus Guhe, Alison Pease, Alan Smaill
(m.guheja.peaseja.smaill@ed.ac.uk)

University of Edinburgh, School of Informatics, Informatics Forum, 10 Crichton Street, Edinburgh EH8 9AB, Scotland

Martin Schmidt, Helmar Gust, Kai-Uwe Kühnberger, Ulf Krumnack
(martischjhgustjkkuehnbejkrumnack@uni-osnabrueck.de)

University of Osnabrück, Institute of Cognitive Science, Albrechtstr. 28, 49076 Osnabrück, Germany

Abstract

We show how heuristic-driven theory projection (HDTP, a
method based on higher-order anti-unification) can be used to
model analogical reasoning in mathematics. More precisely,
HDTP provides the framework for a model of the inductive
analogy-making process involved in establishing the fundamen-
tal concepts of arithmetic. This process is a crucial component
for being able to generalise from the concrete experiences that
humans have due to their embodied and embedded nature. Such
generalisations are a cornerstone of the ability to create an ab-
stract domain like arithmetic. In addition to generalisations,
HDTP can also transfer concepts from one domain into an-
other, which is, for example, needed to introduce the concept
Z E R O into arithmetic. The approach presented here is closely
related to the theories of Information Flow and Institutions.
The latter in particular provides a compelling way to integrate
concept blending into the HDTP approach.

Keywords: mathematical cognition; mathematical reasoning;
analogy; anti-unification; concept blending

Mathematical reasoning as a cognitive process

Although mathematics is usually presented in terms of axioms,

concise proofs, theorems and so on, the actual cognitive pro-

cess of mathematical reasoning is very different. For example,

when a mathematician changes a definition this affects the

proofs that use it, but such changes are not discussed in mathe-

matical papers. Additionally, mathematics, at least partly, does

not consist of discovering eternal, Platonic ideals but in cre-

ating mathematical concepts. For example, Lakatos’s (1976)

account of the history of Euler’s conjecture illuminates how

the concept P O LY H E D R O N can differ and how its definition

depends on the current circumstances and needs of the mathe-

matician. Put differently, if the Platonic ideal P O LY H E D R O N

does exist, it is not clear how it can be identified by mathemat-

ical means – what cognitive processes mathematicians can use

to find the correct definition. Thus, mathematical concepts are

not necessarily the same as the ideals.

Lakoff and Núñez (2000) describe how our embodied, situ-

ated experience is the basis on which abstract mathematical

concepts are developed by a process of metaphorical abstrac-

tion and transfer. In chapter 3, they describe how basic arith-

metic is created from four everyday experiences, which are

the source domains of the metaphors. In this way, arithmetic

is grounded in situated cognition. To motivate that these four

domains in particular are source domains, Lakoff and Núñez

analyse linguistic expressions used in the target domain, arith-

metic, which they trace back to these four domains. For exam-

ple, we use the terms add and take away in arithmetic. Lakoff

and Núñez argue that these terms were originally used for

talking about collections of objects, such as physically placing

an object into a container, e.g. adding an onion to the soup, or

physically removing a substance or an object from a container,

e.g. take a book out of the box.

Analogical reasoning is a central component of the pro-

cess transforming knowledge of this kind into mathematical

concepts. For present purposes we assume that metaphor and

analogy are essentially the same cognitive process (Gentner,

Bowdle, Wolff, & Boronat, 2001), and we have demonstrated

how structure mapping (Gentner, 1983; Gentner & Markman,

1997) – a basic method to compute analogical relations – can

account for the overall cognitive process (Guhe, Pease, &

Smaill, 2009).

In this paper, we describe a formal cognitive model of this

process. This has a twofold motivation: firstly, we want to spec-

ify the cognitive processes that mathematicians use, to better

understand how mathematical discovery works; secondly, we

want to use the model to improve automated theorem provers

by incorporating cognitive mechanisms. In Guhe, Smaill, and

Pease (2009a, 2009b) we presented formal representations of

the four grounding metaphors (the 4Gs) and suggested how

Information Flow theory (Barwise & Seligman, 1997) may be

used to model the analogies involved. The 4Gs are: (1) arith-

metic is object collection, (2) arithmetic is object construction,

(3) measuring stick and (4) arithmetic is motion along a path.

