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ABSTRACT

Introduction: This study aimed to describe the
rates and causes of unplanned readmissions
within 30 days following carotid artery stenting
(CAS) and to use artificial intelligence machine
learning analysis for creating a prediction

model for short-term readmissions. The predic-
tion of unplanned readmissions after index CAS
remains challenging. There is a need to leverage
deep machine learning algorithms in order to
develop robust prediction tools for early
readmissions.
Methods: Patients undergoing inpatient CAS
during the year 2017 in the US Nationwide
Readmission Database (NRD) were evaluated for
the rates, predictors, and costs of unplanned
30-day readmission. Logistic regression, support
vector machine (SVM), deep neural network
(DNN), random forest, and decision tree models
were evaluated to generate a robust prediction
model.
Results: We identified 16,745 patients who
underwent CAS, of whom 7.4% were readmitted
within 30 days. Depression [p\0.001, OR 1.461
(95% CI 1.231–1.735)], heart failure [p\ 0.001,
OR 1.619 (95% CI 1.363–1.922)], cancer
[p\0.001, OR 1.631 (95% CI 1.286–2.068)], in-
hospital bleeding [p = 0.039, OR 1.641 (95% CI
1.026–2.626)], and coagulation disorders
[p = 0.007, OR 1.412 (95% CI 1.100–1.813)]
were the strongest predictors of readmission.
The artificial intelligence machine learning
DNN prediction model has a C-statistic value of
0.79 (validation 0.73) in predicting the patients
who might have all-cause unplanned readmis-
sion within 30 days of the index CAS discharge.
Conclusions: Machine learning derived models
may effectively identify high-risk patients for
intervention strategies that may reduce
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unplanned readmissions post carotid artery
stenting.
Central Illustration: Figure 2: ROC and AUPRC
analysis of DNN prediction model with other
classification models on 30-day readmission
data for CAS subjects

PLAIN LANGUAGE SUMMARY

We present a novel deep neural network-based
artificial intelligence prediction model to help
identify a subgroup of patients undergoing
carotid artery stenting who are at risk for short-
term unplanned readmissions. Prior studies
have attempted to develop prediction models
but have used mainly logistic regression models
and have low prediction ability. The novel
model presented in this study boasts 79%
capability to accurately predict individuals for
unplanned readmissions post carotid artery
stenting within 30 days of discharge.

Keywords: Readmission; Carotid artery
stenting; Artificial intelligence; Machine
learning

Key Summary Points

We present a novel deep neural network-
based artificial intelligence prediction
model to help identify a subgroup of
patients undergoing carotid artery
stenting who are at risk for short-term
unplanned readmissions.

Prior studies have attempted to develop
prediction models but have used mainly
logistic regression models and have low
prediction ability.

The novel model presented in this study
boasts 79% capability to accurately predict
individuals for unplanned readmissions
post carotid artery stenting within 30 days
of discharge.

DIGITAL FEATURES

This article is published with digital features,
including a summary slide and plain language
summary, to facilitate understanding of the
article. To view digital features for this article
go to https://doi.org/10.6084/m9.figshare.
14198939.

INTRODUCTION

Strokes secondary to thromboembolism from
an atherosclerotic plaque at the carotid bifur-
cation or the internal carotid artery (ICA)
account for 10–15% of all strokes worldwide,
and carotid artery stenting (CAS) in a timely
fashion may help prevent such strokes [1, 2].
Unplanned readmissions due to all causes are
an important aspect from a patient care per-
spective and quality metric under the Patient
and Protection and Affordable Care Act. Pre-
diction of early readmission is crucial in help-
ing plan the delivery of healthcare services and
identifying high-risk patients for intervention
strategies to reduce readmissions and provide
cost conscientious care to the community
[3, 4].

Most of the prior studies evaluating carotid
revascularization have focused on comparing
the CAS with carotid end-arterectomy (CEA) in
terms of outcomes, including stroke, major
adverse cardiovascular and cerebrovascular
events (MACCE), death, or readmission. Fur-
thermore, these studies and others evaluating
readmissions used data before 2014 when the
International Classification of Diseases, 9th
Revision (ICD-9) was in practice. To the best of
our knowledge, there is no study that has
specifically evaluated CAS for early readmis-
sions using the strength of the International
Classification of Diseases, 10th Revision (ICD-
10) diagnosis codes and for more recent
patient-level data [5, 6].

The specificity of diagnostic and procedure
codes has immensely improved with the advent
of the ICD-10 codes, which can give us better
insight into the causes and associations of
unplanned readmissions [7]. With the advent
of machine learning methods, there has been a
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gradual adaptation of those in healthcare, and
they are also found to be superior to standard
prediction rules for hospital readmissions [8].
We present a nationwide evaluation of early
unplanned readmission and an artificial intel-
ligence-assisted readmission prediction model
for patients undergoing CAS.

The purpose of this study was to describe the
rates and causes of unplanned readmissions
within 30 days following CAS, and we aimed
at using artificial intelligence machine learning
analysis to develop a robust prediction model
for short-term readmissions.

METHODS

The US Nationwide Readmission Database
(NRD) is a nationally representative sample of
all-age, all-payer discharges from US nonfederal
hospitals produced by the Healthcare Cost and
Utilization Project (HCUP) of the Agency for
Healthcare Research and Quality (AHRQ) [9].
This database is composed of discharge-level
hospitalization data from 28 geographically
dispersed states across the USA. It has approxi-
mately 18 million discharges for the year 2017
(weighted estimated to roughly 36 million dis-
charges). The dataset used in the present study
represents 60% of the US population and 58.2%
of all US hospitalizations.

Individual patients in the NRD are assigned
up to 40 diagnosis codes and 25 procedure
codes for each hospitalization. We defined CAS
with the procedure codes from ICD-10 listed in
Table 1 in the supplementary material. The
primary outcome was first unplanned readmis-
sion within 30 days of the index discharge after
the first CAS. If a patient had multiple CAS in a
year, only the first intervention was used for the
analysis. The cohort patients admitted in the
month of December for the index admission
were also excluded, as they may not have
30 days of follow-up, leading to immortal time
bias. All ICD-10 and Clinical Classification
Software Refined (CCSR) codes used in this
study are presented in Table 2 in the supple-
mentary material. Statistical analysis was per-
formed using IBM SPSS Statistics V26 using two-
sided tests and a significance of less than 0.05.

