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ABSTRACT

An iterative_v relaxation te<‘:hniq’ue is presented for unfolding three-
dimensional distr.ibutions frém a series of two-dimensional projectiohs
taken at sevexfal different orientations relative to the objecf being in-
Vestigated. ’i‘he achievable résolution is discussed. Analyses of both
computer simultations and actual measurements are‘p:esented. This
type of analysis has applicafions in radioéraphy, eleétron traﬁsmission
microscopy, radiotherapy, and nuclear medicine. Features of the
technique which may make it especially suitable for particular applica-

tions are described.

" This work was done under the é.uspices of the U. S. Atomic Energy
Commission.



1. 'iNT_RthJCTroN :

A series of x-'rayv pictures taken at a‘nunr»lber.of.diffe_rent view, angles
may conté,'in be.:n-ou;gh' informatiorl bto enable one to \reconstruct the full
three'fdimeneio'nel cl_istributiori of absorption coefﬁcierrts in the viewed
object.r Sirnilérly, a series of",_scahe.involv-irlg t'rahsle.tions a.rrd rotations.
of a pa1r of gamrha detec’tors/ m"ay be used to me,p out the diétribution of
:ba pos_it‘ror‘i—e_mittih‘g leotope through a transverse sectiorr of a batient.

On a quite different'soale, tr‘a.nsrnjivssionv electron ‘rhki'cr:o‘g.rabh.s taken at
aeeries of(til_t' eng.les rrlay be used tovreconst_ruct Ithe -threev—dimerl:s_i_onel
underlying str'ucture. ‘Finally, rneasurement of thle ,atveré.ge energ}r loss.
of a high—energy heavy-particle beam passing bthrough a .pat-ient leads to
khowled_ge ‘.o'ivf'the projected stopping power along the beam line. A series E
of such measurerhents at dif:f_'erent tra-hsvvevr's‘e pos'itio'ri:'s e.nd patient
orientation‘s can be used to reconstruct the:a_istribution of stobping power
_ throughout a t‘r'ansver se sectlorl, and this ihforrhé,tion can be\‘ dire'ctl'y '
used-to g’uide:Brégg-—peak ‘r.é.di'othere,in.y’r.

These diverse situations pre'sent the same corhputetional .problem.'

. We offer here a new method of analyzing;the broblem, ueing‘ an lterative
relaxation tech-nlqué. A discus sion of the relative ‘r’n,erits of this and the
- other ava11ab1e mathemat1cal models '-3) i_s deferred until after the . de-
scr1ptlon -of the Ihethod . | | |

It is self ev1dent that the three d1mens1onal problem can be broken '

up into a ser1es of two d1mens1onal problems by cons1der1ng separately-

. a series of " shces”. .thr'ough th_e s'canned o_bJect._ We_make this -_s1mp11f1— :

cation in all the eomput‘ational examples pre sented here and in 'otirtreat—u
‘ment of resolution.. However, ‘nothing in the mathematics of the analysis



implies such a limitation.
The basie series of measurements is illustrated schematically
in fig. 1. It consists of a series of scans taken at a number of different
angles rela',tiv_e'.t'o the object to be examined. Eech scan comprises a
series of measurements of the projected density along a number of
discrete trvansve_rvsely separated lines. - of course, in some applications,
the scan is almost confinubue_. In such a case we aésume the information
is '""binned" into a number of discre‘te rneaéur'ements. |
In the technique to be described there is nothing which requires the

sean to be ta_k_'en at regular intervals of either angle or position. Indeed,
there is no fequirement that the scan-lines be parallel with one another,
or even that‘the mea-sured projections be along sti‘aignt lines. Howe've’r,v
for descriptive convenience, we will discuss the problem as though these
conditione hold. |

\ ‘First, we must establish some notation. We divide the space upon
which measn.rernent.s axfe.fo be made into a region within which are N
cells of unknovwn. density, and outside of that region the density is
assumed to be known exactly. That being the cabse, -fhe contribution
from the known density regien can always be calculated and subtracted
from the vmea'silremeflt, a situation equivalent
to having a density of :zerd_outside' the region of unknown density. This

is assumed vte be the case 1n a_xll that follows.

Within each cell the density is assumed to be uniform. This
assumption could be modified, as is discussed later.. The density of the
ith cell is denoted P We consider the N cells as being partitioned in

a Cartesian grid with nXX nY divisions as depicted in fig. 2. This
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particul“a‘r g.rid_.is cvh"osenvonly for Simpiicity.' Other, rriere complie'ated
cell ’p.atterns .cah eé.éiiy be accomrno.dated.

By a " measurement" we mean the result of meesur1ng the line
integral (pro;ectlon) of density along a s1ng1e path. A total of M such
measurements compr1ses a cqmplete scan. In mo_st' examplesv considered
here the‘re are mx tr.e.nsxrersely d}ispl‘a'ced nl’reasgremehts at each of m,
or»ienta_tions , and then ‘M = maxrnx. 'I_‘he value .of ea'(‘_:‘vh .bvrnev'avsurement is
xJ (j =1,M) and the as socie.ted measurement error (standard deviation) .
is 'oj' ‘_We denote‘the theoreticel valge that the _niea_surerhent “s'hould
have (oh the be.‘Sis of éeme as’eumed density‘ distrihutien)- as XJ (xJ. is the

re sult of measurement with attendant erro_rs). It is vés sumed to be related

to the densities through the linear relationship
’ " . . ‘ . .

