
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Topics in Optimization: Restarted Moment Based Methods, Underdetermined Systems and
Trade Networks

Permalink
https://escholarship.org/uc/item/4vr24989

Author
Kizilkale, Can

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vr24989
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Topics in Optimization: Restarted Moment Based

Methods, Underdetermined Systems and Trade

Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Can Kizilkale

Committee in charge:

Professor Shivkumar Chandrasekaran, Chair
Professor Omer Egecioglu
Professor John Gilbert

September 2019

The Dissertation of Can Kizilkale is approved.

Professor Omer Egecioglu

Professor John Gilbert

Professor Shivkumar Chandrasekaran, Committee Chair

August 2019

Topics in Optimization: Restarted Moment Based Methods, Underdetermined Systems

and Trade Networks

Copyright c© 2019

by

Can Kizilkale

iii

To my Parents.

iv

Acknowledgements

I’d like to thank Professor Egecioglu for all the help and guidance during my stay

here, Professor Chandrasekaran, a kind hearted, intelligent mathematician whom I ben-

efited from the discussions we had during my research and Professor Gilbert for being a

committee member.

I want to thank Professor Mustafa Pinar for his guidance and support in my troubling

years, it was always a great experience sharing ideas, making research which led to several

publications. He is not only a great researcher he is also a very good human being and I

am very lucky to know him. I wish we started making research during my undergraduate

years.

I am grateful to Professor Rakesh Vohra whom I had the privilege to make research

with. Not only he went out of his way to host me at University of Pennsylvania, his

vision, generosity, ideas inspired me. I wish I did the right decision back then but I

am hoping that we are going to continue to work on many more interesting problems

together.

v

Curriculum Vitæ
Can Kizilkale

Education

Ph.D. in Computer Science , University of California, Santa Bar-
bara.

M.S. ECE, Koc University.

B.S. EE, Bilkent University

Publications

Work in Progress

[1] Rakesh Vohra, Can Kizilkale, Trade Networks under complex constraints.

Work under review

[1] Can Kizilkale, Shivkumar Chandrasekaran, Mustafa C. Pinar and Ming Gu, Gra-
dient Based Adaptive Restart is Linearly Convergent.
[2] Can Kizilkale,Mustafa C. Pinar, Sparsest Solution to an Underdetermined System of
Linear Equations via Penalized Huber Loss.

Journal Publications

[1] Mustafa C. Pinar and Can Kizilkale, Robust Screening Under Distribution Ambi-
guity, (Mathematical Programming Ser. A, vol. 163(1), 273-299, April 2017.).
[2] Can Kizilkale, Omer Egecioglu and C. K. Koc, A Matrix Decomposition Method for
Optimal Normal Basis Multiplication, (IEEE Transactions on Computers, Volume 65
Issue 11, November 2016 Page 3239-3250).
[3] Alper T. Erdogan and Can Kizilkale, Fast and Low Complexity Blind Equalization
via Subgradient Projections’, in IEEE Transactions on Signal Processing, Vol: 53, pp:
2513-2524, July 2005.

Conference Publications

[1] Can Kizilkale and Alper T. Erdogan, A Fast Blind Equalization Method Based On
Subgradient Projections’, in Proceedings of the IEEE ICASSP, Vol: 4, pp:873-876, May
2004.
[2] Can Kizilkale and Alper T. Erdogan, A Moving Window Approach for Blind Equal-
ization Using Subgradient Projections, in Proceedings of IEEE SIU, pp: 196-199, April
2004.

vi

[3] Can Kizilkale, Cost Sharing of Multiple Non-Excludable Public Goods, presented at
9th conference on Web and Internet Economics held at Harvard University,ACM 1 trans-
actions on Economics and Computation, 2013.

Technical Reports / Other

[1] Can Kizilkale, A Fair, Sequential Multiple Objective Optimization Algorithm, eprint
in Optimization Online, August 2012 (Technical Report)
[2] Can Kizilkale, A Family of Polytopes in the 0/1-cube having Gomory-Chvatal rank at
least ((1+1/6)n-4), e-print in Optimization Online, July 2012.
[3] Can Kizilkale, Fast Blind Equalization Using Subgradient Based Algorithms, M.Sc.
Thesis, Koc University, May 2005
[4] Can Kizilkale, Eliminating Duality Gap by Sigma Penalty, May 2010 (e print in Op-
timization online July 2012)

Research Interests: Optimization, Game Theory, Matrix Analysis.

vii

Abstract

Topics in Optimization: Restarted Moment Based Methods, Underdetermined Systems

and Trade Networks

by

Can Kizilkale

This thesis consists of three parts focusing on three different problems. All of these

problems have optimization at heart yet they are related to different branches of opti-

mization.

Our first problem is on the convergence rate of two moment based methods, Polyak’s

Heavy Ball and Nesterov’s Accelerated Gradient, employing adaptive restart. We intro-

duce two criteria and show that under such criteria these methods have linear conver-

gence. Strongly convex functions satisfy these criteria hence the results are valid for such

functions. To the best of our knowledge, our result is the first convergence result for the

adaptive restart scheme. We then introduce a novel restarting criteria which are highly

tunable and also satisfies linear convergence.

Our second problem is on computation of the sparsest solution to an underdetermined

system of linear equations. We introduce an extrapolation procedure which computes the

sparsest solution from a penalized relaxation of the problem via Huber function. This

extrapolation procedure uses a condition called sign constancy and we show that if one

works with extreme points this can be removed. We present necessary and sufficient

conditions for the recovery of the sparsest solution by penalized Huber loss function and

ties among different solutions.

Our last problem of concern is on Network flows. In this work in progress, we inves-

tigate existence and computation of the equilibrium in trade networks with constraints.

viii

To the best of our knowledge, these networks are only investigated under simple capac-

ity constraints on each link. Here we first start with a negative result where we give a

counterexample where the link capacities live in a polymatroid yet there is no integer

equilibrium point in the feasible region. We then move on to investigate the cases where

the constraints are less restrictive.

ix

Contents

Curriculum Vitae vi

Abstract viii

1 Convergence rate of Restarted Moment based Algorithms 1
1.1 Introduction . 1
1.2 Preliminaries . 4
1.3 Why Momentum Based Methods? . 7
1.4 General Restarted Momentum Based Gradient Descent 10
1.5 Gradient-Mapping restart condition . 11
1.6 Convergence rate of Momentum based Gradient Descent with Gradient-

Mapping restart . 13
1.7 Extension to Accelerated Gradient update rule 23
1.8 Cone based restart . 25
1.9 An algorithm for Non-smooth functions 29
1.10 Conclusions . 35

2 Sparsest Solution to an Underdetermined System of Linear Equations
via Penalized Huber Loss 37
2.1 Introduction . 37
2.2 An Extrapolation Procedure . 40
2.3 Extreme Points and Extrapolation . 47
2.4 Sign Constancy and Ties Among Solutions 49
2.5 Conclusion and Future directions . 56

3 Equilibrium on Constrained Trade Networks 57
3.1 Introduction . 57
3.2 Discrete Convexity . 58
3.3 M-Convexity . 62
3.4 M-convex Submodular Flow Problem . 67
3.5 Economics Background . 71

x

3.6 Networks with complex constraints . 76
3.7 When set of Net-flows is a polymatroid 79
3.8 When the set of incoming(or outgoing) links are a polymatroid 82
3.9 An immediate result . 86

Bibliography 88

xi

Chapter 1

Convergence rate of Restarted

Moment based Algorithms

1.1 Introduction

Speeding up gradient based algorithms via momentum is a well-known technique.

Polyak’s heavy-ball method [1] and Nesterov’s accelerated gradient algorithm [2] are

probably the two most famous algorithms using momentum.

Nesterov’s method is well-known for achieving fast convergence despite not being

more complex than the classical gradient descent algorithm. Although the algorithm was

introduced more than three decades ago, it became very popular in the last decade due

to its benefits in solving large scale problems in sparse signal recovery, machine learning,

composite function optimization, etc., where higher order methods become infeasible.

The idea behind accelerated gradient scheme is building up momentum to increase

the convergence rate. At each step instead of just taking into account the gradient we

also take into account the momentum vector which is essentially a weighted sum of all

the previous steps. The momentum vector contains some second order information about

1

Convergence rate of Restarted Moment based Algorithms Chapter 1

the objective function which leads to accelerated convergence when used correctly.

An important problem with the accelerated gradient algorithm (and momentum based

methods in general) is that it exhibits non-monotonic convergence behavior. This behav-

ior seems to be periodic and lowers the convergence rate. An intuitive explanation of this

behavior is that, as the momentum increases, the algorithm takes much larger steps to-

wards the optimum point, leading to faster decrease in the function value, until the point

where the momentum vector makes the iterates move away from the optimum(overshoots)

causing the function value to increase until the gradient of the objective function nullifies

and corrects the direction.

One noteworthy observation is that when step sizes are chosen small enough the

algorithm exhibits monotonic convergence until the first point of overshoot. The original

algorithm lets the gradient slow down the algorithm once it overshoots. Yet we can

obviously do better if we slow it down or stop it “artificially” when overshoot happens.

Instead of slowing the algorithm using the gradient we restart it, which erases the history

and starts the algorithm afresh using the current iterate as the initial point. If we know

the condition number then one can exploit the periodic behavior of the non-monotonicity

and employ periodic restarts at those points to achieve linear convergence [3]. When we

do not have that information though, it is difficult to decide on the right periodicity.

Some of the tests for detecting overshoot are the exact non-monotonicity test [4], and

the gradient-mapping test [5], both of which seem to work well in practice.

1.1.1 Contributions

We shall first focus on the gradient-mapping test based restart and prove that it ex-

hibits linear convergence under conditions which are more relaxed than strong convexity.

To the best of our knowledge our paper is the first contribution to establish a conver-

2

Convergence rate of Restarted Moment based Algorithms Chapter 1

gence rate result for gradient-based method with restarts. Prior analysis was restricted

to quadratic functions only. More recent analyses of accelerated gradient methods have

been based on ODEs [3, 6]. The main idea is to analyze the continuous case, where step

size is arbitrarily small, and then expand the analysis by quantizing the continuous path.

However, we use here the classical approach in proving the convergence rate. We show

that with the gradient based restart condition the algorithm becomes monotonic. The

momentum vector in the worst case grows like O(
√
k) (c.f. Corollary 1.6.2), and even in

this case we have shown linear convergence rate (for additional experimental results on

the effectiveness of this restart rule the reader can also refer to [4, 5]).

Our results are obtained under conditions more general than strong convexity. We

introduce three conditions which are sufficient for linear convergence. There has been

quite an extensive research on achieving linear convergence without strong convexity

(such as [7, 8, 9]). The main ingredient used to achieving linear convergence is quadratic

growth condition which is a quadratic lower bound on the objective f(x) with respect to

the shortest distance from x to the optimal set. Our condition is different from quadratic

growth condition. Instead of assuming a bound on the function we check what happens

in between subsequent iterates. We then show that these conditions can be satisfied

without the need of strong convexity.

Finally we will introduce a new restarting condition, cone based restart which also

achieves linear convergence under our conditions. This scheme gives similar performance

to adaptive gradient scheme yet it uses the gradient in the beginning of each restart as

pivot which shows that the information on the direction of acceleration is available to us

in the beginning of each restart.

3

Convergence rate of Restarted Moment based Algorithms Chapter 1

1.2 Preliminaries

Convex optimization is a deep and well studied subject. Although one can try to

overview the fundamental concepts we believe there are many well written resources

available and it is best to point the reader to one of them instead of giving a shallow

summary. In our opinion Nemirovski’s lecture notes ([10]) is a fantastic read and a very

comprehensive resource.

Throughout this chapter we are interested in solving the general unconstrained convex

optimization problem,

min
x∈Rn

f(x),

where f : Rn → R is a convex function with L-Lipschitz continuous gradient where

gradient being L-Lipschitz continuous is defined as follows (for the rest of the paper we

will be denoting euclidean norm with ‖.‖ unless otherwise is stated).

Definition 1 The gradient of f is L-Lipschitz continuous if there exists a constant L > 0

such that ∀ x, y ∈ dom(f)

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (1.1)

L-Lipshitz continuity is an essential and reasonable assumption. Without it(L-Lipshitz

continuity) the change in the gradient at each step may be unbounded and it becomes

almost impossible to come up with a convergence guarantee (for most of the functions

we are interested in difference of gradients in between two points will be bounded by a

function of the distance between the two).

While not as reasonable as the L-Lipshitz continuity, Strong convexity is another very

important property. There are several equivalent definitions of strong convexity. We will

use the following one.

4

Convergence rate of Restarted Moment based Algorithms Chapter 1

Definition 2 A function f : Rn → R is strongly convex if ∀ x, y ∈ dom(f)

f(y) ≥ f(x) +∇f(x)T (y − x) + (µ/2)‖y − x‖2, (1.2)

for some constant µ > 0.

This property essentially tells us that the function is lower bounded by a quadratic

function with strictly positive eigenvalues.

1.2.1 Gradient Descent

The most fundamental but still capable optimization method is gradient descent. The

idea is at each step to move in the opposing direction of the gradient direction by some

selection of stepsize to reach a better solution.

Algorithm 1: Gradient Descent

Choose x−1 ∈ Rn

x0 = x−1

for k ≥ 0 do
Pick αk
xk+1 = xk − αk∇f(yk)

end for

For functions with continuous gradients αk can be taken as a small enough constant.

For arbitrary convex functions as long as limαk = 0 and
∑

k αk = ∞ convergence is

guaranteed. The convergence rate of gradient descent for arbitrary convex functions is

known to be O(k−1).

1.2.2 Accelerated Gradient

Nesterov’s accelerated gradient algorithm is an instance of the general momentum

based algorithms. This algorithm produces a sequence of iterates xk, yk ∈ Rn by the

5

Convergence rate of Restarted Moment based Algorithms Chapter 1

following update rule.

Definition 3 Generalized accelerated gradient update rule:

yk = xk + βk(xk − xk−1) (1.3)

xk+1 = yk − αk∇f(yk), (1.4)

where the term βk(xk − xk−1) is the momentum term at each step.

The optimum selection for βk is by solving another equation at each step. The original

algorithm is given in (2).

Algorithm 2: Accelerated Gradient Algorithm

Choose x−1 ∈ Rn

x0 = x−1, y0 = x0, θ0 = 1, q = [0, 1]
for k ≥ 0 do
xk+1 = yk − tk∇f(yk)
θk+1 solves θ2

k+1 = (1− θk+1)θ2
k + qθk+1

βk+1 = θk(1− θk)/(θ2
k + θk+1)

yk+1 = xk+1 + βk+1(xk+1 − xk)
end for

Nesterov has shown ([2]) that accelerated gradient (we will refer to Nesterov’s algo-

rithm as ”accelerated gradient” for the rest of the paper) has a guaranteed convergence

rate of O(k−2) for general convex functions under L-Lipshitz continuity. However, for

strongly convex functions, if the condition number µ and Lipschitz constant L are known,

it can be improved to linear convergence, O(c−k) (c is some constant that is greater than

1) [11]. Unfortunately both are unknown in many problems. Moreover, it is frequently

impractical to estimate µ.

