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* INVERSE ITERATION ON DEFECTIVE MATRICES 

By· Nai- fu Chen·. 

ABSTRACT 

Very often, inverse iterations are used with shifts to accelerate 

'convergence to an eigenvector. In this paper, it is shown that, if the 

eigenvalue belongs to a nonlinear elementary divisor, the vector sequences 

may diverge even when the shift sequences converge to the eigenvalue. 

The local behavior is further displayed through a 2 x 2 example. 

INTRODUCTION 

If an accurate approximation a to an eigenvalue A of a matrix B 

is available, then inverse iteration is an attractive technique for 

computing the associated eigenvector. We choose an arbitrary unit 

vector v
0 

and a fixed shift a. Then for j = 1,2, ... we solve 

(1) 

v. = w./llw.ll 
J J J 
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where II· II .is the user's preferred vector nonn. 

If A is a simple eigenvalue with unit eigenvector x and if v
0 

is 

not an tmforttmate choice, then the vector sequence {vj}-converges 

linearly to x and the co~vergence factor is very favorable. - This well 

known result holds also for nrultiple eigenvalues A provided that: 

(i) the dimension of A's eigenspace is equal to A's algebraic 

nrultiplicity (i.e. linear elementary divisor), 

-(ii) the spe<::tral projection of v
0 

onto A's eigenspace is not 

zero (i.e. the startingvector is not deficient in x). 

If a is known to equal A to within the working precision of the computer, 

then only one or two steps of the iteration are necessary. 

Wilkinson and Varah [ 2&31 pointed out that the situation is not 

so nice if A has generalized eigenvectors of grade higher than one, i.e. , 

when A belongs to a nonlinear elementary divisor. In exact arithmetic 

the iteration converges not linearly, but hannonically like 1/j as 

j -+ 00 • Even worse is the fact that except for very special choices of 

v 0' the vectors v 2' and v 3 will be poorer approximations than v 1! This 

fact rtms cotmter to our natural intuition and is hard to understand. 

Inverse iteration can also be u5ed with variable shifts. 

sequence of shifts {crj} converges to A as j -+ oo then the vector 

generated by 

wj = -vj-l (the - sign is for convenience) 

(2) v. = w. /IIW.II 
J J J 

If the 

sequence 

__ , 
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converges quadratically or better to x whenever A. is a simple eigenvalue. · 

However, when A. has eigenvectors of grade higher than one, the situation 

is again complicated and the shifts.can make things worse. In fact we 

shall prove the following surpl-ising result. 1HE SEQUENCE { v. } GENERA TED 
J 

BY (2) MAY FAIL TO CONVERGE TO x EVEN THOUGH 1HE SEQUENCE {I aj - >..I}. 

CDNVERGES MJNOTONICALLY TO 0 AS j + oo. 

The 2 x 2 Case 

There is no loss of generality in studying 

(for analogous results on n X n matrices, see Chen [ 1] • We observe that 

e1 = (~) is the eigenvector and any other vector is an eigenvector of 

grade 2. Also 

(N - oi)w = -e
1 

yields w = { T~i 
a e1 

- e2, for any T, if a= 0 

if a :f 0. 

This shows that e1 is a fixed point of the iteration (2) provided that 

at 0 • 

For s = sine t 0, 

(N - oi)w = -(~) yields w = {oo 
1 

' if 
0 

= 
0 

ca- [ {1 + t/o)e
1 

+ te
2
1 , a t o 

where t = tane, c = cos8 (thus e is the angle between (~)and e1). 
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Let 81 be the angle between w and e1 , and t 1 

iteration function for a typical step is given by 

(3} t 1 ~ ~a(t) = t/(1 + t/a). 

tan 8 I • Then the 

I. f we study inverse iteration with shifts {a.} yielding vectors {v.}, 
J J 

then in applying (3), we have the following correspondence: . · 

{aj} converges to A. - o small 

{vj} converges to e1 - t small 

The fact that ~~(0) = 1, a :f 0, corresponds to the harmonic convergence 

of the fixed shift sequence. We are now in a position to make our 

perverse construction, provided v
0 

:f e1 . 

Construction 

Set a= 1 (=DNII). While ltjl~} lol continue iterating with current 

o. When ltjl < i Ia!, then set o+- t/(t- 1), i.e., 

~ a +- 1 I 
.y 

I tl 1 Yes < -lal 3 
if 

I v No t o+- - 1 t 

" ~ 
Solve (N - oi) w = -v 

v +- w/llwll 

FIGURE 1 THE ITERATION 

/ ·. ~ 

f 
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Since we have convergence.for constant a, the condition nrust be satisfied 

with ''Yes" eventually. The hew a yiel¢1.5 t' .. - 1,:· ·i.e., ·the new v.will 

be (i) /12. M:>reover since ltl < 1/3; the jo-~f < l~tl < jcrj/2. 

Hence the I al 's are monotonic.; Do they converge to zero? Yes, because 

they are at least halved each time. The vector sequence thus generated 

does not converge since t = 1 infinitely often. The trick was to make 

the factor t/cr in 

·. t 
t I - =----.....,..,.-,-

1 + t/cr 

go negative periodically when t/cr is small. 

It is Clear that without this· sign reversal (or something like it in 

the ~omplex case) the variable shifts will accelerate convergence. 

Proposition: In the real case if {cr.} converges to.O from one side, 
J 

then {v.} + e
1 

as j + oo. J . ' 

Proof: The formula t 1 = - t 
1 + t/cr shows that 

{

sign (t), if 1 + t/cr > 0, 
sign (t 1

) = . 
s1gn (a), if I t/crl > 1 

and It 1 I ~ I tl if sign (t) * sign (a) * sign (t 1
), therefore eventually 

for some J sign (t3). = sign (a3 ) and I tj I, ,j ~ J, converges monotonically 

to 0. 

Example: the Rayleigh Quotient Iteration on the matrix N~given above. 

Here a is constrained to be sc =~sin ze, thus 

t 
t 1 = 1 t+ t/cr = =--t.:;,___,-r-..,.. = 1 + l/c 2 < t 1 + t/sc 

Thus establishes the linear convergence of RQI on N. 
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In the following diagram, we demonstrate how v' compares .with v as 

an approximation to the eigenvector. Each point on the diagram represents · •, 

one step of inverse iteration with a shift a and the vector v whose 

components ratio is t: 

Better 
Approximation 

a 

Better 
Approximation 

FIGURE 2 BEHAVIOR OF INVERSE ITERATION 

t 

Remember that when a is small a is a good approximation to the eigenvalue 

and when t is small v is a good approximation to the eigenvector. The 

diagram show~ that rio matter.how good our approximation to the eigen-

vector to eigenvalue or both, inverse iteration can still give a much 

worse approximation'in exact arithmetics. 

We can summarize the situation for Inverse Iteration as follows: 

· .. , .. 

• .. 
' 
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TABLE I 

shift good 

vector a << 1 

good results 

t « 1 · variable 

bad good·result 

t ~ 1 great improvement 

Department of Mathematics and Computing 
Lawrence Berkeley Laboratory 
University of California 
Berkeley, California 94720 

I 

bad 

a = 1 

good results 

·no improvement 

results 

variable 

I. 
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