X. = fjk Pl (3

j =1,M).. ik _ (1)

™M=

1

This linear reletionship rnay not, ef couree, hold for the prim;ry
rheasurernehts_ ma;'de.f ,Ih'that cése the XJ are to be ihterpreted :as.
v'secenda'ry quantities deri\}ed from the'measurements. For e:tarﬂple,' in
" a count1ng detector used 1n‘gamma ray transmlssmn measurements the
Xonuld represent the logarithm of the count rate (normahzed to the
rate Without'ab'sorber).» |

A typicv.al' measurement‘.swathe. is depicted schern‘a.tically. in fig. 2.
AThe interpretation of~the' coefvf_i.c.ientsv'- fjk of eq. ('1.').is -‘that they are the
average path length within the kth cell of the _j_th measurement. The -
aVerage is tak_en; proper_'ly weighted; over the beam profile so as to
teke into accelirlt the e-ffect of beam width. Many_,v Vin_deed most, of the
_fjk w'111_'b.e ze.re:-for reas'ona.bly narrow heams.v ) |

P



2. EXACT SOLUTION

We thus have a linear problem in N unknowns. (i:_he N pi). The
number of degrees of freedom would appear at f'ir_sv,t'sight to be M - N,
but there is a .éori‘ection due to the cofrelation between sets of mea-
surements at different angles. The sum of all measuréments at a givén
angle is a coﬁstént independent of that aﬁgle. Thus there are ma-i con-~ -
straint equat‘ionis and,v hence, D =M - (ma -1) - N_.de..grees of freedom.
Provided D = 0 there can be a sqlution. The 1east—squa-rés solution is

that for which

X,-x,) |
M- T AR @)
o i1 o | .

1
is a minimum. It is trivial to show that this condition is met by the

solution of the N simultaneous linear equations in N unknowns:

N .
1 P =Py (A= LN,
k=1
" where : . M  1 ' -
' B 2 kafji
. 0.
[l
‘and . ' M

These equations can be solved by standard matrix inversion

techniques. We term the resulting solution the " exact solution, "

meaning that it is the resu_lt. of a unique specification with a well-defined

‘unique solution. The trouble is, of course, that the solution of these:

equations involves the inversion of an NXN matrix. For most inter-

esting subdivisions this imposes impossible demands on both core and
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time availabil-ity' in even the largest computers - For example, d1v1d1ng
the object 1nto a modest 15X15 grid would entail inversion of a 225)(225 ' | .
matrix. This. array alone would require more than 50 000 words of core
for storage 'Moreover; even tho‘ugh techniques are .avai'la'ble for handling
matrices which overflow core, it must be remembered that executlon
t1me goes up vw1th roughly the third power of the matr1x, hence, with the |
sixth power of the numbler of cells along the edge of the obJect |
.- ITERATIVE RELAXATION TECHNIQUE

.The solution we have developed to meet -the_ computational inaccessa-
bility of an " exact sohition” .in_volves ‘an iterative 'pro‘cedure'. At -the
st‘art of-'an‘y_ given iteration one has a derisity value vas's_igined.to each cell.
Con_sid'er ‘the _1__th cell and all those projeotions which \involve a contri-
bution fvrom it,-. that is, the small fraction of all the measurements for .
' whioh- fJ #0 (j =1, M). The heart of the technique is to .adjust the . | , ¢
density of -the ith cell in vsuch'a way as best to fit all mea_surveme'nts .
which involve .tha_t_ cell. All otheroells. are as sur_ned to have .the,vfixedv
values assighed at the start of the iteration. The "best fit" is judged
on the basis of a least—squares minimization. , Specifio'ally,. we may re-
write e/q._'(i_)_:.

: N
f.._pi = XJ - 21: fjkpk (J: 1,M). , . | : | - ;
v 1 - B . - )

PT‘?T‘

'Th1s gives M equations in one unknown (p ) although, since many le SR 2
. will be zero (many rneasurements have nothlng to say about a spec1f1c
'cell), there will be far less than M 1nterest1ng equations_.

We find the solution in the least-squates sense by requiring that

S
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2 3 X, - xl)z ' '
,)7’ = Z T be a minimum.
_ 1=1 (o) _

1

This will occur for d"hz/dpi = 0. The solution, which involves only

trivial algebra is then:

M. N
2:@) 1|, ;ff on

A oot n_ TN/ G\ K 3
P; =P P; M 7 )

. £

i

2

1=1 91

where p?+1 is the adj'usted'cell density and p? is the density assumed
‘at the start of the nth iteration.

