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ABSTRACT OF THE DISSERTATION

In this dissertation, it will be shown that new and unconventional approaches to
phylogenetic and classification problems using systems biological data and machine
learning fare well against the standard practices in computational time, power, and
accuracy. First, we introduce various themes in evolutionary biology, and explain the
transfer RNA (tRNA) interactome.

Then, we describe a new way to classify individual organisms based on information
from whole genomes. We begin by predicting features by which proteins identify tRNAs
coined “Class Informative Features (CIFs)”, which form a species-specific “identity code”
using a functional information calculation utilizing Information theory and conditional
probability. We predict different, but related, codes for different groups of organisms.
Then we train an artificial neural network to recognize which code a new, unknown
genome is most related to using only primary sequence data. We apply our method to
SART11, one of the most abundant bacterial clades in the world’s oceans, and hypothesized
to share a phylogenetic sistering with the last alphaproteobacterial mitochondrial ancestor.
We find that different strains of SAR11 are more distantly related, both to each other and
to mitochondria, than previously thought.

Next, we apply the same logic to the determination to the origin of the Plastid within
the Cyanobacteria. We show that using Jensen-Shannon Information Difference
calculations, we retrieve a tree which phylogenetically groups Plastids with Cyanobacteria
not classically thought to be associated with the cyanobacterial chloroplast ancestor, We
also show evidence for refuting classical cyanobacterial topologies. We have uncovered
evidence in recent literature that shows mechanistic justification for our largest CIFs.

Finally, we investigate the trend of CIFs across the bacterial tree of life, showing
that CIFs maintain a relatively consistent G+C content in all genomes that can be
classified by order. This work has developed a pipeline to classify any fully sequenced
bacterial genome into a user-defined bacterial order. With modification to the training of
the classifier and better Leave-One-Out Cross-Validation of the scoring of the data, we
expect that this method will be robust to biological and statistical variations in current
tree-building methods.
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Chapter 1

Shifting focus in evolutionary biology —
identifying a new signal for phylogenetic
tree reconstruction and taxonomic
classification

1.1 The evolution of bacterial classification and
phylogeny

The quest for perfected methods to build phylogenetic trees and accurately classify novel
bacteria are popular topics in biological science. From the days of grouping eukaryotic
and prokaryotic species together by morphological traits to the first program creating a
tree using maximum likelihood by Joe Felsenstein (Felsenstein, [1981). Methods exist and
evolve constantly to build trees directly from aligned DNA, RNA and proteins from
various samples. Many are successful at making general gene trees and species trees.
Variations of these methods exist including using different models to account for
biological variability (reviewed in O’ Meara (2012) and |Anisimova et al.[(2013))).

Ever since the characterization of the central dogma of molecular biology by [Crick
(1958)(DNA — RNA — protein), the products of this universal process have been
exploited for phylogenetic reconstruction at any taxonomic level. Investigating a genetic
marker of true speciation events, different from the widely utilized macromolecules,
remains less important. We will present a phylogenetic marker called “Class-Informative
Features” or “CIFs” that avoid the common roadblocks of tree-building in biased
circumstances.



1.2 The historical marker — 16S

16S ribosomal RNA is the widely accepted genetic marker used to infer speciation
patterns. Originally introduced by Carl Woese and George Fox in 1977 to show that there
are three domains of life, 16S phylogeny has become the standard evolutionary marker.
With the discovery of the Archaea, Carl Woese foresaw the complete paradigm shift in the
study of microbiology as he stated in his 1987 review “Whatever else it is or whatever
impact it may have, the study of bacterial evolutionary relationships is central to the
historical account of life on this planet. We may lay no claim to a comprehensive
understanding of biology until we know this history, at least in its outline.” (Woese, |1987).
16S ribosomal RNA is important in tracing evolution because species in the entire tree of
life contain ribosomal RNA. As described in his 1987 review, we can view 16S rRNA as
an excellent genetic marker because it has (i) multiple large domains that can evolve
slowly, but possibly independently (Patel, 2001), (i1) retained its general function (Woese,
1987) (iii) and can be directly sequenced using few primers that seem to match 16S
orthologs in most species (Lane et al., [1985)).

Today, the ability to easily sequence 16S sequences has allowed for the massive
expansion of the growing impactful field of metagenomics. We can now identify novel
species and characterize known living organisms in various environments. The lack of
current sequences and varying evolutionary rates to compare them creates problems in
identifying cutoffs to define speciation events for calculation of sequence similarity
(percent identity or %ID) (Bosshard et al., 2006; Mignard and Flandrois, [2006). Inside
defined bacterial clades, 16S similarity can range from 62% to 91%. 3% diversity has
been proposed as a conservative cutoff for species clusters from DNA-DNA hybridization
experiments (Stackebrandt and Goebel, |1994). Some phylogenetic programs claim
identity solely based on the closest % ID in a database, not taking into account that the
sequence may be representative of a novel species (Janda and Abbott, 2007).

Another level of complexity springs from G+C content bias (or
Nonstationarity) (Wu et al., 2012). In RNA, nonstationarity is more associated with
optimal growth temperature than being vertically inherited which can create signal that
places organisms with extreme environments at the root of the tree of life even using
conserved 16S rRNA (Galtier and Lobry, |1997)).

1.3 Complications in bacterial classification and
phylogeny
1.3.1 Horizontal gene transfer

Bacteria asexually reproduce, replicating their DNA and passing it to their divided
counterpart to create two organisms from one. This is vertical inheritance. The replication
of the DNA that will be passed to the newly dividing cell is a source for mutation. These



mutations can lead to cell death, decreased fitness, no increase or decrease in fitness, or an
increase in fitness (reviewed in Baake and Gabriel (2000)). Any time the organism
survives and is able to reproduce, there is a chance that the mutation will become a
common feature in the population. These mutations, which turn into substitutions, are
markers that we try to trace when re-creating phylogenetic trees. In a perfect statistical
model, we would be able to trace these changes to completely and correctly depict a tree
of speciation throughout the history of life.

Of course, the picture is not so simple. Bacterial organisms are know to engage in
homologous recombination with closely related species, and horizontally transfer their
genes to distantly related species, allowing them to become part of another organism’s
genome. Many specific bacteria have been shown to successfully participate in
homologous recombination with organisms up to 25% divergent in DNA sequence, which
is a drastic increase from the 3% cutoff in eukaryotic species (Duncan et al., 1989; |Vuli¢
et al., [1997; Majewski and Cohan, |1999). If any of these horizontally inherited genes used
when creating a phylogenetic tree or grouping organisms using any available
sequence-based tool, an incorrect picture of speciation will be portrayed. In some
organisms, their vertically inherited genes are estimated to be as much as 30% of their
genomic DNA. For example, up to 24% of the bacterial Thermotoga maritima genome
was predicted to have been obtained from archaeal lineages (Nelson, K E and Clayton, R
A and Gill, S R and Gwinn, M L and Dodson, R J and Haft, D H and Hickey, E K and
Peterson, J D et al.,[1999). This type of bias is biologically driven.

1.3.2 Does a true tree exist?

If life evolved from one common ancestor in bacterial evolution, where reproduction is
asexual, there has to be a path of vertical inheritance despite the varying rates of
horizontal gene transfer across the tree of life, which often cloud the picture created by
various tree-building algorithms. Some scientists disagree that there is one hierarchical
tree of life (Doolittle and Baptestel, | 2007) given the amount of shared information across
species through homologous recombination and illegitimate recombination.

The work in this dissertation assumes a true bifurcating tree exists based on the laws
of life, and attempts to fined a true marker for vertical inheritance. We recognize that the
evolution of life is more complicated than vertical inheritance especially in bacteria, but
the methods in this dissertation aim to resolve relationships arising from asexual
reproduction.

1.4 Methods for phylogenetic tree reconstruction

1.4.1 DNA

Deoxyribonucleic Acid (DNA), or the template for all life’s genetic make-up, can
essentially be represented by four organic compounds which are described by two groups:



two-ringed purines (Adenine (A) and Guanine (G) ) and one-ringed pyrimidines (Cytosine
(C) and Threonine (T)). These bases can mutate from one to the other, and most
detrimental mutations do not persist through the population. The ones that begin to be
passed to descendants constitute substitutions. DNA models like Jukes-Cantor take a
simplistic approach to estimate nucleotide substitutions by assuming that all substitutions
are equally likely (Jukes and Cantor, |1969). More complicated models like Kimura 2
parameter and Felsenstein models allow for either unequal substitution frequencies
—different for a transition (purine <+ purine or pyrimidine <+ pyrimidine) or transversion
(purine <+ pyrimidine)— or unequal base frequencies (straying from assumed equal
amounts of A, T,C and G), respectively (Kimura, 1980; Felsenstein, |1981). Model
HKY85 (Hasegawa et al.,|1985)) and General reversible models allow for more varying
rates, but as the number of varying rates increase, so does the complexity of the model.
Adding complexity adds degrees of freedom which runs the risk of over-fitting data.

