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Abstract

The Discrete Cosine Transform (DCT) is used in the MPEG and JPEG compression standards. Thus, the
DCT component has stringent timing requirements. The high performance which is required cannot be achieved
by a sequential implementation of the algorithm. In this report, we explore different optimization techniques
to improve the performance of the DCT. We discuss various pipelining options to further reduce the latency.
We present a transformation of the algorithm that reduces the memory requirements and hence, reduces the
cost of the implementation. We also describe RT-level implementations of the sequential, pipelined and memory |
optimized designs. |
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Abstract

The Discrete Cosine Transform (DCT) is used in the
MPEG and JPEG compression standards. Thus, the
DCT component has stringent timing requirements.
The high performance which is required cannot be
achieved by a sequential implementation of the al-
gorithm. In this report, we explore different opti-
mization techniques to improve the performance of the
DCT. We discuss various pipelining options to further
reduce the latency. We present a transformation of the
algorithm that reduces the memory requirements and
hence, reduces the cost of the implementation. We
also describe RT-level implementations of the sequen-
tial, pipelined and memory optimized designs.

1 Introduction

In recent years, a considerable amount of research has
focussed on image compression. Compression plays a
significant role in image/signal processing and trans-
mission. Discrete Cosine Transform (DCT) is a type
of transform coding that has a better compressional
capability for reducing bit-rate as compared to other
techniques like predictive or transform coding [1].
DCT is part of the JPEG (Joint Photographic Ex-
pert Group) and the MPEG (Motion Picture Expert
Group) compression standards. Recently, DCT has
been proposed as a component in the HDTV (high-
definition television) standard that might replace the
NTSC [2].

There are strict requirements on the performance
of the DCT and the IDCT (Inverse Discrete Cosine
Transform) components since they are part of the
JPEG and MPEG encoders/decoders. The timing
constraint on the DCT component can be computed

from the MPEG standard [3]. Each picture in the
MPEG standard consists of 720x480 pixels which im-
plies that there are 1350 macroblocks/picture since
each block is 16x16 pixels of the display. The pic-
ture rate is 30 frames/sec and hence, the MPEG
decoder must process 40500 macroblocks/sec. Each
macroblock consists of four 8x8 illuminance blocks
and two 8x8 chrominance blocks. Thus, the rate
is 40500x6=243000 blocks/sec. This translates into
a timing constraint of 4115.22 ns/block. To be on
the safe side, we impose a timing constraint of 4100
ns/block on our implementations for the DCT compo-
nent.

The report is organized as follows. The formal spec-
ification of the DCT algorithm and a software imple-
mentation in C is given in Section 2. The sequential
hardware implementation and optimizations like loop
unrolling, chaining and multicycling are described in
Section 3. The different pipelining options are dis-
cussed in Section 4. We then present a memory opti-
mized algorithm and the pipelined version of this al-
gorithm in Section 5. We compare the different opti-
mization and pipelining techniques in Section 6. We
finally conclude our exploratory study in Section 7.

2 Specification of the DCT

The generic problem of compression is to minimize the
bit rate of the digital representation of signals like an
image, a video stream or an audio signal. Many appli-
cations benefit when signals are available in the com-
pressed form. Discrete Cosine Transform (DCT) is a
way of transforming the signal from spatial domain to
frequency domain which can then be compressed us-
ing some algorithm like run-length encoding [5]. The
details of its use as a lossy compression algorithm are




given in [1, 4].

In this section, we discuss the fundamentals of the
Discrete Cosine Transform and give the formal defi-
nition of the algorithm. In Section 2.1 we give the
mathematics and show how the algorithm can be de-
composed into two matrix multiplications. This is fol-
lowed by the C source code to compute the DCT in
Section 2.2.

2.1 Mathematical Specification

As discussed above, DCT is a function that converts
a signal from the spatial domain to the frequency do-
main. In this report, we primarily look at the two-
dimensional transform that takes an image that has
been digitized into pixels as its input. Most of the
theory and implementation remains the same when it
is used with other signals such as audio.

The formal specification of the 2-D DCT operation
is as follows [4].

N—-1N-1
_ ¢(m)e(n)
F‘uu == —4_‘ Z
m=0 n=0
2m+ur (2n+1)vr
[fmn 008~ ——C08 "

where:

u,v = discrete frequency variables such that (0 <
u,v< N -1)

fmn = gray level of pixel at (m,n) in the N x N
image (0 <m,n < N —1)

F.v = coefficient of point (u,v) in spatial frequency
domain

¢(0) = 1/v/2 and ¢(m) = 1 for m # 0.

In typical designs (like the MPEG standard), the
image is sub-divided into 8 x 8 blocks of pixels. We also
use a value of N = 8 in this example. Furthermore,
let CosBlock be a 8 x 8 matrix defined by
(2n + 1)umr

TR

An important property of the cosine transform is
that the two summations are separable. Thus, it can
be shown that

OutBlock = CosBlock x InBlock x CosBlock™

CosBlocky, = round(factor * (%cos

where InBlock is the input 8 x 8 block of image, f.
OutBlock is the output matrix in the frequency do-
main F' and CosBlock is defined above. The DCT

can, thus, be modeled as two 8 x 8 matrix multipli-
cations. These matrix multiplications (MM) can be
serialized in time.

TempBlock = InBlock x CosBlock™  (MM1)
OutBlock = CosBlock x TempBlock (MM2)

The DCT transformation can then be modeled as two
processes. The first process completes the first matrix
multiplication and generates the 8 x 8 TempBlock ma-
trix. The results of this matrix multiplication is then
used by the second process that generates the final
output matrix, OutBlock. Both processes have an in-
ternal copy of the C'osBlock matrix.

2.2 DCTin C

DCT can be computed in software by doing two matrix
multiplications. The code to compute the DCT in C
is given below. The incoming image, InBlock, is an
8 x 8 array of integers and the DCT is in the frequency
domain, OutBlock, again is an 8 x 8 array.

1 int  CosBlock[8][8];

2

3 void MatrixMult (int a[][8], int b[][8],
4 int c[]1(8]) {

5 register int i, j, k;

6

7 for (i=0; i<8; i++)

8 for (j=0; j<8; j++) {

9 c[il[j]l = 0;

10 for (k=0; k<8; k++)

11 c[i1[j] += alillk] * blk1[j1;
12 }

13 3}

14

15 void Transpose (int a[]l[8], int b[1[81) {
16 register int i, j;

17

18 for (i=0; i<8; i++)

19 for (j=0; j<8; j++)

20 b[j1[i] = alil[j];

21 3}

22

23 wvoid DCT (int InBlock[][8],

24 int OutBlock[][8]) {

25 int TempBlock[8][8], CosTrans[8][8];
26 Transpose(CosBlock, CosTrans);

27

28 /* TempBlock = InBlock * CosBlock™T */
29 MatrixMult(InBlock,CosTrans,TempBlock);
30

31 /* DutBlock = CosBlock * TempBlock */
32 MatrixMult (CosBlock,TempBlock,OutBlock);
33 1}



Each matrix multiplication is a triple-nested loop.
First the transpose of the CosBlock matrix is calcu-
lated and then the InBlock is multiplied with this
transpose. The CosBlock is then multiplied with the
result of the first multiplication. The code is obvi-
ously sub-optimal and several optimizations are pos-
sible. However, it has been used here to provide an
unambiguous and simple definition to the DCT prob-
lem.

3 Design Space Explorations

The DCT component can be designed in a large num-
ber of ways. Each design incurs varying performance
in terms of area and delay. In this report, we explore
some of the options and discuss some common opti-
mizations that can be used to speed up the design
without incurring large area penalties.

We first tabulate the speed and cost parameters for
component from our RT-level library in Section 3.1.
We start the design exploration with a sequential de-
sign in Section 3.2. We then discuss some optimiza-
tions beginning with loop unrolling in Section 3.3 fol-
lowed by chaining in Section 3.4. Then in Section 3.5
we describe multicycling.

3.1 RT-level Library Components

During our design exploration for the DCT we will
implement the algorithm using register transfer level
(RTL) components like registers, counters, adders,
multipliers, multiplexers and so forth. These compo-
nents are taken from a RTL library that maps these
components to their gate level equivalents. The li-
brary also stores the delay and cost parameters asso-
ciated with each component. The delay parameter is
the critical path (in ns) of the component. The cost
parameter is the area cost in number of transistors
required for the component.

We list the components used for implementing the
different designs in Table 1. This library is described
in [6]. However, we have scaled down the delays of
all components by a factor of 10 since technology im-
provements have increased the speed of gates [7]. The
delay of an inverter is now 0.1 ns compared to 1 ns
used by the library of [6]. The delay in the second
column gives the worst case delay from input to out-
put for a single signal change. The delay of pipelined
components is represented by the delay of the longest

Table 1: Parameters for RTL components

Component '?ne lr‘lz in tgg.tns
16 bit selector 0.4 224
32 bhit selector 04 448
16 bit CLA adder 2.1 1074
32 bit CLA adder 2.9 2148
8 bit multiplier 5.6 3562
8 bit multiplie
3 stage pipg 2 3.5 4210
8 bit Itipli :

4 Stlagrglé)iyl)% i 2.7 5218
16 bit multiplier 8.8 11220
16 bit multipli

2 stage pg{pg’ - 5.4 12624
16 bit multipli

4 stf;gerr]l)lipép > 3.5 15036
8 bit register 04 256
9 bit register 0.4 272
16 bit register 0.4 512
9 bit counter 2.5 414
64x16 RAM 3.5 6144
64x8 ROM 3.5 2048

stage. The delay of storage components is the aver-
age of read and write times. The third column gives
the number of transistors required to implement each
component. These numbers are based upon the cost
incurred by the basic gates (nand, nor and inverter)
as discussed in [6]. This RTL library will be used to
determine the performance of the various designs dis-
cussed in following sections.

3.2 Sequential Design

The DCT can be implemented as a sequential design
in which only one operation is done during each clock
cycle. This design is the slowest since there is no con-
currency in execution of operations. However, this
design is a good starting point for exploring different
design alternatives. It is naturally developed from the
software specification and has a simple controller.

As pointed out before the DCT consist of two ma-
trix multiplications which are computationally iden-
tical. The sequential design does not attempt to do
these matrix multiplications together. Thus, we dis-
cuss only one of matrix multiplication with the under-
standing that both the multiplications are done in the
same manner. The Algorithmic State Machine (ASM)
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Figure 1: ASM chart for sequential matrix multiplication



chart [8] for an 8 x 8 sequential matrix multiplication
is shown in Figure 1.