" 3.1 Damping

One might és sume that one could calculate the N a’&justments

_(Api;_ i=1,N) and apply them to all cells Without further manipulation..
This p.rocedu.re, however, is seriously deficient in tha_;t it leads to a
rapidlyvdiverging solution which blows up after only a few iterations.
The reason for this behavior is easy to see. Consider the situation in
which, on average, the cells have too low a density at the start of an
iteration. As each cell is examined there will be a t.envd’en'cy to increase
its density, over and above the particula’r\adjustment required to im- .

: prove_thé local density vari.ations. This increase is xﬁade assuming all
other cells ‘have the value as signed at the start of the iteration and does
not take intoiaccount the fact that they too will be ir.1cr.eased to account
for the overall léw density. Thus when all cells are adjusted there will

be a vtendency”to 6vercompensate for the overall density deficit. This
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problem will Acléarly lead to increasingly la‘rge ovérs,hoots with suc-
cessiyve iteraﬁoﬁé. : k |
The solution which we have adopted to meet this problem is to in-~
troduc'e’a~n o’veral‘l multiplicative damping factdr, 5. “We then .compute
the densities us;ed as input to the (il—i)th iteration .v(p?-’l-_i')‘_according _fo
the forfnula | | |
n+1

&1

:p?+¢5A'pi,' 7 - | (4)
where Api i‘s the quantity expresvs.ed in eq. (3)-

One mightv'.envisi_on many ways of achie;ring: this .da'.'n.lpi;mg effect. _
We have 'choé en v6 by the requirerﬁent that the overall solutic:;n (involving
all cells) be such that the measuremeﬁts are bési: matched by the‘vne'w.

densities in the least-squares sense. This is the requirement that

: M ' 2 '
> (X - x.) v
‘ ;57 = E ——J—Z—J—— . is a minimum
g. :
j=1 j

which occurs for d’)?zz/d6 = 0. The X'J."are, of 'coui'-éeV, functions of

6 through eqgs. (1), (3), and (4). They may be expressed as

X = n, |

The Solution involves a little algebra and may be conveniently expressed:

j o
(x.-X.)
j=1 0? -
§ = A= : ,
M2
C
2. 3
j=1 j

where

| N | N -
- Z : _ z : - n Ty
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This then cémpietes the solution for one iteration. To summarize,
one computes Api (i= 1,’N) using eq. (3), where the prli ‘are the values
assumed at the start of the iteration. ‘One then determines a damping
factor, 6, from'eq. (5), where the pi are again the densities at the
start of the iteration and the Apk are the just-calculated adjustments. .
Finally, one adjusfs all densities according to eq. (4).

We postpone discuésion of the convergence of the iterations and
briefly address the question of starting values.

3.2 Starting Values

One needs a starting value for the 'initial iteration. We have tried
two approaches. The first was to obtain the " exact solution, " described .
abov_e_, for a grid sufficiently coarse that the problem was tractable in
the computer. The resulting densities were then projected onto the

finer grid used for iterations and these values were used as starting

. values. The second approach was to assume a uniform density through-

out of some '""reasonable'’ _valu.e.

Both methods were accépté,ble, leading to solutions which covnverge
quite rapidly. There seemed no reason to prefer the former, more
elaborate method and we do not recommend it. Itis slightly advantageous
to select the uniform dénsity value to give the cox_‘reét value for the
averége sum of é set of measurements at one angle of view (i. e., to
have the right ”Weight" ).

4. RESULTS
The relaxation technique has been explored in two ways. First, oﬁ
computer-simulated measurements performed under a variety of con-

ditions. Second, on a number of actual measurements made on phantom

objects.



' 4.1 Compﬁté.r Simulation -

We ha_;ve ékarnined a number 6f different ”objéc‘ts"‘ upon which rne‘a—
‘suremehts have been simulated by compﬁter and then _ein_alyzed without
Ifurthe.r refJere‘.nc_e tq fhe originating density distri'bution_.» Random errors N
are in.troduce:(-i iﬁto the m.easﬁrements and effects qf beam width are
taken'into.accéﬁnt.‘ Iﬁ e{vefy instance éo far ‘considered'fhe computatioh
‘has converged 6nto the " correct'! solution. That is .not to say that there
are not minof artifacts, but 1n no cas.\e has any substantial featp.re been
obs'erve“d in t};e_ analysis vs}hich was ‘r'10t present in the gelnerafin.g object,
nor have s‘i‘gniﬁc.a;nt feature.s been mis 'sveci iﬁ reconstructibn. |

By way dzf illustration we show in fi'g.' 3 one »examplé suggested by
the p‘ape_r.t)f C'ormackz). F1g 3(a) shows a crdss section of the phéntbrn
’u'secjl. in ref. 2r),‘ 'ahd in fig. 3(b) we siio;zv the computér simﬁlation of the
phantom. " Meaéureménts" were then made with a scan of 51 fransversely

sei)arated 1in¢$'9f view at 40 uniformly spac‘ed angles; A random ‘errvor |
(s.tanda‘rd de'yiatidn) ofbsrlightly less than 1_%' was intr\'o‘dﬁced into all
Vi;I:_eva'sureme’nts. They’weré then analyzed Vof\lva 30 X30 grid and the ré—'
sults'v(after’ the fiftéenth iteration) are displayed in 3((&); In these plots'
the density isvp'ropor"cional to the density of displayed dots.