1.4.2 RNA

RNA transcribed from DNA to code for a protein, or coding RNA, can be beneficial for
phylogenetic tree reconstruction due to the fact that edited RNA transcripts are easily
alignable with exons (specific coding regions) all in their correct location. Applying these
same models for DNA allows different constraints to be prioritized. Also, triplets of codes
can be utilized more effectively with knowledge of the final product (the protein) being
considered in the model.

In RNA transcribed from DNA to fold and perform a specific biochemical function,
or noncoding RNA, the situation is similar to basic RNA models, but with added variables
for base pairing in secondary structure. If an alignment can be made for secondary
structure, this information can be exploited. Programs like RaxML (Stamatakis et al.}
2004) and PHASE (Jow et al., [2003) have implemented such models well, but they are
computationally expensive.

1.4.3 Proteins

Protein alignments, in theory, provide a better picture of true evolution because back and
parallel substitutions are less likely to occur when more letters make up the possible
alphabet (bases {A,T,C,G} in DNA and amino acids
{A,C,D.E.F,G,H,LK,L,M,N,P,Q,R,S,T,V,W,Y} in proteins). Back and parallel
substitutions will make two sequences seem similar due to chance rather than evolution
(discussed in detail below). Protein evolution is often modeled by substitution matrices
which characterize probabilities of seeing amino acid changes based on quantifying those
seen in nature. The first implementation was by Margaret Dayhoff where dot products of
the matrix of amounts of amino acids seen in nature are created to model more distant
evolution. Variations of the DAYHOFF (Dayhoff and Schwartz, |1978) matrix have been
created, for example, the BLOSUM matrix (Henikoff and Henikoff, |1992) is used in many



programs including ClustalW (Henikoff and Henikoff, [1992; Higgins and Sharp, [1988).

1.4.4 Data compilation

Methods have been created to combine data to weed out fluctuations in detected signal by
bias. The “supermatrix method”, where conserved protein/DNA/RNA sequences are
concatenated together to create a large alignment of features, and then a tree algorithm
combines the data hierarchically based on the specific model one dictates (reviewed

in de Queiroz and Gatesy| (2007)). The idea behind their approach is that if there are sites
that do not relay true phylogenetic signal, they will be washed out with the overwhelming
amount of data. Another method, the “supertree” method, will take groups of alignments
of conserved proteins/DNA/RNA and individually compute trees for each of these sets
(reviewed in |Bininda-Emonds| (2005))). Then, once the trees have been calculated, a
consensus tree can be estimated. This prescribes to the idea that if any gene was
horizontally transferred, or has undergone rapid evolution, it will only result in a nominal
subsection of the trees reporting the false signal. Allowing a consensus tree to persevere
will overlook these non-evolutionary signals.

1.5 Bias in tree-building

Up to this point, we have touched on how bias can cause various tree-building programs to
compromise true results, but the details of the types of biases which gives these variations
in outcomes have not yet been discussed.

Methodological bias exist in the implementation of every tree-building algorithm
that are not necessarily biologically driven, but just driven by the constraints of the
alphabet used to describe the system. In DNA, we have ATC and G, and RNA, ACU and
G. One can imagine, that two independent sequences that have a string of nucleotides can
mutate to the same sequence, not by being passed down from a common ancestor, but by
chance. This is called a parallel substitution, and is difficult to statistically account for.
Sequence differences will saturate at 75% due to the fact that they will be 25% similar just
by chance. This is common with only having four possibilities. Similarly, a sequence of
nucleotides that looks the same as another sequence can look the same because they both
evolve from the same ancestor, or because they were the same, but one changed to a new
nucleotide, then changed back. This is called a back substitution, and occurs in nature.
Basic models will have to take this into account if they would like to depict an accurate
picture.

Another methodological bias called long branch attraction causes problems
throughout the tree of life. It is methodological bias due to the fact that the input to the
program dictates the output. If you place something not like all the other things in a
dataset into a program, the program will place the data where it sees fit, at the root,
branched basally in relation to the rest of the data. Long branch attraction occurs when a
datapoint looks so diverged from the rest of the data, that a phylogenetic program will



place it near the root with a long branch (reviewed in |Bergsten| (2005)).

In Proteins, there can be over 20 letters used to describe elements of a peptide chain.
Although parallel and back substitutions are less likely due to a larger alphabet, they still
occur and create false signal.

1.6 Biological bias in biological data

We’ve talked about these changes, but not why they may happen and if they happen in
some biological systems more than others. The fact is that environmental constraints can
drive biological signals to look similar just due to the organism evolving to survive.
Various constraints exist with many different theories on the importance of each.
Temperature is a common theme when talking about biological bias. It is well-known that
GC bonds are stronger, forming three hydrogen bonds in DNA double helices, and AT (or
AU) bonds are weaker, only forming two. This would infer that when DNA and RNA are
present in higher temperatures, each needs to maintain stronger bonds to keep structures
from denaturing, or unfolding, sabotaging their function.

Overall, you cannot account for every type of bias, but if one can identify signal
that is less biased in relation to the rest of a genome, accounting for it becomes much
simpler.

1.7 The tRNA interaction network

Transfer RNAs (tRNA) are noncoding short nucleotide sequences transcribed from DNA.
Their primary role is to participate in the collection of amino acids during protein
syntheses and are used to decode the genetic code by creating a link from blueprint (or
DNA) to product (or protein). tRNA structure consists of (1) an acceptor stem where the
3" and 5’ ends meet that carries an amino acid (purple in Figure[I.1), (2) an anticodon loop
at the end of the anticodon stem which interacts with codons on mRNA (dark blue in
Figure[I.1)), and (3) T and (4) D stems with loops that partake in tertiary interactions with
each other (orange and light blue, respectively in Figure Some tRNAs also contain a
long string of nucleotides in between the anticodon stem and the T arm called the Variable
loop. These tRNAs are called “type II” tRNAs. tRNA secondary structure is often
depicted as a cloverleaf-like image, but they are mostly in an L-shape in their folded forms
with the anticodon loop and acceptor stem at opposite ends of the L.

tRNAs are extremely conserved, and normally have roughly 74 nucleotides,
definable by a rigid, universal coordinate system (Sprinzl et al., |1998)). The coordinates
have flexibility in areas known to have extra nucleotides with letters added on (for
example 20A,20B,20C in the D loop or el1,e12,e13... in the variable loop).

There are 64 (4%) possible codons in the genetic code made up of 3 consecutive
nucleotides, resulting in 20 different possible amino acids. Not all of these combinations
are actually utilized by every system, but each is a known link in the standard genetic
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Figure 1.1: An example of Secondary and Tertiary structure of a tRNA.
Secondary and Tertiary Structure of PDB 6tna rendered with PyMol (DeLano Scientific
Freeware). (Sussman et al. JMB, 1978). Figure By Jennifer Fribourgh & Kyle
Schneider:http://en.wikipedia.org/wiki/File:TRNA _all2.png



code. There are multiple codons for each amino acid although some are more favored than
others. There is a standard initiator codon (AUG) that codes for a very unique methionine
amino acid (f-Met) and a few stop codons (UAG, UAA and UGA) that do not have any
tRNAs that naturally match, but initiate the dislocation of the ribosome to stop the
decoding of an mRNA. In some cases, UGA (or the “opal” stop codon) has been shown to
undergo translational recoding to code for a 21st amino acid, named Selenocysteine (Bock
et al., [ 1991). A 22nd amino acid discovered in Archaea (termed pyrrolysine) uses the
UAG stop codon (or the “amber” stop codon) (Srinivasan et al., 2002)). Some tRNA genes
have also mutated to adapt for nonsense mutations in the genetic code that lead to early
truncation of functional proteins. These tRNA genes are called amber suppressors (Chan
and Garen, |1970). To our knowledge, the tRNA interaction network is as close to a closed
system with multiple moving parts that is inherited throughout the tree of life. All tRNAs
must fit in the exact same spots in the ribosome, making their structure well conserved
throughout the tree of life. Conversely, they must be distinct enough to be distinguished
from one another in order to be charged with the correct amino acid by a tRNA aminoacyl
synthetase. This product of tRNA-AA is used in translation. These constraints on
structure and sequence are the fundamental properties that make the body of this
dissertation possible.

If one can use statistical theories to detect the specific nucleotides that make tRNAs
distinguishable from each other and with a measure of importance attached to that
distinction, maps can be created to use in order to assess relatedness from two different
sets of species. Due to the unique nature of this system, only the tRNAs are needed to be
compared to each other utilizing simple statistics in order to define the important factors
and assign weights to said factors.

