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Summruy 

This note is devoted to explaining the essence of the 
renormalization theory of beam-beam interaction for carrying out 
analytical calculations of equilibrium particle distributions in 
electron-positron colliding beam storage rings. Some new 
numerical examples are presented such as for betatron tune 
dependence of the rms beam size. The theory shows reasonably 
good agreements with the results of computer simulations. 

Introduction 

When two beams pass through each other in a colliding beam 
storage ring, each particle in each beam receives a transverse kick 
from the electromagnetic field generated by the incoming beam. 
This beam-beam force perturbs the particle motion, and usually 
causes blowup of the transverse beam size with consequent loss of 
luminosity. The beam lifetime may also be reduced. The 
understanding of the underlying physics and quantitative 
explanations of those phenomena are of great importance for the 
design of new colliding beam storage rings and for the improvement 
in luminosity of existing machines. 

This subject has been extensively studied in terms of 
Hamiltonian analysis of single particle dynamics. The Hamiltonian 
analysis may predict orbits of regular particle motion, and may give 
us some criterions (e.g. Chirikov) for estimating the onset of chaotic 
behavior of particle orbit. It may explain the physical mechanism of 
the above phenomena. However, since the method is posed in 
terms of the behavior of a particle trajectory, it breaks down when 
the particle motion becomes chaotic. Therefore, it cannot be in 
principle applied to a beam blowup associated with chaos. It is clear 
that what is needed is a more statistical theory for dynamics of, not 
single particle, but ensemble of many particles where the chaos may 
be described by statistical terms. That theory would allow us to 
calculated partic:e distributions in the presence of the beam-beam 
interaction, which are quantities straight linked with the beam 
blowup and the particle loss. There have been a few attempts to 
derive such a theory for electron-positron colliding beam storage 
rings. I-S They all use the Fokker-Planck equation for the evolution 
of the particle distribution, and restrict treatment of the beam-beam 
interaction to the "strong-weak" case, namely the case where only 
the particles in the weak beam are perturbed by the beam-beam 
force. They also restrict themselves to a one-dimensional model 
except Kheifets. In spite of those simplifications in the models, 
only Kheifets and the author succeeded in carrying out analytical 
calculations of particle distributions, and have tried to compare the 
analytical results with results of experiments or computer 
simulations. . 

Let us explain the crux of the present problem. The Fokker
Planck equation for the particle distribution P to be solved may be 
written formally as 

(oa +A) P = o, (1) 

where 9 is the azimuthal position in the ring, and A is the Fokker
Planck operator including all the effects, i.e., the beam-beam 
interaction, the synchrotron radiation, and so on. If we can find the 
Green's function ·as a solution of 

(2) 

= 0 at t >to , 

the solution ofEq. (1) is given by 

1 

(3) 

where P(x0 ,p0 ,t0 ) is the initial particle distribution at t=t0 . The 
Green's function G which we call the "exact" Green's function 
includes all the orbit distortion effects and provides the exact 
transition probability of particle orbit, at any proceding moment, no 
mat~er whe~her the particle motion is chao.tic or not. However, Eq. 
(2) 1s too dtfficult to solve exactly to obtam such Green's function. 
All the theories try to evaluate G with the peturbation methods, and 
the differences between the theories come essentially from different 
choices of the perturbation methods. There is one important rule in 
choice of the perturbation method. Namely, the method has to 
guarantee that a perturbation solution of any order will be smaller 
than the lower-order ones so that the perturbation expansion series 
converges. It should be emphasized that this rule is not always 
satisfied in any perturbation method. 

