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ENERGY TRANSFER IN ONE DIMENSIONAL SUBSTITUTIONALLY DISORDERED SYSTEMS.
I. THE EFFECTS OF COHERENCE, TUNNELING AND THERMAL PROMOTION.

D. A. Zwemer and C. B, Harris

‘Department of Chemistry and Materials and
Molecular Research Division of Lawrence Berkeley Laboratory,

UniverSity of California, Berkeley, Cé]ifornia 94720

ABSTRACT

A théory for energy transfer iﬁ substitutionally disordered solids is
presented that'includes the effects of coherent and incoherent migration of the
wavepackef, the statistical distribution of fluctuations in the potenfia] energy
surface the wavepacket encounters, and tunneling. Explicit expressions for the
"diffusion" coefficient in thesellimits and the energy-partitioning ratios jn
- ‘binary systems .are derived. It is also shown that an activation energy dependent
upon the composition of the binary system can emerge.from chh a treatment and
is an indication that eﬁergy transfer between 1oca1gged states is facilitated by

concurrent tunneling and thermé1'promotion.



00 0T 70090196

I. INTRODUCTION

Energy transfer in many solid state énd biophysical systemsis
"charaéterized by substitutional or structural disorder induced by
chemicé] and ionic impurities, irregular bond conformation, or disordered
: sité_distribution. In multi-dimensional systems such as amorphous
semicpnductors, the concepts of ama]gamation ahd‘pcrco1atfon thebryI
have been applied with moderate success in explaining the behavior of
electrical conduction. Although the percolation concept may be applied.
to problems where the solid can be considered two- or three dimensional?
it is not applicable to one-dimensional systems, which may be of great
importance in_intra-molecular-energy transfer in large biomolecules as
well aé'the class of one-dimensional organic conductors. In addition,

one-dimensional systems3

are exemplified by electronic energy or Frenkel
eiCifon’migration4 in molecular crystals. These crysta]é-serve as
effective model systems in which to investigate the effects of substitutional
disofder since isotop¥c substitution provides a method of introducing
well-characterized sma]]_perturbations into the periodic potential

without disturbing the crystal structure.

In an unperturbed crystal, the localized degenerate excited states
of the molecule intefact.to form de]oca]ized band states. Exci;on
mobility within these bands is determined by the magni@ude and dimension-
ality of the interactions, the strength of coupling with lattice phonons,
and the lifetime of the excited state. Modes’ofvexciton migration range

from the propagation of coherent exciton wavepackets5 over many molecular



sites to short-range diffusive "hopping" between adjacent mo]ecules§
Isotopic substitution can reduce the delocalized bands to localized
regions, making exéiton mobility additionally dependent on the isotobic
shift and the concentration of the substituent. As the mole fraction
of a low energy isotopicltrap is increased, one expects the potential
surface a]onQ which the exciton traVe]s to change from a delocalized
host band interrupted by localized trap states to extended trap

states interrupted by narrow barriers comprising the remaining host .
molecules. In such cases, the exciton mobi]ity will be Timited by the
rate of transfer through or around the barrier sites. It is clear

that perco]atioﬁ theory cannof be applied to substitutionally disordered
systems when the intermolecular interaction responsible for energy
transfer is principa]jy between molecules ré]ated.by transiationa]
symmetry along one axis of the crystal and vanishingly small along thé
others7- In  these cases, at least three distinct modes of transfer

are available: (i) the exciton may tunnel through the higher energy
8

host molecules®; (i1) it may be thermally promotéd by a'phonon to
the host band states and make its way to another trap state at a

rate dictated by its mobility in a pure bandg; (iii) finally, if

the bandwidth is large enough to mask a'chh smaller isotopic shift,

this analysis is inappropriate and exciton migfation will approach an
unpérturbed-crysta]-type behavior termed ama1§amation]’lo .

