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Chapter 1

Introduction

The utility of a smartphone is limited by its battery capacity and the ability of its hardware

and software to efficiently use the device’s battery. With more than 87% of smartphones

running the Android platform, it overwhelmingly dominates the smartphone marketshare [5].

Besides traditional hardware components (e.g., CPU, Radio), Android devices utilize a va-

riety of sensors (e.g., GPS, camera, accelerometer). The multitude of hardware on a mobile

device and the manner in which the Android platform interfaces with such hardware result

in a major challenge in determining the energy efficiency of Android apps. While recent

studies have shown energy to be a major concern for both users [196] and developers [162],

many mobile apps are still abound with energy defects.

Energy defects, which are the main culprits for draining the battery of mobile devices,

happen when execution of a code causes unnecessary energy consumption. The root cause

of energy defects is typically misuses of energy-greedy APIs, i.e., Android APIs that monitor

or manipulate the state of hardware elements on the mobile devices, in a way that the

app consumes resources more than it is supposed to do. The notion of unnecessary is very

important in the definition of energy defects and there are contextual factors that identify
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whether a specific utilization of an energy-greedy API is considered energy defect on an app

or not. Thereby, to properly characterize the energy consumption of an app and identify

energy defects, it is critical that apps are properly tested, i.e., analyzed dynamically to assess

the app’s energy properties.

App developers, however, find it particularly difficult to properly evaluate the energy behav-

ior of their programs. Energy efficiency as a software quality attribute is a foreign concept

to many developers. There is generally a lack of mature software engineering principles and

tools aimed at addressing energy concerns. In the mobile setting, reasoning about energy

properties of software is further complicated by the fact that such defects manifest them-

selves under peculiar conditions that depend not only on the source code of the app, but

also on the framework, context of usage, and properties of the underlying hardware elements.

Finally, in contrast to the functional defects whose impact is almost explicit during and after

execution of tests, e.g., crash, the impact of energy defects is implicit. That is, it may take

several hours, days, or even weeks until developers or users realize that an app causes battery

drain on mobile devices.

None of the existing automated test generation tools for Android [83, 57, 154, 123, 52, 54,

207, 62, 157, 168, 170, 185], are suitable for energy testing. The few existing dynamic analysis

tools [149, 67] aimed at finding energy defects are severely limited by the types of defects

that they can detect. First, they are aimed at profiling an app’s energy behavior, rather than

the creation of reproducible and reusable tests, such that they can be used in a systematic

fashion as part of a regression testing regimen. Second, they do not consider the different

contexts in which energy defects may manifest themselves under them (e.g., when the device

is not connected to WiFi, or when the physical location of the device is changing rapidly).

Third, they do not consider the full spectrum of input interfaces exported by an app (e.g.,

lifecycle and system callbacks) that can affect an app’s energy behavior. There is, thus, a
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need for more sophisticated automated test generation tools that can help the developers

with testing the energy properties of their apps.

Automated test generation, however, is not by itself useful, unless developers are aided with

tools that can help them measure the quality of tests. Given the varying amount of energy

consumed at different points during the execution of a mobile app, it is insufficient to utilize

traditional metrics to measure test adequacy (e.g., statement coverage, branch coverage).

Specifically, these coverage criteria do not consider different energy-greediness of different

parts of the code. For example, although a test suite may cover an overwhelming majority

of an app’s program statements, it would mischaracterize the energy behavior of the app if

the test suite misses the the code that invokes energy-greedy APIs. As a result, new test

coverage criteria are needed to help developers assess the coverage of a test suite for its

ability to reveal energy defects.

Energy testing is generally more labor intensive and time-consuming than functional testing,

as tests need to be executed in the deployment environment and specialized equipments need

to be used to collect energy measurements. Developers spend a significant amount of time

executing tests, collecting power traces, and analyzing the results to find energy defects. The

fragmentation of mobile devices, particularly for Android, further exacerbates the situation,

as developers have to repeat this process for each supported platform. Moreover, to accu-

rately measure the energy consumption of a test, it must be executed on a device and drain

its battery. While it is possible to collect energy measurements when the device is plugged

to a power source, such measurements tend to be less accurate due to the impact of charging

current [121, 20]. Continuously testing apps on a mobile device uses up limited charging

cycles of its battery. There is, thus, a need for test-suite management capabilities, such as

test-suite minimization and prioritization, that can aid the developers with finding energy

defects under time and resource constraints.
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1.1 Dissertation Overview

To address the mentioned challenges and advance energy testing of Android mobile apps,

this dissertation proposes a four-pronged approach as follows:

1) Energy-Aware Test-Suite Adequacy Assessment — Test suite of a mobile app is ade-

quate for energy testing, if it can effectively find all of the energy defects in a program.

Developers usually utilize coverage score and mutation score to measure the adequacy

of their test suite. However, neither coverage metrics nor mutation testing approaches

in the literature consider energy consumption as a program property of interest. This

dissertation introduces fundamentally new techniques for energy-aware adequacy as-

sessment of test suites for mobile apps. The proposed techniques consider unique

aspects and features of Android (e.g., Android specific APIs and recurring callbacks)

as well as complex nature of energy defects.

2) Energy-Aware Test Input Generation — Existing literature on test generation for An-

droid apps has mainly focused on functional testing through either fuzzing to generate

Intent messages or exercising an Android app through its GUI. The main objective

of these test generation approaches is maximizing conventional code coverage metrics,

and thus not suitable for testing the energy properties of apps. Many energy issues

depend on the execution context and manifest themselves under peculiar conditions

(e.g., when the physical location of a device is changing rapidly, when particular system

events occur frequently). This dissertation proposes a technique that uses an evolu-

tionary search strategy with an energy-aware genetic makeup for test generation. By

leveraging a set of novel contextual models, representing lifecycle of components and

states of hardware elements on the phone, the proposed technique is able to generate

tests that execute the energy-greedy parts of the code under a variety of contextual

conditions.

4



3) Energy-Aware Test Oracle Construction — Test oracle automation is one of the most

challenging facets of test automation, and in fact, has received significantly less atten-

tion in the literature [69]. A test oracle compares the output of a program under test

for a given test to the output that it determines to be correct. While power trace is

an important output from an energy perspective, relying on that for creating energy

test oracles faces several non-trivial complications. First, collecting power traces is

unwieldy, as it requires additional hardware, e.g., Monsoon [7], or specialized software,

e.g., Trepn [71], to measure the power consumption of a device during test execution.

Second, noise and fluctuation in power measurement may cause many tests to become

flaky. Third, power trace-based oracles are device dependent, making them useless for

tests intended for execution on different devices. Finally, power traces are sensitive to

small changes in the code, thus are impractical for regression testing. This dissertation

proposes a technique that employs Deep Learning to determine the (mis)behaviors

corresponding to the different types of energy defects.

4) Energy-Aware Test-Suite Management — The collection of tests generated for energy

testing could be quite large, as it may involve a test suite that covers all the energy

hotspots (e.g., specific Android APIs that utilize the energy-greedy hardware such as

GPS) under different use cases (e.g., using the GPS when the user is stationary, moves

slowly, or moves fast) and configurations of the device (e.g., when the device is con-

nected to WiFi, cellular network, etc.). The labor intensive and time consuming nature

of energy testing underlines the need for test suite management techniques. The ma-

jority of test suite management and regression testing techniques consider adequacy

metrics for functional requirements of the test suite and to lesser extent non-functional

requirements [174]. This dissertation proposes a novel technique to help developers per-

form energy-aware test suite minimization by considering energy as a program property

of interest. The proposed technique not only reduces the manual effort involved in ex-
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amining the test results, but also addresses the time and battery capacity constraints

that hinder extensive testing in the mobile setting.

1.2 Dissertation Structure

The reminder of this dissertation is organized as follows:

Chapter 2 provides required background about energy defects by introducing 28 different

types of energy defects, their root causes, and their consequences. Chapter 3 provides an

overview of the prior related research and identifies the position of this work in the research

landscape. Chapter 4 introduces the research problem and related hypotheses. Chapter 5

presents the energy-aware mutation testing framework in order to identify characteristics

of proper energy tests. Chapter 6 shows the proposed framework for automatic generation

of energy tests. Chapter 7 presents the proposed technique for automated construction of

energy test oracles. Chapter 8 introduces the proposed solution to overcome the challenge

of performing energy testing on resource-constrained mobile devices. Finally Chapter 9

concludes the dissertation with future work.

To help different readers of this dissertation find their parts of interest more easily, Table 1.1

suggests the potential stakeholders for each part of the dissertation.

Table 1.1: Potential stakeholders for each part of the dissertation.

Chapter Content Stakeholders

2,3 Taxonomy and Survey App Developers, Researchers

5 Mutation Testing App Developers, App Users, App Testers, Researchers

6 Test Input Generation App Developers, App Testers, Researchers

7 Test Oracle App Developers, App Testers, Researchers

8 Test-Suite Minimization App Testers, Researchers
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Chapter 2

Background

This chapter provides a background on the energy defects. One of the contributions of

this dissertation is a new and more comprehensive definition for energy defects, as well as

construction of the most comprehensive energy defect model of Android to date. In fact,

in preparation for this work, I conducted an investigation to identify the variety of energy

defects in Android. While a few energy anti-patterns in Android, such as resource leakage

and sub-optimal binding [149, 150, 199], had been documented in the literature, they do not

cover the entire spectrum of energy issues that arise in practice.

Definition: Energy defects are identified as misuses of energy-greedy APIs, i.e., Android

APIs that monitor or manipulate the state of hardware elements on the mobile devices, that

cause unnecessary energy consumption.

The notion of unnecessary is very important in the definition of energy defects and the context

of usage identifies whether a specific utilization of an energy-greedy API is considered energy

defect on an app or not. The reminder of this chapter first illustrates our methodology to

collect energy defect patterns, and then introduces an energy defect model, a comprehensive

collection of energy defect patterns that cause unnecessary energy consumption in Android.
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2.1 Methodology

We follow a data-driven approach for derivation of a defect model of energy defects. This

approach follows a grounded theory design principles [189] and consists of three main phase:

(1) Designing phase, where we design our search protocol on how to derive the defect patterns;

(2) Conducting phase, where we perform the search following the plan directions; and (3):

Reporting phase, where we collect the defect patterns and analyze them through an empirical

study to construct the benchmark. This section describes the Designing and Conducting

phase and Section 2.2 introduces the results of the data-driven approach.

2.1.1 Search Protocol

Our plan for derivation of the energy defect model includes identifying the sources to search,

keywords to guide the search, and inclusion/exclusion criteria for selection during search.

2.1.1.1 Selection of the source

The aim of this study is to construct a comprehensive defect model of energy defect patterns

in Android. Therefore, I need to look for energy anti-patterns, i.e., misuses of Android APIs

and specific constructs that lead to unnecessary energy consumption, in the implementation

of the Android apps. I identified the following sources to collect such data:

• Android API reference: This document lists all the Android APIs, with the detailed

description on how to use them. The description of the APIs that are related to utilization

of the energy-greedy hardware components, such as GPS and WiFi, includes guidelines

on how to properly use them to avoid energy drainage.
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• Android developers guide: This online document includes training classes that describe

how to develop Android apps. In addition, it contains several guidelines for quality

assurance, e.g., best practices for battery, performance, and security.

• XDA Developers : This forum is a mobile software development community of over 6.6

million members worldwide, where the discussions primarily revolve around troubleshoot-

ing and development for Android.

• Android Open Source Project (AOSP) issue tracker : This platform provides facilities

for users and developers to report issues and feature requests related to Android. The

reported issues mostly contain a bug report, which could be very detailed including the

LogCat trace related to the issue, or informal description of the conditions under which

the issue manifested itself.

The primary investigation on the posts related to energy issues in XDA Developer forum and

AOSP issue tracker identified them as rich sources for collecting Android apps with known

energy issues. More specifically, the majority of posts in these two sources contained a list

of apps that were culprit of the issue. The source code of such apps, which are known to

suffer from energy issues, can provide common mistakes that developers make or mistakes

that have severe impact on the energy consumption of apps.

The first two sources, on the other hand, provide energy defects that either happen in specific

use-cases that are uncommon among apps, or their impact cannot be readily observed by end

users. Using both best practices and common bad practices, I can construct a comprehensive

defect model of energy defects.

2.1.1.2 Selection of the keywords

I aimed to automatically and systematically search the aforementioned sources for collecting

required artifacts to construct the defect model. To that end, I determined a set of the
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following keywords to search for while automatically crawling each of the identified sources:

energy, power, battery, drain, consumption, consume. Any post in these online sources that

contains at least two of these keywords will be a candidate for further investigation.

It is worth to note that our initial set of keywords was larger, including GPS, Bluetooth, CPU,

camera, wakelock, service, WiFi, network. However, our initial investigation showed that I

need to exclude these keywords to avoid bias towards defects related to specific hardware

component and reduce false positives. For example, a post that includes keywords energy

and Bluetooth might not necessarily discuss an energy issue related to the Bluetooth, but

explains how to use Bluetooth Low Energy (BLE) technology and related APIs in Android

apps [12].

2.1.1.3 Selection of criteria

Not all the retrieved list of apps from the sources was useful for the purpose of our work.

In fact, I realized that when reporting an issue on AOSP issue tracker or XDA Developer

forum, users list all the potential apps they suspect to be the potential culprits, where as a

matter of fact only one of them caused the reported issue. Additionally, I wanted to find the

defect patterns, which requires the availability of the source code. Thereby, I identified the

following criteria for selecting the candidates for further manual investigation:

Inclusion Criteria: I selected apps that are (1) open source and (2) have an issue tracker.

Exclusion Criteria: From the list of open source apps, I excluded apps that:

• I was not able to find any reference related to the issue the app found culprit of it in

either its issue tracker (open or closed issue) or commit history. To that end, I searched

the issue tracker and commit history of apps for the same keywords used in crawling.
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• The reported issue was not reproducible by the developers or there was no explanation

on how to reproduce the issue.

2.1.2 Search Process

I automatically crawled the identified sources using crawler4J [4]. The results from this step

provided me with 4064 pages from the first two sources, Android API reference and Android

developers guide, and a list of energy-related issues with 295 apps that possibly had instances

of those issues.

I manually investigated all the 4064 pages to obtain a list of best practices related to the

battery life. To find common bad practices, I first removed commercial apps from the list,

since our inclusion criteria entail the availability of source code. That left me with 130

open source apps for further investigation. Then, I searched the issue tracker and commit

history of the 130 apps for keywords, and narrowed down to 91 open source apps that had

at least one issue (open or closed) or commit related to energy. Regarding to issue trackers,

I excluded the apps matched our second exclusion criteria, which left me with 41 apps.

To ensure comprehensiveness of the proposed defect model, I finally studied the related lit-

erature [149, 67, 199, 103] and found 18 additional open-source apps with energy issues.

I performed this study as the final step, as grounded theory proponents [88, 99] recom-

mend limiting exposure to existing literature and theories to promote open-mindedness and

preempt confirmation bias.

I manually investigated the source code of these 59 apps to find misuse of Android APIs

utilizing energy-expensive hardware components (e.g., CPU, WiFi, radio, display, GPS, Blue-

tooth, and sensors) as reported in the corresponding bug trackers. For example, Omim [23]

issue 780 states ”App is using GPS all the time, or at least trying to use”. As a result, I inves-
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tigated usage of APIs belonging to LocationManager package in Android. As another exam-

ple, SipDroid [41] issue 847 states ”after using the app, display brightness is increased almost

full and its stays that way”. Thereby, I investigated the source code for APIs dealing with

the adjustment of screen brightness, e.g., getWindow().addFlag(FLAG KEEP SCREEN ON)

and getWindow().getAttributes().screenBrightness.

From our investigation, I have constructed a defect model with 28 types of energy defects,

which we will discuss them with more details in Section 2.2.

2.1.3 Threats To Validity

We followed relevant principles of grounded theory to minimize the threats to the validity of

the results. Nevertheless, there are possible threats that deserve additional discussion.

One important threat is the completeness of this empirical study, that is, whether the pro-

posed defect model identifies all the energy defects in the domain of Android. This threat

could be due to missing some relevant posts in our sources as they did not match our key-

words. Although we make no claims that this set of keywords is minimal or complete, prior

research has shown that they are frequently used in the issue trackers of apps with energy

defects [149]. We acknowledge that the collection of energy defects identified through our

study may not be complete due to this reason. However, we believe the presented defect

model is the most comprehensive one in the literature to date.

Another threat is to bias towards specific types of defects or defects that have more severe

impact on the battery. To alleviate this threat, we excluded specific keywords that are

coupled to particular hardware component, as mentioned before. Moreover, we did not limit

our sources just to apps known to suffer from observable issues. Instead, we considered
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Android documentations as an additional source to identify the defects that might not have

a severe impact on the battery observable by the users.

2.2 Defect Model

Figure 2.1 depicts our proposed taxonomy, derived as the result of empirical study described

in Section 2.1. The highest level of the taxonomy hierarchy consists of six dimensions, which

shows the scope of energy defect, and the sub-dimensions illustrate derived defect patterns.

Each scope captures the commonality among different types of energy defects. For example,

all the energy defects in the scope of Location happen due to misuse of Android Location

APIs. In the following, I will describe each type of energy defect in more details.

2.2.1 Connectivity

Connectivity energy defects happen due to misuse of Android APIs that monitor or manip-

ulate the state of Network and Bluetooth hardware.

2.2.1.1 Network

This category consists of six types of energy defects:

• Unnecessary attempt to connect: Searching for a cell signal is one of the most

power-draining operations on a mobile device. So, developers should check for con-

nectivity before performing any network operation to save battery by not forcing the

mobile radio or WiFi to search for signal if there is none available. One way to check for

connectivity is to leverage the method isConnected() on ConnectivityManager

14



C
o

n
n

ec
ti

vi
ty

D
is

p
la

y
Lo

ca
ti

o
n

R
ec

u
rr

in
g 

C
o

n
st

ru
ct

s
Se

n
so

r
W

ak
el

o
ck

En
er

gy
 D

ef
ec

ts

Unnecessary Attempt to Connect

N
et

w
o

rk
B

lu
et

o
o

th

Unnecessary Active Bluetooth

Frequently Scan for WiFi

Redundant WiFi Scan

Unnecessary Scan for Bluetooth 
Pairs

Redundant Bluetooth Discovery

Using Radio Over WiFi

Attempting Corrupted Connection

Keeping Screen On

Improper Utilization of Screen 
Flag

Using Light Background Color

Increasing and Holding Screen 
Brightness

High Frequency of Location 
Updates

Unnecessary Accurate Location 
Request

Redundant Location Updates

Neglecting Last Known Location

High Frequency Recurring 
Callback

Redundant Recurring Callback

Failing to Deactivate an Alarm

Failing to Adjust Frequency of 
Updates Based on Battery Level

Unnecessary and Repeatedly 
Execution of The Code

Failing to Release Wakelock

Unnecessary Wakelock 
Acquirement

Unnecessary Active 
WakefulBroadcastReceiver

Acquiring High Performance  
WiFi Wakelock

Failing to Unregister Sensor

Unnecessary Use of Fast Delivery 
Sensor

Downloading Redundant Data

F
ig

u
re

2.
1:

P
ro

p
os

ed
ta

x
on

om
y

of
en

er
gy

d
ef

ec
ts

15



or WifiManager. Failing to perform this check before a network task can unneces-

sarily search for a network signal and cause energy defect.

• Frequently scan for WiFi: High frequency of scanning for WiFi networks consume

higher amount of energy. Thereby, developers should manage the search for signal

properly, e.g., adjust the frequency of scanning based on the user movement, etc.

Otherwise, frequent and unnecessary WiFi scan can drain the battery of device.

• Redundant WiFi scan: Recurring tasks such as scanning for available WiFi networks

can be handled by recurring callbacks in Android, e.g., Handler, and ScheduledThr

eadPoolExecutor. While developers should avoid the highly frequent of WiFi scan

as mentioned above, they should also remove the recurring callbacks at the termination

points of the program, e.g., when app is paused. Otherwise, the app may keep scanning

for WiFi signals without using the results of that.

• Using Radio over WiFi: Mobile data costs and energy consumption tend to be

significantly higher than WiFi. So, in most cases, an app’s update rate should be lower

when on Radio connections, or downloads of significant size should be suspended until

you have a WiFi connection. Failing to follow this best practice and not prioritizing

WiFi over Radio causes unnecessary energy consumption.

• Attempting corrupted connection: When a connection to a server is not successful,

e.g., the server is not reachable, the service that is responsible to connect to the server

can potentially wait for a long time and keep the connection. To avoid such case,

developers should set a Timeout for each URL Connection. Otherwise, keeping a

corrupted connection can consume high amount of energy.

• Downloading redundant data: Multiple downloads of the same data not only

wastes the network bandwidth, but also unnecessarily consumes battery. Caching

mechanism avoids downloading the previously downloaded data again. Developers can

enable caching of all of app’s HTTP requests by installing the cache at app startup.
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Failing to implement a caching mechanism causes redundant connection establishment

and download of the data.

2.2.1.2 Bluetooth

This category consists of three types of energy defects:

• Unnecessary active Bluetooth: Developers should clear all the connections when

the Bluetooth turns off, or starts to turning off. Otherwise, the kernel keeps the

“BlueSleep” kernel wakelock which prevents the device for becoming idle. Devel-

opers should close all the Bluetooth connections if the Bluetooth is off or turning

off. The state of Bluetooth can be checked by calling getState() method on the

BluetoothAdapter.

• Unnecessary and frequent scan for Bluetooth pairs: High frequency of discovery

process for Bluetooth pairs consumes higher amount of energy, as device discovery is

a heavyweight procedure on battery. Thereby, developer should carefully manage the

Bluetooth discovery in their code.

• Redundant Bluetooth discovery: A recurring task of Bleutooth discovery can be

handled by recurring callbacks in Android, e.g., Handler, and ScheduledThreadPo

olExecutor. While developers should avoid the highly frequent of discovery of Blue-

tooth devices as mentioned above, they should also remove the recurring callbacks at

the termination points of the program, e.g., when app is paused. Otherwise, the app

may keep searching for available and visible Bluetooth devices without using the result

of discovery.
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2.2.2 Display

This category consists of four types of energy defects:

• Keeping the screen on: Some apps such as games and videos require to keep the

device screen on while running. One possible way of keeping the screen on is modifying

the screen timeout preferences. Failing to restore the modified setting keeps the screen

on for a long time even when the app is not running, i.e., 30 minutes for most of recent

Android phones, which can drastically drain the battery.

• Improper utilization of screen flags: Similar to the previous energy defect, im-

proper utilization of screen flags can unnecessarily keep the screen on. That is, if

developer uses screen flag in background services or other app components rather than

• Using light background color: Prior research have shown that the darker colors

in OLED screens, which are currently used in all mobile devices, consume less energy

compared to the lighter colors. Thereby, it is recommended that developers utilize the

darker color instead of lighter color in the UI design, or adjust the color theme based

on the battery level. Failing to do so can unnecessarily use more energy on the phones.

• Increasing and holding the screen brightness: A subset of game, multi-media,

and camera apps automatically increase the screen brightness to provide a better user

experience. High screen brightness can drain the battery in few hours, thereby, devel-

opers should avoid to increase and hold the screen brightness when the battery level

is medium to low, when the user is not using the main features of the app, e.g., user

navigates through setting, or when user puts the app in the background, e.g., switches

to another app.
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2.2.3 Location

This category consists of four types of energy defects:

• High frequency of location updates: Developers should adjust the frequency of lis-

tening to location updates based on the user movement. Otherwise, they unnecessarily

engage energy-greedy location hardware, i.e., GPS and Network. For example, when

user is walking or hiking, the frequency of listening to location updates should be less

than when user is biking or driving a car. Developers can adjust the frequency based

on user movement by using specific Android APIs, e.g., Activity Recognition listener,

that obtain user activity type from motion sensors

• Unnecessary accurate location request: User location can be obtained using GPS

or Network location provider, i.e., cellular or WiFi network. GPS consumes higher

amount of energy to acquire user location and should be utilized when it is necessary,

e.g., when user drives fast in the highway. Failing to use a proper provider location

information can negatively impact the battery life.

• Redundant location updates: Failing to remove the location listeners, which are

registered to obtain user location information, at termination points of the program

can keep the location hardware engaged, thereby, drastically drain the battery.

• Neglecting last known location: For many apps that do not heavily rely on lo-

cation information, utilization of location hardware in not necessary. Instead, they

can query for the latest location information that is obtained by other apps through

getLastKnownLocation API in LocationManager. Failing to follow this best

practice may causes frequent and unnecessary wake-ups for GPS or Network hardware

to obtain location information.
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2.2.4 Recurring Constructs

This category consists of four types of energy defects:

• High frequency recurring callbacks: Repeating periodic tasks can be used for

polling new data from the network or updating the UI. Higher frequency of invocation

consumes higher amount of energy, especially if the callback is running a task that

includes invocation of energy-greedy APIs. Thereby, developers should either avoid

usage of energy-greedy APIs in recurring callbacks, or they should consider a low

frequency for invocation of them as long as it does not interfere with app’s functionality.

• Redundant recurring callbacks: Runnable category of recurring callbacks should

be released when they are not needed, specifically at the termination points of the pro-

gram. Otherwise, they keep running even when it is no longer required. For example,

a thread that is responsible to update the GUI should be killed after the activity is in

the background, i.e., paused. Otherwise, it performs a redundant task and consumes

battery unnecessarily.

• Failing to deactivate an alarm: Android system does not kill the alarms and failing

to cancel the alarm keeps the alarm active and triggers it forever. Thereby, developers

should consider policies on the appropriate time to cancel the registered repeating

alarms

• Failing to adjust the frequency based on battery level: Developers should check

for the battery charging status to adjust background service behavior, frequency and

type of different sensor listeners, and frequency of recurring callbacks. For example,

the app should poll for updates when the device is connected to the charger, or the

frequency of periodic tasks can be adjusted based on the battery level of the device.

Failing to do so causes the faster drain of battery on users’ devices.
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2.2.5 Sensor

This category consists of two types of energy defects:

• Failing to unregister the sensors: Android system does not disable sensors au-

tomatically when the screen turns off. When developer fails to properly release the

sensor listeners at the termination points of the program, the app can keep listening

to sensors and updating the sensor information in background, even when it is not

actively running. This can drastically impact the battery life and drain the battery in

just a few hours.

• Unnecessary use of fast delivery sensors: Sensor listener events can be queued

in the hardware FIFO list before delivered. Setting delivery trigger of listener to the

lowest possible value, i.e., 0, interrupts Application Processor at the highest frequency

possible and prevents it to switch to lower power state, specially if the registered sensor

is a “wake-up” sensor. Thereby, it is important that developers properly adjust the

type of sensors based on the context.

2.2.6 Wakelock

This category consists of four types of energy defects:

• Failing to release wakelocks: Misuse of CPU wakelocks, i.e., failing to release

the wakelock at proper points or failing to properly release all the reference counted

wakelocks, can unnecessarily keep the CPU on. Thereby, the device will not enter the

idle mode and the battery drain continues, even when no app is running on the device.

• Unnecessary Wakelock acquirement: Wakelocks are a mechanism to keep the

CPU and WiFi hardware 1 awake. While this feature is helpful to ensure correctness of

1Earlier versions of Android allowed developers to keep the screen on using display wakelocks.

21



specific tasks on some categories of mobile apps, improper and unnecessary utilization

of wakelocks negatively impacts the battery life. For example, developers are advised to

acquire the wakelock once needed, and release it as soon as the locked task is finished.

Keeping the wakelock for longer time has no other benefit and only drains the battery.

Also, newer versions of Android API library support alternative solutions to keep the

CPU awake, instead of using wakelocks: Using DownloadManager when an app is

performing long-running HTTP downloads or creating a sync adapter, when an app is

synchronizing data from an external server.

• Unnecessary active WakefulBroadcastReceiver: A partial wakelock can be ac-

quired by using a specific broadcastreceiver, i.e., WakefulBroadcastReceiver, in

conjunction with a service. Failing to call method unregister this broadcastreceiver

after the work that requires the lock on the CPU, keeps the device awake even if not

required.

• Acquiring high performance WiFi wakelock: By acquiring a high-performance

Wakelock on the WiFi hardware, WiFi will be kept active and it operates at high

performance with minimum packet loss, which consumes higher amount of energy

compared to the regular wakelock. While this might be necessary for specific tasks,

developers should carefully acquire and manage the type of WiFi wakelocks. For

instance, they should monitor the strength and state of WiFi network and if the signal

quality degrades, WiFi wakelock should be either releases, or its type being changed to

normal WiFi wakelock instead of high performance lock. Failing to properly implement

this adjustment can negatively impact the battery life.
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2.3 Analysis

In this section, I present an analysis of the energy defects in the proposed defect model.

Specifically, I investigate the following research questions:

RQ1. Distribution of Energy Defects : What is the distribution of each identified energy

defect among the studied sources? What portions of the defects cannot be identified by

limiting the study to just issue tracker of open source apps or Android documentation?

Is it possible to identify all types of energy defects by studying app repositories?

RQ2. Misused Resource Type: What hardware components are engaged as a result of energy

defect? How are these hardware components misused?

RQ3. Consequences of Energy Defects : What are the consequences of energy defects and to

what extent do they impact the battery life?

2.3.1 RQ1: Distribution of Energy Defects

Table 2.1 demonstrates all the identified energy defects in the proposed defect model, along

with the information that whether I found an instance of each defect in Android documentation—

the first two search sources—or any artifacts (source code, issue tracker, or commit history)

of the studied open source apps—obtained from the next two search sources (columns 2 and

3).

As shown in Table 2.1, while I found instances of some energy defects in both type of

sources, some of the defects were only found in Android documentation or artifacts of Apps

with energy issues. For example, there was no indication in either of the crawled Android

documentation—Android API reference and Android developers guide—that failing to close

Bluetooth connections can lead to Bluesleep wakelock, that can keep the device awake and
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drastically drain the battery. However, I found several posts on XDA Developers and AOSP

related to apps keeping Bluesleep wakelock and causing energy issues. Unlike app level

wakelocks that are acquired and released by apps, Bluesleep is a kernel level wakelock and

will be active in kernel as long as there is an active Bluetooth connection. If developers

fail to close Bluetooth connections after completion of data transfer, Bluesleep can keep the

phone unnecessarily awake and drain the battery. I found an instance of this defect in XDrip

apps [47], as corroborated by issue #169 [48].

Similarly, there are a subset of energy defects that I was not able to find any instance of them

in the studied apps. There are two possible justifications for this. First, majority of the open

source apps are either simple or not upgraded to newer version of Android SDK, thereby

do not use specific APIs and constructs that are discussed in Android documentation. For

instance, WakefulBroadcastReceiver introduced in the API level 22, to help developers keep

the phone awake during execution of services initiated by a broadcast receiver. None of

our studied apps used WakefulBroadcastReceiver in their implementation, let alone have an

instance of an energy defect related to it. Second, a subset of defects manifest themselves

under specific and not very common use-cases. For example, acquiring high performance

wakelock is not a defect itself. Under poor WiFi signals however, this type of wakelock

consumes more energy compared to normal WiFi wakelock, as it keeps WiFi active with

minimum packet loss and low packet latency. Therefore, developers should check the strength

of connection signal before acquiring this type of wakelock.