The author has proposed a new perturbation method, called "the 
renormalb:ation theory," to evaluate the exact Green's function 
systematically to a good approximation. The goal of the theory is to 
find a s~t of ~ig~nfu!'ctions which almost diagonalizes the system 
(the parttcle dtstrtbuuon here). The system may be decomposed into 
a set of modes. Equations of motion for the modes are usually 
coupled to each other by the beam-beam force. The renormalization 
is a procedure to rewrite those equations of motion so that the 
c~ul.'ling between the modes as solutions of the equations becomes 
mtmmum. Thy renormalization theory was originally motivated to 
avoid the "small denominator singularities" at the centers of 
resonances by including orbit distortion of resonant particles due to 
other resonances. However, the theory turned out to be most 
powerful when resonances strongly interact to each other, and the 
system can no longer be approximated by a collection of isolated 
resonances. The formulation of the theory and the intt:rpretation of 
its physics are found in Ref. 4. The validity of the theory is 
demonstrated in Ref. 5 by comparison with the results of computer 
simulations. In this note, we describe the outline of the theory in a 
rather formal way, and present some new numerical results to 
confirm the validity of the theory. 

Renormalization Theozy 

We write down again the Fokker-Planck eq. for the particle 
distribution Pin a slightly explicit form: 

(oa + L) P = LaP , (4) 

where Lis the Fokker-Planck operator for all the effects except the 
beam-beam effect, La is the operator for the beam-beam effect and is 
a function of the beam-btam potential U. The beam-beam parameter 
~ is included in the definition of U. The explicit expressions of L 
and La are given by Lc + LM, aqd La, respectively, in Ref. 4. Let 
us decompose P into its average part <P> over the azimuthal angle q, 
in phase space and the remaining part BP fluctuating around <P>: 

p = <P> + BP' (5) 

<BP> = 0 . (6) 

Due to the periodic boundary condition for BP in q,, BP can be 

Fourier decompo~ed with respect to lj>: 

BP = L Pm (I,8) exp (imlj>), (7) 
m..O 



where I is the nominal action variable, and the m = 0 component 
vanishes by the definition (6). Similarly, the beam-beam potential U 
can be Fourier decomposed in cp: 

U = L U jl) exp (iLcp) . (8) 

Equations of <P> and Pm are obtained by averaging Eq. (4) over cp 
and Fourier decomposing the remaining terms: 

where 

(ao +Lo)<P> = L Mk,-k uk p_k • 
ko'O 

Sk= L ML.k-LULPk-1 
#o 

(9)' 

(10) 

(11) 

expresses coupling between the modes P~c. Here~ Mk1k2• L 0, and 
Lk. are the operators whose definitions are found in Eq. (3.6); (3.1 0) 

and (3.13) in Ref. 4, respectively. Equation (10) can be further 

Fourier decomposed in e, with the result, 

(12) 

o-I 
where the unperturbed Green's function gkv satisfies 

(-iv- Lko) g"kv = B(I- Io). (13) 

The explicit forms of Lk.o and S~cv are found in Eq. (4.4a) and Eq. 
(4.10) in Ref. 4, respectively. 

The mode-coupling terms skv become iniportant in two cases: 

1) Very weak synchrotron radiation. 

In this case, the solution ofEq. (13) is approximately given by 

g~v = -----''-----
v-k (vp + /:iv (I)) (14) 

where v~ is the unperturbed betatron tune and l:iv(I) is the 
nonlinear detuning term. If we ignore the mode-coupling term 
S~cv, the solution of Eq. (12) is 

p _ n9 M U ID) _ · i Mko Uk {P) . • 
kv - 6kv ko k \' - ,j } • '(15) 

v- "\vll + l:iv(I) 

which diverges at the center of the resonance v- k(vp + /:iv(I)) = 
0. Jf one calculates the second-order perturbation correction to 
pkv from skv • one finds that some terms in skv also diverge at 
the same amplitude. This resonance singularity is, in fact, the 
result of the artificial mathematical manipulation. The singularity 
emerges since we have assumed that resonant particles receive 
only a part of beam-beam kick which creates the resonance. In 
reality, particles receive the total kick of beam-beam force which 
generate all the resonances. By the-random kicks from other 
resonances, the particle tunes are fructuating and not strictly 
locked at the resonance tune. Therefore, the resonance 
singularity may be avoided in the real system even in the absence 
of the quantum fluctuation. · 

2 

2) Strong coupling between resonances. 

