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Summary

Survival data from prevalent cases collected under a cross-sectional sampling scheme are subject 

to left-truncation. When fitting an additive hazards model to left-truncated data, the conditional 

estimating equation method (Lin & Ying, 1994), obtained by modifying the risk sets to account for 

left-truncation, can be very inefficient, as the marginal likelihood of the truncation times is not 

used in the estimation procedure. In this paper, we use a pairwise pseudolikelihood to eliminate 

nuisance parameters from the marginal likelihood and, by combining the marginal pairwise 

pseudo-score function and the conditional estimating function, propose an efficient estimator for 

the additive hazards model. The proposed estimator is shown to be consistent and asymptotically 

normally distributed with a sandwich-type covariance matrix that can be consistently estimated. 

Simulation studies show that the proposed estimator is more efficient than its competitors. A data 

analysis illustrates application of the method.

Keywords

Canadian Study of Health and Aging; Composite likelihood; Estimating equation; Martingale; 
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1. Introduction

For left-truncated and right-censored data, conventional methods of statistical inference are 

usually based on the conditional likelihood, conditioning on the truncation times. Suppose 

that we are interested in estimating the distribution of the survival time T* in a target 

population. Let A* be an independent truncation time, so that (T*, A*) is observed if and 

only if T* ≥ A*. Let (T, A) denote the observed survival and truncation times; then (T, A) has 

the same joint distribution as (T*, A*) given that T* ≥ A*. Let f and S denote the density and 

survival functions of the survival time T*, and let h denote the density function of the 

truncation time A*. Then the joint density function of (T, A) evaluated at (t, a) can be 

expressed as
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where f (t)/S(a) is the conditional density of T given A and  is 

the marginal density of A. Denote by C the potential censoring time after study enrolment; 

that is, the observation of the residual survival time T – A is subject to censoring time C. Let 

Y = min(T, A + C) be the observed survival time and let Δ = I (T ≤ A + C) be the indicator 

function of a failure event. Under an assumption of independent censoring, the full 

likelihood function of independent and identically distributed data (Yi, Ai, Δi) (i = 1, …, n) 

can be decomposed as LF = LC × LM, where

is the conditional likelihood of (Y, Δ) given the truncation time A and

is the marginal likelihood of A. In cases where the truncation time density function h is left 

unspecified, Wang (1991, § 3) showed that the conditional nonparametric likelihood LC is 

fully efficient with respect to the full nonparametric likelihood LF.

When the effects of a p × 1 vector of covariates Z* are modelled through the proportional 

hazards model (Cox, 1972)

where λ (t ∣ z) is the conditional hazard function of T* given Z* = z, the profile likelihood 

after profiling out the baseline hazard function λ0 (t) from the conditional likelihood LC is 

equivalent to the partial likelihood for the truncated data. Wang et al. (1993, Property 3.1.1) 

and Kalbfleisch & Lawless (1991) further showed that the maximum partial likelihood 

estimator is fully efficient with respect to the conditional likelihood LC. However, it is 

known that the information loss due to ignoring the information about β0 in the marginal 

likelihood LM can be substantial (Huang et al., 2012), especially when the truncation time 

has a known distribution.

In many applications, the appropriateness of the Cox model may be questionable, as the 

assumption of multiplicative covariate effects can be violated, especially when continuous 

covariates are involved. The additive hazards model (Aalen, 1980; Cox & Oakes, 1984; 

Thomas, 1986; Breslow & Day, 1987; Lin & Ying, 1994; Martinussen & Scheike, 2002a), 

which focuses on modelling the difference in the risk, has been regarded as an appealing 

alternative because researchers are often more interested in the risk difference attributed to 
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the risk factors. Specifically, the additive hazards model assumes that the conditional hazard 

function of T* given Z* = z takes the form

(1)

where λ0(t) is an unspecified baseline hazard function and β0 is a p × 1 vector of parameters. 