In fig". 3(d) we take adva‘ntége of oﬁi‘ knowledge of the ‘initiating _
density di‘stribﬁfi_on to display the -difference between thg analyéis and the
_‘trge.answer.' In thisdi'_splay‘ a horizontal slash _répresents a density .
deficit and a‘,_ver‘tical‘slash a density s_ufféit. " The density of siaéhes 1s
plotted to the same absdlute scale as the dot de‘nsity 1n 3(b) and 3.('C)-

v -From this representati(.)'n one feature of the imfolding ﬁrocesé isv\vfery

’

clear, namely, that there is a strong tendency to be in error equally
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above and below the true values and this type of ' oscillation'' about the
true value occurs mainly where sharp density variations occur. Very
sharp edges are not resolvable and introduce these oscillations which,
neve rtheles's,. tend to give a null contribution to any éélcﬁlation of a
line integral through part or all of the object.

One further feature merits attention. The density in the corners
(avs élsewhere) is the ‘re'sult of c_orhpufafion. Since one bha.s a circular

object and a square outline to the grid these fegions rnight reasonably

be forced to their known (near-zero) density. We do not do this, however,

becauée_we feel it is quuite useful to explore regions, such as corners, of
known. de’nsity‘as a check on the success of the.analysis and to offer
; :

some empirical measure of the scale of artifacts. Hvaving said this we

must add a qualifying remark concerning our treatment of negative

densities. In }Srinciple these need cause no alarm. They have always

been small in our experience. However, we do give them special treat-

ment since they ai_re unphysical and this knowledge may feasonably be
incorporated. Where a cell'is assigned a negative density at the end of
any iteration‘ we reset it to zero and reas sign the negative density to all
neighboring pbsitive density cells in proportion to their density values.
This treatment tends to "' clean—up" the corners (and oﬁher area;s of
near-zero density) at the expense of insight into artifac.ts.

4.2 Measuremerits

No original measurements have been made by this author. However,

the generosity of others in making their measurements available for

‘analysis has been considerable. Three such sets of data have been

scanned and, since they all exhibit rather different features, they will

[
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be Brie‘f‘ly d‘esc’r’ibed.b One feature common to all thé fne‘asurements
anaivyze'd‘is. the céfnparative coafseﬁeés of the, _s‘c'aris.v This evolves
naturali_y from the .extreme tediu’.m‘of making the large nﬁmber of i’)recis_e
! méasurements: -ﬁeces.sary for good I;esolutio:l;l. It is quite evident thatb
“automated data a”cvc.umulatio‘n is required to realize good resolution. .
The fii'ét set of data4) were taken on the ‘ph‘anto‘rn sc':hematica‘lly‘
represented iﬁ fig. 4.(5).." Thié object was placed in an, 840 i\(IéV alpfia‘

beam at the 184 inch Lavéz'rencé Berkeley Laboratory cy_élotron, and

measutrements of the transmitted b.ea"m'energy were made as the phantom ‘,

was bdth translated and rotated in the beam line. The 'p’rt.)jected storpping

pow‘ér along tfle '1::)eam' line was computed from the average energy degra-
. datioﬁ.b 'I,‘rhe} dxa-.ta;were then analyzed to retrieve the”loc:al'stOpping power
thr‘ough av ‘.crcl)ss ééction of the -phantoni. - Fig. ’,4.(b) sho'w.s the résult of
thaf anéﬂysis’_. The scan involved 41 translatibﬁs and 19 different view
angles.. The ‘ob‘lo'ng aﬁalysis grid was divided into 1-2X24 cevl.'ls.,’. The
coarsAe\'n'es:s' of thve scan leé.dS-.f.() limitations on then spatial resolution
which should be.' of the order of one-half the sivz‘e of.thlev céntréi "spine; i
Such details as a slight aéymmetry of the outer phantpni wall and the )
| fact thaf:_one ""lung' was closer to the side of the phé,ntorhv»than was the
other are faithfully reproduced in‘this: reconstruction. '

The secohd sef of dataS) were k—ray transmission data taken oﬁ a
spherically syrnmetricbannulu_s depicted in ﬁg. 5(a); Since tl.l‘e phant_:o_rh

had this symmetry, only one view angle was adopted and 15 measure-~

’

- ments were .ma’de in equal steps from the center to j'us_t beyond the out-

side edge. To simulate a full scan the same data were repeated as

though taken at 30 different angles and these were analyzed on an 18X18’

[
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grid. The resﬁlts are presented in fig. 5(b). This \.avay of analyzing the
data was adopted for co_nvenieﬁce and is clearly not the optimum approach.