In this case, the particle motion between the resonances may be. 
chaotic. App'arently, the exact Green's function will be very 

0 
different from gkv which expresses regular orbits of resonant 

0 
particles. It cannot be constructed in terms of gkv by calculating 

higher-order correction terms from S~cv, since the chaoiic motion 
cannot be described by combination of regular motion. If one 
tries, then the expansion series will not converge. 

Let us try the following way. We introduce the renormalized 
Green's function by 

(16) 

where l:kv is the operator to be determined. Substitution of Eq. ( 16) 
into Eq. (12) yields 

gic~ P~cv = Mko Uk (f) + Skv + l:~cv P~cv · ( 17) 

d 
Decompose Skv into the terms Skv proportional to Pkv and the rest 

nd 
Skv: 

(18) 

and identify 

(19) 

Then Eq. (17) becomes 

gJ Pkv = Mko Uk (f) + S~ (20) 

nd 
By the definition, the strength of S k does not depend on Pkv· v . 

nd 
namely, Skv acts as an incoherent noise source for Pkv· 

Resonances can still cause changes in other resonances through 

nd nd 
skv' but they are not coupled by skv' 

ltd 
We have to show how, to extract Skv from SJcv. The physical 

identification is as follows. A resonance Pk1v1 can cause a change 

in another resonance Pk2v2 through the mode-coupling Sk2v2. The 

change in P~c2v2 can act back to the resonance Pk1v1 through S~c 1 v 1 • 

and Pk 1 v 1 will be changed. This self-action effect should be 
d 

identified as skv' since its ,strength depends on Pklvl 

proportionally. Mathematically, this procedure is carried out as 
follows. Insert the solution (17) for Pkv into the definition of 
Skv01) and replace Sk-L,v by Eq. (11) itself. The terms 

d 
proportional to Pkv is S kv. In the above direct interaction 

approximation in which only the direct interaction between 
nsonances (with no intermediate resonance) is taken into account, 

the explicit form of~ is 



l:~cv=- L L ML,k-LULgk-L,v-nM-L,k U_L· 
L'#O n 

(21) 

One can see from Eq. (21) that the renonnalization correction tenn 

:E1cv is second-order in ~-. 

The physical interpretation of :E1cv might be as follows. The test 

particle subject to the Green's function g1cv in the (k,v) resonance is 
scattered by the field U . .l and is effected by the resonance gk-.l,v-n· 
Then, it is again scattered by the field U .l to emerge at the initial 
resonance gkv· Since the particle come~ back to the initial 
resonance, the above trajectory going ~hrough other resonance 
should be included in the transition probability of the particle orbit 
subject to the (k,v) resonance, namely the Green's function gkv. 

= + 

Fig. Ia Feynman diagram of Dyson's equation for the 
renonnalized Green's function 

d t 
1 

di 
9k-l,v-n !f",/u,IIIU-t!II 

- rkv • = 

t 
d 

dT 

+ ... 

Fig. 1 b Feynrnan diagram of the renonnalization correction :EJcv. 

Equations (16) and (21) may be graphically represented by 
Feynman diagram in Figs. l(a) and l(b), respectively. The Green's 
function g1cv is denoted by a heavy straight line, while the light line 

0 
denotes the unrenonnalized GFeen's function gkv' It can be seen 

clearly that gkv and :Ekv are coupled to each other: gkv both 

determines and is detennined by :EJcv. 

The solution 1\v may be written as consisting of two part~: 

Pkv {I) = P"~h {I) + pik~ (I) (22) 

with (23) 

and Pine snd 
lev =gkv kv · (24) 

3 

coh inc 
Here P kv and P kv are the response of the resonance Pkv to the 

coherent field Uk, and the incoherent noiseS~~· respectively. By 

being renormalized, the Green's function gkv has no small 

denominator singularity at the center of the resonance (kv) even if 
the synchrotron radiation is extremely weak. It includes the most 
important effect from the mode-coupling, namely the coherent effect 
in which g1cv affects itself through other resonances. We can now 
directly compare the magnitude of perturbation tenns order by order. 

inc 
The incoherept p~ P kv is fonnally one"order smaller in ~ than the 

coh inc 
coherent part Pkv . We neglect P kv it;t the following procedure, 

and call this calculation the coh14ent approximation. Each mode P1cv 

couples only with <P> now, no longer with other modes Pk,,v, . 
Therefore the equations for <P> and P1cv are closed: once we know 
<P>, we can calculatie P1cv, and vice versa. 