In this first part of this paper, we present a theory that accounts

for both the coherent nature of the‘wavepacket and the statistical



OW O F 720000 In7
-3-

distribution of fluctuations in the potential energy surface the
wavepacket encounters. It is based on tunneling thru simple barriers
whose heights are deterﬁined by differences in the zero point energy
between isotopic substituehts. The deve]dpment proceeds from a simple
but well defined model system in which only one distribution of the
potentiel energy surface is available to the wavepacket. The effects

of coherence are included in the model system and compared to the
diffusive "random.walk" limit. Expressions for“effective“diffusion
coefficients in both limits are derived and compared to the uncorrelated

migration model.

II. ENERGY TRANSFER IN DISORDERED SYSTEMS WITH A PERIODIC DISTRIBUTION
IN THE PERTURBED POTENTIAL.

“For our discussion, a .simple disordered system may be defined by
a series of identical barriers in the crystal potential field as shown
in-Fig. 1. Tﬁe barriers are formed by molecules of the higher energy
iéotopic species and the distribution of barriers is such that one
barrier of unit molecular dimensions occur every S] lattice siteé. The
intermolecular spacing is taken as g and the barrier spacing is given
by 512; Passage of a migrating exciton through a barrier may take place
either by direct tunneling or by thermal promotion, but if all the
barriers are 1dentica1, the exact nature of the process can‘be left

unspecified and passage through the barrier is described by a constant



transmission coefficient T. In a complex disordered system, differences
in barrier heights and widths make the nature of the barrier transmission
process critical to the exciton dynamics. |

within thé interval between two barriers, the mode of exciton
motion may be treated in two limits, the random wa]k "hopping" of a
localized excitation or the coherent probagation of an exciton wavepacket
over a distance equal to S]g. The random walk "hoppihg" frequency
betwéen adjacent molecules is defined as Vi and is determined by the

intermolecular interaction, B , according to

Ve = 48/ | S

The coherent exciton, on the other hand is characterized by a
wave.vector k and a group velocity Vg(k) which determine an
intermolecular transfer frequency between adjacent molecules defined
as V.. In the coherent limit, the group velocity is given by

Vg(k) = % (3E(k)/ak) @

and hence the transfer frequency as a function of wave vector is given .

_simp]y as

volk) =V (kg R e



Q00O 0047 7004 1901 11 8
-5-

For a Boltzmann distribution in the band, Vg(k) should properly be
11 - ’

thermally averaged over the k states in the extended band in the

interval S;a. In such case, the average group velocity Vg(T) is

given by
1 OE(K) -E(K)/KT (E(k)/KT)
<V9(T>> ) Zk ok e zk:e

where the sum over k extends over the S] sites in the interval S]i:

Equation (4) rapidly converges for S]> 20 to a Bessel function form as

1/2 |
Qv (n)> - E2 (-,%'Q—T) 1, 2(2)/1,(2)] (5)
where
Z = 2p/kT .  (5b)
. ™ : o
IO(Z) = (1/11)/2 cos O | : (5¢)
. 0 v . .
, 1., /2 |
11/2(2) =( 7 2/m) / [ e ¥2 €00 ino do (5d)

This is because of this fact there is little difference between the
maximum value of Vg(k) when k is discrete as in Eq.'(4) or continuous
as in Eq. (5). In both, the maximum occurs in the center of the bands

at |k =v%3 and has a value for large S, of:



28a (6)

max - _ 13 (E. + 28 cos ka =
e - g (v JIRAE

ok

A. Exciton Diffusion: General Consideratidns.

Long range exciton diffusion in the crystal depends on transfer
between éxtended band.states separated by intervening barriers. A |
| criti§a1 parameter is the average time spent in anvexténded trap state
 between two barrfers each a single site in width. This is equiva]éﬁt
to thé effective‘tunne]ling time through a barrier and for a single
barrier is defined asvr$ . This time strictly determines mean exciton
dynamics in disordered systems'and its calculation is of central importancé
in any question of one-dimensional energy transfer. Fig. 2(a) illustrates
the process. T? depends on the number of trap mq]ecu}es over which
the exciton may delocalize S» the barrier transmission coefficient T,
and the intermolecular transfer frequency, v=vr‘ or v_ in the case of
diffusivé or coherent propagation, respective]y._

“ The exciton begins ifs migration thru the interval from a site adjacent
to the barrier through which it has just passed. If the motion is
completely coherent, the exciton is #ef]ected back and forth with
constant absolute momentum between thé two bgrriers; colliding with
a barrier every S]'jumps. Hoﬁever, if the'motion is random, probabi]itj
theory predicts that the exciton, beginning from.a site adjacent to a
barrier, will still collide with some Bafrier every S1 jumpslz.