Here, we present a proof-of-concept of how performing

anti-unification (Plotkin, 1970) on such representations can

account for aspects of the analogical reasoning involved in

the 4Gs. This inductive kind of reasoning provides us with a

procedural version of the otherwise static Information Flow

models and enables us to computationally determine the re-

lationships between the domains (classifications in the case

of Information Flow). More precisely, we will use Heuristic-

Driven Theory Projection (HDTP; Schwering, Krumnack,

Kühnberger, & Gust, 2009), a general framework for making

analogies. HDTP provides us with the means to generalise

over two of Lakoff and Núñez’s domains to establish a basis

for arithmetic as well as the means to generalise over one of

the domains as source domain and arithmetic as the target

domain to add concepts to arithmetic that are only present in

one of the grounding domains. We will also outline how this

conception of mathematical reasoning is linked to Goguen’s

(2006) notion of concept blending (which is based on notions

by Gärdenfors, 2000 and Fauconnier & Turner, 2002), a fur-

ther cognitive process for creating mathematical concepts.

1992



Metaphors for arithmetic

Arithmetic is object collection

The arithmetic is object collection metaphor (Table 1) is based

on the notion that the repeated manipulation of (small, count-

able, physical) collections of objects lets us notice certain

regularities. For example, we can determine which one of two

collections is bigger by aligning the objects in the two col-

lections one-to-one, and the collection that has at least one

unpaired object left over is the bigger collection. (Smaller

and equal are, of course, determined correspondingly.) This

corresponds to the (abstract) arithmetic notion G R E AT E R.

By comparing collections of objects in this way we can

also group such collections into groups of collections of equal

size, i.e. where after the aligning procedure no object is left

unpaired. Each of these groups corresponds to a number in

arithmetic.

There are two things to note about this basic metaphor.

Firstly, it does not produce a concept of Z E R O , because the

empty collection is a collection that does not exist physically.

(Even calling one object a collection with one object is an

abstraction of the term collection.) Lakoff and Núñez (2000,

p. 64) propose that an entity-creating metaphor is required to

create a concept that is not part of the basic metaphor (like

Z E R O). This corresponds well with the fact that, historically,

Z E R O was a rather late invention. Secondly, the subtraction

operation requires that a smaller collection be taken from a

bigger one, because physically, negative objects do not exist.1

Table 1: Arithmetic is object collection metaphor (Lakoff &

Núñez, 2000, p. 55)

object collection arithmetic

collections of objects of the same size numbers

size of collection number

bigger greater

smaller less

smallest collection the unit (one)

putting collections together addition

taking a smaller collection from a

larger collection

subtraction

Arithmetic is object construction

The arithmetic is object construction metaphor (Table 2) runs

along the same lines, except that it is not based on collections

of objects, but on objects that are constructed from smaller

objects. In this way, fractions are added to arithmetic, although

they are not part of the basic metaphor. Consider, for example,

an object that is constructed out of seven smaller objects. If

now a smaller object that consists of three of the seven overall

objects is removed from the original object, the two resulting

objects have a size of 3
7

and 4
7

of the original.

1One is reminded of the old joke: If on one floor 5 people leave
an elevator containing 3 people, 2 people have to enter the elevator
on the next floor in order for it to be empty.

Table 2: Arithmetic is object construction metaphor (Lakoff &

Núñez, 2000, pp. 65–66)

object construction arithmetic

objects numbers

smallest whole object the unit (one)

size of object size of number

bigger greater

smaller less

constructed object result of arith.

operation

whole object a whole number

putting objects together to form

larger objects

addition

taking smaller objects from larger

objects to form other objects

subtraction

Arithmetic is motion along a path

The motion along a path metaphor (Table 3) adds concepts

to arithmetic that we experience by moving along straight

paths. Numbers are point locations on paths. Addition and

subtraction correspond to a movements from point one point

on the path to another point on the path. An important new

concept that is added to arithmetic by this metaphor is Z E R O,

which is based on the concept of a path’s origin and which

provides a direction for the movements along paths, namely

towards the origin or away from it.

Table 3: Arithmetic is motion along a path metaphor (Lakoff

& Núñez, 2000, p. 72)

motion along a path arithmetic

acts of moving along the path arith. operations

a point location on the path result of an oper-

ation; number

origin; beginning of the path zero

unit location, a point location distinct

from the origin

one

further from the origin than greater

closer to the origin than less

moving away from the origin a

distance

addition

moving toward the origin a distance subtraction

Heuristic-Driven Theory Projection

Overview

This section provides a short overview of the basic ideas of

heuristic-driven theory projection (HDTP), a formal frame-

work to model analogical mapping and reasoning. A more

detailed description can be found in Schwering et al. (2009).