If we substitute Eq. (23) into Eq. (9) for <P>, after some 
approximations, we obtain 

(25) 

where the explicit fonn ofD(I) is 

D(I) = L ~ (2~J U.k (I) [Re( gkn(I,I))Uk(l)di. (26) 
k¢0 

The tenn D(I) may be interpretated as an additional diffusion tenn in 
a111plitude space. 

Annroximate Solution 

Equations (16) and (21) are too difficult to solve without 
approximations. In what follows, we truncate the perturbation 

expansion at 0(~2) and O(y), and disregard tenns proportional to 

any product of~ and y. Here Y = 
2

'Yy where Yy is the linear radiation 
roo 

damping rate and Cl:Jo is the angular revolution frequency. When 
resonances are well-separated, and the radiation damping is 

modestly strong as in LEP, the renonnalization correction l:kv is 
overwhelmed by the radiation effects. In this region, the 

unrenonnalized Green's functions for isolated resonances may be 
good approximations. Its real part is given by 

(27) 

When resonances get closer and interact strongly with each other, 
the particle motion between them will be chaotic. In this strong 
chaotic region, Eqs. (16) and (21) can be solved between two 

resonances (k,v) and (k-L, v.n) if we approximate the shape of 
g~cv(I) qy a square shape: 

Re{gkv(I)) = { ~ot. kv 
otherwise 

(28) 

where 



(29) 

with /w' = dA~(I) and Ikv is the resonant amplitude of resonance 

(k,v). The exact Green's function should be smoother, but the 
above function has approximately same height, width; and exactly 
same area 1t. The quantity 1/(lkl'tkv) expresses the maximum 
difference between a particle tune and the resonance tune for which 
the particle can still be diffused by the resonance. The Green's 
function (28) gives an uniform transition probability in the chaotic 
region for chaotic particles in the present rough approximation. The 

· chaotic (diffusive) region is confined between ± 1/(lkl'tkv) in tune 
space. The diffusion rate at this region is obtained by inserting Eq. 
(28) into Eq. (26). The above approximation may be justified when 

the width of Re(g~cv(l)) is larger than about 2/3 of the space ~Vs of 
the two resonances: 

(30) 

which yields 

Ul{I~cv) ~v· I ;:::: kn- Lv ~ 1)
,,2 I I 

21t ( Icv) ~ k{k- L)l3/41 Lll/2 . (31) 

Before this condition is satisfied, stochastic layers or weak chaotic 
regions might appear between the resonances. In order to handle 
such intermediate regions, we need a more suble approximation. In 

the present treatment, we approximate a smooth transition from the 
Green's function (27) for the regular resonance to the Green's 
function (28) for the chaotic region by a sudden jump. The sudden 
jump is supposed to happen when the condition (31) is satisfied. 

We have obtained all the Green's function for the renormalized 
modes. The additional diffusion rate 1>(1) of Eq. (26) can be now 
calculated. In the stationary state, the solution for <P> is given by 

(P(I)) = K · exp [-f' .dl] 
• 1 + D((I~{yu2I)} u2 ' 

(32) 

where K is the normalization constant, and u is the nominal beam 
size. Using this result, we can also calculate stationary Pkv from 
Eq. (23). Then, we obtain the total particle distribution. 

Numercial examples are given in the next section. Here we limit the 
discussion only to characteristic properties of the solution (32). By 
taking derivative of <P> with respect to I, 

(33) 

One can see that <P> is flattened around the regions where 
D(l)/(yu2J) >> 1. If the additional diffusion regions are wide and 
their diffusion rates are large, one will see a significant change of 
'<P> from the unperturbed distribution over a large range of 
amplitude. 