Sequential matrix multiplication can be imple-
mented using RT-level components as shown in Fig-
ure 2. This design implements a single matrix mul-
tiplication and can be extended for implementing the
actual DCT algorithm which consists of two serialized
matrix multiplications.

A behavioral model of the sequential design in
VHDL is given in Appendix A. The test bench for
verifying the design is given in Appendix C. The struc-
tural model of DCT is comprised of a controller and a
datapath. The schematics and VHDL model are given
in Appendix B. Note that Figure 23 in Appendix B
gives the complete datapath while Figure 2 only de-
scribes a single matrix multiplication. However, the
basic datapath remains the same. The complete DCT
datapath has an extra memory, and the input to the
A register comes from a multiplexer since the source
is InBlock memory during the first matrix multipli-
cation and TempBlock memory during the second ma-
trix multiplication. Furthermore, Figure 2 includes
the controller while Figure 23 in the Appendix does
not include the controller. Figure 2 is used as an ex-
ample and for calculating the hardware costs of the
design.

The ASM chart for the sequential matrix multipli-
cation design can be partitioned into 4 states. Each
state corresponds to a clock cycle. The clock period is,
then, determined by the maximum delay in any of the
states. Thus, from our RT-level component library, we
can determine that the required clock period will be
8.8 + 0.4 = 9.2ns (as determined by the slowest state
that has the multiplier). This leads us to calculate
the time required for the entire DCT computation as
follows. Note that each loop has 512 iterations and
hence the total number of iterations is 512x2=1024.

# states =4
clock period = 9.2 ns
# iterations = 1024

Latency = #£states x clock x #iterations
= 4x9.2x1024 = 37683.2 ns

The cost of the design in terms of tran-
sistors can be calculated using the cost values
of the RTL components from Table 1. The
cost of the datapath components is as follows:
CosBlock=2048, A=512, B=512, multiplier=11220,
P=1024, Sum=1024, adder=2148, selector=448,

TempBlock=6144, counter=414. Thus, the total is
25494 transistors. We do not include the storage re-
quirements for the InBlock and OutBlock matrices.
These matrices are the input and output of the DCT
component and may be accessed using RAMs or FI-
FOs in sequential or burst modes. The controller has
a 4 bit register (128), a decoder (168) and some gates
(102). The total is 398 transistors. Thus, the design is
clearly data-dominated since there is an order of mag-
nitude difference between the number of transistors
required for the datapath and the number for con-
troller. We, therefore, ignore the controller cost from
consideration. Hence, the cost of the sequential design
is 25494~25K transistors (since the transistor cost is
not exact, and we are interested only in comparing
designs, we round off the cost to 1000 transistors).

It takes 37683.2 ns for the sequential design to com-
pute the DCT for an 8 x8 input image block. This de-
sign is obviously too slow. We next explore different
optimizations techniques to reduce the latency of the
design.

3.3 Loop Unrolling

A design often spends most of the computation inside
a loop. Such designs can typically be speeded up by
unrolling the loop n of times. This implies that the
loop is modified so that n iterations in the loop of the
original design are now done in 1 iteration of the loop.
Thus, the total number of iterations in the loop of
the design go down by -}; (with appropriate boundary
conditions). The obvious requirement for unrolling the
loop is availability of n times the hardware since the n
iterations which were done sequentially in the original
loop are now done concurrently.

Consider unrolling the inner-most loop of the se-
quential matrix multiplication by 2. The ASM chart
for 2-unrolled is shown in Figure 3. Two values each
from the A and the B matrices (A[i] [k], A[i] [k+1]
and B[k] [j1, B[k+1][j] respectively) are read con-
currently. In the next clock cycle, A[i] [k] is multi-
plied by B[k][j] and A[i] [k+1] by B[k+1] [j] con-
currently. It is clear from the ASM chart that each
iteration of the loop does double the computation and
the number of iterations is reduced by half since count
is incremented by 2.

The effect of unrolling the loop is an increase in the
hardware requirements. Twice the number of regis-
ters, multipliers and adders are required. If the loop
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A1 = a[i][k], B1 = b[K][j]
A2 = a[i][k+1], B2 = b[k+1][j]

c[i]ljl = Sum

S5

Y

Figure 3: ASM chart for 2-unrolled matrix multiplication




includes memory accesses (as is the case here), un-
rolling a loop will also increase the bandwidth require-
ments for the memory and multi-port memories will
have to be used. The datapath for a 2-unrolled matrix
multiplication design is shown in Figure 4. The hard-
ware requirements for the loop unrolled implementa-
tion increases as shown in the figure. A dual-port
memory is required to read two data values in the
same clock cycle. In addition, two multipliers, two
adders and four registers are required. Consequently,
the hardware cost increases, as evaluated below.

The number of states in the loop increase to 5 com-
pared to 4 in the sequential non-optimized design, as
shown in the ASM chart of Figure 3. However, the
number of iterations required is reduced by half. Thus,
each matrix multiplication requires 256 iterations in-
stead of 512. The total number of iterations for DCT
is then, 256 x2=>512. The clock period is the same as
that for the sequential design. It is 8.8 + 0.4 = 9.2ns
(determined by the slowest state that has the multi-
plier). The latency of the design can then be computed
as follows.

# states =35

clock period = 9.2 ns

# iterations = 512

Latency = #statesxclock x #iterations
= 5x9.2x512 = 23552 ns

The additional cost of the 2-unrolled design can
be computed as follows: dual-port RAM=8092-6144,
A2=512, B2=512, multiplier=11220, P2=1024,
adder=2148, Sum1=1024. Thus, the total cost for the
2-unrolled design is 43882~44K transistors.

3.4 Chaining

It is almost never the case that the delays of states
in a design be identical. The delays are, most often,
not even nearly equal. However, the clock period is
equal to the worst register-to-register delay. The worst
register-to-register delay path goes through the slow-
est functional unit and hence, other faster functional
units use only a part of the clock period and are idle
for the remaining. This clearly slows down the design
and is inefficient since some units sit idle.

A common technique to reduce this wastage is
chaining of two or more functional units. Consecu-
tive states with functional units whose total delay is
comparable to the maximum delay (the clock period)

can be combined together into one state. This has
the effect of reducing the number of states in the loop
and hence, improving performance. It is not necessary
to keep the clock period same. It may be possible to
chain states even if the cumulative delay is more than
the original clock period if this still leads to a net im-
provement in the performance which is determined by
both the number of states and the clock period (La-
tency = #states x clock x #iterations).

The basic idea behind chaining is shown in Figure 5.
The multiplier in Figure 5(a) is the slowest component.
States S3 and S4 take much less time and are idle for a
part of the clock duration since the delay of an adder
is less than that of a multiplier. The two states can be
chained into one state as shown in Figure 5(b). The
number of states decreases by one and the register
between the two states is removed. The controller is
also modified. The net effect is an improvement in the
performance.

Chaining can be done in the 2-unrolled design from
Section 3.3. The ASM chart for the wunrolled and
chained design is shown in Figure 6. The number of
states is reduced from 5 in the only-unrolled design to
4 because of chaining. The clock cycle remains 9.2 ns
since two additions and selection can be done within
this time period. The ASM chart is for a single matrix
multiplication. The latency of a DCT component that
is 2-unrolled and chained can be computed as follows.
Note that each loop has 256 iterations and hence the
total number of iterations is 256 x 2 = 512.

# states =4
clock period = 9.2 ns
# iterations = 512

Latency = #statesxclock x #iterations
= 4x%9.2x512 = 18841.6 ns

Chaining only reduces a single register (1024 tran-
sistors) from the design. Hence, it does not reduce the
cost by a large margin. The cost for the 2-unrolled
chained design is consequently 41K transistors.

3.5 Multicycling

In the previous section, we discussed how operation
may be chained so as to reduce the number of states
in the iteration loop if the delays of the states are not
nearly equal. Another possible alternative is to split
the longer state into 2 or more states. This is called
multicycling because the operation now takes multiple
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(a)

clock cycles to complete. Even though the number of
states increases as a result of multicycling, there can
still be an advantage due to the decrease in the clock
period.

Multicycling is useful because it decreases the clock
rate which may be based on other system parameters.
It can be used together with loop unrolling and chain-
ing. Multicycling may be useful even when it does
not lead to a large reduction in the clock period if the
number of states is large. This is because the increase
in number of states is more than offset by even the
small reduction in the clock period.

The ASM chart for an unrolled, multicycled design
is shown in Figure 7. The multiplier has been mul-
ticycled into 2 states S2 and S3 since multiplication
the slowest operation. Note that multicycling does
not required a change in the datapath of the design.
Only the controller needs to be modified. An extra
state is added in the controller and the output of the
multiplier is latched one clock cycle later. Thus, the
design can be operated at a clock period of 4.6 ns (=
9.2+2) since the multiplier gets two cycles for comple-
tion. This leads us to compute the overall latency of
the DCT design as follows. Note that each loop has
256 iterations and hence the total number of iterations
is 256 x 2 = 512.

10

(b)

Figure 5: Chaining short operations: (a) before chaining (b) after chaining

# states =6
clock period = 4.6 ns
# iterations = 512

Latency = #statesxclock x #iterations
= 6x4.6x512 = 14131.2 ns

The cost of the multicycled design remains the same
as that for a 2-unrolled design, i.e., 42K transistors.

4 Pipelining Alternatives

In the previous sections, we optimized the design by
techniques such as loop unrolling, chaining and multi-
cycling. This improved the performance of the DCT
design. Further improvement is possible using the
standard technique of pipelining. In the following sec-
tions, we try to improve the performance by pipelining
the DCT core which consists of the two matrix multi-
plications as given in lines 59-110 of Appendix A.

There can different levels of pipelining. We describe
process pipelining in Section 4.1. We then look at loop
pipelining in Section 4.2 and functional unit pipelining
in Section 4.3. In Section 4.4 we describe a design in
which the second matrix multiplication is started be-
fore the first one is completed. Finally, in Section 4.5
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Figure 6: ASM chart for unrolled and chained matrix multiplication
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we present a complete design using a “distributed con-
troller” model.

4.1 Process Pipelining

The DCT algorithm consists of two matrix multipli-
cations serialized in time. In the sequential algorithm
computation of the DCT on a new image block starts
only after both matrix multiplications have been com-
pleted. Only one of the processes is active at a time.
However, both processes can be made to operate con-
currently on different sets of data. The first process
performs the first matrix multiplication and generates
the TempBlock matrix. The second process uses this
TempBlock and performs the second matrix multipli-
cation. Concurrently with this, the first process starts
computing on a new image block. The two processes
are called the pipeline stages as shown in Figure 8.