The thir:d svetrof data were those reported in ref. Z) on the phantom
which is depicted in fig. 3(a). The probe was a ‘co'lliniated gamma‘—ra‘y
beam. Transmission was measured at 25 vie:w angles énd along 19
transversely spaced lines. The trénsverse lines were 'gi uniformly
spaced, howé;revr. They were more closely spaced toWards the evdge of
the phantom. This feature is related to the reconstruction technique
. presented in ref. 2), but we mention it here to illustrate the flexibility
of our approach, which in no way depends on the way in which measure-
ments are méde (although, of course, one must know the paths along
which measurements are made and the reconstruction_‘accuracy will
depend on the sampling u.sved). We show, in fig. 6, the :result of‘the re-
construction. . It was made on a rectangular grid of uniform spacing —
not the most appropriate in view of the non-uniform measurement grid.
This explains why the resolution fowardé the edge is'in.fevrior to that |
achievé& in 1"ef_.-'2).“ |
5. CONVERGENCE

There are three questions which one might ask concerning the
iterations. Do the iterations cohverge? Do they converge to a unique
‘(and correct) solution? And, .fina.lly, do t;hey give a reconstruction
which predicts feasonable values for the observations?

In.ﬁg. 7:we' plot the sum of squares (as defined in eq. (2)) against
the it.era.tiojn number for the ahal'ysis of Carmack's dat.az), the results
of ;\;vhich were ﬁresented in fig. 6. No example has been encountered .

in which such convergence did not obtain. We have no »
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proof, ,howeve-r, that such convergence will necessarily occur and can
only state that, in our experience, it always has.

SirnilarlY.;' in I‘eg‘ard to the uniqueness of the sltuation, we have been
uhableto prove a uni@ueness theorem..‘ One might worry,v‘ as some |

" have ’~), that arn.biguo.usjsolutions may exist. In some eas'es; hotably
wl';en ;1 very. limi’ted number of measurements are rh.ade,. t_her:e are
certainly very.real a.mbiguitleslnherent in the measurements. This
is the ease Witl'l the example presented in ref. 3). One must ’realiz_e that
in su.ch. cases the é.mbiguity is real and g_gl.method of analysis must be
re sponsive to thalt proble‘m wl'ilch is a_‘oonseQuenc-e o_f tllrlev iﬁadequacy of
the m‘easuremen‘t‘e. Tl1e. ability to converge on the corre’.ctvsolutio.n'i‘s
.directly relatedb'.to the high degree of redundancy in the.rneasure'rnents.'
One must make. substantially more ‘measurements tl’lar1 the number of
piecels. of information one hopes to extract (see below). If that is done,
it is our exper1ence that the iterative rela.xatlon technique does converge -
to the correc_t s'olq.t1on even when substantlally d1_fferent (and unreason—-
able) startirig val_ues .a.reiusved.

Fin_allv, one must note that the convergenoe may be ‘to ‘ratller poor
values of the lees't—'sqtré.res parameter. Fig. 7,.for-'e$.§ample, shows a
convergence of the sum of squares to a value of about 200 per degree of
freedom, which is qulte enormous cornpa.red to the value of un1ty ex-

- pected if the problem was domlnated by random statistical errors 6_), One
lnay understand this in terrrls of two effects. Thelfirst and more se'rioo._s

' problem has to do with the computational premise that the object mey vb'e_.

represented by ar1 array of cells with density ubniforrrl within e'ach.ce‘ll.

Clearly, if the scanned object has features whose density varies rapidly
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over the dimension of a cell side the representation cannot be adequate.

In this connection alternative assumptions might be made. One might
as sign densi’ties on a grid and interpolate .between points u.sing any
variety of sch"e:r'nes. T.hese rnéthods are equivalent to_forci.ng various
degrees of smootfiness on the reconstruction. They fnay well be called
for in some instances; certainly the réla}liation techniqtie can trivially
accommodate such a procedure.

The second effect leadiﬁg to pbor values of the sum of squares has
to do with the nature of the probe. Beam scatter and uncertainties in
the beam profﬂe-will introduce errors in the recénstruction which will
lead fo poor leabst—squares values.

\

6. RESOLUTION

6.1 Choice of Nufnber of Measurements

Consider a specific grid of, say, nXn squares. What is the maximum

number of measurements which can give useful information? Cl_early',

two measurements which are so closely spa;ced' that.th'ey pass through
almost the same cel'ls‘wit‘h almoét the same avérage Ip‘ath length in each -
cell will not yield substantially different information from each other.
Very crudely v‘on'e might say that a tranSlatiop of one-half of a cell side
is needed to produce substantially different informatién. This would
lead FQWZn measubrement‘s at each angle of view.

Thé maximum number of useful view angles may be estimated as
suggested in fig. 8. The smallest usefﬁl included angle between mea-
surements common to a cell at one edge of the grid is that which leads
to a separation of one cell width on the other side of the object. This
is an angle of 1/n radians and lea_ds‘ to a maximum number of view |

é.ngles of 2mn.
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Thus, th'ese simple considerations suggest thatv4nn2~'measurements -

~are 'needed to r\e'solve"n2 cells. In pr'act’ice we have found this te‘be'an
overestimate. We have found 3n2 to' be adequate. We‘pr'ese:nt this
_intuitiv'e estimate less as a l'lard and fast guide to estimating the numb_er
of measuremen_ts ‘required f.or a given resolution than for the insight it

~offers in under-standing the planning of me'asure'mentsv. “For example,

it is clear than one cannot get the same inforrnation out of a fixed num-

b'er"olf_ measurements by increasing the number of transversely separated'

projections at the expense of the number of angles of view (or vice versa).