Define , so that Λ0 (t) is the baseline cumulative hazard function. Model 

(1) is equivalent to assuming that the conditional survival function of T* given Z* = z is

where S0 (t) = exp{− Λ0 (t)} is the baseline survival function.

Direct maximization of the full likelihood under the additive hazard model with respect to 

(λ0, β0) is computationally cumbersome because it involves the nonparametric component λ0 

in a complicated way; moreover, to the best of our knowledge, the asymptotic properties of 

the maximum likelihood estimator have not been formally studied. A natural idea would be 

to extend existing methods for right-censored data to accommodate left-truncation. For 

example, one could estimate the additive hazards model by further conditioning the 

estimating function proposed by Lin & Ying (1994) on the truncation time A. This 

estimating function is an analogue of the partial likelihood score function under the Cox 

model. It is expected that the extended conditional estimating equation approach is not 

efficient, as it is not based on maximizing the conditional likelihood LC or the full likelihood 

LF. Moreover, the information about β0 in the marginal likelihood is not used in the 

estimation procedure. In this paper, we apply the pairwise likelihood method to eliminate the 

nuisance parameter λ0 from the marginal likelihood, and we combine the conditional 

estimating function and the marginal pairwise pseudo-score function to improve efficiency 

in estimating β0. Our method provides a computationally tractable parameter estimator and, 

as demonstrated by the simulation studies, offers substantial efficiency gains over the 

conditional estimating equation approach. We believe that the proposed method provides a 

useful tool for studying left-truncated and right-censored survival data.

2. Model estimation

2.1. Conditional estimating equation method

In the absence of truncation, or equivalently when A ≡ 0, Lin & Ying (1994) obtained 

closed-form estimators for the regression parameters β0 and the cumulative baseline hazard 

function Λ0 (t) for the additive hazards model (1) via the estimating equation approach. By 

further conditioning on the truncation time A, one can modify the estimating equations to 

accommodate left-truncation. Specifically, define a counting process for the observed failure 

events, Ni (t) = Δi I (Yi ≤ t), and for the at-risk process, Ri (t) = I (Ai ≤ t ≤ Yi). Let Zi be the 

covariate of subject i. Assume that the censoring time C is noninformative in the sense that 

pr{T* ∈ [t, t + Δt) ∣ T* ≥ t, T* ≥ A*, C ≥ t, Z*} = pr{T* ∈ [t, t + Δt) ∣ T* ≥ t, T* ≥ A*, Z*}. It 

can be verified that  is a local square-integrable 

martingale when β = β0 and Λ (t) = Λ0 (t), suggesting that one may estimate β0 and Λ0 by 
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solving the two estimating equations  and , 

where t ∈ [0, τ] and τ is a prespecified time-point. Solving the first estimating equation 

 yields

(2)

Substituting Λ̂ (t, β) into the second estimating equation yields a closed-form estimating 

equation , where

(3)

with . The estimating function (3) does not depend 

on the nonparametric component Λ. In fact, solving  for β yields an estimate

for β0, where a⊗2 = aa′. Define the estimating function . It follows 

from standard counting process theorems that n1/2ϕ(β0) converges in distribution to a zero-

mean multivariate normal distribution with variance-covariance matrix B1, where B1 can be 

consistently estimated by , provided that the Zi (i = 

1, …, n) are bounded. We can show by Taylor series expansion and the central limit theorem 

that n1/2(β̂
ϕ − β0) converges weakly to a zero-mean multivariate normal distribution with 

variance-covariance matrix , which can be consistently estimated by 

 where .

Although the maximum partial likelihood estimator under the Cox model is fully efficient 

with respect to the truncation likelihood of (Y, Δ) given A (Wang et al., 1993), the efficiency 

can be improved greatly if the information about β0 in the marginal likelihood can be used in 

the estimation procedure. However, under the Cox model, it is unclear how this can be 

achieved because the marginal likelihood involves Λ0 (t) in a complicated way. On the other 

hand, for the additive hazards model, we shall show in the next section that we are able to 

incorporate the marginal likelihood in the estimation procedure.