We used the Pearson–chi-square test for cate-
gorical variables, Mann–Whitney U test for
continuous variables with no readmission as the
reference group, and logistic regression for
predictions.

Compliance with Ethics Guidelines

This study was performed utilizing publicly
available datasets and hence does not require
IRB review under 45 CFR 46. In addition, the
Institutional Review Board (IRB) at the Univer-
sity of South Alabama approved the study for
exempt status.

Model Development

A prediction model was developed in accor-
dance with the Transparent Reporting of a
multivariable prediction model for Individual
Prognosis Or Diagnosis (TRIPOD) initiative
guidelines [10].

Data Preprocessing
The preprocessing of CAS readmission records
was conducted to make the data at hand rep-
resent nationwide readmission rates. The data
at hand involved 9019 individual patients
(weighted analysis to 16,827 patients for
national representation).

Description of Outcome Variable
The outcome of interest was readmission (yes/
no) within 30 days from discharge after CAS.
Among all subjects undergoing CAS, 7.4% of
subjects were readmitted, while 93.6% were not
readmitted.

Description of Predictor Variables
A total of 42 clinically pertinent variables were
included for model development. These inclu-
ded patient demographics, insurance status,
hospital bed size, teaching hospital teaching
status, length of stay, and relevant comorbidi-
ties. We performed exploratory analysis
(Table 1) by evaluating all categorical and con-
tinuous variables. Additionally, we evaluated
for missing data and zero variances and found
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Table 1 Baseline characteristics and procedure-related factors during index admission for CAS

No early
readmissions
(n = 15,512;
92.6%)

30-day
readmission
(n = 1233;
7.4%)

Overall
(n = 16,745)

p value Odds ratio
(95% CI)

Age (years) (median [IQR]) 70 [62–77] 73 [65–79] 70 [62–77] \ 0.001

Female 37.7% 40.9% 38.0% 0.028 1.141

(1.014–1.284)

Elective 59.8% 48.2% 59.0% \ 0.001 0.623

(0.555–0.701)

Weekend admission 10.1% 13.6% 10.4% \ 0.001 1.402

(1.182–1.663)

Primary expected payer \ 0.001

Medicare 70.2% 77.9% 70.8%

Medicaid 6.5% 6.0% 6.4%

Private 18.8% 13.5% 18.4%

Self-pay 1.4% 0.7% 1.4%

No charge 0.1% 0.0% 0.1%

Other 2.9% 1.9% 2.9%

Quartile of median household

income

0.009

0–25th 30.1% 28.1% 29.9%

26th–50th 29.7% 29.1% 29.7%

51st–75th 25.6% 24.7% 25.5%

76th–100th 14.6% 18.1% 14.8%

Comorbidities

Tobacco use disorders/smoker 23.1% 22.3% 23.0% 0.523 0.956

(0.831–1.098)

Alcohol use disorders 3.1% 3.2% 3.1% 0.833 1.036

(0.744–1.444)

Lipid disorders 66.0% 65.9% 66.0% 0.943 0.996

(0.881–1.125)

Hypertension 59.4% 50.4% 58.7% \ 0.001 0.695

(0.619–0.781)

Diabetes 34.8% 42.0% 35.3% \ 0.001 1.359

(1.208–1.528)

Obesity 13.2% 15.2% 13.3% 0.046 1.179

(1.002–1.387)

Adv Ther (2021) 38:2954–2972 2957



Table 1 continued

No early
readmissions
(n = 15,512;
92.6%)

30-day
readmission
(n = 1233;
7.4%)

Overall
(n = 16,745)

p value Odds ratio
(95% CI)

Heart failure 12.8% 25.1% 13.7% \ 0.001 2.270

(1.979–2.603)

Coronary artery disease 45.3% 52.0% 45.8% \ 0.001 1.307

(1.164–1.468)

Previous PCI 13.7% 16.2% 13.9% 0.014 1.219

(1.041–1.428)

Previous CABG 0.6% 0.9% 0.6% 0.221 1.476

(0.788–2.765)

Valvular heart disease 6.8% 9.1% 7.0% 0.003 1.365

(1.113–1.674)

Dysrhythmias 16.7% 25.6% 17.3% \ 0.001 1.721

(1.504–1.969)

Atrial fibrillation/flutter 14.4% 22.5% 15.0% \ 0.001 1.733

(1.505–1.995)

Symptomatic carotid stenosis 92.0% 91.7% 92.0% 0.716 0.962

(0.779–1.187)

Periprocedural cerebral

infarction

29.0% 36.3% 29.5% \ 0.001 1.397

(1.238–1.577)

Prior transient ischemic attack

or stroke without residual

deficit

23.8% 23.3% 23.7% 0.703 0.974

(0.849–1.117)

Depression 9.9% 15.0% 10.3% \ 0.001 1.610

(1.365–1.898)

Dementia/neurocognitive

disorders

4.3% 7.1% 4.5% \ 0.001 1.716

(1.363–2.160)

Peripheral vascular disease 21.4% 25.2% 21.7% 0.002 1.241

(1.085–1.419)

Pulmonary circulatory

disorders

2.4% 5.1% 2.6% \ 0.001 2.191

(1.667–2.881)

GI bleed 1.0% 2.5% 1.1% \ 0.001 2.459

(1.667–3.628)

COPD 20.8% 27.0% 21.3% \ 0.001 1.407

(1.234–1.605)
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Table 1 continued

No early
readmissions
(n = 15,512;
92.6%)

30-day
readmission
(n = 1233;
7.4%)

Overall
(n = 16,745)

p value Odds ratio
(95% CI)

Hepatic failure 0.1% 0.2% 0.1% 0.321 2.098

(0.469–9.386)

Thyroid disorders 14.1% 14.5% 14.1% 0.694 1.034

(0.877–1.219)