To summarize, the results from RQ1 confirm the proper choice of sources I used for derivation

of proposed defect model. Without any of these sources, I might have missed some types of

energy defects.
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2.3.2 RQ2: Misused Resource Type

To answer this question, I tried to reproduce each instance of defect on a real Android app,

if the source of defect was apps’ artifact, or a synthetic app I created for this purpose, if

the source of defect was Android documentation. After identifying defect use-cases, i.e.,

the defect reproduction scenarios, I executed each on a Google Nexus 6, running Android

version 6.0.1, and monitored energy behavior of different hardware component of the phone

using Trepn [71]. Trepn is a profiling tool developed by Qualcomm that can be installed

on Android phones with Snapdragon chipsets developed by Qualcomm and collect the exact

power consumption data from various hardware component.

Trepn is reported to be highly accurate, with an average of 2.1% error in measurement [42],

and provides utilization traces for each hardware component during execution of each app.

To find out about misused hardware component, I collected the utilization traces of each

before, during, and after execution of each defect scenario. I then analyzed each trace,

looking for the following patterns:

• Idle time utilization: Spikes in the utilization traces when the user is not interacting

with the app can rise a red flag. Although running a background service without

any user interaction is not prohibited, apps are suggested to stop utilizing hardware

components when the app is not in the foreground, i.e., user pauses the app by switching

to another app. Failing to un-register listeners can cause such patterns in the utilization

trace.

• Utilization difference before and after the execution: Apps are supposed to

release all the hardware components when they are closed by users. Nevertheless, the

app can keep the phone on a high power consumption state, even if it is closed. Any

difference on the utilization level of a hardware component before and after execution
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of each scenario can be an indicator of energy defect. For example, failing to release a

wakelock or closing Bluetooth connections causes this pattern in the utilization trace.

• Consecutive high amplitude spikes: Spikes in the utilization trace that last for a

long time can be an indicator of hardware over-utilization. High frequency of recurring

callbacks, acquiring wakelock sooner than it is required, or repeatedly execution energy-

greedy APIs can cause this pattern in the utilization trace.

The result of our analysis for this research question is summarized in the column 4 of Ta-

ble 2.1. As illustrated by these results, different instances of an energy defect type can

impact different hardware components. For example, depending on the type of wakelock

acquired by an app, e.g., screen wakelock, CPU wakelock, or WiFi wakelock, different hard-

ware components might remain in the high power consumption state and prevent the phone

to become idle. As another example, the engaged hardware component of High Frequency

Recurring Callback defect will be determined by the type of APIs used in the implemen-

tation of recurring constructs. This diversity on the type of engaged hardware component

later impacts the severity of instances for specific defect type, which I will discuss more on

RQ4.

It is worth to note that I were not able to find any instance of energy problems related the

camera and media hardware, such as speaker, and curser. Although failing to release these

hardware components can cause functional problems, e.g., if camera is acquired by an app

other apps can not acquire it again until it is released, such resource leaks are not reported

to cause battery drainage. By looking more closely on the usage of APIs related to these

hardware components, I discovered acquire and release APIs are performed on the software

level, rather than actually utilizing the hardware. For instance, the usage of acquire and

release APIs for camera deals with Camera object, at the software level, rather than directly

utilize camera hardware between acquirement and release [13]. In fact, the camera hardware

will be utilized only during video record and capturing a photo.
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Figure 2.2: The breakdown of hardware components involved in energy defects

Additionally, I studied the breakdown of hardware components misused by any of the defect

patterns identified by our defect model. As illustrated by Figure 2.2, network-related hard-

ware, i.e., WiFi and radio, are the most misused components, together involved in 37% of

energy defects. This is not surprising, as majority of the Android apps, regardless of their

category, require access to internet for tasks such as update, offloading expensive compu-

tations to cloud, downloading files, and etc. The contribution is followed by display, CPU,

GPS, Bluetooth, sensors (e.g., accelerometer, gyroscope, and magnetometer), and memory.

These information can be valuable for developers, showing that they should be more careful

when using APIs related to WiFi, radio, display, and GPS, since 40% of energy defects are

related to the misuse of these APIs.

2.3.3 RQ4: Consequences of Energy Defects

The inevitable consequence of an energy defect is drainage of the battery. Unlike functional

defects however, energy defects do not cause immediate impacts observable by either users

or developers. In fact, for many energy defects, it may take several days until users suspect
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the battery usage of their phone has changed. Additionally, the severity of the consequence

among energy defects varies among different type of energy defects. To determine the severity

of energy defects, I identified two of their characteristics: (1) the impact period and (2) the

type of misused hardware.

The impact period of an energy defect can be identified as idle or non-idle. While the impact

of non-idle defects is during the execution of an app, the impact of idle defects continues

even when an app is in the background or even stopped. To benchmark the impact period of

energy defects, I used the results of experiments performed for RQ2. Specifically, I marked

an energy defect as non-idle, if I found a consecutive high amplitude spikes pattern match

for utilization traces of its related hardware components. Similarly, I marked an energy

defect as non-idle, if its corresponding hardware utilization traces matched either “Idle time

utilization” or “Utilization difference before and after execution” patterns discussed in RQ2.

The energy greediness of the engaged hardware component is another important factor to be

considered when identifying impact severity of energy defects. According to Google, display,

GPS, WiFi, and radio are reported to consume the highest portion of device battery [11].

Therefore, I consider these hardware components as more-greedy, and other hardware com-

ponents less-greedy for determination of severity impact.

Based on the impact period and energy-greediness of misused hardware, I identified the

severity of each energy defect as severe, alarming, and minor as denoted in the last column

of Table 2.1 by A, B, and �, respectively. An energy defect has a severe impact, if the

impact period is idle and it misuses a more-greedy component during idle time. If the impact

period is non-idle, but the resource type is one of the more-greedy hardware components,

the defect has an alarming severity. Finally, if the impact period is either idle or non-idle

and the engaged hardware is less-greedy, I identify the energy defect to have a minor impact.
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Figure 2.3: Distribution of defect types’ impact severity

Note that the severity of different instances of a defect type might different based on the use-

case. For instance, consider ”Redundant Location Updates“ energy defect. The impact of this

energy defect on the battery can be either severe or minor. As mentioned in Section 2.2, this

type of defect happens when developer fails to unregister the location listener. Unregistering

the location listener can be performed in several program points as discussed in RQ3, e.g., in

onPause(), onDestroy(), or onProviderDisabled(). If developer fails to unregister the listener

in the first two program points, the impact of defect on the battery would be severe, as the

app keeps GPS or network components engaged without any user interaction [149]. However,

if user manually disables GPS or network from the phone’s setting and developer has failed

to unregister the listener at onProviderDisabled callback, Android system itself disables all

the access to GPS or network components. Instead, the app keeps the CPU component

engaged, as there is still a listener thread registered to inquiry about location information.

Thereby, while the latter instance of defect still impacts the battery, the impact is minor.

As shown in Figure 2.3, the majority of identified defect types are alarming, meaning they

over-utilize more-greedy hardware component during execution of an app. Alarming defects

are potential points for optimization, i.e., developers can save the dynamic energy consump-

tion of an app by fixing such defects. For example, developers should always consider the

speed of user movement to choose appropriate frequency of location update and proper loca-
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tion provider. If user is driving in a car, then the location update should be performed at the

highest frequency and high accuracy. If she walks, the frequency of location update should be

less frequent, adjusted to movement speed. Finally, if she is stationary, the location updates

should be canceled to save energy.

More that 40% of the defects have severe impacts, whereby they can drastically impact

the battery life of the device. Such defects should happen under no program path, as they

highly decrease usability of both the app and device. Currently, there is a lack of software

engineering tools and techniques that can help developers identifying energy defects and

the few existing techniques [149, 150] are limited by the types of defects that they can

detect.There is, thus, a need for tools that can fill this gap. Finally, near 40% of the energy

defects have minor consequences on the battery. Although the impact of such defects in one

app might not be significant on the battery life, the aggregation of these defects on many

apps can have a huge impact on the battery. Thereby, developers should also care to fix

energy defects with minor impact.

2.4 Discussion

In recent years, several techniques have been proposed to assist Android developers in iden-

tifying energy defects. Yet, there exist no common benchmark of real-world energy defects

for assessing effectiveness of such tools. In this chapter, we proposed a comprehensive defect

model of 28 types of energy defects, constructed from mining Android documentation and

artifacts of 59 real-world Android apps. The analysis on instances of identified energy defects

reveals the type of hardware components that are commonly misused, root causes of energy

defects,and their corresponding consequences and importance.
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Chapter 3

Related Work and Research Gap

This chapter provides an overview of the related research on software testing and green

software engineering. Furthermore, I discuss the research gap and position of the proposed

techniques in this dissertation among the body of literature. To that end, I constructed a

taxonomy of existing approaches prior to this research that address the energy deficiency of

mobile apps through program analysis, i.e., static code analysis and software testing.

3.1 Related Work

The related work can be categorized into six categories. For each category, the literature

review was performed on the related work within the domain of Android and outside of it.

3.1.1 Regression Testing

Previous work in regression testing can be categorized as test-suite minimization, test case

selection, test case prioritization, and test-suite augmentation techniques [210]. These ap-
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proaches have been further broken down to subcategories in the literature [102] as: (1) Ran-

dom, which selects arbitrary number of available test cases in an ad hoc manner; (2) Retest

all, which naively reruns all the available test cases; (3) Coverage-based data flow, which

selects test cases that exercise data interactions that have been affected by modifications;

and (4) Safe selection, which selects every test case that achieves a certain criterion.

The majority of regression testing techniques consider adequacy metrics for functional re-

quirements of the test suite and to lesser extent non-functional requirements [174]. To the

best of our knowledge, there are only few approaches in the literature that perform test-suite

management with respect to the energy consumption.

Kan [134] investigated the use of Dynamic Voltage and Frequency Scaling (DVFS) for energy

efficiency during regression testing. This work focuses on the assumption that over the

versions of a program that do not have significant changes in functionality, CPU-bound tests

remain CPU-bound, and similarly IO-bound tests remain IO-bound. It is effective therefore,

to optimize the processor frequency for the execution of CPU-bound test to achieve a good

level of energy savings. Unlike the proposed approach in this dissertation, which is a test-

suite minimization, this work utilizes retest all [102] technique and re-runs all the existing

test cases. In addition, the goal of this work is to reduce the energy consumption of whole

test-suite, rather than selecting test cases that are good for energy testing.

Another closely related work is an energy-directed approach for test-suite minimization [141].

The proposed approach in this paper tries to generate energy-efficient test suites that can

be used to perform post-deployment testing on embedded systems. To that end, the authors

measured the energy consumption of test cases, using a hardware, and used those measured

information to perform test-suite minimization. This approach is not suitable for energy

testing, since it discards tests with high energy consumption, which are necessary for detect-

ing energy defects. Furthermore, the proposed technique uses execution time as a metric for

test-suite optimization, when energy consumption information is not available. Though col-
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lecting execution time for test cases is easy, using time as a proxy for energy is controversial.

Although some research shows that execution time is perceived to be positively correlated

with energy consumption [139], others suggest that time is not an appropriate proxy for

identifying energy-greedy segments of the program [109].

To summarize, no test-suite minimization approach attempts to reduce a test suite with

the goal of maintaining the reduced test suite’s ability to reveal energy defects. Unlike

the aforementioned techniques, which focus on running the test cases in the most energy-

efficient way, the proposed approach in this dissertation selects the minimum subset of the

existing test suite that can be used for energy testing of the Android apps. This approach

is complementary; an interesting avenue of future research is a combined multi-objective

approach, where both the energy cost of running the tests and their ability to reveal energy

defects are considered in the selection of tests.

3.1.2 Test Adequacy Criterion

Coverage criteria for software testing can be divided into those aimed at functional correct-

ness and non-functional properties. The great majority of prior work has focused on coverage

criteria for functional correctness [100, 77, 104, 116, 95, 96], and to a lesser extent on non-

functional properties [191, 93, 74, 204]. Even among the work focusing on non-functional

properties, none is applicable for energy testing, which hinders progress and comparison of

energy-aware testing techniques.

The coverage criterion suitable for energy testing needs to be aware of energy consumption

during test execution. Prior studies related to energy consumption of Android apps can be

categorized into power modeling and power measurement. Research in power modeling sug-

gests estimating the energy usage of mobile devices or apps in the absence of hardware power

monitors [140, 109]. Studies in power measurement make use of specialized hardware to de-
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termine an app’s energy consumption at various granularities. While these techniques can

be adopted to measure or estimate the amount of energy consumption during test execution,

none of them address or provide test adequacy metric for determining the energy-efficiency

of tests.

3.1.3 Mutation Testing

Mutation testing has been widely used in testing programs written in different languages,

such as Fortran [137], C [89], C# [92], Java [153], and Javascript [167], as well as testing

program specifications [94, 165] and program memory usage [198]. However, there is a dearth

of research on mutation testing for mobile applications, specifically Android apps.

Mutation operators for testing Android apps were first introduced by Deng and colleagues [90,

91], where they proposed eleven mutation operators specific to Android apps. They designed

mutation operators based on the app elements, e.g., Intents, activities, widgets, and event

handlers. Unlike their operators that are designed for testing functional correctness, the

operators in this dissertation are intended for energy testing. Therefore, they are different

from those proposed in [91]. In addition, the proposed technique on this paper follows a

manual approach to analyze the generated mutants, rather than automatic technique for

mutation analysis proposed in this dissertation.

Since energy defects are complex and they manifest themselves under peculiar contextual

settings, an energy-aware mutation testing technique should design the mutation operators

based on a defect model. Liu et al. [149] identified missing sensors and wakelock deactivation

as two root causes of energy inefficiencies in Android apps. Banerjee and Roychoudhury [67]

provided a high level categorization for energy defects without identifying specific energy

anti-pattern. The proposed defect model in this dissertation is more comprehensive that
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prior techniques, i.e., identify 28 types of energy defects. Only a subset of our operators are

overlaps with the energy defects that are described in these works.

Another important component of mutation testing is oracle. Gupta and colleagues [105]

provide a framework to identify common patterns of energy inefficiencies in power traces,

by clustering power traces of a Windows phone running different programs over a period of

time. Unlike their approach, I compare power traces of executing a test on two different

versions of an app, knowing one is mutated, to determine whether they are different.

3.1.4 Android Testing

Test input generation techniques for Android apps mainly focus on either fuzzing to generate

Intents or exercising an Android app through its GUI [85]. Several approaches generate

Intents with null payloads or by randomly generating payloads for Intents [209, 205, 186, 160].

Dynodroid [155] and Monkey [45] generate test inputs using random input values. Several

techniques [55, 53, 206, 63, 110] rely on a model of the GUI, usually constructed dynamically

and non-systematically, leading to unexplored program states. Another set of techniques

employ systematic exploration of an app in the construction of test cases: EvoDroid [158]

employs an evolutionary algorithm; ACTEve [58], JPF-Android [193], Collider [128], and

SIG Droid [169] utilize symbolic execution. Another group of techniques focus on testing for

specific defects. One technique, IntentDroid [117], explores boolean paths to test for inter-

app communication vulnerabilities. LEAKDroid [204] employs a GUI model-based technique

for testing resource leaks in Android that lead to slowdowns and crashes.

None of these approaches can be used to properly test the energy behavior of Android apps,

as they lack the ability to generate inputs meant to cover and exercise energy hotspots. The

closest work to the proposed research is perhaps that of Banerjee et al. [67]. They present a

search-based profiling strategy with the goal of identifying energy hotspots in an app. Their
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approach does not consider system inputs that are independent of GUI or energy hotspots

that involve recurring constructs. Furthermore, their profiling process always starts from

the root activity of an app, making it infeasible to test particular sequences of the app’s

lifecycle.

3.1.5 Test Oracle

Automated test oracle approaches in the literature can be categorized into Specified [87, 194,

101, 146, 166, 201, 97, 98, 80, 81], Derived [202, 203, 115], and Implicit [76, 70, 161, 161,

119, 195, 79] test oracles [69]. Majority of these technique focus on the functional properties

of the program to generate test oracles, e.g., generating test oracles for GUI. Even among

those that consider non-functional properties of software [195, 70, 119, 161, 79], none has

aimed to develop an oracle for energy testing.

The biggest challenge to construction of an energy oracle is determining the observable

patterns during test execution that are indicators of energy defects. While prior research

attempted to categorize energy defects in mobile apps, the proposed fault models are either

broadly describing a category of energy defects [67], or identifying specific energy anti-

patterns in code that lead to excessive battery consumption [125]. Also, as energy defects

change and new types of defects emerge due to the evolution of mobile platform, i.e. Android

framework, the defect model proposed by prior work becomes obsolete.

While the mutation testing framework proposed in this dissertation rely on an automated

test oracle, the proposed technique cannot be generalized to energy test oracles, as it requires

a baseline power trace—that of original app—to identify anomalous patterns in a given power

trace—mutant app.
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Figure 3.1: Categorization of problems to address Android energy assessment

A closely related work to construction of energy test oracle is Banerjee et al. [67], which

presents a search-based profiling strategy with the goal of identifying energy defects in an

app. Their proposed technique profiles the energy consumption of the device while exploring

the GUI of apps and analyzes the power traces using statistical and anomaly detection

techniques to uncover energy-inefficient behavior. In their subsequent work [66], Banerjee

et al. fixed the scalability issue of the prior work [67] by using abstract interpretation-

based program analysis to detect resource leaks. None of these techniques offer a solution to

construct reusable energy test oracles.

3.1.6 Green Software Engineering

In recent years, automated approaches for analysis [103, 149, 105, 199], refactoring [163, 68],

and repair [142, 148] of programs have been developed to improve the energy efficiency of

programs. Liu et al. [149] identified missing sensors and wakelock deactivation as two root
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Figure 3.2: Categorization of proposed solution to address Android energy assessment

causes of energy inefficiencies in Android. They also empirically studied the patterns of

wakelock utilization and the impact of wakelock misuse in real-world Android apps [150].

Banerjee and Roychoudhury [68] proposed a set of energy efficiency guidelines for refactoring

Android apps. These guidelines include fixing issues such as sub-optimal binding and nested

usage of resources. These approaches consider only a subset of the Android energy issues.

Additionally, none of these approaches attempt to develop techniques that aid the developers

with energy testing.

For a better understanding of the state of research in the field of energy analysis of mobile

apps, Figures 3.1- 3.3 present a taxonomy of how the related work address the energy ef-

ficiency of mobile apps and what techniques they use to evaluate and assess the proposed

approaches. The taxonomy entities that are marked with * indicates the contribution of this

dissertation in the domain. The remaining of this chapter will elaborate the shortcomings

of related work.
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Figure 3.3: Categorization of assessment techniques in the domain of Android energy assessment

3.2 Research Gap

In this section, I identify the research gap in the related literature by answering the following

research questions:

• Studied energy defects : What type of energy defects have been studied by prior studies?

• Importance of unattended energy defects : How important are the energy defects not

studied by prior research?

• Analysis technique: What type of program analysis have been used assess the energy

behavior of Android apps? What are the limitations of such analysis techniques?
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Figure 3.4: Distribution of energy defect patterns among sources

3.2.0.1 Studied energy defects

Prior body of work has only studied a subset of energy defects, i.e., resource leakage and

sub-optimal binding, that were presented in Section 2. The most important root cause of

this gap is that prior work only relied on app artifacts, specifically issue tracker of open

source apps, in order to determine the root causes of battery drainage in mobile apps. On

the other hand, the proposed methodology in Section 2 considers not only the issue tracker

of open source apps, but also Android API documentation and developer’s guide, AOSP

issue tracker, and developer’s discussions in public forums. Based on the insights obtained

from the additional sources, I was able to find more instances of energy defects in real-world

mobile apps and construct a comprehensive energy defect model for Android.

Figure 3.4 shows the distribution of identified energy defect in Section 2 among different

sources. As this chart suggests, 21% of energy defects in the energy defect model are identi-

fied through studying only app artifacts. For the remaining 79%, 54% of them are identified

based on the information obtained from documentations—Android API documentation, An-

droid developer’s guide, and developer’s discussions in public forums—and 25% of them are

identified by a cross analysis between these two sources. As an example for the latter cate-

41



Figure 3.5: Importance of energy defects missed by prior research

gory, I found several posts in the XDA Developers forum suggesting that specific Bluetooth

apps drain the battery even when the Bluetooth is off. While the issue tracker of those apps

did not contain any battery issues, by looking at the source code of those apps, I was able

to find that those apps have failed to close Bluetooth connections once a Bluetooth device

disconnects, thereby kept a kernel level wakelock active and drained the battery.

3.2.0.2 Importance of unattended energy defects

This research question investigates the importance of missing energy defects in prior studies.

Recall from Section 2.3.3, the impact of energy defects can be Minor, Alarming, and Severe,

based on the impact period and energy-greediness of the misused hardware. Figure 3.5

demonstrates the severity of the energy defects that are missed by related work:

• Minor defects : Only 36% of the minor energy defects are studied by prior research.

Although the impact of minor defects in one app might not be significant on the

battery life, the aggregation of these defects on many apps can have a huge impact on

the battery. Thereby, the proposed technique in the literature should consider these

types of defects in their Analyses.
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• Alarming defects : Only 16% of the Alarming defects are studied by related work.

Alarming defects are potential points for optimization, i.e., developers can save the

dynamic energy consumption of an app by fixing such defects. Such optimization can

help reduce the battery consumption during execution of an app. Thereby, energy-

aware analyses should consider these type of defects.

• Severe defects : Only 36% of the Severe energy defects are studied by prior research.

These defects are very important to be studied, as they can drastically impact the

battery life.

These results confirm the importance of the energy defects, which are not studied by the prior

related work. Thereby, there is a need for automated techniques that take the unattended

energy defects into account in their analyses.

3.2.0.3 Analysis technique

Prior body of work mostly relies on the Static Program Analysis to address energy issues

in mobile apps. The first problem with the static analysis is that it relies on known defect

patterns and fails to generalize to a large set of energy issues. More importantly, the majority

of energy inefficiencies cannot be effectively detected using static analysis, as in addition to

the app, energy properties also depend on the framework, context of usage (e.g., speed of

movement), properties of the device (e.g., whether the device is connected to WiFi or not)

and even back-end servers (e.g., corrupted URL or unreachable server). At the same time,

none of the existing automated Android testing tools are able to generate tests that are

sufficiently sophisticated for finding the types of energy defects described above. Thereby,

there is a need for automated testing techniques to consider energy as a program property

of interest in their analysis.
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Chapter 4

Research Problem

The utility of a smartphone is limited by its battery capacity and the ability of its hardware

and software to efficiently use the device’s battery. Besides traditional hardware components

(e.g., CPU, memory), mobile devices utilize a variety of sensors (e.g., GPS, WiFi, radio, cam-

era, accelerometer). The multitude of hardware on a mobile device and the manner in which

mobile platform interfaces with such hardware result in a major challenge in determining

the energy efficiency of mobile apps.

While recent studies have shown energy to be a major concern for both users [196] and

developers [162], many mobile apps are still abound with energy defects. App developers

find it difficult to properly evaluate the energy behavior of their programs [162]. To properly

characterize the energy consumption of an app and identify energy defects, it is critical that

apps are properly tested.

To understand the need to dynamically exercise an app, i.e., testing an app, to find energy

defects, consider the code snippets shown in Listing 4.1 and Listing 4.2 and. Listing 4.1

shows a code snippet that employs Android API to obtain user location. User location

can be obtained by creating a LocationListener (Line 8), implementing several callbacks
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1 public class TrackActivity extends Activity {
2 private LocationManager manager;
3 private LocationListener listener;
4 protected void onCreate(){
5 time = 1*60*1000;
6 distance = 20;
7 manager = getSystemService("LOCATION_SERVICE");
8 listener = new LocationListener(){
9 public void onLocationChanged(Location loc){

10 if(loc.altitude > 2)
11 // Update activity with new location
12 }
13 };
14 manager.requestLocationUpdates("GPS", time, distance, listener);
15 }
16 protected void onPause(){ super.onPause(); }
17 protected void onDestroy(){
18 manager.removeUpdates(listener);
19 }
20 }

Figure 4.1: Obtaining user location in Android

(e.g., onLocationChanged in Lines 9-12), and then calling requestLocationUpdates

method of LocationManager to register the listener and receive location updates (Line

14). When developing location-aware apps, developers should use a location update strategy

that achieves the proper tradeoff between accuracy and energy consumption [19]. In the

code snippet of Listing 4.1, the app receives user location updates from GPS every 1 minute

(i.e., 1 × 60 × 1000 milliseconds) or every 20 meters change in location (Line 14). This

may not be the best strategy, as the app requests an update every 1 minute, even if the

user is stationary, leading to high frequency of location updates anti-pattern. Additionally,

the app always utilizes GPS to obtain location data instead of alternative, more energy

efficient approaches, e.g., Android’s Network Location Provider. Although more accurate,

GPS consumes higher amount of energy, leading to unnecessary accuracy of location anti-

pattern. Depending on the speed of movement, the app can obtain location data from

different sources, e.g., when a user moves rapidly and requires more accurate data, the app

should utilize GPS, and use network to obtain location information otherwise. To detect

such unnecessary energy inefficiencies, an app needs to be tested under different contextual

settings, e.g., speeds of movement.
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1 protected void downloadFiles(String[] resourceLink){
2 WifiLock lock = getSystemService().createWifiLock();
3 lock.acquire();
4 for(String link : resourceLink){
5 URL url = new URL(link);
6 HttpURLConnection conn = url.openConnection();
7 conn.connect();
8 file = downloadFile(conn.getInputStream);
9 processFile(file);

10 conn.close();
11 }
12 lock.release();
13 }

Figure 4.2: Downloading files in Android

When the app no longer requires the location information, it needs to stop listening to

updates and preserve battery by calling removeUpdates of LocationManager (Line 18).

Failing to unregister the location listener results in unnecessary delivery of location updates

and a constant energy draw [149]. In the example of Listing 4.1, when the app is neither

running nor destroyed (i.e., paused in the background), listener keeps receiving updates,

which is redundant as the activity is not visible, leading to redundant location updates anti-

pattern. To detect these sorts of defects, apps need to be tested under different combination

of lifecycle callbacks, as some combination of callbacks may fail to release resources and

unregister event listeners.

Listing 4.2 shows an Android program that connects to a set of servers, downloads files, and

processes them. Although the code is functionally correct, it suffers from several energy anti-

patterns. First, searching for a network signal is one of the most power-draining operations on

mobile devices [32]. As a result, an app should first check for connectivity before performing

any network operation to save battery, i.e., not forcing the mobile Radio or WiFi to search

for a signal if there is none available (to avoid unnecessary attempt to connect anti-pattern).

Second, energy cost of communication over cellular network is substantially higher than

WiFi. Therefore, developers should adjust the behavior of their apps depending on the

type of network connection (to avoid use Radio over WiFi anti-pattern). For example, the

update rate should be lowered on Radio connections, or downloads of significant size should
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be suspended until there is a WiFi connection. Third, opening a network connection is

energy expensive [142] as it involves a successful three-way handshake. If the server is not

reachable—the server is not available or the URL is corrupted—the client waits for the ACK

from the server until there is a timeout. If the timeout value is not specified, an app can wait

forever for a response from the server, which unnecessarily utilizes WiFi or Radio hardware

components [46] (resulting in attempting corrupted connection anti-pattern). To detect these

types of energy defects, Android apps need to be tested under different network connections

(e.g., WiFi, Radio), different conditions (i.e., when network connection is available or not),

and different use-cases (e.g., the server is not reachable or the URL is corrupted).

Energy defects in the code snippet of Listings 4.1 and 4.2 show that the majority of energy

inefficiencies cannot be effectively detected using static analysis, as in addition to the app,

energy properties also depend on the framework, context of usage (e.g., speed of movement),

properties of the device (e.g., whether the device is connected to WiFi or not) and even

back-end servers (e.g., corrupted URL or unreachable server). At the same time, none of

the existing automated Android testing tools are able to generate tests that are sufficiently

sophisticated for finding the types of energy defects described above. In this context, the

goal of this research is to help mobile app developers with creating energy efficient apps by

enabling energy testing. To advance the state of energy testing on mobile applications, there

are four main challenges need to be tackled:

1. There is a lack of knowledge among developers and even software research community

about characteristics of the tests that can reveal energy defects. An important step

toward automatic test generation is to asses the quality of tests in revealing energy

defects, i.e., to understand the properties of tests that are good at revealing such defects.

Mutation testing is a well-known approach for evaluating fault detection ability of test

suites by seeding artificial defects, a.k.a, mutation operators. Thereby, an energy-aware
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mutation testing technique can be useful to find out about the characteristics of tests

that can be potentially good at revealing energy defects.

2. Many energy issues depend on the execution context and manifest themselves under

peculiar conditions, e.g., when the physical location of a device is changing rapidly,

when particular system events occur frequently. Existing state-of-the-art and state-of-

practice Android testing tools are mainly designed for functional testing of Android

apps through either fuzzing or exercising apps through their GUI. The main objective

of these test generation approaches is maximizing conventional code coverage metrics

and they do not consider the contextual factor into account, making them not suitable

for testing the energy properties of apps. Thereby, there is a need to devise an energy

testing technique.

3. Energy testing is not complete without automated test oracles. Test oracle automation

is one of the most challenging facets of test automation, and in fact, has received

significantly less attention in the literature [69]. Automated test generation for non-

functional properties such as energy is more critical, as their impact after test execution

is not explicit. That is, unlike functional defects that can cause exceptions immediately

after test execution, it may take several hours, days, or even weeks until developer or

user notice an app is draining the device’s battery. There is, thus, a need for automated

test oracles to automatically determine if execution of a test can reveal an energy defect

or not.

4. Energy testing is generally more labor intensive and time-consuming than functional

testing, as tests need to be executed in the deployment environment and specialized

equipment need to be used to collect energy measurements. Developers spend a signif-

icant amount of time executing tests, collecting power traces, and analyzing the results

to find energy defects. The fragmentation of mobile devices, particularly for Android,

further exacerbates the situation, as developers have to repeat this process for each sup-

ported platform. Moreover, to accurately measure the energy consumption of a test,
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it must be executed on a device and drain its battery. While it is possible to collect

energy measurements when the device is plugged to a power source, such measurements

tend to be less accurate due to the impact of charging current [121, 20]. Continuously

testing apps on a mobile device uses up limited charging cycles of its battery. There

is, thus, a need for test-suite management capabilities, such as test-suite minimization

and prioritization, that can aid the developers with finding energy defects under time

and resource constraints.

4.1 Problem Statement

The challenges caused by lack of automated techniques to effectively and efficiently test

energy behavior of Android applications can be summarized as follow:

The rising popularity of mobile apps deployed on battery-constrained devices has motivated

the need for effective energy-aware testing techniques. However, currently there is a lack of

test generation tools for exercising the energy properties of apps. Automated test generation is

not useful without tools that help developers to measure the quality of the tests. Additionally,

the collection of tests generated for energy testing could be quite large, which entails a need

for techniques to manage the size of test suite, while maintaining its effectiveness in revealing

energy defects. Thereby, there is a demand by developers, consumers, and market operators

for practical techniques to advance energy testing for mobile applications, including various

techniques for energy-aware test input generation, test oracle, test quality assessment, and

test-suite minimization
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4.2 Research Hypotheses

This research investigates the following hypotheses:

• Mutation testing has been widely used in testing programs written in different lan-

guages [89, 153], as well as testing program specifications [165] and program memory

usage [198]. However, there is a lack of research on mutation testing for mobile apps.