6

Convergence rate of Restarted Moment based Algorithms Chapter 1

1.2.3 Heavy-Ball Method

Although Nesterov’s algorithm is the most popular one it should be noted that the

algorithm that made algorithms using momentum (from now on we will refer to the

difference between two back to back iterates, xk+1−xk, as the momentum at step k+1)

a viable option for optimization is probably Polyak’s Heavy-ball method([1]) which has

the following update rule.

Definition 4 Heavy-ball update rule:

xk+1 = xk + βk(xk − xk−1)− αk∇f(xk).

The complete algorithm is as follows.

Algorithm 3: Heavy-Ball Method

Choose x−1 ∈ Rn

x0 = x−1, y0 = x0, θ0 = 1
for k ≥ 0 do
xk+1 = xk + βk(xk − xk−1)− αk∇f(xk)

end for

1.3 Why Momentum Based Methods?

We start by discussing what makes Momentum based approaches so popular. Al-

though gradient descent is versatile and simple to implement it can be painfully slow at

times. It is especially prone to what we call ”zigzagging”(figure 1.1).

Using momentum allows us to tackle this problem very well, it ”corrects” the direc-

tion of descent by smoothing out consequent gradients by the momentum term. It also

increases the stepsize. Both of these contribute to the convergence increase we observe

in figure 1.2.

7

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.1: Zigzagging effect on Gradient Descent

Figure 1.2: Direction correction

8

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.3: Accelerated Gradient vs Gradient Descent

Accelerated gradient is not a monotonically decreasing method. By looking at figure

(1.3) we can make two interesting observations. The first one is that Accelerated gradient

is asymptotically faster than gradient descent and the second one is the non-monotonic

behavior seems to be periodic.

The most intuitive explanation for such non-monotonic behavior is that while the

stepsize increases, because of momentum build-up, it causes faster convergence until the

point where momentum vector points away from the optimum. For convex functions once

this happens moving in the direction of the momentum will simply increase the function

value. In the next section we will see a strong method to deal with this behavior.

9

Convergence rate of Restarted Moment based Algorithms Chapter 1

1.4 General Restarted Momentum Based Gradient

Descent

The somewhat periodic behavior we observed in figure (1.3) can be dealt in different

ways. If the condition number is known then one can select the step size so that there is

no overshooting and the algorithm converges monotonically. This is most of the time not

feasible since such information is not available. Another way of dealing with this behavior

is to zero the momentum when we detect overshooting. We will call this restarting the

algorithm. The algorithm is given as 3.

Algorithm 4: Generalized Restarted Momentum Method

Choose x−1 ∈ Rn

x0 = x−1

for k ≥ 0 do
zk+1 = βk(xk − xk−1)− αk∇f(xk)
if restart condition is satisfied then
xk+1 = xk − αk∇f(xk)

else
xk+1 = xk + zk+1

end if
end for

1.4.1 Several Restarting Criteria

There are several different ways for restarting the algorithm. We are going to sum-

marize the major ones as follows.

• Periodic restart: Restarts the algorithm by a predefined restarting interval. With-

out the knowledge of condition number not possible to find the right period

• Exact monotonicity test: Checks if there is a decrease in the objective value, if

not restarts. Prone to numerical errors when the iterate is too close the optimum.

10

Convergence rate of Restarted Moment based Algorithms Chapter 1

• Gradient-mapping restart: Checks the inner product of momentum vector and the

current gradient. We will analyze this one in the next section

• Cone Based restart: Checks if the current gradient falls in a cone centered around

a pivot. (Our proposed method).

1.5 Gradient-Mapping restart condition

The restart condition that we will anaylze first is the test called ”gradient-mapping

restart” which was proposed in [5]. The idea is to detect whether the ascent direction

which is determined by the momentum vector has a positive projection on the gradient(5).

Definition 5 Gradient-mapping restart condition:

∇f(xk)
T (xk − xk−1) > 0.

The algorithm that we are going to plug this in will be the Heavy-Ball based one

(algorithm 4). The reason for this is making the analysis cleaner. Afterwards we will

explain how to extend the analysis to the accelerated gradient case.

Before going on to the analysis part where we show that gradient based restart has

linear convergence and the corresponding criteria for this result we should give two graphs

from [5] to motivate the intuition. In figure 1.4 we can see that when for the regular

accelerated gradient there is periodic overshooting where for the restarted case(the green

line) once the gradient-mapping condition is satisfied (and it detects overshooting quite

successfully) the algorithm is restarted and changes the direction to point towards the

optima. The purple path shows the optimal path when we have the condition number

plugged in to get maximum speed up from accelerated gradient.

11

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.4: When Overshoot happens ([5])

12

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.5: Comparison of different restarting schemes ([5])

In figure(1.5) we can see a comparison of different restarting criteria. For the periodic

restarts we can see that the performance gain is not much and it is not possible to fix

the non-monotonic behavior without additional information. The gradient based and

function based restart schemes follow the optimum path (the one where we use the

condition number to tune the step size) up to a neighborhood of the optimum point

afterwards the functional restart begins to degrade because numerical issues.

1.6 Convergence rate of Momentum based Gradient

Descent with Gradient-Mapping restart

In this section we will lay down our major contribution for this chapter. To the best

of our knowledge this is the first proof that shows that gradient-mapping restart has

linear convergence under strong convexity. We also introduce two new criteria where our

13

Convergence rate of Restarted Moment based Algorithms Chapter 1

result holds and show that these criteria is satisfied by strong convexity but are weaker.

We are going to denote the optima, in this case a minimizer, as x∗. We will assume

that the objective function f(x) is convex, smooth with L-Lipshitz gradient.

1.6.1 Criteria for Linear convergence

We are going to introduce the following criteria which going to be used for proving

convergence.

‖∇f(x)‖2 ≥ (f(x)− f(x∗))/M, (1.5)

for some M > 0,

f(xk)− f(xk+1) ≥ m‖xk − xk+1‖2, (1.6)

for some m > 0 where k is the number of steps taken since the latest restart, and

Restart is initiated if ∇f(xk + zk+1)T zk+1 > 0. (1.7)

We should mention that although condition (1.6) depends on the algorithm iterates

rather than arbitrary x, y as we will see in the examples later that it is possible to check

this condition and see that it is weaker than strong convexity. We are going to show that

under conditions (1.5),(1.6),(1.7) Algorithm (4) has linear convergence rate.

14

Convergence rate of Restarted Moment based Algorithms Chapter 1

1.6.2 Convergence rate of Gradient mapping based restart is

linear

Now let’s start our analysis of Gradient mapping based restart. Observe that when

there is no restart (from (1.7))

(xk − xk−1)T∇f(xk) ≤ 0,

then

‖βk(xk − xk−1)− αk∇f(xk)‖2 ≥ ‖βk(xk − xk−1)‖2 + α2
k‖∇f(xk)‖2, (1.8)

where the left hand side is the momentum at the next step k + 1: ‖xk+1 − xk‖2, if there

is no restart in that step either. Now let ks denote the first iteration where we restart:

(xks − xks−1)T∇f(xks) ≤ 0. (1.9)

Assume that

c(f(x0)− f(x∗)) = f(xks)− f(x∗).

To show linear convergence it is sufficient to establish that c has an upper bound strictly

smaller than 1 and ks also has an upper bound since this essentially means that the

convergence rate will be O(ck/k̂s)(k̂s is the upperbound on ks).

In the rest of the analysis, for the sake of simplicity, we will fix αk = α and βk = β.

This actually leads to a stronger result since it means that even with constant coefficients

we can achieve linear convergence.

15

Convergence rate of Restarted Moment based Algorithms Chapter 1

Lemma 1 For fixed α and β and k ≤ ks,

‖xk − xk−1‖ ≥ α

√√√√ 1

M
(f(xks)− f(x∗))

k−1∑
i=0

β2i.

Proof: When there is no restart we have

γk ≡ ‖xk − xk−1‖ = ‖βk−1(xk−1 − xk−2)− αk−1∇f(xk−1)‖.

From (1.5) we know that at each step k ≤ ks,

‖∇f(xk)‖ ≥
√

(f(xks)− f(x∗))/M.

Combining this with (1.8), we get

γ2
k ≥ β2γ2

k−1 +
1

M
α2(f(xks)− f(x∗)),

which yields the desired bound when combined with the fact that

γ1 = α‖∇f(x0)‖. (1.10)

Lemma 1 shows that the worst case of growth happens when the current gradient is

almost perpendicular to the momentum vector (intuitively we would expect that when

these two vectors are almost perpendicular in the next step momentum vector will cause

overshoot and should be zeroed out, see figure 1.6). This lemma actually gives us a very

nice bound on how much the momentum will grow at each step as seen in Corollary 1.6.2.

This will be a key ingredient in the proof of complexity.

16

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.6: Evolution of Momentum

Corollary 1 The momentum grows like O(
√
k).

Proof: As β gets closer to 1 the momentum term will increase and from Lemma 1

the result follows.

Lemma 2 Let ks be the first restarting step. Then,

f(x0)− f(x∗) ≥ (f(xks)− f(x∗))

(
1 +

m

M
α2

ks−1∑
k=0

k∑
i=0

β2i

)
.

Proof: From (1.6), for k < ks, and the fact that

f(xk)− f(x∗) > f(xks)− f(x∗),

we have,

f(xk)− f(xk+1) ≥ m

M
α2(f(xks)− f(x∗))

k∑
i=0

β2i.

17

Convergence rate of Restarted Moment based Algorithms Chapter 1

Therefore

f(x0)− f(xks) ≥
m

M
α2(f(xks)− f(x∗))

ks−1∑
k=0

k∑
i=0

β2i,

which yields the desired bound.

In lemma 2 we see the relationship of magnitude of errors between the beginning and

the end of every restart. The bound shows that there has to be a decrease by a constant

factor.

Lemma 3 If 0 < β < 1

ks ≤
1

2 ln β
ln

(
1− 1− β2

m
M
α2

)
+

− 1.

Proof: From inequalities (1.5), (1.8), and Lemma 1, for fixed α and β we have:

‖xk+1 − xk‖2 = ‖β(xk − xk−1)− α∇f(xk)‖2
2

≥ ‖β(xk − xk−1)‖2 +
1

M
α2(f(xk)− f(x∗))

≥ β2k‖x1 − x0‖2

≥ 1

M
α2β2k (f(x0)− f(x∗)) . (1.11)

Substituting (1.6) in (1.11) and summing over k we get,

f(x0)− f(x∗) ≥ f(x0)− f(xks) ≥
m

M
α2

ks∑
k=0

β2k(f(x0)− f(x∗))

Hence,

1 ≥ m

M
α2 1− β2(ks+1)

1− β2
,

18

Convergence rate of Restarted Moment based Algorithms Chapter 1

which yields, when 0 < β < 1,

ks ≤
1

2 ln β
ln

(
1− 1− β2

m
M
α2

)
+

− 1.

Lemma 3 gives the other essential piece of information we need for the convergence which

is the upper bound on the number of iterations between consecutive restarts. If we didn’t

have such an upper bound increasing ks would certainly violate our result. We should

also note that this upper bound on ks is probably not sharp but it will suffice for our

purposes. Although upper bound of ks seems to be depending on m/M (as we will see for

the adaptive restart this expression is a function of µ) selection of α can be completely

automatized independent of m/M (one obvious way is to update α as α
2

when ks < 2).

Lemma 4 If α < 1/L then ks ≥ 2. Also, for any t ≥ 2, there exists an α > 0, such that

ks ≥ t.

Proof: Since ∇f is Lipschitz continuous

‖∇f(x)−∇f (x− α∇f(x)) ‖ ≤ Lα‖∇f(x)‖.

If 0 < α < L−1 then

∇f(x)T∇f(x− α∇f(x)) ≥ ∇f(x)T (∇f(x)− Lα∇f(x)) ≥ 0.

Therefore ks ≥ 2 since the initial momentum is zero.

A similar, but more tedious, argument, shows that for all t ≥ 2 there exists a small

enough α > 0 such that ks ≥ t. The basic idea is that for sufficiently small α the initial

momentum can be kept as small as desired. Then the Lipschitz continuity is used as

19

Convergence rate of Restarted Moment based Algorithms Chapter 1

above to show that the restart condition will not be satisfied.

In lemma 4 we show that between consequtive restarts the algorithms takes at least

one step if the step size is small enough. This prevents the case where the algorithm gets

stuck by constantly restarting without updating x. This is a result of derivative being

L-Lipshitz.

Now we can tidy things up and combine bounds on the number of steps in between

consecutive restarts. Let kj denote the number of iterations between the jth and j− 1th

restarts. Based on Lemmas 3 and 4, once 0 < α < L−1 is fixed, we can choose 0 < β < 1,

such that there exist constants p and q which guarantee that

2 ≤ p ≤ kj ≤ q <∞.

Lemma 5 Let r be the total number of iterations. Then

f(xr)− f(x∗) ≤ (f(x0)− f(x∗))

[
1

1 + α2 m
M

∑p−1
k=0

∑k
i=0 β

2i

] r
q

.

Proof: Let x̂j denote the point right at the beginning of the jth restart where

x̂0 = x0. From Lemma (2) and kj ≥ p, right at the beginning of the jth restart we have,

f(x̂j−1)− f(x∗) ≥ (f(x̂j)− f(x∗))

(
1 +

m

M
α2

p−1∑
k=0

k∑
i=0

β2i

)
.

If there are a total of N restarts until iteration r this inequality leads to,

(f(xr)− f(x∗)) ≤ (f(x̂0)− f(x∗))

[
1

1 + α2 m
M

∑p−1
k=0

∑k
i=0 β

2i

]N
.

From kj ≤ q we have N ≥ r
q

combining with x̂0 = x0 the result follows.

Lemma 5 connects the initial error to the error on step r. With this lemma we have

20

Convergence rate of Restarted Moment based Algorithms Chapter 1

all the ingredients necessary to lay down our main result.

Theorem 1 Convergence rate of Algorithm (4) is linear.

Proof: The lower and upper bounds on p and q from Lemmas 4 and 3 combined

with the result in Lemma 5 yields

(f(xk)− f(x∗)) ≤ (f(x0)− f(x∗))

[
1

1 + α2 m
M

(β2 + 1)

] k

1
2 ln β

ln

(
1− 1−β2

m
M
α2

)
+

−1

Let

0 < τ =

[
1

1 + α2 m
M

(β2 + 1)

] 1

1
2 ln β

ln

(
1− 1−β2

m
M
α2

)
+

−1

< 1.

Then we see that Algorithm 1 converges like O(τ k) which is linear as claimed.