Finally, to complete the calculation, we give the explicit form of 
the beam-beam potential produced by the Gaussian distribution: 

for L= even ) . (34) 
for L=odd 

4 

where I0 (y) is the modified Bessel function. The odd resonances 
are suppressed by the symmetry of the potential U(q) = U(-q). The 
nonlinear detuning term and its derivative are 

~v(I) = ~[1 - e·Y Io(y)) , (35) 

~v'(I) = _3_. 1(1:(1 - e·Y Io(Y))- e·Y(Io(Y)- I,(y))l , (36) 
2a2 Y Y 'J 

respectively, where y = _!_
2 

. 
2a 

Comparison with Computer Simulations 

In this section, we show some numerical examples of analytical 
particle distributions and compare them with the results of computer 
simulations. The computer program REBECCA (REnormalized 
theory of Beam-beam interaction in a Electron-positron Colliding 
Circular Accelerator) has been developed for computing <P> 
according to the theory. We compute only the averaged distribution 
<P>, although the total distribution can be calculated, since <P>, 
which is a function only of the amplitude I or r in polar coordinate, 
is a good measure for comparison. Besides, only <P> is needed to 

calculate the rms beam size (the contributions from aP are washed 

out when integrated over$). The tracking program TRACK to 
simulate the beam-beam interaction has been also written for 

comparison. Particle distributions are averaged over q, to yield <P> 

after the tracking is finished. In all examples, y is set to be 0.001, 
which is relevant to LEP at 50 GeV. 

Figure 2(a) shows one quarter of the phase space trajectories 

calculated by TRACK for v13 = 0.22 and ~ = 0.04, where the 
·synchrotron radiation effects are turned off specially for the plot to 
see regular motion of particles. This plot is taken just in the middle 
of the beam-beam kick so that the phase space trajectories become 
mirror-symmetric with respect to each coordinate. The fourth-order 
resonance can be seen at amplitude of about one standard deviation. 
This is a nonchaotic example where no chaos ensues in phase space. 
In fact, the calculation by REBECCA shows that the criterion (31) is 
satisfied between no pair of resonances, and therefore the 
unrenormalized Green's function (27) is used for all resonances. 

I'R08LEM1 l fl A (It-- (HRDS HUNTitlG FIJI!; LfP 1'"'!•1i': ~~f-:NG T,tt,(HIN CERN 

19102/1111 18.21.0 

NUt• 0,;!20 

XI • 0.0~0 

Fig. 2a One quarter of phase-space trajectories for v13 = 0.22 and 

~ = 0.04. 

j. 
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Figure 2(b) shows the averaged particle distribution as a function of 
amplitude in polar coordinate in unit of one standard deviation. The 
solid line denotes the analytical result computed by REBECCA, 
while the open triangle represents the results of computer 
simulations. The broken line indicates the Gaussian distribution 
when only the linear part of beam-beam force is exerted on the 
beam. It is plotted as a measure to see the deviation of <P> from a 
Gaussian shape. A good agreement cao be seen between the 
analytical and the computer simulation results. 

0.8 

0.8 

( p) 

0.4 

0.2 

0 
0 ·I 

v11 • 0.22 
~ -0.04 

6 Computer olmulotlon 
-- Anolytlc reoult 
••······• Geuulen dlotrlbutlon 

2 3 4 6 
Amplitude I a 

Fig. 2b Averaged particle distributions as a function of amplitude 
in polar coordinate. 