‘The number of scan angles must be quite large for reasonable resolutions
(an experimentally disconcerting requirement).

6.2 Measurement Accuracy

The accuracy with which measurements must be made clearly de—»> '
pends on the dens1ty resolution required. If a reglon .of kX k cells has
d,ensit'y po + Ap: which must be distinguishedv from a background density
0~then measurements through that region will differ by a fraction -

(k/n) (A p/pO from other measurements (the entire obJect is assumed

to be d1v1ded 1nto n Xn cells) If the average measurement value is

X with standard deV1at1on 0 the requirement

-~

ST
e
5

> 1 A )

is clearly a svufficient condition for observing ..the interesting _revgion.
(Note, ﬂhowever, that there i's a less stringent requirement, discussed
l)elo'W). |

There is another aspect.to the measurement accuracy which.is

harder to quantify. It emerges from the observation that one does

&
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not improve the reconstruction without limit as one increases the mea-
surement accuracy. This is because the representation of the object
as a set of discrete cells with uniform density (or any other interpola-
tive re_presenfation) is imperfect. Qualitatively one might say that .the
difference between a measurement on the‘ true >object and the measure-
ment which wéuld result from the optimum nXn cell approximation of
the object gives a méasufe of the level of accuracy which cannot use-
fully be exceeded. What that level is will depénd greatly on the struc.-
ture of the scanned object. |
7. RESTRICTED RANGE OF SCAN ANGLES

Ideally one wquld wish to make measurements in the full range of
possible arigles, namely 180°, and this was done for all the preceding
examples. However, it may not be poséible to make the full scan in
practice. Restriction of the._range of scan aﬁgles does.sev_erely limit
the resolution achievablé. This matter was quantitatiQely discussed
in ref. 3_). We do not have a ‘qliantitative estimate of this effect in terms
of the iterative relaxation technique. One can sée intuitively that if one
confines ones_elf to £45° about the y-axis (as in fig. 9a) one will have
les.s information (hence, resolution) about structure parallel to the
y—éxis than thatparallel to the x-axis. I;’l figures 9b, c, andd §ve show

the reconstruction of the object depicted in fig. 9a from measurements

made respectively in the range £45° , £672°, and the full £90°. In all

three cases the same 20X20 cell grid is used and the measurements
comprised 51 translations X20 ahgles. - The degradation of resolution

in the y direction relative to the x direction is quite ;'striking.v

{
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8‘. A.R’I.‘I_F"AC’I'.SF\AND THE LIMITS OF RESOLUT'I_ON‘

" The central problerh when faced with a reconstructiorx'is to bev.a,ble ‘ .
to sayﬁ Whether some selected feature is " real" or on artifact. One
mlght ask. the quest1on, "IfI remove the structure and replace it by
th_e density of th_e local background is the modified reconstructmn
significantly le_ss..e.ble ‘t.o fit my measru_reme.nts 2" One sho.uldT alse, |
perhaps, ‘req_u'ire that al'l cells be uniform_ly re.no.rmalized’_a'fter re_rnové.l 2
of the structure_-so that the " Weight” of the recenstructidn re.rnains‘

- unaltered. -

' Irnpl1c1t in our prev1ous discussions has been the fact that one has
two separate resolutlons to deal w1th spat1a1 and dens1ty resolution.

The abilities to resolve spatial detail and to detect den51ty variations are
distinct. They are, however, clearly correlated. One might expect
that a irery small object 'coxlld more r‘_eadily‘ he detectecl‘ if it was of a
'very different _de.nsi'ty»frorn its su‘.rvround.' We will now sdgges't"a qﬁahti-
tatii}e measu‘re.‘cj)f thls effect.‘ | o

" The que's;tion posed ah_ove has a direct ansx&er from th_e theory of
least-squares fitting. The standard deviation in the value of a parameter
(such as the dehsity of some feature) is estimated by the. change in the |
parameter. necessary to increase the sum.—of-square's parameter by
unity. In any given situation one may deterrhine that change by direct
computation. _Here we examine the general case. 7 Consider an objbect
of nXn cells all of which'have' density p except for a clﬁme of ka cells .
somewhere in the obJect which have dens1ty pt Ap. We the‘n estirn'a‘te
.the change in ’}'n When we set the k Xk cells back to p (and then increase: |

.'jall cell__s by (k/n) Ap to maintain the same weight). We require this
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change to be greater than or of the order of unity for the clump to be

observable. This leads to the requirement

A 3/2 '
—pﬁ’ (5) NM 3 1. S (7)

QlNIH

n

Here M is the total number of measurements, X is the average value
of a measureﬁent, and .O' is the average measurement error.