CKD 15.3% 25.0% 16.0% \ 0.001 1.845

(1.610–2.114)

AKI 6.4% 14.2% 7.0% \ 0.001 2.429

(2.044–2.886)

Fluid and electrolyte disorder 12.8% 21.7% 13.5% \ 0.001 1.886

(1.634–2.176)

Acute hemorrhagic anemia 4.8% 7.2% 5.0% \ 0.001 1.532

(1.220–1.925)

Coagulation disorders 3.6% 6.9% 3.8% \ 0.001 1.999

(1.579–2.531)

Cancer 4.1% 7.4% 4.3% \ 0.001 1.870

(1.489–2.348)

APR DRG mortality risk \ 0.001

Minor likelihood of dying 38.7% 24.3% 37.6%

Moderate likelihood of dying 39.7% 38.7% 39.6%

Major likelihood of dying 14.4% 23.9% 15.1%

Extreme likelihood of dying 7.2% 13.1% 7.6%

APR DRG severity of illness \ 0.001

Minor loss of function

(includes cases with no

comorbidity or complications)

27.6% 18.5% 27.0%

Moderate loss of function 39.1% 33.3% 38.7%

Major loss of function 26.2% 35.5% 26.9%

Extreme loss of function 7.0% 12.7% 7.4%

Hospital bed size 0.284

Small 5.5% 4.5% 5.4%

Medium 23.3% 24.2% 23.3%

Large 71.3% 71.4% 71.3%
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Table 1 continued

No early
readmissions
(n = 15,512;
92.6%)

30-day
readmission
(n = 1233;
7.4%)

Overall
(n = 16,745)

p value Odds ratio
(95% CI)

Control/ownership of hospital 0.010

Government, nonfederal 11.9% 10.2% 11.8%

Private, not-profit 76.9% 76.1% 76.8%

Private, invest-own 11.2% 13.7% 11.4%

Hospital urban rural designation \ 0.001

Large metropolitan areas with

at least 1 million residents

47.6% 55.2% 48.2%

Small metropolitan areas with

fewer than 1 million residents

49.4% 42.9% 48.9%

Micropolitan areas 3.0% 1.9% 2.9%

Not metropolitan or

micropolitan (non-urban

residual)

0.0% 0.0% 0.0%

Hospital teaching status 0.010

Metropolitan non-teaching

hospital

14.4% 16.6% 14.6%

Metropolitan teaching hospital 82.6% 81.5% 82.5%

Non-metropolitan hospital 3.0% 1.9% 2.9%

Procedural characteristics

Vasopressor use 1.5% 2.8% 1.6% 0.001 1.828

(1.270–2.630)

Cardiac arrest 0.3% 0.9% 0.4% 0.003 2.625

(1.368–5.039)

In-hospital bleeding 1.0% 1.9% 1.0% 0.002 1.973

(1.267–3.074)

In-hospital vascular

complications

0.1% 0.1% 0.1% 0.726 0.699

(0.093–5.238)

Discharge destination \ 0.001

Home/self-care 75.5% 61.1% 74.4%

Home healthcare 0.4% 1.0% 0.5%

Discharge against medical

advice

0.3% 0.5% 0.3%
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no zero variance categorical predictors along
with any missing values among all the predic-
tors. The continuous variables were standard-
ized to zero mean and unit variance. The
categorical variables were dummy coded using
one-hot encoding, which were then used as
inputs for the prediction model.

Model Specification

Deep neural network (DNN) is a machine
learning algorithm that processes data with
complex architectures to perform classification
and build prediction models. Briefly, DNN is an
artificial neural network with one input layer, at
least four hidden layers, and one output layer
[11]. Fully connected DNN conventionally uses
a feed forward learning mechanism where the
information flows from the input layer, through
the hidden layers, towards the output layer to
learn complex data patterns, extract important
features, and make predictions. DNN uses non-
linear transformations to construct such pre-
diction models [12, 13]. To reveal patterns from
large datasets and investigate those patterns
with biological questions of interest, a key fac-
tor is to set up a DNN model properly. For this

end, we choose the proper choice of hyper-pa-
rameters, such as the number of hidden layers
and the type of loss function using a grid search
using Grid_SearchCV [14] function on a range
of values of the hyper-parameters and then
choose the combination which results in the
best accuracy. In our model setup, we used (1)
hidden layers ranging between 1 and 100 with a
step size of 1 and between two loss functions
‘‘adam’’ and ‘‘rmsprop’’, where ‘‘adam’’ function
performed the best and with four as the number
of hidden layers. (2) To choose the number of
nodes on each hidden layer since we had 91
input variables after dummy coding, we chose
the number of nodes to be 128 per hidden layer,
as the rule of thumb that recommends the
number of chosen nodes to be less than twice
the size of the input. (3) For nonlinear activa-
tion function to the hidden layers rectified lin-
ear unit (relu) was used and sigmoid function as
the output layer’s activation function.

Evaluation Strategy

Addressing Class Imbalance
Only 7.4% of the CAS patients were readmitted
within 30 days in our study, highlighting a very

Table 1 continued

No early
readmissions
(n = 15,512;
92.6%)

30-day
readmission
(n = 1233;
7.4%)

Overall
(n = 16,745)

p value Odds ratio
(95% CI)

Length of stay and cost analysis

Index admission length of stay

(days) (median [IQR])

2 [1–6] 3 [1–10] 2 [1–6] \ 0.001

Index admission cost (US $)

(median [IQR])

16,523

[11095–28771]

21,274

[12684–37720]

16,788

[11188–29586]

\ 0.001

Readmission length of stay

(days) (median [IQR])

2 [3–6]

Readmission cost (US $)

(median [IQR])

9768

[5009–14242]

IQR interquartile range, PCI percutaneous coronary intervention, CABG coronary artery bypass grafting, GI gastrointestinal,
AKI acute kidney injury, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, APRDRG All Patient
Refined Diagnosis Related Group
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low readmission rate as often seen with medical
data. Particularly, in our dataset, we observed
that the proportion of non-readmitted patients
(93.6%) was 13 times more than that of read-
mitted patients (7.4%), clearly making our data
highly class imbalanced. To address this class
imbalance problem, we adjusted the minority
class (patients who were readmitted) weight to
13 times the majority class’s weight (patients

who were not readmitted). This adjustment
inherently constructs a model with better gen-
eralization. These class weights are used during
the DNN model’s training to increase the mis-
classification cost of minority class samples.
This makes the training process pay more
attention towards the minority class samples,
thus increasing the sensitivity of the prediction
model.