More specifically, no prior work in the literature considers energy as a program prop-

erty of interest for mobile apps in the context of mutation testing. Therefore, there is

a need for an energy-aware mutation testing techniques to evaluate the quality of test

suites with respect to their ability to find energy defects.

Hypothesis 1: A mutation testing framework can be devised to effectively assess the

quality of test cases, in order to determine the characteristics of tests that are effective

in revealing energy defects.

• Existing literature on test generation for Android apps has mainly focused on func-

tional testing through exercising GUI of the apps. The main objective of these test

generation approaches is maximizing conventional code coverage metrics, and thus not

suitable for testing the energy properties of apps. That is mainly due to the fact that

many energy issues depend on the execution context and manifest themselves under

peculiar conditions (e.g., when the physical location of a device is changing rapidly,

when particular system events occur frequently). Therefore, a test input generation

technique for energy testing should consider both GUI and system inputs. While the

former is necessary for creation of tests that model user interactions with an app, the

latter creates a context for those interactions. Since the domain of both GUI and system

inputs is quite large in Android applications, a search-based evolutionary technique is

a reasonable solution to systematically search the input domain and automatically find

test data, guided by a fitness function. Such search-based testing framework should
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model both the app and execution environment, whereby these models can be used

to guide the search for proper inputs that construct event sequences exercising energy

behavior of an app.

Hypothesis 2: A testing technique that considers both app and the execution context

can be used to generate system level tests for Android app, in order to effectively test

its energy behavior.

• Test oracle automation is one of the most challenging facets of test automation [69].

While power trace is an important output from an energy perspective, relying on that

for creating energy test oracles faces several non-trivial complications. First, collecting

power traces is unwieldy, as it requires additional hardware, e.g., Monsoon [7], or spe-

cialized software, e.g., Trepn [71], to measure the power consumption of a device during

test execution. Second, noise and fluctuation in power measurement may cause many

tests to become flaky. Third, power trace-based oracles are device dependent, making

them useless for tests intended for execution on different devices. Finally, power traces

are sensitive to small changes in the code, thus are impractical for regression testing.

The key insight for construction of oracle is that whether a test fails—detects an en-

ergy defect—or passes can be determined by comparing the state of app lifecycle and

hardware elements during the execution of a test. If such a state changes in specific

ways, we can determine that the test is failing, i.e., reveals an energy issue, irrespec-

tive of the power trace or hardware-specific differences. Determining such patterns is

exceptionally cumbersome, and requires deep knowledge of energy faults and their im-

pact on the app lifecycle and hardware elements. Furthermore, energy defects change,

and new types of defects emerge, as mobile platforms evolve, making it impractical to

manually derive such patterns.

Hypothesis 3: By levering a Deep Learning technique that can learn the (mis)behaviors

corresponding to the different types of energy defects during the test execution, it is pos-

sible to construct an oracle that automatically predicts the output of test execution.
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• The great majority of test-suite minimization [173, 131, 183, 122, 107] techniques have

focused on the functional requirements and to a lesser extent non-functional require-

ments [210]. Even among the work focusing on non-functional properties, there is a

dearth of prior work that account for energy issues. Given the varying amount of energy

consumed at different points during the execution of a mobile app, it is insufficient to

utilize traditional metrics to measure test adequacy (e.g., statement coverage, branch

coverage) during test-suite minimization. As a result, a new test coverage criterion is

needed to guide an energy-aware test-suite minimization approach.

Hypothesis 4: By using a technique that considers energy properties of test cases

during test-suite minimization, it is possible to significantly reduce the size of test suites,

such that the minimized test suite maintains a comparable effectiveness in revealing

energy defects.
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Chapter 5

Energy-Aware Mutation Testing

The fact that mobile apps are deployed on battery-constrained devices underlines the need

for effectively evaluating their energy properties. However, currently there is a lack of testing

tools for evaluating the energy properties of apps. As a result, for energy testing, developers

are relying on tests intended for evaluating the functional correctness of apps. Such tests may

not be adequate for revealing energy defects and inefficiencies in apps. This chapter presents

an energy-aware mutation testing framework that can be used by developers to assess the

quality of their test suite for revealing energy-related defects. In addition, mutation analysis

can unfold the characteristics of tests that are effective in finding energy defects.

5.1 Introduction

Energy is a demanding but limited resource on mobile and wearable devices. Improper

usage of energy consuming hardware components, such as GPS, WiFi, radio, Bluetooth, and

display, can drastically discharge the battery. Recent studies have shown energy to be a
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major concern for both users [196] and developers [162]. In spite of that, many mobile apps

are abound with energy defects.

The majority of apps are developed by start-up companies and individual developers that

lack the resources to properly test their programs. The resources they have are typically

spent on testing the functional aspects of apps. However, tests designed for testing functional

correctness of a program may not be suitable for revealing energy defects. In fact, even in

settings where developers have the resources to test the energy properties of their apps,

there is generally a lack of tools and methodologies for energy testing [162]. Thus, there is

an increasing demand for solutions that can assist the developers in identifying and removing

energy defects from apps prior to their release.

One step toward this goal is to help the developers with evaluating the quality of their tests

for revealing energy defects. Mutation testing is an approach for evaluating fault detection

ability of a test suite by seeding the program under test with artificial defects, a.k.a, mutation

operators [106, 130]. Mutation operators can be designed based on a defect model, where

mutation operators create instances of known defects, or by mutating the syntactic elements

of the programming language. The latter creates enormously large number of mutants and

makes energy-aware mutation testing infeasible, as energy testing should be performed on

a real device to obtain accurate measurements of battery discharge. Additionally, energy

defects tend to be complex (e.g., manifest themselves through special user interactions or

peculiar sequence of external events). As Rene et al. [133] showed complex faults are not

highly coupled to syntactic mutants, energy-aware mutation operators should be designed

based on a defect model.

This chapter presents µDroid, an energy-aware mutation testing framework for Android.

The design of µDroid should overcome two challenges:
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(1) An effective approach for energy-aware mutation testing needs an extensive list of energy

anti-patterns in Android to guide the development of mutation operators. An energy anti-

pattern is a commonly encountered development practice (e.g., misuse of Android API)

that results in unnecessary energy inefficiencies. While a few energy anti-patterns, such as

resource leakage and sub-optimal binding [149, 199], have been documented in the literature,

they do not cover the entire spectrum of energy defects that arise in practice. To that end,

I first conducted a systematic study of various sources of information, which allowed us to

construct the most comprehensive energy defect model for Android to date. Using this defect

model, I designed and implemented a total of fifty mutation operators that can be applied

automatically to apps under test.

(2) An important challenge with mutation testing is the oracle problem, i.e., determining

whether the execution of a test case kills the mutants or not. This is particularly a challenge

with energy testing, since the state-of-the-practice is mostly a manual process, where the

engineer examines the power trace of running a test to determine the energy inefficiencies

that might lead to finding defects. To address this challenge, I present a novel, and fully

automated oracle that is capable of determining whether an energy mutant is killed by

comparing the power traces of tests executed on the original and mutant versions of an app.

Extensive evaluation of µDroid using open-source Android apps shows that it is capable of

effectively and efficiently evaluating the adequacy of test suites for revealing energy defects.

There is a statistically significant correlation between mutation scores produced by µDroid

and test suites’ ability in revealing energy defects. Furthermore, µDroid’s automated or-

acle showed an average accuracy of 94%, making it possible to apply the mutation testing

techniques described in this chapter in a fully automated fashion. Finally, using µDroid,

helped identification of 15 previously unknown energy defects in the subject apps. Reporting

these defects to developers, 11 of them were verified as bugs and 7 are fixed to date, using

the patches I provided to developers.
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The proposed approach in this chapter makes the following contributions:

• A comprehensive list of energy anti-patterns collected from issue trackers, Android

developers guide, and Android API reference.

• Design of fifty energy-aware mutation operators based on the energy anti-patterns and

their implementation in an Eclipse plugin, which is publicly available.

• A novel automatic oracle for mutation analysis to identify if an energy mutant can be

killed by a test suite.

• Experimental results demonstrating the utility of mutation testing for evaluating the

quality of test suites in revealing energy defects.

The remainder of this chapter is organized as follows. Section 5.2 provides an overview of

our framework. Sections 5.3 describes our extensive study to collect energy anti-patterns

from variety of sources and presents the details of our mutation operators with several

coding examples. Section 5.4 introduces our automated approach for energy-aware mutation

analysis. Finally, Section 5.5 presents the implementation and evaluation of the research.

5.2 Framework Overview

Figure 5.1 depicts our framework, µDroid, for energy-aware mutation testing of Android

apps, consisting of three major components: (1) Eclipse Plugin that implements the muta-

tion operators and creates a mutant from the original app; (2) Runner/Profiler component

that runs the test suite over both the mutated and original versions of the program, profiles

the power consumption of the device during execution of tests, and generates the corre-

sponding power traces (i.e., time series of profiled power values); and (3) Analysis Engine

that compares the power traces of tests in the original and mutated versions to determine if

a mutant can be killed by tests or not.
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Figure 5.1: Energy-aware mutation testing framework

Our Eclipse plugin implements fifty energy-aware mutation operators derived from an ex-

tensive list of energy anti-patterns in Android. To generate mutants, our plugin takes the

source code of an app and extracts the Abstract Syntax Tree (AST) representation of it. It

then searches for anti-patterns encoded by mutation operators in AST, transforms the AST

according to the anti-patterns, and generates the implementation of the mutants from the

revised AST.

After generating a mutant, the Runner/Profiler component runs the test suite over the

original and mutant versions, while profiling the actual power consumption of the device

during execution of test cases. This component creates the power trace for each test case

that is then fed to the Analysis Engine.

Analysis engine employs a novel algorithm to decide whether each mutant is killed or lived.

At a high-level, it measures the similarity between time series generated by each test after

execution on the original and mutated versions of an app. In doing so, it accounts for

distortions in the collected data. If the temporal sequences of power values for a test executed

on the original and mutated app are not similar, Analysis Engine marks the test as killed.

A mutant lives if none of the tests in the test suite can kill it.
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The implementation of µDroid’s framework is extensible to allow for inclusion of new

mutation operators, Android devices, and analysis algorithms. The following two sections

describe the details of proposed energy-aware mutation operators and mutation Analysis

Engine.

5.3 Mutation Operators

To design the mutation operators, we first conducted an extensive study to identify the

commonly encountered energy defects in Android apps, which we call energy anti-patterns.

To that end, we explored bug repositories of open-source projects, documents from Google

and others describing best practices of avoiding energy inefficiencies, and published literature

in the area of green software engineering.

Table 5.1 lists our energy-aware mutation operators. We designed and implemented 50

mutation operators (column 3 in Table 5.1)—corresponding to the identified energy defect

patterns, grouped into 28 classes (column 2 in Table 5.1). We also categorized these classes

of mutation operators into 6 categories, which further capture the commonality among the

different classes of operators. Each row of the table presents one class of mutation opera-

tors, providing (1) a brief description of the operators in the class, (2) the ID of mutation

operators that belong to the class, (3) list of the hardware components that the mutation

operators might engage, and (4) modification types made by the operators (R: Replacement,

I: Insertion, D: Deletion).

Due to space constraints, in the following sections, we describe a subset of our mutation

operators. Details about all mutation operators can be found on the project website [31].
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1 public class TrackActivity extends Activity {
2 private LocationManager manager;
3 private LocationListener listener;
4 protected void onCreate(){
5 manager = getSystemService("LOCATION_SERVICE");
6 listener = new LocationListener(){
7 public void onLocationChanged(){
8 // Use location information to update activity
9 }

10 };
11 manager.requestLocationUpdates("NETWORK", 2*60*1000, 20, listener);
12 }
13 protected void onPause(){super.onPause();}
14 protected void onDestroy(){
15 super.onDestroy();
16 manager.removeUpdates(listener);
17 }
18 }

Figure 5.2: Example of obtaining user location in Android

5.3.1 Location Mutation Operators

When developing location-aware apps, developers should use a location update strategy that

achieves the proper tradeoff between accuracy and energy consumption [19]. User location

can be obtained by registering a LocationListener, implementing several callbacks, and

then calling requestLocationUpdates method of LocationManager to receive location

updates. When the app no longer requires the location information, it needs to stop listening

to updates and preserve battery by calling removeUpdates of LocationManager. Though

seemingly simple, working with Android LocationManager APIs could be challenging for

developers and cause serious energy defects.

Figure 5.2 shows a code snippet inspired by real-world apps that employs this type of API.

When TrackActivity is launched, it acquires a reference to LocationManager (line 5),

creates a location listener (lines 6-10), and registers the listener to request location updates

from available providers every 2 minutes (i.e., 2 ∗ 60 ∗ 1000) or every 20 meters change in

location (line 11). Listening for location updates continues until the TrackActivity is

destroyed and the listener is unregistered (line 16).
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We provide multiple mutation operators that manipulate the usage of LocationManager

APIs. LUF operators increase the frequency of location updates by replacing the second

(LUF T) or third (LUF D) parameters of requestLocationUpdates method with 0, such

that the app requests location notifications more frequently. If LUF mutant is killed (more

details in Section 5.4), it shows the presence of at least one test in the test suite that

exercises location update frequency of the app. Such tests, however, are not easy to write.

For instance, testing the impact of location update by distance requires tests that mock the

location. To our knowledge, none of the state-of-the-art Android testing tools are able to

generate tests with mocked object. Thereby, developers should manually write such test

cases.

Failing to unregister the location listener and listening for a long time consumes a lot of bat-

tery power and might lead to location data underutilization [149]. For example in Figure 5.2,

listener keeps listening for updates, even if TrackActivity is paused in the background.

Such location updates are redundant, as the activity is not visible. RLU mutants delete the

listener deactivation by commenting the invocation of removeUpdates method. This class

of mutants can be performed in onPause method (RLU P), onDestroy method (RLU D),

or anywhere else in the code (RLU). Killing RLU mutants, specially RLU D and RLU P,

requires test cases that instigate transitions between activity lifecycle and service lifecycle

to ensure that registering/unregistering of location listeners are performed properly under

different use cases.

5.3.2 Connectivity Mutation Operators

Connectivity-related mutation operators can be divided to network-related, which engage

the WiFi or radio, and Bluetooth-related. Mutation operators in both sub-categories mimic
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energy anti-patterns that unnecessarily utilize WiFi, radio, and Bluetooth hardware compo-

nents, which can have a significant impact on the battery discharge rate.

5.3.2.1 Network Mutation Operators

Searching for a network signal is one of the most power-draining operations on mobile de-

vices [32]. As a result, an app needs to first check for connectivity before performing any

network operation to save battery, i.e., not forcing the mobile radio or WiFi to search for

a signal, if there is none available. For instance, the code snippet of Figure 5.3 shows

an Android program that checks for connectivity first, and then connects to a server at

a particular URL and downloads a file. This can be performed by calling the method

isConnected of NetworkInfo. FCC operator mutates the code by replacing the return

value of isConnected with true (FCC R), or adds a conditional statement to check con-

nectivity before performing a network task, if it is not already implemented by the app

(FCC A).

FCC R

if(true){
HttpURLConnection conn = url.openConnection();
conn.connect();
// Code for downloading file from the url

}

FCC operators are hard to kill, as they require tests that exercise an app both when it is

connected to and disconnected from a network. To that end, tests need to either mock the

network connection or programmatically enable/disable network connections.

Another aspect of network connections related to energy is that energy cost of communication

over cellular network is substantially higher than WiFi. Therefore, developers should adjust
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1 protected void downloadFiles(String link){
2 WifiLock lock = getSystemService().createWifiLock();
3 lock.acquire();
4 URL url = new URL(link);
5 ConnectivityManager manager = getSystemService(
6 "CONNECTIVITY_SERVICE");
7 NetworkInfo nets = manager.getActiveNetworkInfo();
8 if(nets.isConnected()){
9 HttpURLConnection conn = url.openConnection();

10 conn.connect();
11 // Code for downloading file from the url
12 }
13 lock.release();
14 }

Figure 5.3: Example of downloading a file in Android

the behavior of their apps depending on the type of network connection. For example,

downloads of significant size should be suspended until there is a WiFi connection.

UCW operator forces the app to perform network operations only if the device is connected

to cellular network (UCW C) or WiFi (UCW W) by adding a conditional statement. For

UCW W, network task is performed only when there is a WiFi connection available. For

UCW C, on the other hand, the mutation operator disables the WiFi connection and checks

if a cellular network connection is available to perform the network task. Therefore, killing

both mutants requires testing an app using both types of connections.

UCW W

WifiManager manager = getSystemService("WIFI_SERVICE");
if(manager.isWifiEnabled()){

HttpURLConnection conn = url.openConnection();
conn.connect();
// Code for downloading file from the url

}

5.3.2.2 Bluetooth Mutation Operators

Figure 5.4 illustrates a code snippet that searches for paired Bluetooth devices in Android.

Device discovery is a periodic task and since it is a heavyweight procedure, frequent execution
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1 public void discover(int scan_interval){
2 BluetoothAdapter blue = BluetoothAdapter.getDefaultAdapter();
3 private Runnable discovery = new Runnable() {
4 public void run() {
5 blue.startDiscovery();
6 handler.postDelayed(this, scan_interval);
7 }
8 };
9 handler.postDelayed(discovery, 0);

10 connectToPairedDevice();
11 TransferData();
12 handler.removeCallbacks(blue);
13 }

Figure 5.4: Example of searching for Bluetooth devices in Android

of discovery process for Bluetooth pairs can consume high amounts of energy. Therefore,

developers should test the impact of discovery process on the battery life.

FBD mutation operator increases the frequency of discovery process by changing the period of

triggering the callback that performs Bluetooth discovery to 0, e.g., replacing scan interval

with 0 in line 6 of Figure 5.4. Apps can repeatedly search for Bluetooth pairs using Handlers

(realized in FBD H), as shown in Figure 5.4, or ScheduledThreadPoolExecuter (realized

in FBD S), an example of which is available at [31]. Killing FBD mutants requires test cases

not only covering the mutated code, but also running long enough to show the impact of

frequency on power consumption.

Failing to stop the discovery process when the Bluetooth connections are no longer required

by the app keeps the Bluetooth awake and consumes energy. RBD operator deletes the

method call removeCallbacks for a task that is responsible to discover Bluetooth devices,

causing redundant Bluetooth discovery. Killing RBD mutants may require tests that transit

between Android’s activity or service lifecycle states, e.g., trigger termination of an activi-

ty/service without stopping the Bluetooth discovery task.
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5.3.3 Wakelock Mutation Operators

Wakelocks are mechanisms in Android to indicate that an app needs to keep the device

(or part of the device such as CPU or WiFi) awake. Inappropriate usage of wakelocks can

cause no-sleep bugs [178] and seriously impact battery life and consequently user experience.

Developers should test their apps under different use-case scenarios to ensure that their

strategy of acquiring/releasing wakelocks does not unnecessarily keep the device awake.

Wakelock-related mutation operators delete the statements responsible to release the ac-

quired wakelock. Depending on the component that acquires a wakelock (e.g., CPU or

WiFi), the type of defining wakelock (e.g., PowerManager, WakefulBroadcastReceiver),

and the point of releasing wakelock. We identified and developed support for 8 wakelock-

related mutation operators (details and examples can be found at [31]).

5.3.4 Display Mutation Operators

Some apps, such as games and video players, need to keep the screen on during execution.

There are two ways of keeping the screen awake during execution of an app, namely using

screen flags (e.g., FLAG KEEP SCREEN ON) to force the screen to stay on, or increasing the

timeout of the screen.

Screen flags should only be used in the activities, not in services and other types of compo-

nents [18]. In addition, if an app modifies the screen timeout setting, these modifications

should be restored after the app exits. As an example of display-related mutation operators,

MST adds statements to activity classes to increase the screen timeout to the maximum

possible value. For MST, there is also a need to modify the manifest file in order to add the

permission to modify settings.

MST changes to source code and manifest file
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Settings.System.putInt(getContentResolver(),
"SCREEN_OFF_TIMEOUT", Integer.MAX_VALUE);

<uses-permission android:name="permission.WRITE_SETTINGS"/>

5.3.5 Recurring Callback and Loop Mutation Operators

Recurring callbacks, e.g., Timer, AlarmManager, Handler, and ScheduledThreadPoolExecuter,

are frequently used in Android apps to implement repeating tasks. Poorly designed strat-

egy to perform a repeating task may have serious implications on the energy usage of an

app [34, 21]. Similarly, loop bugs occur when energy greedy APIs are repeatedly, but un-

necessarily, executed in a loop [67, 178].

One of the best practices of scheduling repeating tasks is to adjust the frequency of invocation

depending on the battery status. For example, if the battery level drops below 10%, an

app should decrease the frequency of repeating tasks to conserve the battery for a longer

time. While HFC class of mutation operators unconditionally increases the frequency of

recurring callbacks, BFA operators do this only when the battery is discharging. Therefore,

the BFA mutants can be killed only when tests are run on a device with low battery or the

battery status is mocked. Depending on the APIs that are used in an app for scheduling

periodic tasks, we implemented 8 mutation operators of type BFA. As with some of the other

operators, details and examples can be found at [31].

5.3.6 Sensor Mutation Operators

Sensor events, such as those produced by accelerometer and gyroscope, can be queued in the

hardware before delivery. Setting delivery trigger of sensor listener to low values interrupts
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1 private SensorEventListener listener;
2 private SensorManager manager;
3 protected void onCreate(){
4 listener = new SensorEventListener();
5 manager = getSystemService("SENSOR_SERVICE");
6 Sensor acm = manager.getDefaultSensor(
7 "ACCELEROMETER");
8 manager.registerListener(listener, acm,
9 "SENSOR_DELAY_NORMAL", 5*60*1e6);

10 }
11 protected void onPause(){
12 super.onPause();
13 manager.unregisterListener(listener);
14 }

Figure 5.5: Example of utilizing sensors in Android

the main processor at highest frequency possible and prevents it to switch to lower power

state. This is particularly so, if the sensor is a wake-up sensor [40]. The events generated

by wake-up sensors cause the main processor to wake up and can prevent the device from

becoming idle.

In the apps that make use of sensors, tests are needed to ensure that the usage of sensors is

implemented in an efficient way. FDSL operator replaces the trigger delay—last parameter in

method registerListener in line 7 of Figure 5.5—to 0, and changes the wake-up property

of the sensor in line 6.

In addition, apps should unregister the sensors properly, as the system will not disable sensors

automatically when the screen turns off. A thread continues to listen and update the sensor

information in the background, which can drain the battery in just a few hours[40]. SLUD

operator deletes the statements responsible for unregistering sensor listeners in an app. For

a test to kill a SLUD mutant, it needs to trigger a change in the state of app (e.g., terminate

or pause the app) without unregistering the sensor listener.

FDSL

Sensor acm = manager.getDefaultSensor("ACCELEROMETER", true);
manager.registerListener(listener, acm,

"SENSOR_DELAY_NORMAL", 0);
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Figure 5.6: (a) Baseline power trace for Sensorium [35], and the impact of (b) RLU, (c) FSW H

and (d) MSB mutation operators on the power trace

5.4 Analyzing Mutants

Mutation testing is known to effectively assess the quality of a test suite in its ability to

find real faults [59, 133]. However, it suffers from the cost of executing a large number of

mutants against the test suite. This problem is exacerbated by considering the amount of

human effort required for analysis of the results, i.e., whether the mutants are killed or not,

as well as identifying the equivalent mutants [130]. To streamline usage of mutation testing

for energy purposes, I propose a generally applicable, scalable, and fully automatic approach

for analyzing the mutants, which relies on a novel algorithm for comparing the power traces

obtained from execution of test cases.

5.4.1 Killed Mutants

During the execution of a test, power usage can be measured by a power monitoring tool, and

represented as a power trace—a temporal sequence of power values. A power trace consists

of hundreds or more spikes, depending on the sampling rate of the measurement, and can

have different shapes, based on the energy consumption behavior.

Figure 5.6 shows the impact of a subset of our mutation operators on the power trace of

Sensorium [35]—an app that collects sensor values of a device (e.g., radio, GPS, and WiFi)

and reports them to the user. Figure 5.6a is the power trace of executing a test on the

original version of this app. Figures 5.6b-d show power traces of the same test after the
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app is mutated by RLU, FSW H, and MSB operators, respectively. I can observe that these

mutation operators have different impacts on the power trace of the test case.

I have developed a fully-automatic oracle, that based on the differences in the power traces of

a test executed on the original and mutant versions of an app, is able to determine whether

the mutant was killed or not. Algorithm 5.1 shows the steps in our approach.

The algorithm first runs each test, ti, 30 times on the original version of an app, A, and

collects a set of power traces, PA (line 3). The repetition allows us to account for the noise

in profiling. Since our analysis to identify a threshold is based on a statistical approach, I

repeat the execution 30 times to ensure a reasonable confidence interval1.

The algorithm then runs each test ti on the mutant, A′, and collects its power trace ~pA′

(line 4). Alternatively, for higher accuracy, the test could be executed multiple times on the

mutant. However, our experiments showed that due to the substantial overlap between the

implementation of the original and mutant versions of the app, repetitive execution of a test

on the original version of the app already accounts for majority of the noise in profiling.

Following the collection of these traces, the algorithm needs to determine how different is

the power trace of mutant, ~pA′ , in comparison to the set of power traces collected from the

original version of the app, PA. To that end, the algorithm first has to determine the extent

of variation, α, in the 30 energy traces of PA that could be considered “normal” due to the

noise in profiling.

One possible solution to compute this variation is to take their Euclidean distances. However,

Euclidean distance is very sensitive to warping in time series [136]. I observed that power

traces of a given test on the same version of the app could be similar in the shape, but

locally out of phase. For example, depending on the available bandwidth, quality of the

1 According to Central Limit Theorem, by running the experiments at least thirty times, I are
able to report the statistical values within a reasonable confidence interval [182].
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network signal, and response time of the server, downloading a file can take 1 to 4 seconds.

Thereby, the power trace of the test after downloading the file might be in the same shape,

but shifted and warped in different repetitions of the test case. To account for inevitable

distortion in our power measurement over time, I measure the similarity between power

traces by computing the Dynamic Time Warping (DTW) distance between them. DTW is

an approach to measure the similarity between two time series, independent of their possible

non-linear variations in the time dimension [73]. More specifically, DTW distance is the

optimal amount of alignment one time series requires to match another time series.

Given two power traces ~P1 [1 . . . n] and ~P2 [1 . . .m], DTW leverages a dynamic programming

algorithm to compute the minimum amount of alignments required to transform one power

trace into the other. It constructs an n×m matrix D, where D[i, j] is the distance between

~P1 [1 . . . i] and ~P2 [1 . . . j]. The value of D[i, j] is calculated as follows:

D[i, j] = |P1[i]− P2[j] |+ min


D[i− 1, j]

D[i, j − 1]

D[i− 1, j − 1]

(5.1)

The DTW distance between ~P1 and ~P2 is D[n,m]. The lower is the DTW distance between

two power traces, the more similar in shape they are.

To determine α, the algorithm first uses DTW to find a representative trace for A, denoted

as ~rA (line 5). It does so by computing the mutual similarity between 30 instances of power

trace and choosing the one that has the highest average similarity to the other instances.

Once Algorithm 5.1 has derived a representative power trace, it lets α to be the upper bound

of the 95% confidence interval of the mean distances between the representative power trace
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Algorithm 5.1: Energy-Aware Mutation Analysis

Input: T Test suite, A Original app, A′ Mutant
Output: Determine if a mutant is killed or lived

1 foreach ti ∈ T do

2 isKilledi = false;
3 PA = getTrace(A, ti, 30);
4 ~pA′ = getTrace(A′, ti, 1);
5 ~rA = findRepresentativeTrace(PA);
6 α = computeThreshold( ~rA, PA \ ~rA);
7 distance = computeDistance( ~rA, ~pA′);
8 if distance > α then
9 isKilledi = true;

and the remaining 29 in PA (line 6). This means that if I run ti on A again, the DTW

distance between its power trace and representative trace has a 95% likelihood of being less

than α different.

Finally, Algorithm 5.1 computes the DTW distance between ~rA and ~pA′ (line 7). If distance

is higher than α, the variation is higher than that typically caused by noise for test ti, and

the mutant is killed; Otherwise, the mutant lives (lines 8- 9).

5.4.2 Equivalent and Stillborn Mutants

An equivalent mutant is created when a mutation operator does not impact the observable

behavior of the program. To determine if a program and one of its mutants are equivalent

is an undecidable problem [75]. However, well-designed mutation operators can moderately

prevent creation of equivalent mutants. Our mutation operators are designed based on the

defect model derived from issue trackers and best practices related to energy. Therefore,

they are generally expected to impact the power consumption of the device.

In rare cases, however, mutation operators can change the program without changing its

energy behavior. For example, the arguments of a recurring callback that identifies the

frequency of invocation may be specified as a parameter, rather than a specific value, e.g.,

scan interval at line 6 of Figure 5.4. If this parameter is initialized to 0, replacing it with
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0 by µDroid’s FBD operator creates an equivalent mutant. As another example, LRP C

can generate equivalent mutants. LRP C mutants change the provider of location data (e.g.,

first parameter of requestLocationUpdates at line 11 in Figure 5.2) to "GPS". Although

location listeners can be shared among different providers, each listener can be registered for

specific provider once. As a result, if the app already registers a listener for "GPS", LRP C

would create an equivalent mutant.

To avoid generation of equivalent mutants, µDroid employs several heuristics and performs

an analysis on the source code to identify the equivalent mutants. For example, µDroid

performs an analysis to resolve the parameter’s value and compares it with the value that

mutation operator wants to replace. If the parameter is initialized in the program and its

value is different from the replacement value, µDroid generates the mutant. Otherwise, it

identifies the mutant as equivalent and does not generate it.

The Eclipse plugin realizing µDroid is able to recognize stillborn mutants—those that make

the program syntactically incorrect and do not compile. µDroid does so by using Eclipse

JDT APIs to find syntax errors in the working copy of source code, and upon detecting such

errors, it rolls back the changes.

5.5 Evaluation

In this section, I present experimental evaluation of µDroid for energy-aware mutation

testing. Specifically, I investigate the following five research questions:

RQ1. Prevalence, Quality, and Contribution: How prevalent are energy-aware mutation op-

erators in real-world Android apps? What is the quality of energy-aware mutation

operators? What is the contribution of each mutant type to the overall mutants gen-

erated by µDroid?
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RQ2. Effectiveness : Does µDroid help developers with creating better tests for revealing

energy defects?

RQ3. Association to Real Faults : Are mutation scores correlated with test suites’ ability in

revealing energy faults?

RQ4. Accuracy : How accurate is µDroid’s oracle in determining whether tests kill the energy

mutants or not?

RQ5. Performance: How long does it take for µDroid to create and analyze the mutants?

5.5.1 Experimental Setup and Implementation

Subject Apps: To evaluate µDroid in practice, I randomly collected 100 apps from sev-

enteen categories of F-Droid open-source repository. I then selected a subset of the subject

apps that satisfied the following criteria: (1) I selected apps for which µDroid was able

to generate at least 25 mutants and the generated mutants belonged to at least 3 different

categories identified in Table 5.1. (2) I further reduced the apps to a subset for which I was

able to find at least one commit related to fixing an energy defect in their commit history.

(3) Finally, to prevent biasing our results, I removed apps that were among the 59 apps

I studied to derive the energy defect model, and eventually our operators. At the end, I

ended up with a total of 9 apps suitable for our experiments. µDroid injected a total of

413 energy-aware mutation operators in these apps, distributed among them as shown in

Table 5.2.