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

A := In(i, k); B := Cos(3i, k);
P i= A * B;
if (k=0) then
Sum 1= P;
else
Sum := Sum + P;
end if;
if (k=7) then
Temp (i, j) := Sum;
end if;
end loop;
end loop;
end loop; Stage 1
EZ =
for i in 0 to 7 loop Stage 2
for j in 0 to 7 loop
for k in 0 to 7 loop
A := Temp(k, j); B := Cos(i, k);
P := A * B;
if (k=0) then
Sum := P;
else
Sum := Sum + P;
end if;
if (k=7) then
out (i, j) := Sum;
end if;
end loop;
end loop;
end loop;

Figure 8: The two stages in process pipelining

Process pipelining requires that both stages (the
two processes) are active together. Thus, same hard-
ware resources may not be used for both matrix mul-
tiplications. The design consequently requires twice
the number of multipliers, adders, registers and selec-
tor logic. In addition, two memories are required for
storing the TempBlock matrix as shown in Figure 9.
In one iteration of DCT computation, stage 1 writes
into RAM 1 and stage 2 reads from RAM 2. In the
next iteration, the memories are switched and stage 1
writes into RAM 2 while stage 2 reads from RAM 1.

The throughput of the process pipelined design is
half that of the the non-pipelined sequential design,
i.e., 18841.6 ns. The cost of the design increases as
suggested by Figure 9. The cost is 50K transistors
since the entire sequential design is duplicated.

4.2 Loop Pipelining

Process pipelining was able to improve the perfor-
mance but incurred a large hardware cost since it re-
quires double the number of functional units and two
memories. An alternative is to pipeline the loop itself.
In the sequential design, an iteration of the loop begins
after the previous finishes. Only state in the loop is
active at a time and the others are idle. The loop can
be pipelined by starting an iteration of the loop every
clock. The states of the loop are now called stages.
Registers latch the intermediate results between the
stages. Such a loop pipelined design is shown in Fig-
ure 10.

Loop pipelining incurs very little additional cost.
Since the two matrix multiplications are serialized in
time, same hardware resources may be used for both
loops and thus, hardware does not have to be doubled
as was the case in process pipelining. All stages are not
active from the start. In the first clock cycle, only the
first stage is active. In the next, the first two stages
are active; the first stage works on data set 1 while
the second stage works on previous data set 0. This
continues till all the four stages become active. This
is pipeline filling and the pipeline is flushed similarly
as shown in Figure 11.

It is difficult to describe a pipelining using the orig-
inal ASM chart. The Extended ASM chart shows only
the state in which all pipeline stages are active. The
filling and flushing states are not shown in the ASM
chart but they shall be executed. An Extended ASM
chart for the loop pipelined design is shown in Fig-



for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

Top Level A := In(i, k); B := Cos{j, k); Stage 1
Controller RAM for P := A * B; Stage 2
InBlock :
if (k=0) then
Sum := P;
Y else
Sum := Sum + P;
Controllgr for end if; Stage 3
first Matrix Datapath i o =
Gt i = then Stage 4
iplication * g
Multiplicatio Temp(i, j) := Sum;
end if;
end loop;
end loop;
end loop;
for i in 0 te 7 loop
V RAM 1 RAM 2 % for j in 0 to 7 loop
for k in 0 to 7 loop
A := Temp(k, j); B := Cos(i, k); Stage 1
P := A * B; Stage 2
if (k=0) then
Sum := P;
Controller for else
second Matrix Datapath Sum := Sum + P;
Multiplication end if; Stage 3
if (k=7) then Stage 4
‘ out(i, j) := Sum;
end if;
RAM for end loop;
OutBlock end loopy
end loop;

Figure 9: Overview of

Clock Cycles —

process pipelined datapath

Figure 10: The stages in loop pipelining

1(2(3[4(5 511|512 | 513 | 514 | 515 | 516 1029 {1030
Stage1 (A=Infillk]; B=Cos[ijik) |0 |1 ]2 (3 |4 510511
Stage? (P=AxB) of1]2]3 509 | 510 | 511
Stage3 (Sum=Sum+P) 0]1]2 509 | 510 | 511
Stage4 (Templi]fjl=Sum) 0|1 509 | 510 | 511
Stage1 (A=Cosl[i][k]; B=Temp[k](j]) 0 2| 3| 4 510 | 511
Stage?2 (P=AxB) ol 1| 2| 3 509 510 | 511
Stage3 (Sum=Sum+P) 0| 1] 2 509 | 510 | 511
Stage4 (Out[i][j]=Sum) of 1 509 | 510 | 511

—~-———— Matrix Multiplication 1

> Matrix Multiplicaton2 ——

Figure 11: Timing diagram for loop pipelining
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ure 12. Thus, the assumption is that in the first clock

cycle, Stage 1 will be executed, in the next clock cycle,
Stage 1 and 2 will be executed and so forth. In order
words, filling and flushing are implicit in the Extended
ASM chart.

The pipeline can also be described using a State
Action Table (SAT) [8]. A SAT can be used to de-
scribe the filling and flushing states also, as shown in
Figure 13. The SAT can be used for implementing
the controller of the loop pipelined design as shown
in Figure 14. Each stage works on a different set of
data and hence, four counters are required. Compari-
son with Figure 2 shows that there is very little extra
hardware cost. The controller has more number of
states and three extra counters are required.

The timing diagram lets us compute the perfor-
mance of the pipelined design as follows. Each loop
requires 3 cycles for filling the pipelining and 3 for
flushing the pipelining. All states are active for 509
cycles. Thus, each loop takes 3 + 509 + 3 = 515 clock
cycles. The clock period remains the same at 9.2 ns.

# states 1

clock period = 9.2 ns

# iterations = 515 + 515

Performance = #tstatesxclock x #iterations
= 1x9.2x1030 = 9476 ns

The loop pipelined design incurs an extra cost be-
cause of the registers for the counter as shown in Fig-
ure 14. FEach register costs 272 transistors from Ta-
ble 1. Thus, the cost of the loop pipelined design is
26K transistors.

4.3 Functional Unit Pipelining

Some functional units may be much slower than the
other components in a design. In such cases, it might
be possible to improve the performance by pipelining
the functional unit. In the DCT design, the multiplier
is the slowest functional unit and can be pipelined.
The pipelined multiplier is divided into 4 stages and
a new data set can be instantiated every clock cy-
cle. The latency of the multiplier essentially remains
the same (it may increase because of the partition
and the intermediate latches) but the throughput in-
creases. A faster clock can be used because each stage
is shorter than the complete multiplier. The stages
with a pipelined multiplier are shown in Figure 15.

for i in @ to 7 logp
for j in 0 te 7 loop
for k in 0 to 7 loop
A:=In(i, k); B:=Cos(j. k); Stage 1

[

Stage?
Stage 3
P S W - T Stage 4
Stage 5
= “ |
if (k=0) then Stage 6
Sum := P;
else
Sum := Sum + P;
end if;
| = s |
if (k=7) then Stage 7
Temp (i, j) := Sum;
end if;
end loop;
end loop;
end loop;
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
A:=Temp(k, j); B:=Cos(i, k); Stage 1
| == 3
35552
Stage 3
ST Sl 5 ¥ Stage 4
Stage 5
= 7
if (k=0) then Stage 6
Sum := P;
else
Sum := Sum + P;
end if;
| = i |
if (k=7) then Stage 7
Temp (i, j) := Sum;
end if;
end loop;
end loop;
end loop:

Figure 15: The stages in functional unit pipelining

It is important to note that functional unit pipelin-
ing requires availability of pipelined functional units
in the RTL-library. The other optimizations were
done using existing RTL components. Functional unit
pipelining also requires availability of data every data
introduction interval of the unit. Thus, there must
be enough computations that can be done using the
pipelined functional unit. If this is not possible, then
the design may be loop pipelined. In our case, there



A = a[i0][k0], B = b[kO][j0]

N Y

k3=7

Y

[ c[i3][j3] = Sum

N
wﬁj:ﬂ 1

countt = count0
count0 = count0+1

count3 = count2

Figure 12: ASM chart for process pipelining
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PRESENT NEXT STATE CONTROL AND DATAPATH ACTIONS

STATE CONDITION, STATE CONTROL, ACTIONS
50 (000) | [ Start=0, so| ooo | [ counto=0 i
Start=1, s1| 001 et
1 (001) s2 o010 | [ A=alio][k0]
B=b[KO][j0]

counti=count0
L countO=count0+1 _|

S2 (010) S3 011 P=A"B

s count2=count1___
A=a[i0][k0]
B=b[kO][j0]
counti=countQ

83 (011) s4 100 | [ke=0, Sum=pP
k2%0, Sum=Sum-+P
count3=count2

A=a[i0][k0]
=b[k0][jO]
count1=count0

S4(100) || count0s511, S4 | 100 | [k3=7, c[i3][j3]=Sum
count0=511, S5| 101 k2=0, Sum=P 7"
k2%0, Sum=Sum+P
s count3=count2 __
P=A"B
e count2=count!___
A=a[i0][k0]
B=b[kO][j0]
count1=count0
L.count0x511,  countO=count0+1 J

S5 (101) s6 110 | [ka=7, ____ clig8]=Sum
k2=0, Sum=P
k2x0, Sum=Sum+P
sl countd=count2 __
P=A"B
L e count2=counti____]
56 (110) s7 1M k3=7, c[i3][i3]=Sum
k2=0, Sum=P
k2x=0, Sum=Sum+P
b oispe count3=count2 __ |
S7 (111) S0 000 k3=7, cli3]i3]=Sum
done=1

DO = (Start AND S0) OR S2 OR ((count0=511) AND S4) OR S7
D1=S10RS2 OR S5 OR S6
D2 = S3 OR S4 OR S6 OR S7

Figure 13: State Action Table for loop pipelining
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is only multiplication in the loop and hence, we need

to pipeline the loop also.

The pipe for each matrix multiplication now con-
sists of 7 stages as shown in Figure 15. The delay of a
multiplier with 4 stages is 3.5 ns from Table 1. Thus,
the clock period is 3.5+0.4=3.9 ns. Each loop requires
6 cycles for filling the pipelining and 6 for flushing the
pipelining. All states are active for 506 cycles. Thus,
each loop takes 6 + 506 + 6 = 518 clock cycles.