This formula should be treated more as a suggestix;e estimate than
a hard and fést quantitative resolution limit. For one thing .the pre-
scription to raise m2 vby unify from its minimum value is only appli-
cabie when the. minimum value is reasonable (within a few X ND of the
number of degrees of freedom, D). However, as we have previously
pointed out, this may not be the case in practice. One finds oneself
abandoned by statistical the'ory at that point. One tactic of desperation
is to readjust the estimates of error, ¢ ,. by the amount which will force
the minifnum value of 'MZ to be'eqt.lal to the number df degrees of free-

dom.

Eq. (7) is interesting in that it suggests that the critical dimension

for resolution of some feature is something intermediate between its
diameter and area. _in any event, the parameter Which must be used to
chara;cterize..the' spatial resolution of any feconsfruction is the ratio of
the size (dié.meter or areia) of the feature to that of thé entire objec‘t.v
‘To give;concreteness to eq. (7) we give a numerical example.
Suppose that one makes 10 000 measurements, eéch of 3% accuracy,
and asks how large a feature must bé to be distinguishable if its densify
is 3% different from its background. In this case k/n is about '1/22,

which meéns that the diameter of the feature must be at least one
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tv&entyfsécond fhat of the scanned field. This is, ovf:c‘ourse, rather a
) mode's_t spatial‘re.soiﬁtio"n but it_ is c.h'ara'ctjé.rristic of this kind of rge-vj '
construction. |

9. COMPARISON_WITH OTHER TECHNIQ.UE‘S ) o N

| There are two g(—;ﬁerél classes of analySié ééchhique. On the one

hé.nd. there are those methods which, as. with thaf presénted here,
.at'tempt to ge'neratev»a fully unfolded distribution,: d__isenténgling the cbn—
tributions iof separate ;élis. On the other hand theré a;fe toﬁographic
"ceéhniqbues whi'éh se_ék to accentuate specific régions within the; viewed
object by defocuéing coritfibuj:ions from all other regions. The tomo-
grv:.:xphic fechﬁiques offer especially simple methods of analjrsis Which .
can often be implemented by pureiy'méchanicai prog;‘ammihg 'o_fxthe.

measuring apparatué. They are subject to the serious flaw of always

superposing a background of .(imperfectly) defocused structures on the. .

region éxafnined. We do not flixjther cdﬁsider the to~rnogvraphic anélysis
here. | | |

In fegard to the techniques which attempt a full 'unfolding it. should
be;noted that the pfesently av.éilable analy.ses are all'comparé.ble in the
amoﬁnt of information which they extract from a given sét of measure-
ments’. The choice of techniqu‘e‘mustk thverefore lie in 'éohsiderations of
simplicity, f.é'asibi_lity in terms of available c.'omputatio‘na'l "éapacity; -
and aplil_icabilivty 1n relation i:o the particular problem on hand.

Two alternative techniques have been i)ﬁblished7).ln' the firsti’ 2), -
] the. two—dimenéidnal problem .iS's‘eparated into a set of one-dimensional

integral equations of a function with solely radial variation. - The mea-

surements are expanded in a sine series with coefficients identical to
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those of the radial density function when expanded in a limited series of
Zernicke polynomials.
The second Itechnique3) depends on the observation that the Fourier

transform of a projected view is just the value which the three-dimen-

sional Fourier transform takes on a plane through the origin in Fourier

- space. Projections at different angles build up the Fourier transform

on different planes and enable one to construct the fuli three-dimensional
transform, which can then be inverted to regain the three-dimensional
reconstruction in real space. In the inversion. one must interpolate be-
tween measured values of the transform, since sampling points do not
generally coincide with measured values and this intél_'polation can in-
troduce'artifacté. Alternative interpolation proc»edures have been
investigatedS). The method of _Cormack1’ 2-) is-mathematically equivalent
to the Fourier transform technique3)but, clearly, differs s\ubstantially
from it in pfactical appl_ication.

Wé suggest now some features unique to the iterative reiaxation

technique which might make it advantageous in certain circumstances.

9.1 Versatile Scanning

As has been emphasized already, this rr;ethod can accommodate any
series of meaéureménts, since the only way the geometry enters into
the computa?ion is through the :jk of eq. (1). Thus analysis ‘of x-ray.
pfojections taken with short-focal-length setups (and cohsequently with
highly divergent beams) presents né problem. Similarly, omitted or
repeated measurements and irregularly spaced measurerhents are easily

handled.
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Both the beam profile at the entrance to tﬂhev scanned object and the-

. o ’ / . ! : [ v .

variation of the profile with depth in the object are features which enter’ )
directly into’'the calculation of the fjk and can cbnsequently

be fully aCcou_nted for.