This may be seen as the averagé of many collisions with the near barrier



OWW OHF VWO 129
-7-

requiring only one or a few jumps and a few collisions with the far
barrief requiring approximately S% jumps. In either the coherent or
random walk limit, the average number of intermolecular jumps can be

expressed as

where iS, is the number of jumps completed after i collisions and
T(]-T)i'] is the probability of transmiésion on the i gﬁ_co1lision‘whfch
is uséd to derive the weighted average of i S]. The pkoduct of the
average number of jumps'before_barrier transmjsSion, <S>, and the time
'per Jjump bethen band molecules, v'], gives the effective jump time
between intervals, T? :

T? = \)‘4 <S> = S]\/TV ‘ (8)

The physical significance of the expression is qyite sjmp]é. Tv is
the probability of transmission per unif time from-a‘molecule adjacent
to the barrier, but the effective tunneling time is 1ncreQ§ed byvthe
3 mo]ecd]es on which thevexcitbn_may sit. The exciton diffusion

coefficient, which describes exciton dynamics, is

1 2, c_1.2, ‘
D=5 (S; 27ty =52 ;v - (9)

which differs for the random walk and coherent limits only so far as v

differs.



One important assumption has masked differences in the functional
dependence of the diffusion coefficient'between the random walk and
coherent migration limits. We have assumed that the likelihoods of
transmission through each of the two barriers on the interval are equal,
independent of the initial position or momentum of the exciton. Given
a sufficiently long exciton lifetime withih‘the interval, thié
condition is met but a relatively large transmission coefficient will
cause a significant change in exciton dynamics‘by allowing a high
probability of escape from the interval béfore a symmetric population

density is achieved.

B. Exciton Diffusion: Random Walk Limit

Invthe random walk 1imit, uniform population population density\in
an interva]lsl molecules wide is effectively achieved in S% Jjumps,
as illustrated in Fig. 3. The exciton begins its movement in the
interval from a site adjaceht to the barrier through which it has just
passed from an adjaéent interQal. It will collide with this "near"
barrier several times during the first S% Jjumps before it sees the
“far" barrier, making the likelihood of passage béck through the near
vbarrier greater than for the far barrier. The resulting correlation
betweén successive jumps]3 acts to.kéep the exciton in the vicinity
of the near.barrier. The problem is treated by calculating th many
collisions with the near barrier occur during the initial S% jumps

~and allowing successful transmission during these jumps to cancel out

the previous jump into the interval, thus decreasing the overall
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frequency'of migration between intervals, ]/T% < This corresponds to
finding‘the number of returns to origin in S% Jjumps, <N>, where the
origin is the site adjacent to the near barrier, and the average

number of collisions with the barrier at each return to origin, €, where

o .

<C> =:§::1/21+1 = ] : _ - (10)

i=0

Eq. (10) is an average of the number of collisions with the barrier for
each return to origjn, i, weighted by the probability of that number

of collisions, <%>1+]. For exémple, the exciton has a 50% probability
(probability = %—) of jumping away from the bérrier ohhits first jump
with zero barrier collisions, a probability = %- of reflecting dff the
barrier once and then jumping away'fqr a total of one collision, and

so forth. Follow this reasoning, <N>is given as

2
s]/2

N> =D N (%) ST (5,5

~N=0 (5,°/2) t (5,°/2-N)"

[s52
S () st s
- \2 I -] ‘
=0 (5,7/2) ¢ (5,%/2-N): Can

The term repeated in numerator and denominator is the probability of N

“returns to origin in 512 jumps14, so eq. (11) is a simple weighted
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average of N. <N> cannot be simplified in the general form, but a
numerical solution in the range S]2 = 10-50 gives a simple form linear

in §,
N> ¥0.75 5, -0.675 | (12)

The probability of escape from the interval before a symmetric popula-
tion density is achieved is defined as Pe-and is given by:
<N>

P = Z (T(]-T)N“) ~ <N>T for T<< 1  (13)
N=1

By allowing each barrier jump which occurs before symmetric population
density is achieved to cancel out the barrier jump directly preceding
it, the effective jump frequency between intervals is decreased and in

a periodic perturbed potential.