HDTP establishes analogies between two domains, the

source and the target, by detecting common structures. In the

mapping phase, source and target are compared for structural

commonalities and a generalised description is created, which

1993



subsumes the matching parts of both domains. In the transfer

phase, unmatched knowledge in one domain can be mapped

to the other to establish new hypotheses.

HDTP is a formal framework that computes analogical

relations and inferences for domains represented in first-order

logic. Both, source and target domain, are given by axiomati-

sations, i.e. finite sets of first-order formulae. The basic idea

is to associate pairs of formulae from the domains in a sys-

tematic way. HDTP uses anti-unification (Plotkin, 1970) to

identify common patterns in formulae. In anti-unification, two

formulae are compared and the least general generalisation

that subsumes both formulae is identified.

Figure 1 provides some examples of anti-unification of

terms. Terms are generalised to an anti-instance where differ-

ent constants or function symbols are replaced by a variable.

In (i), first-order anti-unification is sufficient. However, the

terms in (ii) differ in the function symbols, i.e. first-order

anti-unification fails to detect structural commonalities. Here,

higher-order anti-unification generalises function symbols to a

variable and retains the structural commonality. It is even pos-

sible to generalise terms in which common parts are embedded

structurally in a different way, as shown in (iii).2 Substitutions

accompanying the generalised terms are created, which can be

used to reconstruct the original terms.

f (X)

X!a

		��
��
��

X!b

��
**
**
**

f (a) f (b)

F(a)

F! f



��
��
�� F!g

��
**
**
**

f (a) g(a)

F(a;b)

F! f

��







 F(x;y)!

h(x;g(y))

��6
66

66
6

f (a;b) h(a;g(b))

(i) (ii) (iii)

Figure 1: Anti-unification of terms

HDTP extends this classical anti-unification of terms to

formulae and logical theories by iteratively picking pairs of

formulae to be generalised from the domains. This process

is driven by heuristics. Coherent mappings are preferred, i.e.

mappings in which substitutions can be reused. The gener-

alised theory together with its substitutions specifies the ana-

logical relation between source and target. Additional informa-

tion about the source domain, i.e. formulae with no correspon-

dence in the target domain, can be transferred by replacing

symbols using the established substitutions.

Modelling the arithmetical metaphors

HDTP provides two different ways in which Lakoff and

Núñez’s (2000) grounded domains (Object Collection, Object

Construction etc.) can be related to the abstract domain of Arith-

metic. Following Lakoff and Núñez, the grounded domains

constitute the source, while Arithmetic is the target domain.

To establish an analogical relation between Object Collection

and Arithmetic, HDTP can construct a generalisation of these

2HDTP uses a restricted form of higher-order substitutions, that
allows to expand terms by introducing arguments and nested struc-
tures as described in Krumnack, Schwering, Gust, and Kühnberger
(2007).

domains:

Generalisation

##G
GG

GG
GG

GG

xxrrr
rrr

rrr
r

Object Collection oo
analogical

relation
// Arithmetic

In this model, both domains are already given. The analogy

explains abstract concepts like numbers by linking them to

familiar entities from the grounded domains. Thus, the gener-

alisation provides a description of the commonalities of the

grounded and the abstract domains.

However, from the cognitive perspective, Arithmetic does

not initially exist – it has to be created by an act of abstraction

as well. This idea can be modelled by analogically relating

two grounded domains, e.g. Object Collection and Object Con-

struction. Arithmetic then emerges as a generalisation of these

domains.

Generalisation
(Arithmetic)

%%J
JJ

JJ
JJ

JJ

zzvv
vv
vv
vv
v

Object Collection Object Construction

In our view, a combination of both approaches is needed to

model the cognitive bootstrapping process. By generalising

over two grounded domains, an abstract domain is estab-

lished, which serves as a ‘proto-domain’ of Arithmetic, i.e.

a domain that already contains some arithmetical concepts.

This is then refined subsequently, by relating it analogically

to other grounded domains, removing peculiarities of the two

original domains and/or adding new concepts by analogical

transfer.