In Fig. 3, the rms beam size is plotted as a function of the 
unperturbed tune v~ for ~ = 0.06. In the entire tune, no chaos is 
obserbed in the simulations, and no chaos is predicted by 
REBECCA. The nomial beam size includes the effect of dynamic 
change in betafunction due to the linear part of beam-beam force and 
has a tune dependence. The analytical result is in a resonably good 
agreement with the simulation result except around v~ = 0.23 where 
the fourth-order resonance island is so large that the purturbation 
calaulation for particle orbit loses its accuracy. The important point 
to be mentioned here is that the analytical curve has the same 
structure of tune dependency as the simulation curve. 

f. 0.08 
• Traclcing 
0 Theory 

--- NomNI beam -

~~------~0~.,------~0~.2--------0~.3----~ 

., 
Fig. 3 The rms beam sizes as a function of v~ for ~ = 0.06. 
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Figure 4(a) shows an example of the very chaotic phase space 
trajectories for v~ = 0.15 and ~ = 0.17. the synchrotron radiation is 
again specially turned off to see chaotic behavior of particles. The 
computation by REBECCA including up to the 16-th order 
resonances indicates the very chaotic region between 1.2 cr and 4cr at 
amplitude. The averaged particle distributions <P> are plotted in 
Fig. 4(b) where the same notations of lines as Fig. 2(b) are used. 
They show a good agreement except at amplitude around 2.5cr. 
This hard edge of the analytical distribution originates from the 
approximation of the renormalized Green's function by the 
rectangular shape in the chaotic region, although the exact Green's 
function should have a smoother shape. This problem may be 
removed by improving the approximation method. 

Fig. 4a One quarter of phase-space trajectories for v~ = 0.15 and 

~= 0.17. 
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0.8 

( p) 

04 
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Fig. 4b Averaged particle distributions for v~ = 0.15 and 

~=0.17. 



The rms beam size is plotted as a function of the tune Vf3 in Figs. 

5 and 6 for ~ = 0.16, and ~ = 0.18, respectively. The chain line in 
Fig. 5 denotes the analytical beam size when the renormalization 
correction is neglected. It should be noted here that the results of the 
renormalized theory and those of computer simulations have the 
similar structure of tune dependence, although the theory sometimes 
overestimates or underestimates the rms beam size, while the' 
unrenormalized theory (the closed boxes) has the different structure 
from the other lines. The discrepancy between the results of the 
renormalized theory and simulations comes mainly from the usage 
of the rectangular shape for the renormalized Green's function. A 
better approximation is desirable. 

Conclusions 

Let us summarize the complete algorithm to calculate an 
approximate stationary average distribution: 

1. For all (k,v) resonances (k=even) which satisfy 

judge whether chaos has ensured in the vicinity, by applying the 
criterion (31) to all the possible pairs with (k- L,v-n) resonances 

(L=even). If the criterion is satisfied, use the Green's function 
(28) for the resonance in the next procedure. If not, use the 
unrenormalized one (27). 

2. Compute the diffusion coefficient :0(1) ofEq.(26). 

3. Carry out the integration in Eq. (31). 

4r------------,------------~ 

Fig. 5 

3i 

~ = 0.16 

6 Tracking 

o Renormalized theory 

• Unrenormalized theory 

Nominal beam size 

~~------------L-----------~ 
~1 ~2 

1/fJ 

The rms beam sizes as a function of Vf3 for~ = 0.16. 

6 

4 

E = 0.18 

6 Tracking 

0 Theory 

3 Nominal Beam Size 

0 
b 
-;, 2 e 
b 

00~------------~------------~ 
~1 ~2 

Fig. 6 The rms beam sizes as a function of Vf3 for~ = 0.18. 

Despite of some rough approximations for the renormalized 
Green's function, the theory exhibits reasonably good agreements 
with results of computer simulations. This may imply that the 
present renormalization theory is a relevant perturbation method to 
approximate the exact Green's function in a torelable accuracy. To 
try to· explain a beam blowup by looking at the distortion of particle 
orbit lies on the same line as the Hamiltonian analysis. However, 
by describing the orbit distortion in terms of the Green's function, 
we gain more capacity in the theory where statistics comes in. At. 
the same time, the physical mechanism of a beam blowup, due to 
either chaos or regular resonances, is explicit in the theory. 
However, the present one-dimensional strong-weak beam picture is 
still unpractical for apllication to real machines. Further research 
should be made to extend the method to the two-dimensional strong
strong case. 
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