Algorithm 5: Momentum accelerated gradient algorithm with gradient-
mapping restart

Choose x−1 ∈ Rn

x0 = x−1

for k ≥ 0 do
zk+1 = βk(xk − xk−1)− αk∇f(xk)
if ∇f(xk + zk+1)T zk+1 > 0 then
xk+1 = xk − αk∇f(xk)

else
xk+1 = xk + zk+1

end if
end for

Now that we have established linear convergence under the criteria 1.5, 1.6 and 1.7

the next question is ”does strong convexity satisfy these criteria?”. We are going to

address this next.

21

Convergence rate of Restarted Moment based Algorithms Chapter 1

1.6.3 Convergence Rate of Adaptive Restart under Strong Con-

vexity

Now, we show that under strong convexity the adaptive restart rule achieves linear

convergence (this version of the algorithm is given in Algorithm (5)). We shall henceforth

refer to Algorithm 2 alternatively as MAGR.

Previously we have shown that if the three criteria we have given in (1.5), (1.6) and

(1.7) are satisfied then the algorithm has linear convergence. So it is enough to establish

that these criteria ((1.5), (1.6) and (1.7)) are satisfied.

Criterion (1.7) is satisfied by definition of the adaptive restart rule.

Assuming that no restart was initiated,

(xk+1 − xk)T∇f(xk+1) ≤ 0.

Then from equation (1.2) we have that,

f(xk) ≥ f(xk+1) +∇f(xk+1)T (xk − xk+1) + (µ/2)‖xk+1 − xk‖2,

which implies that,

f(xk)− f(xk+1) ≥ (µ/2)‖xk+1 − xk‖2. (1.12)

So criterion (1.6) is satisfied for m = µ
2
. Strong convexity can be also used to bound the

gradients at each step.

f(x∗)− f(x)−∇f(x)T (x∗ − x) ≥ (µ/2)‖x− x∗‖2,

22

Convergence rate of Restarted Moment based Algorithms Chapter 1

where x∗ denotes the minimum of f , leading to,

f(x)− f(x∗) ≤ ∇f(x)T (x− x∗)− (µ/2)‖x− x∗‖2

≤ ‖∇f(x)‖‖x− x∗‖ − (µ/2)‖x− x∗‖2

=
‖∇f(x)‖2

2µ
−
(
‖x− x∗‖

√
µ

2
− ‖∇f(x)‖√

2µ

)2

≤ ‖∇f(x)‖2

2µ
. (1.13)

hence criterion (1.5) is satisfied for M = 1
2µ

. As we can see all three criteria are satisfied

for this case hence we conclude that ”Adaptive Restart” scheme has linear convergence

under strong convexity.

1.7 Extension to Accelerated Gradient update rule

One question that is frequently asked is if this analysis is still valid for Nesterov’s

”Accelerated Gradient” algorithm. Although Lyapunov like analysis is used for the anal-

ysis of the non-restarted algorithm, for the restarted one we don’t need this to establish

linear convergence. This is not to say that such an analysis is useless, it is simply good

for analyzing what happens in between consecutive restarts(where Nesterov’s step size

selection is still optimum).

Now let’s sketch how this analysis can be extended for the generalized accelerated update

rule in Definition (3). In accelerated gradient method the intermediate gradient ∇f(yk)

is accumulated instead of ∇f(xk) hence instead of (xk − xk−1)T∇f(xk) algorithm checks

(yk − xk−1)T∇f(yk) and restarts if this inner product is positive. In this case instead

of (1.8) we will get ‖βk(xk − xk−1) − αk∇f(yk)‖2
2 ≥ ‖βk(xk − xk−1)‖2 + α2

k‖∇f(yk)‖2

and the rest of the analysis will follow very similarly. Since the gradient is smooth it

is reasonable to expect that (xk+1 − xk)T∇f(xk+1) and (yk − xk−1)T∇f(yk) to have the

23

Convergence rate of Restarted Moment based Algorithms Chapter 1

same sign most of the time (it also gives almost identical results in the experiments)

however using (yk − xk−1)T∇f(yk) as the restarting criteria prevents any complications.

The choice of βk as in Accelerated gradient method will be faster than constant β. Since

βk → 1 monotonically, in the analysis when the constant step size as β is chosen greater

than β2 we guarantee that the summation
∑ks

k=0 β
2k
k stays small enough so that bounds

for ks still hold.

1.7.1 A Non-Strongly Convex example

A simple example of a non-strongly convex function that satisfies the two conditions

is f(x) = xTAx/2 where A is a symmetric positive semi-definite matrix with at least one

zero eigenvalue. Since A is not full rank it is obvious that this objective function is not

strongly convex.

However at every x that is not a minimum we have

∇f(x) = Ax =
∑
i

civi 6= 0,

where vi are eigenvectors corresponding to eigenvalues λi > 0 (Since A is positive semi

definite, the eigenvectors corresponding to 0 eigenvalue span the null-space of A hence

∇f(x) is a linear combination of eigenvectors corresponding to non-zero eigenvalues).

Then for λ̂ = minλi>0 λi we have

f(x)− f(x∗) =
xTAx

2
≤ xTA2x

2λ̂
=
‖∇f(x)‖2

2λ̂
.

So, criterion (1.5) is satisfied. Since xk − xk+1 is a linear combination of the gradients

until step k then it is a linear combination of eigenvectors corresponding to non-zero

24

Convergence rate of Restarted Moment based Algorithms Chapter 1

eigenvalues. We get

(xk − xk+1)TA(xk − xk+1) ≥ λ̂‖xk − xk+1‖2.,

and

xTkAxk − xTk+1Axk+1 = (xk − xk+1)TA(xk − xk+1) + 2(xk − xk+1)TAxk+1.

From the restart condition ∇f(xk+1)T (xk − xk+1) ≥ 0, we conclude that,

xTkAxk − xTk+1Axk+1 ≥ (xk − xk+1)TA(xk − xk+1) ≥ λ̂‖xk − xk+1‖2,

which satisfies criterion (1.6). Therefore, this example is not strongly convex yet it

satisfies both criteria and adaptive restart scheme will achieve linear convergence.

1.8 Cone based restart

We now introduce a new gradient based restart criteria which we call “cone based

restart”. As we will see in the experiments the corresponding Algorithm (6) has very

similar convergence behavior and speed to Algorithm (5), but it has some nice properties

that make it easier to analyze. Moreover the coefficient c in Algorithm (6) makes it

possible to tune the algorithm.

The restart condition

∇f(xk + zk+1)Tgr < c ‖∇f(xk + zk+1)‖‖gr‖,

guarantees that all of the gradients until the next restart lie in the cone centered around a

25

Convergence rate of Restarted Moment based Algorithms Chapter 1

Algorithm 6: Momentum accelerated gradient algorithm with cone based
restart

Choose x−1 ∈ Rn

Choose c > 1/
√

2
x0 = x−1

gr = ∇f(x0)
for k ≥ 0 do
zk+1 = βk(xk − xk−1)− αk∇f(xk)
if ∇f(xk + zk+1)Tgr < c‖∇f(xk + zk+1)‖‖gr‖ then
xk+1 = xk − αk∇f(xk)
gr = ∇f(xk+1)

else
xk+1 = xk + zk+1

end if
end for

pivot vector (gradient right after the restart) gr. For strongly convex objective functions

it is easy to see that they indeed are satisfied since the selection c > 1√
2

guarantees that

for all k we have (xk − xk+1)T∇f(xk+1) > 0 when there is no restart.

1.8.1 Another Example

We will look into the following problem.

f(x) = ρ log

(
m∑
i=1

exp((aTi x− bi)/ρ)

)
. (1.14)

This problem is a smoothed version of the more general problem of

f(x) = max
i=1,...,m

(aTi x− bi). (1.15)

In our numerical experiments we took αk = 0.99 and βk = (r + 1)/(r − 1) where r is

the number of steps taken after the latest restart.

The experiments (see figures 1.10 and 1.11)show linear convergence of both Cone

26

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.7: Optimizing the smooth version for ρ = 1. The vertical axis depicts
(f(xn)−f∗)

f∗ , and the horizontal axis depicts the iteration number n.

27

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.8: Optimizing the smooth version for ρ = 0.1. The vertical axis depicts
(f(xn)−f∗)

f∗ , and the horizontal axis depicts the iteration number n.

28

Convergence rate of Restarted Moment based Algorithms Chapter 1

Based Restart and Algorithm (5), and how close their convergence behaviors are.

1.9 An algorithm for Non-smooth functions

In this section we are going to be looking into the case where the objective function

is non-smooth. The usual approach to solve these problems is to solve an approximate

smooth version of the objective(which is what we did in the previous subsection). We on

the other hand, will give an extension of the MAGR which can be used in non-smooth

convex functions(We will call it NSMAGR(7)).

Algorithm 7: Non-Smooth Momentum accelerated gradient algorithm with
gradient-mapping restart

Choose x−1 ∈ Rn

Choose µ ∈ (0, 1)
x0 = x−1

for k ≥ 0 do
Choose gk ∈ ∂f(xk)
zk+1 = βk(xk − xk−1)− αkgk
Choose ĝ ∈ ∂f(xk + zk+1)
if ĝT zk+1 > 0 then

if ĝTgk < 0 then
βk+1 = µβk
xk+1 = xk + zk+1

else
xk+1 = xk − αkgk
βk+1 = βk

end if
else
xk+1 = xk + zk+1

end if
end for

In the algorithm NSMAGR, gk and ĝ are sub-gradients of the objective function at

xk and xk + zk+1 respectively. As with any gradient based non-smooth algorithm we

are using sub-gradients instead of gradients. The main difference NSMAGR and MAGR

29

Convergence rate of Restarted Moment based Algorithms Chapter 1

is that we impose a second condition for restart which is the algorithm will not restart

if there is an abrupt change in the gradient. To check if there is an abrupt change we

compute the inner product of the sub-gradients at the current and the projected next

step, if it is negative we simply don’t restart instead decrease the step-size since it is

leading to too much of a decrease. In the algorithm, we have taken βk = µβk however

one can select different reduction schemes as long as it does not hinder convergence rate.

1.9.1 A Non Smooth Example

We return to the problem in subsection 1.8.1 as we will see this function is actually a

smooth approximation of the function in 1.16 (We will be trying our non-smooth version

of MAGR on minimizing this function) which is given as follows.

minimize maxi=1...m(aTi x− bi) (1.16)

Although smooth approximation converges to the original function as ρ → 0 it will

cause numerical problems as it becomes too small. In the experiments µ = 0.99 and

αk = (r + 1)/(r − 1) where r is the number of steps taken after the latest restart.

One can observe that for all values of /rho the accelerated gradient with restart

is drastically better than both vanilla accelerated gradient and gradient descent. For

larger values classic accelerated gradient is asymptotically exceeded by gradient descent

yet MAGR stays the fastest. For the non-smooth case however the results are very

encouraging. While the algorithms are no longer monotonic, the decrease rate of the

NSMAGR is still linear(figure 1.12) yet bot accelerated gradient and the vanilla gradient

descent get very slow and can not get close to the optimum.

If we look at the minimum value achieved up to each step(figure 1.13) we can see this

better.

30

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.9:

Figure 1.10: Optimizin the smooth version for ρ = 1

31

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.11: Optimizin the smooth version for ρ = 0.1

32

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.12: Non-Smooth problem minimization

33

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.13: Minimums achieved at each step for non-smooth problem

34

Convergence rate of Restarted Moment based Algorithms Chapter 1

Figure 1.14: NSMAGR vs MAGR on ρ = 0.1

We also do a comparison on how fast and accurate NSMAGR is compared to MAGR

for the smooth case. In figure 1.14 we can see that although MAGR on smooth problem

is fast in the beginning it converges to a point which is not close to the optimum while

NSMAGR gets very close to the optimum. Also one has to note that using the smooth

function creates a constant overhead at each step so in fact NSMAGR is also way faster

in terms of flop count.

1.10 Conclusions

Recent analysis of accelerated gradient methods have been based on ODEs [3, 6].

The rough idea is to analyze the continuous case, where step size is arbitrarily small,

35

Convergence rate of Restarted Moment based Algorithms Chapter 1

and then expand the analysis by quantizing the continuous path. Here however we

used the classical approach in proving the convergence rate. With the restart condition

the algorithm becomes monotonic. The momentum vector in the worst case grows like

O(
√
k), and even in this case we can prove linear convergence rate. For experimental

results on how effective this restart rule is, the reader can refer to [4, 5].

In this chapter we have shown that the gradient-mapping based restart scheme will

improve the convergence rate of momentum based algorithms to linear. Although this

was suspected to be the case in practice we have now proved it to be true under the

assumptions of strong convexity and smoothness. Both of these seem to be essential

ingredients since it is easy to give examples of non-smooth functions where restart actually

worsens the convergence rate (becomes comparable to that of standard gradient descent).

However reusing earlier gradients seems to be capable of resolving this issue and will be

reported elsewhere.

36

Chapter 2

Sparsest Solution to an

Underdetermined System of Linear

Equations via Penalized Huber Loss

2.1 Introduction

The purpose of this chapter paper is to prove an extrapolation property to calculate

(the) sparsest solution to an underdetermined linear system by approximating the Basis

Pursuit (BP) model, and to explore ties between the sparsest solution, the L1-norm

solution and the Huber loss function (c.f. [12]). The problem of interest is posed as:

min
x
{‖x‖0 : Ax = b}, (2.1)

where ‖x‖0 counts the non-zero elements of the vector x ∈ Rn, A ∈ Rm×n (m < n)

assumed to be a full rank matrix (with rank equal to m), and b ∈ Rm. The problem has

numerous applications in signal processing, compressed sensing, error decoding, image

37

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

denoising and so on. Since it is NP-hard, one may seek to solve an approximate problem

instead of (2.1). A popular choice is the Basis Pursuit method [13]. The Basis Pursuit

approach to sparse recovery (there is ample literature on the subject, which cannot be

reviewed within this brief paper; see e.g., [14, 15, 16, 17], or [18, 19] for in-depth mono-

graphs on the problem of compressive sensing), and is based on the following problem

referred to as [SL1]:

min
x
{‖x‖1 : Ax = b}. (2.2)

In addition to the commonly observed fact that the problem (2.2) usually gives a sparsest

solution to the linear system in numerical calculation, and with high probability according

to several theoretical results in literature, it was proved that (2.2) is the Lagrange bi-dual

of (2.1); c.f., [20]. An alternative view to duality for (2.1) can be found in [21].

Let f ∗ denote the optimal value of (2.2) and X∗ denote its optimal solution set. The

dual problem is

max
ξ
{bT ξ : ‖AT ξ‖∞ ≤ 1}. (2.3)

Denote the optimal set of the dual problem as Ξ0. The notation s0 refers to the sign

vector with components the usual sign function denoted sgn in {0,±1} such that

sgn(t) =


0 if t = 0

1 if t > 0

−1 if t < 0.

The diagonal matrix W 0(.) is obtained from s0(.) using W 0
ii = 1− (s0

i)
2 for i = 1, . . . , n.