Generalisation
(Arithmetic-2)

��;
;;

;;
;;

;;
;;

;;
;;

;

Generalisation
(Arithmetic-1)

""D
DD

DD
D

����
��
��

ii
transfer

))

||

xxxxxx

Object
Collection

Object
Construction

Motion
Along a Path

It should be noted that in pursuing this approach the results

may vary depending on which grounded domains are chosen

for generalisation and on the order in which other grounded

domains are added for refinement. This is due to the heuristics

that HDTP applies when building up the generalisation. The

more similar the grounded domains are, the richer the general-

isation will be, while dissimilar domains give coarser results.

Nevertheless, we expect that this effect can be compensated

by further mapping the initial generalisation to other domains.

A detailed examination of this will be a focus of our future

work.

Formalisation of domains

We demonstrate the feasibility of the outlined approach by

applying it to simple formalisations of Lakoff and Núñez’s

1994



µ1 : P−→ putTogether

µ2 : M −→ takingAway

µ3 : S−→ smallestCollection

λ1 : P−→ combine

λ2 : M −→ split

λ3 : S−→ smallestWholeOb ject

Abstract

to be filled . . .
Keywords: Mathematical Cognition; Analogies; Anti-
Unification

Formalization of the Arithmetic Metaphors
Object Collection

Object Construction

Motion Along A Path

Abstract

to be filled . . .
Keywords: Mathematical Cognition; Analogies; Anti-
Unification

Formalization of the Arithmetic Metaphors
Object Collection

Object Construction

Motion Along A Path

Abstract

to be filled . . .
Keywords: Mathematical Cognition; Analogies; Anti-
Unification

Formalization of the Arithmetic Metaphors
Object Collection

Object Construction

Motion Along A Path

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

align(C1,C2)∧putTogether(C2,C3,C4)
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

align(O1,O2)∧ combine(O2,O3,O4)
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path)))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : align(V1,V2)∧P(V2,V3,V4)→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : A(V1,V2)∧P(V2,V3,V4)→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (not(Q(V2))→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ f alse

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

align(C1,C2)∧putTogether(C2,C3,C4)
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

align(O1,O2)∧ combine(O2,O3,O4)
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path)))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : align(V1,V2)∧P(V2,V3,V4)→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : A(V1,V2)∧P(V2,V3,V4)→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (not(Q(V2))→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ f alse

µ1 : P−→ putTogether

µ2 : M−→ takeAway

µ3 : S−→ smallestCollection

λ1 : P−→ combine

λ2 : M−→ split

λ3 : S−→ smallestWholeObject

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 :

(align(V1,V2)∧P(V2,V3,V4))
→ bigger(V4,V1)

ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : (align(V1,V2)∧P(V2,V3,V4))→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : (align(V1,V2)∧P(V2,V3,V4))→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2,Path :

furtherFromOrigin(P1,P2,Path)
→ closerToOrigin(P2,P1,Path)

γ2 : ∀P1,P2,P3,Path :

moveAwayFrom(P1,P2,P3,Path)
→moveTowardsOrigin(P1,P2,P3,Path)

γ3 : ∀P1,P2,P3,P4,Path :

moveAwayFromOrigin(P2,P3,P4,Path)
→ furtherFromOrigin(P4,P1,Path)

γ4 : ∀P1,P2,Path : closestToOrigin(P1)
→ (¬origin(P2,Path)→

¬furtherFromOrigin(P1,P2,Path))
γ5 : ∀P1,Origin,Path :

moveTowardsOrigin(P1,P1,Origin,Path)
→ origin(Origin,Path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : (align(V1,V2)∧P(V2,V3,V4))→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2,Path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2,Path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3,Path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3,Path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1,Path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Abstract

to be filled . . .
Keywords: Mathematical Cognition; Analogies; Anti-
Unification

Formalization of the Arithmetic Metaphors
Object Collection

Object Construction

Motion Along A Path

aaaa

Generalisation

(Arithmetic-2)

aaaa
Generalisation

(Arithmetic-1)

Abstract

to be filled . . .
Keywords: Mathematical Cognition; Analogies; Anti-
Unification

Formalization of the Arithmetic Metaphors
Object Collection

Object Construction

Motion Along A Path

aaaa

Generalisation

(Arithmetic-2)

aaaa
Generalisation

(Arithmetic-1)

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2 :

furtherFromOrigin(P1,P2, path)
→ closerToOrigin(P2,P1, path)