(1/T1C)eff = (]-ZPe)(l/T]C) ' :(14)

In such cases the random walk diffusion coefficient, is given by:

D, = ]7 (S]a)z (1-2<N>T)/T]c B . (15)’
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C. Exciton Diffusion: Coherent Limit

In the perfect coherent limit, the delocalized wavepacket can elastically
scatters off the two’barriers alternately. The probability of passing
through the'farvbafrier, Pf, which always undergoes the initia]
- collision becauée of the wave vector momentum carried over from the
last barrier transmission, will be greater than Pn, the probabi1ity
of passing through the near barrier. The far barrier withstands the
first, third, fifth, and succeeding alternate collisions with
probability of transmission T‘on the first col]ision,i?T on the third;
R4T_on the fifth, and so forth. Likewise, the near barrier feels

the Seqohd, fourth, sixth, etc. co]lisions with similar progression

in transmission probabilities. Therefore,

2. . .4 1 | ' .
TH+RT+RT+ ..... 71 _ (v16a)

Pe

P

RT+ R3T + ROT + ... ) | (16b)

The effect on the diffusion coefficient of the correlated transfer
beiween the intervals due coherent transfer within intervals is to

lengthen the effective jump distance, Aeff'
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>
|

off = (1 + (Pg~P) + (P~P_ ) ..;) 5, a

225 s, a | [17]
The term Pf--Pn gives the probability of travelling a secopd
interval coherently due to the correlated nofion. (Pf-Pn)2

and higher order terms allow for three or mére intervals to be
passed through coherently and these terms converge quickly for
moderate T to the value given, which is greater than the length
of a single interval. The probabiiity 6f making the second
correlated jump félls exponentially with time, so two correlated
barrief jumps, if they occur, will take little longer than,a
singlé barrier jump. Tlc'still provides a time base on which

to define the equivalent of a diffusion coefficient for coherent

propagation, Dc'

D, = 5 Aage/T % = 3 <%E%T>2,Slz a’/7,° | (18]
Dc is a limiting_ﬁalue.' If the exciton cohérence is lost in a
time short with respect tO:TlC but long with respect to vc-l,
thé coherence length lies between Slg'and a, but'exciton dyna—_
mics approach the random walk limit very slowly due to the
greater delocalization efficiency of even partially coherent

migration. Both eq. [15] and [18] reduce to eq. [9] for

uncorrelated motion in the small T limit, but it should be
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noted the Dc and Dr have different dependences on both S] and T in
the large T limit. Fig. 4 shows the particularly interesting T
dependence of diffusion, where correlated mdfion due tokcoherence.
broduces a slight ‘increase in the diffusion coefficient over the
uncorrelated model, while correlated motion due to the random wé]k
produée§ a sharp decrease. An experiment where T can be varied, such
as a temperature variation whére thermal promotion over barriers is

important, should distinguish between the two models.

I11. ENERGY TRANSFER IN DISORDERED SYSTEMS WITH A STATISTICAL DISTRIBUTION

OF PERTURBED POTENTIALS.

In this portion of the paper, we apply these insights to more
éomp]ex disordered systems, differentiating between mechanisms of
energy transfer within the context of the energy partitioning experi-
menfs which are the standard probes of such systémsls. The Timiting
cases of tunneling and thermal.promotion (as well as a.hybrid case)
are illustrated for a range of physically realistic parameters.
Experimental results for singlet and triplet exciton migratipn in

a disordered pseudo-one-dimensidna] molecular crystak;follow in a

16
separate paper
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A. Direct Transfer

Physically realistic and useful models of exciton transfer in a
two-component substitutionally disordered system must hold over the

entire concentration range. Increased barrier molecule concentration

leads to the formation of a statistical distribution of aggregate barriérs e

of two, three or more adjacent barrier molecules and the nature of the
transmission.process which sets the relative transmission coefficients
for the different barriers becomes extremely important. At.sufficiently
low temperatures, exciton transfer between Tocalized trap states isv |
determined by résonant tunne1ing. Fig. 5 i]]ustfates this process for

tunneling from single traps.