Fig. 1 Forest plot analysis of comorbidities and procedure-related factors affecting 30-day readmission after carotid artery
stenting
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Incorporating AUPRC as a Metric
of Performance Evaluation
Inferring model performance from area under
receiver operating characteristic curve (AUROC)
can be deceptive in imbalanced datasets like
ours where only 7.4% of patients were read-
mitted while 93.6% were not readmitted.
Specifically, in an imbalanced setup, since the

number of negative samples (non-readmitted
patients) is very large, the false positive rate
increases more slowly because the true nega-
tives would probably be very high and make
this metric smaller. Therefore, a receiver oper-
ating characteristic (ROC) curve can have a
better result while misclassifying most or all the
minority class. However, precision is not affec-
ted by a large number of negative samples,
which is because it measures the number of true
positives out of the samples predicted as posi-
tives. Precision is more focused on the positive
class than in the negative class; it actually
measures the probability of correct detection of
positive values, while false positive rate (FPR)
and true positive rate (TPR) (ROC metrics)
measure the ability to distinguish between the
classes. In contrast, area under the precision
recall curve (AUPRC) scores are specially
designed to detect rare events and are appro-
priate in these scenarios as they particularly
show a classifier having a low performance if it
is misclassifying most or all the minority class
[15, 16].

Splitting Data for Training Models
We divided the dataset into three parts, 70% for
training, 10% for validation, and 20% for test-
ing. Firstly, we build the model using 70% of
the data by obtaining the optimized weight of
each node. Secondly, to evaluate our built
model’s fit, we apply the model on a validation
set to check the prediction accuracy, to which
we found it to be at 90.86%. Finally, the
remaining 20% of data was used to test the
performance of the model. The performance of

Table 2 Causes and frequencies of primary diagnosis
category for readmissions encounters [based on the pri-
mary Clinical Classification Software Refined (CCSR)]

Diagnosis category Frequency
n = 1233 (%)

Septicemia 8.6%

Cerebral infarction 8.6%

Heart failure 5.9%

Acute hemorrhagic cerebrovascular

disease

4.2%

Acute and unspecified renal failure 4.2%

Gastrointestinal hemorrhage 3.6%

Cardiac dysrhythmias 3.4%

Occlusion or stenosis of precerebral or

cerebral arteries without infarction

3.2%

Acute myocardial infarction 3.0%

Pneumonia (except that caused by

tuberculosis)

2.8%

This table represents only ten leading diagnosis categories
for readmission; hence the total will not amount to 100%

Table 3 Machine learning algorithms and accuracy in predicting early readmission post CAS

Model AUC AUPRC Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Logistic regression 0.68 0.14 92.57 50 100 46.29

DNN 0.79 0.383 87.43 70.22 90.43 62.65

SVM 0.67 0.14 70.35 62.46 71.72 54.07

Random forest 0.611 0.376 55.26 61.12 61.55 53.07

Decision tree 0.588 0.269 78.19 58.61 81.61 53.74

AUC area under the curve, AUPRC area under the precision recall curve, DNN deep neural network, SVM support vector
machine
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the model was evaluated using accuracy, preci-
sion, sensitivity, specificity, and AUROC. Addi-
tionally, we used ELI5 to predict the importance
weight of each feature. To determine variable
importance, ELI5 uses the idea of permutation
importance, which randomly shuffles the values
of a single feature and makes a prediction using
the shuffled dataset. The prediction accuracy
using the shuffled dataset and original dataset
are then compared to enumerate the perfor-
mance degradation. This process is conducted
till the importance of all the features is
computed.

RESULTS

Population Characteristics
and Descriptive Results

The NRD included 18,882 individual patients
undergoing CAS from January through Decem-
ber 2017 among hospitalized patients 18 years
of age and older. We excluded those who died
during the index hospitalization (n = 251) and
were discharged after November 30, or had
missing data on length of stay. The final study
sample included 16,745 patients who were

discharged alive after index CAS from January
through November 2017.

After index CAS, 7.4% patients (n = 1233)
had 30-day readmission. Notably, 8.6% of
patients returned with acute cerebral infarction,
4.2% acute hemorrhagic cerebrovascular dis-
ease, and 4.7% of patients died during the
unplanned 30-day readmission encounter.
Table 1 gives a detailed synopsis of the baseline
and procedure-related factors associated with
early readmission. Forest plot analysis of
comorbidities and procedure-related factors
affecting 30-day readmission is presented
(Fig. 1).

Cardiac causes made up 39.8% of all read-
missions. Ten leading causes and frequencies of
primary diagnosis category for readmissions
encounters based on Clinical Classification
Software Refined (CCSR) categories are pre-
sented in Table 2. Total charges of care for the
index and 30-day unplanned admissions
amount to over $1.9 billion and $66 million,
respectively.

Fig. 2 ROC and AUPRC analysis of DNN prediction model with other classification models on 30-day readmission data
for CAS subjects. Plot of prediction capability of machine learning models
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Table 4 Important score of each variable in early readmission post CAS dataset