# states =1
clock period = 3.9 ns
# iterations = 518 + 518

Performance = #statesxclock x #iterations
= 1x3.9%1036 = 4040.4 ns

The pipelined multiplier is more costly than the
non-pipelined multiplier. It uses 15036 transistors as
opposed to 11220 transistors used by the non-pipelined
multiplier. Thus, the net cost of the design is 30K
transistors.

4.4 Long pipe with both matrix multi-
plications

In all the previous examples, the second matrix multi-
plication was started after the first matrix multipli-
cation was completed. Even though both the ma-
trix multiplications were performed concurrently in
the process pipelined design, yet they operated on
different image blocks. The first process generated
the entire TempBlock matrix and the second process
then performed the second matrix multiplication on
this matrix. However, both multiplications can be
started together, if the two matrix multiplications are
reversed.

In the current algorithm, the second process reads
the TempBlock matrix in a column-wise manner while
the first process generates the matrix in a row-wise
manner. Thus, we can change the order of matrix
multiplications as follows.

TempBlock =
OutBlock =

CosBlock x InBlock (MM1)
TempBlock x CosBlockT (MM2)

It takes 64 iterations of the first multiplication loop
to generate a row (8 values) of the TempBlock matrix
and it takes 64 iterations of the second matrix multi-
plication to consume a row of the TempBlock matrix.
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Thus, the second process can be started after the first
process completes 64 iterations. In this way, both the
processes will be active concurrently. Each process
can, in addition, be loop pipelined since it does not
incur additional costs. With these changes, the DCT
design consists of a long pipe whose timing diagram is
shown in Figure 16.

The timing diagram lets us compute the perfor-
mance of the pipelined design. The first loop requires
3 cycles for filling the pipelining. The second matrix
multiplication is started after the first 64 iterations
are complete. It then takes 512+3 more clock cycles
to finish the DCT. Thus, the total number of clock
cycles required is 3 -+ 64 + 512 + 3 = 582.

# states =1

clock period = 9.2 ns

# iterations = 582

= ##states xclock x #iterations
= 1x9.2x582 = 5354.4 ns

Latency

The cost of the design increases since both the
loops are active at the same time. Thus, the data-
path is doubled as compared to just loop pipelining
(Section 4.2). The total cost is then 52K transistors.

4.5 Pipelined Design with Distributed
Controller

A typical hardware design consists of a datapath and
a controller as shown in the design for a sequential
design in Figure 2. However, the number of states
in the state transition function of a pipelined design
is large because of the filling-up and flushing of the
pipeline stages. Thus, the FSM inside the controller
gets unwieldy and large as in the design for the loop
pipelined design, shown in Figure 14. We next present
a design that uses a distributed model for the controller
which results in a much simpler design.

The controller design complexity can be reduced by
having a separate controller for each pipeline stage.
Since each controller controls just one pipeline stage,
it is only 1-bit wide and can be implemented using a
D flip-flop or an SR latch. A stage is active and com-
putes whenever the corresponding flip-flop is set. The
1-bit single state controllers are themselves connected
as shown in the schematic in Figure 17.

Initially, all the flip flops are reset. Computation
starts by loading ’1’ into the flip flop for Stage 0.



Clock Cycles —— 4 12 |3 |4 |..]|..|65|66|67| 68| 69 511|512|513| 514 | 515| ... | ... | 578|579 | 580 | 581 | 582
Stage1 (A=Cosli]lk]; B=In[k][j]) 0|1]|2 64| 65| 66 510 | 511
Stage2 (P=AxB) 0|1]2 64| 65 510|511
Stage3d (Sum=Sum+P) 0|1 63| 64| 65 509 | 510 [ 511
Stage4 (Tempi][jl=Sum) 0 e 62| 63| 64| 65 509 | 510 | 511
Stage1 (A=Templi][k]; B=Cos[j][k]) 0 444 | 445 510 | 511
Stage?2 (P=AxB) 0 444|445 510|511
Stage3 (Sum=Sum+P) 444 ses 509 [ 510 511
Stage4 (Out[i][jl=Sum) 1 444 509 | 510|511

Matrix Multiplication 1

Matrix Multiplication 2

Figure 16: Timing diagram when both processes are started

Then every clock, this "1’ token is passed to the next
flip flop. Every clock one more pipeline stage becomes
active. This is the filling up of pipeline. When the
computation is over, the SR latch is reset. This 0’
token is then passed to the next stages and they stop
computing progressively. This is the flushing of the
pipeline.

A distributed control design requires a fiip flop for
each pipeline stage. Thus, a minimum of n flip flops
are required if there are n stages in the pipeline. A
single controller will need [logok] flip flops where k is
the number of states. In a pipe with n stages, there
would be n — 1 states for pipeline filling, 1 for the
full pipe and n — 1 for pipeline flushing. Therefore,
the total number of states, k =n—-1+14+n—-1=
2n — 1. The distributed controller design, thus, uses
less number of flip flops, has minimal next state logic
as shown in Figure 17 and is simpler to design. In
such a design, each pipeline stage can be modeled as
a Finite State Machine with a Datapath (FSMD) [8].

5 Memory Optimization

In the previous sections, we did explorations using
the algorithm presented in Section 2.1. This algo-
rithm performs a matrix multiplication on InBlock
and CosBlock and generates the 8 x8 TempBlock ma-
trix. This TempBlock matrix is used for the second
matrix multiplication. However, in most signal pro-
cessing applications like video and speech process-
ing, memory occupies more than 50% of the chip
area [9]. In these type of applications, the chip area
can be reduced more effectively with memory opti-
mizations than with just datapath optimizations. We

next present an algorithm that does not store the en-
tire matrix and uses only 1 word compared to the 64
words required by the earlier algorithm.

The entire TempBlock need not be stored in a mem-
ory if each value of the matrix is consumed as soon as
it is produced. Thus, the two matrix multiplications
have to be interleaved. Each TempBlock element is
used for 8 elements of the OutBlock matrix. Hence,
each TempBlock value is multiplied with the corre-
sponding CosBlock values and added to the partial
sums in the OutBlock matrix. Thus, at any time the
OutBlock only has partial sums. Every time a new
TempBlock value is computed, it is used to update the
corresponding column as shown in Figure 18(b). The
first matrix multiplication loop produces the element
at (¢,7) of the TempBlock matrix. This value is mul-
tiplied with the i*" column of CosBlock matrix, i.e.
elements at (0,%),(1,4),...,(7,7). This generates the
partial sums for the j** column of OutBlock matrix.
Note that every time all TempBlock elements in jt*
column update the j** column of OutBlock matrix.
The complete VHDL behavioral model is given in Ap-
pendix D.

This algorithm requires only 1 word for storing a
TempBlock element since it is consumed as soon as it
is produced. However, the number of memory accesses
increases since the OutBlock stores partial sums and
these must be read and then written back into. How-
ever, this does not decrease performance since the ac-
cesses are in different clock cycles and hence, the clock
period does not have to be increased. The perfor-
mance can then be calculated as follows.

# states = (4x8)+(4x8)=64
clock period = 9.2 ns
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(b)

Figure 18: Memory Optimization: (a) Original algo-
rithm (b) Memory optimized algorithm

# iterations = 64

Performance = #tstatesxclock x #iterations
= 64x9.2x64 = 37683.2 ns

Thus, the performance is the same as for the most
sequential algorithm presented in Section 3.2 but we
have been able to decrease the memory requirements
from 64 words to a single word. Thus, the cost of this
design is 19K transistors.

5.1 Loop and FU Pipelining

The performance of the memory optimized algorithm
can be improved using the techniques used for improv-
ing the performance of the sequential algorithm (as
discussed in Sections 3.3, 3.4 and 3.5). In addition,
the design can be pipelined just like the sequential de-
sign (as discussed in Sections 4.2 and 4.3). However,
Loop unrolling incurs extra hardware cost. Pipelin-
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ing, on the other hand, improves the performance with
little overheads. Since the techniques are similar, we
just discuss loop and functional unit pipelining for the
memory optimized algorithm.

The loop in the memory optimized algorithm can
be pipelined to improve performance as discussed in
Section 4.2. In addition, the same design can use a
pipelined multiplier which reduces the clock period
and, hence, improves the performance. The DCT core
is coded in lines 60-98 of Appendix D. There are
8x8=~64 iterations of the inner loops on variable k. We
pipeline these two loops into eight stages as shown in
Figure 19. The multiplier has two stages.

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

VA:=IIEL_},'“: B:=Cos(i.k); Stag”l‘4
L = ] Stage2
L P =AXDB; | StageS
if (k=0) then Staged
sum:=P;
elsif (k=7) then
temp:=sum + P;
else
sum:=sum + P;
end if;
end loop;
for k in 0 to 7 loop
C:=0ut (k,j); D:=Cos(k,i); Stage5
| _Staget
gV Prod:=dx CEmE Sta5e7
if (i=0) then Stage8
out (k,j) := prod;
else
Out(k,j):= prod + C;
end if;
end loop;
end loop;
end loop;

Figure 19: The stages in loop and functional unit
pipelined design

The filling up of the eight pipelining stages takes
more clock cycles than suggested by the loop pipelin-
ing example in Section 4.2. The second loop can be
started only after eight iterations of the first loop has
been completed because the second loop requires the
temp value calculated by the first loop (in line 75 of
Appendix D). It takes 8 multiplications and additions
to generate a temp value. Thus, the stages of the sec-



Clock Cycles_ |1 |2 [3|a |s| |9 |10[11]12]13] 1415 512|513 | 514|515 | 516
Stage1 (A:=In(i,j); B:=Cos(j,k)) 0 2 8 10 511
Stage?2 (tempP:=AxB) 0|1 7 10, 510 | 511
Stage3 (P := tempP) 0 9|10 509 | 510 | 511
Stage4 (sum := sum + P) 0 |t s 7(8]9 |10 508|509 [ 510 | 511
Stage5 (C:=0ut(k,j); D:=Cos(k.i)) 0f1]2 500 | 501 | 502 | 503 | 504
Stage6 (tempProd := Dxtemp) 0 .... |499|500 | 501|502 |503
Stage7 (prod := tempProd) 0|1 .... | 498499500 |501 | 502
Stage8 (Out(k,j) := prod+C) 0|1 ... |497|498|499 |500 |501

Figure 20: Timing diagram for pipelined memory optimized algorithm

ond loop are delayed by 8 iterations of the first loop.
It will take 11 clock cycles to perform eight iterations
of the first loop since 3 clock cycles are required for fill-
ing the pipeline. The pipeline flushing is similar. The
timing diagram for the loop and multiplier pipelined
design is shown in Figure 20.