If the intermolecular interaction, B, is the same for both
components, as in isotopic mixtures, the interaction energy between two

traps separated by n barrier mo]ecu]egv is

(19)
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where A 1is the trap depth, A simple - quantum mechanica] resonance

model predicts a transfer time across the barrier.
T, = h/a8, | - (20)

Because the width of the bakriers is so critical to the-transmission
time, the system may be treated within the concept of a hierarchy
of barriers. The interval Between single barriers will contain S]

'Unperturbed trap molecules,
S = | (@

where X ié the barrier molecule mole fraction. A random isotopic
distribution is assumed. On the nexf step of the hiérarchy, the

1hterva] between double barriers contains S] intervals bounded by two
single barriers or a single barrier and a double barrier, as in Fig 2 (b).
Likewise, the interval between triple barriers contains S] interva1§
bounded by doub]é bakriers and so prth. The important requiremeht

in order to apply this'framework to exciton dynamics is that the

matrix element for tunnelling through a barrier n molecules wide,
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Bn,'is so much 1arger than the matrix element for passfng throdgh a
barrier n-1 molecules wide, that all smaller intervals within a
1afger‘interva1 will be visited by the exciton before it escapes from
the Targer interval. This equivalent to the requirement that T<< 1
where T %= B/A, so that nb correlated motions need be considered
and exciton transfer between intervals may be treated by simple
random walk statistics.

In the first.seétion, an expression for the effective tunneling
time thru a single barrier, T%, was derived. According to the
" hierarchy of barriers argument, the expression for a double barrier,
rzc, can be derived assuming that the basic unit between two couble
barriers is not a single trap molecule, but an extended trap state

between two single barriers. In such cases:

C 2

T2

<> = naf/as x (22)
The higher terms are derived analogously, with the tunneling time

across an n molecule wide barrier determined by a random walk between
intervals surrounded by n-1 mo]ecu]e wide barriers. The general term -

is given by:

. C _h [(A\n~ |
'?n T 4R (Bx ) (23)
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B. Energy Partitioning Between Mobile and Stationary States.

The‘ tunne1ing model with its characteristic times can be applied
to the problem of energy partitioning betweeks“mobile"’trap states;
out of which the exciton may tunnel, and "stationary" trap stetes, in
which the exciton is trapped over‘the excited state 1jfetime. Figure 6
shows schematically the potential surface of such a ternakx system.
The model proposes that'excftons are unabie to pass through barriers
n+] or more host molecules wide during the excited state lifetime.
The excitons sample intervals between barriers of n hosts accofding
C; ahd a

to random walk statistics with a characteristic jump time T,

- limiting excited state lifetime, T. The effect of smaller barriers is

incorporated within Tnc. The fraction of exciton population reaching
a stationary trap is a function of the number of sites visited and

the site probability (or mole fraction) of the stationary trap, X -

 Let h be the fraction of excitons which do not have access to
a stationaryvtrap unless they cross an n+l molecule wide barrier and ty

be the concentration of barriers n+l molecules wide or wider. Ch

and t, are given by:

_ .Xn+](]_x) | . | (24)

O
"

v ' X
n [(t,;-n/tr’,] S ~(25a)

while,

! 1+l = / v
xS/tn xS/tn Xg tn<< 1, | (25b)
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and ch converges rapidly for large x; and t;. X; and th are the number

of stationary traps and'impassable bafriers, respectively, in an afbitrari]y
large volume of the system. té is also the number of intervals between
impassable barriers. The probability that one such interva] in the
arbitrarily large volume will not contain a stationary trap is the number

of ways of distributing x; traps in all the other tﬁ -1 interva]ﬁ,

(t; _])x;’ divided by the number of ways of distributing these traps

/
in all the intervals, t_ Xs. If x;; t|'1>>103

> Cp will be very close to
the infinitely large volume result.