Weight Variance Name Percentile
rank

0.0116 0.0035 Hospital urban–rural designation 1

0.0112 0.0028 Lipid disorders 0.976190476

0.0111 0.0043 Age 0.952380952

0.0092 0.0032 Length of stay 0.928571429

0.0078 0.0021 Control/ownership of hospital 0.904761905

0.0075 0.0036 Chronic obstructive pulmonary disease 0.880952381

0.0072 0.0016 Teaching status of hospital 0.845238095

0.0072 0.0013 Dementia/neurocognitive disorders 0.845238095

0.0071 0.0003 Diabetes 0.80952381

0.0067 0.0024 Obesity 0.785714286

0.0065 0.0032 Tobacco abuse 0.761904762

0.0064 0.0016 Coagulation disorders 0.738095238

0.0063 0.0011 Cardiac dysrhythmias 0.714285714

0.0062 0.0008 Thyroid disorders 0.69047619

0.0061 0.0023 Fluid electrolyte disorders 0.666666667

0.0059 0.0033 History of cerebrovascular accident/transitional ischemic attack–no residual

deficit

0.642857143

0.0055 0.003 Depression 0.619047619

0.0054 0.0036 Gender 0.571428571

0.0054 0.0013 Acute hemorrhagic anemia 0.571428571

0.0054 0.0019 Heart failure 0.571428571

0.0053 0.004 Bed size of hospital 0.523809524

0.0049 0.0016 Valvular heart disease 0.5

0.0048 0.0024 Peripheral artery disease 0.476190476

0.0045 0.0026 Atrial fibrillation/flutter 0.452380952

0.0041 0.0022 Expected primary payer 0.428571429

0.0038 0.003 Hypertension 0.404761905

0.0035 0.004 Cerebrovascular accident 0.380952381

0.0034 0.0014 Cancer 0.357142857

0.0033 0.0019 History of percutaneous coronary intervention 0.333333333

0.0031 0.003 Coronary artery disease 0.30952381

0.0026 0.0011 Pulmonary circulatory disorders 0.285714286
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Performance Comparison of Deep Neural
Network with Other Machine Learning
Models

We evaluated the proposed DNN model’s per-
formance with four other frequently used
machine learning algorithms in medical data,
such as logistic regression, random forest, deci-
sion tree, and support vector machine. Firstly,
we found that its accuracy was 92.57% for
logistic regression, with AUROC of 0.68 and
AUPRC of 0.14. Secondly, the accuracy was
55.26% for random forest, with AUROC and
AUPRC of 0.611 and 0.367, respectively.
Thirdly, for the decision tree, the accuracy was
78.19%, with AUROC of 0.588 and AUPRC of
0.269. Lastly, for the support vector machine,
the accuracy was 70.35% with AUROC of 0.67
and AUPRC of 0.14. DNN, on the other hand,
produced an accuracy of 87.43% but notably
had a higher AUROC of 0.79 (validation 0.73)
and AUPRC of 0.383 compared to all other
models (Table 3). A graphical representation of
the performance (AUROC and AUPRC) of the
proposed DNN prediction model with other
classification models on 30-day readmission
data for CAS subjects is shown in Fig. 2.

Predictors of 30-Day Readmission
and Costs

To identify the variables that had a higher
contribution to our DNN models predictive
power, we applied ELI5 to identify such vari-
ables. Specifically, using Eli5, we obtained
importance weights for each of the 42 model
variables used in this analysis and then ranked
them using their respective percentile score.
Variables with their importance weight ranked
in the top 20 percentiles (ranging from 0.0116
to 0.0067) were then selected as the most
influential/important variables in our model
(Table 4). Following this procedure, we obtained
ten most important variables to predict 30-day
readmission (Fig. 3).

DISCUSSION

This study, which examines the rate and costs of
30-day readmissions after index CAS, finds that
7.4% of patients get readmitted within 30 days
of discharge after undergoing CAS. The major
causes for 30-day unplanned readmission were
septicemia or cerebral infarction/hemorrhagic
cerebrovascular bleed. Using machine learning

Table 4 continued

Weight Variance Name Percentile
rank

0.0023 0.0006 In-hospital bleeding 0.25

0.0023 0.0025 Chronic kidney disease 0.25

0.002 0.0008 Alcohol abuse 0.202380952

0.002 0.001 Symptomatic carotid artery stenosis 0.202380952

0.0018 0.0002 Gastrointestinal bleed 0.166666667

0.0016 0.0005 History of coronary artery bypass grafting surgery 0.142857143

0.0014 0.0006 Vasopressors 0.119047619

0.0001 0.0003 Cardiac arrest 0.083333333

0.0001 0.0003 Hepatic failure 0.083333333

0 0.0002 In-hospital vascular complications 0.047619048

- 0.0003 0.0017 Acute kidney injury 0.023809524
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approaches, we can develop a risk prediction
model that can identify patients at high risk of
unplanned readmissions with a C-statistic of
0.802 using DNN, to the best of our knowledge,
the first of its kind in many ways. This is the
most contemporary analysis looking at 30-day
unplanned readmissions. The first study uses
nationally representative data to develop risk
prediction models using advanced machine
learning like DNNs for CAS. On the basis of
AUROC and AUPRC metrics, DNN shows supe-
rior performance to commonly used statistical
or machine learning methods in modeling CAS
readmission rates.

Prior studies looking at readmissions have
shown a variety of readmission rates, including
vascular interventions in Medicare patients
(24%) [17], endovascular aortic aneurysm repair
(10.2%) [18], lower extremity bypass (14.8%)
[19], endovascular or surgical revascularization
for chronic mesenteric ischemia (19.5%) [20],
and revascularization for critical limb ischemia
(20.4%) [21]. Looking specifically at the read-
mission rates in the CAS population, most prior
studies have compared CEA readmission rates
versus CAS. These studies have demonstrated
rates of 12.0% and 8.3% for Medicare-only and
nationally representative data, respectively, for
the CAS cohorts [5, 22]. Other studies have also
shown similar readmission rates for CAS
patients in the range of 9.6% in the Pennsyl-
vania Health Care Cost Containment Council

study by Hintze et al. [23], 10.75% by Greenleaf
et al. [24], and 11.11% by Galinanes et al. [25].
All these prior studies have used patient-level
data from before 2015 when ICD-9 was in use.
Our study gives a glimpse into the most con-
temporary nationally representative data using
ICD-10 codes. In addition, our national evalu-
ation of unplanned 30-day readmissions after
CAS has several key findings. Our observation
showed that 7.4% of patients undergoing CAS
had unplanned readmissions within 30 days of
hospital discharge. The decline in readmission
rates observed in our study, as compared to
aforementioned prior studies, may be related to
increased operator and/or hospital experience
or may be due to strict inclusion/exclusion cri-
teria employed in our study [26, 27].

