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BELIEF MAINTENANCE WITH UNCERTAINTY
A. Julian Craddock & Roger A. Browse

Department of Computing and Information Science
Departinent of Psychology
Queen’s University at Kingston
Ontario, Canada

ABSTRACT

A framework for representing and reasoning with uncertain information is described.
A network knowledge structure is used which makes the reasons for believing or not be-
lieving a proposition explicit. These reasons, or endorsements, are quantified by a measure
of belief and certainty. Heuristics are integrated with the knowledge structure to collect. and
evaluate the endorsements.

1. INTRODUCTION

The research reported in this paper pursues the problem of developing representational and
inference mechanisms which are capable of dealing with incomplete, inaccurate, and uncertain infor-
mation. The direction taken is based on the assumption that methods which deal effectively with un-
certainty must play an integral role in both models of human reasoning, and flexible computational
reasoning systems.

Most formal reasoning systems combine both the extent of belief and certainty of belief into a
single truth value, whether binary or multi-valued (McCarthy 1930: McDermott & Doyle 1930: Reiter
197¥a; Zadeh 1933). In many cases, this compression is justified, but consider the proposition Rick
LIKES MATH. The extent of belief in this proposition may be high whether it is quite certain (Rick has
taken, and enjoyed a wide range of math courses) or quite uncertain (Rick has only taken a single math
course).

Recently Cohen (1983) has formulated a model of reasoning which maintains that reasons for
believing or disbelieving propositions can be collected. providing a more comprehensive description
of belief. Qur approach is to employ a knowledge structure such that these reasons, or endorsements,
are made explicit. The endorsements for propositions can be quantified by a measure of belief and
certainty. In addition, a network of endorsements among propositions may be used to: (1) determine
how supportive a body of evidence for a particular hypothesis is and (2) represent evidential rela-
tionships such as conflicts between decisions (Craddock 1986).

The algorithms which compute the belief and certainty of a proposition may be formulated to
operate uniformly on all supporting knowledge, or the algorithms may be subject to heuristics which
emphasize the importance of selected portions of the supporting knowledge. In the development of
heuristic methods we have been guided by the approach taken by Kahneman and Tversky (1982a, b)
Their model indicates that humans employ a set of basic heuristics which aid in making decisions in
conditions of uncertainty. These heuristics enable humans to constrain problem domains such that the
uncertainty becomes manageable but still useful. In addition humans can also employ heuristics to
determine complex evidential relationships between different sources of evidence.

607



CRADDOCK, BROWSE

2. BELIEF AND CERTAINTY

The development of our reasoning system requires the definition of a network containing nodes
which are propositions with associated belief and certainties. Interconnections in the network repre-
sent the support that one proposition offers another. First, let P be a set of cognitive units
P={n, ...n,}. Each of these cognitive units may represent a proposition such as 1 LIKE MATH or rela-
tionships among objects or concepts. Each n, has associated with it a belief strength b,, which is a
measure of the extent to which the cognitive unit is believable. The believability of », is a measure of
the strength of the supporting evidence for », not a measure of its incidence of occurrence or its
possibility of occurrence. The belief strength b, can be defined as follows: A cognitive unit n, is
believable if there is an endorsement for », or if the endorsements supporting #, are stronger than those
against it. As —1 < b, <1, we may view the cognitive units as statements in fuzzy propositional logic in
which a belief of -1 indicates n, is false and a belief of +1 indicates #, is true.

In addition, each n, has associated with it a certainty, ¢, of the assignment of the value b,, where
0 < ¢, < 1. The certainty of a belief value is defined as a measure of the reliability or trustworthiness
of the evidence which was used to calculate a particular belief (Hamburger, 1985). Thus each cognitive
unit represents two distinct aspects of the Rational R, = (b,, ¢,) of n,.