The average number of intervals between n-wide barriers sampled is
18

estimated ~ as 1.60 T/Tﬁ , s0 the number of sites sampled, N is

N=1.60 TS x (1-x)"! (26a)

The number of sites between the two impenetrable n+l-molecule wide barriers
is given by N2 (and represents) the maximum number of sites an exciton may

sample within this model. This is given by:

(26b)
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so the smaller of the two quanfities, Nmin must be used to derive the

percentage of population that reaches a stationary trap before decaying,

Nstat,

. If unit trapping efficieqcy is assumed, then the normalized population

Ntota]

"probe"]5 (stationary site) is given as:

(Nstat/NtotaT ) - (T'Cﬁ)jz:: Xs (]'xs)i (27)
C =0
where (1-cn) is a factor that accounts for those excitons which do not
have a stationary trap accessible to them.

If the fractional pdpu]ation of the stationary trap is plotted
against the guest mole fraction, the statistical treatment of the

tunneling model is characterized by a sharp transition from low to
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high stationary trap population as shown in Figure 7. These curves

are surprisingly similar to those for the onset of macv‘oscopic]0
percolative conduction in.two- and th%ee—dimenéiona] systems. Figure 7
showé that when the stationary trap population, Xg s is reduced,
approaching a limit where the exciton mustvtravel a macroscopic
distance to reach a stationary trap, the transition threshold becomes
more sharply defined. In percolation theory, a similar sﬁarpening
takes place as the size of the interconnected clusters increases.
Variations of other parameters, such as excited sfate 1ifetime, T, or

barrier size limit, n, does not qualitative1y'change the nature of

the single sharp concentration threshold . This is illustrated in Figure 8.

C._ Indirect Transfer in Substitutionally Disordered Systems.

Thermal detrapping and migration along host band states is an
important alternative mechanism for exciton transfer a]ong a substiiutiona]]y'
disordered potential surface. Fayer.and Harris 9 -proposed a two-step
model for therma1 promotfon whefé the trapped exciton is first promoted
to a sfate degenerate with the host band and then decays into the

manifold of band states, with the combinéd rate'given by

2 . ~
Kex = po <nle)>p [<tP(e) | Bppl Ty P(e-E,)>|°
sl<r; Ple-B)) | kP(e-E)>|? pB) [28]

where the matrix elements represent coupling of exciton with phonon

and exciton-phonon complex with band, respectively. T is the trap state,



DWW BHL 790 B o
21

T, is the exciton-phonon excited state, and k is a host band state.
The rate of thermal promotion to the band must be distinguished
from the rate of exciton migration to another trap. Few experimental
determinationggof the ratio of these rates given by the migration .
efficiency o are available. If thekproblem of migration through the
real barrier band states is treated és a,one-dimensioné] réndom walk
with absorbihg barriers i.e. the trap states,‘the_efficiency a is

given by,

1

T (295

where n is the barriervwidfh. One notes that a increases as the
barrier width n decreasesvor as the exciton coherence 1ength.in the band
increases. Since the coherence length is a strong function of exciton-
phonon coupling and therefore of temperature, o is temperature dependent
as well as concentration-dependent. This effect will not be considered
in detail here'a1though it can be incorporated parametrically into
the equations. |
An energy partitionihg mode1 for transfer by fherma] promotipn
can be prdposed which is a one-dimensional randombwalk where the.
characteristic effective jump time across an average barrier is
<K;l' a°]>. Certain assumptions are made. (i) K.y is independent
of barrier width and may be expressed as a constant times a Planck
_distribution function for the phonon density of states at the barrier
height A §_ e, | |

-y -DKT B (30)
-Kek He :
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(i1} a is averaged over a statistical distribution of barrier widths;