The timing diagram lets us compute the perfor-
mance of the pipelined design as follows. It takes
11 clock cycles to generate the first temp value. The
stages for second loop take another 3 clock cycles for
filling. Finally, it takes 512 clock cycles for completing
all the iterations of the second loop. Hence, the total
number of clock cycles is 11 + 3 + 512 = 526. The
clock period is 5.4 + 0.4 = 5.8 ns since the delay of a
two-stage pipelined multiplier is 5.4 ns from Table 1.

# states =1

clock period = 5.8 ns

# iterations = 526

Performance = #tstatesxclockx#titerations
= 1x5.8x526 = 3050.8 ns

The pipelined design uses extra registers for stor-
ing the count value. Thus, the cost increases to 21K
transistors. The complete behavioral model for the
pipelined memory optimized algorithm is given in Ap-
pendix D.

6 Comparison of optimization
techniques

We looked at some commonly used optimization tech-
niques like loop unrolling, chaining and multicycling
in Section 3. We explored pipelining options in Sec-
tion 4. Finally, we presented a memory optimized al-
gorithm in Section 5. We now compare the various
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optimization and pipelining techniques. Table 2 gives
a summary of the performance of the non-pipelined,
pipelined and memory optimized designs.

Table 2: Comparison of optimization techniques

parameter
design Lﬂf "'f-;ﬁcy (i ggf@i}
Sequential 37684 ns 25K
2-Unrolled 23552 ns 44K
Unrolled and Chained 18842 ns 41K
Unrolled and Multicycled 14131 ns 42K
Process Pipelined 18842 ns 50K
Loop Pipelined 9476 ns 26K
Loop and FU Pipelined 4040 ns 30K
Both loops together 5354 ns 52K
Memory Optimized 37683 ns 19K
Pipelined Mem Optimized | 3051 ns 21K

Table 2 shows the performance and cost of different
implementations for the DCT. There is a wide range
of latency times and costs of the different designs. A
pipelined design must be used to meet the timing con-
straint of 4100 ns given in Section 1. Furthermore, a
pipelined multiplier has to be used along with loop
pipelining since loop pipelining alone cannot meet the
stringent latency requirements. There are two designs
that meet the timing constraints as shown in Table 2.
The memory optimized is the most efficient in terms
of performance and cost.

7 Conclusion

In this report, we presented the formal definition of
the Discrete Cosine Transform and a sequential im-
plementation for it using RTL components. We de-



scribed some commonly used optimization techniques
like loop unrolling, chaining and multicyeling to reduce
the latency of the sequential design. We also explored
various levels of pipelining like process pipelining, loop
pipelining and functional unit pipelining to further im-
prove the performance without incurring extra hard-
ware cost. We also described a pipelined implemen-
tation using a “distributed controller” which reduced
the complexity of the control-path.

We presented a memory optimized algorithm to fur-
ther reduce the hardware costs. We then described
a pipelined implementation of the memory optimized
algorithm. A comparison of the different techniques
showed that pipelining is required for meeting the tim-
ing constraints of the DCT component. The large
spectrum of performance to cost tradeoffs is a good
starting point for further optimizations during high
level synthesis. ‘
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A Behavioral model of Sequential Design

In this appendix we give the detailed behavioral model of the most sequential design for the DCT component.
VHDL [10] was used for modeling and simulation.

L e e et 8 S
2 == DCT component

3 -— compute the transform for a 8x8 image block A
4 —-- sequential algorithm without any optimizations

5 —

6 —-- Gaurav Aggarwal; December 20, 1997. =
T e e i e A e e

3

9 library ieee;

10 use ieee.std_logic_1164.all;

11 use ieee.std_logic_arith.all;

12

13 entity dct is

14 port ( clk : in std_logic;

15 start : in std_logic;

16 din : in integer;

17 done : out std_logic;

18 dout : out integer);

19  end dct;

20

21

22  architecture behavioral of dct is

23  begin

24 process

25 type memory is array (0 to 7, O to 7) of integer;

26

27 variable InBlock, TempBlock, OutBlock : memory;

28 variable A, B, P, Sum : integer;

29 variable CosBlock : memory :=

30 ((s8g, 122, 115, 103, 88, 69, 47, 24),

31 (88, 103, 47, -24, -88, -122, -115, -69),

32 (88, 69, <=4T, =122, =88, 24, 115, 103),

33 (88, 24, -115, -69, 88, 103, -47, -122),

34 (88, -24, -115, 69, 88, -103, -47, 122),

35 (88, -69, -47, 122, -88, -24, 115, -103),

36 (88, -103, 47, 24, -88, 122, -115, 69),

37 (88, -122, 115, -103, 88, -69, 47, -24));

38 begin

39 =
40 e

41 -- wait for the start signal

42 e .
43 wait until start = ’1°;

44 done <= 'Q’;

45

46 0 e

47 -- read input 8x8 block of pixels

48 e

49 for i in 0 to 7 loop

50 for j in 0 to 7 loop

25



51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

wait until clk
InBlock(i, j)
end loop;

!11;
din;

== TempBlock = InBlock * CosBlock"T
for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop

A := InBlock(i, k);

B := CosBlock(j, k);

wait until clk=’1?;

P := A % B;
wait until clk=’1’;

if (k = 0) then

Sum := P;
else

Sum := Sum + P;
end if;

wait until clk=’1’;

if (k = 7) then
TempBlock(i, j)

end if;

wait until clk=’1’;

end loop;
end loop;

for i in 0 to 7 loop
for j in 0 to 7 loop
for k in 0 to 7 loop
A := TempBlock(k, j);
B := CosBlock(i, k);

wait until clk=’1’;

P := A * B;
wait until clk=’1’;

if (k = 0) then

Sum := P;
else

Sum := Sum + P;
end if;

wait until clk=’1’;

if (k = 7) then

OutBlock(i, j) :



106

107
108
109
110
111
112
113
114
115
116
IE 7
118
119
120
121
122
123
124
125
126
127
128
129
130

end if;
wait until clk=’1’;
end loop;
end loop;
end loop;

-- give the done signal

wait until clk = ’1’;
Done <= ’17;

for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = ’1’;
Dout <= OutBlock(i, j);
end loop;
end loop;
Done <= ’0°;
end process;
end behavioral;
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B Structural model of Sequential Design

The schematics for the structural model have been captured using the Synopsys Graphical Environment (sge)
tools. The top-level model of DCT comprises of a datapath and a controller as shown in Figure 21.

DIN
DATAPATH
DIN
CONTROLLER CLK
COUNT COUNT
E1 E1
E2 E2
E3 E3
E4 E4
LOADAB LOADAB
LOADP LOADP
LOADSUM LOADSUM
RESET RESET DOUT
[START » START RW1 RW1 STATUS
CLK CLK RW2 RW2
STATUS RW3 RW3
RW4 RW4
SEL1 SEL1
SEL2 SEL2
SEL3 SEL3
SEL4 SEL4
SEL5 SEL5
SEL6 SEL6
SEL7 SEL7
DONE
1
L2
{DONE>

Figure 21: Schematic of Sequential DCT

The controller is a Mealy type finite state machine. The schematic is shown in Figure 22.

[START

START
COUNT COUNT
E1 E1
E2 E2
E3 E3
E4 E4
LOADAB [LOADAB
LOADP LOADP
START LOADSUM [LOADSUM
RESET RESET
STATE RW1 AW1
OUT_LOGIC e e
STATE_REG selt SH
NextStatalogic SEL2 SEL2
SEL3 SEL3
SEL4 SEL4
NEXTSTATE DIN DOUT STATE SELS SELS
SELS| SELG
SEL7 SEL7
— CLK sTatus  DONE[—{DONE
STATUS]

Figure 22: Schematic of Controller for Sequential DCT
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The datapath comprises of register-level components. The schematic is shown in Figure 23.

[COUNT>—
D0 D1
C MUX2K1
DOUT
[ELE>- cLK
N DN COUNT
LK oLk a4
REG A REG B !
LOAD LOAD
pouT pout
-
[LOADAE >
A B8
mdtpher
PROOUCT
DIN
CLK
REG P
[1BADE> LOAD
pout
\ »
C MuxXaxi
EE=> oo
DIN \NCI oL
CLK SELT >~ C MUX2X1
L REG SUM DOUT
DOUT

Figure 23: Schematic of Datapath for Sequential DCT

B.1 VHDL code for datapath

The datapath for the sequential design consists of RT-level components. We next list the netlist for the datapath
which is shown in Figure 23.

—-- VHDL Model Created from SGE Schematic datapath.sch -- Jan 13 10:39:31 1998

library IEEE;
use IEEE.std_logic_1164.all;
use JEEE.std_logic_misc.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_components.all;
use work.components.all;

O 00 ~1 & v b W=

10 entity DATAPATH is
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i §
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Port (

end DATAPATH;

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

CLK :
COUNT :
DIN :
El :

B2; i
E3..:

E4

LOADAB :
LOADP :
LOADSUM :
RESET :
RW1 :
RW2 :
RW3 :
RW4 :
SEL1 :
SEL2
SEL3 :
SEL4 :
SELS :
SEL6 :
SEL7 :
DOUT :
STATUS :

[\e]

= ==

=1 1
| A U R PR I - % I %
O OWOONOEdEWNNEFERFEO

= =Z2=2==Em= =

[ |
=

[
[ye]

I
[
w

1
[
0 >»

FZI=2=2=2=2==
[
s

[
w0

component COUNTER

Port (

CLK :

In
In
In
In
In
In
s In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
In
Out
Out

: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;
: integer;

In

std_logic;
std_logic;
integer;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
integer;

integer );

architecture SCHEMATIC of DATAPATH is

std_logic;



61
62
63
64
65
66
67
68
69
70
i
72
73
74
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

COUNT :
RESET :
DOUT :
: Out
: Dut
: Out

end component;

component ROM

Port ( CLK &
caL. :

E :

R_WB :

ROW :

0 :

end component;

component RAM

Port ( CLK :
COL &

E 3

T.8

R_WB :

ROW :

0 :

end component;

component MUX2X1

Port ( € :
DO :

D1 :

DOUT :

end component;

In
In
Out

In
In
In
In
In
Qut

In
In
In
In
In
In
Out

In
In
In
Out

component MULTIPLIER

Port ( At
B
PRODUCT :

end component;

component REG

Port ( CLK :
DIN :
LOAD :
DOUT :

end component;

component ADDER

Port ( A
B :