2.2. A combined estimating equation approach

Assume that the density function h of the underlying truncation time does not depend on Z* 

and is not degenerate. Under the additive hazards model, the marginal density function of A 

given Z = z is
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where . As a result, the 

conditional density function of A given A ≤ τ and Z = z is

Because τ is usually set to be the maximum of the observed survival times, all observed 

truncation times satisfy A ≤ τ in practice. Obtaining an estimate for β0 by maximizing the 

marginal likelihood of A is a challenge because the integral in the denominator of the 

conditional likelihood does not have a closed form with λ0 and h unspecified. In the spirit of 

the pairwise pseudo-likelihood method (Kalbfleisch, 1978; Liang & Qin, 2000), we propose 

an alternative estimation procedure that does not involve the nonparametric components λ0 

and h and thus has the advantage of computational convenience.

As in Liang & Qin (2000), we apply the conditional argument of Kalbfleisch (1978) in a 

pairwise fashion to eliminate nuisance parameters in the marginal distribution of A. By 

further conditioning on having observed the values {Ai, Aj} for a given pair but without 

knowing the order, the pairwise pseudolikelihood of (Ai, Aj) conditional on Ai ≤ τ, Aj ≤ τ and 

(Zi, Zj), for i < j, is

and this equals

for Ai, Aj ≤ τ. Interestingly, the pairwise pseudolikelihood depends on the regression 

parameter β but not on the baseline hazard function λ (t) nor on the truncation time density 

function h. Define the function ρij = ρ(Ai, Zi, Aj, Zj) = (Zi − Zj)(Ai − Aj). We estimate β0 by 

maximizing the log pairwise pseudolikelihood

(4)

To derive the maximum pairwise pseudolikelihood estimator β̂
ψ for β0, one can solve the 

normalized pseudo-score equation ψ (β) = 2{n(n − 1)}−1 Σ1≤i<j≤n ψij(β) = 0 where
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(5)

The proposed method can be applied even when there is no additional follow-up after 

enrolment. In this case, the conditional distribution of Y given A is degenerate, as Y = A is 

observed; hence the conditional estimating equation method does not work, and the 

inference can be based only on the marginal likelihood of A. Moreover, the method works 

when A* has a discrete distribution.

Because − log{1 + exp(β′ ρij)} is the loglikelihood of Ai and Aj conditional on Ai ≤ τ, Aj ≤ τ, 

{Zi, Zj} and the order statistics of {Ai, Aj}, the pairwise pseudolikelihood (4) achieves its 

maximum at the true parameter value as n → ∞. By the conditional Kullback–Leibler 

information inequality (Andersen, 1970), the maximum pairwise pseudolikelihood estimator 

βψ̂ is consistent for β0. Next, it is easy to see that ψij (β) is permutation-symmetric in its 

arguments (Ai, Zi) and (Aj, Zj), and hence ψ(β) is a U-statistic of order 2. It can further be 

shown that E{ψij (β0)} = 0 and E{ψij (β0)⊗2} < ∞, provided that the covariate is bounded. 

Applying the projection method developed by Hoeffding (1948), we can show that n1/2ψ(β0) 

converges to a normal distribution with mean zero and variance-covariance matrix V1 = 

4E{ψ12(β0)′ψ13 (β0)}. The asymptotic property of β̂
ψ can be established using the delta 

method. In fact, n1/2(β̂
ψ − β0) converges to a zero-mean multivariate normal distribution 

with variance-covariance matrix , where V1 = 4E{ψ12(β0)ψ13(β0)} and 

 can be consistently 

estimated (Sen, 1960) by

and

Both the estimating function ϕ and the pseudo-score function ψ yield consistent estimates of 