1.8 Information theory

Entropy is a measure of disorder in a system. In investigations of multiple sequence
alignments, the entropy we measure is calculated with four possibilities in nucleotide
sequences. The entropy we calculate is measured in bits (log base 2), and is used to
describe the minimum descriptive complexity of any nucleotide site.

Entropy, H, of a discrete random variable X is represented as
H(X) = —Yp(z)log[p(x)], with 0 < p(x) < 1 being the probability of event z in a set of
possible events with > p(z) = 1. If logarithms are calculated to base 2, then entropy
H(X) and Information, /(X'), are measured in bits. Information is the calculation of the
entropy of a random variable subtracted from the expected entropy calculated from a
“background” multivariate distribution over the same event space. The background
distribution might be calculated from genomic frequencies of bases in DNA, for instance,
in which case the events x are the bases of DNA, i.e. X € A, C, T, G. In applications to
sequence analysis, the random variable X is usually take to be from a multinomial
distribution representing variation at a single amino acid or nucleotide site from
functionally or structurally analogous, or homologous macromolecules.



1.9 Machine Learning for bacterial classification

Machine Learning techniques are becoming more popular in many aspects of biological
sequence analysis, especially multiple sequence alignments. Little has been done in the
study of phylogenetic tree construction and strain classification. Rotteger et al. used
Machine Learning to detect if a gene resulted from Lateral Gene Transfer from discordant
phylogenies (Roettger et al., 2009). One recent paper used machine learning to relate
proteins (Lin et al., [2013). In 2010, a method was created to use machine learning to
hierarchically classify bacteria based on 16S rRNA sequences with little improvement to
current methods (Slabbinck et al., 2010). We will attempt to use machine learning to
relate species, and alleviate bias by detecting signal using Information theory.

In this work, we use nonlinear models for classification of unknown bacteria into
defined groups with scores depicted by Class Informative Features calculated with
Information theory. In order to determine that a nonlinear model was necessary for a
classifier, multiple methods were evaluated. We utilize a Multilayer Perceptron Machine
Learning Algorithm implemented in WEKA (Hall et al., 2009). Nonlinear model
necessity can be justified by the make-up of the scores in our data. Due to the fact that we
are utilizing scores that are carefully calculated weighted compositions, there is extreme
overlap of signal included from one score to the other. The scoring method condenses the
individual score contributions into one total score per clade, resulting in extreme
generalization. The classifier allows for this, given its excellent performance during
10-fold cross-validation during training.

A Multilayer Perceptron consists of 3 essential layers each made up of nodes: one
input layer that consists of a set of nodes representing the input variables, one output layer
consisting of all possible outcomes, and a hidden layer that can actually consist of
multiple sub-layers (see Figure[I.2)). Each node in the hidden layer is modeled by a
sigmoid function invisible to the user. During training, the algorithm will decide the
weights of the connectors of each layer, and the number of sub-layers that make up the
hidden middle layer. This method allows for probabilistic classification. The process of
backpropagation, or backward propagation of errors allows the weight of a specific
activation function in the neural network to be re-evaluated and modified in order to better
predict the output from the input of a MLP (Rumelhart et al., 2002). The weights that are
chosen minimize the error in the output.

Other machine learning algorithms we tried were linear, including a Support Vector
Machine which consists of a vector space with the same number of dimensions as one less
the number of outcomes. Boundaries for classification are defined by various vectors
calculated during training that optimally separate the data. There is no relevant probability
associated with this method. Support Vector Machines out-of-box proved unsuccessful in
describing our data, no matter how we tried to represent scores. One could re-calculate the
unique identity elements for each defined group to distinctly separate the data in order to
try to train with a simpler method than MLP. This would eliminate information about the
differing intensity (or informativeness) of shared CIFs between groups, making the



Multilayer Perceptron Example

Input Layer Hidden Layer(s) Output Layer

With a vector of three inputs {x,,x,,x;} and two outcomes {y,,y,} and
two hidden layers shown with each node representing a sigmoidal
activation function.

Figure 1.2: A depiction of a Multilayer Perceptron with two hidden layers, three input
values, and two outcomes. Different thickness of arrows shows that different connectors
can have different weights depending on back-propagation.
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nonlinearity in our scores an essential nonlinearity.

Trying an ensemble learning method to train a classifier called Random Forests also
produced noisy results, giving high error rates when implemented on scores derived from
CIFs. Knowing that Random Forests train based on the mode of the dataset, our data
would have to have consistent score profiles across all scored sets of data. This seems
unlikely due to the possibility that CIFs may be contained in our test sets that are not
contained in our training data.
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Chapter 2

tRNA signatures reveal polyphyletic
origins of streamlined SAR11 genomes
among the Alphaproteobacteria

In revision at PLoS Computational Biology
Authors: Katherine C.H. Amrine, Wesley D. Swingley, and David H. Ardell

2.1 Abstract

Phylogenomic analyses are subject to bias from convergence in macromolecular
compositions and noise from horizontal gene transfer (HGT). Accordingly, compositional
convergence leads to contradictory results on the phylogeny of taxa such as the
ecologically dominant SAR11 group of Alphaproteobacteria, that have extremely
streamlined, A+T-biased genomes. While careful modeling can reduce bias artifacts
caused by convergence, the most consistent and robust phylogenetic signal in genomes
may lie in the features governing macromolecular interactions. Here we develop a novel
phyloclassification method based on signatures derived from bioinformatically defined
tRNA Class-Informative Features (CIFs). tRNA CIFs are enriched for features that
underlie tRNA-protein interactions. Using a simple tRNA-CIF-based phyloclassifier, we
obtained results consistent with bias-corrected whole proteome phylogenomic studies,
rejecting monophyly of SAR11 and affiliating most strains with Rhizobiales with strong
statistical support. Yet, as expected by their elevated genomic A+T contents, SAR11 and
Rickettsiales tRNA genes are also similarly and distinctly A+T-rich within
Alphaproteobacteria. Using conventional supermatrix methods on total tRNA sequence
data, we could recover the artifactual result of a monophyletic SAR11 grouping with
Rickettsiales. Thus tRNA CIF-based phyloclassification is relatively robust to base
content convergence of tRNAs. Also, given the notoriously promiscuous HGT rates of
aminoacyl-tRNA synthetase genes, tRNA CIF-based phyloclassification may be at least
partly robust to HGT of network components. We describe how unique features of the
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tRNA-protein interaction network facilitate mining of traits governing macromolecular
interactions from genomic data, and discuss why interaction-governing traits may be
especially useful to solve difficult problems in microbial classification and phylogeny.

2.2 Introduction

What parts of genomes are most robust to compositional convergence? What information
is most faithfully vertically inherited? The key assumptions of compositional stationarity
and consistency in gene histories underpin most current approaches in phylogenomics and
are frequently violated (reviewed in e.g.Gribaldo and Philippe| (2002)). HGT is so
widespread that the very existence of a “Tree of Life” has been questioned (Gogarten

et al., 2002; Bapteste et al., 2009). Better understanding of ancient phylogenetic
relationships requires discovery of new universal, slowly-evolving phylogenetic markers
that are robust to compositional convergence and HGT.

The controversial phylogeny of Ca.Pelagibacter ubique (SAR11) is a case in point.
SAR11 make up between a fifth and a third of the bacterial biomass in marine and
freshwater ecosystems (Morris et al.,|2002). Adaptations to extreme environmental
nutrient limitation may explain why SAR11 have very small cell and genome sizes and
small fractions of intergenic DNA (Giovannoni, 2005). While some recent phylogenomic
studies define a clade among SARI11, the largely endoparasitic Rickettsiales and the
alphaproteobacterial ancestor of mitochondria (Williams et al., 2007; |Georgiades et al.,
2011; Thrash et al., 2011)), others argue this placement is an artifact of independent
convergence towards increased genomic A+T content, and that SAR11 belongs closer to
other free-living Alphaproteobacteria such as the Rhizobiales and
Rhodobacteraceae (Brindefalk et al., 2011; Rodriguez-Ezpeleta and Embley, 2012;
Viklund et al., 2012). Monophyly of SAR11 was also recently
rejected (Rodriguez-Ezpeleta and Embley, 2012).