Any cognitive unit may endorse another. For example, a cognitive unit representing I LIKE COM.
PUTING may be endorsed by I LIKE ALGEBRA, 1 LIKE PHYsICs, and the negative endorsement 1 HAVE TROUBLE
WITH TECHNICAL MaANUALS. Fach endorsement has associated with it a numeric value corresponding to
the extent of the support between the units. If #, endorses 7, then the support node s, is the support for
the endorsement where -1 < 5, <1.If -1 <5, <0 then the endorsemem n, for n, is said to be inhibitory
and if 0 <5, <1 then itis s;ud to be excnatory A diagrammatic version is suppl:ed in figure 1. The
support nodes for the endorsement, s, may be endorsed by other cognitive units. For example: 1 LIKE
PSYCHOLOGY may endorse I LIKE couprrmc. but the support for the endorsement may be contingent on
COMPUTATION MAY MODEL COGNITION. (see figure 2). If the belief in COMPUTATION MAY MODEL COGNITION is
false then the support for the endorsement will decrease.

If we consider P = {n; ... n,,} as the set of propositional nodes of the network, then we can define
§ = {3,.] n,n €P. s, =0} as a subset of support nodes such that n, endorses n, with support s,, and
T = {r; | 5, € S n, € P} as the other subset of support nodes such that #, endorses 5, with support ls,
We can then define the network N= <P, §> where S=S U T is a finit set of suppon nodes repre-
senting the arcs and P is a finit set of propositions.

3. COMPUTING BELIEF AND CERTAINTY VALUES

We wish to develop ways of computing the values of Rational R, for a proposition », on the basis
of the endorsements available for that node. The first important observation is that the strength of
endorsement between two nodes n, and #, is not only dependent on s,.. This strength must be computed
with consideration of b,. We can compute this endorsement strength as ¢, = bs,. The second obser-
vation is that the belief strength of a node may be computed from the beliefs and certainties of its
endorsements. Nodes which do not have endorsements, and in fact any node in the system, can be
provided with an Inruition represented as [, = (b’, ¢',). This structure appears much the same as the
Rational structure except that its values are never computed, but they remain available to take part in
the computation of other beliefs. Intuitive values correspond to the usual direct assignment of belief

and certainty to a proposition from which other beliefs and certainties are to be determined.
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Su
n » n

R ={b.¢) R =(b,.c)

Figure 1. : Nodes of a network representing cognitive units with belief, certainty, and
endorsement structure.

The computation of a belief value for a node is largely dependent on the manner in which its
endorsements interact. For example, the final belief in a node is a function of the summary of the
evidence and arguments. In such instances, belief depends on: (1) measuring the varying contributions
of the individual endorsements and (2) measuring the effects of interaction among the different
endorsements. This interaction among a set of endorsements {n, ... n,,} for n, depends on the relative
importance of each endorsement defined as

.S'” i
= m [ ]
1
L Ishl
k=1
and the relative certainty defined as
C
re, = '_‘. (2]
c

where ¢’ is max {c, ... c,,}. In this manner we can define a measure of belief using a formula such as

m
bf = Erck X Py X by, [3]
k=1

The endorsements with the greatest relative importance and greatest relative certainty have the most
impact on the final belief. The interaction of endorsements is analogous to a tug-of-war where the
different endorsements tug and pull against one another until an equilibrium is reached.

Since the support of an endorsement can be endorsed we can also deal with situations in which
only one of several endorsements is adequate to allow a cognitive unit to be believed. For example, the
statement I CAN TAKE A GRADUATE COURSE IN COMPUTING is endorsed by 1 AM A COMPUTING GRADUATE, OF 1 AM AN
ELECTRICAL ENGINEERING GRADUATE, OF I AM A COMPUTING UNDERGRADUATE WITH GooD MARKS The three
endorsements are mutually exclusive; only one of them need be true. In this example a cognitive unit
n, endorsed by {n, ... n,} will be given an endorsement of b's, where b" = max {b, ... b, }. The node
n, will inhibit all the other endorsements by giving an inhibitory endorsement to their respective sup-
ports for the endorsement. A more complete description is available in Craddock (1986).

The certainty of a belief is calculated as a function of the agreement of the individual endorsement
strengths with the final belief value calculated from them. Thus, belief must be calculated before cer-
tainty. The importance of the agreement is once again measured as a function of the relative support
of the individual endorsements and their relative certainties. As these values increase so does the un-
certainty associated with disagreement. Where {n, ... n,,} are the endorsing nodes for n, this effect can
be modelled in formulas such as:

609



CRADDOCK, BROWSE

S;

| LIKE PSYCHOLOGY »{ | LIKE COMPUTING
R, = (b, C) f R, = (b, c)

COMPUTATION MAY MODEL
COGNITION

Ry = (by. ¢y

Figure 2. : An example of an endorsement which influences the strength of endorsement be-
tween two other nodes.