β0. To combine the information about β0 in the marginal likelihood and that in the 

conditional estimating function (3), we propose to estimate β0 by solving

for β. Let β̂ be the proposed estimator satisfying ξ(β̂) = 0. Because ϕ (β) is linear in β, the 

consistency of β̂ follows directly from the consistency of β̂
ψ. With the asymptotic normality 

properties of β̂
ϕ and β̂

ψ established above, the asymptotic normality of β̂ follows from the 
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asymptotic independence (van der Vaart & Wellner, 1996, Example 1.4.6) of ϕ (β) and ψ 

(β). The large-sample properties can also be established by using the results that ξ (β) = 2{n 

(n − 1)}−1 Σ1≤i<j≤n [{ϕi (β) + ϕj (β)}/2 + ψij (β)] is a U-statistic of order 2 and that ϕi (β0) 

and ψij (β0) are orthogonal. Specifically, by using the facts that E{d Mi (t) ∣ Ai, Zi} = 0 and 

that ψij (β0) only involves (Ai, Zi) and (Aj, Zj), by double expectation we have that E{ϕ 

(β0)′ψ(β0)} = 0 and var{ξ(β0)} = var{ϕ (β0)} + var{ψ(β0)}. By the central limit theorem for 

U-statistics, n1/2ξ (β0) converges in distribution to a normal distribution with mean zero and 

variance-covariance matrix var{n1/2ϕ (β0)} + var{n1/2ψ (β0)} = B1 + V1. Then the 

asymptotic normality of β̂ follows upon applying a Taylor expansion to ξ (β). The large-

sample properties of the proposed estimator β̂ are summarized in the following theorem.

Theorem 1—Assume the following regularity conditions: (a) β0 lies in a compact set B; (b) 

Z is bounded; and (c) the matrix B2 + V2 is positive definite. Then, as n → ∞, n1/2(β̂ − β0) 

converges in distribution to a zero-mean multivariate normal distribution with variance 

matrix (B2 + V2)−1 (B1 + V1)(B2 + V2)−1.

The regression parameter β0 may not be identifiable based on the marginal likelihood when 

the underlying truncation time distribution A* depends on the covariates Z*. In contrast, β0 

can be estimated consistently by applying the conditional estimating equation method even 

if A* is correlated with Z*, as long as the conditional independence of T* and A* given Z* 

holds.

An estimator of the baseline cumulative hazard function can be obtained by replacing β in 

(2) with β̂, that is, Λ̂(t, β̂). Applying counting process theory, we can show that n1/2{Λ̂(t, β̂) − 

Λ0(t)} converges weakly to a zero-mean Gaussian process on [0, τ]. The proof of the 

asymptotic properties of Λ̂(t, β̂) follows closely that for the estimated baseline cumulative 

hazard function in Lin & Ying (1994), and thus we omit it. Finally, as suggested by a 

referee, the cumulative distribution function of A*, , can be estimated by

where Ŝ0(t) = exp{−Λ̂(t, β̂)}.

Naturally, we can consider applying the conditional argument to three or more truncation 

times by conditioning on their order statistics and expect a potential gain in efficiency. 

However, doing so increases the computational burden, while the small gain in efficiency 

would not be sufficient to justify the use of a more complicated procedure. Readers are 

referred to Diao et al. (2012) for additional discussion.

We can apply the generalized method of moments (Hansen, 1982) to further improve 

estimation efficiency. Define η(β) = {ϕ (β)′, ψ(β)′}′ and let W be a positive-definite weight 

function matrix. A consistent estimator of β0 can be obtained by minimizing β̂
W = arg minβ 

η(β)′W−1 η(β). The optimal matrix which yields an efficient estimator is W = var{η(β)}. 

Using the optimal weight function matrix and the fact that ϕ (β0) and ψ (β0) are orthogonal, 
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n1/2 (β̂
W − β0) converges in distribution to a zero-mean multivariate normal distribution with 

variance matrix 

 as n → ∞.