Nonstationary macromolecular compositions are a known source of bias in
phylogenomics (Foster, [2004; Losos et al.,[2012). Widespread variation in
macromolecular compositions may be associated with loss of DNA repair pathways in
reduced genomes (Dale et al., 2003} Viklund et al.,[2012), unveiling an inherent A+T-bias
of mutation in bacteria (Hershberg and Petrov, 2010) and elevating genomic A+T
content (Moran, 2002; Lind and Andersson, 2008]). A process such as this has likely
altered protein and RNA compositions genome-wide in SAR11, and if such effects are
accounted for, the placement of SAR11 with Rickettsiales drops away as an apparent
artifact (Rodriguez-Ezpeleta and Embley, 2012} Viklund et al., 2012). Consistent with this
interpretation, SAR11 strain HTTC1062 shares a surprising and unique codivergence of
tRNAMS and histidyl-tRNA synthetase (HisRS) with a clade of free-living
Alphaproteobacteria (Wang et al.,[2007a; |Ardell, 2010) that likely arose only once in
bacteria (Ardell and Andersson, |2006)). This synapomorphy contradicts the placement of
SAR11 with Rickettsiales and mitochondria.

This work was motivated to determine whether the entire system of tRNA-protein
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Figure 2.1: A universal schema for tRNA-protein interaction networks.

interactions could be exploited to address phylogeny of bacteria, particularly SAR11. The
highly conserved tRNA-protein interaction network (Fig. 2.1)) has special advantages for
comparative systems biological study from genomic data. First, the components and
interactions of this network are highly conserved. Second, bioinformatic mining of
interaction-determining traits from genomic tRNA data is favorable because tRNA
structures are highly conserved not just across extant taxa but also across different
functional classes of tRNAs (“‘conformity” (Wolfson et al., 2001)). Yet each functional
class of tRNA must maintain a hierarchy of increasingly specific interactions with various
proteins and other factors (“identity” (Giegel 2008)). The conflicting requirements of
conformity and identity allow structural comparison and contrast to predict
class-informative traits of tRNAs from sequence data by relatively simple bioinformatic
methods (Ardell, [2010). The features that govern tRNA-protein interactions diverge
across the three domains of life (reviewed in (Giegé et al., 1998))) and also within the
domain of bacteria (Ardell and Andersson, 2006).

In prior work, we developed “function logos” to predict, at the level of individual
nucleotides before post-transcriptional modification, what genetically templated
information in tRNA gene sequences is associated to specific functional identity
classes (Freyhult et al.,[2006). We now call these function-logo-based predictions
Class-Informative Features (CIFs). A tRNA CIF answers a question like: “if a tRNA gene
from a group of related genomes carries a specific nucleotide at a specific structural
position, how much information do we gain about that tRNAs specific function?” Such
information estimates are corrected for biased sampling of functional classes and sample
size effects (Freyhult et al., 2006)), and their statistical significance may be
calculated (Ardell, 2010). Although an individual bacterial genome does not present
enough data to generate a function logo, related genome data may be lumped, weakly
assuming homogeneity of tRNA identity rules (although heterogeneity generally reduces
signal). Function logos recover known tRNA identity elements (i.e. features that govern
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the specificity of interactions between tRNAs and proteins) (Giegé et al.,|1998), and more
generally, predict features governing interactions with class-specific network partners such
as amidotransferases (Bailly et al., 2006). A recent molecular dynamics study on a
tRNASM-GIuRS (Glutaminal tRNA-synthetase) complex identified tRNA functional sites
involved in intra- and inter-molecular allosteric signaling within GIuRS that couples
substrate recognition to reaction catalysis (Sethi et al., 2009). The predicted sites are
correlated with those from proteobacterial function logos (Freyhult et al.,|[2007).

In this work, we show that tRNA CIFs have diverged among Alphaproteobacteria in
a phylogenetically informative manner. Second, as phylogenetic markers, tRNA CIFs are
more robust to compositional convergence than the tRNA bodies in which they are
embedded. Using our tRNA-CIF-based phyloclassification approach, we confirm that
SARI11 are polyphyletic with the majority of strains clustering with the free-living
Alphaproteobacteria. Our results have implications for how to best mine genomic data for
phylogenetic signals.

2.3 Results

We re-annotated alphaproteobacterial tDNA data from tRNAdb-CE 2011 (Abe et al.,
2011) and other prepublication genomic data, and split them into two groups according to
whether or not their source genome contained the uniquely derived synapomorphic traits
previously described (Ardell and Andersson, 2006): a gene for tRNA containing A73
(using “Sprinzl coordinates”, (Sprinzl et al., [1998))) and lacking templated —1G. We could
thereby partition the data into an RRCH clade (Rhodobacteraceae, Rhizobiales,
Caulobacterales, Hyphomonadaceae), which present the uniquely derived tRNA!S, and
the RSR grade (Rhodospirillales, Sphingomonadales, and Rickettsiales, excluding
SARI11), which present “normal” bacterial tRNAM® with C73 and genomically templated
—1G. In all, data from 214 alphaproteobacterial genomes represented 11644 predicted
tRNA sequences (8773 sequences unique within genomes and 3064 total unique
sequences). Our final dataset contained 147 genomes (8597 tRNAs) for the RRCH clade,
59 genomes (2792 tRNAs) for the RSR grade, and 8 genomes (255 tRNAs) of SAR11
strains.

The unique traits of the RRCH tRNAM® are perfectly associated to substitutions of
key residues in the motif [Ib tRNA-binding loops of HisRS involved in tRNA
recognition (Ardell and Andersson, 2006)). Seven of eight SAR11 strains exhibited the
unique tRNAMS/HisRS codivergence traits in common with RRCH genomes. In contrast,
strain HIMBS9 presented ancestral bacterial characters in both tRNA!® and HisRS (Supp.
Fig.[2.7). These results immediately suggest that HIMB59 is not monophyletic with the
other SARI11 strains, consistent with (Rodriguez-Ezpeleta and Embley, 2012).

We computed function logos (Freyhult et al., 2006)) of the RRCH clade and RSR
grade to form the basis of a tRNA-CIF-based binary phyloclassifier as shown
schematically in Fig. To reduce bias, we used a Leave-One-Out Cross-Validation
(LOOCYV) approach. For comparison, we also performed LOOCYV phyloclassification
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Figure 2.2: Function logos (Freyhult et al., 2006) of tRNA CIFs in the RRCH
and RSR groups of Alphaproteobacteria, and overview of tRNA-CIF-based binary
phyloclassification.

using sequence profiles of entire tRNAs, with typical results shown in Fig.[2.3B. Although
the tRNA-CIF-based phyloclassifier (Fig.[2.3]A) was biased positively by the much larger
RRCH sample size, it achieved better phylogenetic separation of genomes than the
total-tRNA-sequence-based phyloclassifier (Fig.[2.3B). The Sphingomonadales and
Rhodospirillales separated in scores from the Rickettsiales in both classifiers. Most
importantly, the tRNA-CIF-based phyloclassifier placed all eight SAR11 genomes closer
to the RRCH clade and far away from the Rickettsiales with HIMBS59 overlapping the
Rhodospirillales, while the total-tRNA-sequence-based phyloclassifier placed all eight
SARI11 genomes closer to the Rickettsiales. Supplementary Figure [2.8] shows the effects
of different treatments of missing data in the total-tRNA-sequence-based classifier.
Method “zero,” shown in Fig.[2.3|C, is most analogous to the method used to generate
Fig.[2.3)A. Method “skip” (Supp. Fig.[2.8D) shows that SAR11 tRNAs share sequence
characters in common with the RSR grade that are not seen in the RRCH clade. Methods
“small” and “pseudo” (Supp. Figs.[2.8]A and [2.8B) show that SAR11 have sequence traits
not observed in either RSR or RRCH.

Many other tRNA classes besides tRNAMS contribute to the differentiated
classification of RRCH and RSR genomes by the CIF-based binary classifier (Fig. [2.4).
Other tRNA classes are also differentiated between these two groups, including tRNA®S,
tRNAAP (RNASM, (RNA[Sy (symbolized “J”), tRNADS, tRNAD". These results extend
the observations of Wang et al.| (2007a) who discovered unusual base-pair features of
tRNASM in the RRCH clade. In classes for which the RRCH and RSR groups are
well-differentiated, HIMB59 uniquely groups with RSR while other strains group with
RRCH, while for other tRNA classes, all putative SAR11 strains lie outside the RRCH
and RSR distributions. This implies that more diverse alphaproteobacterial genomic data
are necessary to completely resolve the phylogenetic affiliation of SAR11 strains, but
strongly contradict a monophyletic affiliation of SAR11 with Rickettsiales.