Mutant Generation: I used µDroid to generate energy mutants. Our Eclipse plugin is

publicly available [31] and supports both first-order and higher-order mutation testing [129].

It takes the source code of the original app, parses it to an AST, traverses the AST to

find the patterns specified by mutation operators, and creates a mutant for each pattern
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found in the source code. For an efficient traversal of the AST, the plugin implements

mutation operators based on the visitor pattern. For example, instead of traversing all nodes

of the AST to mutate one argument of a specific API call mentioned in the pattern, I only

traverse AST nodes of type MethodInvocation to find the API call in the code and mutate

its argument. In addition to changes that are applied to the source code, some mutation

operators require modification in the XML files of the app. For instance, mutation operators

MST and UCW C add statements to the source code to change phone or WiFi settings,

requiring the proper access permissions to be added to the app’s manifest file.

Additionally, I compare energy mutants generated by µDroid with mutants generated by

Major [132] and the Android mutation framework developed by Deng et al. [91].2

Power Measurement: The mobile device used in our experiments was Google Nexus 6,

running Android version 6.0.1. To profile power consumption of the device during execution

of test cases, I used Trepn [71]. Trepn is a profiling tool developed by Qualcomm that collects

the exact power consumption data from sensors embedded in the chipset. Trepn is reported

to be highly accurate, with an average of 2.1% error in measurement [42].

Test Suites: I used two set of reproducible tests to evaluate µDroid. The first set includes

tests in Robotium [44] and Espresso [10] format written by mobile app developers, and the

second set includes random tests generated by Android Monkey [45]. Both set of tests are

reproducible to ensure I are running identical tests on both original and mutant versions of

the app.

Faults: To evaluate the association between mutation score and fault detection ability of

test suites, I searched the issue tracker and commit history of the subject apps to find the

commits related to fixing energy-related faults. As shown in Table 5.2, I was able to isolate

and reproduce 18 energy-related faults for the subject apps.
2I was not able to use PIT [43], as PIT does not support Android and its mutants are held only

in memory, which prevented us from building the mutant APKs.
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5.5.2 RQ1: Prevalence, Quality, and Contribution

To understand the prevalence of energy-aware mutation operators, I first applied µDroid

on the 100 subject apps described in Section 5.5.1. I found that µDroid is able to produce

energy mutants for all programs, no matter how small, ranging from 5 to 110, with an average

of 28 mutants. This shows that all apps can potentially benefit from such a testing tool.

Table 5.2 provides a more detailed presentation of results for 9 of the subject apps, selected

according to the criteria described in Section 5.5.1. Here, I also compare the prevalence of

energy-aware operators with prior mutation testing tools, namely Major [132], and Android

mutation testing tool of Deng et al. [91]. The result of this comparison is shown in Ta-

ble 5.2. Overall, µDroid generates much fewer mutants compared to other tools, which is

important given the cost of energy mutation testing, e.g., the need to run and collect energy

measurements on resource-constrained devices. In total, µDroid generates 413 mutants for

the subject apps, thereby producing 99% and 92% less mutants than Major and Deng et al.,

respectively. Spearman’s Rank Correlation between the prevalence of energy-aware mutants

and mutants produced by other tools suggests that there is no significant monotonic rela-

tionship between them: Major (ρ = −0.28) and Deng et al. (ρ = 0.2) with significance level

p < 0.01. This is mainly due to the fact that µDroid targets specific APIs, Android-specific

constructs, and other resources, such as layout XML files, that are not considered in the

design of mutation operators in other tools.

Furthermore, I calculated the number of µDroid mutants that are duplicate of mutants

produced by the other tools. Table 5.2 presents the percentage of duplicate energy-aware

mutants under the dup columns. Due to the large number of mutants generated by other

tools, I used Trivial Compiler Equivalent (TCE) technique [176] to identify a lower bound for

duplicate mutants. TCE is a scalable and effective approach to find equivalent and duplicate

mutants by comparing the machine code of compiled mutants. In addition to compiled
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classes, I also considered any difference in the XML files of the mutants, as µDroid modifies

layout and manifest files to create a subset of mutants. On average, only 9% and 2% of

mutants produced by µDroid are duplicates of the mutants produced by Major and Deng

et al., respectively. These results confirm that µDroid is addressing a real need in this

domain, as other tools are not producing the same mutants.

Table 5.3 also shows the contribution of each class of energy-aware mutation operators for

subject apps. Display-related mutation operators have the highest contribution (34%), fol-

lowed by Location-related (27%), Connectivity-related (16%), and Recurring-related (16%)

mutation operators. Wakelock-related (3%) and Sensor-related (3%) oeprators have less

contribution. These contributions are associated to the power consumption of hardware

components, since display, GPS, WiFi, and radio are reported to consume the highest por-

tion of device battery [11]. Finally, µDroid generates no stillborn mutants, and only 8% of

all the mutants were identified to be equivalent, as shown in Table 5.3.

To summarize, the results from RQ1 indicate that (1) potentially all apps can benefit from

such a testing tool, as µDroid was able to generate mutants for all 100 subject apps, (2) the

small number of mutants produced by µDroid makes it a practical tool for energy-aware

mutation testing of Android, (3) the great majority of energy-aware mutation operators are

unique and the corresponding mutants cannot be produced by previous mutation testing

tools, and (4) all operators incorporated in µDroid are useful, as they were all applied on

the subject apps, albeit with different degrees of frequency.

5.5.3 RQ2: Effectiveness

To evaluate whether µDroid can help developers to improve the quality of test suites, I

asked two mobile app developers, both with substantial professional Android development

experience at companies such as Google, to create test suites for validating the energy behav-
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ior of 9 subject apps. These initial test suites, denoted as Ti, contained instrumented tests

to exercise the app under various scenarios. Tables 5.2 and 5.3 show the result of running

Ti on the subject apps. As I can see, while the initial test suites are able to execute the

majority of mutants (high mutant coverage values on Table 5.2), many of the mutants stay

alive (low mutation score on Table 5.2).

The fact that so many of the mutants could not be killed, prompted us to explore the

deficiencies in initial test suites with respect to alive mutants. I found lots of opportunities

for improving the initial test suites, such as adding tests with the following characteristics:

• Exercising sequences of activity lifecycle: Wakelocks and other resources such as

GPS are commonly acquired and released in lifecycle event handlers. Therefore, the

only way to test the proper management of resources and kill mutants such as RLU,

WRDW, WRDC, and MST, is to exercise particular sequence of lifecycle callbacks.

Tests that pause or tear-down activities and then resume or relaunch an app can help

with killing such mutant.

• Manipulate network connection: A subset of network-related mutation operators,

namely FCC, UCW, HPW, and RWS, only change the behavior of the app under

peculiar network connectivity. For example, FCC can be killed only when there is no

network connectivity, and HPW can be killed by testing the app under a poor WiFi

signal condition. Tests that programmatically manipulate network connections are

generally effective in killing such mutants.

• Manipulate Bluetooth or battery status: None of the UAB, RBD, and BFA

mutants were killed by the initial test suites. That is mainly due to the fact that

the impact of such mutants is only observable under specific status of Bluetooth and

battery. For example, BFAs change the behavior of an app only when the battery is

low, requiring tests that can programmatically change or emulate the state of such

components.
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• Effectively mock location: Location-based mutants can be killed by mocking the

location. Although changing the location once may cover the mutated part, effectively

killing the location mutants, specifically LUF, requires mocking the location several

times and under different speeds of movement.

• Longer tests: Some mutants, namely LBC, LTC, and RAF, can be killed only if the

tests run long enough for their effect to be observed. For example, if the test tries to

download a file and terminates immediately, the impact of LTC forcing an app to wait

for a connection being established is not observable on the power trace.

• Repeating tasks: A subset of mutants are not killed unless a task is repeated to

observe the changes. For example, DRD mutants are only killed if a test tries to

download a file multiple times.

I subsequently asked the subject developers to generate new tests with the aforementioned

characteristics, which together with Ti, resulted in an enhanced test suite Te for each app. As

shown in Tables 5.2 and 5.3, Te was able to kill substantially more mutants in all apps. These

results confirm the expected benefits of µDroid in practice. While Ti achieves a reasonable

mutant coverage (80% on average among all subject apps), it was not able to accomplish

high mutation score (35% on average). This demonstrates that µDroid produces strong

mutants (i.e., hard to kill), thereby effectively challenging the developers in designing better

tests.

It is worth noting that even our enhanced test suites were not effective against 14% of the

mutants: about 8% of the mutants were equivalent, thus not changing the observable energy

behavior of the program, while another 6% could not be killed. For instance, I was not

able to kill LRP mutants in a2dp.Vol and aMetro apps. By investigating the source code

and behavior of these apps, I found that accessing the LocationManager and requesting

for location updates are performed in a short-lived service or activity, thereby the impact

of mutation operators on the power trace is negligible and can not be detected by µDroid.
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Similarly, our test suite was not able to kill the RAF mutant and a subset of RRC mutants.

These mutants comment out statements that unregister callback methods of an app, such

as that shown in line 12 of Figure 5.4. As the frequency of recurring callbacks was low for

a subset of subject apps (e.g., a Handler callback in Sensorium app was invoked every 30

seconds), they required test cases running for several minutes to show the impact on power

trace.

Furthermore, running the enhanced test suites on the 9 subject apps, I was able to find 15

previously unknown energy bugs. After reporting them to the developers, 11 of them have

been confirmed as bugs by the developers and 7 of them have been fixed, as corroborated by

their issue trackers [14, 15, 16, 17, 24, 25, 26, 27, 28, 29, 30, 38, 39, 36, 37].

5.5.4 RQ3: Association to Real Faults

If mutation score is a good indicator of a test suite’s ability in revealing energy bugs, one

would expect to be able to show a statistical correlation between the two. Since calculating

such a correlation requires a large number of test suites per fault, I first generated 100

random tests for each app using Android Monkey [45]. For each app, I randomly selected 20

tests from its test suite (consisting of both random and developer-written tests mentioned

in the previous section) and repeated the sampling 20 times. That is, in the end, for each

subject app I created 20 test suites, each containing 20 tests from a pool of random and

developer-written tests.

I then ran each test suite against the 9 subject apps, and marked them as Tfail, if the test

suite was able to reveal any of its energy faults, or Tpass, if the test suite was not able to

reveal any of its energy faults. To avoid bias, in this experiment I did not consider the energy

faults found by us, rather focused on those that had been found and reported previously. For

each Tfail and Tpass, I computed the mutation score of the corresponding test suite. Finally,
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for each fault, I constructed test suite pairs of 〈Tfail, Tpass〉 and computed the difference in

their mutation score, which I refer to as mutation score difference (MSD).

Among a total of 1,257 pairs of 〈Tfail, Tpass〉 generated for 18 faults, Tfail was able to attain

a higher mutation score compared to Tpass in 77% of pairs. Furthermore, to determine the

strength of correlation between mutation kill score and fault detection, I used one sample

t-test, as MSD values were normally distributed and there were no outliers in the dataset

(verified with Grubbs’ test). Our null hypothesis assumed that the average of the MSD

values among all pairs equals to 0, while the upper tailed alternative hypothesis assumed

that it is greater than 0. The result of one sample t-test over 1,257 pairs confirmed that

there is a statistically significant difference in the number of mutants killed by Tfail compared

to Tpass (p-value = 9.87E-50 with significance level p < 0.0001). Small p-value and large

number of samples confirm that the results are unlikely to occur by chance. Note that I

removed equivalent and subsumed mutants for MSD calculation to avoid Type I error [175].

5.5.5 RQ4: Accuracy of Oracle

To assess the accuracy of the µDroid’s oracle, I first manually built the ground-truth by

comparing the shape of power traces for each original app and its mutants. To build the

ground truth, I asked the previously mentioned developers to visually determine if power

traces of the original and mutant versions are similar. Visually comparing power traces for

similarity in their shape, even if they are out of phase (i.g., shifted, noisy), is an easy, albeit

time consuming, task for humans. In case of disagreement, I asked a third developer to

compare the power traces.

For each mutant, I only considered tests that executed a mutated part of the program, but

not necessarily killed the mutant, and calculated false positive (if the ground-truth identifies

a mutant as alive, while oracle considers it as killed), false negative (if the ground-truth
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Table 5.4: Accuracy of µDroid’s oracle on the subject apps.

Apps Accuracy Precision Recall F-measure

DSub 95% 95% 97% 96%
Openbmap 91% 94% 91% 92%
aMetro 92% 90% 100% 95%
GTalk 93% 97% 93% 95%
Ushahidi 94% 97% 94% 95%
OpenCamera 95% 100% 94% 97%
Jamendo 100% 100% 100% 100%
a2dp.Vol 91% 100% 98% 94%
Sensorium 93% 91% 100% 95%

Average 94% 96% 96% 95%

identifies a mutant as killed, while oracle considers it as alive), true positive (if both agree a

mutant is killed), and true negative (if both agree a mutant is alive) metrics.

Table 5.4 shows the accuracy of µDroid’s oracle for the execution of all tests in Te on all the

subject apps. The results demonstrate an overall accuracy of 94% for all the subject apps.

Additionally, I observed an average precision of 96% and recall of 96% for the µDroid’s

oracle. I believe an oracle with this level of accuracy is acceptable for use in practice.

5.5.6 RQ5: Performance

To answer this research question, I evaluated the time required for µDroid to generate a

mutant as well as the time required to determine if the mutant can be killed. I ran the

experiments on a computer with 2.2 GHz Intel Core i7 processor and 16 GB DDR3 RAM.

To evaluate the performance of the Eclipse plugin that creates the mutants, I measured the

required time for analyzing the code, finding operators that match, and applying the changes

to code. From Table 5.5, I can see that µDroid takes less than 0.5 second on average to

create a mutant, and 11.7 seconds on average to create all the mutants for a subject app.

To evaluate the performance of oracle, I measured the time taken to determine if tests have

killed the mutants. Table 5.5 shows the time taken to analyze the power trace of all tests

from Te executed on all mutant versions of the subject apps. From these results I can see
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Table 5.5: Performance analysis of µDroid on the subject apps.

Apps
Time (s)

Pearson’s r
Total Per Mutant Analysis Per Test

DSub 27.3 1.0 20.74 0.61 0.91
Openbmap 15.9 0.6 28.05 0.85 0.97
aMetro 14.7 0.4 60.08 1.6 0.94
GTalk 18.4 0.8 40.74 0.97 0.92
Ushahidi 8.1 0.2 50.34 1.43 0.95
OpenCamera 5.8 0.3 16.28 0.37 0.96
Jamendo 9.3 0.4 16.24 0.56 0.94
a2dp.Vol 3.5 0.2 19.38 0.57 0.94
Sensorium 3.2 0.1 18.2 0.52 0.9

Average 11.7 0.4 30.5 0.83 -

that the oracle runs fast; it is able to make a determination as to whether a test is able to

kill all of the mutants for one of our subject apps in less than a few seconds. The analysis

time for each test depends on the size of power trace, which depends on the number of power

measurements sampled during the test’s execution. To confirm the correlation between

analysis time and the size of power trace, I computed their Pearson Correlation Coefficient,

denoted with Pearson’s r in Table 5.5. From the Pearson’s r values, I can see there is a

strong correlation between analysis time and the size of power trace among all subject apps.

5.6 Discussion

Naturally, prior to releasing apps, developers need to test them for energy defects. Yet,

there is a lack of practical tools and techniques for energy testing. µDroid, is a framework

for energy-aware mutation testing of Android apps to address this issue. The novel suite of

mutation operators implemented in µDroid is designed based on an energy defect model,

constructed through an extensive study of various sources (e.g., issue trackers, API documen-

tations). µDroid provides an automatic oracle for mutation analysis that compares power

traces collected from execution of tests to determine if mutants are killed. The experiences
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with µDroid on real-world Android apps corroborate its ability to help the developers eval-

uate the quality of their test suites for energy testing. µDroid challenges the developers to

design tests that are more likely to reveal energy defects.
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Chapter 6

Energy-Aware Test Input Generation

The utility of a smartphone is limited by its battery capacity and the ability of its hardware

and software to efficiently use the device’s battery. To properly characterize the energy

consumption of an app and identify energy defects, it is critical that apps are properly

tested, i.e., analyzed dynamically to assess the app’s energy properties. However, currently

there is a lack of testing tools for evaluating the energy properties of apps. This chapter

presents Cobweb, a search-based energy testing technique for Android. By leveraging a

set of novel models, representing both the functional behavior of an app as well as the

contextual conditions affecting the app’s energy behavior, Cobweb generates a test suite

that can effectively find energy defects. In addition, the proposed technique is superior over

prior technique in finding a wider and more diverse set of energy defects.

6.1 Introduction

Improper usage of energy consuming hardware elements, such as GPS, WiFi, radio, Blue-

tooth, and display, can drastically discharge the battery of a mobile device. Recent studies
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have shown energy to be a major concern for both users [196] and developers [162]. In spite

of that, many mobile apps are abound with energy defects. This can be attributed to the

lack of tools and methodologies for energy testing [162]. Recent advancements in mobile

app testing have mostly focused on testing functional correctness of programs, which may

not be suitable for revealing energy defects [125]. There is, thus, an increasing demand for

solutions to assist developers in testing energy behavior of apps prior to their release.

The first step toward energy testing is to understand the properties of tests that are effective

in revealing energy defects in order to automatically generate such tests. Recently, Jabbar-

vand et al. [125] proposed a technique based on mutation testing to identify the properties

of proper tests for energy testing. They showed that to kill the energy mutants, tests need

to be executed under a variety of contextual settings. Based on the results of their study, I

have identified three contextual factors that are correlated to energy defects and should be

considered in energy-driven testing: (1) Lifecycle Context: A subset of energy defects,

e.g., wakelocks and resource leaks, manifest themselves under specific sequences of lifecy-

cle callbacks; (2) Hardware State Context: Some energy defects happen under peculiar

hardware states, e.g., poor network signal, no network connection, or low battery; and (3)

Interacting Environment Context: Certain energy defects manifest themselves under

specific interactions with the environment—consisting of user, backend server, other apps,

and connected devices such as smartwatches.

None of the prior automated Android testing techniques properly consider these contextual

factors in test generation [85, 125], thereby are not able to effectively test the energy behavior

of apps. That is, majority of the state-of-the-art Android testing tools [56, 64, 84, 208, 111,

159, 171, 164, 190, 211, 188] are aimed for GUI testing, which only considers the inputs

directly generated by user, e.g., clicking on a button. Even among the techniques that go

beyond GUI testing [156, 212], there is no systematic approach for altering the lifecycle of

components and state of hardware elements to properly evaluate the energy behavior of apps.
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This chapter presents Cobweb, an energy testing technique for Android apps. Cobweb uses

an evolutionary search strategy with an energy-aware genetic makeup for test generation. By

leveraging a set of novel models, representing lifecycle of components and states of hardware

elements on the phone, Cobweb is able to generate tests that execute the energy-greedy

parts of the code under a variety of contextual conditions. Extensive evaluation of Cobweb

using real-world Android apps with confirmed energy defects demonstrates not only its ability

to effectively and efficiently test energy behavior of apps, but also its superiority over prior

techniques by finding a wider and more diverse set of energy defects.

This chapter shows the following contributions for the proposed technique:

• A search-based evolutionary technique with a novel, energy-aware genetic makeup that

considers both app and the execution context to generate system tests for Android apps

to effectively and efficiently test their energy behavior.

• A set of novel, generic models that represent different states of hardware components

on a phone, making the approach and produced test suites device independent.

• A practical Android testing tool, Cobweb, which is publicly available [31].

• Empirical evaluation of the proposed approach on real-world Android apps demon-

strating its effectiveness, efficacy, and scalability.

The remainder of this Chapter is organized as follows. Section 7.2 introduces an illustrative

example that is used to describe our research. Section 7.3 provides an overview of our

approach, while Sections 6.4-6.5 describe the details. Section 7.7 presents the evaluation

results.
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Figure 6.1: MyTracker Android Application

6.2 Illustrative Example

As an illustrative example, I use an Android app called MyTracker [22]. In this section, I

describe two main functionalities of MyTracker, two tests to exercise these functionalities,

and two energy defects in this app that cannot be caught by tests that do not take execution

context into account.

App: As shown in Figure 6.1, MyTracker allows users to search for the map of different

locations using either the internet or GPS, download them, and navigate through each specific

downloaded map. This app consists of seven components, i.e., four Activities and three

Services. MyTracker provides two functionalities: tracking/navigation and search/download

map.
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Sequence 2: <MainActivity<onCreate, onItemClick(“Montreal”)>, 
LocationActivity<onCreate, enterText(“airport”), enterText(“conference”), onClick(“Start”)>, 
TrackingActivity<onCreate, onLocationChanged(“location1”), onClick(“Stop”)>>

Sequence 1: <MainActivity<onCreate, onClick(“Download Maps”)>, 
MapSearchActivity<onCreate, enterText(“Ottawa”), onClick(“Find by Internet”)>, 
InternetService<onStartCommand, searchOnServer, startService(“DownloadService”)>,
DownloadService<onStartCommand, startDownload, onDownloadComplete>>

Figure 6.2: Event sequences for testing the tracking/navigation and search/download functionali-
ties of MyTracker

When a user clicks on the Download Maps button, the app navigates to MapSearchActivity,

where the user can search for maps using the Internet or GPS. If the user decides to search

using the Internet, she needs to provide the name of the city, e.g., Ottawa, and then click on

the Find by Internet button. Otherwise, she can just click on the Find by GPS button.

Depending on the selected search option, the app starts InternetService or GPSService

in the background, which searches for the map on a specific server. Upon finding a match

with the name provided by user or location coordinates, DownloadService downloads the

map, resulting in the list of maps displayed on MainActivity to be updated.

For tracking, once the user clicks on one of the downloaded maps in MainActivity, e.g.

the map of Montreal shown in Figure 6.1, the app navigates to LocationActivity. In this

activity, the user can see the map of Montreal and provide a source and destination address

to start the navigation. By clicking on the Start button, the app starts TrackingActivity

and registers a location listener, which updates the GUI of TrackingActivity upon move-

ment.

Tests: Android tests can be represented as a sequence of events, where each event is an

input to the app and can be triggered by the user or system. I formally define each test t

in test suite T , as 〈c1〈e1, . . . , ep1〉, . . . , cm〈e1, . . . , epm〉〉, where ci indicates the ith component

covered during the execution of t. The execution of each component ci, which could be

Activity, Service, or Broadcast Receiver, by test t is represented as an event sequence, where

each event is denoted as e. I consider two types of events: (1) input events that take inputs
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using specific APIs, e.g., filling a text box, and (2) callback events that are invocation of

Android callbacks, e.g., click on a button or transition to a lifecycle state. Figure 6.2 shows

representation of two tests according to this formalism that target the two functionalities of

MyTracker app. I use these tests throughout this chapter for illustrating our approach.

Energy Defects: MyTracker suffers from two energy defects:

1) Fail to check connectivity energy defect [125] occurs when an app fails to check for

connectivity before performing a network operation. MyTracker unnecessarily searches for

a network signal when there is no network connection available, which is a power draining

operation. To find this energy defect, MyTracker should be tested both when there is a

network connection available and not. The test corresponding to Sequence 1 in Figure 6.2

does not enable or disable network connectivity, therefore, cannot detect this defect.

2) MyTracker starts listening to location updates in TrackingActivity by registering a

location listener for GPS. As long as TrackingActivity is visible to the user and GUI is

rendered based on location updates, MyTracker can keep the GPS active. However, when

user puts the app in the Paused state, i.e., MyTracker is sent to background, it does not

unregister the location listener, thereby, unnecessarily updates a GUI that is not visible to

the user [19, 149]. To find this energy defect, a test needs to put TrackingActivity into

paused state for some time to assess utilization of GPS hardware in this state. Clearly, the

test corresponding to Sequence 2 in Figure 6.2 does not have this property.

6.3 Approach Overview and Challenges

Since the domain of events and inputs for android apps is quite large, Cobweb follows a

search-based testing technique for input generation. Every search-based testing technique

has three facets: (1) search space, which is a set of possible solutions, (2) meta-heuristics to
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Figure 6.3: Cobweb Framework

guide the search through the search space, and (3) evaluation metrics to measure the quality

of potential solutions.

Cobweb identifies the search space as a set of event sequences, i.e., system tests. To guide

the search through the search space, our approach utilizes an evolutionary algorithm to

globally search for an optimal solution. Similar to other search-based techniques, Cobweb

relies on the abstract representation of the program, i.e., models, to generate event sequences

and compute the fitness function as an evaluation metric. However, a key novelty of Cobweb

is that unlike prior search-based testing techniques, it also utilizes several other contextual

models, representing the state of hardware and environment, in the search process.

Figure 6.3 provides an overview of Cobweb, consisting of two major components: (1)

Model Extractor component that derives the required models for test generation; and (2)

Test Generator component that utilizes an evolutionary search-based technique to create

system tests. Cobweb’s fitness function rewards the tests based on two criteria: (1) how

close they are to covering energy-greedy APIs in the application logic, and (2) how well they

contribute to exercising different contextual factors. There are three main challenges that

Cobweb should overcome:
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Invalid or useless tests: The order of events is important for exercising specific behaviors

in apps. For example, a common approach to test whether an app like MyTracker is properly

utilizing GPS is to mock location/movement. However, mocking can only produce a callback

on the app if the app under test has already registered a location listener. Otherwise,

mocking the location is useless, as it cannot test the usage of GPS by the app. In addition,

prior research has shown genetic operations, such as cross over, may produce many invalid

event sequences that fail to execute [159]. To reduce the generation of invalid or useless

tests, Cobweb relies on two models representing the app’s functional behavior, namely

Component Transition Graph (CTG) and Call Graph (CG).

Contexual factors: In addition to the models that represent the app’s functional behavior,

further models are required to take the execution context into account during test generation.

Cobweb uses two additional models, namely Lifecycle State Machine (LSM) and Hardware

State Machine (HSM) to account for contextual factors.

Scalability: Search-based techniques are susceptible to generation of large number of

tests [113, 114], which can pose a scalability barrier due to the time consuming fitness

evaluation. Although fitness evaluation can be performed in parallel [78, 61], it entails usage

of distributed devices or special multi-core PCs. The majority of mobile apps are developed

at a nominal cost by entrepreneurs that do not have such resources. To tackle the scalability

issue during test generation, Cobweb generates intermediate tests in the form of Robolectirc

tests [33], which can be executed atop JVM very fast. The final test suite is transformed to

Espresso [10] tests that can be executed on emulator or mobile devices.
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6.4 Model Extractor

Cobweb uses four types of models: Component Transition Graph (CTG), Call Graph (CG),

Lifecycle State Machine (LSM), and Hardware State Machine (HSM). Figure 6.4 shows a

subset of these models for MyTracker app. At the highest-level is the CTG model, which

represents the components comprising the app as nodes and the Intents as transitions among

the nodes. Intents are Android events (messages) that result in the execution flow to move

from one component to a different component. Each node of the CTG in turn contains

one CG—representing the internal behavior of the corresponding software component, one

LSM—representing the possible lifecycle states of the corresponding software component,

and zero or more HSM—each of which represents the states of an energy-greedy hardware

element utilized during the execution of the corresponding software component. LSM and

HSM models are generic and app/device independent, constructed manually by the authors,

while CTG and CG models are app-specific and automatically extracted through static

analysis of an app’s bytecode. I describe each model and how it is obtained in the remainder

of this section.

6.4.1 Component Transition Graph (CTG)

Cobweb utilizes CTG to ensure generation of valid and useful event sequences. Events can

be categorized into (1) input events that take inputs to the app using specific APIs, e.g.,

EditText.getText() that reads a string provided by user for a text box, and (2) callback

events that invoke Android callbacks, e.g., onLocationChanged(), which is invoked when

the physical location of the device changes.

Cobweb uses CTG model of the app under test to generate the proper order of event calls.

Finding the proper order of event call invocations is particularly a challenge in Android due
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to usage of callbacks, each considered a possible entry point for an application. For exam-

ple, onLocationChanged() callback is an entry point for MyTracker app. The call graph

obtained from running the state-of-the-art static analysis tools, such as Soot [192], does not

model any particular order for the execution of entry points. That is, using such call graphs

to generate event sequences, onLocationChanged() can appear before the onCreate() of

TrackingActivity or even onCreate() of MainActivity. However, proper invocation

of onLocationChanged() is after the execution of onCreate() of TrackingActivity,

as shown in Sequence 2 of Figure 6.2.

Furthermore, to properly test the energy behavior of MyTracker with respect to its track-

ing functionality, Cobweb needs to mock the location, such that Android platform in-

vokes onLocationChanged() callback. The tricky part of generating such tests is that

onLocationChanged() callback should only be invoked if the app has already registered

a location listener to receive location updates, which happens in the onCreate() method

of TrackingActivity component. In other words, mocking the location should be per-

formed after TrackingActivity starts. Otherwise, mocking has no effect and will not

result in the invocation of onLocationChanged() callback. Generating valid and useful

events entails not only an inter-procedural analysis—to find the proper component for call-

back invocation—but also requires considering the specific types of dependencies among

events. To overcome these challenges, CTG considers five types of transitions:

1- Call transition: These intra-component transitions are inferred from the basic call graph

generated for the app under test using Soot [192].

2- Intent transition: These transitions are inter-component, which result in transferring

the control from one component to another component. A method or callback inside one

component that starts another component is connected to the lifecycle entry point of that

component using this kind of transition. Cobweb uses IC3 [172] to infer Intent transitions.
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3- GUI transition: These intra-component transitions indicate the order of execution be-

tween GUI widgets. For example, the Start button in the LocationActivity of MyTracker

should be clicked after user provides source and destination addresses in the From and To

text boxes. Cobweb builds on top of TrimDroid [171] to infer such transitions.

4- Registration transition: This type of transition consists of two sub-categories: broadcast

receiver registration and event listener registration. A broadcast receiver receives an intent

for which it has registered for via the onReceive() callback method. While static broad-

cast receivers—those identified in the manifest file—are registered when the app launches,

dynamic broadcast receivers are registered using registerReceiver() API. Broadcast

registration transition, which could be inter- or intra-component, connects a CG node that

registers a broadcast receiver to its corresponding onReceive() callback, which is also a

CG node.

An event listener is an interface that contains one or more callbacks. Listener callbacks are

called by the Android framework when the event that the listener has been registered for

is triggered either by user or environment. For example, onLocationChanged() is called

upon any change in the location of the device, if the app has previously registered a location

listener. Listener registration transition, which could also be inter- or intra-component,

connects a CG node that registers a listener to its corresponding callbacks, which is also a

CG node. The listener callbacks have no order among themselves.

Cobweb’s approach for identifying registration transition works as follows. For a given

registered callback, Cobweb performs an inter-procedural, flow-sensitive static program

analysis to find the registrar—the entity that registers the broadcast receiver or listener of

that callback. It then assigns a transition from the registrar to the registered callback node

in CG. For broadcast registration, the registered callback is onReceive()—either defined

inside an inner-class broadcast receiver or a broadcast receiver component, and registrar

is callback or method that invokes the registerReceiver() API. For listener transition,
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Cobweb takes a list of listener callbacks available in Android API1 to identify registered

callbacks. The listener registrar is a callback or method that registers a listener with the

given callback implemented. Flow-sensitivity is required for this analysis, as a broadcast

receiver may subscribe to receive multiple Intents, and multiple listeners of the same kind

might be registered for an app. For example, an app may register two location listeners, one

listening to GPS location updates, and another one tracking location updates via network.