1

G=1-| 3 1be=0)1 xrgxre [4)
kep, k=0

4. CONTRADICTIONS

Rational contradictions among endorsements are defined as follows: If A is compelling evidence
against n, but B is equally compelling evidence for n, then the endorsements for n. are inconsistent. In
addition to a rational contraction an infuitive contradicrion can also be defined: If the intuitive belief,
b', is not equal to the rational belief, b, then the two beliefs are inconsistent. If we define a threshold
of intuitive contradiction, T, then (1) if |b’, — b,| > T, then assign b, to I, and recalculate the rational
beliefs of all the nodes endorsed by n. such that s, =0 or (2) if |[, - R,| < T, then assume a state of
equilibrium has been reached and do not recalculate the rational beliefs of any of the nodes endorsed
by n,.

Intuitive contradictions are useful for recognizing changes in belief through a knowledge base
when endorsements are added and removed. In addition they can be used to control cycles which may
force more global interpretations on input propositions. When cycles exist within a network

S
| LIKE TECHNICAL WRITING p{ | LIKE COMPUTER SCIENCE
R =(0.8,¢) R = (b c)
Figure 3. : An example of an endorsement which may have net positive or net negative sup-

port.
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N = <P, 5>, belief and certainty values will only be calculated for nodes in a partial network
N =P,§, where PCP , and §C Sn(PXP'), where there exists a node n, €EP — P’ such that there is
an elementary path between n, to P and |, -R,| > T,.

5. CONCLUSIONS

The model discussed in this paper seeks to develop representational and inference mechanisms
capable of dealing with incomplete, inaccurate, and uncertain information. To this end, a connectionist
model is proposed and heuristics are developed to collect and evaluate the endorsements for prop-
ositions in the network of beliefs. At the same time it is intended that the model represent at least
some of the processes used in human reasoning.

As the model is intended to represent belief maintenance with uncertainty it differs from existing
connectionist models (Anderson 1982:; Rumelhart and McClelland 1982; McClelland and Rumelhart
1983) in several important respects. First, the uncertainty of a proposition is represented numerically,
as the values of R, and non-numerically., as the structure of endorsements. Second, once the
endorsements have been collected they are subject to reasoning and natural heuristics to compute
numeric values as depicted in formulae [1] to [4].

Kahneman and Tversky (1982a, b) have shown that their heuristics; availability,
representativeness, and adjustment and anchoring. can help describe human decision making under
conditions of uncertainty. Once these heuristics are recognized as part of human reasoning it no longer
appears illogical in the sense of being erratic, but rather more pragmatic and difficult to specify in terms
of the logic inference mechanisms of traditional logic. Kahneman and Tversky (ibid.) provide numer-
ous examples in which subjects reach decisions which run counter to those reached by mathematical
theories. While the heuristics proposed in this paper are by no means as exhaustive nor the formulae
necessarily optimal, they do illustrate how heuristics might be incorporated into the decision making
model in a straight forward fashion (Craddock 1936).

In contrast, most connectionist models ignore, or do not explicitly deal with the non-numeric
representation of uncertainty, depending on numeric values alone which provide no evidence as to how
they were calculated, what they actually represent, or how reliable they are. Of major issue is the belief
that numerical values, blindly tallied, are an inadequate representation of reasoning. Symbolic struc-
tures of support are necessary to specify how and why numeric beliefs are calculated. The availability
of an endorsement structure allows the model to not only provide numerical information but also a
description of its own reasoning process. The advantages of having a model whose reasoning can be
readily understood are numerous and imperative if the justifications for a decision are to be made clear.

A further difference is that the proposed model can represent varying degrees of interaction be-
tween sources of evidence while models such as MYCIN (Shortcliffe, 1975) must make the assumption
that all evidence is conditionally independent and that hypotheses are mutually exclusive. For example,
the dynamic strengths of endorsement (see figure 2) allow us to represent evidence which is disjunctive,
that is, strong belief may be propagated on the basis of only one of many supports.
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