Optimality conditions for (2.2) can be summarized in the following result (see e.g., [22])

which is convenient for our purposes.

Proposition 1 Let x ∈ Rn with s = s0(x) and the associated W = W 0(x). Then, x

38

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

solves (2.2) if and only if there exists λ ∈ Rm and d ∈ Rn such that ‖Wd‖∞ ≤ 1 and

ATλ = Wd+ s.

Clearly, if the minimizer x is unique in (2.2) the matrix

 A

W

 has full rank.

Define the Huber loss function depending on a tuning constant γ > 0:

ρ(t) =


1

2γ
t2, if |t| ≤ γ

|t| − γ
2
, otherwise.

The Huber function is an example of a convex quadratic spline (a piecewise quadratic);

see e.g., [23] for background on convex quadratic splines. In a previous paper [24] the

second author investigated necessary and sufficient conditions for exact recovery of an

individual sparse vector using the Huber function instead of the L1 function, i.e., using

the problem

min
x
{

n∑
i=1

ρ(xi)|Ax = Au}

where u is some sparse real vector. The approach of the present paper is different since

we shall consider the problem

min
x
{ 1

2γ
‖b− Ax‖2

2 + Φγ(x)}, (2.4)

where Φγ(x) =
∑n

i=1 ρ(xi), as an approximation to (2.2) for smaller and smaller values of

γ. We shall refer to the problem as penalized Huber Loss as the first term acts a simple

penalty function. Problems that are reminiscent of (2.4) were studied in the context of

linear and quadratic programming in [25, 26, 27]. Reference [22] is also close in spirit

to the present paper in that it utilizes quadratic programming problem similar to ours

for computing a sparsest solution although neither Huber loss function nor extrapolation

39

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

ideas are present in [22]. Another reference related to the present is [28] where the

Huber function is used within the context of a min-max concave penalty and saddle

point computations for least squares regularization.

The problem (2.4) aims to achieve two goals at the same time by pushing γ to zero:

recover a solution to the system Ax = b in the limit while the Huber loss function

collapses to the 1-norm. It may be thought that the method advocated here will cause

numerical problems as one seems to have to push γ to extremely small values to obtain

an approximate result. However, the crux of the results of the paper is that one does not

need to deal with very small values of γ due to a convenient extrapolation result described

in section II. A variant of the extrapolation property using extreme point minimizers is

discussed in section III. Section IV is devoted to further exploration of the ties between

a sparsest solution, the unique solution to problem (2.2), and the penalized Huber Loss

problem (2.4).

2.2 An Extrapolation Procedure

The first (to be expected) result is that the solutions of (2.4) tend to the solutions of

(2.2) as γ tends to zero.

Proposition 2 The sequence of solutions {xγ} of (2.4) approaches X∗ as γ tends to zero:

∀ε > 0, ∃γ(ε) such that for γ ≤ γ(ε), xγ solves (2.4) =⇒ dist(xγ, X∗) = minx∈X∗ ‖xγ −

x‖ ≤ ε.

Proof: Let x0 be a solution to (2.2). For ease of notation, define fγ(x) = 1
2γ
‖b −

Ax‖2
2 + Φγ(x). We have for all x ∈ Rn:

0≤‖x‖1 − Φγ(x) ≤ n
γ

2
. (2.5)

40

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

Let xi denote a minimizer of fγ. Then one has

‖xi‖1 ≤ ‖xi‖1 +
1

2γ
‖b− Axi‖2

2≤Φγ(x
i) + n

γ

2
+

1

2γ
‖b− Axi‖2

2. (2.6)

On the other hand we have that

Φγ(x
i) +

1

2γ
‖b− Axi‖2

2 ≤ f ∗ (2.7)

because

Φγ(x
i) +

1

2γ
‖b− Axi‖2

2 ≤Φγ(x0) +
1

2γ
‖b− Ax0‖2

2 ≤‖x0‖1 =f ∗. (2.8)

Using (2.7) in (2.6) we get

‖xi‖1 ≤ f ∗ + n
γ

2
. (2.9)

Now, let xi → x̄, if necessary after passing to a subsequence. Then x̄ must satisfy Ax = b

since otherwise we have

lim
i→∞,γi↘0

Φγ(x
i) +

1

2γ
‖b− Axi‖2

2 = ‖x̄‖1 + lim
i→∞

1

2γ
‖b− Axi‖2

2

and

lim
i→∞,γi↘0

1

2γ
‖b− Axi‖2

2 = +∞.

This leads to a contradiction with (2.9). So x̄ satisfies Ax̄ = b. By (2.6) one has

‖x̄‖1 = lim
i→∞
‖xi‖1 ≤ f ∗.

Hence x̄ ∈ X∗.

41

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

While the above gives a convergence result in the limit, we shall not have to let γ tend

to zero. We shall instead devise a simple extrapolation procedure to get to a solution of

(2.2) from a solution of (2.4) under a sign constancy condition.

The optimality conditions of (2.4) can be expressed in a compact notation as follows;

define sγ ∈ {0,±1}n as follows:

sγi (t) =


0 if |t| ≤ γ

1 if t > γ

−1 if t < −γ

with the diagonal matrix W γ(.) derived from sγ(.) using W γ
ii = 1− (sγi)

2 for i = 1, . . . , n.

Then, the following result can be stated.

Lemma 1 Let x̄ ∈ Rn. Then x̄ solves (2.4) if and only if the following equation holds:

1

γ
W γ(x̄)x̄+ sγ(x̄)− 1

γ
AT (b− Ax̄) = 0. (2.10)

We shall obtain an extrapolation procedure based on Lemma 1. Let us rewrite equa-

tion (2.10) for a minimizer xγ as

(ATA+W γ(xγ))xγ = AT b− γsγ(xγ). (2.11)

Corollary 1 Let xγ solve (2.4) uniquely. Then

 A

W γ(xγ)

 has full rank.

Proof: If

 A

W γ(xγ)

 does not have full rank, there exists h 6= 0 such that

42

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

 A

W γ(xγ)

h = 0, which implies that there exists δ > 0 such that sγ(xγ+δh) = sγ(xγ).

Lemma 2 Let xγ solve (2.4). Then the system of linear equations

(ATA+W γ(xγ))d = sγ(xγ) (2.12)

is consistent.

Proof: By rearranging (2.11) we obtain

−1

γ
(AT W γ(xγ))

 rγ

xγ

 = sγ(xγ),

where rγ ≡ Axγ − b. Then (2.12) is equivalent to

(AT W γ(xγ))

 A

W γ(xγ)

 d = −1

γ
(AT W γ(xγ))

 rγ

xγ

 ,

which is consistent since it is the normal equations for the system

 A

W γ(xγ)

h =

 rγ

xγ

 .

For ease of notation let W = W γ(xγ) and s = sγ(xγ). Let the SVD of

 A

W

 =

UΣV T where U ∈ R(m+n)×(m+n), Σ ∈ R(m+n)×n, V ∈ Rn×n with UTU = I(m+n) and

V V T = V TV = In. Then we have AT b =
∑n

j=1 αjvj where vjs are columns of V , and

43

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

s =
∑n

j=1 βjvj, for some scalars αjs and βjs. More compactly, we have ATy − γs =

V α− γV β.

Now, let us re-write (2.11) as

V S2V Txγ = V α− γV β

where S2 = ΣTΣ is n× n diagonal matrix with diagonal entries σ2
j , j = 1, . . . , n (σj are

singular values of

 A

W

), α is the vector of αjs, and idem for the vector β of βjs. If

 A

W

 has full rank, then S2 is invertible, i.e., σj > 0 for all j = 1, . . . , n. Therefore,

an expression for xγ is obtained as

xγ =
n∑
j=1

αj − γβj
σ2
j

vj. (2.13)

Now, if sγ(xγ) remains constant at some s for γ ∈ (0, γ∗], one has

lim
γ→0

xγ =
n∑
j=1

αj
σ2
j

vj ≡ x#.

Now, consider the linear system of equations

(ATA+W)d = s

for γ ∈ (0, γ∗] (i.e., the range of γ where the sign vector remains constant). By the

44

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

analysis above and under the full rank assumption on

 A

W

, one has

d =
n∑
j=1

βj
σ2
j

vj.

Hence, using the expression (2.13) for xγ gives

xγ + γd = x#.

Combining the above with Proposition 1, one obtains the result below. Let Xγ denote

the set of minimizers of (2.4).

Proposition 3 If Xγ is a singleton and sγ(xγ) remains constant for γ ∈ (0, γ∗], and

then

xγ + γd = x0,

where d solves

(ATA+W γ(xγ))d = sγ(xγ),

and x0 solves (2.2).

Proof: If Xγ is a singleton for sufficiently small γ > 0 then the

 A

W γ(xγ)

 has

full rank. Then using the sign constancy, the result follows from the previous analysis,

Corollary 1 and Proposition 1.

Proposition 3 implies that if for γ > 0 sufficiently small one has uniqueness of the mini-

mizer and the sign constancy condition satisfied then one can zoom along to a solution

of problem (2.2) from a solution of (2.4) after solving a system of linear equations. Note

that we used SVD only for the sake of analysis. In actual computation one does not need

45

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

to compute the SVD. A more economical factorization of

 A

W γ(xγ)

 (e.g., QR) can

be used.

Before exploring further the property of sign constancy and ties between the solutions

to (2.2), (2.4) and the sparsest solution, we shall first weaken the uniqueness condition

on xγ in Proposition 3. To do this we need to study the dual problem to (2.4). First,

let us observe that the dual problem to (2.4) is the following strictly concave quadratic

optimization problem:

max
ξ
{−γ

2
ξT (Im + AAT)ξ + bT ξ : ‖AT ξ‖∞ ≤ 1}, (2.14)

with a unique solution, ξγ. Optimality conditions for the pair of primal-dual problems

imply the following relations between a solution xγ to (2.4) and the dual solution ξγ:

AT ξγ =
1

γ
W γ(xγ)xγ + sγ(xγ), (2.15)

1

γ
ξγ = b− Axγ. (2.16)

Furthermore, by a classical result of [29], for sufficiently small γ > 0, we have that

ξγ = ξ∗ is the least weighted-norm solution of the dual problem (2.3) using the norm

term ‖(
I

AT
)x‖2 after viewing the dual problem above as

max
ξ
{−γ

2
‖(

I

AT
)ξ‖2

2 + bT ξ : ‖AT ξ‖∞ ≤ 1}.

46

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

I.e., ξ∗ solves the problem

min
ξ∈Ξ0
‖(

I

AT
)ξ‖2.

2.3 Extreme Points and Extrapolation

Now recall that x is an extreme point of Xγ if and only if x = λy + (1− λ)z implies

x = y = z for any λ ∈ (0, 1).

Lemma 3 x is an extreme point of xγ if and only if

 A

W γ(x)

 has full rank.

Proof: We proceed as in [30]. Suppose that x ∈ Xγ and

 A

W γ(x)

 has

rank less than m. Then there exists a vector u ∈ Rn, not identically zero, such that A

W γ(x)

u = 0. Now we can pick an ε > 0 sufficiently small such that (x± εu)i > γ

for all i such that xi > γ and (x ± εu)i < −γ for all i such that xi < −γ. Observe that

A(x±εu) = Ax and W γ(x)(x±εu) = W γ(x)x. Thus, we have sγ(x±εu) = sγ(x). Hence,

both x±εu satisfy (2.10) and we get that both x±εu ∈ Xγ. Since x = 1
2
(x+εu)+ 1

2
(x−εu)

with u 6= 0, x is not an extreme point of Xγ.

Suppose x ∈ Xγ and

 A

W γ(x)

 has rank m. If y, z ∈ Xγ are such that x =

λy + (1 − λ)z for some λ ∈ (0, 1) then by (2.15) we have γ(AT ξγ)i = xi if and only if

yi = zi = γ(AT ξγ)i. Thus we have W γ(x)x = W γ(x)y = W γ(x)z. By (2.16) we have

γ(b−Ax)i = ξγi if and only if γ(b−Ay)i = ξγi = γ(b−Az)i, which implies Ax = Ay = Az.

Hence we have

 A

W γ(x)

x =

 A

W γ(x)

 y =

 A

W γ(x)

 z, which in turn implies

that x = y = z. Therefore, x is an extreme point of Xγ.

47

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

Using the above lemma and the analysis leading to Proposition 3, we can state directly

the extrapolation property even in the absence of uniqueness of the minimizer, provided

the sign vector associated with an an extreme point minimizer remains constant for

sufficiently small γ.

Proposition 4 Let xγ be an extreme point minimizer of (2.4) for γ ∈ (0, γ∗]. If sγ(xγ)

remains constant for γ ∈ (0, γ∗], then

xγ + γd = x0,

where d solves

(ATA+W γ(xγ))d = sγ(xγ),

and x0 solves (2.2).

It turns out that we can weaken the conditions used in the analysis of the present section

even further.

Lemma 4 For every instance of the problem there exists a sign vector s and correspond-

ing W where for all γ there is a γ′ ≤ γ and a corresponding solution xγ
′

such that

sγ
′
(xγ

′
) = s and W γ′ = W .

Proof: Each sign vector s ∈ {0,±1}n so the set of possible sign vectors, denote it

by S, is finite (likewise set of possible W matrices is also finite). Assume the contrary,

let γs be such that for γ < γs and for all solutions xγ we have s(xγ) 6= s. Since set S is

finite then for γ < γ̄ = mins∈S γs no sign vector can survive. However ∀γ ≤ γ̄ we have a

solution set and for every extreme point xγ of this solution set we have s(xγ) ∈ S hence

a contradiction.

This lemma shows that even if the minimizer of (2.4) is not unique there exists a sign

48

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

vector and W matrix corresponding to an extreme point of the solution set for arbitrarily

small γ. Then we can relax Proposition 3 as follows.

Proposition 5 For sufficiently small γ∗ for every γ ≤ γ∗ any extreme point of Xγ will

satisfy

xγ + γd = x0,

where d solves

(ATA+W γ(xγ))d = sγ(xγ),

and x0 solves (2.2).

Proof: For every extreme point of Xγ the corresponding

 A

W γ(xγ)

 has full

rank. Moreover for small enough γ∗ only the infinitely repeating sign vectors remain

that is if s = s(xγ∗) where xγ
∗

is an extreme point of Xγ∗ then for all γ ≤ γ∗ there exists

a γ′ ≤ γ such that s = s(xγ
′
). The proof then follows from analysis of Proposition (3).

2.4 Sign Constancy and Ties Among Solutions

Now, we shall turn to the question of sign constancy and ties among various solutions.

Definition 1 A dual optimal solution to (2.3) is called non-degenerate if there exists a

primal optimal solution x∗ such that the following conditions hold:

(AT ξ∗)i = 1 =⇒ x∗i > 0,

(AT ξ∗)i = −1 =⇒ x∗i < 0,

|(AT ξ∗)i| < 1 =⇒ x∗i = 0.