5- Lifecycle transition: These intra-component transitions are between starting lifecycle

callback nodes of a component, e.g., onCreate() for Activities or onStartCommand() for

Services, and every non-lifecycle node with no incoming edge inside the component. That is,

every callback or method inside a component with no incoming edge can be called after the

component is started. Cobweb resolves lifecycle transitions after all other transitions are

identified. It ignores all other lifecycle callbacks that do not instantiate/start a component,

e.g., onPause() or onDestroy(), since these other lifecycle callbacks are considered using

the LSM model, discussed next.

6.4.2 Lifecycle State Machine (LSM)

Wakelocks and other resources, such as GPS, are commonly acquired and released in lifecycle

event handlers [150]. Thereby, proper implementation of lifecycle callbacks is important, as

developers need to ensure apps are not unnecessarily consuming power due to changes in

the lifecycle state. To that end, I represent possible transitions among lifecycle states of an

Android component type as a finite state machine, called Lifecycle State Machine (LSM).

Since the lifecycle callbacks are handled by the Android framework itself, I can define an LSM

for each Android component type, regardless of which callbacks are actually implemented by

instances of that component. Such a representation also ensures thorough testing of an app,
1Derivation of this list is discussed in Section 6.4.3
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as developers may have failed to implement important lifecycle callbacks, where resources

should be managed properly.

I derived three types of LSM models, one for each of the Android components types (Ac-

tivities, Services, and Broadcast Receivers), based on the lifecycle callbacks identified for

them in the Android documentation. Figure 6.4 shows LSMs of the Activity and Service

components for TrackingActivity and InternetService, respectively. For example,

the Activity LSM demonstrates four different lifecycle states for an Activity component.

The Activity LSM indicates how the execution of lifecycle callbacks results in transitions to

different states.

6.4.3 Hardware State Machine (HSM)

Developers should adjust the functionality of apps according to the states of hardware el-

ements. For instance, per Android developer guidelines [19], a location listener should be

unregistered when user is stationary, or the frequency of location update should be lowered

when user is walking rather than driving. To take such factors into account, I need to look for

changes in the hardware states from the inputs generated by the environment (e.g., change in

the strength of network signal), or the user, directly or indirectly (e.g., user can turn on/off

location directly from setting, or she can trigger changes in the state of GPS by changing

her location).

Identifying different states of hardware elements for energy testing is crucial, since apps con-

sume different amounts of energy in different states [179]. I followed a systematic approach

to derive generic and reusable models for each hardware element on a mobile device, called

Hardware State Machine (HSM).
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Android provides libraries to access and utilize hardware elements. These libraries provide

APIs and constant values, i.e., fields, which can be used to inquire about possible states of

hardware elements. Developers can use the APIs implemented by such libraries to monitor

the state of hardware elements (e.g., using LocationManager to track user location changes

and ConnectivityManager to query about the state of network connections) or manipulate

the states (e.g., hold a lock on the CPU using PowerManager.Wakelock APIs to prevent

the phone from going to sleep). Documentation of these APIs is a rich source for identifying

different hardware states.

Similarly, constant values introduced in such libraries can be used to identify hardware

states, as they usually are either representative of different states of hardware elements, or

the action field of broadcast Intents that show a change in the state of hardware. For ex-

ample, WIFI MODE FULL, WIFI MODE FULL HIGH PERF, and WIFI MODE SCAN ONLY are con-

stants associated with WiFiManager library, indicating that WiFi hardware can operate in

different modes, each consuming battery of the device differently.

To find a thorough list of such libraries, I started by automatically crawling Android API

reference [9] using Crawler4J [4] to search for classes, where description of their public meth-

ods or fields contained at least two of the following keywords: location, lock, gps, network,

connect, radio, cellular, bluetooth, display, sensor, cpu, battery, power, consume, drain,

charge, discharge, monitor, hardware, state, and telephone. I crawled 6, 279 pages in total

and collected 1, 971 libraries after keyword filtering. I further processed the documentation

of those libraries to find all the possible states of hardware elements as follows:

1. APIs: To automatically collect a set of APIs that monitor state of the hardware elements,

I searched for event listeners and callbacks in the public methods of the 1, 971 collected

libraries, as they monitor the changes in the state of hardware elements. From a total of

38, 626 APIs in these classes, I searched for APIs that have the keyword listener in their

signature—for event listener APIs—and APIs that start with on—for callbacks. This yielded
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441 listeners and 2, 968 callbacks. To collect APIs that manipulate state of hardware, I

searched for methods that have derivation of the following keywords in their description:

scan, access, acquire, release, state, register, disable, enable, connect, and disconnect. In

the end, I collected a total of 104 APIs correlated to different states of various hardware

elements.

2. Fields: I automatically searched for the constant values identified for the collected

libraries, whose description contained one of the keywords I used for initial filtering. This

search left us with 225 constant values.

Once the states of each hardware element were identified using the aforementioned approach,

I constructed seven HSMs for major hardware elements on mobile phones. These HSMs

correspond to battery, Bluetooth, CPU, display, GPS, radio, and sensors, e.g., accelerometer

and gyroscope.

HSM is a finite state machine that represents different states of a hardware element. Fig-

ure 6.4 shows HSM models derived for Network and Location hardware elements (in the

details of InternetService and TrackingActivity components). For Network HSM

for example, from 46 APIs and 12 fields of two libraries—ConnectivityManager and

WiFiManager—along with their nested classes, I identified 9 states for Network, namely

Disconnected, Connected (with poor or full signal strength), Utilized (under poor or full

signal strength), Scanning, and Locked (full, multi-cast, and high performance).2 Edges be-

tween different states of the hardware can be traversed by calling one of the Android APIs

inside the app or triggering events outside of it.3 Hence, it is crucial to have a generic HSM

for each hardware without considering just the source code of the app. For example, an

application can start scanning for available WiFi networks using startScan() API, or the
2For a better illustration, different locked states are merged in the HSM
3Labels of edges are not shown here for sake of simplicity
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Figure 6.5: Genetic representation of tests

state of hardware can be changed to scanning by manipulating the platform. I have made

the HSM models of other hardware elements publicly available [31].

6.5 Test Generator

The objective here is to generate tests that (1) cover energy-greedy APIs, and (2) exe-

cute them under different contextual conditions. In this section, I describe the evolutionary

search-based test generation algorithm utilized in Cobweb that aims to satisfy this objec-

tive.

6.5.1 Genetic Algorithm

Cobweb identifies the search space for energy testing problem as a set of system tests. Fig-

ure 6.5 illustrates the genetic representation of a test suite generated by Cobweb. Overall,

Cobweb generates a set of system tests that corresponds to a population of chromosomes in

the evolutionary algorithm. At a finer granularity, each chromosome consists of genes, which

are the main Android components of an app, and each gene contains multiple sub-genes,

which are either input events or callback events (recall Section 7.2).
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Algorithm 6.1: Evolutionary Energy Test Generation
Input: App app, Set of LSMs, Set of HSMs, List of energy-greedy APIs

HW, threshold, breedSize
Output: Test suite TE

1 CTG,CG← staticAnalysis(app)
2 model← mergeModels(CTG,CG,HSM,LSM)
3 P ← randomPopulation(app)
4 while improvement in fitness(TR,model) ≤ threshold do
5 Poffspring ← select(P, breedSize)
6 Poffspring ← converge(model, Poffspring)
7 Poffspring ← diverge(model,HW,Poffspring)
8 TRtmp ← generate(Poffspring)
9 fitness(TRtmp ,model)

10 P ← merge(P, Poffspring)
11 TR ← TR ∪ TRtmp

12 TE ← minimize(TR)

Algorithm 6.1 presents the evolutionary approach of Cobweb for test generation. It takes

the app along with LSM and HSM models as inputs and generates a set of Espresso [10]

tests—TE. The algorithm starts by constructing the CTG and CG models through static

analysis of the app (Line 1) and integrating those with LSM and HSM models to arrive at the

final model of the app under test (Line 2). Next, it randomly generates the initial population

P , which is later evolved using evolutionary search operators through multiple iterations

(Lines 5-7). Once the new generation is available, Cobweb generates Robolectric tests for

each chromosome (Line 8), executes them on JVM, and calculates their corresponding fitness

(Line 9). At the end of iteration, Cobweb adds newly generated tests to the test suite and

starts a new iteration. This process continues until the termination condition is met: if

the improvement in the average fitness of generated tests in two consecutive iterations is less

than a configurable threshold, the algorithm terminates (Line 4). Afterwards, Algorithm 6.1

minimizes the generated Robolectric test suite and transforms them to Espresso tests for

execution on a mobile device (Line 12), such that energy measurements can be collected.

For input fields, Cobweb follows an approach similar to Sapienz [164] and extracts statically-

defined values from the source code and layout files. Additionally, developers can provide

a list of inputs, e.g., list of cities for MyTracker. Alternatively, the input values can be
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provided to Cobweb through symbolic execution of the app, using one of the many tools

available for this purpose (e.g., [58, 193, 128, 169]).

6.5.2 Genetic Operators

I now provide a more detailed explanation of the three genetic operators in Algorithm 6.1.

6.5.2.1 Selection Operator

Cobweb implements a fitness proportionate selection strategy, a.k.a., roulette wheel selec-

tion, for breeding the next generation. That is, the likelihood of selecting a chromosome is

proportional to its fitness value. The intuition behind this selection strategy is that tests

that are closer to covering energy-greedy APIs or exercise them under previously unexplored

contexts—thus having a higher fitness value—should have a higher chance of selection. Cob-

web sorts chromosomes based on their fitness value and selects a subset of them, denoted

as Poffspring, for inclusion in the next generation. The size of selected chromosomes is deter-

mined by breedSize variable that is an input to the algorithm. If F (i) is the fitness value for

a chromosome i in the current population with size n, the probability of this chromosome to

be selected for breeding is computed as follows:

p(i) =
F (i)

n∑
j=1

F (j)
(6.1)
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Figure 6.6: Intuition behind convergence and divergence operators

6.5.2.2 Convergence Operator

The goal of convergence operator is to pull the population towards local optima, i.e., generate

new chromosomes that largely inherit the genetic makeup of their parents. The convergence

operator only changes the execution context of tests. That is, from the parents identified by

the selection operator, Poffspring, it chooses those that have reached energy-greedy APIs, then

uses LSM and HSM models or mocking to create a new context for those tests. The intuition

behind this operator is shown in Figure 6.6. LSM and HSM models have finite states, thereby

their search space—identified by dashed circle in Figure 6.6—is relatively small compared to

the typical search space associated with the functional behavior of a program, represented

by CTG and CG models. Convergence operator, denoted by the orange arrow in Figure 6.6,

promotes exploration of the search space within close proximity of parent chromosomes,

thereby aids the algorithm to converge to local optima.

For each chromosome in Poffspring, Cobweb randomly selects a gene to modify its context

by inserting proper events in the chromosome event sequence. To avoid bloated populations,

Cobweb applies convergence operator if the gene has events associated with lifecycle call-

backs or hardware-related APIs. Cobweb uses two types of convergence operator: lifecycle

context operator and hardware context operator.
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Lifecycle context operator: To show the necessity of lifecycle context and usage of LSM

for test generation, consider the second energy defect for MyTracker app described in Sec-

tion 7.2. Recall that to effectively detect this bug, a test needs to put the TrackingActivity

into the paused state to assess utilization of GPS hardware in this state. To generate such

test, lifecycle context operator determines current lifecycle state of the chromosome that

utilizes GPS in one of its genes, and inserts the proper lifecycle callback event based on the

next possible state determined from LSM.

Consider Sequence 2 of Figure 6.2 to see how lifecycle context operator works. The onLocationChanged

event in TrackingActivity gene indicates access to GPS hardware. Cobweb realizes the

lifecycle state of TrackingActivity is Running based on the last lifecycle callback in the

event sequence. The next eligible state for TrackingActivity is Paused based on LSM,

which can be reached by executing onPause() lifecycle callback. Additionally, since proper

execution of a test requires the component to be in the Running state, Cobweb needs to

include a callback to restore the component to the running state to avoid generation of in-

valid tests. Thereby, Cobweb generates a new chromosome corresponding to Sequence 2 of

Figure 6.7. The input argument of onPause indicates that during the execution of this test,

TrackingActivity remains in the paused state for 10 seconds.

Hardware context operator: Many energy defects manifest themselves under specific

hardware settings [125], making it important to test an app under different hardware states.

Recall “fail to check for connectivity” energy defect in MyTracker described in Section 7.2. To

find this energy defect, MyTracker should be tested both when there is a network connection

available and not. For each chromosome in Poffspring, hardware context operator finds a gene

that utilizes hardware, if any, determines the next hardware state based on the last explored

state in HSM, and inserts a specific hardware state sub-gene right before the sub-gene that

is a callback or contains APIs that utilize a hardware element.
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Sequence 2: <MainActivity<onCreate, onItemClick(“Montreal”)>, 
LocationActivity<onCreate, enterText(“airport”), enterText(“conference”), onClick(“Start”)>, 
TrackingActivity<onCreate, onLocationChanged(“location1”), onPause(“10”), onResume(), onClick(“Stop”)>>

Sequence 1: <MainActivity<onCreate, onClick(“Download Maps”)>, 
MapSearchActivity<onCreate, enterText(“Ottawa”), onClick(“Find by Internet”)>, 
InternetService<onStartCommand, searchOnServer, startService(“DownloadService”)>,
DownloadService<onStartCommand, Utilized_Full, startDownload, onDownloadComplete>>

Sequence 3: <MainActivity<onCreate, onClick(“Download Maps”)>, 
MapSearchActivity<onCreate, onClick(“Find by GPS”)>, 
GPSService<onStartCommand, getLastKnownLocation, startService(“DownloadService”)>,
DownloadService<onStartCommand, startDownload, onDownloadComplete>>

Figure 6.7: Evolved event sequences from illustrative example

For example, consider a chromosome represented by Sequence 1 in Figure 6.2. The startDownload

sub-gene inside the DownloadService gene makes an app connect to a server and download

the map of Ottawa. If no prior hardware context operator is applied on DownloadService,

the state of network would be Disconnected based on the Network HSM presented in Fig-

ure 6.4. Hence, Cobweb randomly chooses to transfer the state to either Scanning, Utilized

Poor, or Utilized Full. Supposing the next state is chosen to be Utilized Full, Cobweb

changes this event sequence to Sequence 1 in Figure 6.7. Unlike lifecycle context operator,

there is no need to restore the state of hardware. That is, if a test crashes by changing the

hardware state, developer has failed to properly handle that situation.

6.5.2.3 Divergence Operator

In contrast to convergence operator, the goal of divergence operator is to bring the population

out of local optima to discover potentially better solutions, i.e., find solutions that cover new

energy-greedy APIs not previously covered by tests in the current population. The intuition

behind this operator is shown in Figure 6.6. Unlike convergence operators that perform

a neighborhood search, divergence operator, denoted by the dashed green arrow, causes

exploration of the whole new areas of the search space.

The goal of this operator is to explore new paths, specifically paths that cover energy-greedy

APIs. To that end, it combines two operations, namely breakup and reconcile to breed a new
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chromosome. For each chromosome in Poffspring, breakup operation breaks it into two set of

genes, passes the first set to reconcile operation, and discards the seconds set. Note that the

breakup point is selected randomly and could also be the end of the chromosome, i.e., the

first set is the entire chromosome and the second set is empty. At the next step, reconcile

operation creates a new individual from the broken chromosome. Starting from the last gene

of the broken chromosome, reconcile operation uses the CTG and CG models to generate a

sequence of events that cover a path toward their leaf nodes. The operator selects a path

based on a priority value. Given the following path, 〈Ci〈e1, . . . , epi〉, . . . , Cm〈e1, . . . , epm〉〉,

its priority value is calculated as follows:

PRi,m =
m∑
j=i

APIj APIj =
l∑

k=0

wk (6.2)

where APIj is a weighted sum of the number of energy-greedy APIs, l, that might be invoked

during the execution of event sequences in component Cj. Cobweb takes a list of 38, 626

energy-greedy APIs from our empirical study described in Section 6.4.3, and counts the

number of their invocations for each component using a conventional use-def static analysis.

Since energy-greediness of APIs vary, Cobweb employs a weighted sum. To obtain the

weight of each energy-greedy API, Cobweb relies on a prior study [147] that has ranked

energy-greedy APIs based on their energy-greediness to compute wk in Equation 6.2.

Reconcile operation may need to change the sub-genes of the last gene in the broken chromo-

some to reduce the likelihood of generating invalid tests. For example, consider Sequence 1 in

Figure 6.2, where breakup operation divides it into 〈MainActivity, MapSearchActivity〉

and 〈InternetService, DownloadService〉 sequences of components. Referring to the

CTG of MyTracker shown in Figure 6.4, reconcile chooses 〈GPSService, DownloadService〉

to create a new chromosome 〈MainActivity, MapSearchActivity, GPSService, DownloadService〉.
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Without changing the event sequences of MapSearchActivity, the test corresponding to

this new chromosome would fail, as clicking on the “Find by Internet” button does not instan-

tiate GPSService. Thereby, Cobweb changes the genetic makeup of MapSearchActivity

and generates a new chromosome corresponding to Sequence 3 shown in Figure 6.7.

6.5.3 Fitness Evaluation

The fitness function rewards tests based on two criteria: (C1) how close they are to covering

energy-greedy APIs; and (C2) how well they contribute to exercising different contextual

factors. The first criterion is measured using CTG and CG, while the second criterion is

measured using LSM and HSM.

Cobweb calculates the fitness value in two steps. First, it computes the fitness of ti with

respect to each energy-greedy API j. Then, it averages those values to compute a single

fitness value for test. For each test ti, Cobweb computes the fitness value as follows:

F (i) =
1

n
×

n∑
j=1

fi(j) (6.3)

where n is the number of energy-greedy APIs on the path of ti to a leaf in CTG and fi(j) is

the fitness value of ti with respect to energy-greedy API j, calculated as follows:

fi(j) =


1
3
× [c1i(j) + c2i(j)]

API j is on the path to a leaf

0 otherwise

(6.4)
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Here, c1i(j) determines the fitness of ti with respect to fitness criteria C1. It computes how

close test ti is to cover energy-greedy API j. It is calculated as x
y
, where x is the number

of edges in CG to the node that contains API j, starting from the last node covered by

ti, and y is the total number of edges from root to the node that contains API j. The

intuition behind this formulation is that, a test may not cover energy-greedy APIs in the

early iterations. However, if it comes close to covering energy-greedy APIs, it is likely to

be able to eventually cover those APIs in future iterations. Thereby, tests that exercise

paths that contain more energy-greedy APIs or get close to covering such APIs should have

a higher priority to evolve. If a test covers API j, c1i(j) attains a value of 1.

c2i(j) corresponds to fitness criterion C2 and determines how well ti exercises lifecycle and

hardware state contexts:

c2i(j) = bc1i(j)c × [li(j) + hi(j)] (6.5)

Here, li(j) and hi(j) are indicators of how well ti exercises the lifecycles of a software com-

ponent and different states of a hardware element that implements API j, respectively.

Cobweb computes li(j) and hi(j) values as follows:

1 if the test achieve prime path coverage

z
q

otherwise

(6.6)

where z is the length of path covered in LSM/HSM, and q is the length of the longest prime

path for LSM/HSM. This formulation enables tests that exercise more states in LSM/HSM

models to have a higher fitness value. Since execution context matters only if an API is
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covered by a test, Equation 6.5 has a coefficient bc1i(j)c, such that it is 0, when ti has not

reached API j, and 1, otherwise. Unless c1i(j) equals to 1, the value of bc1i(j)c, hence c2i(j),

is 0 and the execution context does not matter in calculation of fitness. Finally, note that

coefficient 1/3 in Formula 6.4 is to ensure that the fitness value is between 0 and 1.

6.5.4 Test-Suite Minimization

To minimize the size of test suite, Cobweb removes tests that are subset of others, as they

are unlikely to find new defects. Cobweb uses Lowest Common Ancestor (LCA) algorithm

to find tests corresponding to overlapping paths in the graph and removes the shortest tests

from TR. For two tests t1 = 〈C1, · · · , Cm〉 and t2 = 〈C1, · · · , Cn〉, if the LCA between Cm

and Cn is either of these nodes, these tests are likely to be overlapping. The algorithm then

checks the events inside overlapping components and if they are the same, it removes the

shorter test and keeps the longer one. In addition, Cobweb removes tests that fail to cover

any energy-greedy APIs, as such tests are unlikely to have a significant impact on energy.

Finally, the reduced test suite is transformed to Espresso tests, which can be executed on a

mobile device.

6.6 Evaluation

I investigate the following five research questions in the evaluation of Cobweb:

RQ1. API and execution context coverage: How well do the generated tests cover energy-

greedy APIs and exercise different lifecycle and hardware state contexts?

RQ2. Effectiveness : How effective are the generated tests in revealing energy defects in real-

world Android apps?
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RQ3. Necessity of the models : To what extent does using the LSM and HMS models and

considering the execution context aid Cobweb to find energy defects?

RQ4. Energy defects coverage: What types of energy defects can be detected by Cobweb

and not other energy analysis tools?

RQ5. Performance: How long does it take to generate tests using Cobweb?

6.6.1 Experimental Setup

Alternative Approaches: For a thorough evaluation of Cobweb, I compare it with other

testing tools as well as a variety of other energy analysis approaches targeting Android.

I compare Cobweb against Monkey [45], since (1) it is arguably the most widely used

automated testing tool for Android, and (2) in practice, it has shown to outperform other

academic test generation tools [85]. I also compare against the most recent publicly available

Android testing tool, Stoat [190], shown to be superior to prior testing tools. Stoat uses a

combination of model-based stochastic exploration of a GUI model of an app and randomly

injected system-level events to maximize code coverage.

Subject Apps: To evaluate effectiveness of Cobweb, I needed Android apps with real

energy defects. To eliminate any bias toward selection of subject apps in favor of Cobweb,

I looked at the dataset of 8 related approaches presented in Table 6.2 and used two criteria

in selecting apps. First, the energy defects identified by the approach should be confirmed

by the developers of studied subject apps through a commit in the repository. Second,

information about the faulty version of an app or pointers to a commit fixing the issue

should be publicly available. These criteria are required to ensure the defects reported by

those tools are in fact reproducible in our experimental setup and do not impose a threat

to the validity of our results. From the total of 2, 035 apps studied in related approaches,

only 25 matched our inclusion criteria. From those apps, I was able to reproduce the faults

112



in 18 of them, mostly because a subset of faults in those apps related to older versions of

Android and could not be reproduced in Android 6.0 that I used in our evaluation. Out

of these 18 apps, I removed 3, since Soot was not able to generate complete call graphs for

them. Table 6.1 shows information about our 15 subjects with real energy defects.

Fault Reproduction: To ensure the energy issues are reproducible, I executed each defec-

tive subject app under the documented use-case known to exhibit the defect. I profiled the

state of hardware elements during and after execution of the app using Trepn [71]. Trepn is a

profiling tool developed by Qualcomm that collects the exact power consumption data from

sensors embedded in the chipset. If the profiled data indicated over-utilization of a hardware

element during the execution of use-case, I marked the energy defect to be reproducible. For

example, if the energy defect to reproduce is categorized as a location defect, I monitored

the state of GPS to see if the GPS hardware is released after the execution.

6.6.2 RQ1: API and Execution Context Coverage

The objective of Cobweb is to maximize the coverage of energy-greedy APIs under various

execution contexts. To evaluate the extent to which Cobweb achieves this goal, I measured

API, LSM, and HSM coverage of test suites produced for our subjects. Similarly, I calculated

these metrics for Monkey and Stoat as an alternative testing approach. I collected coverage

information of the subjects using EMMA [3] during test execution. I ran Stoat for 3 hours,

similar to the configuration used by its authors [190]. Monkey is shown to converge very

close to its highest coverage at around 10 minutes [85]. However, I ran it for 1 hour to

ensure sufficient testing budget. During 1 hour, it generates over 100, 000 events per subject,

which is significantly higher than the 7, 630 events generated on average by Cobweb in our

experiments. Table 6.1 illustrates the result of this experiment under Coverage column. I

observe that:
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Cobweb achieves a higher API coverage compared to alternative approaches.

Cobweb achieves 79% API coverage on average, ranging from 33% to 96% with the median

of 89%. In contrast, Monkey and Stoat are able to cover on average 42% and 46% of energy-

greedy APIs.

Cobweb is more effective in exercising different execution contexts compared to

Monkey. While Cobweb achieves an average of 85% in covering prime paths of LSMs,

ranging from 53% to 100% with the median of 96%, Monkey and Stoat are able to cover

only 27% and 40% LSM prime paths on average. Alternative approaches perform worse in

terms of HSM coverage, failing to cover even a single HSM prime path. This is due to the

fact that neither Monkey nor Stoat are capable of effectively manipulating hardware and

systematically create system events during testing.

6.6.3 RQ2: Effectiveness

I investigated the ability of Cobweb, Monkey, and Stoat for finding the energy defects in

the subject apps. To that end, I executed the generated tests on a Google Nexus 6 device,

running Android version 6.0. During the execution of each test, Trepn was running in the

background to profile the states of hardware elements during and after execution of each

test. I used the results of fault reproduction (recall Section 7.7.1) as our oracle. Similar

to prior work [125], if the energy traces obtained during the fault reproduction and test

execution matched, I determined that the test suite was able to detect the corresponding

fault. Column Detection in Table 6.1 demonstrates the result of this study. These results

show that:

Random GUI exploration and random system event injection proves to be highly

ineffective. Monkey and Stoat were able to detect only 2 and 4 energy defects, respectively.

The root cause of this weakness comes from their inability to cover energy-greedy APIs under
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different execution contexts. In fact, Monkey and Stoat were able to cover the code related to

4 and 5 energy defects, respectively—those marked with asterisk under Detection column.

Even when covered by these tools, manifestation of those defects requires the apps to be

executed under specific component lifecycle or hardware states.

Cobweb is effective for detecting energy defects. From the total of 15 verified energy

defects, Cobweb was able to detect 14, where 10 of them could be detected by exercising

different component lifecycle states and 4 of them could be revealed under specific hardware

states. Cobweb was not able to find 1 energy defect in a2dp.Vol. Further investigation

showed that manifestation of this energy defect requires complex interactions with the app.

In fact, a2dp.Vol requires a user to connect a Bluetooth device to her phone, change her

location, save her location in a database, and disconnect the Bluetooth device from her phone.

Cobweb generated a test for each of these use-cases, but not a single test to reproduce the

whole scenario, as they cover different branches of CTG.

6.6.4 RQ3: Necessity of the Models

To evaluate necessity and usefulness of LSM and HSM models, I first compared the size of

test suites originally generated by Cobweb that considers these models with that generated

by a modified version of Algorithm 6.1 that exhaustively injects lifecycle or hardware related

events into event sequences, i.e., changed the convergence operator. In addition, I compared

the ability of test suites originally generated by Cobweb in finding energy defects with that

generated without using the models, i.e., I removed the consideration of execution context

from the test generation process. From the results presented in Table 6.1, I can observe that:

Contextual models make energy testing scalable. Without a model, each component

of app should be exhaustively tested under all possible lifecycle/hardware states. Columns

∼L and ∼H under #Tests show the size of test suites generate by exhaustively injecting

115



T
ab

le
6.

2:
C

om
p
ar

in
g

ab
il
it

y
of

en
er

gy
an

al
y
si

s
to

ol
s

to
fi
n
d

d
iff

er
en

t
ty

p
es

of
en

er
gy

d
ef

ec
ts

.

D
ef

ec
t

M
o
d
el

C
o
b
w
e
b

[1
51

]
[6

6]
[1

50
]

[2
00

]
[1

48
]

[1
49

]
[6

7]
[1

43
]

A
n
al

y
si

s
T

y
p

e
-

H
y
b
ri

d
S
ta

ti
c

H
y
b
ri

d
S
ta

ti
c

S
ta

ti
c

S
ta

ti
c

D
y
n
am

ic
D

y
n
am

ic
S
ta

ti
c

L
if

ec
y
cl

e
C

on
te

x
t

-
Y

N
N

Y
N

Y
Y

N
N

H
ar

d
w

ar
e

C
on

te
x
t

-
Y

N
N

N
N

N
N

N
N

B
lu

et
o
ot

h
3

3
0

0
0

0
0

0
2

0
D

is
p
la

y
4

3
0

0
0

0
1

0
1

1
L

o
ca

ti
on

4
2

0
1

0
1

0
1

1
0

N
et

w
or

k
6

5
0

1
0

1
0

0
1

0
R

ec
u
rr

in
g

C
al

lb
ac

k
5

3
1

0
0

0
0

0
2

0
S
en

so
r

2
2

0
1

0
1

0
1

2
0

W
ak

el
o
ck

4
4

0
2

2
2

0
2

3
0

T
ot

al
28

22
1

5
2

5
1

4
12

1

116



lifecycle/hardware related events to explore all possible states. I can see that by using LSM

and HSM models, Cobweb is able to generate test suites that are 27 and 28 times smaller,

respectively.

Execution context is crucial for detecting energy defects. Columns ∼L and ∼H

under Detection illustrate the number of faults that can be detected by test suites not using

either LSM or HSM models. Test suites generated without using LSM and HSM models can

only detect 9 energy defects, thereby are inferior to those generated by Cobweb in terms of

their ability to find energy defects. These results confirm our intuition about the importance

of considering contextual conditions for energy testing.

6.6.5 RQ4: Energy Defects Coverage

I evaluated Cobweb’s ability to find different types of energy defect by comparing it with

the state-of-the-art energy analysis approaches. To that end, I used a recently published

energy defect model for Android [125], consisting of 28 energy defect types, categorized into

seven groups, namely bluetooth, display, location, network, recurring callback, sensor, and

wakelock. For approaches that are either not publicly available or do not work on newer

versions of Android, I rely on the corresponding paper, i.e., description of the approach

and limitations stated in the paper, to determine if it is able to detect each type of defect.

Table 6.2 shows how these approaches differ in terms of their ability to find various types of

energy defect.

I can see that Cobweb is able to detect a wider range of energy defects compared

to prior techniques. Furthermore, it appears that dynamic analysis solutions, such as

Cobweb and [67], are able to detect a wider variety of energy defects compared to static

analysis solutions.
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Figure 6.8: Performance characteristics of Cobweb

6.6.6 RQ5: Performance

To answer this research question, I evaluated the time required for Cobweb to extract

models as well as the time required for test generation and test minimization. To evaluate

test generation time, I measured time from when the algorithm starts generating initial

population to when it terminates the loop in Algorithm 6.1 at Line 11. I ran the experiments

on a laptop with 2.2 GHz Intel Core i7 processor and 16 GB DDR3 RAM. Figure 6.8 shows

the performance characteristics of Cobweb for each subject app (results are averaged over

various faulty versions of apps presented in Table 6.1). From this data, I can see that

Cobweb takes 23 seconds on average to extract models, 8 minutes for test generation and

execution (including calculation of fitness value), and 57 seconds for test-suite minimization.

These results corroborate scalability of Cobweb for test generation, making it a reasonably

efficient testing tool for detecting energy issues.

6.7 Discussion

This chapter presented Cobweb, a search-based energy testing framework for Android.