γ2 : ∀P1,P2,P3 :

moveAwayFrom(P1,P2,P3, path)
→moveTowardsOrigin(P3,P2,P1, path)

γ3 : ∀P1,P2,P3 :

moveAwayFromOrigin(P1,P2,P3, path)
→ furtherFromOrigin(P3,P1, path)

γ4 : ∀P1,P2 : closestToOrigin(P1)
→ (¬origin(P2, path)→

¬furtherFromOrigin(P1,P2, path))
γ5 : ∀P1,Origin :

moveTowardsOrigin(P1,P1,Origin, path)
→ origin(Origin, path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : (align(V1,V2)∧P(V2,V3,V4))→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2, path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2, path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3, path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3, path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1, path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Object Collection Object Construction Motion Along A Path

α1 : ∀C1,C2 : bigger(C1,C2)
→ smaller(C2,C1)

α2 : ∀C1,C2,C3 : putTogether(C1,C2,C3)
→ takeAway(C3,C2,C1)

α3 : ∀C1,C2,C3,C4 :

(align(C1,C2)∧putTogether(C2,C3,C4))
→ bigger(C4,C1)

α4 : ∀C1,C2 : smallestCollection(C1)
→ ¬bigger(C1,C2)

β1 : ∀O1,O2 : bigger(O1,O2)
→ smaller(O2,O1)

β2 : ∀O1,O2,O3 : combine(O1,O2,O3)
→ split(O3,O2,O1)

β3 : ∀O1,O2,O3,O4 :

(align(O1,O2)∧ combine(O2,O3,O4))
→ bigger(O4,O1)

β4 : ∀O1,O2 : smallestWholeObject(O1)
→ ¬bigger(O1,O2)

γ1 : ∀P1,P2 :

furtherFromOrigin(P1,P2, path)
→ closerToOrigin(P2,P1, path)

γ2 : ∀P1,P2,P3 :

moveAwayFrom(P1,P2,P3, path)
→moveTowardsOrigin(P3,P2,P1, path)

γ3 : ∀P1,P2,P3 :

moveAwayFromOrigin(P1,P2,P3, path)
→ furtherFromOrigin(P3,P1, path)

γ4 : ∀P1,P2 : closestToOrigin(P1)
→ (¬origin(P2, path)→

¬furtherFromOrigin(P1,P2, path))
γ5 : ∀P1,Origin :

moveTowardsOrigin(P1,P1,Origin, path)
→ origin(Origin, path)

ρ1 : ∀V1,V2 : bigger(V1,V2)→ smaller(V2,V1)
ρ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
ρ3 : ∀V1,V2,V3,V4 : (align(V1,V2)∧P(V2,V3,V4))→ bigger(V4,V1)
ρ4 : ∀V1,V2 : S(V1)→ ¬bigger(V1,V2)

σ1 : ∀V1,V2 : G(V1,V2)→ L(V2,V1)
σ2 : ∀V1,V2,V3 : P(V1,V2,V3)→M(V3,V2,V1)
σ3 : ∀V1,V2,V3,V4 : (A(V1,V2)∧P(V2,V3,V4))→ G(V4,V1)
σ4 : ∀V1,V2 : S(V1)→ (¬Q(V2)→ ¬G(V1,V2))

τ1 : G(V1,V2)−→
furtherFromOrigin(V1,V2, path)

τ2 : L(V1,V2)−→
closerToOrigin(V1,V2, path)

τ3 : P(V1,V2,V3)−→
moveAwayFromOrigin(V1,V2,V3, path)

τ4 : M(V1,V2,V3)−→
moveTowardsOrigin(V1,V2,V3, path)

τ5 : A−→ true

τ6 : S−→ closestToOrigin

τ7 : Q(V1)−→ origin(V1, path)

κ1 : G−→ bigger

κ2 : L−→ smaller

κ3 : A−→ align

κ4 : Q−→ false

Figure 2: Developing Arithmetic from Object Collection, Object Construction and Motion Along a Path

grounding metaphors. The original descriptions of the domains

are only given informally, but we tried to stay as closely to

original as possible. One possible axiomatisation in HDTP

of the Object Collection domain is given in Table 4. Such a for-

malisation specifies the vocabulary that is used in the form of

sorts, entities and predicates and then provides facts and laws

to describe the structure of the domain. For example, axiom

α3 states that if two collections C1 and C2 can be aligned, i.e.