49

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

For any sign vector, we define κ+
s = {i : si = 1}, and κ−s = {i : si = −1} with

κs = κ+
s ∪ κ−s , and κ0

s = {i : si = 0}.

Proposition 6 Let x0 be a unique solution to (2.2) with s0 = s(x0) and xγ be the unique

minimizer of (2.4) with dual solution ξ∗ non-degenerate for sufficiently small γ > 0.

Then, there exists γ∗ such that sγ(xγ) remains constant for γ ∈ (0, γ∗].

Proof: Since for sufficiently small γ > 0 the unique xγ → x0 by Theorem 1, we have

|xγi | > γ for i ∈ κs0 and sufficiently small γ > 0. Because ξ∗ ∈ Ξ0 for sufficiently small

γ > 0 and by the non-degerenacy assumption, we have from (2.15) that |xγi |/γ < 1 for

i ∈ κ0
s and γ sufficiently small.

For the next result, we use s0 ∈ {0,±1}n defined before with the diagonal matrix W 0(.)

derived from s0(.) using W 0
ii = 1− (s0

i)
2 for i = 1, . . . , n, as before.

Proposition 7 Let x0 be a (sparse) solution of Ax = b with s = s0(x0) and W = W 0(x0).

If there exists a solution d to the system of linear equations:

(ATA+W)d = s (2.17)

with the property

‖Wd‖∞ ≤ 1, (2.18)

then there exists γ∗ such that

sγ(x0 − γd) = s

and x0 − γd solves (2.4) for γ ∈ (0, γ∗]. Furthermore, x0 solves (2.2).

Proof: We can re-write (2.17) as

(ATA+W)d =
1

γ
(ATA+W)x0 −

1

γ
AT b+ s

50

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

for some γ > 0 since Ax0 = b and Wx0 = 0. By simple algebra, rearranging the previous

we obtain

(ATA+W)(x0 − γd) = AT b− γs (2.19)

Now, let δ = min{(x0)i : |(x0)i| 6= 0}. Choose 0 < γ2 < δ such that for γ ∈ (0, γ2] one

has

(x0 − γd)i > γ2 for i ∈ κ+
s ,

(x0 − γd)i < −γ2 for i ∈ κ−s .

Combining the above with (2.18), we have that sγ(x0−γd) = s, and using (2.19) x0−γd

solves (2.4) for γ ∈ (0, γ∗] where γ∗ = γ2.

On the other hand, the fact that there exists a solution d to (2.17) with ‖Wd‖∞ ≤ 1

implies that one can take λ ≡ Ad. Hence, one has ATλ = −Wd + s. But ‖Wd‖∞ =

‖ −Wd‖∞. Hence x0 solves (2.2) by Proposition 1.

If x0 of the previous result also satisfies a slight regularity condition in addition to the

one already presented, then an immediate corollary is obtained as follows.

Corollary 2 Let x0 be a (sparse) solution of Ax = b with s = s0(x0) and W = W 0(x0)

such that

 A

W

 has full rank. If the unique solution d to the system of linear equations:

(ATA+W)d = s (2.20)

has the property

‖Wd‖∞ ≤ 1, (2.21)

then there exists γ∗ such that

sγ(x0 − γd) = s

51

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

and x0 − γd solves (2.4) for γ ∈ (0, γ∗]. Furthermore, x0 solves (2.2).

In particular, the above two results (Proposition 5 and Corollary 2) are valid for a sparsest

solution to the linear system of equations. Hence, they constitute sufficient conditions

for the sparsest solution to be a minimizer of (2.2).

A more substantial sign constancy result is proved below relaxing some of the condi-

tions imposed previously (i.e., non-degeneracy) in the present section.

Theorem 1 Let x0 be a unique solution to (2.2) with s0 = s(x0). If xγ solving (2.4) is

unique for sufficiently small γ then there exists γ∗ such that sγ(xγ) remains constant for

γ ∈ (0, γ∗] with κ+
s0
⊆ κ+

sγ , κ−s0 ⊆ κ−sγ .

Proof: Let x0 be the unique solution to (2.2) with s0 = s(x0). Since the number

of different sign vectors s is finite, there must a exist a sequence of positive numbers

γ1, γ2, . . . , with γk ↘ 0 for k →∞ such that sγ(xγ) is constant for γ = γk for k = 1, 2,

Denote this sign vector by s. Let D = {i : |(AT ξγ)i| = 1} ∩ κs0 , and S = {s ∈ Ŝ : si =

s0i for i /∈ D}. Since xγ → x0 by Theorem 1, we have |xγi | > γ for i ∈ κs0 and sufficiently

small γ > 0. Since ξγ ∈ Ξ0 for sufficiently small γ > 0, we have from (2.15) that

|xγi |/γ < 1 for i ∈ κ0
s0
\ D and γ sufficiently small. Therefore,we must have that s ∈ S

since γk ↘ 0.

Now, consider s (the sign vector that is encountered infinitely many times as defined

above) and its associated diagonal matrix W. Let the SVD factorization of

 A

W

 =

UΣVT and consider the system

(ATA+ W)d = s. (2.22)

52

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

This system is consistent by Lemma 2 since xγ satisfies (2.11). We have, as previously,

dγ =
n∑
j=1

βj
σ2
j

vj

if

 A

W

 has full rank. Since ψi(γ) = −γ(dγ)i is a rational function of γ, it can

only have a finite number of oscillations as γ ↘ 0; hence there exists γ∗1 > 0 such that

either |ψi(γ)| > 1 for γ ∈ (0, γ∗1] or |ψi(γ)| ≤ 1 γ ∈ (0, γ∗1]. If i /∈ κ0
s0

then (x0)i = 0

and (x0)i − γ(dγ)i = ψi(γ). Hence, the ith component of sγ(x0 − γdγ) is constant for

γ ∈ (0, γ∗1]. Since dγ is bounded, the other components of sγ(x0 − γdγ) must also be

constant in some interval (0, γ∗2]. Therefore, sγ(x0−γdγ) is constant for γ ∈ (0, γ∗3] where

γ∗3 = min{γ∗1 , γ∗2}.

Now, let γ = γk ∈ (0, γ∗3] be a value for which sγ(xγ) = s. It follows from the above

development that the unique minimizer xγ is given as x0 − γd.

We can now merge the results of Proposition 3 with Theorem 1 into the following.

Theorem 2 Let x0 be a unique solution to (2.2) with s0 = s(x0). If xγ solving (2.4) is

unique for sufficiently small γ, then

xγ + γd = x0,

where d solves

(ATA+W γ(xγ))d = sγ(xγ).

We have made the assumption that both the solution x0 to (2.2) and a minimizer xγ,

for γ > 0 sufficiently small, to (2.4) are unique. A legitimate question is whether the

uniqueness of x0 implies that of xγ. The answer is negative as the following example

53

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

shows.

Example 1 Let

A =

 1 −1 1/2 −1

0 0 −17 2

 ,

with b = (−1 2)T . The unique solution to (2.2) is x0 = (0 0 0 1)T . For sufficiently small

γ ∈ (0, 0.195], the set of minimizers of (2.4) is the interval between the extreme points

(−γ 2γ − γ/2 1− 17γ/4)T

and

(−2γ γ − γ/2 1− 17γ/4)T .

We can weaken the uniqueness condition of Theorem 1 as shown in the next result.

Proposition 8 Let x0 be a unique solution to (2.2) with s = s0(x0) and W = W 0(x0)

and let s̄ (and W̄derived from s̄) be a sign vector such that κ0
s̄ ⊆ κ0

s with κ+
s ⊆ κ+

s̄ , and

κ−s ⊆ κ−s̄ with

 A

W̄

 having full rank. If the unique solution d∗ to

(ATA+ W̄)d = s̄ (2.23)

has the properties ‖W̄d∗‖∞ ≤ 1, and for all i such that si = 0 and s̄i 6= 0 it holds that

s̄id
∗
i < 0 and |d∗i | > maxj:sj=s̄j=0 |d∗j | then there exists γ∗ such that

sγ(x0 − γd) = s̄

and x0 − γd is an extreme point minimizer of (2.4) for γ ∈ (0, γ∗].

54

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

Proof: Similar to the proof of Proposition 7, we re-write (2.23) as

(ATA+ W̄)d∗ =
1

γ
(ATA+ W̄)x0 −

1

γ
AT b+ s̄

for some γ > 0 since Ax0 = b and W̄x0 = 0. Rearranging the previous we obtain

(ATA+ W̄)(x0 − γd∗) = AT b− γs̄. (2.24)

Now, let δ = min{(x0)i : |(x0)i| 6= 0}. Choose 0 < γ2 < δ such that for γ ∈ (0, γ2] one

has

(x0 − γd∗)i > γ2 for i ∈ κ+
s̄ ,

(x0 − γd∗)i < −γ2 for i ∈ κ−s̄ ,

due to the conditions imposed on d∗. Combining the above with (2.18), we have that

sγ(x0 − γd) = s̄, and using (2.24) x0 − γd solves (2.4) for γ ∈ (0, γ∗] where γ∗ = γ2, and

is an extreme point minimizer.

Example 2 Notice that all conditions of the previous proposition are fulfilled in Example

1. If one takes s̄ = (0 1 0 1)T then one gets d∗ = (1 − 2 1/2 17/4), and for γ small

enough, one obtains the extreme point minimizers (−γ 2γ − γ/2 1 − 17γ/4)T . On

the other hand, if one takes s̄ = (−1 0 0 1)T , one gets the d∗ = (2 − 1 1/2 17/4) and

recovers the extreme points (−2γ γ − γ/2 1− 17γ/4)T for sufficiently small γ.

To conclude the paper, we give a necessary condition for recovery of a sparsest solu-

tion; a similar result is also given in [24] for exact recovery of an individual sparse vector.

The necessary condition gives an unexpected relationship between the sparsest solution

recovery (by recovery it is meant that the sparsest solution should be unique in (2.2))

and the unique solution to (2.14) being the unique solution to (2.3) as well.

55

Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
Chapter 2

Theorem 3 Let x̂ be a sparsest solution to Ax = b with ‖x̂‖0 < m. If x̂ solves (2.2)

uniquely then for sufficiently small γ > 0 the unique solution to (2.14) is not the unique

solution to (2.3).

Proof: For sufficiently small γ > 0 the unique solution to (2.14) is the least norm

solution of (2.3). By the theory of linear programming (c.f. [31]), the dual problem (2.3)

admits an extreme point optimal solution ξ∗ with the set A(ξ∗) = {i : |(AT ξ∗)i| = 1}

having at least m elements. If ξ∗ is the unique optimal solution to (2.3) (it is the unique

optimal solution to (2.14)) then by the Goldman-Tucker strict complementarity theorem

(c.f. [32]) and the uniqueness of x̂, the support of x̂ should have cardinality at least m,

which is a contradiction.

2.5 Conclusion and Future directions

In this chapter we have introduced ”penalized Huber-loss” approach to solve the

problem of finding the sparsest solution to a system of underdetermined set of linear

equations. We further showed that the sign constancy condition is not necessary and

one can work with the extreme points to reach the same result. Finding the optimum of

the ”penalized Huber-Loss” function and solving the linear system afterwards are both

computationally cheap hence we are hoping that these results will lead to fast method

for finding the sparsest solution. A future research direction is to analyze the case where

σ is taken close to machine precision and see if the problem is computationally tractable

with convergence guarantees.

56

Chapter 3

Equilibrium on Constrained Trade

Networks

3.1 Introduction

In this final chapter where which is a work in progress, we venture into a topic which

has strong ties to both optimization and Economics. Trades are a fundamental part of

Economies. The basic definition of a trade is buying/selling goods, services etc. We

are interested in trade networks ([33]) where the trades are based bilateral contracts(a

contract between a single buyer and seller). In this model every edge corresponds to

a trade, nodes represent agents and the orientation of the edge identifies ”buyer” and

”seller”. The agents have quasi-linear utilities with associated prices on them. Each

agent can be both a buyer and a seller(which lets us model real life networks accurately).

The goods/services which are indivisible. This leads to edge flows, which represent the

quantity of the trade, being integer valued.

In this model we are interested in the existence of competitive equilibrium(prices that

for the quantities of edge flows which maximizes each agent’s utility clears the mar-

57

Equilibrium on Constrained Trade Networks Chapter 3

ket). In ([33]) it was established that if agents’ preferences satisfy full substitutability

condition competitive equilibrium exists. Full substitutability is a generalization of gross-

substitutes property introduced by Kelso-Crawford([34]). Gross substitute property is

proven to be equivalent to valuations being M] concave (Fujishige-Yang, [35],Murota-

Tamura[36]).

In this chapter we are going to give results on our ongoing work. We assume that agent’s

utilities are quasi-lineaer with non-linear part being M] concave. In the previous work

we have mentioned so far, the model only considers independent capacity constraints on

each edge(contract). We investigate the existence of Competitive equilibrium under more

complex constraints over the contracts.

3.1.1 Contributions

Our contributions so far are as follows. We first give a counterexample which demon-

strates that if the feasible set of link flows is a polymatroid then there may not exists a

Competitive equilibrium. We then prove that if the set of feasible net flows is a polyma-

troid then we have an integral optima to the SMFP with complex constraints and that

may lead to existence of Competitive Equilibrium. We finally focus our attention to the

case where for each node the set of feasible outgoing/incoming link flows is a polymatroid

and we give an example of a trade network formulation which guarantees Competitive

Equilibrium.

3.2 Discrete Convexity

Although we are going to be focusing on M-convexity we should start from Discrete

convexity which is in some sense the extension of the concept of convexity to the discrete

domain. For a comprehensive treatment of the subject the reader should refer to Murota

58

Equilibrium on Constrained Trade Networks Chapter 3

[37]. The first question is ”what qualifies as a ”convex” function in the discrete domain?”.

A discrete function f : Zn → R is said to be convex extensible if there exists a convex

function f̂ : Rn → R such that for all x ∈ Zn we have f(x) = f̂(x). This definition

seems like a natural way of defining convexity for the discrete domains however it fails

to capture the desirable properties of Convexity such as

• Any local minimum being a global minimum

• Separating hyperplane theorem

• Duality

. These properties require locality conditions on the functions which are much stronger

than just convex-extensibility (except the 1-dimensional domain in which case these prop-

erties carry over trivially).

3.2.1 Integral Convexity

We can write the convex-extension more formally as follows(the intersection of the

supporting hyperplanes of the epigraph).

f̂(x) = min{
∑
z

λzf(z)‖
∑
z

λzz = x, 0 ≤ λz ≤ 1,
∑
z

λz = 1}

As we said earlier we need a stronger locality condition. We will start by restricting our

attention to the nearest neighbours of every point.