3. Simulations and data analysis

3.1. Simulations

We conducted two sets of Monte Carlo simulations to examine the finite-sample 

performance of our method. In the first set of simulations, the time-independent covariate Z* 

was generated from a Un(0, 1) random variable. The survival time T* was generated from 

the additive hazards models λ(t ∣ Z) = 1 + β0 Z and λ(t ∣ Z) = 0.5 t1/2 + β0 Z, with β0 = 1 in 

both scenarios. The two models correspond to constant and increasing hazards. The 

underlying truncation time A* was independently generated from a Un(0, 100) random 

variable and an exponential random variable with a mean of 10. To form a prevalent cohort 

of sample size n, realizations of (A*, T*, Z*) were generated until n subjects satisfied the 

sampling constraint A* ≤ T*. The censoring time for the residual survival time T* − A* was 

generated from a uniform distribution, Un(0, τc), where τc was selected so that the censoring 

rate was approximately 0%, 30% or 50%. In each simulation, we generated 1000 datasets, 

each with n = 200.

Four different methods were applied to estimate the regression parameter: (a) βϕ̂, the 

conditional estimating equation estimator (Lin & Ying, 1994) obtained by solving ϕ (β) = 0; 

(b) βψ̂, the marginal pairwise pseudolikelihood estimator obtained by solving ψ (β) = 0; (c) β̂, 

the proposed estimator obtained by solving ϕ (β) + ψ (β) = 0; and (d) β̂
W, the generalized 

method of moments estimator. Table 1 summarizes the empirical bias, standard error and 

relative efficiency of the four estimators. All are close to their estimands under different 

truncation time distributions. Compared with the conditional estimating equation estimator 

β̂
ϕ, the relative efficiency of the marginal pairwise pseudolikelihood estimator β̂

ψ and the 

proposed estimator β̂ increases with the censoring rate. This is not surprising, as the 

truncation time A is observed for all subjects, while the uncertainty in the conditional 

estimating equation increases with the censoring rate. The efficiency gain in the generalized 

method of moments estimator β̂
W was not as high as that of the combined estimating 

equation estimator β̂. Intuitively, this is because estimation of the optimal weight function 

involves estimation of the second moments of ϕ (β0) and ψ (β0), which requires a larger 

sample size to obtain the benefits of an efficient generalized method of moments estimator.

The second set of simulations investigates the efficiency gain for truncation time 

distributions with different skewness coefficients. Table 2 summarizes the simulation results 

for the conditional estimating equation approach, the marginal pairwise pseudolikelihood 

approach, and the proposed estimator under the additive hazards model λ (t ∣ Z) = 1 + Z, 

where Z was generated from a Un(0, 1) random variable. In this set of simulations, the 

censoring percentage was set to zero. For the continuous case, we simulated A*/2 from beta 

distributions with parameter values (1, 1), (4, 1) and (1, 4), which illustrate uniform, 

negatively skewed and positively skewed distributions. Similarly, for the discrete case, we 

simulated A* from a discrete uniform distribution taking values on {0, 1, 2}, as well as from 
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binomial distributions with size 2 and success probabilities 0.25 and 0.75; these also 

illustrate uniform, negatively skewed and positively skewed distributions. Together with 

Table 1, these simulation results suggest that the efficiency of the estimation procedures 

increases with the upper limit of the support of the underlying truncation time distribution. 

Moreover, negatively skewed truncation time distributions lead to higher efficiency than 

positively skewed ones.

3.2. The Canadian Study of Health and Aging

We illustrate the proposed estimation procedures by analysing data from the Canadian Study 

of Health and Aging, one of the largest epidemiological studies of dementia. Alzheimer’s 

disease and vascular dementia are the top two leading causes of dementia affecting the 

elderly. Alzheimer’s disease, which accounts for approximately 50–70% of all dementia 

diagnoses, destroys nerve cells and thus causes the brain to degenerate. It is a progressive 

disease, eventually leading to a loss of ability to perform daily living tasks. Vascular 

dementia, accounting for 20–30% of the cases, is caused by stroke or small-vessel disease 

that interrupts the supply of oxygen to the brain and damages the cortex, which is associated 

with learning, memory and language. One frequently raised question is the impact of 

dementia on life expectancy. People with dementia have reduced survival compared with 

those without dementia. Moreover, studies suggest that older people with vascular dementia 

have worse survival than those with Alzheimer’s disease (Wolfson et al., 2001). Compared 

to Alzheimer’s disease, however, vascular dementia has been understudied.