The approach employs a set of novel models to take execution context into account, i.e.,

lifecycle and hardware state context, in the generation of tests that can effectively find
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energy defects. Additionally, Cobweb implements novel genetic operators tailored to the

generation of energy tests. Unlike related search-based Android testing approaches, the

approach runs tests on the JVM rather than emulator or real device, making it highly

scalable. Using Cobweb on Android apps with real energy defects corroborate its ability

to effectively generate useful tests to find energy defects in a scalable fashion, outperforming

state-of-the-art and state-of-the-practice Android testing techniques.
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Chapter 7

Energy-Aware Test Oracle

Energy efficiency is an increasingly important quality attribute for software, particularly

for mobile apps. Just like any other software attribute, energy behavior of mobile apps

should be properly tested prior to their release. However, mobile apps are riddled with

energy defects, as currently there is a lack of proper energy testing tools. Indeed, energy

testing is a fledgling area of research and recent advances have mainly focused on test input

generation. This chapter presents ACETON, the first approach aimed at solving the oracle

problem for testing the energy behavior of mobile apps. ACETON employs Deep Learning

to automatically construct an oracle that not only determines whether a test execution

reveals an energy defect, but also the type of energy defect. By carefully selecting features

that can be monitored on any app and mobile device, the oracle constructed using ACETON

is highly reusable, highly accurate, and efficient.
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7.1 Introduction

Improper usage of energy-greedy hardware components on a mobile device, such as GPS,

WiFi, radio, Bluetooth, and display, can drastically discharge its battery. Recent studies

have shown energy to be a major concern for both users [196] and developers [162]. In spite

of that, many mobile apps abound with energy defects. This is mainly due to the lack of

tools and techniques for effectively testing the energy behavior of apps prior to their release.

In fact, advancements on mobile app testing have in large part focused on functional cor-

rectness, rather than non-functional properties, such as energy efficiency [125]. To alleviate

this shortcoming, recent studies have tried to generate effective energy tests [124, 86]. While

the proposed techniques have shown to be effective for generating energy-aware test inputs,

they either use manually constructed oracles [124, 86] or rely on observation of power traces,

i.e., series of energy consumption measurements throughout the test execution, to determine

the outcome of energy testing [67, 125, 66].

Test oracle automation is one of the most challenging facets of test automation, and in

fact, has received significantly less attention in the literature [69]. A test oracle compares

the output of a program under test for a given test to the output that it determines to be

correct. While power trace is an important output from an energy perspective, relying on

that for creating energy test oracles faces several non-trivial complications. First, collecting

power traces is unwieldy, as it requires additional hardware, e.g., Monsoon [7], or special-

ized software, e.g., Trepn [71], to measure the power consumption of a device during test

execution. Second, noise and fluctuation in power measurement may cause many tests to

become flaky. Third, power trace-based oracles are device dependent, making them useless

for tests intended for execution on different devices. Finally, power traces are sensitive to

small changes in the code, thus are impractical for regression testing.
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The key insight in this work is that whether a test fails—detects an energy defect—or passes

can be determined by comparing the state of app lifecycle and hardware elements before,

during, and after the execution of a test. If such a state changes in specific ways, I can

determine that the test is failing, i.e., reveals an energy issue, irrespective of the power trace

or hardware-specific differences. The challenge here lies in the fact that determining such

patterns is exceptionally cumbersome, and requires deep knowledge of energy faults and their

impact on the app lifecycle and hardware elements. Furthermore, energy defects change, and

new types of defects emerge, as mobile platforms evolve, making it impractical to manually

derive such patterns.

To overcome this challenge, this chapter presents ACETON, an approach for automated

construction of energy test oracles for Android. ACETON employs Deep Learning to

determine the (mis)behaviors corresponding to the different types of energy defects. It rep-

resents the state of app lifecycle and hardware elements in the form of a feature vector, called

State Vector (SV). Each instance of our training dataset is a sequence of SVs sampled before,

during, and after the execution of a test. ACETON leverages Attention mechanism [65] to

ensure generation of explainable DL models.

To summarize, this chapter makes the following contributions:

• A Deep Learning technique for automated construction of an energy test oracle in An-

droid apps that relies on a novel representation of app lifecycle and hardware elements

as a feature vector. ACETON is app and device independent.

• A novel utilization of Attention Mechanism from the Deep Learning literature to go

beyond the usage of Deep Learning as a black-box technique and understand how

ACETON determines the correctness of test execution outcome.

• An extensive empirical evaluation on real-world Android apps demonstrating that

ACETON is (1) highly accurate—achieves an overall precision and recall of 99%, (2)
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efficient—detects the existence of energy defects in only 37 milliseconds on average,

and (3) reusable across a variety of apps and devices.

• An implementation of ACETON, which is publicly available [31].

The remainder of this chapter is organized as follows. Section 7.2 provides a background

on energy defects and illustrates a motivating example. Section 7.3 provides an overview

of ACETON, while Sections 7.4-7.6 describe details of the proposed approach. Section 7.7

presents the evaluation results.

7.2 Motivating Example

An energy defect occurs when the execution of code leads to unnecessary energy consump-

tion. The root cause of such issues is typically misuse of hardware elements on the mobile

device by apps or Android framework under peculiar conditions. To determine whether test

execution reveals an energy defect, developers can monitor the state of hardware elements

and environmental factors, e.g., speed of user or strength of network signal, before, during,

and after the test execution. If those states change in a specific way (or do not change as

expected) between consecutive observations, it can be an indicator of energy defect.

For example, When developing location-aware apps, developers should use a location update

strategy that achieves the proper trade-off between accuracy and energy consumption [19].

User location can be obtained by registering a LocationListener. While the accuracy of

the location updates obtained from a GPS location listener is higher than that of a Network

location listener, GPS consumes more power than Network to collect location information.

To achieve the best strategy, developers should adjust the accuracy and frequency of listening

to location updates based on the user movement. Example of violating the best practice is

when the app uses GPS to listen to location updates while the user is stationary. This
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energy defect can be detected if the following pattern in the state of user and GPS hardware

is observed during test execution:

GPSi == GPSi+1 == “On” ∧

Location Listeneri == Location Listeneri+1 == “GPS” ∧

User Movementi == User Movementi+1 == “Stationary”

Here, GPS, Location Listener, and User Movement are the factors corresponding to man-

ifestation of energy defect and the indices indicate to which state, Statei or Statei+1, they

belong.

As shown in the above example, existence of a defect can be determined by monitoring for

certain patterns in the state of hardware and environmental settings during test execution.

Identifying such patterns manually requires significant expertise, and can be extremely com-

plicated and time consuming. For example, a pattern corresponding to violation of location

best practice by listening to location updates at a high frequency when user moves slowly, i.e.,

walking, should include additional invariants related to Network and Listener Frequency.

Thereby, our objective in this chapter is to construct an oracle that automatically learns

such patterns to determine the correctness of test execution. Such oracle can be reusable

across different apps and mobile devices, as long as the changes in the state of software and

hardware can be monitored. Automatic construction of test oracles this way is specifically

important for Android, as the platform rapidly evolves, i.e., substantial amount of APIs

become deprecated and new APIs and features are introduced in newer versions.
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7.3 Approach Overview

Prior research has shown that energy defects manifest themselves under specific contextual

settings [124]. Specifically, some energy defects, e.g., wakelocks and resource leaks, hap-

pen under specific sequences of lifecycle callbacks, while others manifest themselves under

peculiar hardware states, e.g., poor network signal, no network connection, or low battery.

This observation forms the basis of our work. I hypothesize an automated energy test oracle

can be constructed by monitoring and comparing the state of app lifecycle and hardware

elements before, during, and after the execution of a test. If such a state changes in specific

ways, the oracle determines that the test is failing, i.e., reveals an energy issue.

Determining such patterns requires a deep knowledge of both energy defects and their cor-

responding impact on the app lifecycle and hardware elements. To overcome this challenge,

ACETON leverages Deep Learning (DL) techniques to automatically learn the (mis)behaviors

corresponding to the different types of energy defects. Specifically, ACETON monitors the

state of app lifecycle and hardware elements during the execution of a test. Each sampled

state is represented as a bit vector, called State Vector (SV). The result of executing a test

is thus a sequence of SVs, which serves as the feature vector for the DL algorithm. Each

instance of training and test dataset is a sequence of SVs sampled during the execution of a

test. ACETON feeds the SVs and their corresponding labels (indicating the presence of an

energy defect or not) to a Long Short Term Memory (LSTM) network, which is a variant of

Recurrent Neural Networks (RNNs), to train a classifier. This classifier is subsequently used

as our test oracle to determine the label of new tests.

The DL engine of ACETON uses Attention Mechanism, a method for making the RNNs

work better by letting the network know where to look as it predicts a label [65], to generate

an explainable model. Specifically, ACETON is able to identify a subset of SVs that the

oracle attends to for determining the final passing or failing outcome. By analyzing in what
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Figure 7.1: Overview of the ACETON framework

features the attended SVs are different from their predecessor SVs, I can verify whether the

DL model has attended to the relevant features corresponding to the energy defects, in order

to determine the correctness of a test.

Figure 7.1 provides an overview of our proposed approach, consisting of three major compo-

nents: (1) Sequence Collector, (2) DL Engine, and (3) Attention Analysis. To construct the

oracle, ACETON takes a labeled database of apps with energy defects accompanied with

test suites as input. The Sequence Collector component executes each test case and captures

SVs at a fixed rate during test execution to build the training dataset for ACETON. The

training dataset is then fed to the DL Engine, which constructs the classifier that serves

as our test oracle. To use the oracle, ACETON takes a test case as input and collects a

sequence of SVs during its execution. The oracle takes the sequence as input and produces a

fine-grained label for it, indicating whether the test has failed, and if so, the type of energy

defect that was revealed by the test. To help us understand the nature of patterns learned by

the model, the oracle also produces an Attention Weights vector. Attention Analysis compo-

nent then takes the Attention Weights vector to determine the list of features that involved
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in the oracle’s decision. These features essentially constitute the defect signature learned by

the oracle. In the following sections, I describe the details of ACETON’s components.

7.4 Sequence Collector

The Sequence Collector component takes a test case ti as input, executes it, and captures

the state of app lifecycle and hardware components at a fixed rate to generate a sequence

of SVs,
#     »

Seqi = 〈SV0, SV1, . . . , SVm〉. In ACETON,
#     »

Seqi serves as the feature vector for the

DL algorithm. In this section, I first explain details of SV and then describe the process of

sequence collection.

7.4.1 State Vector (SV)

Proper feature selection, i.e., feature engineering, is fundamental to the application of DL

techniques, as the quality and quantity of features greatly impact the utility of a model. I

chose our features to reflect the changes in the state of app lifecycle and hardware elements

during the execution of a test, as these factors have shown to play an important role in

manifestation of energy defects [124]. To capture the state during the execution of a test,

ACETON relies on a model called State Vector (SV). At the highest level, SV consists

of entries representing the lifecycle state of app under test and the state of major energy-

greedy hardware elements, namely Battery, Bluetooth, CPU, Display, Location, Network

(e.g., WiFi or radio), and Sensors (e.g., Accelerometer, Gravity, Gyroscope, Temperature,

etc.),
#   »

SV = 〈C0, C1, . . . , C7〉, where C represents the element category. At a finer granularity,

each category is broken down to sub-entries that capture the corresponding state in terms

of multiple features,
# »

Cj = 〈f0, f1, . . . , fnj
〉, where f is a binary value representing the state

of feature.
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Figure 7.2: State Vector Representation

Figure 7.2 demonstrates the representation of SV at the highest level in the first row and

at a finer granularity for all the entries. As shown in Figure 7.2, Location element consists

of ten sub-entries, namely GPS Registered (indicates whether a GPS listener is registered

by an app), Network Registered (indicates whether a Network listener is registered by an

app), High Frequency (indicates if the registered location listener listens to location updates

frequently), Last Known Location (indicates whether the last known location is available

for an app), GPS Enabled (indicates whether the GPS hardware is on or off), and entries

indicating the type of user movement as the test executes.

To determine sub-entries, i.e., features, I needed two sets of information: (1) a set of lifecycle

states for Android components, i.e., Activity, Lifecycle, and BroadcastReceiver, and (2)

states of key hardware elements that can be changed at the software level. I referred to

Android documentation [51, 50, 49] to determine the former. For the latter, I followed

a systematic approach similar to that presented in the prior work [124] to obtain all the

Android APIs and constant values in the libraries that allow developers to monitor or utilize

hardware components. Specifically, I performed a keyword-based search on the Android

API documentation to collect hardware-relevant APIs and fields, identified all the hardware

states that can be changed or monitored at the software level, and constructed State Vector

as demonstrated in Figure 7.2. By identifying the hardware features using the mentioned

approach, i.e., determining the hardware states that can be manipulated or monitored using

application software or Android framework, I are assured the oracles constructed following
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our approach are device independent. Additionally, the constructed oracle is app independent,

as it monitors the features that are related to app’s lifecycle state, which are managed by

Android framework, in contrast to features that are related to the code of apps, e.g., usage

of specific APIs. Thereby, once trained on a set of apps, the oracle can be reused for testing

of other apps.

An SV consists of a total of 84 binary features. I leveraged One-Hot encoding to transform

all the categorical data into binary values. For example, while user movement can be a single

feature with categorical text values of Still, Walking, Running, Biking, and Driving1, I model

it as five binary features. This is mainly because binary features are easier to learn by DL

techniques, thereby lead to a higher level of accuracy in a shorter amount of time.

7.4.2 Collecting Sequences

The Sequence Collector component executes a given test, ti, and collects the values for

different sub-entries of SV at a fixed sampling rate to generate
#     »

Seqi. ACETON’s DL Engine

requires the size of all the
#     »

Seqis be the same. Since tests may take different amounts of time to

execute, Sequence Collector adjusts the frequency of sampling based on the length of tests.

Current implementation of ACETON requires 128 SV samples (details in Section 7.7).

Thereby, if the execution time of ti is 15 second, Sequence Collector samples SV values every

100 milliseconds. On the other hand, for a shorter test that takes 5 seconds to finish, SV

sampling takes place every 40 milliseconds.

Sequence Collector leverages dumpsys and systrace capabilities of the Android Debug Bridge

(ADB), along with instrumentation of apps, to collect the necessary information at different

time stamps. dumpsys is a command-line tool that provides information about system

services, such as batterystats, connectivity, wifi, power, etc. For example, “adb shell
1These categories are specified in the Android documentation.
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dumpsys wifi” command collects and dumps the statistics related to the WiFi hardware

element. To determine if there is a WiFi network available, I look at the value of “WiFi is”

line in the dumpsys report. Similarly, to see if the phone is connected to a WiFi network, I

look at the value of “curState”. If “curState = NotConnectedState”, the phone

is not connected to a WiFi network. If “curState = ConnectedState”, the phone

has connection to a WiFi network, in which case I collect additional information about the

connection, e.g., the strength of signal.

While dumpsys provides detailed information about all the running services on a phone, its

reporting time for CPU is very long. That is, it batches all the CPU usage information

and updates CPU report every several minutes. Thereby, I used systrace to collect the

information about CPU usage of an app during test execution. Finally, I could not find

information in either dumpsys or systrace report for a subset of features. To that end,

ACETON automatically instruments the app under test to collect such information. For

example, Location category contains features related to the type of user movement. To

identify how and when user movement changes, ACETON instruments the app to register

an Activity Recognition listener and listens to the changes in user movement. That is, when

the device recognizes a change in the user movement by collecting the data from various

sensors, Android will notify the listener about the type of detected activity, e.g., walking,

running. As another example, all the lifecycle callbacks will be instrumented to print a

message Android log, i.e., LogCat, as they are invoked. By processing the log files collected

for an SV during test execution, I determine the values for lifecycle features.

7.5 Learning Engine

In this section, I describe the DL-based construction of our energy test oracle.
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Figure 7.3: Architecture of an RNN and LSTM networks

7.5.1 Model Selection

To determine what Machine Learning model is suitable for solving the energy oracle problem,

I considered the following criteria:

1) The construction of energy oracle is a form of Classification problem, i.e., I train our

model based on a set of labeled passing or failing tests. Hence, the model should be suitable

for such supervised learning problem;

2) I have a relatively high-dimensional data, i.e., each single input to the model is a sequence

of SVs sampled during execution of a test. For a sequence size of 128 and SV size of 84

with binary features, each instance of our feature vector can take 128× 84 = 2, 1504 values.

Thereby, the model should be able to deal with both sequential and high-dimensional data;

3) Energy defects can occur anywhere during the execution of a test. As a result, the index

of SVs where an energy defect occurs can be different among tests. Thereby, our proposed

oracle should be able to detect emergence of the anomalous energy behavior in SVk from the
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SVs that appear before it, {SVl | l < k}. That is, our model should be able to holistically

consider the observed SVs in order to accurately detect energy defects.

Given these criteria, the learning component of ACETON uses Long Short-Term Memory

(LSTM), which is a type of Recurrent Neural Network (RNN). Specifically, ACETON uses

an LSTM Neural Network, augmented by Attention mechanism, to construct oracles for

energy defects in Android.2 In the remainder of this section, I describe the intuition behind

why LSTM is the best DL model for construction of an energy test oracle.

7.5.2 Long Short-Term Memory (LSTM)

Neural Networks (NNs) have been widely used to recognize underlying relationships in a

set of data through a statistical process. Such systems learn to perform a task or predict

an output by considering examples (supervised learning) rather than pre-defined rules. For

example, NN algorithms have been shown to effectively identify presence of a certain object

in a given image, only by analyzing previously seen images that contain that object and

without knowing its particular properties. Neural Networks are basically a collection of

nodes, i.e., artificial neurons, which are typically aggregated into layers. The network forms

by connecting the output of certain neurons in one layer to the input of other neurons in

the predecessor layer, forming a directed, weighted graph. Neurons and their corresponding

edges typically have a weight that adjusts as the learning proceeds. “Classic” NNs transmit

information between neurons in a single direction, thereby are not effective in dealing with

sequential data.

Recurrent Neural Networks (RNNs) are specific type of NNs that have shown to be effective

in solving large and complex problems with sequential data, e.g., speech recognition, transla-
2Our preliminary experiments showed that traditional Machine Learning techniques, e.g., Decision Tree

or Support Vector Machine, are not suitable for sequential data, as they cannot produce results in a reasonable
number of epochs for most cases and when they do, they yield very poor precision and recall for the oracle.
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tion, and time-series forecasting. They are networks with loops in them, which allows them

to read the input data one sequence after the other. That is, if the input data consists of a

sequence of length k, RNN reads the data in a loop with k iterations. Figure 7.3-a shows

the architecture of an RNN on the left, which is unfolded over time on the right. While the

chain-like nature of RNNs enables them to reason about previous sequences, basic RNNs are

unable to learn long-term dependencies due to the Vanishing Gradient problem [72].

Learning long-term dependencies is essential in the energy oracle problem, defect patterns

should persist for some time in order to be considered a defect. For example, registering

a GPS listener that listens to location updates as frequently as possible—by setting the

time and distance parameters of requestLocationUpdates() to 0—is an example of

an energy defect [125]. The pattern of this defect may involve GPS Registered and High

Frequency sub-entries in the SV (Figure 7.2), i.e., turn their corresponding value to “1”

as an app registers the listener. However, simply observing that pattern in a sampled SV

does not necessarily entail an energy defect. That is, if developer registers a high frequency

location listener in a short-lived Broadcast Receiver or Service, or set a short timeout to

unregister it, the pattern does not impact the battery life, hence, should not be considered

a defect. In other words, the pattern should persist among several consecutive SVs during

the execution of a test, or persist after the test terminates to be an energy defect.

LSTM networks are special kind of RNNs that are capable of learning long-term dependen-

cies [120], thereby can remember the patterns that will persist. Similar to classic RNNs,

LSTMs have the form of a chain of repeating modules of neural network, as shown in Fig-

ure 7.3-b. However, the repeating module in LSTM (right hand side of Figure 7.3-b) has

a different structure compared to that of RNN (right hand side of Figure 7.3-a). While

RNNs have a single NN layer (demonstrated by black rectangle), LSTMs have four of them,

which are interacting in a special way to create an internal memory state. The combination
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Figure 7.4: Visualization of Attention Weight vector for energy defects related to a) CPU, b)
Display, c) Location, and d) Network

of layers enable LSTM to decide what information to throw away and what to keep, i.e.,

empowering LSTM to remember what it has learned till present.

The LSTM layer consists of several LSTM modules that take a sequence of SVs as input

and generate an output vector,
#  »

hm. A regular classification algorithm projects this output

to the classification space, with dimensions equal to the number of classes, and then applies

a probabilistic function, a.k.a. softmax, to normalize the values between [0, 1] and generate

a label. However, to produce more accurate labels, ACETON takes
#  »

hm as an input to an

additional layer, i.e., Attention layer, as discussed next.

7.5.3 Dataset Curation

A DL approach requires the availability of large amounts of high quality training data, i.e.,

a large dataset with diverse types of energy defects in mobile apps accompanied by test

suites that reveal their existence. I present a novel usage of mutation testing to curate such

dataset. Specifically, I used µDroid, an energy-aware mutation testing framework designed

for Android [125]. The rationale behind this choice includes:

(1) µDroid can provide us with a large, diverse, and high quality dataset. The mutation

operators of µDroid are designed based on the most comprehensive energy defect model for

Android to date, which is constructed from real energy defects obtained from several dozens

of Android apps. These defects have been shown to strongly associate with previously
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unknown real energy defects in apps that were different from those where the defect model

was derived from. µDroid also comes with a set of high quality developer-written passing

and failing tests, which are essential for generating a labeled dataset for our classification

problem. Each pair of 〈mutant, test〉 from µDroid contributes one data point for our dataset.

(2) µDroid categorizes mutants based on the hardware components that they misuse, pro-

viding us with fine-grained labels for failing tests, namely Pass, FailBluetooth, FailCPU ,

FailDisplay, FailLocation, FailNetwork, and FailSensor, to perform additional analysis and ver-

ify the validity of the DL model (see Section 7.6).

7.5.4 Attention Mechanism

While LSTMs have memory, their performance drastically degrades as the length of sequences

gets longer, known as the long sequence problem in the literature [82]. Attention mechanism

is a method for making LSTMs overcome this challenge by reminding the network where it

has previously looked as it performs its task [65]. Thereby, no matter how long the sequences,

LSTM knows where it has focused and decides what to do next based on that information.

In addition to solving the long sequence problem, Attention mechanism is extensively used

in the deep learning community to resolve the explainability of neural networks.

The responsibility of Attention layer is to generate an Attention Weight vector,
#     »

AW =

〈w0, w1, . . . , xm〉, and adjust the weights as SVs are sequentially being fed to the LSTMs.

Once the oracle receives all the SVs,
#     »

AW contains weight values corresponding to each SV.

ACETON uses soft attention, where wi values in
#     »

AW are between 0 and 1 and
∑m

i=0wi = 1.

Thereby, it provides a convenient probabilistic interpretation of which SVs in the test case

the oracle has relied on to determine the outcome of a given test. For example, if ACETON

decides a test fails due to a location-related energy defect, i.e., predicts FailLocation label for

it, I expect that the highest weights in
#     »

AW belong to SVs in which Location sub-entries
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were actively changed as the test executed. If so, the model proves to focus on relevant

sequences to predict the outcome. Otherwise, it has learned an incorrect pattern and might

be invalid.

7.6 Attention Analysis

Interpretability of DL models is essential, as they are highly vulnerable to the data leakage

problem [135]. Data leakage causes a model to create unrealistically good predictions based

on learning from irrelevant features. A famous example of data leakage is a cancer predictive

model that makes its decision based on the lab’s label on the X-Ray, rather than focusing

on the content of X-Ray itself. While this model may make good predictions, it is invalid.

To ensure validity of a model, it is hence crucial to determine the features that impact its

decision and verify they are relevant.

Utilization of Attention by itself improves the performance and accuracy of the energy oracle.

ACETON takes advantage of Attention layer’s product, i.e., Attention Weight vector to

identify a set of features that ACETON’s model has focused on to predict a label. This

set can be used for two purposes: (1) verify validity of the learned model, and (2) enhance

energy fault localization.

Algorithm 7.1 presents ACETON’s approach for Attention Analysis. For a given failing

test, ti, it takes the sequence of SVs,
#     »

Seqi = 〈SV0, SV1, . . . , SVm〉, Attention Weight vector,

#      »

AWi, and predicted label, li, as input, and produces a list of features that were involved in

the decision, i.e., attended features, as output. The algorithm starts by identifying a subset

of SVs in
#     »

Seqi that the oracle has attended to decide the label,
#     »

Seq′i = 〈SVn, . . . , SVk〉, 0 <

n ≤ k < m (Line 2), and determines the features that are common between SVs in
#     »

Seq′i

to construct Commonsi (Line 3). Next, the Algorithm takes the predecessor to the first
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Algorithm 7.1: Attention Analysis Algorithm

Input: SV sequence of a failing test
#      »

Seqi, Predicted label li, Attention Weight vector
#       »

AWi

Output: Attended Features Featuresi
1 Featuresi ← ∅
2

#      »

Seq′i ← getAttendedSV s(Seqi, AWi)
3 Commonsi = getCommonAttendedFeatures(Seq′i)
4 Predi ← getPredecessor(Seq′i)
5 foreach 〈fx, vx〉 ∈ Commonsi do
6 v′x ← getFeatureV alue(fx, P redi)
7 if v′x 6= vx then
8 Featuresi ← Featuresi ∪ fx

9 ci ← getAttendedCategory(Featuresi)
10 if ci matches li then
11 return Featuresi

12 else
13 return ∅

element in
#     »

Seq′i, Predi = SVn−1 (Line 4), and compares the values of features in Commonsi

with that of in Predi’s features to identify attended features, Featuresi (Lines 5-8).

Finally, Algorithm 7.1 extracts the SV category corresponding to the attended features, ci

(Line 9). If li matches the attended category, ci, Algorithm 7.1 verifies that the model

attended to the features relevant to the type of defect and returns Featuresi (Lines 10-11).

Otherwise, it returns an empty set, as the model has attended to the incorrect SVs and

might be invalid (Lines 12-13).

To explain the intuition behind Algorithm 7.1, consider Figure 7.4, which visualizes
#     »

AW for

four samples of our dataset, related to energy defects that engage CPU, Display, Location,

and Network. Figure 7.4-a is for an energy defect related to the CPU, which utilizes CPU

when the app is paused, i.e., goes in the background. In this example, the spike in the

attention weights that remains for some time corresponds to when the test puts an app in

the background. Figure 7.4-b is for an energy defect related to the Display that increases

the display brightness to the max during app execution. The spike in this Figure is where

the app increases the screen brightness by setting the screen flag. As the app terminates,
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Android clears the flag and the brightness goes back to normal, thereby, the attention of

the model also fades. Figure 7.4-c is for an energy defect related to the Location, where the

developer registers a listener for receiving location updates with high frequency and forgets

to unregister the listener when the app terminates. In this case, attention of the model goes

up at the SV index in which the app registers the listener and does not drop even when

the test terminates. Finally, Figure 7.4-d is for a Network energy defect, where the app

fails to check for connectivity before performing a network task. When there is no network

connection available, the app still performs a signal search, which consumes an unnecessary

battery consumption. In Figure 7.4-d, the attention of model lasts shorter compared to other

examples, as searching for the signal is effective for a short period of time, compared to the

length of test. Thereby, it appears in few sampled SVs.

As shown in Figure 7.4, depending on where the energy defects in these energy-greedy apps

occur, how much they last, and whether their impact remains when a test terminates or not,

attention of the model to the sampled SVs varies. However, there is one pattern common

among them. There is always a sharp jump in the attention weights, which indicates where

the model starts to notice the pattern. The spike of attention either remains until end or

sharply drops after some time. To that end, Algorithm 7.1 sets SVn as the start of the biggest

jump in the weights in
#      »

AWi, and SVk as the end of biggest drop following the sharpest jump.

If there is no sharp drop until the end of
#      »

AWi, Algorithm 7.1 sets SVk to the last SV in Seqi,

i.e., SVm. The SVs between SVn and SVk construct Seq′i.

The next step after identifying the attended SVs is to determine the attended fea-

tures. To that end, Algorithm 7.1 first collects the features that are common (i.e., have

the same value) among all SVs in
#     »

Seq′i to construct Commonsi. Formally speaking,

Commonsi := { 〈fx, vx〉 | ∀SVj ∈
#     »

Seq′i, fx.vx = 1 ∨ fx.vx = 0 }. That is, Commonsi is a set

of pairs 〈fx, vx〉, where the value vx of each feature fx among all the SVs in
#     »

Seq′i is always

0 or always 1. While these features are common among the attended SVs, not all of them
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are relevant to the final decision of the oracle. For example, Commonsi is very likely to

contain Display On feature in most cases, as test execution happens when the display is on.

However, this feature should not appear in the attended features if a test that fails due to a

Network misuse.

To exclude the irrelevant features, Algorithm 7.1 refers to SVn−1, which is the predecessor

to the first SV in
#     »

Seq′i. The intuition here is that SVn ∈
#     »

Seq′i is where the model starts

to attend, indicating a change in the state of lifecycle and hardware elements that cause

the energy defect. Hence, SVn−1 indicates a safe state with no energy defect. For each fx

in Commonsi, Algorithm 7.1 finds the value of its corresponding feature in SVn−1. If that

value is different from vx, Algorithm 7.1 adds it to the attended features Featuresi.

Once the list of attended features is extracted, Algorithm 7.1 identifies the category corre-

sponding to those features by referring to the high-level structure of SV (recall Figure 7.2).

For example, if Featuresi contains Enabled, Connected/Connecting, and Bonded/Paired fea-

tures, category ci is set to Bluetooth. If the predicted category for the given test, li, matches

ci, we determine that the model has attended to the right features to decide the label.

Attended features can be viewed as the footprint of energy defects on the app’s lifecycle

and hardware states, i.e., Defect Signature. Thereby, in addition to verifying the validity

of the oracle, they can be used by developers to enhance the fault localization process. In

fact, knowing the fine-grained properties of the app lifecycle and hardware elements that are

involved in the manifestation of an energy defect can focus the developers effort on parts

of the code that utilizes Android APIs related to them, making the identification of the

root cause easier. For example, if the defect signature contains GPS Registered and High

Frequency features from the Location category, developers are provided with strong hints

that parts of the program that register location listeners for GPS and adjust the frequency

of receiving location updates are culpable for the energy defect.
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7.7 Evaluation

I investigate the following five research questions in the evaluation of ACETON:

RQ1. Effectiveness : How effective is the generated test oracle for detection of energy defects

in Android apps?

RQ2. Usage of Attention Mechanism: To what extent usage of Attention Mechanism im-

proves the performance of the model? What features impact the oracle’s decision?

RQ3. Detection of Unseen Energy Defects : To what extent can ACETON detect unseen

energy defect types, i.e., those that are not in the training dataset?

RQ4. Reusability of the Oracle: Can the generated oracle be used to detect energy issues on

different apps and mobile devices?

RQ5. Performance: How long does it take for ACETON to train and test a model?

7.7.1 Experimental Setup

Dataset: µDroid dataset contains 413 mutants from various categories of energy defects

and comes with 329 high quality tests generated by Android developers, making it suitable

to generate our dataset. Each pair of 〈mutant, test〉 from µDroid serves as a data point

in our Labeled Database (Figure 7.1). µDroid provides only passed or killed labels for its

tests. I transformed the killed label into a more fine-grained label in our approach (ref.