The increases in genomic A+T contents in SAR11 and Rickettsiales have also
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Figure 2.5: Base compositions of alphaproteobacterial tRNAs showing convergence
between Rickettsiales and SAR11. A. Stacked bar graphs of tRNA base composition
by clade. B. UPGMA clustering of clades based on Euclidean distances of tRNA base
compositions under the centered log ratio transformation (Aitchison, |1986).

driven elevated A+T contents of their tRNA genes (Fig.[2.5]A). Rickettsiales and SAR11
tRNA genes are both notably elevated in both A and T, and share an overall similarity in
composition distinct from other Alphaproteobacteria. Hierarchical clustering of
alphaproteobacterial taxa based on tRNA gene base contents closely group SAR11 and
Rickettsiales together (Fig. [2.5B).

Nonstationary tRNA base content — convergence to greater A+T content — causes
all eight SAR11 strains in our dataset to group with Rickettsiales using phylogenomic
approaches based on total tRNA sequence evidence. In a “supermatrix” phylogenomic
approach, concatenating genes for 28 isoacceptor classes from 169 species (2156 total
sites) and using the GTR+Gamma model in RAXML, we estimated a Maximum
Likelihood tree in which all eight putative SAR11 strains branch together with
Rickettsiales (Supp. Fig.[2.9). For this analysis, in 31% of instances when isoacceptor
genes were picked from a genome, we randomly picked one gene from a set of
isoacceptor paralogs. However, our results did not depend on which paralog we picked.
Using a distance-based approach with FastTree, we computed a consensus cladogram over
100 replicate alignments each representing different randomized picks over paralogs. As
the consensus cladogram shows (Supplementary Figure [2.10) each replicate distance tree
placed all eight putative SAR11 strains together with Rickettsiales. The recently
introduced tRNA-specific FastUniFrac-based method for microbial
classification (Widmann et al., 2010) also places all SAR11 strains together with
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Rickettsiales.

However, as shown in Fig.[2.6] a multiway classifier based on tRNA CIFs bins all
SARI11 strains with the Rhizobiales except for HIMB59, which bins with the
Rhodospirillales, consistent with the results of (Rodriguez-Ezpeleta and Embley, [2012).
These results use a Multilayer Perceptron (MLP) classifier implemented in WEKA (Hall
et al., 2009) and only seven taxon-specific CIF-based summary scores. The MLP is the
simplest non-linear classifier able to handle the interdependent signals in the CIF-based
scores for tree-like data (Theodoridis and Koutroumbas, [1999)). In a Leave-One-Out
cross-classification, all other genomes scored consistently with NCBI Taxonomy except
three placed in Rhodobacteraceae based on 16S ribosomal RNA evidence: Stappia
aggregata, Labrenzia alexandrii and the denitrifying Pseudovibrio sp. JE062. None of
these genomes scored strongly against Rhodobacteraceae except Pseudovibrio, which
scored four times greater against the Rhizobiales.

To assess robustness of our results we performed two controls: we bootstrapped
sites of tRNA data in each genome to be classified, and we filtered away small CIFs with
Gorodkin heights < 0.5 from our models, retrained the classifier and bootstrapped sites
again. Generally bootstrap support values correspond to original classification
probabilities. All SAR11 strains have support values > 80% as Rhizobiales, majority
bootstrap values as Rhizobiales (HIMB114 at 70% with Rickettsiales at 15% and
HTCC7211 at 54% with Rickettsiales at 13%), or plurality bootstrap value as Rickettsiales
(HIMS at 48% with Rickettsiales at 18%) except HIMB59 which had a bootstrap support
value of 87% to be in the Rhodospirillales.

2.4 Discussion

Our results provide strong, albeit unconventional, evidence that most SAR11 strains are
affiliated with Rhizobiales, while strain HIMBS59 is affiliated with Rhodospirillales. These
results are entirely consistent with comprehensive phylogenomic studies that control for
nonstationary macromolecular compositions in Alphaproteobacteria (Brindefalk et al.,
2011; Rodriguez-Ezpeleta and Embley, 2012; Viklund et al., 2012) or a site-rate-filtered
analysis (Gupta and Mok, [2007). Our CIF-based method works even though SAR11 and
Rickettsiales tRNAs have converged in base content, so that total tRNA sequence-based
phylogenomics gives opposite results. tRNA CIFs must be at least partly robust to
compositional convergence of the tRNA bodies in which they are embedded.

It is well known that aminoacyl-tRNA synthetases (aaRS) are highly prone to
HGT (Doolittle and Handy, [1998; Brown and Doolittle, |1999; Wolf et al.,|1999; Woese
et al., 2000; /Andam and Gogarten, 2011) including in Alphaproteobacteria (Ardell and
Andersson, 2006; |Dohm et al., 2006; Brindefalk et al., 2006). We hypothesize that our
tRNA-CIF-based phyloclassifiers are also robust to HGT of components of the
tRNA-protein interaction network, consistent with |Shiba and Motegi| (1997)), who argued
that a horizontally transferred aaRS is more likely to functionally ameliorate to a
tRNA-protein network into which it has been transferred rather than remodel that network
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Figure 2.6: Multiway classification of alphaproteobacterial genomes using a feature
vector of seven tRNA-CIF-based summary scores and the default Multilayer
Perceptron model in WEKA. Bootstrap support values under resampling of tRNA sites
against (left) all tRNA CIFs and (right) CIFs with Gorodkin heights greater than or equal
to 0.5 bits and model retraining (100 replicates). All support values correspond to most
probable clade as shown except for Stappia and Labrenzia for which they correspond to
Rhizobiales.
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to accommodate itself. HGT of aaRSs may also perturb a network so as to cause a distinct
pattern of divergence (Ardell and Andersson| (2006) and this work). Wang et al. (Wang

et al., 2007a)) discuss the possibility that RRCH tRNA! and HisRS were co-transferred
into an ancestral SAR11 genome. However, this fails to explain the correlations of many
other tRNA traits of SAR11 genomes with the RRCH clade reported here. Further study is
needed to address the robustness of our method to component HGT.

A more distant relationship between most SAR11 strains and Rickettsiales actually
strengthens the genome streamlining hypothesis (Giovannoni, [2005). If SAR11 were a
true branch within Rickettsiales, it becomes more difficult to claim that genome reduction
in SAR11 occurred by a selection-driven evolutionary process distinct from the
drift-dominated erosion of genomes in the Rickettsiales (Andersson and Kurland, 1998;
Moran, 2002; [Itoh et al., 2002). By the same token, polyphyly of nominal SAR11 strains
implies that the extensive similarity in genome structure and other traits between HIMB59
and SARI11 reported by (Grote et al.,[2012) may have originated independently. Perhaps
convergence in some traits is consistent with streamlining, which could also explain
trait-sharing between SAR11 and Prochlorococcus, marine Cyanobacteria also argued to
have undergone streamlining (Dufresne et al., 2005). Clear signs of data-limitation in our
study should be taken to mean that better taxonomic sampling will improve our results
and could ultimately resolve more than two origins of SAR11-type genomes among
Alphaproteobacteria.

We extracted accurate and robust phylogenetic signals from tRNA gene sequences
by first integrating within genomes to identify features likely to govern functional
interactions with other macromolecules. Unlike small molecule interactions,
macromolecular interactions are mediated by genetically determined structural and
dynamic complementarities. These are intrinsically relative; a large neutral
network (Schuster et al., |1994) of interaction-determining features should be compatible
with the same interaction network. Coevolutionary divergence — turnover—of features
that mediate macromolecular interactions, while conserving network architecture, has
been described in the transcriptional networks of yeast (Kuo et al., [2010; Baker et al.,
2011) and worms (Barriere et al.,2012) and in post-translational modifications underlying
protein-protein interactions (Beltrao et al.,[2012). This work demonstrates that divergence
of interaction-governing features is phylogenetically informative.

It remains open how such features diverge, with possibilities including
compensatory nearly neutral mutations (Hartl and Taubes, [1996)), fluctuating selection (He
et al., 2011), adaptive reversals (Bullaughey, 2012)), and functionalization of pre-existent
variation (Haag and Molla, 2005). Major changes to interaction interfaces may be
sufficient to induce genetic isolation between related lineages, as discussed for the 16S
rRNA- and 23S rRNA-based standard model of the “Tree of Life,” in which many
important and deep branches associate with large, rare macromolecular changes
(“signatures”) in ribosome structure and function (Winker and Woese, |1991; Roberts
et al., 2008} (Chen et al., [2010).

Interaction-mediating features of macromolecules may be systems biology’s answer
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to the phylogeny problem. Perhaps no other traits of genomes are vertically inherited
more consistently than those that mediate functional interactions with other
macromolecules in the same lineage. In fact, the structural and dynamic basis of
interaction among macromolecular components — essential to their collaborative function
in a system — may define a lineage better than any of those components can themselves,
either alone or in ensemble.