In our study, sepsis was found to be one of
the leading causes for readmission post CAS.
Interestingly literature review showed that
postoperative surgical-site infection, sepsis/sep-
tic shock, pneumonia, and urinary tract infec-
tion are known associations with readmissions
after CEA [28]. Quiroz et al. looked into hidden
readmissions after CEA and CAS, and found
infectious etiologies amounting to 9.9% as a
cause for readmission (wound complication
3.7%, sepsis 3.1%, urinary tract infection/
pyelonephritis 0.5%, and other infections
2.6%). This proves that the infection/sepsis
rates found in our study were not in excess of
those in the existing literature [29].

Fig. 3 Bar graph diagram showing relative importance of predictors for unplanned readmission
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There are over 40 models for predicting
short- and long-term outcomes after carotid
revascularization [30]. However, the prediction
models available have the following potential
limitations. Firstly, most of the models have
used patient databases that are not representa-
tive of the national population. The models
have used logistic regression, and none of them
have used artificial intelligence to improve the
quality of predictions. The existing models have
used data from the ICD-9 era wherein the
specificity of diagnostic codes was significantly
inferior to ICD-10 codes. None of the short-
term models have looked at all-cause readmis-
sions and can only predict stroke or death. C-
statistic (or area under the curve) is considered
an important discriminating factor for the
accuracy of a prediction model with scores
of\ 0.50,[0.50–0.70,[0.70–0.80,
\ 0.80–0.90, and[0.90 representing no, poor,
low, excellent, and outstanding discrimination,
respectively [31, 32]. Volkers et al. presented an
excellent external validation study evaluating
30 prediction models for CEA, CAS, or both and
found that not a single model had C-statistic
over 0.67 (poor prediction capability) during
external validation proving that although there
are many models to choose from none of them
truly qualify for being substantially useful by
clinicians [30].

Despite having a plethora of existing state-
of-the-art statistical and machine learning
methods in modeling readmission rates, it is
noteworthy that our novel implementation of
DNN helped us build a model with increased
predictive power and, at the same time, facili-
tated the identification of features that are
clinically both relevant and important to their
association with the event of readmission post
CAS. It was also interesting to see that although
DNN had a lower or similar level of accuracy
compared to traditional methods, the score of
our model with respect to performance metrics
such as AUROC and AUPRC was significantly
higher. One plausible reasoning for such an
observation stems from the fact that the accu-
racy of existing models such as logistic regres-
sion is heavily biased towards the majority
class’s proportion as opposed to the minority
class samples. Although it enriches the accuracy

score, this inherent bias has downstream con-
sequences in high misclassification rates, sub-
sequently resulting in low predictive power
[33]. In contrast, DNN is agnostic to such biases.
It uses the entire dataset to find out the complex
patterns between the variables and then further
utilizes this pattern to classify the outcome
labels even if the data is highly imbalanced.
Therefore, on the basis of our strong evidence,
DNN should serve as a premium choice in
building more robust and adaptive predictive
models for accurate predictions in complex data
architectures such as 30-day readmission post
CAS.

Patients with comorbidities, including
depression, heart failure, cancer, in-hospital
bleeding, and coagulation disorders, were the
strongest predictors of readmission based on
logistic regression, as shown in Fig. 1. The
logistic regression analysis did not include
hospital-level factors like teaching status, con-
trol ownership, or hospital location. Also evi-
dent was that most comorbidities had
overlapping power, which would make it chal-
lenging to develop a robust prediction model
using this analysis alone. This meant that
logistic regression-based prediction models
would not perform well in a clinical setting. Our
study further improved upon this and used
DNN and hospital-level data to identify novel
predictors for early readmission, as shown in
Fig. 3. The DNN model provided a zoomed-in
view with refined results and showed that fac-
tors like hospital rural–urban designation, con-
trol/ownership, and teaching status form one of
the strongest predictors in addition to newly
identified comorbidities to identify patients at
risk of early readmissions post CAS. Patients
with these comorbidities were more likely to get
readmitted, which may have been due to dis-
ease progression. Further prospective research
would be needed to determine real impact and
causal associations.

Reasons for readmission based on the pri-
mary diagnosis code were septicemia (8.6%),
cerebral infarction (8.6%), heart failure (5.9%),
acute hemorrhagic cerebrovascular disease
(4.2%), acute renal failure (4.2%), and gas-
trointestinal hemorrhage (3.6%). These further
affirm the need to develop robust prediction

2968 Adv Ther (2021) 38:2954–2972



models to help decrease unplanned readmis-
sions and comorbidities. Interestingly, in our
study, patients with different insurance status
(Medicare, Medicaid, or private) and hospital
bed size had no significant impact on unplan-
ned readmissions. In contrast, patients with
higher scores on mortality/severity of illness
subclass of APRDRG scores had worse outcomes
in terms of all-cause readmissions. Patients
treated at private hospitals compared to gov-
ernment, nonfederal hospitals, and those at
metropolitan hospitals were at increased risk for
unplanned readmissions. This may be attrib-
uted to the difference in the practice patterns at
different hospital locations or subtypes or sec-
ondary to the number of cases being done at
that location and physician experience [26, 27].

Multiple prediction models have been
developed in the past, mostly looking at out-
comes like recurrent stroke, myocardial infarc-
tion, or death. Unfortunately, none of them
have a prediction tool to help with short-term
readmission risk due to all-cause readmissions.
The studies also lack prediction power, espe-
cially when evaluated with external validation.
A study by Volkers et al. presented an excellent
external validation study evaluating 30 predic-
tion models for CEA, CAS, or both and found
that not a single model had AUC over 0.67
during external validation [30]. This further
proves the point that although there are many
models to choose from, none of them truly
qualify for being substantially useful in current
day practice. Our prediction model is novel in
many ways. First, it is the first model to use
nationally representative data in the contem-
porary ICD-10 era and uses machine learning
models to predict all-cause unplanned short-
term readmissions. The AUC score of 0.79 for
DNN is very robust in predicting our primary
outcome.