all their objects can be paired up, and C4 is created by putting

C2 and C3 together, then C4 will be bigger than C1. Note that

further formulae need to be added to get a complete axioma-

tisation, but such formulae can easily be introduced into the

system as long as some elementary consistency constraints are

satisfied. While adding more formulae to this formalisation

might strengthen the support for a specific alignment, it does

not necessarily introduce new mappings of concepts to other

domains. An example for this is α6, which states the transi-

tivity of bigger. This formula embeds bigger further in the

structure of the domain but does not introduce new concepts.

putTogether, takeAway, bigger and smaller are considered core

concepts of the Object Collection domain. In what follows, we

will restrict our axiomatisations to such simple versions in

which just the cores of the domains are represented and con-

nected to each other. Furthermore, we will omit technical

details as well as the specification of sorts and signatures for a

more concise presentation.

Generalising two domains

We tested various alternative formalisations, which all resulted

in HDTP being able to establish appropriate analogies. Here

we present axiomatisations of the grounded domains that are

compact and consistent and that import integral parts of the

domains. Furthermore, we demonstrate how the transfer of

knowledge from one domain to another one works, because

this is a hallmark of ‘interesting’ analogies.

In a first step, we generalise the domains of Object Collec-

tion and Object Construction. (We only use the basic version of

the Object Construction domain here, which largely resembles

Object Collection. This version is not sufficient to introduce the

concept of fractions.) The axiomatisation of the two domains

can be found in the two boxes in the bottom left of figure 2.

The grounded domains are restricted to the operations that in

arithmetic correspond to greater, less, addition and subtrac-

tion. The axioms αi and βi (for i 2 f1; : : : ;4g) correspond to

each other and are generalised in the obvious way by intro-

ducing individual variables and variables for operations. For

example, the predicate putTogether of the Object Collection

domain is identified with combine of Object Construction and

generalised to a variable P. The substitutions µ1 and λ1 can be

used to reconstruct the original expressions. Note that aligning

corresponding clauses in formalisations is only done for the

convenience of the reader; HDTP does not rely on such an

ordering to find the best possible analogical mapping.

1995



Table 4: Formalisation of the Object Collection domain

Sorts
coll

Entities
singleton : coll

Predicates
smallestCollection : coll
bigger : coll� coll
smaller : coll� coll
equal : coll� coll
putTogether : coll� coll� coll
takeAway : coll� coll� coll

Laws
α1 : 8C1 : coll; C2 : coll :

bigger(C1;C2)! smaller(C2;C1)
α2 : 8C1 : coll; C2 : coll; C3 : coll :

putTogether(C1;C2;C3)! takeAway(C3;C2;C1)
α3 : 8C1 : coll; C2 : coll; C3 : coll; C4 : coll :

align(C1;C2)^putTogether(C2;C3;C4)! bigger(C4;C1)
α4 : 8C1 : coll; C2 : coll :

smallestCollection(C1)! not(bigger(C1;C2))
α5 : 8C1 : coll; C2 : coll :

equal(C1;C2)! (:bigger(C1;C2)^:smaller(C1;C2))
α6 : 8C1 : coll; C2 : coll; C3 : coll :

(bigger(C1;C2)^bigger(C2;C3))! bigger(C1;C3)
: : :

Facts
α7 : smallestCollection(singleton)

: : :

Refining the generalisation

The formulae computed above by generalising Object Collec-

tion and Object Construction serve as a first formalisation of

elementary arithmetic (labelled Arithmetic-1 in figure 2). The

variables introduced by anti-unification are regarded as enti-

ties and predicates of this new domain. Because the grounded

domains chosen were very similar, and in particular because

the grounded domains neither have the concept E M P T Y C O L -

L E C T I O N nor E M P T Y C O N S T R U C T I O N, the system com-

putes only a subtheory of arithmetic that lacks a neutral el-

ement with respect to the operation P (representing A D D I -

T I O N). A second step of creating analogical mappings is

needed to transfer the concept Z E R O from a differently struc-

tured domain into our Arithmetic-1. This is achieved by the

second generalisation between the formalisation of Motion

Along a Path and Arithmetic-1 resulting in Arithmetic-2 de-

picted in figure 2.