2.5 Materials and Methods

2.5.1 Data

The 2011 release of the tRNAdb-CE database (Abe et al., 2011)) was downloaded on
August 24, 2011. From this master database, we selected Alphaproteobacteria data as
specified by NCBI Taxonomy data (downloaded September 24, 2010, |Sayers et al.
(2010)). Also using NCBI Taxonomy, we further tripartitioned alphaproteobacterial
tRNAdb-CE data into those from the RRCH clade, the RSR grade (excluding SAR11),
and three SAR11 genomes2. Five additional SAR11 genomes (for strains HIMBS59,
HIMBS5, HIMB114, IMCC9063 and HTCC9565) were obtained from J. Cameron Thrash
courtesy of the lab of S. Giovannoni. We custom annotated tRNA genes in these genomes
as the union of predictions from tRNAscan-SE version 1.3.1 (with —B option, |Lowe and
Eddy (1997)) and Aragorn version 1.2.34 (Laslett and Canbackl, 2004). We classified
initiator tRNAs and tRNAS using TFAM version 1.4 (Taquist et al., 2007) using a
model previously created to do this based on identifications in (Silva et al., [2006). We
aligned tRNAs with covea version 2.4.4 (Eddy and Durbin, [1994) and the prokaryotic
tRNA covariance model (Lowe and Eddy, |1997), removed sites with more than 97% gaps
with a bioperl-based utility (Stajich et al., 2002), and edited the alignment manually in
Seaview 4.1 (Gouy et al., 2010) to remove CCA tails and remove sequences with unusual
secondary structures. We mapped sites to Sprinzl coordinates manually (Sprinzl et al.,
1998)) and verified by spot-checks against tRNAdb (Jiihling et al., 2009). We added a gap
in the -1 position for all sequences and -1G for tRNAMS in the RSR group (Wang et al.,
2007a).

2.5.2 tRNA CIF Estimation and Binary Classifiers

Our tRNA-CIF-based binary phyloclassifier with Leave-One-Out Cross-Validation (LOO
CV) is computed directly from function logos, estimated from tDNA alignments as
described in (Freyhult et al., | 2006)). Here, we define a feature f € F' as a nucleotide

n € N ata position [ € L in a structurally aligned tDNA, where N = {A,C, G, T} and L
is the set of all Sprinzl coordinates (Sprinzl et al., 1998). The set F' of all possible features
is the Cartesian product /' = N x L. A functional class or class of a tDNA is denoted
ceCwhereC={A,C,D,E,F,G,H,I,J, K, L, M,N,P,Q,R,S, T,V,W, X Y} is the
universe of functions we here consider, symbolized by [IUPAC one-letter amino acid codes
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(for aminoacylation classes), X for initiator tRNAs, and J for tDNA[y. A taxon set of
genomes or just taxon set S € P(G) is a set of genomes, where G is the set of all
genomes, and P(G) is the power set of GG. In this work a genome G is represented by the
multiset of tDNA sequences it contains, denoted 7;. The functional information of
features is computed with amap h : (F' x C' x P(G)) — R from the Cartesian product
of features, classes and taxon sets to non-negative real numbers. For a feature f € F, class
c € C and taxon set S € P(G), h(f,c, S) is the fraction of functional information or
“Gorodkin height” (Gorodkin et al.,|1997), measured in bits, associated to that feature,
class and taxon set. In this work, for a given taxon set S, a function logo H (.S) is the tuple:

H(S) = {(a, 8) | B = h(a, S),Ya € (F x C)}. 2.1)

Furthermore the set 1(.S) C (F' x C) of tRNA Class-Informative Features for taxon
set S is defined:

1(S) = {a € (F x C) | h(a, S) > 0}. 2.2)

Briefly, a tRNA Class-Informative Feature is a tRNA structural feature that is
informative about the functional classes it associates with, given the context of tRNA
structural features that actually co-occur among a taxon set of related cells, and corrected
for biased sampling of classes and finite sampling of sequences (Freyhult et al., 2006)). Let
A denote a set of alphaproteobacterial genomes partitioned into three disjoint subsets X,
Y and Z with X UY U Z = A, representing genomes from the RRCH clade, the RSR
grade, and the eight nominal Ca. Pelagibacter strains respectively. To execute
Leave-One-Out Cross-Validation of a tRNA CIF-based binary phyloclassifier for a
genome GG € A, we compute a score S¢ (G, S1, S), averaging contributions from the
multiset 7 of tDNAs in G scored against two function logos H(.S;) and H(S;) computed
respectively from two disjoint taxon sets S; C A and S, C A, with G ¢ S7 U Ss. In this
study, those sets are X \ G and Y\ G, denoted X and Y respectively. Each tDNA
t € T presents a set of features F; C F' and has a functional class ¢; € C associated to it.
The score Sc(G, X¢, Yg) is then defined:

1
Sc(G, Xe: Ya) = 77 SN h(f e Xe) = h(f.en Ye). (2.3)

teTqg feF

As controls, we implemented four total-tDNA-sequence based binary
phyloclassifiers to score a genome G. All are slight variations in which a tRNA ¢ € T(; of
class ¢(t) contributes a score that is a difference in log relative frequencies of the features
it shares in class-specific profile models generated from X and Y. The default “zero”
scoring scheme method S% (G, X¢, Y5) shown in Fig. is defined as:

7Z _ p*(f|ct7XG)
S7(G, Xa,Ye) = ol Z Z log, 7 (Flen V)’ (2.4)
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where

71#{]2 ¢,S}/#{c, 5y #{f,¢, 5} >0 (2.5)

#{f’C7S}ZO’

#{f,c, S} is the observed frequency of feature f in tDNAs of class ¢ in set .S, and
#{c, S} is the frequency of tDNAs of class ¢ in set S.

p*(fle,S) = {

2.5.3 Analysis of tRNA Base Composition

We computed the base composition of tRNAs aggregated by clades using

bioperl-based (Stajich et al., 2002)) scripts, and transformed them by the centered log ratio
transformation (Aitchison, |1986) with a custom script. We then computed Euclidean
distances on the transformed composition data, and then performed hierarchical clustering
by UPGMA on those distances as implemented in the program NEIGHBOR from Phylip
3.6b (Felsenstein, 2005b)) and visualized in FigTree v.1.4.

2.5.4 Supermatrix and FastUniFrac Analysis

For supermatrix approaches, we created concatenated tRNA alignments from 169
Alphaproteobacteria genomes (117 RRCH, 44 RSR, 8 PEL) that all shared the same 28
isoacceptors with 77 sites per gene (2156 total sites). In cases where a species contained
more than a single isoacceptor, one was chosen at random. Using a GTR+Gamma model,
we ran RAXML by means of The iPlant Collaborative project RAXML server
(http://www.iplantcollaborative.org,|Stamatakis et al.[(2008])) on January
23, 2013 with their installment of RAXxML version 7.2.8-Alpha (executable
raxmIHPC-SSE3, a sequential version of RAxML optimized for parallelization). We
tested the robustness of our result to random picking of isoacceptors by creating 100
replicate concatenated alignments and running them through FastTree (Price et al., 2010).
For the FastUniFrac analysis we used the FastUniFrac (Hamady et al.,|2010) web-server
athttp://bmf2.colorado.edu/fastunifrac/ to accommodate our large
dataset. We removed two genomes from our dataset for containing fewer than 20 tRNAs,
and following (Widmann et al.,|2010) removed anticodon sites. Following (Widmann

et al., 2010) deliberately, we computed an approximate ML tree based on Jukes-Cantor
distances using FastTree (Price et al.,|2010). We then queried the FastUniFrac webserver
with this tree, defining environments as genomes. We then computed a UPGMA tree
based on the server’s output FastUniFrac distance matrix in NEIGHBOR from Phylip
3.6b (Felsensteinl, 2005b)).
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2.5.5 Multiway Classifier

All tDNA data from the RSR and RRCH clades were partitioned into one of seven
monophyletic clades: orders Rickettsiales (N = 40 genomes), Rhodospirillales (N = 10),
Sphingomonadales (N = 9), Rhizobiales (N = 91), and Caulobacterales (N = 6), or
families Rhodobacteraceae (N = 43) or Hyphomonadaceae (N = 4) as specified by NCBI
taxonomy (downloaded September 24, 2010, (Sayers et al., 2010)). We withheld data
from the eight nominal SAR11 strains, as well as from three genera Stappia,
Pseudovibrio, and Labrenzia, based on preliminary analysis of tDNA and CIF sequence
variation. Following a related strategy as with the binary classifier, we computed, for each
genome, seven tRNA-CIF-based scores, one for each of the seven alphaproteobacterial
clades as represented by their function logos, using the principle of Leave-One-Out
Cross-Validation (LOO CV), that is, excluding data from the genome to be scored.
Function logos were computed for each clade as described in (Freyhult et al.,|2006). For
each taxon set X (with genome G left out if it occurs), genome G obtains a score

SM (G, X¢) defined by:

Su(G, Xg) = @ > (e, Xe). (2.6)

teTg fEF:

Each genome G is then represented by a vector of seven scores, one for each taxon
set modeled. These labeled vectors were then used to train a Multilayer Perceptron
classifier in WEKA 3.7.7 (downloaded January 24, 2012, (Hall et al., 2009)) by their
defaults through the command-line interface, which include a ten-fold cross-validation
procedure. We bootstrap resampled sites in genomic tRNA alignment data (100 replicates)
and also bootstrap resampled a reduced (and retrained) model including only CIFs with a
Gorodkin height > 0.5 (Freyhult et al., 2006)).