Section 7.5.3), based on the high-level categories related to the hardware components that

the mutants misuse. That is, if the killed mutant belongs to Bluetooth category in µDroid,

I change its label to FailBluetooth. In addition, I removed the mutants that were reported as

equivalent by µDroid, as well as mutants which could not be killed by test suites, leaving us
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with 295 mutants containing 22 types of energy defect. The first six columns of Table 7.1 show

details about the properties of the Labeled Database. Overall, the Labeled Dataset contains

16, 347 instances of 〈mutant, test〉, where 9, 266 of them are passing and 7, 081 are failing.3

I executed each instance using Sequence Collector component and collected corresponding

SVs for each instance to generate our final dataset. Table 7.1 shows the details of µDroid’s

dataset.

DL Engine Configuration: I implemented our learning model using PyTorch [177], an

open-source ML library for Python. There are multiple parameters in the implementation

that impact the performance of a DL model. One of them is the loss function, which

determines how well the algorithm approaches to learn a model. While Cross-Entropy is

the most commonly used loss function for classification problems [213], it was not the best

option in this problem due to the imbalanced nature of our dataset, i.e., the number of

passing instances in our database is higher than failing ones. Thereby, I used Weighted

Cross-Entropy [145] loss function to enforce model focus on minority classes. To enhance

the performance, I utilize Adam optimizer [138] to update the network weights and minimize

this loss function iteratively. Overfitting can also have a negative impact on the performance

of a model. To overcome Overfitting and ensure the generalization of the model on new data,

I use early stopping technique [181]. That is, I track the performance of the trained model on

the validation dataset at each epoch and stop the training if there is an increasing trend in the

validation loss in 2 consecutive epochs. Thereby, I get a model with the least validation loss.

I have also followed the 10-fold cross validation methodology in evaluating the performance

of oracle.

For hyperparameter tuning, I conducted a guided grid search strategy to find a configuration

for the model that results in the best performance on the validation data. One of the
3The actual size of Labeled Dataset in the context of DL is 1, 961, 640 = 16, 347 × 120, as each

〈mutant, test〉 consists of 120 SVs, where the model should consider each of them to generate a correct
label. For the sake of simplicity, I only report the size of 〈mutant, test〉 pairs.
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important hyperparameters in energy oracle model is the size of sequences. To illustrate how

this hyperparameter impacts performance of the oracle, consider Figure 7.5, which depicts

the sensitivity of the energy oracle’s accuracy to the average number of samples per test. As

shown in this Figure, accuracy of the oracle is quite low, 61%, when I sample SVs only before

and after execution of a test (Sample Per Test = 2 ). That is because a subset of energy

defects, e.g., using light background, fast delivery sensor listener, and etc., happen during

the execution of a test and their impact disappears when the test terminates. Therefore,

our approach is unable to learn and later predict such types of energy issues with extremely

low sample rates. While increasing the number of samples per test alleviates this problem,

exceeding certain threshold (past 130 samples per test in Figure 7.5) appears to unnecessarily

increase the complexity of DL problem, thereby reducing the accuracy of classifier. Other

detailed configuration of DL Engine are available on ACETON’s website [31].

7.7.2 RQ1: Effectiveness

While ACETON builds on top of a high-quality dataset, I performed two experiments to

ensure generalizability of our results in evaluating the ability of ACETON to detect energy

defects. In the first experiment, I used the Labeled Dataset for both training and testing

purposes. In the second experiment, I trained the oracle based on the Labeled Dataset and

used real energy defects (non-mutant apps with energy defects confirmed by their developers)

to test the oracle.

7.7.2.1 Effectiveness on detecting mutant defects

For the purpose of this evaluation, I divided the dataset obtained from Labeled Database into

two categories of training set, to train the oracle with it, and test set, to test the performance

of oracle. That is, I downsampled each category of mutants, e.g., Location, by 90% for
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training, and used the remaining 10% for testing. While our feature vector is designed to

reflect information that is app independent—not dependent to usage of specific APIs or

code constructs—I ensured that during downsampling, the mutants in the test set belong to

different apps compared to that used in the training set. This strategy accounts for overfitting

and potential bias in favor of specific apps. I select Precision and Recall, and not Accuracy,

as metrics to measure effectiveness of ACETON in predicting correct labels, since our data

is imbalanced. With imbalanced classes, it is easy to get a high accuracy without actually

making useful predictions, as the majority class impacts true negative values. Table 7.2

shows the result for this experiment under ACETON with Attention column. These results

are obtained through a 10-fold cross validation, i.e., downsampling repeated 10 times.

Each row in this Table shows the number of test instances in a predicted class, where each

column indicates the instances in actual class. From this result I observe that: ACETON

predicts correct labels for each category with a very high precision and recall. In

fact, ACETON was able to detect all the defects related to the Sensor, Network, Display,

CPU, and Bluetooth and only missed 3 Location defects (marked by * in Table 7.2), i.e.,

identified them as passed. The average precision and recall values over all categories are

99.9% and 99.8%, respectively. Categorical precision and recall values are listed in the last

two rows.

7.7.2.2 Effectiveness on detecting real defects

While ACETON is able to effectively detect the outcome of tests in mutants, I also wanted

to see how it performs on Android apps that have real but similar energy defects. To that

end, I referred to a prior work [124], which provides a dataset of 14 Android apps with real

energy defects. Each app is accompanied by a test generated using their test generation tool,

which is manually confirmed to reproduce the energy defect. The supplementary information

in the artifact of that dataset also indicates the type of hardware element that is misused by
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Figure 7.5: Sensitivity of the oracle’s accuracy to sampling rate

the defect, which I used to identify if ACETON correctly identifies the outcome of tests.

Table 7.3 represents the results for this experiment. As shown in Table 7.3, ACETON was

able to correctly identify the outcome of tests on all subjects. This observation indicates

that ACETON can effectively detect real energy defects in mobile apps.

7.7.3 RQ2: Usage of Attention Mechanism

Recall that I use the Attention mechanism for two purposes: (1) to enhance performance of

the model; and (2) to verify validity of the model. In this research question, I evaluate to

what extent Attention mechanism affects these objectives.

To evaluate the extent of performance enhancement, I removed the Attention layer (Sec-

tion 7.5.4) of Learning Engine and repeated the experiment in Section 7.7.2.1. The result of

this experiment is shown in Table 7.2 under the ACETON without Attention column. As

corroborated by these results, removing the Attention negatively impacts the pre-

cision and recall values. For example in Network category, the recall drops to 88.75%

compared to 100% in ACETON with Attention, i.e., the model misses 9 out of 71 Network

defects. Removing Attention from ACETON also negatively impacts training time. That
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Figure 7.6: A heatmap representing the attended features of SV for different subcategories of
energy defects

is, it takes longer for the model to learn the patterns and converge. I discuss this more in

RQ5.

Attention Analysis produces a set of features as output on which the oracle has attended

more. To visually confirm that ACETON has attended to relevant features for each category

of energy defects, i.e., to determine its validity, I created the heatmap shown in Figure 7.6.

The horizontal axis of heatmap indicates SV, while the vertical axis indicates subcategories

listed in Table 7.1. To construct the heatmap, I counted the appearance of each attended

feature for all its instances in a subcategory, and divided it by the occurrence of all the

attended features under that subcategory to define a weight for it. The weights take a value

between (0, 1] and the higher is the weight for a feature, the model attended to it more under

the given subcategory, thus its corresponding color in heatmap is closer to yellow.

As the heatmap clearly shows, the hot areas of heatmap for each subcategory in the vertical

axis maps to its corresponding category in the SV, meaning that the model has attended to

relevant features to decide the output of tests. An interesting observation from this heatmap
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is that lifecycle features, specifically Activity Paused, Activity Destroyed, and Service Stopped,

frequently appear in the attended features. This shows that energy defects are not solely

related to the changes in app or hardware states, but a combination of both.

Finally, I aggregated the list of attended features for each category and formally specified

them, as shown in Table 7.1 under Defect Signature column. While our intention for deriving

defect signatures was to verify the validity of the DL model, I believe that the ability of

ACETON to extract and formalize the signatures can further help developers to localize

the energy defects, specifically for new types of energy defects that will emerge as Android

framework evolves. For example, the signature of Unnecessary Active Bluetooth Connections

shows the root cause of this issue is failing to close a Bluetooth connection (BC = 1) when

the Bluetooth is off or turning off (BE = 0), which causes battery consumption even when

the app is paused (AP = 1) or destroyed (AD = 1, SS = 1).

7.7.4 RQ3: Detecting Unseen Defect Types

While prior research question evaluated effectiveness of ACETON in detection of defect

types it was trained on, this research question investigates its ability to detect previously

unseen defect types. Generally speaking, DL models can only predict patterns that they

have been trained on. However, I hypothesize that if our oracle is trained on a subset of

defect types for a specific hardware element, it may be able to detect unseen defect types

related to that hardware as well. To that end, I excluded one subcategory listed in Table 7.1

at a time, trained the model on the energy defects related to all other subcategories among

all hardware categories, and used instances of the excluded subcategory as test data4.

Here, I use recall as an evaluation metric to evaluate effectiveness of ACETON. Precision is

not a proper metric here, since our test data only belongs to one subcategory (class) in this
4I excluded Display defects from this experiment, as it has only two types of defects with no overlapping

features.
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experiment and no false positive is generated. Column Unseen Recall in Table 7.1 shows

the result for this experiment. I can see that in the majority of the cases ACETON is

able to effectively detect previously unseen energy defect types. In fact, the recall

value for majority of the excluded sub-categories is above 93%. However, there are a few

subcategories with lower recall values, which are marked by * in Table 7.1. These are the

cases in which the attended features, i.e., defect signature, is drastically different from that

of in the training dataset. I believe as additional energy defects are included in the training

dataset of ACETON, its ability to detect previously unseen energy defects can improve too.

7.7.5 RQ4: Reusability of the Oracle

In answering prior research questions, I showed that the oracle generated by ACETON

is reusable among different apps. Here, I investigate if the oracle is also reusable across

different mobile devices. Experiments in prior research questions were performed on a Google

Nexus 5X phone, running Android version 7.0 (API level 24). For this experiment, I used an

additional phone, Nexus 6P, running Android version 6.0.1 (API level 23). These two devices

are not only different in terms of Android version, but they also have different hardware

configurations, e.g., different pixel density and resolution for Display, CPU frequency, RAM

size, Battery capacity, etc.

I first repeated the experiments in Section 7.7.2.1 on the new device to ensure that the oracle

model is still effective in detecting energy defects. The result of this experiment showed the

same level of precision and recall for the new oracle (average precision = 98.27%, average

recall = 99.48%). Afterwards, I wanted to see if the oracle trained on one device can correctly

predict the label of tests executed on the other device.

To that end, I split the instances of Labeled Database into two subsets, 90% of them to be used

for training and the remaining 10% for testing. Next, I trained two oracles on the mentioned
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devices, oracle1 on Nexus 5x device and oracle2 on the Nexus 6P device, by executing the

instances in the training set and collecting their sampled SVs on the corresponding device.

Similarly, I executed instances of test dataset on both devices, test1 on Nexus 5x and test2

on the Nexus 6P. I then evaluated test1 using oracle2 and test2 using oracle1. The average

precision and recall values for test1 on oracle2 are 99.95% and 99.81%, respectively. Similarly,

oracle1 was able to detect the labels for test2 with an average precision of 99.89% and recall

of 99.45%. These results confirm that our energy oracles are device independent, hence,

reusable.

I also performed a statistical one-sample t-test to investigate the correlation between the

correct prediction of labels for tests using an oracle trained on another device. For each

test case in test1 and test2, I calculated two values, d1 and d2, which indicate whether the

oracle has correctly predicted the label. That is di = 0 if the prediction is wrong, and di = 1

otherwise. Finally, I constructed pairs of 〈d1i , d2i〉 and defined uniformityi = |d1i − d2i|.

Our null hypothesis assumes that the average value for uniformity metric to be 0, i.e., an

oracle trained on one device can correctly predict the label of a test executed on the other

device. To avoid type II error, accepting a false null-hypothesis, I excluded all the pairs in

which d1i = d2i = 0. These pairs indicate cases where the oracle failed to predict the correct

label on both test1 and test2.

Among a total of 1, 615 pairs of 〈d1i , d2i〉, none was observed in which d1i = d2i = 0, i.e.,

incorrectly labeled on both devices, while in 99.4% of them d1i = d2i = 1, i.e., correctly

labeled on both devices. In the remaining 0.06%, the test was not correctly labeled by either

oracle1 or oracle2. Furthermore, to determine the strength of correlation between correct

predictions on different devices, I used one-sample t-test. The result of one-sample t-test

over 1, 615 pairs confirmed that there is a statistically significant correlation between the

correct prediction of labels for tests using an oracle trained on another device (p-value =
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Figure 7.7: F1 Score of ACETON with and without Attention captured during the training phase

0.0013 with significance level p < 0.01). Small p-value and large number of samples confirm

that the results are unlikely to occur by chance.

7.7.6 RQ5: Performance

To answer this research question, I evaluated the time required to train and test the oracle.

I ran the experiments on a laptop with 2.2 GHz Intel Core i7 CPU and 16 GB RAM. It

took 4.5 minutes on average for ACETON to train an energy oracle on the whole dataset,

while it took only 37.6 milliseconds on average for the trained oracle to predict the label

of tests in our experiments. In addition, I examined to what extent Attention Mechanism

speeds up ACETON’s learning. To that end, I disabled the early-stopping criterion (recall

Section 7.7.1) and tracked the F1 Score of the following two models during their training:

ACETON with Attention and ACETON without Attention. As shown in Figure 7.7, ACE-

TON without Attention requires more time to train a model that achieves a comparable F1

Score as ACETON with Attention. In fact, even after 14 minutes of training, ACETON

without Attention was not able to match the F1 Score of ACETON with Attention. These

results confirm that ACETON is sufficiently efficient for practical use.
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7.8 Discussion

Energy efficiency is an increasingly important quality attribute for mobile apps that should

be properly tested. Recent advancements in energy testing have in large part focused on

test input generation, and not on the automated construction of test oracles. The key

challenge for the construction of energy test oracles is derivation of reusable patterns that

are indicative of energy defects. This chapter introduced ACETON, the first approach for

automated construction of energy test oracles that leverages Deep Learning techniques to

learn such patterns. The experimental results show that the energy oracle constructed using

ACETON is highly reusable across mobile apps and devices, achieves an overall accuracy

of 99%, and efficiently detects the existence of energy defects in only 37 milliseconds on

average.
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Chapter 8

Energy-Aware Test-Suite

Minimization

The rising popularity of mobile apps deployed on battery-constrained devices has motivated

the need for effective energy-aware testing techniques. Energy testing is generally more

labor intensive and expensive than functional testing, as tests need to be executed in the

deployment environment and specialized equipment needs to be used to collect energy mea-

surements. Currently, there is a dearth of automatic mobile testing techniques that consider

energy as a program property of interest. This chapter presents an energy-aware test-suite

minimization approach to significantly reduce the number of tests needed to effectively test

the energy properties of an Android app. It relies on an energy-aware coverage criterion that

indicates the degree to which energy-greedy segments of a program are tested. The proposed

solution to solve energy-aware test-suite minimization problem includes two complementary

algorithms, which will be discussed thoroughly in this Chapter.
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8.1 Introduction

Mobile apps have expanded into every aspect of our modern life. As the apps deployed

on mobile devices continue to grow in size and complexity, resource constraints pose an

ever-increasing challenge. Specifically, energy is the most demanding and at the same time

a limited resource in battery-constrained mobile devices. The improper usage of energy-

consuming hardware components, such as Wifi and GPS, or recurring constructs, such as

loops and callbacks, can drastically drain the battery, directly affecting the usability of the

mobile device [67, 1, 2].

Recent studies [196, 118] have shown energy consumption of apps to be a major concern for

end users. In spite of that, many apps are abound with energy bugs, as testing the energy

behavior of mobile apps is challenging. To determine the energy issues in a mobile app, a

developer needs to execute a set of tests that cover energy-greedy parts of the program. This

is particularly a challenge when apps are constantly evolving, as new features are added, and

old ones are revised or altogether removed.

Energy testing is generally more time consuming and labor intensive than functional testing.

To collect accurate energy measurements, tests often need to be executed in the deployment

environment (e.g., physical mobile device), while the great majority of conventional testing

can occur on capacious development environments (e.g., device emulator running on desk-

top or cloud). With automated mobile testing tools still in their infancy, developers spend

a significant amount of their time manually executing such tests and collecting the energy

measurements. The fragmentation of mobile devices, particularly for Android, further exac-

erbates the situation, as developers have to repeat this process for each supported platform.

Thus, there is an increasing demand for reducing the number of tests needed to detect energy

issues of evolving mobile software.
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Prior research efforts have proposed various test-suite management techniques, such as test-

suite minimization, test case selection, and test case prioritization, to help developers effec-

tively assess the quality of software. The great majority of prior techniques have focused

on the functional requirements (e.g., structural coverage and fault detection capability),

and to a lesser extent non-functional requirements. Even among the the work focusing on

non-functional properties, there is a dearth of prior work to account for energy issues.

In this chapter, I present and evaluate a novel, fully-automated energy-aware test-suite min-

imization approach to determine the minimum set of tests appropriate for assessing energy

properties of Android apps. The approach relies on a coverage criterion, called eCoverage,

that indicates the degree to which energy-greedy parts of a program are covered by a test

case. I solve the energy-aware test-suite minimization problem in two complementary ways.

I first model it as an integer programming (IP) problem, which can be solved optimally

with a conventional IP solver. Since the energy-aware test-suite minimization problem is

NP-hard, solving the integer programming model when there are many test cases is compu-

tationally prohibitive. I thus propose an approximate greedy algorithm that efficiently finds

the near-optimal solution.

This proposed approach on this chapter makes the following contributions:

• To the best of our knowledge, the first attempt at test-suite minimization that considers

energy as a program property of interest;

• An energy-aware metric for assessing the quality of test cases in revealing the energy

properties of the system under test without the need for specialized power measurement

hardware;

• A novel suite of energy-aware mutation operators that are derived from known energy

bugs, in order to evaluate the effectiveness of a test suite for revealing energy bugs;
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• Empirical evaluation of the proposed approach over test suites for real-world apps,

corroborating the ability to reduce the size of test suites by 84%, on average, while

maintaining a comparable effectiveness of original test suite for assessing the energy

properties of Android apps and revealing energy bugs.

The remainder of this chapter is organized as follows. Section 8.2 provides a background on

energy issues in Android apps and motivates our work. Section 8.3 introduces and formu-

lates the energy-aware test-suite minimization problem. Section 8.4 provides an overview

of our approach, and Sections 8.5- 8.6 describe the details of our coverage metric and the

minimization techniques. Section 8.7 presents the implementation and evaluation of the

research.

8.2 Motivation

Energy defects are the main cause of battery drainage on mobile and wearable devices.

They are essentially faults in the program that cause the device to consume high amounts

of energy, or prevent the device from becoming idle, even when there is no user activity.

Figure 8.1 presents an example of such bugs inspired by those found in real-world Android

apps. The code snippet depicts a loop that accesses and downloads X files from a list of

servers (line 4–7), processes them (line 8), and closes the connection (line 9). Before starting

the loop, the code acquires a lock on the Wi-Fi resource (line 2) to prevent the phone from

going into stand-by during download. This implementation can result in both the wakelock

and loop bugs. Studies have shown that network components can remain in a high power

state, even after a routine has completed [179, 180]. Such a state is referred to as tail

energy. Tail energy is not an energy bug itself, but interleaving a network related code and

a CPU-intensive code in a loop can exacerbate its impact and cause energy bug.
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Figure 8.1: Code snippet with energy bugs.

To perform energy testing and find possible energy bugs, a developer should design test cases

that cover energy-greedy segments of the program—segments that contribute more to the

energy cost of the app—and measure the energy consumption of device during execution

of those test cases. Spikes in energy measurements that last long period of time as well as

high energy consumption of a device without the user interacting with the device are good

indicators of energy bugs [67, 152].

Figure 8.2 shows the energy consumption trace of a Nexus 6, during the execution of a

test case for the code shown in Figure 8.1 that downloads five files, before (solid line) and

after (dashed line) fixing the mentioned energy bugs. Keeping the Wi-Fi connection open

during processing the files increases the average power consumption of the device (the area

under curve). Also, failing to release Wi-Fi lock keeps the device awake and the phone keeps

consuming energy, even after a routine has completed. By splitting the single loop into two

loops to fix the loop bug (one for downloading all the files first and one for processing them

later) and releasing the Wi-Fi wakelock after downloading files to fix the wakelock bug, the

average power consumption of test case is decreased and the power state of the device before

and after execution of test case remains the same.

Testing non-functional properties, particularly energy consumption, which is recently gaining

substantial interests due to the increasing use of battery-constraint devices, is relatively

under-explored compared to those aimed at functional correctness [112]. A test suite of a
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Figure 8.2: Energy consumption trace of a test case for the code snippet in Figure 8.1, before
(solid line) and after (dashed line) fixing energy bugs.

mobile app is adequate for energy testing, if it can effectively find all energy bugs in the

code. That is, if test cases of a test suite cover all the energy-greedy segments of the program

that contribute to total energy cost of the app under different use-cases, the test suite is

adequate for energy testing. Detecting all the energy bugs in the program is not decidable.

For example, for a small number of data files in Figure 8.1 (X), the impact of tail energy

might be negligible. However, for a large number of such files, the loop bug occurs, which

can rapidly drains the battery of the device. As such, deciding what values for X may result

in energy bug is complicated. Testers, thus, usually settle on coverage metrics as adequacy

criteria.

The commonly used coverage metric in test-suite minimization problems, statement coverage,

is unable to discriminate among statements according to their energy consumption. Studies

have shown that energy consumption varies significantly across bytecodes [108], lines of

code [140], and system APIs [147]. That is, test cases with the same statement coverage may

cover different lines and consume different amount of energy during execution. For example,

the test case a, even with a lower statement coverage than the test case b, may demonstrate

higher energy cost, if it executes the code that utilizes energy-greedy API calls. As a result,

statement coverage is not a suitable metric for energy-aware test-suite minimization.

For an energy-aware test adequacy criterion, the energy consumption needs to be measured,

estimated, or modeled for further identification of energy inefficiencies of the code [67].
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Prior research proposed fine-grained approaches to either measure or estimate the energy

consumption of mobile apps [140, 179]. The precise energy measurement can be used for

optimizing energy usage of an application under test. However, an intuitive metric for

assessing the quality of test case to identify energy-greedy segments is still missing. Moreover,

most techniques require power measurement hardware to measure energy cos, which comes

with technical requirements and challenges.

To overcome the limitations of structural coverage metrics, I propose a novel energy-aware

coverage metric, collectively referred as eCoverage, that indicates the degree to which energy-

greedy segments of a program are covered by a test. eCoverage discriminates among different

energy-greedy segments based on their energy cost and whether they re-execute during the

execution of test case.

8.3 Energy-Aware test-suite Minimization

To clarify our proposed idea for energy-aware test-suite minimization, I formally define the

problem as follows:

Given: (1) A program P consisting of p segments, S = {s1, s2, . . . , sp}, with m ≤ p energy-

greedy segments ∈ S ′, to be tested for assessing energy properties of P ; (2) A test suite

T = {t1, t2, . . . , tn} with each test case represented as a coverage vector ~Vti = 〈vi,1, . . . , vi,m〉,

such that vi,j is 1 if ti covers energy-greedy segment sj, and 0 if ti does not cover energy-

greedy segment sj; and (3) a non-negative function w(ti) that represents the significance of

a test case in identifying energy bugs.

Problem: Find the smallest test suite T ′ ⊆ T , such that T ′ covers all energy-greedy seg-

ments covered by T , and for every other T ′′ that also covers all energy-greedy segments

|T ′| ≤ |T ′′| and
∑

ti∈T ′ w(ti) ≥
∑

ti∈T ′′ w(ti).
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Program segments are individual units of a program, which can be defined fine-grained (e.g.,

statements) or coarse-grained (e.g., methods). The energy consumption of a segment depends

mainly on the energy-greedy APIs invoked by that segment (e.g., network APIs consume

more energy than log APIs [147]) and on recurring constructs (e.g., loops or recurring call-

backs [139]). Energy-greedy segments highly contribute to the total energy consumption of

the program. Therefore, a test case that covers energy-greedy segments during its execution

has a higher significance for energy testing of app, compared to the one covering less greedy

segments.

To reduce the risk of discarding significant test cases during test-suite minimization, I calcu-

late the eCoverage of each test case. eCoverage takes a value between 0 and 1, and indicates

the degree to which energy-greedy segments of the program are covered by a test case (more

details in Section 8.5). The function w(ti) = eCoverageti in problem definition allows us to

characterize the significance of a test case ti so that I select tests with the highest eCoverage.

There might be several test cases in a test suite that cover the same energy-greedy segments.

Thereby, the original test suite T can be partitioned into subsets of T1, T2, . . . , Tm ⊆ T , such

that any test case ti belonging to Tj covers energy-greedy segment sj ∈ S ′. A representative

set of test cases that covers all of the sjs in S ′ must contain at least one test case from each

Tj; such a set is called the hitting set of T1, T2, . . . , Tm. The minimal hitting set problem is

shown to be NP-hard, using a reduction to the set covering problem [187]. Our formulation

of test-suite minimization is, therefore, an instance of weighted set cover. The original test

suite might not be intended for energy testing, rather developed for functional or structural

testing. As a result, the test cases in T might not cover all the energy-greedy segments, but

a subset of them.
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8.4 Approach Overview

Figure 8.3 depicts our framework for energy-aware test-suite minimization, consisting of two

major components: (1) Energy-Aware Coverage Calculator (ECC) which is responsible to

calculate the eCoverage for each test case, ti, in the original test suite of the given app, using

program analysis; and (2) Energy-Aware Test-Suite Minimization (ETM) component that

identifies the minimum subset of test cases from T , suitable for energy testing of the given

app.

Our ECC component statically analyzes an app to obtain its call graph and annotates each

node of the call graph with energy cost estimates. Using the execution traces of test cases

in the available test suite, the eCoverage of each test case will be calculated by mapping

execution path information to the annotated call graph (Section 8.5).

After computing eCoverage of tests in the test suite, ETM component produces a minimized

test suite suitable for energy testing, which aids a developer by reducing the effort needed to

inspect the test results, especially for identifying energy bugs in the code. ETM component

performs the energy-aware test-suite minimization in two complementary ways, optimal yet

computationally expensive integer programming (IP) technique, and efficient near-optimal

greedy approach (Section 8.6).

Using energy-aware test-suite minimization, the search space for assessing energy properties

of the app and identifying plausible energy bugs is reduced to handful of test cases, helping

the developer in fixing such issues with less effort and time. Our framework also delivers

execution traces of test cases and energy estimate of executed energy-greedy segments, help-

ing developers to understand which sequences of invoking energy-greedy segments are more

energy consuming and to pinpoint root cause of energy bugs.
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Figure 8.3: Energy-aware test-suite minimization framework

In the following two sections, I describe the details of the Energy-Aware Coverage Calculator

and Energy-Aware Test-Suite Minimization components.

8.5 Energy-aware Coverage calculator

For the purpose of this work, I propose eCoverage that has the following beneficial properties:

(1) it is computationally efficient to measure; (2) it can be defined at different levels of

granularity (e.g., statement, API, or method levels); and (3) measuring it does not actively

require the use of special monitoring hardware. I developed a hybrid static and dynamic

analysis approach to calculate the eCoverage.

In this research, I consider program segments (cf. Problem Definition in Section 8.3) to be

methods of a program or system APIs and thereby, the definition of eCoverage is at the

granularity of methods. For illustrating the concepts in this section, I use a hypothetical

app whose call graph is shown in Figure 8.4. Each node of the call graph is a segment,

and the colored nodes denote energy-greedy segments that highly contribute to the energy

consumption of the app.
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Figure 8.4: Call graph of a hypothetical Android app.

Figure 8.5: Overview of the ECC component.

ECC component that is responsible to calculate the eCoverage for each test case consists

of two sub-components shown in Figure 8.5: (1) Static Model Extractor, which statically

analyzes the app to obtain its call graph; and (2) Dynamic Integrator, which collects the

execution trace of the input test case, maps it to the call graph, and annotates call graph

segments with the energy estimates in order to compute eCoverage for the given test case.

To calculate eCoverage, Static Model Extractor first extracts the app’s call graph and then

identifies energy-greedy segments—methods with at least one system API in their imple-

mentation. For a test case ti, each energy-greedy segment sj (i.e., a method in an Android

app) is then annotated by Dynamic Integrator with a segment score, scj,i, which represents

the estimated amount of energy consumption by the given segment during execution of test
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case ti. The segment score is calculated as scj,i = rj × fj,i ×
Ij,i∑
k=1

ek, where rj denotes the

structural importance of energy-greedy segment sj in the call graph, fj,i represents the fre-

quency at which energy-greedy segment sj is invoked during execution of test case ti, Ij,i

is the number of system APIs in the implementation of energy-greedy segment sj invoked

during execution of test ti, and ek is a pre-measured average energy cost for an API k.

Methods reachable along more paths in a call graph are more likely to contribute to the

energy cost of the app. Thus, the Static Model Extractor component heuristically calculates

rj as the multiplication of its incoming and outgoing edges. If the segment is a sink (with no

outgoing edge) or a source (with no incoming edge), I consider only the number of incoming

or outgoing edges, respectively. For example, there are two incoming and three outgoing

edges for the segment s10 in the call graph of Figure 8.4; thus r10 = 6.

To assess the values of fj,i and Ij,i, the Dynamic Integrator component records the invocation

of methods and system APIs in a log file and counts the number of invocations for segment

sj and APIs inside it during execution of ti. For ek, our approach uses the results from [147]

to supply the average energy cost of each API.

After calculating segment scores and annotating the call graph, the Dynamic Integrator

component computes eCoverage of test case ti as follows:

eCoverageti =

m∑
j=1

scj,i × vi,j
m∑
j=1

maxa{scj,1, . . . , scj,a}
(8.1)

where m is the number of energy-greedy segments and vi,j is a binary variable denoting

whether test case ti covers energy-greedy segment sj (cf. Problem Definition). eCoverage
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takes a value between 0 and 1. A test with a higher eCoverage is more likely to reveal the

presence of an energy bug with a substantial impact on the energy consumption of the app.

Similar to other coverage criteria, the denominator computes the ideal coverage that can

be achieved and the numerator indicates the coverage achieved by a given test case. In our

formulation of eCoverage, the numerator estimates the energy consumed by a given test

and the denominator estimates the highest energy consumed in each energy-greedy segment,

considering all the test cases in the test suite. That is, the denominator is the maximum

segment score estimated by test cases that cover the energy-greedy segment sj, for all a test

cases that cover it.

8.6 energy-aware test-suite minimization

In this section, I describe two approaches to perform energy-aware test-suite minimization

for Android apps. The first one leverages integer programming, IP, to model the problem,

and the second one is a greedy algorithm. Our proposed approaches aim to determine the

minimum set of tests appropriate for assessing energy properties of Android apps and find

possible energy bugs in the program.