The formalisation we chose for Motion Along a Path is dif-

ferent from the other domains in that the predicates take an

extra argument, path, to indicate the path along which the mo-

tion occurs. As a consequence, higher-order anti-unification

is applied which leads to the slightly more complex substi-

tutions τ1 to τ7 and κ1 to κ4. As before, these substitutions

can be used to reconstruct the source and target domains from

the generalisation. A further point to note is that γ4 contains

an additional condition in comparison to ρ4. This mismatch

is handled by introducing a generalised predicate Q, which

is mapped to false by κ4 and therefore can be neglected in

Arithmetic-1. However, this dummy predicate is used as a hint

for refinement. It indicates that an elaborated version of ρ4

might be used to describe Arithmetic-1, namely

ρ
0

4 : 8V1;V2 : S(V1)! (:Q(V2)!:bigger(V1;V2))

which mainly states that if V1 is the smallest number, then

either V2 is Z E R O or V1 is not bigger than V2. This new predi-

cate Q can also be used for the transfer of additional formulae,

e.g. γ5 can be introduced into Arithmetic-1 resulting in

ρ5 : 8V1;O : M(V1;V1;O)! Q(O)

basically saying V1 minus V1 equals Z E R O. Thereby, the basic

ideas on Z E R O are incorporated into Arithmetic-1 by refine-

ment and transfer from the Motion Along a Path domain.

Goguen’s notion of concept blending

Another important means to create new mathematical con-

cepts is concept blending, in particular in the form presented

by Goguen (2006). His figure 3, reproduced below, gives

an overview. Each node in this graph corresponds to a con-

ceptual space in the sense of Gärdenfors (2000), which,

roughly speaking, is a subset of the system’s knowledge.

G

��?
??

??
??

?

��

����
��
��
��

I2

��~~
~~
~~
~~

I1

��@
@@

@@
@@

@

B

The arrows preserve the infer-

ential structure from space to

space, and the diagram commutes.

Goguen does not discuss exam-

ples from arithmetic, but how from

the concepts H O U S E and B O AT

the concepts H O U S E B O AT and

B O AT H O U S E are created by con-

cept blending. The G space con-

tains generic elements, such as

P E R S O N or O B J E C T; the I spaces represent more specific

conceptual spaces, in his example I1 represents that a H O U S E

is on L A N D and that a P E R S O N L I V E S in it and I2 that

a PA S S E N G E R R I D E S in a B O AT and that the B O AT is

on WAT E R. Concept blending takes these conceptual spaces

and maps them into another space (the B space) in a way that,

for example, that the B O AT is mapped onto the P E R S O N

L I V I N G in a H O U S E, resulting in the concept of a house in

which the boat ‘lives’ – a B O AT H O U S E.

Fauconnier and Turner (2002, pp. 242–245) discuss blends

in arithmetic. Their presentation can be formulated in the form

suggested by Goguen (they are a major influence on Goguens

conception in the first place), thus giving an extension to the

work described in this paper. For example, Lakoff and Núñez’s

extended version of the motion along a path metaphor supports

an analogue of the rational numbers. Taking this as I2 and

object collection as I1, a generalisation G can be found as

above, which ignores the division operation of I2. Forming

the blend B then allows the extra operation to be incorporated

into a conceptualisation which respects the generalisation. The

blend can be seen as an updated view of I1:

Once we have the blend, and reify it, we can adopt the

view that the previous conception of number was ‘miss-

1996



ing’ several numbers that were ‘there’ but not yet ‘dis-

covered’. (Fauconnier & Turner, 2002, p. 244)

Conclusions and future work

We examined to which extent the cognitive processes underly-

ing mathematical thinking can be made formally precise and

algorithmically operationalised. For this purpose we took the

mathematical metaphors of Lakoff and Núñez (2000) and used

the analogy engine HDTP to compute generalisations from

the basic source domains of arithmetic based on higher-order

anti-unification.

For this, we used formalisations similar to the ones in our

earlier approaches using Information Flow theory and created

a first generalisation that contained the fundamental concepts

of arithmetic. We extended the first generalisation produced

by HDTP by incorporating a transfer of concepts, which

added new concepts to the ‘growing’ domain of arithmetic (in

our case the idea of a neutral element). Thus, anti-unification

cannot only serve to find abstractions of two source domains

but also to transfer concepts.

We also briefly described, how Goguen’s concept blending

is a direct extension of the HDTP approach. A paper detailing

the role of concept blending for arithmetic and a treatment

within the HDTP framework is currently submitted.