In
In
Out

In
In
In
Out

In
In

std_logic;
std_logic;
integer;
integer;
integer;
integer );

std_logic;
integer;
std_logic;
std_logic;
integer;
integer );

std_logic;
integer;
std_logic;
integer;
std_logic;
integer;
integer );

std_logic;
integer;
integer;
integer );

integer;
integer;
integer );

std_logic;
integer;

std_logic;
integer );

integer;
integer;
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111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

SUM : QOut integer );

end component;
begin

I_19 : COUNTER
Port Map ( CLK=>CLK, COUNT=>COUNT, RESET=>RESET, DOUT=>STATUS,
I=>N_20, J=>N_21, K=>N_18 )
COSBLOCK : ROM
Port Map ( CLK=>CLK, COL=>N_18, E=>E2, R_WB=>RW2, ROW=>N_4,
0=>N_14 );
OUTBLOCK : RAM
Port Map ( CLK=>CLK, COL=>N_19, E=>E4, I=>N_1, R_WB=>RW4,
ROW=>N_16, 0=>DOUT );
TEMPBLOCK : RAM
Port Map ( CLK=>CLK, COL=>N_21, E=>E3, I=>N_1, R_WB=>RW3, ROW=>N_5,
0=>N_2 );
INBLOCK : RAM
Port Map ( CLK=>CLK, COL=>N_18, E=>E1, I=>DIN, R_WB=>RW1, ROW=>N_3,
0=>N_8 );
I_18 : MUX2X1
Port Map ( C=>SEL3, DO=>N_20, Di=>N_21, DOUT=>N_3 );
I_17 : MUX2X1
Port Map ( C=>SEL4, DO=>N_21, D1=>N_20, DOUT=>N_4 );
I_16 : MUX2X1
Port Map ( C=>SEL5, D0=>N_20, D1=>N_18, DOUT=>N_5 );
I_14 : MUX2X1
Port Map ( C=>SEL7, DO=>N_21, D1=>N_18, DOUT=>N_19 );
I_15 : MUX2X1
Port Map ( C=>SEL6, DO=>N_20, D1=>N_21, DOUT=>N_16 );

I_1 : MUX2X1
Port Map ( C=>SEL2, DO=>N_10, D1=>N_13, DOUT=>N_11 );
I_2 : MUX2X1

Port Map ( C=>SEL1, DO=>N_2, D1=>N_8, DOUT=>N_22 );
I_3 : MULTIPLIER
Port Map ( A=>N_7, B=>N_12, PRODUCT=>N_9 );

SUM : REG

Port Map ( CLK=>CLK, DIN=>N_11, LOAD=>LOADSUM, DOUT=>N_1 );
P : REG

Port Map ( CLK=>CLK, DIN=>N_9, LOAD=>LOADP, DOUT=>N_10 );
B : REG

Port Map ( CLK=>CLK, DIN=>N_14, LOAD=>LOADAB, DOUT=>N_12 );
A : REG

Port Map ( CLK=>CLK, DIN=>N_22, LOAD=>LOADAB, DOUT=>N_7 );
I_8 : ADDER

Port Map ( A=>N_10, B=>N_1, SUM=>N_13 );
end SCHEMATIC;

configuration CFG_DATAPATH_SCHEMATIC of DATAPATH is
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161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

for SCHEMATIC

for I_19: COUNTER
use configuration WORK.CFG_COUNTER_BEHAVIORAL;
end for;
for COSBLOCK: ROM
use configuration WORK.CFG_ROM_BEHAVIORAL;
end for;
for OUTBLOCK, TEMPBLOCK, INBLOCK: RAM
use configuration WORK.CFG_RAM_BEHAVIORAL;
end for;
for I_18, I_17, I_16, I_14, I_15, I_1, I_2: MUX2X1
use configuration WORK.CFG_MUX2X1_BEHAVIORAL;
end for;
for I_3: MULTIPLIER
use configuration WORK.CFG_MULTIPLIER_BEHAVIORAL;
end for;
for SUM, P, B, A: REG
use configuration WORK.CFG_REG_BEHAVIORAL;
end for;
for I_8: ADDER
use configuration WORK.CFG_ADDER_BEHAVIORAL;
end for;

end for;

end CFG_DATAPATH_SCHEMATIC;

B.2 VHDL code for Next State Logic

The datapath in the structural model is a netlist of RT-level components from a library. The controller is a finite
state machine that consists of a state register and the next state logic. In this section, we give the VHDL code

listing for the Nest State Logic component which is shown in Figure 22.

00 ~1 O OF i W b =

-= VHDL Model Created from SGE Symbol nsl.sym -- Jan 13 10:41:09 1998

library IEEE;

use
use
use
use
use

IEEE.std_logic_1164.all;
IEEE.std_logic_misc.all;
IEEE.std_logic_arith.all;
IEEE.std_logic_components.all;
work.components.all;

entity NSL is
generic ( Delay : Time := 5 ns);
Port ( START : In std_logic;
STATE : In STATE_VALUE;
STATUS : In integer;
NEXTSTATE : Out STATE_VALUE);
end NSL;

architecture BEHAVIORAL of NSL is

begin
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Count

case State is

when S1 =>

if (Start
NewState :

else

NewState :

end if;

when 52 =>

if (Count = 63) then
NewState :

else

NewState :

end if;

when 53 =>

NewState :

when 54 =>

NewState :

when 55 =>

NewState :

when 56 =>

if (Count
NewState :

else

NewState :

end if;

when S7 =>

NewState :

when S8 =>

NewState :

when 59 =>

NewState :

when 510 =>
if (Count
NewState :

else

NewState :

end if;

when S11 =>
if (Count = 63) then

process (State, Start, Status)
variable
variable NewState

Count :

:= STATUS;

: STATE_VALUE :



75 NewState := S1;

76 else

i NewState := S11;

78 end if;

79 end case;

80 NextState <= NewState after Delay;
81 end process;

82 end BEHAVIORAL;

83

84 configuration CFG_NSL_BEHAVIORAL of NSL is
85 for BEHAVIORAL

86 end for; -
87

88  end CFG_NSL_BEHAVIORAL;

B.3 VHDL code for Output Logic

We next list the VHDL code for the output logic which reads in the current state of the controller and gives the
corresponding control signals to the datapath. The Qutput Logic component is shown in Figure 22.

1 —- VHDL Model Created from SGE Symbol out_l.sym -- Jan 13 10:42:19 1998
2

3 library IEEE;

4 use IEEE.std_logic_1164.all;

5 use IEEE.std_logic_misc.all;

6 use IEEE.std_logic_arith.all;

7 use IEEE.std_logic_components.all;

8 use work.components.all;

9

10  entity OUT_L is

11 generic( Delay : TIME := 5 ns);

12 Port ( START : In std_logic;
13 STATE : In STATE_VALUE;
14 STATUS : Im integer;

15 COUNT : Dut  std_logic;
16 El : Out std_logic;
17 E2 : Out std_logic;
18 E3 : Out std_logic;
19 E4 : Out std_logic;
20 LOADAB : Out  std_logic;
21 LOADP : Out  std_logic;
22 LOADSUM : Out std_logic;
23 RESET : Out  std_logic;
24 RW1 : Out  std_logic; 2
25 RW2 : Out std_logic;
26 RW3 : Out  std_logic;
27 RW4 : Qut std_logic;
28 SEL1 : Dut std_logic; '
29 SEL2 : Out  std_logic;
30 SEL3 : Dut std_logic;
31 SEL4 : Out  std_logic;
32 SEL5 : Out std_logic;
33 SEL6 : Out  std_logic;
34 SEL7 : Out std_logic;
35 DONE : Out std_logic);

35



36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

end OUT_L;

architecture BEHAVIORAL of OUT_L is
begin
process (State, Start, Status)
variable Counter : unsigned(8 downto 0);
variable VarDone : STD_LOGIC;
variable VarCWw : CONTROL_WORD;
variable i, j, k : integer;

procedure DefaultCW (CW : out CONTROL_WORD) is

begin
== Control Signals for Muxes
CW.Sell := ’07;
CW.Sel2 := '07;
CW.Sel3d := ’07;
CW.Seld := '0’;
CW.Sel5 := '0’;

CW.Sel6 := '0’;
CW.Sel7 := '0’;

-- Control Signals for Registers
CW.LoadAB := ’0’;

CW.LoadP := ’07;

CW.LoadSum := ’0’;

-- Control Signal for Counter
CW.Count := ’0’;
CW.Reset := ’0?;

-- Control Signals for Memories

CW.E1 := '0’;
CW.RW1 := ’07;
CW.E2 := 20’;
CW.RW2 := 07;
CW.E3 := 0?;
CW.RW3 := ’0’;
CW.E4 := ’07;
CW.RW4 := ’0°;

end DefaultCW;

procedure OutputCW (CW : in CONTROL_WORD) is
begin

Sell <= CW.Sell after Delay;

Sel2 <= CW.Sel2 after Delay;

Sel3 <= CW.Sel3 after Delay;

Sel4 <= CW.Sel4 after Delay;

Selb <= CW.Selb after Delay;

Sel6 <= CW.Sel6 after Delay;

Sel7 <= CW.Sel7 after Delay;

~-= Control Signals for Registers
LoadAB <= CW.LoadAB after Delay;
LoadP <= CW.LoadP after Delay;
LoadSum <= CW.LoadSum after Delay;
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92 -- Control Signal for Counter

93 Count <= CW.Count after Delay;

94 Reset <= CW.Reset after Delay;

95

96 -- Control Signals for Memories
97 El <= CW.E1 after Delay;

98 RW1 <= CW.RW1 after Delay;

99 E2 <= CW.E2 after Delay;

100 RW2 <= CW.RW2 after Delay;

101 E3 <= CW.E3 after Delay;

102 RW3 <= CW.RW3 after Delay;

103 E4 <= CW.E4 after Delay;

104 RW4 <= CW.RW4 after Delay;

105 end OutputCW;

106

107 begin

108 Counter := int_to_uvec(STATUS, 9);

109 if (Counter(0) /= 'U’ and Start /= ’U’) then
110 i := CONV_INTEGER (Counter(8 downto 6));
111 j = CONV_INTEGER(Counter(5 downto 3));
112 k := CONV_INTEGER (Counter(2 downto 0));
113

114 DefaultCW(VarCW) ;

115

116 case State is

117 when S1 =>

118 -- Counter := "000000000";

119 VarCW.Reset := ’1’;

120 VarCW.Count := '0’;

121 VarDone := ’07;

122

123 when S2 =>

124 if (Counter = 63) then

125 —-- Counter := "000000000";
126 VarCW.Reset := ’1°;