Study Limitations

NRD is in a format of annualized data with a
maximum follow-up of 1 year. As with any
observational data, the results do not suggest a
causal relationship as there can be other
unmeasured confounders. The NRD database

does not provide pharmacological data/lesion-
level data that may impact readmissions. Lastly,
the presented risk scores have not been exter-
nally validated and currently stand applicable
only to the US population.

CONCLUSION

Our analysis suggests that 7.4% of patients get
readmitted within 30 days of discharge after
undergoing CAS with septicemia or cerebral
infarction/hemorrhagic cerebrovascular bleed
as the major causes of all unplanned readmis-
sions. We demonstrate that using machine
learning approaches, and we are able to develop
a risk prediction model that is able to identify
patients at high risk of unplanned readmissions
with a C-statistic of 0.802 using DNN. Our work
is an exemplar of how machine learning tech-
niques can be used to identify patients at high
risk of unplanned readmission for targeted
interventions, which, if efficacious, may repre-
sent significant healthcare savings to the wider
healthcare economy. We plan to acquire fund-
ing to develop an easy-to-use online tool, and a
software plug-in for existing electronic medical
record software to allow for quick assessment of
readmission risk in patients undergoing CAS.
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6. Galiñanes EL, Dombroviskiy VY, Hupp CS, Kruse
RL, Vogel TR. Evaluation of readmission rates for
carotid endarterectomy versus carotid artery stent-
ing in the U.S. Medicare population. Vasc
Endovascular Surg. 2014;48:217–23.

7. CDC. International Classification of Diseases, (ICD-
10-CM/PCS) Transition. https://www.cdc.gov/nchs/
icd/icd10cm_pcs_background.htm. Accessed 20
July 2020.

8. Morgan DJ, Bame B, Zimand P, et al. Assessment of
machine learning vs standard prediction rules for
predicting hospital readmissions. JAMA Netw
Open. 2019;2(3):e190348–e190348.

9. Agency for Healthcare Research and Quality. NRD
database documentation. https://www.hcup-us.
ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp.
Accessed 06 Feb 2020.

10. Moons KG, Altman DG, Reitsma JB, Collins GS.
Transparent reporting of a multivariate prediction
model for individual prognosis or development

2970 Adv Ther (2021) 38:2954–2972

https://www.hcup-us.ahrq.gov/
https://www.hcup-us.ahrq.gov/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1159/000341410
https://doi.org/10.1159/000341410
https://doi.org/10.1016/j.jacc.2015.01.048
https://doi.org/10.1016/j.jacc.2015.01.048
https://www.cdc.gov/nchs/icd/icd10cm_pcs_background.htm
https://www.cdc.gov/nchs/icd/icd10cm_pcs_background.htm
https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp
https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddbdocumentation.jsp


initiative. New guideline for the reporting of studies
developing, validating, or updating a multivariable
clinical prediction model: The TRIPOD Statement.
Adv Anat Pathol. 2015;22(5):303–5. https://doi.org/
10.1097/PAP.0000000000000072.

11. Heba M, El-Dahshan EA, El-Horbaty EM, et al.
Classification using deep learning neural networks
for brain tumors. Future Comput Inform J.
2018;3(1):68–71. https://doi.org/10.1016/j.fcij.
2017.12.001.

12. Litjens G, Kooi T, Bejnordi BE, et al. A survey on
deep learning in medical image analysis. Med
Image Anal. 2017;42:60–88. https://doi.org/10.
1016/j.media.2017.07.005.

13. Ravı̀ D, Wong C, Deligianni F, et al. Deep learning
for health informatics. IEEE J Biomed Health
Inform. 2017;21(1):4–21. https://doi.org/10.1109/
JBHI.2016.2636665.

14. Syarif I, Prugel-Bennett A, Wills G. SVM parameter
optimization using grid search and genetic algo-
rithm to improve classification performance. TEL-
KOMNIKA. 2016;14(4):1502–9. https://doi.org/10.
12928/TELKOMNIKA.v14i4.3956.

15. Saito T, Rehmsmeier M. The precision-recall plot is
more informative than the ROC plot when evalu-
ating binary classifiers on imbalanced datasets.
PLoS One. 2015;10(3):e0118432. https://doi.org/10.
1371/journal.pone.0118432.

16. Guang-Hui Fu, Feng Xu, Zhang B-Y, Yi L-Z.
Stable variable selection of class-imbalanced data
with precision-recall criterion. Chemom Intell Lab
Syst. 2017;171:241–50. https://doi.org/10.1016/j.
chemolab.2017.10.015.

17. Jencks SF, Williams MV, Coleman EA. Rehospital-
izations among patients in the Medicare fee-for-
service program. N Engl J Med. 2009;360:1418–28.
https://doi.org/10.1056/NEJMsa0803563.

18. Atti V, Nalluri N, Kumar V, et al. Frequency of
30-day readmission and its causes after endovascu-
lar aneurysm intervention of abdominal aortic
aneurysm (from the Nationwide Readmission
Database). Am J Cardiol. 2019;123:986–94. https://
doi.org/10.1016/j.amjcard.2018.12.006.

19. Jones CE, Richman JS, Chu DI, Gullick AA, Pearce
BJ, Morris MS. Readmission rates after lower
extremity bypass vary significantly by surgical
indication. J Vasc Surg. 2016;64:458–64. https://
doi.org/10.1016/j.jvs.2016.03.422.

20. Lima FV, Kolte D, Louis DW, et al. Thirty-day
readmission after endovascular or surgical revascu-
larization for chronic mesenteric ischemia: insights
from the nationwide readmissions database. Vasc

Med. 2019;24:216–23. https://doi.org/10.1177/
1358863X18816816.

21. Kolte D, Kennedy KF, Shishehbor MH, et al. Thirty-
day readmissions after endovascular or surgical
therapy for critical limb ischemia: analysis of the
2013 to 2014 nationwide readmissions databases.
Circulation. 2017;136:167–76. https://doi.org/10.
1161/CIRCULATIONAHA.117.027625.

22. Lima FV, Kolte D, Kennedy KF, et al. Thirty-day
readmissions after carotid artery stenting versus
endarterectomy: analysis of the 2013–2014 nation-
wide readmissions database. Circ Cardiovasc Interv.
2020;13(4):e008508. https://doi.org/10.1161/
CIRCINTERVENTIONS.119.008508.