The demonstrated generalisation examples are still quite

simple. Enriching the domains to get more interesting transfer

candidates is therefore the next step. This notion of ‘interest-

ingness’ is central to a comprehensive treatment of mathemati-

cal discovery, because there is an unlimited number of possible

theorems and theories, but only a fraction of these are deemed

interesting and useful enough for mathematicians to consider.

For automated theorem provers, this is a hard problem; one

on which we expect the heuristic nature of the HDTP engine

will shed more light.

The grounded domains as we used them here are already

generalisations of concrete situations, e.g. for the object collec-

tion domain the person/system must already have abstracted

over concrete instances of the acts of putting collections to-

gether and realised that this is a general law holding in this

domain. HDTP should be suited to create these abstractions

as well. A more pressing and fundamental case seems to be,

however, to create an abstract, generalised number concept

that extends beyond the subitising range, i.e. those cardinal-

ities (ranging from one to three or four) for which humans

don’t need to count but immediately perceive the number of

objects and which seem to be innate.

Some other directions in which to extend our work are: (1)

How are the results influenced by the order of generalisation?

(2) How can the object construction domain be extended such

that fractions (rational numbers) can be introduced into the

domain of arithmetic? (This is Lakoff and Núñez’s fraction

extension of the basic metaphor.) (3) How can our approach

be extended to include Lakoff and Núñez’s linking metaphors,

which are used for creating more abstract mathematical con-

cepts.

Acknowledgments

The research reported here was supported by EPSRC grant

EP/F035594/1 for the Wheelbarrow project.

References

Barwise, J., & Seligman, J.(1997). Information flow: The logic

of distributed systems. Cambridge: Cambridge University

Press.

Fauconnier, G., & Turner, M. (2002). The way we think:

Conceptual blending and the mind’s hidden complexities.

New York: Basic Books.

Gärdenfors, P. (2000). Conceptual spaces: The geometry of

thought. Cambridge, MA: MIT Press.

Gentner, D. (1983). Structure-mapping: A theoretical frame-

work for analogy. Cognitive Science, 7(2), 155–170.

Gentner, D., Bowdle, B. F., Wolff, P., & Boronat, C. (2001).

Metaphor is like analogy. In D. Gentner, K. J. Holyoak, &

B. N. Kokinov (Eds.), The analogical mind: Perspectives

from cognitive science (p. 199-253). Cambridge, MA: MIT

Press.

Gentner, D., & Markman, A. B. (1997). Structure mapping

in analogy and similarity. American Psychologist, 52(1),

45–56.

Goguen, J. (2006). Mathematical models of cognitive space

and time. In D. Andler, Y. Ogawa, M. Okada, & S.Watanabe

(Eds.), Reasoning and Cognition: Proceedings of the Inter-

disciplinary Conference on Reasoning and Cognition (pp.

125–128). Keio University Press.

Guhe, M., Pease, A., & Smaill, A. (2009). A cognitive model

of discovering commutativity. In Proceedings of the 31st

Annual Conference of the Cognitive Science Society. Austin,

TX: Cognitive Science Society.

Guhe, M., Smaill, A., & Pease, A. (2009a). A formal cogni-

tive model of mathematical metaphors. In B. Mertsching,

M. Hund, & Z. Aziz (Eds.), KI 2009: Advances in Artificial

Intelligence (pp. 323–330). Berlin: Springer.

Guhe, M., Smaill, A., & Pease, A. (2009b). Using Informa-

tion Flow for modelling mathematical metaphors. In Pro-

ceedings of the 9th International Conference on Cognitive

Modeling.

Krumnack, U., Schwering, A., Gust, H., & Kühnberger, K.-U.

(2007). Restricted higher-order anti-unification for analogy

making. In AI 2007: Advances in Artificial Intelligence (pp.

273–282). Berlin: Springer.

Lakatos, I. (1976). Proofs and refutations: The logic of mathe-

matical discovery. Cambridge: Cambridge University Press.

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes

from: How the embodied mind brings mathematics into

being. New York: Basic Books.

Plotkin, G. D. (1970). A note on inductive generalization.

Machine Intelligence, 5, 153–163.

Schwering, A., Krumnack, U., Kühnberger, K.-U., & Gust,

H. (2009). Syntactic principles of Heuristic-Driven Theory

Projection. Journal of Cognitive Systems Research, 10(3),

251–269.

1997