Definition 6 f̃(x) = min{
∑

z∈N(x) λzf(z)‖
∑

z∈N(x) λzz = x, 0 ≤ λz ≤ 1,
∑

z λz = 1}

will be called the convex envelope of function f where N(x) = {z‖−1 < xi−zi < 1,∀i}

59

Equilibrium on Constrained Trade Networks Chapter 3

Convex envelope is the continuous extension of the function where we are just using

convex combinations of each point’s immediate integral neighbors’ function values defined

by N(x)) to create the envelope function. One can observe that while convex extension

always led to a convex function this convex envelope need not.

We are going to call a function integrally-convex if its convex-envelope is also convex(it

will be equal to its convex extension).

Definition 7 A discrete function f : Zn → R is integrally convex if its convex-

envelope is convex.

Integral convexity is much stronger and for all integrally convex functions local min-

imum has to be a global minimum. Although this is very promising integral convexity

itself still may not always be enough for creating fast algorithms since the neighbors of

a point will still increase exponentially w.r.t. the dimension of the domain.

The set definition can be similarly given as follows.

Definition 8 A set M is called an integrally convex set if there exist an integrally convex

indicator function f such that M = {x‖f(x) = 1}

The figure (3.1) from (Moriguchi [38]) shows the difference between convex and inte-

grally convex sets nicely.

3.2.2 L-Convexity

A stronger notion then integral convexity is L-convexity. The idea is the approxima-

tion of the mid point between two points which may or may not be an integer.

60

Equilibrium on Constrained Trade Networks Chapter 3

Figure 3.1: a is integrally convex, b and c are not

Figure 3.2: Midpoint Convexity (Murota)

Definition 9 A discrete function f : Zn → R is called L-convex if for all p, q ∈ Zn it

satisfies the following.

f(p) + f(q) ≥ f(bp+ q

2
c) + f(dp+ q

2
e)

In figure 3.2 the idea behind the Midpoint convexity is demonstrated where the average

of two points is compared to the approximation of the mid point.

61

Equilibrium on Constrained Trade Networks Chapter 3

Figure 3.3: A simple exchange between two points x and y

3.3 M-Convexity

After introducing some other locality conditions we arrive at the condition that we

will use in this chapter which is M − convexity. Our definitions here are due to Kazuo

Murota.

For all δ ∈ Zn we define supp+(δ) = {i‖δi > 0} and supp−(δ) = {i‖δi < 0}. The notion

of M − convexity is based on the exchanges between the sets supp+ and supp−. Let’s

start by defining the ”M-convex” set.

Definition 10 A set B ⊆ Zn is called ”M-convex” if for all x, y ∈ B and foll all

u ∈ supp+(x− y) there exists a v ∈ supp−(x− y) such that x− χu + χv and y + χu − χv

are both in the set B.

In definition (10) χu refers to the basis vector where uth element is one and all others

are zero. A sample exchange can be seen in figure (3.3).

M-convex functions are defined similarly in (11).

Definition 11 A function f : Zn → R for an M-convex domain B is called to be M-

convex if for all x, y ∈ B , ∀u ∈ supp+(x − y) there exists a v ∈ supp−(x − y) such

62

Equilibrium on Constrained Trade Networks Chapter 3

that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv).

To see the connection of M-convex function to convex functions in the classical sense we

should consider an arbitrary convex function f ,two points x, y in its domain and some

λ ∈ [0, 1]. By definition

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

and

λf(y) + (1− λ)f(x) ≥ f(λy + (1− λ)x).

When we sum them up we get

f(x) + f(y) ≥ f(λx+ (1− λ)y) + f(λy + (1− λ)x).

We switch the points on the right hand side with the exchanges which leads to the

formulation in definition 11. This is somewhat an approximation of a point on the line

segment connecting the points x and y (taking two integer points equal distance from

the line segment and connecting them). M-convexity has strong ties with submodularity.

A submodular set function f is one that satisfies f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for

all S, T ⊆ E.

Theorem 2 For any M-convex set B the function defined as f(S) = max{x(S)‖x ∈ B}

for every S ⊆ E is a submodular function.

Proof: For all S, T ⊆ B take x, y ∈ B such that x(S ∩ T) = f(S ∩ T) and

y(S ∪ T) = f(S ∪ T) and having minimum ‖x− y‖1. For such choice of x, y we have for

all i ∈ S∩T x(i) = y(i), otherwise there is an exchange between x and y for some u ∈ S∩T
63

Equilibrium on Constrained Trade Networks Chapter 3

that is going to lead to an x′ where x′(S∩T) ≥ x(S∩T) and ‖x−y‖1 > ‖x′−y‖1. Then

f(S∩T)+f(S∪T) = x(S∩T)+y(S∪T) = y(S∩T)+y(S∪T) = y(S)+y(T) ≤ f(S)+f(T).

Theorem 2 gives a connection between M-convex functions and integral submodular set

functions. The inverse is also correct(corollary 2).

Corollary 2 If f is an integer valued submodular function then there exists an M-convex

set B such that f(S) = max{x(S)‖x ∈ B}.

3.3.1 M] − Convexity

The definition of M-convexity relies on the exchange between two different elements

yet this can be weakened to cover single element exchanges. We start with the set

definition first.

Definition 12 A set B ⊆ Zn is called ”M]-convex” if for all x, y ∈ B and foll all

u ∈ supp+(x− y) we have one of the following.

• x− χu and y + χu are both in B

• there exists a v ∈ supp−(x− y) such that x− χu + χv and y + χu − χv are both in

the set B.

M] − convex functions are defined as follows.

Definition 13 A function f : Zn → R is called to be M]-convex if for all x, y ∈ B ,

∀u ∈ supp+(x− y) we have one of the following.

• f(x) + f(y) ≥ f(x− χu) + f(y + χu)

• there exists a v ∈ supp−(x−y) such that f(x)+f(y) ≥ f(x−χu+χv)+f(y+χu−χv).
64

Equilibrium on Constrained Trade Networks Chapter 3

The domain of a function f : Zn → R is defined as domf = {x ∈ Zn‖f(x) < ∞}. The

consequence of a function being M]-convex is

Lemma 6 The domain of an M]-convex is an M]-convex.

Some examples of M]-convex. On a M sharp-convex domain the following functions are

M]-convex.

f(x) = a+ bx

f(x) =
∑
i

aix
2
i , ai ≥ 0

3.3.2 Some Properties and Remarks on M/M] Convex func-

tions

Let’s start by giving equivalent definitions of M-convex functions. The netxt lemma

is due to Murota [39].

Lemma 7 (Lemma 2.1, [39])For B ⊆ Zn the following three conditions are equivalent.

• For distinct x, y in B there exists u ∈ supp+(x− y) and v ∈ supp−(x− y) such that

x− χu + χv and y + χu − χv are both in B.

• For distinct x, y in B, for all u ∈ supp+(x− y) there exists v ∈ supp−(x− y) such

that x− χu + χv is in B.

• For distinct x, y in B, for all u ∈ supp+(x− y) there exists v ∈ supp−(x− y) such

that x− χu + χv and y + χu − χv are both in B.

We should note that in lemma 7 the transition from second to third to the first are

somewhat trivial yet the real surprising result is the transition from the first to the

second.

65

Equilibrium on Constrained Trade Networks Chapter 3

By definition M]-convex functions are also M-convex. It is also possible to add a slack

variable and transform M-convex functions into M{]}-convex functions. Some interesting

remarks on M/M] convex functions are as follows.

• Effective domain of M/M] convex functions are M/M] convex sets.

• An M/M] convex function need not stay M/M] convex when its effective domain

is restricted to an arbitrary M/M] convex.

• Sum of M/M] convex functions are not necessarily M/M] convex.

Dual of a function f is defined as f ∗(y) = argmaxx(y
tx−f(x)). For convex functions we

already know that (f ∗)∗ = f . Unsurprisingly this result applies to M-convex functions.

Theorem 3 ([40]) For an M-convex function f : Zn → R and f ∗(y) = argmaxx∈Zn(ytx−

f(x)) we have (f ∗)∗ = f .

We define the base polyhedron of a submodular system as follows.

Definition 14 Base polyhedron of a submodular function f is

{x ∈ R‖E‖‖x(S) ≤ f(S)∀S ⊆ E, x(E) = f(E)}

We have a strong connection between base polyhedra and M-convex sets given as follows.

Theorem 4 [40] Every M-convex set can be represented as the integral points in a base

polyhedron of an integral submodular system.

3.3.3 Examples of algorithms for optimizing M/M]-convex func-

tions

One of the most important properties of M/M]-convex functions is that the local(by

local we mean the points that are at most differ by one in two dimensions) optimum is

66

Equilibrium on Constrained Trade Networks Chapter 3

also a global optimum. This leads to fast , greedy polynomial algorithms for optimizing

such functions. Algorithm 8 is a straightforward extension of steepest descent to M-

convex functions. By searching the 2-depth neighbors as in the steepest descent we also

Algorithm 8: M-convex Steepest descent [40]

f is M-convex, choose x0 ∈ Rn

for k ≥ 0 do
if f(x) = minu,vf(x− χu + χv) then

End and output xk as minimizer
end if
u, v = argmins,tf(xk − χt + χs)
xk+1 = xk − χt + χs

end for

bound the domain that contain the optimizer which leads to the following algorithm.

Algorithm 9: Domain reduction algorithm for M-convex functions[40]

Set B0 = Domf
for k ≥ 0 do

if f(x) = minu,vf(x− χu + χv) then
End and output xk as minimizer

end if
u, v = argmins,tf(xk − χt + χs)
Bk+1 = Bk ∩ {y ∈ ZV ‖y(u) ≤ x(u)− 1, y(v) ≥ x(v) + 1}

end for

Both of these algorithms are polynomial time on the dimension and the size of the

domain.

3.4 M-convex Submodular Flow Problem

Now we shift our attention to networks. We represent a directed graph with the tuple

G = (V,A). The flows on the links are represented as the vector x and net-flows on the

nodes are represented by y.

67

Equilibrium on Constrained Trade Networks Chapter 3

3.4.1 Submodular Flow problem

Let B be the base polyhedron of a submodular integral system. The submodular flow

problem is then defined as follows.

Minimize (3.1)∑
a∈A

x(a)c(a) (3.2)

subject to: (3.3)

k(a) ≤ x(a) ≤ k̄(a), (∀a ∈ A) (3.4)

y(v) =
∑

i∈δ+(v)

xi −
∑

i∈δ−(v)

xi, (∀v ∈ V) (3.5)

y ∈ B (3.6)

The lower and upper bounds on the link flows are represented as functions k and k̄. In

this simplest model the objective is a linear function of link flows, coefficients are given

as c(a), and the netflows are coming from a submodular base polyhedron B.

3.4.2 Optimality Conditions of Submodular Flow problem

The optimality of the Submodular flow problem can be told by looking at the residual

graph defined as follows.

Definition 15 For feasible link flows x and corresponding net flows y in G, auxiliary

graph for the flow problem where we have independent bounds for link capacities is the

weighted directed graph (V,Ares ∪Bres) where

• Ares = {a‖x(a) < k̄a, a ∈ A}
68

Equilibrium on Constrained Trade Networks Chapter 3

• Bres = {−a‖x(a) > ka, a ∈ A}

and ∀e ∈ Ares the link cost is c(e) , ∀e ∈ Bres the link cost is −c(−e).

A link flow x and net flow y is optimal if and only if there are no negative cost cycles in

the residual graph defined in 15. This follows from the standard optimality condition for

networks and the objective being linear.

3.4.3 M-convex Submodular flow problem

As we are going to see, the preferences of agents in our problem can not be represented

as a linear function. To address this problem the following M-convex Submodular Flow

problem is proposed by (Candogan,Epitropou,Vohra [41]).

Minimize (3.7)∑
a∈A

x(a)σ(a) + f(y) (3.8)

subject to: (3.9)

c(a) ≤ x(a) ≤ c̄(a), (∀a ∈ A) (3.10)

y(v) =
∑

i∈δ+(v)

xi −
∑

i∈δ−(v)

xi, (∀v ∈ V) (3.11)

y ∈ B (3.12)

An important note here is that f : B → R is an M-convex function(and by definition its

domain is the base polyhedra B itself).

69

Equilibrium on Constrained Trade Networks Chapter 3

3.4.4 Optimality Conditions for the M-convex Submodular Flow

problem

The optimality conditions for the M-convex flow problem is also connected to negative

cycles and in auxiliary graph which is an extension of the residual graph. Although

as we are going to see the conditions are more complex here compared to the simpler

submodular flow problem.

Definition 16 For feasible link flows x and corresponding net flows y in G, auxiliary

graph for the flow problem where we have independent bounds for link capacities is the

weighted directed graph (V,Aaux ∪Baux ∪ Caux) where

• Aaux = {a‖x(a) < k̄a, a ∈ A}

• Baux = {−a‖x(a) > ka, a ∈ A}

• Caux = {(u, v)‖u, v ∈ V, f(y − χv + χu)− f(y)}

and the corresponding link costs are

cauxa (x, y) = (3.13)

c(a), a ∈ Aaux (3.14)

− c(−a), a ∈ Baux (3.15)

f(y − χv + χu)− f(y), a ∈ Caux. (3.16)

(3.17)

Since we have an additional non-linear component in the objective function, in the aux-

iliary graph we create new link according to the change in the function. For this formu-

lation the optimality conditions are given as follows.

70

Equilibrium on Constrained Trade Networks Chapter 3

Theorem 5 (Murota [39]) The following three conditions are equivalent.

• (x, y) is an optimal solution to M-convex Submodular Flow Problem.

• There is no negative cycle in Gaux(x, y)

• There exists a vector p ∈ R‖V ‖1 such that for all (u, v) ∈ A we have

1. c((u, v)) + pu − pv > 0→ x((u, v)) = k(u,v)

2. c((u, v)) + pu − pv < 0→ x((u, v)) = k̄(u,v)

3. moreover f(y)− pty ≤ f(y′)− pty′ for all y′ ∈ ZV .

The second condition shows that the connection between the existence of negative cycles

and optimality is still valid. The third condition is the result of optimality conditions

w.r.t. Lagrangian duality (the vector p is the dial variables for the M-convex submodular

flow problem).

3.5 Economics Background

At this point we have gone through most of the optimization background that we are

going to make use of in this chapter. Now we turn our attention to Economics side of

the problem.

One of the major questions in economics, is what point (a point is a combination of

variables such as price, allocation, flows...) the economy will converge and become

balanced. At such a point, in the absence of externalities system will stay put. For

example Nash equilibrium is very important because at such an equilibrium no agent

will have any incentive to deviate from their strategy assuming the rest of the agents

stay. It is not possible to review all of the concepts regarding equilibrium in this chapter.

71

Equilibrium on Constrained Trade Networks Chapter 3

For fundamentals of Game Theory reader should refer to (Osborne,Rubinstein [42]) for

a gentle introduction and (Fudenberg,Tirole [43]) for a through treatment.

3.5.1 Competitive Equilibrium

In a trade network where the agents are both sellers and buyers, are in constant

competition. The utility of each agent is the sum of its profits for the goods it sells

and the utility it receives from the goods it has. For such agents we are going to define

competitive equilibrium as follows.