23. Hintze AJ, Greenleaf EK, Schilling AL, Hollenbeak
CS. Thirty-day readmission rates for carotid
endarterectomy versus carotid artery stenting.
J Surg Res. 2019;235:270–9. https://doi.org/10.
1016/j.jss.2018.10.011.

24. Greenleaf EK, Han DC, Hollenbeak CS. Carotid
endarterectomy versus carotid artery stenting: no
difference in 30-day postprocedure readmission
rates. Ann Vasc Surg. 2015;29(7):1408–15. https://
doi.org/10.1016/j.avsg.2015.05.013.

25. Galinanes EL, Dombroviskiy VY, Hupp CS, Kruse
RL, Vogel TR. Evaluation of readmission rates for
carotid endarterectomy versus carotid artery stent-
ing in the US Medicare population. Vasc Endovas-
cular Surg. 2014;48:217e223.

26. Poorthuis MHF, Brand EC, Halliday A, Bulbulia R,
Bots ML, de Borst GJ. High operator and hospital
volume are associated with a decreased risk of death
and stroke following carotid revascularization: a
systematic review and meta-analysis: authors’ reply.
Ann Surg. 2018;269:631–41. https://doi.org/10.
1097/SLA.0000000000002880.

27. Kim LK, Yang DC, Swaminathan RV, et al. Com-
parison of trends and outcomes of carotid artery
stenting and endarterectomy in the United States,
2001 to 2010. Circ Cardiovasc Interv. 2014;7:
692–700. https://doi.org/10.1161/
CIRCINTERVENTIONS.113.001338.

28. Rambachan A, Smith TR, Saha S, Eskandari MK,
Bendok BR, Kim JY. Reasons for readmission after
carotid endarterectomy. World Neurosurg.
2014;82(6):e771–6. https://doi.org/10.1016/j.wneu.
2013.08.020.

29. Quiroz HJ, Martinez R, Parikh PP, et al. Hidden
readmissions after carotid endarterectomy and
stenting. Ann Vasc Surg. 2020;68:132–40. https://
doi.org/10.1016/j.avsg.2020.04.025.

Adv Ther (2021) 38:2954–2972 2971

https://doi.org/10.1097/PAP.0000000000000072
https://doi.org/10.1097/PAP.0000000000000072
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.fcij.2017.12.001
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.1109/JBHI.2016.2636665
https://doi.org/10.12928/TELKOMNIKA.v14i4.3956
https://doi.org/10.12928/TELKOMNIKA.v14i4.3956
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1016/j.chemolab.2017.10.015
https://doi.org/10.1016/j.chemolab.2017.10.015
https://doi.org/10.1056/NEJMsa0803563
https://doi.org/10.1016/j.amjcard.2018.12.006
https://doi.org/10.1016/j.amjcard.2018.12.006
https://doi.org/10.1016/j.jvs.2016.03.422
https://doi.org/10.1016/j.jvs.2016.03.422
https://doi.org/10.1177/1358863X18816816
https://doi.org/10.1177/1358863X18816816
https://doi.org/10.1161/CIRCULATIONAHA.117.027625
https://doi.org/10.1161/CIRCULATIONAHA.117.027625
https://doi.org/10.1161/CIRCINTERVENTIONS.119.008508
https://doi.org/10.1161/CIRCINTERVENTIONS.119.008508
https://doi.org/10.1016/j.jss.2018.10.011
https://doi.org/10.1016/j.jss.2018.10.011
https://doi.org/10.1016/j.avsg.2015.05.013
https://doi.org/10.1016/j.avsg.2015.05.013
https://doi.org/10.1097/SLA.0000000000002880
https://doi.org/10.1097/SLA.0000000000002880
https://doi.org/10.1161/CIRCINTERVENTIONS.113.001338
https://doi.org/10.1161/CIRCINTERVENTIONS.113.001338
https://doi.org/10.1016/j.wneu.2013.08.020
https://doi.org/10.1016/j.wneu.2013.08.020
https://doi.org/10.1016/j.avsg.2020.04.025
https://doi.org/10.1016/j.avsg.2020.04.025


30. Volkers EJ, Algra A, Kappelle LJ, et al. Prediction
models for clinical outcome after a carotid revas-
cularization procedure. Stroke. 2018;49(8):1880–5.
https://doi.org/10.1161/STROKEAHA.117.020486.

31. Hosmer DW, Lemeshow S, Sturdivant RX. Applied
logistic regression. 3rd ed. Hoboken: Wiley; 2013.

32. Lloyd-Jones D. Cardiovascular risk prediction: basic
concepts, current status, and future directions.
Circulation. 2010;121:1768–77.

33. Ottenbacher KJ, Smith PM, Illig SB, Linn RT, Fiedler
RC, Granger CV. Comparison of logistic regression
and neural networks to predict rehospitalization in
patients with stroke. J Clin Epidemiol. 2001;54(11):
1159–65. https://doi.org/10.1016/s0895-
4356(01)00395-x.

2972 Adv Ther (2021) 38:2954–2972

https://doi.org/10.1161/STROKEAHA.117.020486
https://doi.org/10.1016/s0895-4356(01)00395-x
https://doi.org/10.1016/s0895-4356(01)00395-x

	Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence
	Abstract
	Introduction
	Methods
	Results
	Conclusions
	Central Illustration

	Plain Language Summary
	Digital Features
	Introduction
	Methods
	Compliance with Ethics Guidelines
	Model Development
	Data Preprocessing
	Description of Outcome Variable
	Description of Predictor Variables

	Model Specification
	Evaluation Strategy
	Addressing Class Imbalance
	Incorporating AUPRC as a Metric of Performance Evaluation
	Splitting Data for Training Models


	Results
	Population Characteristics and Descriptive Results
	Performance Comparison of Deep Neural Network with Other Machine Learning Models
	Predictors of 30-Day Readmission and Costs

	Discussion
	Study Limitations

	Conclusion
	Acknowledgements
	References