9.2 Versatile Ré‘construction Grid

Al

While the discussion of t}‘le method has referred to a Cartesian grid
of cells there— is ﬁo reason at alliﬂto mé.ke that restriction. Cle:arly one
can emplo& po__la‘r-codrdinate gr.i'ds or“other regular éfrays, perhaps
1natchihg the. cell size in any given region t; the expected .s.t_ructure
there. Indeed, vthis (zé.n be eXtended to the mlJ;ch more general situation
ih which t_he scanned object is formed of a large number of regions of |
comﬁlex ge'orn:etricform cofrespondihg to the known configuration of the

object. One could vthe;’). allow the density of each region to be varied to

- fit the mveasur'er’nents. Having s_uggevsted this, one rﬁight proceed to »the

logical cbnclusion and attempt not only to rriodify the density of each

i‘egion"but also .i‘ts Boundaries. 'I;o do. this one would -ha\ie to recélculate.

the Afjk after ev'a’cfh'iteration, but that is not an undul}.r burdenso;rle task.

If each region were rép_.l"esented by an octago.p one would have seventeen
paraméters (a density and eight coordinate pai'r_sﬂ) for each octogon.

With 10 000 measurements one could fead’ily az.maitlyzjeb-sivtuations ha%ririg_

as many as 1_00' such variable régions. : | ,

9.3 Extra Parameters

, v v 'S
“We have implicitly assumed that each cell contributes to the mea- e

surement thrbugh a single parameter (such'as its density or absorption
coefficient or étopping p0we.\r,). One might easily imagine associating

with each cell additional parameters such as, for example, the effective
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atomic number of the cell material. One would then search in a multi-

dimensional parameter space for the best fit to the measurements.

Provided the measurements were sensitive to all the parameters, one

could hope to reconstruct them all simultaneously.

9.4 Sharp Edges -

We were initially led to this particular reconstruction technique by
the desire to simulate the internal structure of the human body. It -
seemed reasonable to look for a representation which was capable of

simulating large areas of fairly uniform density bounded by extremely

‘rapid density variations such as one sees at a bone-muscle interface.

The spatial resolution implied by the cell size has its counterpart in
the highest-frequency component used in, say, the F.‘qurier transform-
technique. However, there is a slight difference in that the use of a
high frequency to effect a rapid density variation at o‘ne boundary re-
sults in the presence of high—frequehéy components e}vevrywhere in the
reconstruction. These can be largely cancelled 6ut_everywhere else,
but there is always a residual high-frequency component which leads to
the typical oscillatory character of such reconstructiéné. In the itera-

tive relaxation technique any cell may di_ffer‘ in densify by any amount

- from its neighbors without forcing the same high-frequency response

elsewhere in the system.
10. CONCLUSIONS
We have developed an iterative relaxation technique for resurrecting .

a three-dimensional distribution from a series of two-dimensional pro-

" jections derived from it. - The technique has been applied successfully |

to a number of computer simulations and actual laboratory measure-

ments.
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The abilify fo retrieve the full three:-dimensional origina’lting dis -
~ tr_ibuti‘on is nbw well established. The question of éhe most appropriate n
téchnique re;;nains oi)en and the ansWer will depend ‘on‘ aetails of the . N
problem. We have presehfed sérﬁe advantageous features of theliterativé
relaxation ‘techni.que. | |
We discuss the ;a.chie'vable l;es'olution. A typical situation, Wthh is
reasdnabl;'r ﬁndemanding in térms of computéti_onal capa'..ci.ty, would be
the vanalysri's of ‘about 10 000 r'neasurer.nent‘_s to generate denéities on a
50 X 50 element. grid. |
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Figure Captions

Fig.

being made at a number of different orientationé. Each arrowed

(b) .Reconstruction.
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1. Basic.series of measurements comprising a series of pro- : Lo e

jections alohg parallél transversely separated paths, each series

line. repreéents the path along which one measurement is made. | \

. 2. Reanalysis grid with'one typical measurement schematically
indicated.
3. Computer simulation of Cormack's experimenf (ref. 2) )-

“(a) Original phantom

(b) Computer simulation of phantom. Density is‘linearl/y.

proportional to the dot density.

(c) Corﬁpute'r. reconstruction of phantom

(d) Difference between reconstructed and true densities.
‘Horizontal slashes are deficits and vertical slashes

are density excesses.

. 4 Lyrhah ekperiment using 840 MeV alpha particleé (ref. 4) ).

(a) Schematic representation of phantom
(b) Reconstruction.
5. Chesler experiment ?ref. 5) ).

(2) Phantom

6. Reconstruction of phantom shown in fig. 3a based on analysis -

of the origi’nél Cormack data (ref. 2) ) '
e S ; )

7. Convergence for the Cormack..eXpe-riinent. . The sum of s"quares

per degree of freedom is plotted against iteration number. _ ‘
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Fig. 8. Least significant angular interval between measurements for

Fig.

a given level of resolution (grid sizeb).
9. Computer simulation of measuremehts made with a restricted
set of scan angles.
(a) Original phantom with indication of central axis
relative to which angles were measured
(b) Reconstruction from measurements made befween -45° to +45°
(c) Reconstruction from 'measuremenfs made between
-67.5° to +67.5°
(d) Reconstruction from measurements made between

-90° to +90° (full range of angles).
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Fig. 4

(LUCITE, DENSITY = 1.0 g/cm?)

PHANTOM WALLS

(TEFLON,
DENSITY

DENSITY

MAIN "BODY"
OF PHANTOM

(WATER,
"SPINE”
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