8.6.1 Integer Non-linear Programming

The energy-aware test-suite minimization problem can be represented as an IP model con-

sisting of (1) decision variables, (2) an objective function, and (3) a constraint system.
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8.6.1.1 Decision Variables

I let the binary variable ti represent the decision of whether a test case appears in the

minimized test-suite or not. That is, a value of 1 for ti indicates that the minimized test-

suite includes the corresponding test, while a value of 0 indicates otherwise. Using boolean

decision variables, the minimized test suite can be represented as an array of binary values

〈t1, t2, ..., tn〉, where n is the number of test cases in the original test suite.

8.6.1.2 Objective Function

The goal of energy-aware test-suite minimization is to reduce the size of test suite, while

maintaining the ability of the original test suite to assess energy properties of the app and

reveal energy bugs. To achieve this goal, test cases in the minimized test suite should cover

all the energy-greedy segments of the program that are covered by the original test suite. In

addition, tests should be distinguished according to their ability in identifying energy bugs

to avoid discarding important test cases during minimization. To find such a subset of the

original test suite, I formulate the objective function as follows:

min
n∑

i=1

(1− eCoverageti)× ti (8.2)

where n is the number of test cases in the original test suite. Definition of objective with a

minimum function ensures that the solution is the smallest subset of original test suite. Since

eCoverageti value for a test takes a value between 0 and 1, a test with high eCoverage has low

value for 1− eCoverageti . Thereby, weighing test cases by the coefficient 1− eCoverageti

ensures selection of significant test cases such that
∑

ti∈T ′ eCoverageti ≥
∑

ti∈T ′′ eCoverageti

for any other subset T ′′ ⊆ T with |T ′| ≤ |T ′′| (cf. problem definition in Section 8.3). By
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replacing the formula of eCoverageti from the Equation 8.1, the objective function can be

re-written as follows:

min
n∑

i=1

(1−

m∑
j=1

scj,i × vi,j
m∑
j=1

maxa{scj,1, . . . , scj,a}
)× ti (8.3)

To achieve the optimal solution, the model should select a test case that covers the largest

number of energy-greedy segments not covered by the previously selected tests. Unlike code

coverage metrics, where a test case contributes to the coverage by covering a statement or

a branch only once, eCoverage values change depending on the number of times an energy-

greedy segment is covered by tests. The complexity of criterion entails that the coverage

vector of each test case, and consequently its corresponding eCoverage, in the original test

suite should be updated upon each selection. That is, a test case that covers energy-greedy

segments already covered by previously selected test cases is not significant anymore (i.e.,

not likely to reveal new energy bugs), therefore its eCoverage should be decreased.

To that end, I weigh each energy-greedy segment by
∏

kj
(1− tkj), as shown in Formula 8.4,

where kj denotes the number of test cases already selected during minimization, which cover

energy-greedy segment sj. If an energy-greedy segment is covered by at least one of the

selected test cases, this coefficient evaluates to zero. As a result, test case that covers other

uncovered energy-greedy segments has a higher chance for selection.

min
n∑

i=1

(1−

m∑
j=1

scj,i × vi,j ×
∏

kj
(1− tkj)

m∑
j=1

maxa{scj,1, . . . , scj,a}
)× ti (8.4)
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Note that due to the multiplication of decision variables in Formula 8.4, IP formulation of

energy-aware test-suite minimization is non-linear.

8.6.1.3 Constraints

To ensure that the minimized test suite covers all the energy-greedy segments that are covered

by the original test suite, I need to certify that each energy-greedy segment is covered by at

least one of the test cases in the minimized test suite. Such constraints can be encoded in

the IP model as follows:

n∑
i=1

vi,j × ti ≥ 1 (1 ≤ j ≤ m) (8.5)

where m denotes the number of energy-greedy segments and n is the available test cases in

the original test suite. The jth constraint in Formula 8.5, thus, ensures that at least one of

the test cases covering the energy-greedy segment sj will be in the minimized test suite. The

model does not require constraints on other segments, since the right hand of the constraint

is 0, which makes the constraint trivial.

8.6.2 Integer Linear Programming

There is no known algorithm for solving an integer non-linear programming (INLP) prob-

lem optimally other than trying every possible selection. Furthermore, for problems with

non-convex functions, IP solvers are not guaranteed to find a solution [197]. For all of these

reasons, I needed to investigate other options to solve the energy-aware test-suite minimiza-

tion problem.
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I have leveraged a technique for transforming the above non-linear problem into a linear one

by adding new auxiliary variables, v′i,j, defined as vi,j ×
∏

kj
(1− tkj)× ti. As a result, v′i,j

takes a value of 1, if the test case ti covers the energy-greedy segment sj that is not covered

by the previously selected test cases, and 0 otherwise. The value of 1 for v′i,j stipulates

that the test case ti covers the energy-greedy segment sj, which is not covered by previously

selected test cases. If a test case does not cover sj, or if it is covered by the selected test

cases, v′i,j takes the value 0. Using auxiliary variables v′i,j, the objective function of our IP

model from Formula 8.4 can be rewritten as follows:

min
n∑

i=1

(ti −

m∑
j=1

scj,i × v′i,j
m∑
j=1

maxa{scj,1, . . . , scj,a}
) (8.6)

In addition to the adjustment of objective function, I need to introduce additional constraints

to control the auxiliary variables. To ensure that v′i,j equals to 1 for energy-greedy segments

not previously covered by selected test cases and equals to 0 otherwise, I add the following

set of constraints to the model:

v′i,j ≤ ti (∀ sj covered by ti) (8.7)

n∑
i=1

vi,j × v′i,j = 1 (1 ≤ j ≤ m) (8.8)
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According to Formula 8.7, if a test case ti is not selected, then v′i,j takes a value of 0. On

the other hand, if the test case ti is selected, the variable v′i,j can take a value of either 0 (if

energy-greedy segment sj is covered by the previously selected test cases) or 1 (if sj is not

covered by the previously selected test cases). The constraint in the Equation 8.8 entails

that if sj is covered by one of the selected test cases, the value of v′i,j for any test case ti

which is not selected yet being set to 0.

The use of auxiliary variables allows us to remove the multiplication of decision variables from

the objective function. However, this transformation significantly increases the complexity

of the problem, which in turn makes it computationally expensive. The high complexity of

ILP approach for large-size problems motivated us to devise additional algorithms.

8.6.3 Greedy algorithm

Algorithm 8.1 outlines the heuristic, energy-aware test-suite minimization process. It takes

the original test suite generated for an Android app under test as input, and provides a

minimized set of test cases as output. The algorithm first iterates over tests in the test suite

and computes coverage vector (line 5) of tests as well as the coverage vector of original test

suite (line 6). It then selects the test case with highest eCoverage that covers energy-greedy

segments not yet covered by previously selected tests (lines 8–11). Afterwards, the algorithm

updates the coverage vector and eCoverage value of the remaining tests in the original test

suite (lines 12–13). This greedy process then repeats until selected test cases cover all the

energy-greedy segments that are initially covered by the original test suite.

To make the idea concrete, consider Table 8.1 that illustrates the algorithm through five

test cases t1, t2, t3, t4, and t5 for our running hypothetical app, whose call graph is shown

in Figure 6.1. Each inner table represents the coverage vector for the test cases—sorted

according to their eCoverage for a better comprehension—and the coverage vector of the
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Algorithm 8.1: Greedy Algorithm for Energy-Aware Test-Suite Minimization
Input: T Original Test Suite
Output: T ′ Minimized Test Suite with the same eCoverage

1 T ′ ← {};
2 ~VT ← ~0;

3 ~VT ′ ← ~0;
4 foreach ti ∈ T do

5 ~Vti ← getCoverageInfo(ti);

6 ~VT ← ~VT ∨ ~Vti ;

7 while ~VT ′ 6= ~VT do
8 findMax(tis ∈ {T − T ′}) based on ti.eCoverage;
9 ti ← removeMax(T );

10 T ′ ← T ′ ∪ {ti};
11 ~VT ′ ← ~VT ′ ∨ ~Vti ;
12 foreach ti ∈ T − T ′ do
13 reCalculate( ~Vti , ti.eCoverage);

minimized test suite ( ~VT ′) at one iteration of the algorithm. The first iteration selects t5

(covering segments s1, s8, s10, and s11) as the test with the highest eCoverage.

Algorithm 8.1 then updates the coverage vector of the remaining test cases. Table 8.1 shows

the updated coverage information for the test suite in iteration 2 and after the selection

of t5. Since t5 is already selected, the segments covered by t5 are no longer considered in

calculating eCoverage of remaining tests. Only the energy-greedy segments that have not

been covered by t5 (s5, s6, s9, and s12) are included. Test case t1 is then selected at the

end of iteration 2. This process repeats until selected test cases in the minimized test suite

cover all the energy-greedy segments covered by the original test suite. In this example, the

greedy approach selects t5, t1, t2, and t3 as the minimized test suite after four iterations.

The example illustrates the point that the greedy algorithm can result in sub-optimal solu-

tions. While the ILP-based approach solves this problem with three test cases, t1, t3, and t5,

to cover all the energy-greedy segments, the greedy strategy selects four test cases. This is

mainly due to the fact that the greedy algorithm starts from the test case with the greatest

eCoverage, which may lead to a local optimum solution.
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8.7 Experimental Evaluation

In this section, I present the experimental evaluation of our proposed framework for energy-

aware test-suite minimization. Our evaluation addresses the following questions:

RQ1. Effectiveness: How effective are our proposed techniques in reducing the size of original

test suite? Is the minimized test suite as effective as the original test suite in revealing

energy bugs?

RQ2. Correlations: What is the relationship between eCoverage and statement coverage of

a test case? What is the relationship between eCoverage and energy consumption of a

test case?

RQ3. Performance: What is the performance of our prototype tool implemented atop a static

analysis framework and an IP solver? How scalable are the proposed IP and greedy

algorithms?

8.7.1 Experiment Setup

To evaluate our proposed techniques in practice, I collected real world apps from F-Droid,

a software repository that contains open source Android apps. I randomly selected 15 apps

from different categories of F-Droid repository for evaluation.

I used test cases automatically generated using Android Monkey [45]. To that end, I ran

Monkey for two hours for all apps, with configuration to generate test cases exercising 500

events (i.e., touch, motion, trackball, and system key events). I considered the test cases

generated during this time as the original test suite of apps. Prior to applying optimization

techniques, our framework requires obtaining eCoverage information about the test cases of
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subject apps. In addition to eCoverage, I collected statement coverage information using

EMMA.

To statically analyze the apps for calculating eCoverage, Static Model Extractor (Figure 8.5)

employs the Soot framework [60, 192] that provides the libraries for Android static program

analysis. To collect the execution traces of test cases, I implemented a module using the

Xposed framework [8] that records the invocation of methods and system APIs in a log file,

which is later processed to extract information about the executed paths in each app.

In calculating eCoverage, I rely on the average energy consumption of system APIs, ek,

measured by another group [147]. These ek values are obtained by manually utilizing and

running 50 popular apps on Google Play several times, and is the average of energy con-

sumption of each API in different scenarios. The energy consumption of APIs might change

depending on the context and the device the apps are running on. Considering more devices

and context only require additional pre-measured values as an input to our ECC component,

but does not impose any change to the approach.

I used lp-solve [6], an open source mixed integer linear programming solver, to solve the IP

models, and ran the experiments on a computer with 2.2 GHz Intel Core i7 processor and

16 GB DDR3 RAM. The input files for the solver are automatically generated using the

coverage information provided by the ECC component. Our research artifacts are available

for download [31].

8.7.2 RQ1: Effectiveness

To evaluate the effectiveness of our minimization techniques, I compared the percentage of

reduction in size of original test suite for the subject apps. Additionally, I assessed the

impact of reduction on the effectiveness of the original test suite in revealing energy bugs.
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To assess the effectiveness of test suite, I developed a novel form of mutation analysis for

energy testing according to known energy bugs in Android apps, as outlined in Section 8.2.

Table 8.2 shows examples of our energy-aware mutation operators. For wakelock mutants,

I created the mutants by injecting the mutation operators in proper parts of the code. For

example, I created Wi-Fi wakelock mutants by adding the acquire API before the code that

is responsible to download object(s). If the app already used Wi-Fi wakelock, I commented

out the release API on onPause and onDestroy methods. For expensive background service

mutants, I changed the arguments of the mentioned methods in Table 8.2 to a smaller values

so that the periodic task executed at a higher rate during execution of test cases. For

expensive loop mutants, I increased the number of iterations whenever possible, thereby the

loop in mutant version executed more times than the original version of app.

To determine whether an energy mutant is killed, I measured the energy consumption of

the tests using Trepn [71]. I experienced that the energy consumption level of the device

on the post-run phase—after the execution of test is completed—is higher than the pre-run

phase—before the execution of test—in most of the mutants (recall Figure 8.2). Since this

pattern was not seen among all the wakelock mutants, I monitored the active system calls

to kernel related to the wakelocks, before and after the execution of test cases. As a result,

a test case kills a wakelock mutant if the number of wakelocks after the execution of test

case is more than the number of wakelocks before it. For expensive background service and

expensive loop mutants, our measurements demonstrated that a test case kills the mutant,

if the average energy consumption of test case during the execution of mutant is higher than

that of the original version.

Table 8.3 shows the number of tests in the original test suite of subject apps (column 2) and

the percentage of mutants killed by the tests in the original test suite (column 5), as well

as percentage of reduction by each proposed minimization approach (column 6 and 8 for IP

and greedy, respectively) and the percentage of mutants killed by the tests in the minimized
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test suites (column 7 and 9 for IP and greedy, respectively). These results demonstrate that

I can on average reduce the size of a given test suite by 84% using IP approach and 81%

using greedy approach, with a negligible penalty of loosing effectiveness of the test suite by

3% and 4% using IP and greedy, respectively.

As expected, IP achieves a greater test reduction than greedy in all cases, corroborating

that the solutions produced by IP are in fact optimal. For the majority of subject apps,

both IP and greedy kill the same number of mutants. In Apollo app, however, the greedy

algorithm achieves a higher ratio of killed mutants compared to the IP approach. This can

be attributed to two factors: (1) The greedy approach does not reduce the number of tests

as much as IP, thus, the higher number of killed mutants can be due to the fact that more

tests are executed in the case of greedy. (2) eCoverage is only an estimate for evaluating

the quality of tests for revealing energy properties of the software. Any discrepancy between

eCoverage and the actual energy cost of executing a test can prevent the IP and greedy

algorithms from picking the best tests, i.e., tests that kill the mutants.

8.7.3 RQ2: Correlations

To demonstrate the need for a new coverage metric for energy testing, I examined the

correlation between eCoverage and statement coverage, as well as its correlation with energy

consumption. Statement coverage is commonly used as an adequacy metric in test-suite

minimization. As a result, I compared the correlation of eCoverage with statement coverage

to assess the extent in which statement coverage can be substituted for eCoverage.

To that end, I calculated the Pearson correlation coefficient for two series of

〈eCoverage, statementcoverage〉 and 〈eCoverage, energyconsumption〉. I estimated the en-

ergy cost of each test case similar to [127], by aggregating the average energy cost of all system

APIs invoked during execution of test case. Pearson correlation coefficient, a.k.a. Pearson’s

177



r correlation, measures the linear relationship between two variables and takes a value be-

tween -1 and +1 inclusive. A value of 1 indicates positive correlation, 0 indicates no relation,

and -1 indicates negative correlation. More precisely [184], absolute value of r between 0 to

0.3 stipulates no or negligible relationship, between 0.3 to 0.5 indicates weak relationship,

between 0.5 to 0.7 indicates moderate relationship, and higher than that indicates strong

relationship.

The results on Pearson correlation coefficient—denoted by r—of 2,255 test cases for subject

apps are shown in Table 8.4. r values in Table 8.4 indicate that there is almost a negligible

or weak correlation between eCoverage and statement coverage of subject apps. On the

other hand, eCoverage holds a strong correlation with the actual energy cost of a test case,

confirming eCoverage to be a proper metric for energy testing. I noticed that for two of

the subject apps, Jamendo and Blockinger, the correlation between statement coverage and

eCoverage is strong. Our manual investigation shows that the majority of statements in

the implementation of these two apps are system APIs. As a result, the overlap between

covered statements and covered APIs are high, thereby eCoverage is correlated to statement

coverage.

8.7.4 RQ3: Performance

In this section, I evaluate the performance of different elements of our approach (recall

Figure 6.3).

8.7.4.1 Energy-aware Coverage Calculator

Energy-aware coverage calculator, ECC, consists of two sub-components, Static Model Ex-

tractor and Dynamic Integrator. To calculate eCoverage of tests for an app, I need to extract
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Table 8.4: Pearson Correlation Coefficient (r) of <eCoverage, statement coverage> and
<eCoverage, energy cost> series for subject apps.

Apps rstatement coverage renergy cost

Apollo 0.21 0.94
Open Camera 0.2 0.57
Jamendo 0.89 0.93
Lightning Browser -0.11 0.99
L9Droid 0.5 0.92
A2DP Volume 0.43 0.82
Blockinger 0.86 0.94
App Tracker 0.35 0.85
Sensorium 0.37 0.72
Androidomatic 0.52 0.85
AndroFish 0.34 0.95
SandwichRoulette 0.59 0.81
anDOF 0.41 0.94
AndroidRun 0.17 0.69
Acrylic Paint 0.1 0.75

the app’s call graph, and then map the execution paths of each test case to the call graph.

Figure 8.6 presents the time taken by the Static Model Extractor to extract call graphs of

the subject apps. The scatter plot shows both the analysis time and the app size in kilo

number of instructions. According to the results, our approach analyzes 80% of subject apps

in less than one minute to extract their models, with the overall average of 38 seconds per

app.

The performance analyses on test suite of subject apps show that the time taken by the

Dynamic Integrator component to calculate eCoverage of tests in the full test suite is negli-

gible, 2 seconds on average for all subject apps. Our approach leverages Xposed for run-time

instrumentation of the root Android process, rather than instrumentation of an app’s imple-

mentation. The execution time overhead incurred using Xposed to collect execution paths

of test cases is 7.36%±1.22% on average with 95% confidence interval.
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Figure 8.6: Performance of Static Model Extractor

Figure 8.7: Sensitivity of execution time of integer programming approach to the size of test
suite

8.7.4.2 Energy-Aware Test-Suite Minimization

To compare the performance of techniques for energy-aware test-suite minimization proposed

in this chapter, I measured the execution time of each approach. Our evaluation results

indicate that the greedy approach takes less than a second, 14.2 ± 10.3 milliseconds on

average with 95% confidence interval, to solve the minimization problem. The execution

of the IP approach on the other hand, takes between 1 second to 7 hours, to minimize test

suites of different subject apps. I observed that the execution time of the IP approach heavily

depends on the characteristics of the problem, e.g., the number of constraints (bounded by
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the size of test suite × number of energy-greedy segments) and decision variables (the size

of test suite).

Figure 8.7 shows the sensitivity of IP approach for the five subject apps whose execution

time takes more than an hour. The IP formulation of these apps for their original test suite

consists of over 10,000 constraints. To generate the graph, I gradually increased the set of

tests included from the full test suite of these subject apps. I repeated the experiments for

30 times to ensure the confidence interval of 95% on the average execution time values. It

can be seen that execution time of the IP approach for each app increases logarithmically,

as the size of test suite—number of decision variables—grows linearly.

These results confirm that the greedy algorithm demonstrates better performance than IP,

and is more scalable to larger problems. However, the IP approach is optimal and results in

test suites with smaller size. As a result, test suites generated by the IP approach consume

less energy and save the developer’s time.

8.8 Discussion

As mobile apps continue to grow in size and complexity, the need for effective testing tech-

niques and tools that can aid developers with catching energy bugs grows. This chapter

presented a fully-automated, energy-aware test-suite minimization approach to derive the

minimum subset of available tests appropriate for energy testing of Android apps. The ap-

proach employs a novel energy-aware metric for assessing the ability of test cases in revealing

energy bugs.

The proposed approach reduces the size of test suites in two ways: an integer programming

formulation that produces the optimal solution, but may take a long time to execute; and a

greedy algorithm that employs heuristics to find a near-optimal solution, but runs fast. The
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experimental results of evaluating the two algorithms on real-world apps corroborate their

ability to significantly reduce the size of test suites (on average 84% in the case of IP and

81% in the case of Greedy), while maintaining test suite quality to reveal the great majority

of energy bugs. A novel suite of energy-aware mutation operators that are derived from

known energy bugs were used to evaluate the effectiveness of the test suites.
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Chapter 9

Conclusion

We are increasingly reliant on battery-operated mobile devices in our daily lives. Software

applications running on such devices need to be free of energy defects, i.e., implementation

mistakes that result in unnecessary energy usage. This makes energy efficiency a first class

concern not only for the users, but also for developers. Thereby, it is critical to aid the de-

velopers with automated tools and technique to assess the energy behavior of their software

effectively and efficiently. Energy defects are complex and they manifest themselves under

peculiar conditions that depend not only on the source code of the apps, but also on the

framework, context of usage, and properties of the underlying hardware devices. The impact

of these factors can only be assessed by analyzing the the behavior of apps during execution

and through dynamic program analysis, i.e., testing. In this dissertation, I designed, imple-

mented, and evaluated several techniques to advance the state of energy testing for mobile

apps. More specifically, the proposed techniques help developers to automatically generate

energy test inputs and test oracles for mobile apps, assess the quality of the test suites with

respect to their ability to detect energy defects, and manage the size of their test suites by

considering energy as a program property of interest.
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In the remainder of this chapter I conclude my dissertation by enumerating the contributions

of my work and avenues for future work

9.1 Research Contributions

This dissertation makes the following contributions to the Software Engineering research

community:

• Theory:

1. Novel formulation of test-suite minimization problem through nonlinear integer

programming : I proposed a novel formulation for test-suite minimization problem

through non-linear integer programming in [126] to reduce the size of test-suites

by considering energy as a program property of interest, which was later ex-

tended to a multi-criteria test-suite minimization framework [144]. My proposed

technique considers the dependency among the minimization criteria to find the

optimal solution, which was ignored by prior technique, and hence they generated

approximate or sub-optimal solutions.

2. A novel and device-independent energy-aware coverage metric to asses quality of

tests : I proposed a novel test coverage criterion, which indicates the degree to

which energy-greedy parts of a program are covered by a test case, to guide an

energy-aware test-suite minimization approach. This coverage criteria is device-

independent and computes the coverage based on the average energy-greediness

of Android APIs.

3. An automated mutation testing oracle: While state-of-the-art mutation testing

technique mostly rely on human oracle to predict the output of tests on mutants,

I proposed a novel and scalable oracle for mutation testing that automatically
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do so. The proposed oracle rely on collected power traces during test execution

through a low overhead technique. It then decides whether a test kills a mutant

or not by comparing the shape of power traces. The high accuracy, precision,

and recall of the proposed oracle makes the usage of mutation testing framework

easier for developers.

4. Development of generic and device independent hardware models : I constructed

a set of finite state machines for the common hardware devices on mobile phones

through a semi-systematic approach. These hardware models demonstrate dif-

ferent states of each hardware device that can be changed at the software level,

i.e., Android framework or apps. Thereby, the models are high level and device

independent.

5. Design of novel genetic operators for search-based testing : Instead of designing

my search-based test generation technique using conventional genetic operators,

i.e., crossover and mutation operators, I designed new genetic operators by relying

on the intuition behind them. The new genetic operators helped my technique

find a better solution and converge to a solution faster, compared to conventional

crossover and mutation genetic operators.

6. Automated extraction of new classes of event dependencies through static anal-

yses : The order of events is important for exercising specific behaviors in apps

and failing to consider the proper order of events can produce invalid test se-

quences. I identified and implemented two new classes of events dependencies,

namely registration dependency and lifecycle dependency to be considered during

construction of call-graph of mobile apps.

7. A novel and interpretable Deep Learning technique for automated construction

of energy test oracles : I proposed a technique that employs Deep Learning to

learn the (mis)behaviors corresponding to the different types of energy defects.

It represents the state of app lifecycle and hardware elements in the form of a
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feature vector. Each instance of our training dataset is a sequence of feature

vectors sampled before, during, and after the execution of a test. The proposed

technique uses Attention mechanism to generate an interpretable model. While

utilization of Attention mechanism by itself improves the performance and accu-

racy of the energy oracle, my proposed technique takes advantage of Attention

layer’s product to identify a set of features that the model has focused on to

predict a label for a given test, which can be used to verify validity of the learned

model.

• Experiments:

1. Identification of previously unknown energy defects in open source Android apps :

My proposed technique were able to identify 15 previously unknown energy issues

in open source Android apps. I reported all of the issues to the developers of those

apps, where 11 of them were confirmed as a bug or enhancement, and 7 of them

were fixed through the patches I provided to the developers.

• Tool:

To help other researchers re-use and expand the proposed approaches and build more

advanced techniques on top of them, I made all research artifacts and tools publicly

available, via the following web addresses:

1. An energy-aware test suite minimization framework for Android :

https://seal.ics.uci.edu/projects/energy-test-min/index.html

2. An energy-aware mutation testing framework for Android :

https://seal.ics.uci.edu/projects/mu droid/index.html

3. An energy-aware test input generation framework for Android :

https://seal.ics.uci.edu/projects/cobweb/index.html

4. An energy-aware test oracle for Android :

https://seal.ics.uci.edu/projects/oracle/index.html
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• Dataset:

1. A comprehensive energy defect model for Android : I constructed an energy defect

model for Android that contains 28 types of energy defects. Energy defects in

this model are in fact energy anti-patterns, a commonly encountered development

practice (e.g., misuse of Android API) that results in unnecessary energy con-

sumption. To construct the defect model, I collected both best practices and bad

practices regarding battery life. For the former, I followed a systematic approach

to crawl the Android API reference and for the latter, I reviewed the source code

and code repositories of 130 Android apps over one year. This defect model is

publicly available as an Artifact of Tool 2.

2. A dataset of 15 confirmed and reproducible energy defects in real-world Android

apps : This dataset contains the apk files of 15 Android apps, whose energy defects

are confirmed by their developers. The dataset comes with additional data, such

as commit number, type of energy defect, and location of energy defect in the

code, to help other researcher use the dataset easily. This dataset is available

upon request.

3. A dataset of size 17K for Machine Learning and Deep Learning techniques

that aim to address energy testing and debugging : This labeled dataset con-

tains 17K datapoints, where each data point represents runtime information of

<mutant,test> pairs. The label of each datapoint could be Pass, FailBluetooth,

FailCPU , FailDisplay, FailLocation, FailNetwork, and FailSensor. This dataset can

be used for researchers who want to apply Machine Learning or Deep Learning

techniques to the domain of energy testing and is available upon request.
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9.2 Future Work

By leveraging the experience and knowledge in testing and analysis of mobile apps and

considering energy as a program property of interest, I am considering several directions for

the future work.

• Other Variations of Energy Test Oracles. Presence of an energy defect can

be determined by either (1) an anomaly in the power trace from the execution of a

test, or (2) matching an energy defect pattern. While my previous work addresses

the later, I am planning to work on the former case in future. Power traces are

temporal sequences of power measurements through execution of a test. Thereby,

I can use LSTM sequence classification to construct an oracle and find anomalous

patterns in power measurements. For the situations where a labeled dataset similar

to what is used in [7] is not possible, power trace-based oracles can be constructed

using clustering technique. To that end, I plan to use k-means unsupervised learning

techniques. K-means is a hierarchical clustering technique, which is based on the core

idea of objects being more related to nearby objects than to objects farther away. To

determine the similarity of power-traces to each other, I propose to use Dynamic Time

Warping (DTW) as a distance metric to account for inevitable distortions in power

measurements over time (Chapter 5.4).

• Energy Debugging Through Fault Localization. The aim of debugging is to

help the developers identify why and where the energy defects in the code occur. For

this purpose, I aim to construct a hybrid approach that leverages both static and

dynamic analyses that recommend the root causes of energy defects and locates them

in the code. The output of this technique would be a list of warnings that prioritizes

energy defects and inefficiencies in code according to their severity. The static analyzer

component of the debugging technique can leverage the defect patterns from my prior
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study presented in Chapter 5 to identify possible occurrence of energy defects in the

code. In fact, the static analyzer component can generate many false warnings due

to over-approximation, making the debugging task time-consuming. To overcome this

issue, I will use the test input generation and test oracle approaches presented in

Sections 7-8 to prioritize the warnings that are covered by a test and caused a test to

fail. To that end, the apps need to be instrumented during static analysis, so that I can

map each warning to a set of tests that execute the code responsible for that warning.

For tests that keep the hardware component active after the execution, corresponding

warnings will be marked to have a higher priority.

• Automatic Repair of Energy Defects. The ultimate goal of my research on en-

ergy testing and debugging is to automatically fix energy defects in the code. To that

end, I intend to devise a framework that leverages a combination of analysis, testing,

and debugging techniques I previously mentioned to pinpoint energy defects in mobile

software and repair them. My plan is to first develop an automatic repair technique

for Android, which I am more familiar with due to my background, and then extend

the analysis to be cross-platform. For the first task, I can identify repair information

from the anti-patterns I have previously collected (Section 2) to produce concrete re-

pair operations or repair templates. I can further use my energy-aware test generation

technique (Section 7) and test oracles (Section 8) to conduct test suite-based automatic

repair. For the second task, I plan to develop a framework that given the repairs that

have already worked in Android—source platform, it can fix energy defects in another

platform—target platform, e.g., iOS. The rationale behind this idea is that while the

implementation, i.e., syntax, of energy anti-patterns on different languages and plat-

forms are different, their semantics remains the same. To that end, I will leverage a

combination of natural language processing, to find APIs in target platform perform-

ing similar operations in the source platform, and cross-platform program analysis, to
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identify if the usage pattern of the similar APIs in the target platform matches the

energy anti-pattern in the source platform.

• Gamification of Energy Testing. Even with automated testing and debugging

tools, human involvement in these processes is inevitable. That is, developer’s intu-

ition and understanding of program context are still needed to improve the quality

of automatically generated tests. However, numerous studies have shown that writing

good software tests is a difficult task and the situation is exacerbated for non-functional

testing, e.g., energy testing. Gamification can be useful in this context, as it converts

the tedious or boring task of testing to entertaining gameplay. More importantly, gam-

ification makes it possible to crowdsource complex testing tasks through games with

a purpose and thereby, improve software testing practice. furthermore, gamification

of energy testing can be used to educate students about the concepts and techniques

for energy testing. I plan to investigate different gameplay for energy testing and de-

bugging. For example, one gameplay involves testers as players who are responsible

to uncover energy hotspots in the code—where the code consumes more energy—by

writing tests. The game rewards a player based on the severity of hotspots she catches

and game leader board ranks players based on their score. This gameplay requires an

IDE plugin to identify energy hotspots in the code. The energy anti-patterns I have

collected (Section 2) can serve as a starting point to identify energy hotspots in the

code. The score of each test can also be measured using the coverage metric I identified

(Section 5).

• Energy Efficiency in Other Platforms. Energy efficiency is not a problem specific

to the domain of mobile apps. It will always remain a concern wherever the resources

are limited, such as in IoT, data centers, drones, and even autonomous vehicles. Many

of my previous and future ideas can be extended to the mentioned platforms. The

rationale behind this claim is that the proposed techniques rely on either power trace,

which can be collected during execution of a test no matter on which platform, or
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monitoring the state of hardware and running software, which can be redesigned for

different platforms. While new platforms imply unique challenges, I believe that with a

suitable power-measurement tools/techniques for other platforms and proper modeling

of their corresponding environment, majority of my proposed techniques should work

for new platforms.
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