In the first phase of the Canadian Study of Health and Aging, a total of 1132 persons aged 

65 and older with dementia were identified by surveying an age-stratified random sample of 

9008 community residents and 1255 residents of institutions in Canada. For each dementia 

case, a diagnosis of possible Alzheimer’s disease, probable Alzheimer’s disease, or vascular 

dementia was assigned, and the date of dementia onset was determined by interviewing 

care-givers. Information on mortality was obtained at the follow-up data collection in 1996. 

As pointed out in Wolfson et al. (2001), the Canadian Study of Health and Aging had a 

prevalent cohort study design, because survival data were collected from a prevalent cohort 

of dementia patients who had not experienced the failure event, death, at the time of 

recruitment. Hence the survival time is subject to left-truncation, where the truncation time 

is the duration from the onset of dementia to enrolment. The observation of the residual 

survival time after enrolment is censored by the end of the follow-up.

Our primary interest in this analysis is to examine whether people with vascular dementia 

have a higher risk of death than those with Alzheimer’s disease. We considered a subset of 

the study data by excluding those with missing date of onset or classification of dementia 

subtype. Moreover, as in Wolfson et al. (2001), those with observed survival time of 20 or 

more years were excluded because these subjects are considered unlikely to have 

Alzheimer’s disease or vascular dementia. The stationarity assumption that the incidence of 

dementia is constant over time was found to be reasonably met for these data using the 

method described in Wang (1991). Thus a total of 807 dementia patients were included in 

our analysis. Among them, 637 had a diagnosis of probable/possible Alzheimer’s disease 

and 170 had a diagnosis of vascular dementia. In the second phase of the study, a total of 
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627 deaths were recorded, of which 491 subjects had a diagnosis of Alzheimer’s disease and 

136 of vascular dementia.

We fitted the additive hazards model to the subset of the dementia study and applied the 

methods presented in § 2 to estimate the regression parameter. To obtain a 95% confidence 

interval for the estimate, we adopted a nonparametric bootstrap method by sampling 807 

subjects with replacement from the dataset. The resampling procedure was repeated 2000 

times, and the 95% confidence interval was constructed by using the 2.5th and 97.5th 

percentiles of the 2000 estimates. We first applied the conditional estimation equation 

method (Lin & Ying, 1994) to compare vascular dementia and Alzheimer’s disease in terms 

of the risk of death. The result suggests that vascular dementia is associated with worse 

survival, with an estimated risk difference of 0.025. However, the difference is not 

significant, as the corresponding 95% bootstrap confidence interval (−0.021, 0.078) covers 

zero. On the other hand, the proposed combined estimating equation method estimates a 

significant risk difference of 0.051, with 95% bootstrap confidence interval (0.006, 0.106). 

For comparison, we also fitted the Cox model. The estimates from the additive hazards and 

Cox models have the same signs, indicating the same directions of the covariate effects.

Graphical checking of the additivity assumption can be performed as follows. First, estimate 

the survival functions for vascular dementia and probable/possible Alzheimer’s disease 

using the truncation product-limit estimator. Then obtain the estimated regression coefficient 

β̂
ϕ using the conditional estimating equation method. Let Ŝ0 (t) and Ŝ1 (t) be the estimated 

survival curves for vascular dementia and probable/possible Alzheimer’s disease. Plot Ŝ1 (t) 

and Ŝ0 (t) exp(− β̂
ϕ t) against time t. Figure 1 shows that, except for the first two years after 

onset, the two curves almost overlap, thus suggesting that the additivity assumption is 

reasonably met for the Canadian Study of Health and Aging data. Model-checking methods 

will be investigated elsewhere.