Definition 17 In a trade network, net flows y corresponding link flows x and the price

on link flows p constitute Competitive Equilibrium if the following two conditions are

satisfied.

• For every agent(node) x, y, p maximizes its utility.

• Market clears, that is the amount of goods produced is equal to the goods purchased.

Since the trade networks we are considering are based on competition another important

property that we will be assuming is the goods being gross substitutes.

3.5.2 Gross substitutes property

The demand goods, in this case each link represent the selling and buying of a par-

ticular good, are related to prices as follows.

Definition 18 At a competitive equilibrium, when the price of a particular good increases

while the remaining prices stay the same, the demand for that good decreases and the

demand for the remaining goods increases or stay the same.

72

Equilibrium on Constrained Trade Networks Chapter 3

Here an important remark is that the utility functions of agents areM] concave if and only

if the gross substitutes property is satisfied (Yang,Fujishige[35]). This further justifies

the validity of the trade network model we are investigating here. One of the benefits of

gross substitutes property is that once it is satisfied the prices that lead to Competitive

Equilibrium can be computed in polynomial time via ”Tattonement process”

Definition 19 Let d(p) be the demand function (in this case it outputs the link flows x),

the Tattonement procedure is defined as follows.

1. Start with a small enough price vector which guarantees excess demand for all goods

2. Compute the demand d(p)

3. If there is no excess demand for any of the goods then stop.

4. Else pick a good with excess demand and increase its prices by a small amount.

Return to step 2.

Theorem 6 Let d(p) be the demand function for prices p. If gross substitutes and the

following conditions are satisfied then Tattonement procedure achieves Competitive equi-

librium.

• The demand function is homogeneous, d(αp) = d(p)

• Walras’s law is satisfied , pTd(p) = 0.

These are optimality conditions for a convex function. The procedure was introduced

by Walras for auctions, the auctioneer announced the prices , collected the demands

and kept increasing prices until there is no excess demand(prices are increased at small

enough increments so demand is equal to the supply), at this last step the trades are

executed.

73

Equilibrium on Constrained Trade Networks Chapter 3

3.5.3 Representing Trade Networks with simple constraints as

M-convex Submodular Flows

Here we will demonstrate how trade networks with simple constraints can be repre-

sented by an instance of M-convex Submodular Flow Problem by following the footsteps

in [41]. In a trade network every node represents an agent while every edge represents

a trade. The network is a multi-graph since there may be different contracts between

agents.

For every agent i each trade it is involved in is an edge from or towards i. The set of

trades agent i is involved in is a characteristic vector yi such that if a trade e ∈ δ(i)

occurs, yie = 1 for e ∈ σ+(i) and yie = −1 for e ∈ σ−(i). For trades that can have varying

number of goods, for each possible trade we add a parallel link to the corresponding

nodes.

The utility function of an agent i, call it wi, is defined on the possible set of trades that

involves i and is M-concave. For our transformation we create two new nodes vie, v
k
e for

every possible trade e from agent i to agent k. Now every agent has a set of nodes which

corresponds to the trades it is involved in, that is V i = {vie‖i ∈ N, e ∈ δ(i)}. A remark

on the utility function here is that wi(y) = −∞ if yie /∈ {−1, 0, 1} for some trade e ∈ δ(i)

this lets us take the individual capacity bounds on the links k̄ =∞ and k = −∞.

3.5.4 Some results regarding Trade Networks with simple con-

straints

Now that we have established a transformation from Trade networks to MSFP we

will go over some immediate consequences which are established in [41].

Theorem 7 (Thm 4.1 in [41])In 3.1 if there is no bound for link capacities and the

74

Equilibrium on Constrained Trade Networks Chapter 3

utility is a separable M-convex function then there exists a competitive equilibrium.

Proof: This result follows from the optimality conditions given in 5. If the link

capacities are not bounded then the dual variable p will be the same for both of the end

nodes of an edge. The final condition given f(y) being separable shows that the resulting

net flows will be optimum for every agent. Together we conclude that the p and x, y

constitutes a competitive equilibrium where p are the prices we are looking for.

Corollary 3 In trade networks with simple constraints there exists a Competitive Equi-

librium.

This from the transformation having unbounded link capacities and theorem 7

Definition 20 And outcome is efficient if it maximizes
∑

i f(y) in the Submodular Flow

problem.

The following theorem shows that competitive equilibrium is also efficient.

Theorem 8 (thm 4.2 in [41])Under the conditions in theorem 7 the Competitive Equi-

librium is efficient.

The proof again follows from the last optimality condition of 5. At this point we should

remind the reader that we are interested in the goods/services which are not divisible.

Mathematically this means that we are interested in only integral Competitive Equilib-

rium. Which leads us to the following lemma.

Lemma 8 If the bounds on the link capacities are integer valued then there exist an

integral optimum for the Submodular Flow Problem.

The proof follows from the existence of a negative cycles if the solution is not optimum. If

one starts with an integral x then if there is a negative cycle, because the link capacities

75

Equilibrium on Constrained Trade Networks Chapter 3

are bounded by integers then one can always traverse that negative cycle by a unit flow.

This means that by traversing these cycles by one unit at a time, we can reach the

optimum flow moreover after each traversal the flow will stay integral and the result

follows. We finish this section by stating the following corollary.

Corollary 4 Competitive Equilibrium for trade networks with simple constraints is effi-

cient.

3.6 Networks with complex constraints

So far we have seen that when we have only upper and lower bounds on individual link

capacities then for the trade networks where utilities are separable M-convex functions,

there exists a competitive equilibrium moreover it can be computed in polynomial time.

The question that we want to address in this chapter is what happens when we have

complex constraints on the link capacities. Suppose the node represents a farmer and

there are two different produces he/she wants to sell say apples and oranges. The farmer

is capable of producing 10 tons of apples or 10 tons of oranges each year however it is

not possible to produce 10 tons both at the same time because of the land/labor etc.

limitations. If the farmer is asked to produce both suppose he/she is capable of producing

a total of 15 tons of apples and oranges. The trade network which boils down to the

submodular flow problem can not be used as is for this situation. It is not hard to come

up with examples like this so it is left to the reader to find other examples.

Unfortunately we can not have competitive equilibrium for arbitrary constraints so we

should restrict our attention to a subset of constraints.

76

Equilibrium on Constrained Trade Networks Chapter 3

3.6.1 Polymatroidal Constraints

Now that we have built our foundations we can start presenting our contributions.

We are going to be looking into constraints which restrict the link flows to a polyma-

troid. The farmer we have talked about earlier was having an additional constraint when

he/she wanted to produce both apples and oranges. The total amount of apples and

oranges was less than the sum of the maximum amount of oranges and apples he/she

can produce individually. This example motivates the use of polymatroidal constraints

on the trades(links in the network).

The concept of polymatroidal constraints are first introduced by Lawler ([44]). This

work investigates network flow on a single source and single sink network and establishes

that optimality of a flow on such a network still boils down to not having an augment-

ing path. Moreover for integral polymatroidal constraints the optimal flow will also be

integral. One important note is that in this case the concept of auxiliary graph is non-

existent. Moving on a link under polymatroidal constraints may change the feasible links

afterwards unlike the case of individual capacity bounds on the links. Another important

note here is that in Lawler’s model for each node, the incoming and outgoing links are

coming from separate polymatroids,in other words there are no constraints bounding a

collection of both incoming and outgoing links.

3.6.2 A counterexample for arbitrary Polymatroidal Constraints

The first question we asked was if it was possible to have arbitrary polymatroidal

constraints on the links without taking their orientation into account. That is for the

network with integral polymatroidal constraints can we guarantee to have an integer

efficient flow. As we show in the following counterexample the answer to this question is

negative.

77

Equilibrium on Constrained Trade Networks Chapter 3

Take the simple network given in figure 3.4 where there are 2 agents, N1, N2, and each

agent has one incoming and one outgoing link. The M]-convex utility functions of the

agents are defined as wi as follows.

w1(y1, y2) = (3.18)

0.5 , y1 = 0, y2 = 0 (3.19)

0 y1 = 1, y2 = −1 (3.20)

1 y1 = 1, y2 = 0 (3.21)

1 y1 = 0, y2 = −1 (3.22)

∞ elsewhere. (3.23)

w2(y3, y4) = (3.24)

0.5 , y3 = 0, y4 = 0 (3.25)

0 y4 = 1, y3 = −1 (3.26)

1 y4 = 1, y3 = 0 (3.27)

1 y4 = 0, y3 = −1 (3.28)

∞ elsewhere. (3.29)

Since w1 and w2 are defined on orthogonal domains then their sum f(y) = w1(y1, y2) +

w2(y3, y4) is also M]-Convex. The link flows are bounded by the polymatroid

P = {x‖x1 ≤ 1, x2 ≤ 1, x1 + x2 ≤ 1}.

78

Equilibrium on Constrained Trade Networks Chapter 3

Figure 3.4: Simple Counterexample

Now with slight abuse of notation let y(x) be the net flows on y when we have link flows

x. Then we have f(y(0, 0)) = 1, f(y(1, 1)) = 0, f(y(1, 0)) = f(y(0, 1)) = 2. However

minx∈P f̂(y(x)) ≤ 1/2f(y(0, 0))+1/2f(y(1, 1)) = 0.5 and this is smaller than each integral

feasible flow will lead to a larger objective value. This shows that in this example we can

not have an integral efficient outcome.

This counterexample shows us that we should be focusing our attention to less restricted

cases.

3.7 When set of Net-flows is a polymatroid

Although we have seen that having general polymatroidal constraints on the link

flows may cause a Submodular Flow problem not to have an integral solution, we are

going to prove that if the set of feasible net-flows is a polymatroid then we do have an

integral optimum. This instance of the submodular flow problem can be simplified to the

79

Equilibrium on Constrained Trade Networks Chapter 3

following in this case.

minimize f̃(y) (3.30)

st, y ∈ B (3.31)

where B is an integral polymatroid. Let’s start with a theorem we are going to make use

of in this subsection.

Theorem 9 (Murota,Thm 4.22, [37]) For M-convex sets B1 and B2 the convex closure

of their intersection is equal to the intersection of their convex closures, that is

B̄1 ∩ B̄2 = (B1 ∪B2).

Now let

Bf (x) = {z ∈ N(x)‖∃λ,
∑
z

λz = 1,
∑
z

λzz = x,
∑
z

λzf(z) = ˜f(x)}

where N(x) is the unit cube surrounding point x and as we have defined earlier f̃(x) is

the convex envelope of function f .

Lemma 9 For every M-convex function f and x in the convex hull of the domain f,

Bf (x) is an M-convex set.

Proof: Let x1, x2 ∈ Bf (x). Since f(x) is an M-convex function there exists

u ∈ supp+(x1 − x2) and v ∈ supp−(x1 − x2) such that,

f(x1 − χu + χv) + f(x2 + χu − χv) ≤ f(x1) + f(x2).

80

Equilibrium on Constrained Trade Networks Chapter 3

Now take convex coefficients λ1, λ2 such that
∑

z∈N(x) λ
1
zz =

∑
z∈N(x) λ

2
zz = x and∑

z∈N(x) λ
if(z) = f̃(x) (by definition we have such λi). Then for λ = λ1+λ2

2
we have∑

z λzz = x,
∑

z∈N(x) f(z) = f̃(x), λx1 > 0 and λx2 > 0.

By taking λδ = min{λx1 , λx2} we get the following inequality

f̃(x) ≤ (
∑

z∈N(x)−{x1,x2}

λzf(z))+λδ(f(x1−χu+χv)+f(x2+χu−χv))+(λx1−λδ)f(x1)+(λx2−λδ)f(x2)

≤
∑

z∈N(x)

f(z) = f̃(x).

But then, by definition (x1 − χu + χv), (x2 + χu − χv) are both in Bf (x) hence it(Bf (x))

has to be an M-convex set.

Corollary 5 For every convex coefficient λ such that
∑

z∈Bf (x) λzz = x we have f̃(x) =∑
z λzf(z).

Proof follows trivially from the definition of Bf (x).

Theorem 10 If f is and M-convex function and B is an integral polymatroid then there

exists an integer optimizer for problem 3.30.

Proof: Let x be an optimizer for problem 3.30. If N(x) ⊆ B then we are done

since at least one extreme point of N(x) will also be an optimizer. Else let Fx be the

face of B that contains x. Fx is an M-convex set (as we have seen earlier M-convex sets

are essentially polymatroids).

From lemma 9 we know that Bf (x) is an M-convex set and from theorem 9 we have

x ∈ Fx ∩Bf (x) = (Fx ∪Bf (x)).

81

Equilibrium on Constrained Trade Networks Chapter 3

But then there exists convex coefficients λ such that

∑
z∈(Fx∪Bf (x))

λzz = x.

From corollary 5 we have ∑
z∈(Fx∪Bf (x))

λzf(z) = f̃(x).

But then there exists a y∗ ∈ (Fx ∪ Bf (x)) such that f(y∗) ≤ f̃(x) and since x is an

optimizer, y∗ has to be an optimizer too. Since y∗ is integral this concludes the proof.

This result shows that we may have more complicated constraints on the links and

still have an integral optimum hence may have an integral CE. On the other hand, the

constraints on link flows that will lead to the set of feasible net-flows being a polymatroid

is not clear. We will discuss this later.

3.8 When the set of incoming(or outgoing) links are

a polymatroid

Although link flows can not have arbitrary polymatroidal constraints, the case where

only outgoing (or incoming) link flows are from a polymatroid is a good candidate for

study.

Let gi(S) ≥
∑

j∈S∩δ+i
x(j) be the submodular and integral function that bounds node

i’s outgoing links. Since gi(.) is defined on the outgoing links of i, it is indifferent towards

the flows on the other links, that is gi(S) = gi(S ∩ δ+
i). As before we represent the

net-flows on the node i as y(i) =
∑

j∈δ+i
x(j)−

∑
j∈δ−i

x(j).

Lemma 10 If there are two nodes in the graph and for each node i set of feasible out-

going edge flows is an integral polymatroid defined by a submodular and integer val-

82

Equilibrium on Constrained Trade Networks Chapter 3

ued function gi(.) then the following holds true. Let two feasible flows y, ŷ be such that

y(1) > ŷ(1)(y(2) < ˆy(2)). There exists an edge j such that one of the following holds

true,

• j is from 1 to 2, x(j) > x̂(j) and {x− ej, x̂+ ej} are feasible link flows

• j is from 2 to 1, x(j) < x̂(j) and {x+ ej, x̂− ej} are feasible link flows.