[+

<o> Z‘b: (%T)x‘n-x)? / Z x1(1-x)2 (31a)
=1 i=1
w = J?} [m () - ] | | (31b)

and (iii) unit trapping efficiency is assumed. As in the tunneling
model, the number of jumps made is the exciton lifetime divided by

the jump time '<K;l o

>, Finally, (iv) thermal promotion is the rate
limiting step in exciton transfer, as opposed to diffusion within
~trap or band. The number of intervals. sampled goes as the square

root of the number of jumps, and the number of sites sampled, N, is

N=1.60 ﬁ, K, <o x"](1-X)'_], (32)

hence,
- N - .
Notat = Z x (1-x)’ (33)
T~ ,

total i=z0

Representative curves are shown in fig 9. Note that Nstat/Ntotal

~ is now temperature dependent with an activation energy of A/2 because of

the square root in N. In these cases the temperature dependence of the "probe”

site would show a composition independent activation energy A/2.
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D. Hybrid Transfer

As we have shown resonant tunneling between exciton-phonon complexes
across a barrier contributes signifiéant]y to the overall tunneling rate.
However as the population of phonon states dgcreases with increasing
energy, fewer statés are promoted. The decrease in effective barrier
- height upon promotion results in an enhanced tunneling rate. This
effect becomes more important as the barrier width increases. The
quantum mechanica] rate, k(n,e), from an energy € above the original trap
state (fig. 10), is given as the Boltzmann average over ¢ from 0 to A-§,
* where A-§- 15 some energy below the barrier band states. Equations (19)
and (20) still hold in this case and hence the averaged rate is given

by: |
- A= no | -1 —e/k'r 8-8 ¢/
<k(n)>_ = ——— (A-€) e de e de [34]
€ 4Bn+1
0 o] .

The hierarchy of barriers argument used in section IIIA must be envoked in
the limit where-kT<< A, if it is valid for the same.parameters in the
pure tunneling model. In the high temperature 1fmit, the thermal promotion
model of section IIIB is more approbriéte and the eséape time from an

“interval bounded by -n- molecule wide barriers is given as

T, = x'"/<k(n)>e | . ' ' (35)
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Equations (24) through (27) may be used to calculate the energy partitionfng
ratio incorporéting equation Tﬁ of equatfon (35). Representative |

curves are shown in Fig. 11. An interesting result of this model is that
the tunneling model now shows an activation energy and the value experi-
mentally measured will be a function of concentration (Fig. 12). This

may bé séen physically as follows. A wide barriz~ will show a larger
effective activation energy, <e> than a sma]] barrier. Quantitatively,

<>’ is given as:

IR A=8 |

A-6 -e/kT ~e/kT
<e> =f. (e) k(n,e)e de f kin,e)e de  (36)
. fe) ‘ (o] . .

because activated tunneling becomes more favorable as n increases. As
the barrier molecule concentration, x, grows, the effective activation
energy averaged over the statistical distribution of barriers, <«<e>> s

grows

o ) © .
" 2 n.. 2
<<e>> = Z <e>'x (1-x)_/2 x (1-x) [37]
n=1 _ n=1 | '
because the distribution shifts to larger n and more wide barriers.
Similarly, Fig. 12 shows that this expression for the average activation

energy will be a strong function of temperature. Higher temperatures
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will increase transmissidn rates through wide, high activation energy

~ barriers dispropoftionate]y, thus increasing the average activation
energy. The net result is that the tranéfer of excitations proceeds via
tunneling at the low barrier limit to thermai promotion at the other
limit., This is fhe physical basis for the apparent activation energy
being dependent on the composition of the crystal. This is an imborténtv
prediction and will be dealt with in a more detailed fashion in the |
forth (:»oming]6 experimental study of energy transfer in one-dimensional

disordered system.

IV. DISCUSSION AND SUMMARY

- Explicit expressions for energy—partitioning ratios in a quési-binary
(low stationary trap concentration) system derived'in the previous
section draw a sharp distinction between the thermal promotion mode],-
on one hand, and the pure and hybrid tunneling models, on the other.
The enhancement of communication between localized trap étates by
“exciton tunneling tﬁrough virtual states of the host is a strong function
of the width of the ‘intervening barriers and shows a relatively sharp
coﬁcentration dependence. The detrapping model and ité energy partitioning
ratio depend primarily on the number of barriefs, which is symmetric in
the guest-host compdéition,-and only secondarily on the barrier widths.
The_prob]embmay be reduced to an avérage barrier width (and average trap
width) much like the simple disdrderédlsystem of section II. Averaging
procedufes“in ai]'modeTs require; bf course, that the exciton visit many

sites before decaying.
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We have not dealt with the effects of coherencé and incoherence
in heavi]y disordered systems. Incoherent effects at barrier is expected
to be extremely important in such cases,'severly.limiting long.rangé
exciton diffusion. The effect qf coherent wavepacket propagation will
be attenuated by_the high concentration of scatterers resuiting in a
localization of k states even within the intervals of pure guest or

host molecules.