2.6 Appendix — Supplementary Data
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Frequency plots of residue in active site in HisRS

7 SAR 11 GENOMES

HIMB59

Figure 2.7: Frequency plot logos of the motif IIb tRNA-binding loop of inferred HisRS
proteins from putative SAR11 strain genomes. These results should be compared to
Figure 3 of Ardell and Andersson (2006). Seven of eight putative SAR11 genomes show
derived characteristics of HisRS (shown here at top) unique to the RRCH clade, while one,
HIMBS59, shows ancestral characteristics common to all other bacteria. These data co-vary
perfectly with tRNAH® data and imply perfect covariation consistent with monophyly of
the top seven strains with the RRCH clade, and affiliation of HIMBS59 with the RSR grade.
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Figure 2.8: Histograms of leave-one-out cross-validation (LOO-CV) scores of
alphaproteobacterial genomes under the tRNA sequence-based binary phyloclassifier,
using four different methods for handling missing data, when a genome presents tRNA
features missing from one or the other training data sets for the RRCH clade (in red) or
RSR grade (in blue). Pelagibacter data is in green. Method “zero” is shown in the main
text as Figure[2.3] For definitions of methods, please see the Methods and Materials section
in this chapter.
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Figure 2.9: Maximum likelihood phylogram of a concatenated supermatrix of 28
isoacceptor genes for 169 alphaproteobacterial genomes computed in RAXxML using
the GTR+Gamma model. For genomes in which paralog “isodecoders” of the same
isoacceptor gene, one paralog was picked randomly. This occurred in 31% of cases, where
a case is one genome X isoacceptor combination. Rickettsiales genomes are boxed in blue
and all eight putative SAR11 strains are boxed in green.
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Figure 2.10: Consensus cladogram of 100 replicates of distance- based trees
computed in FastTree, each with different randomized picks of isoacceptor genes
for alphaproteobacterial genomes in which paralogs for the same isoacceptor exist.
A. Complete cladogram, with Rickettsiales boxed in blue and putative SAR11 genomes,
including HIMBS59, in green. B. Magnification showing perfect replicate support for
monophyly of Rickettsiales and the eight putative SAR11 strains.
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Chapter 3

tRNA Class-Informative Features locate
the root of Plastids within Cyanobacteria

3.1 Abstract

While eukaryotic Plastids indisputably originated from a cyanobacterial ancestor, their
exact rooting is unresolved. Such ancient evolutionary relationships challenge molecular
phylogenetics because of saturation and base composition effects, genome reduction, and
horizontal gene transfer. Features that target tRNAs within protein-tRNA interaction
networks (called Class-Informative Features or CIFs) can be predicted bioinformatically
from any group of related genomes, including Plastid genomes. Here we show that tRNA
CIFs diverge slowly in a phylogenetically informative manner, and can be used to
construct a bootstrapped distance-based phylogeny that supports widely accepted deep
phylogenetic relationships within bacteria and Plastids. Furthermore, our results
unequivocally root Plastids after the divergence of marine Prochlorococcus and
Synechococcus clades (“marine Cyanobacteria”), resolving a major open question about
Plastid origins. One among several derived tRNA CIFs that Plastids and their
cyanobacterial sister clade share is a unique Glu-tRNA recognition element previously
described only in Plastids, which putatively functions in tetrapyrrole (heme and
chlorophyll) biosynthesis via the C5 pathway. tRNA CIFs are universal, slowly diverging,
systems biological traits that are less prone to biases affecting traditional molecular
phylogenetic data. As such, they promise to resolve other outstanding deep phylogenetic
relationships in the Tree of Life.

3.2 Introduction

It is generally agreed that all cellular organisms share a common terrestrial

origin (Theobald, 2010). More controversial, however, is the extent to which they have
descended vertically from a common ancestor (Woese, 2002; Koonin and Wolf, |2009;
Mclnerney et al., [2011). This controversy — of how tree-like the Tree of Life is — has
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been fueled in part by limitations in methodology. Conventional molecular phylogenetics
can fail to accurately resolve tree-like signals where they truly exist, if saturation effects,
long-branch attraction and compositional bias artifacts are not carefully accounted

for (Philippe et al.,|2005). Phylogenomic studies show evidence of increasingly pervasive
Horizontal Gene Transfer (HGT) early in the history of life, opening the question of what
biological essence is vertically inherited if not entire genomes and how can this be
accurately estimated (Abby et al., 2012; Wolf et al.,[2002; Woese, [2000)? A powerful
alternative to conventional methods lies in the analysis of Signatures or Rare Genetic
Changes (Gupta, 2010), which suggest that more ancient tree-like signals exist to be
estimated (Brochier and Philippe, 2002; Rivera and Lake, 2004). But rare genetic
changes, difficult to find, are not generally universal phylogenetic markers.

Cellular binary fission would seem to imply an ancient and essential pattern of
vertical inheritance characteristic to all of life’s history. But what biological essence is
vertically coinherited and how best can we estimate the pattern? Gene products must
interact with each other through shape and dynamic complementarity in order to
cofunction (Williamson, [2000). Unlike the interactions of macromolecules with small
molecules, macromolecular (eg RNA-protein, RNA-RNA and protein-protein) interactions
are shaped at interfaces that are entirely genetically encoded. We hypothesized that these
interfaces may slowly diverge while maintaining specificity of interaction (Ardell, 2010).
The coadaptations at macromolecular interfaces maintaining specificity of interactions
may be the defining essence of vertical inheritance and the best source of data to estimate
deep roots of the Tree of Life. Although the degree of macromolecular interactions are
known to correlate inversely with rates of substitution (Fraser et al., 2002) and HGT (Jain
et al.l [ 1999), features that define macromolecular interfaces have not previously been
specifically exploited for phylogeny. Such data may be robust to HGT, because while
components of an interaction might transfer and even perturb a macromolecular
interaction network, the “shape code” that dictates specificity of interactions (Ardell,
2010) cannot easily be transferred form one lineage to another.

In order to exploit this idea for deep phylogeny, we must be able to predict many
different features governing universal macromolecular interactions from genomic data
alone, and compare their presence, absence and homology across lineages. Transfer RNA
genes are perhaps uniquely well-suited to this task. Different functional classes of tRNAs
must conform to the same overall structure to interact with general translational factors
and the ribosome, yet be structurally distinct in order to interact specifically with proteins
like aminoacyl-tRNA synthetases according to their distinct functional identities. This
eases sequence-based comparisons to predict Class-Informative Features (CIFs). The
tRNA CIFs are (a) highly enriched for known tRNA identity elements and predict novel
ones (|Freyhult et al. (2006), Chapter 2), (b) coevolve with tRNA-interacting enzymes at
both residue and domain levels (McClain, 1993} |Giegé et al., 1993), and (c) diverge over
the Tree of Life at least at the phylum-level (Giegé et al., [1998)), for example between
Proteobacteria and Cyanobacteria (Freyhult et al., 2007). We recently showed that a
unique tRNA CIF divergence within the Alphaproteobacteria is apparently informative
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about the controversial phylogenetic affinity of the prominent marine microflora Ca.
Pelagibacter ubique (|Ardell| (2010); (Wang et al. (2007b); Chapter 2)

Here we developed new methods to systematically analyze tRNA CIFs and applied
them to study evolutionary relationships within and among Cyanobacteria and eukaryotic
Plastids. Although the cyanobacterial endosymbiotic origin of eukaryotic Plastids was
proposed more than a century ago (Mereschkowsky,|1905)), consensus has only recently
emerged on a single origin of all extant chloroplasts (except the chromatophore in
FPaulinella chromatophora (Bodyt et al., 2012))). The precise rooting of Plastids within the
cyanobacterial tree has been called one of the last great unresolved questions regarding
this landmark evolutionary event (Keeling et al.,[2004), and is challenging because of
extensive divergence and massive genome reduction in Plastids, more than ten-fold
reduction in gene number compared to most modern Cyanobacteria (Martin and
Herrmann, |1998). While early analysis linked green eukaryotic phototrophic Plastids with
prochlorophytes based on shared traits of chlorophyll b and a lack of
phycobilisomes (Cavalier-Smith, |1981)), sequence-based evidence suggested a more
modern origin, discordantly depending on dataset and methods used (Martin et al., |1992;
Archibald, 2009). In a recent phylogenomic analysis (Criscuolo and Gribaldo, 2011)),
Plastids were rooted after the early-branching Gleobacter violaceus and two Yellowstone
Synechococcus strains, but before the major cyanobacterial divergence between the
marine, unicellular Synechococcus and Prochlorococcus (‘“Marine” Cyanobacteria) and
the remainder of the diverse cyanobacterial lineages (“Core” Cyanobacteria).