127 VarCW.Count := ’07;

128 else

129 -- Counter := Counter + 1;
130 VarCW.Reset := ’07;

131 VarCW.Count := ’17;

132 end if;

133 -- InBlock( j, k ) := Din;
134 VarCW.Sel3 := ’1’;

135 VarCW.E1 := ’1?;

136 VarCW.RW1 := ’0’;

137

138 when S3 =>

139 -- A := InBlock(i, k);

140 VarCW.LoadAB := ’1’;

141 VarCW.Sell := ’1°’;

142

143 VarCW.Sel3 := ’07;

144 VarCW.E1 := ’1’;

145 VarCW.RW1 := ’17;
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147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

-~ B

VarCWw.
VarCw.
VarCw.

when S4

==, B o
VarCW.

when S5
if (k

:= COSBlock(j, k);

Seld := ’0’;
E2 := ’17;
RW2 := 17;

= 0) then

-- Sum := P;
VarCW.LoadSum := ’1°’;
VarCW.Sel2 := ’0’;

else

== Sum := P + Sum;
VarCW.LoadSum := ’1°’;

VarCW.Sel2 := ’1’;

end if;

when S6 =>
if (k = 7) then

-- TempBlock(i, j) := Sum;

VarCW.Selb

VarCW.E3 :=

VarCW.RW3
end if;

1= 20

)1];

1= 107;

if (Counter = 511) then

-- Counter

VarCW.Reset

VarCW.Count
else

-- Counter

VarCW.Reset

VarCW.Count
end if;

when S7 =>

:= "000000000";

1= 110

1= 10?;

:= Counter + 1;

= 107,

= 217,

-— A := TempBlock(k, j);

VarCw.
VarCw.
VarCW.
VarCw.
VarCWw.

-- B

VarCw.
VarCw.
VarCWw.

when S8

- P :
VarCw.

LoadAB := ’1’;
Sell := 07;
E3 := '17;

RW3 := ’17;
Sel5 := 17;

:= COSBlock(i, k);

Seld := ’17;
E2 := *1?;
RW2 := '1°’;
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201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

when S9 =>

if (k = 0) then
-~ Sum := P;
VarCW.LoadSum := ’1°’;
VarCW.Sel2 := '0’;

else
== Sum := P + Sum;
VarCW.LoadSum := ’17;
VarCW.Sel2 := ’1°’;

end if;

when 510 =>

if (k = 7) then
-- OutBlock(i, j) := Sum;
VarCW.Sel6 := '0?*;
VarCW.Sel7 := ’0’;
VarCW.E4 := ’17;
VarCW.RW4 := ’07;

end if;

if (Counter = 511) then
-- Counter := "000000000";
VarCW.Reset := ’1°’;
VarCW.Count := ’07;

VarDone := ’1°;

else
-- Counter := Counter + 1;
VarCW.Reset := *0’;
VarCW.Count := ’1°;

end if;

when S11 =>

VarDone := ’07;

if (Counter = 63) then
-- Counter := "000000000";
VarCW.Reset := '1°’;
VarCW.Count := ’0’;

else
-- Counter := Counter + 1;
VarCW.Reset := ’0’;
VarCW.Count := ’1°’;

end if;

-- Dout <= QOutBlock(j, k);
VarCW.Sel6 := ’1’;
VarCW.Sel7 := ’17%;
VarCW.E4 := ’1°;
VarCW.RW4 := *1’;

end case;

OutputCW(VarCW) ;

Done <= VarDone;

end if;
end process;
end BEHAVIORAL;
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configuration CFG_OUT_L_BEHAVIORAL of OUT_L is
for BEHAVIORAL

end CFG_OUT_L_BEHAVIORAL;
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C Test Bench for the DCT models

The test bench feeds the DCT component with an input 8 x 8 image block that consists of a black-and-white
“sandwich” pattern. The expected transform values have been computed using a C program.

; g TR SIS SRS — -
2 -- Test Bench for DCT component

3 —-— input image block is a black & white sandwitch

4 —— compare transform with values computed by C code

5 -

6 -- Gaurav Aggarwal; December 20, 1997.

e i e e e e e et

8

9 library ieee;

10  use ieee.std_logic_1164.all;

11

12 entity tb is

13 end tb;

14

15  architecture behav of tb is

16 component dct

17T port( clk : in  std_logic;

18 start : in std_logic;

19 Din : in  integer;

20 Done : out std_logic;

21 Dout : out integer);

22 end component;

23

24 signal start, Done : std_logic;

25 signal clk : std_logic := ’1’;

26 signal Din, Dout : integer;

27  begin

28

29 Ul : dct

30 port map (clk, start, Din, Done, Dout);

31

32 clk <= not clk after 20 ns;

33

34 start <= ’0’ after O ns,

35 1’ after 50 ns,

36 ’0’ after 80 ns;

37

38 process

39 type memory is array (0 to 7, 0 to 7) of integer; !
40

41 variable Result : memory := (

42 (77785200, -21343500, 16837650, -5928750, 9248850, -711450, 5217300, 2371500),
43 (-11375040, 3121200, -2462280, 867000, -1352520, 104040, -762960, -346800), E
44 (58882660, -16156800, 12745920, -4488000, 7001280, -538560, 3949440, 1795200),
45 (-11542320, 3167100, -2498490, 879750, -1372410, 105570, -774180, -351900),

46 (-13215120, 3626100, -2860590, 1007250, -1571310, 120870, -886380, -402900),
47 (-6691200, 1836000, -1448400, 510000, -795600, 61200, -448800, -204000),

48 (18066240, -4957200, 3910680, -1377000, 2148120, -165240, 1211760, 550800),

49 (5854800, -1606500, 1267350, -446250, 696150, -53550, 392700, 178500));

50
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begin
wait until Start = ’17;

-— give the input block: B&W sandwitch

for i in 0 to 23 loop
wait until clk = ’0’;
Din <= 255;

end loop;

for i in 24 to 39 loop
wait until clk = ’0’;
Din <= 0;

end loop;

for i in 40 to 63 loop
wait until clk = ’0’;
Din <= 255;

end loop;

wait until Done = ’17;
wait until clk = ’17’;

for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = ’0?’;
assert (Dout = Result(i, j))
report "DCT_TB: computation error" severity warning;
end loop;
end loop;
end process;
end behav;

configuration cfg_tb of tb is
for behav
end for;

end cfg_tb;
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D Behavioral model of Memory Optimized Design
In this appendix we give the behavioral model of the non-pipelined design for the memory optimized algorithm

discussed in Section 5.

behavior of DCT component
compute the transform for a 8x8 image block
sequential memory optimized algorithm

Gaurav Aggarwal; December 26, 1997.

1
2
3
4
5
6
7
8
9

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

13 entity dct is

14 port ( clk : in std_logic;

15 start : in std_logic;

16 din  : in integer;

17 done : out std_logic;

18 dout : out integer);

19 end dct;

20

21

22  architecture opt_beh of dct is

23  begin

24 process

25 type memory is array (0 to 7, 0 to 7) of integer;
26

27 variable InBlock, OutBlock : memory;

28 variable CosBlock : memory :=

29 ((ss8, 122, 115, 103, 88, 69, 47, 24),
30 (88, 103, 47, -24, -88, -122, -115, -69),
31 (88, 69, -47, -122, -88, 24, 115, 103),
32 (88, 24, -115, -69, 88, 103, -47, -122),
33 (g8, -24, -115, 69, 88, -103, -47, 122),
34 (88, -69, -47, 122, -88, -24, 115, -103),
35 (88, -103, 47, 24, -88, 122, -115, 69),
36 (88, -122, 115, -103, 88, -69, 47, -24));
37 variable a, b, ¢, d, p, prod, temp, sum : integer;
38 begin

39 .
i

41 -- wait for the start signal

42 e

43 wait until start = ’1°’; g
44 done <= ’0’;

45 wait until clk = ’1’;

46

47 e

48 -- read input 8x8 block of pixels

49 0 e

50 for i in 0 to 7 loop
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51 for j in 0 to 7 loop

52 wait until clk = ’17;

53 InBlock (i, j) := din;

54 end loop;

55 end loop;

56

Y (i

58 -- the matrix multiplications

L

60 for i in 0 to 7 loop

61 for j in 0 to 7 loop

62

B . e s
64 -- generate one entry of TempBlock
88 000 remmemceemromemmmeemrmeemmeenes
66 for k in 0 to 7 loop

67 A := InBlock (i, j);

68 B := CosBlock (j, k);

69

70 P := A * B;

71

72 if (k = 0) then

73 sum := P;

74 elsif (k = 7) then

75 temp := sum + P;

76 else

i g sum := sum + P;

78 end if;

79 end loop;

80

- A . e e
82 -- now use this entry for generating
83 -- partial sums in the OutBlock

BA e e i e i
85 for k in 0 to 7 loop

86 C := OutBlock (k, j);

87 D := CosBlock (k, i);

88

89 prod := d * temp;

90

91 if (1 = 0) then

92 OutBlock (k, j) := prod;

93 else

94 OutBlock (k, j) := C + prod;
95 end if;

96 end loop;

97 end loop;

98 end loop;

99

100, js @  ==sseetimdemecmmmnonin

101 -- give the done signal

B oh.,  eeeeesssessems

103 wait until clk = ’17;

104 done <= 17;

105
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106
107
108
109
110
111
112
113
114
115
116
11T

for i in 0 to 7 loop
for j in 0 to 7 loop
wait until clk = *1?;
done <= ’0°’;
dout <= OutBlock (i, j);
end loop;
end loop;
end process;
end opt_beh;

45



E Behavioral model of Pipelined Memory Optimized Design

In this appendix, we give the behavioral model of the loop and functional unit pipelined design for the memory
optimized algorithm. The multiplier has two stages and there are eight stages in the pipeline. The model consists
of separate states for filling and flushing of the pipeline. This design is dicussed in Section 5.1.