In practice, both models Qf{exgiton migration may be simultaneously
effective.and should properly be treated as competing processes;
Rea]istica11y, the tunneling model must in;]ude the oécasiona] detrapping
event which does not behave within the hierarchy of barriers structureﬁ.
and the thermal promotion model should include the correlations induced
by the remaining bias towards transmission through the smaller of two
confining barriers. Additiona]]y; both models lose validity as the
ama]gahation'limit is approached closely. Tﬁe question of.coherent
~ migration in amalgamated bands is of particular interest and will be
dealt with later. Here we have dealt implicitly with the region
where g<<A, but extension to an intermediate bandwidth region reauires
only an additional averaging for promotion or tunneling rates convolved
with a Boltzmann distribution of initia] and final states. The flexibility
of the models proposed hefe, which include the quantum mechanical
wavépacket properties of energy transfer, allows treatment of ternary and
more complex systems. The energy transfek properties of any one-.
dimensional substitutionally disordered system in which the interactions
between Tow energy or conducting sites are known are aécessible. A

future paper in the series 16 will deal with experimental results for



Q D‘J G0 94 &7 70 £ jo é;’]’i) 2{2 9
' -27-

sing]et_and triplét exciton transfer in an isotopically mixed pseudo-one-
dimensional conductor, ],2,4,5-tetrach16robenzene. We note also thaf
some of the ideas-preéented here, when extended to random walks in two
or three dimensioné may be useful in understanding energy transfer in
higher-dimensional systems where the mobile trap concentration is well
below the percolation threshold and transfer between clusters is

mediated by host barriers of varying width.
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Figure 1: Model of disordered systém with periodic distribution of
potential barriers. Crosses represent molecular sites along a one-
dimensional cyrstal lattice axis.

Figure 2: (a) Escape process from interval bounded by monomer barriers.
(b) Escape process from interval bounded by dimer barriers.

Figure 3:  Population distribution for one-dimensional random walk with
ref]ecting barriers. N equals number of jumps. Interval width
(S]-mo1ecu1ar sites) is 10 for purposes of illustration. Exciton
position is O for N = 0.

Figure 4: Diffusion coefficients vs. barrier transmission probability
for one dimensional simple disordered system.

Figure 5: Resonant tunneling between traps separated by one, two, and
three host molecules.

Figure 6: Model of potential surface for energy-partitioning studies.
Depth of stationary trap is much greater than kT.

Figure 7:° Resonant tunneling model: fraction of'population reaching
stationary trap vs. mobile trap mole fraction. Stationary trap
concentration is varied. (n = 4, 8 = 0.3 cm'], A =21 cm'l, T = 25 msec.)

Figure 8: Resonant tunneling model; fraction of population eaching
sﬁationary trap vs. mobile trap mole fraction. Excited state lifetime
and maximum penetrable barrier size are varied. (xS = 0.002, 8 = 0.3 cm'],
A =21 cm']; for n = 3, T = 25 msec)

Figure 9: Thermal detrapping model;.fraction of population reaching
stationary trap vs. mobile trap mole fraction. Temperature is varied
(XS = 0.002, H=3 x 10105-], B = 0.3 cm_], A= 21 cm-], T = 25 msec)

Figure 10: Model for hybrid tunneling.

Figure 1: Hybrid tunneling model; fraction of population reaching
stationary trap vs. mobile trap mole fraction temperature is varied
(X, = 0.002, 8= 0.3 cm™, A=21cm, T =25msec, n = 4)

?igure 12: Calculated activation energy for hybrid tunneling. (parameters
are the same as in Figure 11) ' '
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