4. Remarks

For right-censored survival data, it is well known that the censoring time distribution can be 

factored out from the full likelihood, so an attempt to model the censoring time distribution 

does not affect the derivation of the maximum likelihood estimator for the survival time 

distribution. For left-truncated data, when the underlying truncation time random variable 

A* is allowed to depend on the covariate Z* in an arbitrary way, the marginal likelihood LM 

can be shown to be ancillary with respect to the full likelihood LF by using the weak 

ancillarity argument of Wang et al. (1993). In other words, maximizing the conditional 

likelihood LC would yield fully efficient estimation when h is allowed to depend on the 

covariate. On the other hand, when A* is assumed to be independent of Z* or when the 

conditional distribution of A* given Z* is parameterized, potential efficiency gains can be 

achieved by incorporating the information about β0 in LM. An important example is the 

special case where the underlying truncation time is known to have a uniform distribution. 

In this case, the survival times T can be viewed as a biased sample of the T*s, where the 

sampling weight is proportional to the length of the survival time. Various authors, including 

Vardi (1989), Asgharian et al. (2002) and Qin et al. (2011), have considered nonparametric 
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and semiparametric methods that exploit knowledge of the truncation time distribution to 

improve efficiency in estimating the survival time model.

Under the additive hazards model, the estimating equation method (Lin & Ying, 1994) does 

not maximize LC, so there is room for improvement. When A* is independent of the 

covariate, the weak ancillary argument of Wang et al. (1993) fails to hold, and the marginal 

likelihood is informative about β. In this paper we show that under the additive hazards 

model, efficiency can be increased even when the truncation time distribution h is 

unspecified, provided h does not depend on the covariate. The proposed estimator combines 

the conditional estimating function, constructed based on the distribution of (Y, Δ) 

conditional on A, and the pairwise pseudo-score function, constructed based on the marginal 

distribution of A, and has been shown via simulations to enjoy substantial gains in efficiency 

over the conditional estimating equation approach. The proposed method does not work 

when the covariate distribution is degenerate or when the distribution of the underlying 

truncation time is degenerate. As in conventional survival analysis, the efficiency of the 

proposed estimation procedures increases with the variability in the covariate distribution, 

although the relative efficiency compared to the conditional estimating equation approach 

does not necessarily change in the same direction. Similarly, the efficiency gain obtained 

through employing the pairwise pseudolikelihood depends on the underlying truncation time 

distribution. In general, truncation time distributions with larger support have a higher 

efficiency gain, and negatively skewed distributions have a higher relative efficiency than 

positively skewed ones.

Although we present only the results for time-independent covariates Zi (t), the proposed 

estimation procedure can be applied to handle time-dependent covariates by replacing ρij in 

the estimating function (5) with . We 

believe that the proposed method provides a useful tool for studying left-truncated and right-

censored survival data. It would be interesting to extend our approach to other 

semiparametric models, including the additive-multiplicative hazard models considered by 

Lin & Ying (1995) and Martinussen & Scheike (2002b), among others.

As suggested by a referee, a model-checking method that examines the assumption of 

independence of A* and Z* can be formulated as follows. Suppose that A* given Z* = z 

follows a semiparametric proportional likelihood ratio model (Luo & Tsai, 2012; Diao et al., 

2012)

where h0 is an arbitrary density function. Then the marginal density of A given Z = z is
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The maximum pairwise likelihood estimator β̂
ψ converges to β0 + γ0 as n → ∞. We can test 

the null hypothesis γ0 = 0 by considering β̂
ψ − β̂

ϕ.
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Fig. 1. 
Estimated survival functions: the solid curve is Ŝ1 (t) and the dashed curve is Ŝ0 (t) exp(− 

β̂
ϕt), where Ŝ0 (t) and Ŝ1 (t) are the truncation product-limit estimators for vascular dementia 

and probable/possibleAlzheimer’s disease and β̂
ϕ is the conditional estimating equation 

estimator.
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