1 ____________________________________________
2 —-- Behavioral model of pipelined memory optimized DCT
3 -- no temporary matrix. single word used
4 i
5 -- December 18, 1997.
6 s e B B 4 B e . S S e S e i i 2
7
8 library IEEE;
9 use IEEE.std_logic_1164.all;
10 use IEEE.std_logic_arith.all;
11
12 entity dct is
13 port (
14 clk : in std_logic;
15 start : in std_logic;
16 din : in  integer;
17 done : out std_logic;
18 dout : out integer
19 );
20 end dct;
21
22
23  architecture pipe_beh of dct is
24 type STATES is (S0, Si, s2, S3, S4, S5, S6, S7, S8, S9,
25 510, S11, S12, S13, S14, S15, 516, S17, 518);
26 signal oldtemp, temp, tempProd, Prod, P, tempP : integer;
20 signal A, B, C, D, sum, oldC, olderC : integer;
28 signal fCountO, fCountl : unsigned (8 downto 0) := "000000000";
29 signal fCount2, fCount3 : unsigned (8 downto 0) := "000000000";
30 signal sCount0, sCountl : unsigned (8 downto 0) := "000000000";
31 signal sCount2, sCount3 : unsigned (8 downto 0) := "000000000";
32 signal state : STATES := S0;
33  begin
34
35 process (clk)
36 type memory is array (0 to 7, O to 7) of integer;
37
38 variable InBlock, OutBlock : memory;
39 variable CosBlock : memory := (
40 ( 126, 122, 115, 103, 88, 69, 47, 24 ),
41 ( 126, 103, 47, -24, -88, -122, -115, -69 ),
42 ( 125, 69, -47, -122, -88, 24, 115, 103 ),
43 ( 125, 24, -115, -69, 88, 103, -47, -122 ),
44 (125, -24, -115, 69, 88, -103, -47, 122 ),
45 ( 125, -69, -47, 122, -88, -24, 115, -103 ),
46 ( 125, -103, 47, 24, -88, 122, -115, 69 ), |
47 ( 125, -122, 115, -103, 88, =69, 47, -24));
48
49 variable i0, jO, kO, 10, m0, n0 : integer;
46



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

variable k3, 13, m3, n3: integer;
begin

if (clk=’1’) then
-- separate the bits of the 9 bit counter
i0 := conv_integer (fCount0(8 downto 6));
jO := conv_integer(fCount0(5 downto 3));
kO := conv_integer (fCount0(2 downto 0));
k3 := conv_integer(fCount3(2 downto 0));

10 := conv_integer(sCount0(8 downto 6));
m0 := conv_integer(sCount0(5 downto 3));
n0 := conv_integer(sCount0(2 downto 0));
13 := conv_integer(sCount3(8 downto 6));
m3 := conv_integer(sCount3(5 downto 3));
n3 := conv_integer(sCount3(2 downto 0));

case state is
when S0 =>
done <= ’0’;
if (start = ’1’) then
state <= 51;
fCount0 <= (others=>’0’);
else
state <= 50;
end if;

== read the incoming matrix into InBlock
when S1 =>
InBlock (jO, kO) := din;
if (fCount0 = 63) then
fCount0 <= (others=>’0’);
state <= 52;
else
fCount0 <= fCount0 + 1;
state <= S$1;
end if;

when S2 =>
-- stage 1
A <= InBlock (i0, kO0);
B <= CosBlock (jO, k0);

fCountl <= fCountO;
fCount0Q <= fCount0 + 1;
state <= §3;

—-- start filing up pipeline for first multiplication
when 53 => e
-- stage 1
A <= InBlock (iO, k0);
B <= CosBlock (jO, k0);
fCountl <= fCountO;
fCount0 <= fCount0 + 1;

—-- stage 2
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105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121 -

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

tempP <= A * B;
fCount2 <= fCountl;

state <= 54;

when S4 =>
-~ stage 1
A <= InBlock (i0, kO0);
B <= CosBlock (jO, k0);
fCountl <= fCountO;
fCount0 <= fCount(0 + 1;

-- stage 2
tempP <= A * B;
fCount2 <= fCountl;

-- stage 3
P <= tempP;
fCount3 <= fCount2;

state <= S55;

when S5 =>
-- stage 1
A <= InBlock (i0, kO);
B <= CosBlock (jO, k0);
fCountl <= fCount0;
fCount0 <= fCount0 + 1;

-- stage 2
tempP <= A * B;
fCount2 <= fCountl;

-- stage 3
P <= tempP;
fCount3 <= fCount2;

-- stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

if (fCount0Q = 10) then
state <= 56;

sCount0 <= (others=>'0’);

else
state <= §5;
end if;

when S6 =>
-=- stage 1
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A <= InBlock (i0, kO0);
B <= CosBlock (jO, k0);
fCountl <= fCountO;

fCount0Q <= fCount0 + 1;

-- stage 2
tempP <= A * B;
fCount2 <= fCounti;

-- stage 3
P <= tempP;
fCount3 <= fCount2;

-—- stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-- stage §

C <= OQutBlock (n0O, m0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCount0;
sCount0 <= sCount0 + 1;

state <= S7;

191 when S7 =>

192 -- stage 1

193 A <= InBlock (i0, kO0);

194 B <= CosBlock (jO, k0);

195 fCountl <= fCountO;

196 fCount0 <= fCount0 + 1; |
197

198 -— stage 2 ‘
199 tempP <= A * B;

200 fCount2 <= fCounti;

201

202 -- stage 3

203 P <= tempP; i
204 fCount3 <= fCount?2;

205

206 -- stage 4

207 if (k3 = 0) then 4
208 sum <= P;

209 elsif (k3 = 7) then

210 oldtemp <= sum + P;

211 else

212 sum <= sum + P;

213 end if;

214
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215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

-= stage b

C <= OutBlock (nO, mO0);
D <= CosBlock (n0O, 10);
temp <= oldtemp;
sCountl <= sCountO;
sCount0 <= sCount0 + 1;

-- stage 6

tempProd <= D * temp;
oldC <= C;

sCount2 <= sCountl;

state <= 58;

when S8 =>

-- stage 1

A <= InBlock (i0, kO0);
B <= CosBlock (jO, k0);
fCountl <= fCountO;
fCount0 <= fCountO + 1;

-- stage 2
tempP <= A * B;
fCount2 <= fCountl;

-- stage 3
P <= tempP;
fCount3 <= fCount2;

-- stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-~ stage 5

C <= OutBlock (n0, mO0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCountO;
sCount0 <= sCount0 + 1;

-- stage 6

tempProd <= D * temp;
oldC <= C;

sCount2 <= sCountl;

-- stage 7

Prod <= tempProd;
olderC <= 01dC;
sCount3 <= sCount2;
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270

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

state <= §S9;

when S9 =>
-- stage 1
A <= InBlock (i0, kO0);
B <= CosBlock (jO, kO0);
fCountl <= fCountO;
fCount0 <= fCount0 + 1;

-= stage 2
tempP <= A * B;
fCount2 <= fCounti;

-- stage 3
P <= tempP;
fCount3 <= fCount2;

-- stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-- stage 5

C <= DutBlock (n0, m0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCountO;
sCount0 <= sCount0O + 1;

-- stage 6

tempProd <= D * temp;
0ldC <= C;

sCount2 <= sCountl;

-— stage 7

Prod <= tempProd;
olderC <= 01dC;
sCount3 <= sCount?2;

-— stage 8
if (13 = 0) then

OutBlock (n3, m3) := Prod;
else

OutBlock (n3, m3) := olderC + Prod;
end if;

if (fCountO = 511) then
state <= 510;

else
state <= §9;

end if;



|

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
3567
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

-- stage 2
tempP <= A * B;
fCount2 <= fCounti;

== stage 3
P <= tempP;
fCount3 <= fCount2;

== stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-- stage 5

C <= OutBlock (n0, m0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCount0;
sCount0 <= sCount0 + 1;

-— stage 6

tempProd <= D * temp;
0ldC <= C;

sCount2 <= sCountil;

-- stage 7

Prod <= tempProd;
olderC <= 0ldC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3) :
end if;

state <= S11;

—-- flushing the first mult
when S11 =>

-- stage 3
P <= tempP;
fCount3 <= fCount2;

-- stage 4
if (k3 = 0) then
sum <= P;

—-- begin flushing the first mult stages
when 510 =>

Prod;

olderC + Prod;

stages
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380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-- stage 5

C <= QutBlock (n0, m0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCount0;
sCount0 <= sCount0 + 1;

-- stage 6

tempProd <= D * temp;
o0ldC <= C;

sCount2 <= sCountl;

-- stage 7

Prod <= tempProd;
olderC <= 0ldC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3)
end if;

state <= S12;

== flushing the first mult
when S12 =>
-- stage 4
if (k3 = 0) then
sum <= P;
elsif (k3 = 7) then
oldtemp <= sum + P;
else
sum <= sum + P;
end if;

-- stage 5

C <= DutBlock (n0, m0);
D <= CosBlock (n0, 10);
temp <= oldtemp;
sCountl <= sCountO;
sCount0 <= sCount0 + 1;

-- stage 6

tempProd <= D * temp;
0ldC <= C;

sCount2 <= sCountl;

Prod;

olderC + Prod;

stages
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435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

451 -

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

-- stage 7

Prod <= tempProd;
olderC <= 0ldC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
QutBlock (n3, m3)
else
OutBlock (n3, m3)
end if;

state <= S513;

-- stage 5

C <= DutBlock (n0, m0);
D <= CosBlock (n0O, 10);

temp <= oldtemp;
sCountl <= sCountO;

sCount0 <= sCount0 + 1;

-- stage 6

tempProd <= D * temp;
0ldC <= C;

sCount2 <= sCountl;

-- stage 7

Prod <= tempProd;
olderC <= 0ldC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3)
end if;

"

if (sCount0 = 511) then

state <= S14;
else

state <= 513;
end if;

-- stage 6

tempProd <= D * temp;
oldC <= C;

sCount2 <= sCountl;

-- begin flushing the second
when 514 =>

Prod;

olderC + Prod;

-- flushed the first mult stages; only second
when S13 =>

Prod;

olderC + Prod;

mult stages
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490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

-- stage 7

Prod <= tempProd;
olderC <= 0ldC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3)
end if;

state <= S15;

Prod;

olderC + Prod;

—— flushing the second mult stages

when 515 =>
-- stage 7
Prod <= tempProd;
olderC <= 0l1dC;
sCount3 <= sCount2;

-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3)
end if;

state <= S16;

Prod;

olderC + Prod;

—-= flushing the second mult stages

when S16 =>
-- stage 8
if (13 = 0) then
OutBlock (n3, m3)
else
OutBlock (n3, m3) :=
end if;

state <= 517;

-- finished with computation.
when 517 =>
done <= ’17;
fCount0 <= (others=>’0’);
state <= §18;

—-- output the OutBlock matrix

when 518 =>
dout <= QutBlock (jO, k0)
if (fcountO = 63) then
fCount0 <= (others=>’
state <= S50;

Prod;

olderC + Prod;

give done signal

oy
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else
fCount0 <= fCount0 + 1;
state <= S§18;

end if;

when others =>
end case;
end if;
end process;
end pipe_beh;
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