Proof: Observe that for the given net flows we have whether
∑

i∈δ+1
x(i) >

∑
i∈δ+1

x̂(i)

or
∑

i∈δ+2
x(i) <

∑
i∈δ+2

x̂(i). To see the existence of such a link j, let’s focus on the first

case where we have ,
∑

j∈δ+1
x(j) >

∑
j∈δ+1

x̂(j) since the other case is symmetric to this

one. If x is an interior point of the feasible polymatroid then we are done since we can

use any j such that x(j) > x̂(j) and the exchange will be feasible. If x is on a facet of

the polymatroid let X+ = {j : x(j) > x̂(j)} and assume that for any j in X+ , x̂ + ej is

not feasible(otherwise we are done). This means that for all j in X+ we have an Sj ⊆ E

such that

x̂(Sj) = g1(Sj)

and because gi(.) is submodular we further have

x̂(S) = g1(S)

for S = ∪jSj. But then

∑
j∈E

x̂(j) =
∑
j∈E\S

x̂(j) +
∑
j∈S

x̂(j) =
∑
j∈E\S

x̂(j) + g(S) ≥
∑
j∈E\S

x(j) +
∑
j∈S

x(j) =
∑
j∈E

x(j)

which is a contradiction.

83

Equilibrium on Constrained Trade Networks Chapter 3

Corollary 6 10 holds true when the incoming links are bounded by a submodular func-

tion.

The case where incoming links are bounded is symmetric to the original case hence same

argument carries on trivially.

Corollary 7 If there are two nodes in the graph and set of feasible edge flows is an

integral polymatroid defined by submodular and integer valued functions gi(.) then the set

of feasible, integral net flows is an M-convex set.

Proof: Let’s have two net flows y and ŷ. If y = ŷ we are done. Else w.l.o.g. assume

that y(1) > ŷ(1) (y(2) < ŷ(2)). Since gi is supermodular then whether there is an edge

j ∈ δ+
1 such that x(j) > x̂(j) and x−ej, x̂+ej are feasible or there is an edge j ∈ δ+

2 such

that x(j) < x̂(j) and x̂+ej, x−ej is feasible. Then by increasing xj and decreasing x̂j by

one, and vice versa for the opposing case, we get the feasible net flows (y(1)−1, y(2)+1)

and (ŷ(1) + 1, ŷ(2)− 1).

This theorem and its corollaries essentially prove that for two nodes, polymatroidal con-

straints on the incoming/outgoing link flows will lead to the set of feasible net-flows being

a polymatroid hence our result in (10) follows for such constraints.

The next is the case where we have multiple nodes and two net-flows. We show that

when we partition the nodes into two sets where the cumulative net-flows are different

for each set, we still have the exchange property.

Lemma 11 Let set of feasible edge flows be an integral polymatroid defined by submodu-

lar and integer valued functions gi(.) on outgoing links as given earlier. Let {V +, V −} be

84

Equilibrium on Constrained Trade Networks Chapter 3

a partition of V (V + ∪ V − = V and V − ∩ V + = ∅), y and ŷ be two net flows(x, x̂ corre-

sponding edge flows) such that
∑

i∈V + y(i) >
∑

i∈V + ŷ(i) and
∑

i∈V − y(i) <
∑

i∈V − ŷ(i).

Then one of the following is satisfied.

• There exists s ∈ V +, t ∈ V − such that whether {x − ej, x̂ + ej} are feasible for

j = (s, t) or there exists a node a ∈ V + and links j = (a, t),j′ = (a, s) such that

{x− ej + ej′ , x̂+ ej − ej′} are feasible.

• There exists s ∈ V −, t ∈ V + such that whether {x − ej, x̂ + ej} are feasible for

j = (s, t) or there exists a node a ∈ V − and links j = (a, t),j′ = (a, s) such that

{x− ej + ej′ , x̂+ ej − ej′} are feasible.

Proof: Create two supernodes, y+, y− by combining the nodes in set V + and V −(by

combining we mean deleting the interlinks within V + and V − and connecting any link

between them to the created supernodes). For the surviving links define the submodular

function ĝ+(X) =
∑

i∈(V +×V −) gi(X ∩ δ
+
i) and ĝ−(X) =

∑
i∈(V −×V +) gi(X ∩ δ

+
i). By

lemma(10) we know that there exists a j such that j ∈ (V +×V −), x(j) > x̂(j), x−ej, x̂+ej

are feasible under ĝ(.) or vice versa. If x − ej, x̂ + ej (x + ej, x̂ − ej) are also feasible

under g(.) then we are done. Else, wlog consider the first case, because polymatroids

being M − convex we know that there exists a j′ such that x− ej + ej′ , x̂ + ej − ej′ are

feasible. Again if j′ lies in V + then we are done.

Now let’s show that there always exists such an edge j′ in V +. If x̂ + ej is not feasible

then take the minimal saturated set, B, (Lawler’s terminology for the minimal set B such

that x̂(B) = gi(B) where i is the head of link j). B can not be a subset of (V + × V −)

otherwise we have gi(B) = x̂(B) < ĝi(B) = gi(B). Then for any j′ in B (V + × V −) we

have x̂+ ej − ej′ feasible.

85

Equilibrium on Constrained Trade Networks Chapter 3

3.9 An immediate result

Let’s first give a similar representation of trade networks having polymatroidal con-

straints on the outgoing edges.

For every agent i and every incoming edge (trades where i is the buyer) e ∈ δ−(i)create a

new node yie. Create a node yio and for all of the outgoing edges from i(the trades where

agent i is the seller), (i, j) = e ∈ δ+(i) create an edge between yio and yje. What we are

doing here is to multiply the nodes for the buyers for each trade and keeping only one

node for each seller. Each agent i is now represented by a set of nodes {yio} ∪e∈δ−(i) {yie}

and its utility function is wi(y
i) which is indifferent towards net-flows of the nodes of

other agents.

In this formulation, for every i the set Si = {yio} ∪(i,j)∈δ+(i) {yje} is a connected com-

ponent. If we take two different net-flows, y, ŷ, for each z such that y(z) > ŷ(z) there

exists an i such that z ∈ Si. From lemma 11 we know that there exists a z′ ∈ Si whether

x− e(z,z′), x̂+ e(z,z′) or x− e(a,z′) + e(z,a), x̂+ e(a,z′) − e(z,a) are feasible and in both cases

we have a simple exchange between net-flows on z and ẑ. This shows that for this case

the set of net-flows are essentially M-convex.

From theorem 10 we know that for this case we have an integral optima and from the

duality conditions this optima can be supported via a price vector p which shows that

we have competitive equilibrium.

3.9.1 Discussion and Future work

In this chapter we have laid down some of the results from our ongoing research on

trade networks with complex constraints. We have shown that for the M-convex Sub-

modular Flow problem if the set of net-flows is M-convex then we always have an integral

86

optima. This result by itself is an important one since it shows that we can solve covex-

extended version of the problem via continuous methods to reach an integral solution.

Moreover our lemma 11 shows that for some networks where we have polymatroidal con-

straints on the outgoing link constraints this still leads to set of net-flows being M-convex.

As we have seen in the previous section such a result can be used to show the existence

of Competitive equilibrium.

This work is far from over though. The main objective is to come up with a general

existence result for polymatroidal constraints which we believe is an interesting question

and probably has a positive answer to it.

87

Bibliography

[1] B. T. Polyak, Some methods of speeding up the convergence of iteration methods.,
USSR Computational Mathematics and Mathematical Physics 5 (1964), no. 4 1–17.

[2] Y. Nesterov, A method of solving a convex programming problem with convergence
rate o (1/k2), in Soviet Mathematics Doklady, vol. 27, pp. 372–376, 1983.

[3] W. Su, S. Boyd, and E. J. Candes, A differential equation for modeling nesterov’s
accelerated gradient method: theory and insights, Journal of Machine Learning
Research 17 (2016), no. 153 1–43.

[4] P. Giselsson and S. Boyd, Monotonicity and restart in fast gradient methods, in
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on,
pp. 5058–5063, IEEE, 2014.

[5] B. O’donoghue and E. Candes, Adaptive restart for accelerated gradient schemes,
Foundations of Computational Mathematics 15 (2015), no. 3 715–732.

[6] A. C. Wilson, B. Recht, and M. I. Jordan, A lyapunov analysis of momentum
methods in optimization, arXiv preprint arXiv:1611.02635 (2016).

[7] J. Bolte, S. Sabach, and M. Teboulle, Proximal alternating linearized minimization
for nonconvex and nonsmooth problems, Mathematical Programming 146 (2014),
no. 1-2 459–494.

[8] K. Hou, Z. Zhou, A. M.-C. So, and Z.-Q. Luo, On the linear convergence of the
proximal gradient method for trace norm regularization, in Advances in Neural
Information Processing Systems, pp. 710–718, 2013.

[9] Z. Zhou, Q. Zhang, and A. M.-C. So, 1,p-norm regularization: Error bounds and
convergence rate analysis of first-order methods., in ICML, pp. 1501–1510, 2015.

[10] N. Arkadi and A. Ben-Tal, Lectures on modern convex optimization, .

[11] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical
Programming 103 (2005), no. 1 127–152.

[12] P. J. Huber, Robust statistics. Springer, 2011.

88

[13] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis
pursuit, SIAM review 43 (2001), no. 1 129–159.

[14] K. Bryan and T. Leise, Making do with less: An introduction to compressed
sensing, Siam Review 55 (2013), no. 3 547–566.

[15] E. Candes and T. Tao, Decoding by linear programming, arXiv preprint
math/0502327 (2005).

[16] D. L. Donoho et. al., Compressed sensing, IEEE Transactions on information
theory 52 (2006), no. 4 1289–1306.

[17] D. L. Donoho, For most large underdetermined systems of linear equations the
minimal l1-norm solution is also the sparsest solution, Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of
Mathematical Sciences 59 (2006), no. 6 797–829.

[18] M. Elad, Sparse and redundant representations: from theory to applications in
signal and image processing. Springer Science & Business Media, 2010.

[19] S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing,
Bull. Am. Math 54 (2017) 151–165.

[20] D. Singaraju, R. Tron, E. Elhamifar, A. Y. Yang, and S. S. Sastry, On the
lagrangian biduality of sparsity minimization problems, in 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3429–3432,
IEEE, 2012.

[21] S. Chretien, An alternating l 1 approach to the compressed sensing problem, IEEE
Signal Processing Letters 17 (2009), no. 2 181–184.

[22] J.-J. Fuchs, On sparse representations in arbitrary redundant bases, IEEE
transactions on Information theory 50 (2004), no. 6 1341–1344.

[23] B. Chen, K. Madsen, and S. Zhang, On the characterization of quadratic splines,
Journal of optimization theory and applications 124 (2005), no. 1 93–111.

[24] M. Ç. Pinar, Necessary and sufficient conditions for noiseless sparse recovery via
convex quadratic splines, SIAM Journal on Matrix Analysis and Applications 40
(2019), no. 1 194–209.

[25] K. Madsen and H. B. Nielsen, A finite smoothing algorithm for linear l 1
estimation, SIAM Journal on Optimization 3 (1993), no. 2 223–235.

[26] K. Madsen, H. B. Nielsen, and M. Ç. Pinar, New characterizations of l1 solutions
to overdetermined systems of linear equations, Operations Research Letters 16
(1994), no. 3 159–166.

89

[27] K. Madsen, H. B. Nielsen, and M. Ç. Pinar, A finite continuation algorithm for
bound constrained quadratic programming, SIAM Journal on Optimization 9
(1998), no. 1 62–83.

[28] I. Selesnick, Sparse regularization via convex analysis, IEEE Transactions on
Signal Processing 65 (2017), no. 17 4481–4494.

[29] O. L. Mangasarian and R. Meyer, Nonlinear perturbation of linear programs, SIAM
Journal on Control and Optimization 17 (1979), no. 6 745–752.

[30] W. Li and J. Swetits, The linear l 1 estimator and the huber m-estimator, SIAM
Journal on Optimization 8 (1998), no. 2 457–475.

[31] D. Bertsimas and J. Tsitsiklis, Introduction to linear programming, Athena
Scientific 1 (1997) 997.

[32] A. Williams, Complementarity theorems for linear programming, SIAM Review 12
(1970), no. 1 135–137.

[33] J. W. Hatfield, S. D. Kominers, A. Nichifor, M. Ostrovsky, and A. Westkamp,
Stability and competitive equilibrium in trading networks, Journal of Political
Economy 121 (2013), no. 5 966–1005.

[34] A. S. Kelso Jr and V. P. Crawford, Job matching, coalition formation, and gross
substitutes, Econometrica: Journal of the Econometric Society (1982) 1483–1504.

[35] S. Fujishige and Z. Yang, A note on kelso and crawford’s gross substitutes
condition, Mathematics of Operations Research 28 (2003), no. 3 463–469.

[36] K. Murota and A. Tamura, New characterizations of m-convex functions and their
applications to economic equilibrium models with indivisibilities, Discrete Applied
Mathematics 131 (2003), no. 2 495–512.

[37] K. Murota, Discrete convex analysis. SIAM, 2003.

[38] S. Moriguchi, K. Murota, A. Tamura, and F. Tardella, Scaling, proximity, and
optimization of integrally convex functions, Mathematical Programming 175
(2019), no. 1-2 119–154.

[39] K. Murota, Submodular flow problem with a nonseparable cost function,
Combinatorica 19 (1999), no. 1 87–109.

[40] K. Murota, Recent developments in discrete convex analysis, in Research Trends in
Combinatorial Optimization, pp. 219–260. Springer, 2009.

[41] O. Candogan, M. Epitropou, and R. V. Vohra, Competitive equilibrium and trading
networks: A network flow approach, in Proceedings of the 2016 ACM Conference
on Economics and Computation, pp. 701–702, ACM, 2016.

90

[42] M. J. Osborne and A. Rubinstein, A course in game theory. MIT press, 1994.

[43] D. Fudenberg and J. Tirole, Game theory, 1991, Cambridge, Massachusetts 393
(1991), no. 12 80.

[44] E. L. Lawler and C. U. Martel, Computing maximal “polymatroidal” network flows,
Mathematics of Operations Research 7 (1982), no. 3 334–347.

91

	Curriculum Vitae
	Abstract
	Convergence rate of Restarted Moment based Algorithms
	Introduction
	Preliminaries
	Why Momentum Based Methods?
	General Restarted Momentum Based Gradient Descent
	Gradient-Mapping restart condition
	Convergence rate of Momentum based Gradient Descent with Gradient-Mapping restart
	Extension to Accelerated Gradient update rule
	Cone based restart
	An algorithm for Non-smooth functions
	Conclusions

	Sparsest Solution to an Underdetermined System of Linear Equations via Penalized Huber Loss
	Introduction
	An Extrapolation Procedure
	Extreme Points and Extrapolation
	Sign Constancy and Ties Among Solutions
	Conclusion and Future directions

	Equilibrium on Constrained Trade Networks
	Introduction
	Discrete Convexity
	M-Convexity
	M-convex Submodular Flow Problem
	Economics Background
	Networks with complex constraints
	When set of Net-flows is a polymatroid
	When the set of incoming(or outgoing) links are a polymatroid
	An immediate result

	Bibliography