3.3 Methods and Discussion

We custom annotated tRNA gene-predictions in a collection of proteobacterial,
cyanobacterial and Plastid genomes. Plastid tRNA genes, unlike mitochondrial tRNA
genes, are mostly canonical in structure (Barbrook et al., 2010), although we did find
some notable exceptions. Annotated tRNAL,; contained large regions in the variable arm
that mimicked those of tRNAMS!, and were thus misclassified. We used conditional
information (Freyhult et al.,[2006) to profile tRNA class-informative base-pairs and single
nucleotides within phylogenetic clades in a manner that corrects for biased class

sampling (Gorodkin et al., [1997). We then developed a weighted distance metric on these
profiles based on the square root of the Jensen-Shannon Divergence (|Lin|(1991); Endres
and Schindelin| (2003); Osterreicher and Vajdal (2003), Figure . and bootstrapped
tRNA CIFs in order to generate a consensus distance-based phylogenetic tree (Desper and
Gascuel, 2002} Felsenstein|, 2005a) [3.2] Our tRNA CIF-based tree (Figure [3.2)) contains
robust support for widely accepted branching orders within Proteobacteria (Ciccarelli,
2006 |Yarza et al., 2010), Cyanobacteria (Tomitani et al., 2006; Shih et al.,|2013), and the
eukaryotic phototrophs (Martin et al., 2002). Remarkably, our method robustly roots
Plastids as a sister clade to the core Cyanobacteria, after the divergence of both the basal
Gleobacter/Synechococcus and the marine Prochlorococcus/Synechococcus
Cyanobacteria in 85% of our bootstrap replicates(Figure [3.2)). The alternative hypothesis
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Figure 3.1: Jensen-Shannon Divergence tree calculated for Cyanobacteria, Plastids
and Proteobacteria. All literature-supported topologies (especially Proteobacteria) are
obtained, and Plastids sister with the “Core” Cyanobacteria, which branch from the marine
Cyanobacteria which contains Synechococcus strains.

most recently published by (Criscuolo and Gribaldo| (2011), rooting Plastids shortly after
the divergence of Gleobacter and Yellowstone Synechococcus, is the second best topology
in our analysis by a wide margin (see Figures [3.3]and [3.4).

We used a permutation method to declare sets of significantly informative tRNA
CIFs and investigate further the strength of support in our data for our main result.
Remarkably, among several derived tRNA CIFs shared between Plastids and “Core”
Cyanobacteria, the most informative feature in our data is a highly unusual A53-U61
base-pair in tRNAS" (See Figure . This trait shared by Plastids and “Core”
Cyanobacteria is unique among all tRNAs in sequenced genomes, and has been previously
implicated in recognition of Glu-tRNAS" by Plastid Glu-tRNA Reductase (GIuTR) the
first enzyme functioning in tetrapyrrole (and ultimately heme and chlorophyll)
biosynthesis by the C5 pathway (Stange-Thomann et al.,[1994) and was not previously
observed or described in Cyanobacteria. RNAse protection assays implicate positions 53,
54, and 55 of Glu-tRNAS™" as sites of interaction with GluTR (Randau et al., [2004) and
mutation of position 57 decouples protein and tetrapyrrole biosynthesis (Stange-Thomann
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Figure 3.2: Jensen-Shannon Divergence tree with bootstrap values. 100 bootstrap
replicates with bootstrapped tRNA sites for each replicate. There is strong support for
a Core Cyanobacteria/Plastid sistering.
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A Literature-supported Topology

Marine
Plastids

; CIF Information Core + Marine Plastid basal Cyano Proteobacteria

5 Difference Cyano ¥ + Chloroflexi
G48-J 3.644 100.00% 2.82% 0.00% 4.18%
C64-X 0.207 86.44% 3.29% 0.00% 3.92%
G50-X 0.153 86.44% 3.76% 0.00% 7.49%

os)

Old-Fashioned Topology

Marine
Plastids

2

St Information Marine Cyano Proteobacteria

“ CIF Difference + Plast?d Core Cyano  basal Cyano + Chloroflexi
C43-K 0.166 71.30% 24.24% 0.00% 25.70%
A39-L 0.166 83.60% 18.18% 33.33% 18.42%
A39-R 0.156 78.09% 9.09% 0.00% 12.46%

Figure 3.3: Class Informative Feature support for (A) literature supported and (B)
classic cyanobacterial ancestry. The literature supported topology has one supporting
CIF which could be explained by horizontal gene transfer and the original topology is not
supported by any strong shared CIFs.

et al},[1994; [Levicén et al., 2007)(See Figure [3.5). It is compelling to speculate whether
this tRNA CIF may have evolved to help partition Glu-tRNA®" between the protein and
tetrapyrrole biosynthesis pathways. Subtle changes in the chlorophyll biosynthetic
pathway may have had a profound effect on the fitness of the cyanobacterial progenitor in
its host eukaryote.

We assessed two alternative topologies around the “Core” Cyanobacteria/Plastid
split (see Figure [3.3)). Both alternatives yield informative features, albeit far fewer than the
Plastid-core Cyanobacteria monophyly (see Figure[3.4). The top-scoring CIF linking the
two main cyanobacterial clusters together in exclusion to the Plastids is base G48 in
tRNALy (class J). It is the only highly informative feature supports a Core/Marine
pairing; however, this is likely explained by an early loss in Plastids. As for the
old-fashioned topology, springing from the original discovery of Chlorophyll b-containing
marine Cyanobacteria (Marine Cyanobacteria/Plastid), very few weak features support a
Marine/Core pairing (see Figure [3.3)) which sparked debate on whether Plastids originated
from these prochlorophytes. Limited CIFs supporting the two alternative topologies

36



Highest Supported Topology
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&) a S A number of very informative features

support a Core/Plastid sistering.
Information Core Cyano + . Proteobacteria

CIF Difference Plasytid Marine Cyano - basal Cyano | ()0 o rexi
AS3-E 4.105 95.16% 0.00% 0.00% 0.00%
U61-E 3.981 95.16% 0.00% 0.00% 0.00%
A3-] 1.130 97.10% 0.00% 0.00% 3.09%
U70-J 0.659 97.51% 0.00% 0.00% 3.09%
AG-N 0.534 90.46% 0.00% 0.00% 17.02%
U48-K 0.344 92.41% 0.00% 0.00% 6.51%
U67-N 0.326 90.46% 0.00% 0.00% 18.09%
Al5-K 0306 92.41% 0.00% 0.00% 7.04%
US-W 0.286 77.64% 0.00% 0.00% 0.00%
C2-J 0.126 96.27% 0.00% 0.00% 4.18%
G71-J 0.123 97.51% 0.00% 0.00% 4.36%

Figure 3.4: List of the top Class-Informative Features shared between the ‘“Core”
Cyanobacteria and the Plastids. Percent conservation is also shown in the table,
supporting the sistering of the “Core” Cyanobacteria and the Plastids.
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Figure 3.5: A schematic of tetrapyrrole biosynthesis, and its relationship to a
dominating CIF.
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suggests that previous attempts to reconstruct the evolutionary origin of Plastids may have
been hampered by the long temporal distance to this root, akin to the difficulty in placing
Synechococcus elongatus (Robertson et al., 2001)), discussed in further detail below.

In addition, we also tested the suggested sistering of Plastids with the heterocystous
Nostocales (Deusch et al., [2008)), but this pairing yielded no CIFs above our threshold
(data not shown). While our methods offered no support for this sistering, the localization
of Plastids within the core cyanobacterial lineage supports the possibility of a
nitrogen-fixing Plastid progenitor with a gene complement that might have been as
comprehensive as the large Nostocales. This could also account for the apparent similarity
between the gene complement in Plastids (and their host genomes) and Nostocales—higher
than that for any other cyanobacterial clade (Deusch et al., 2008).

3.3.1 Resolving deep-branching species

While our algorithm relies on functional tRNA information from clades (our smallest
analyzed datasets contain three species), we also scored individual species against model
clades in order to clarify the evolutionary history of species that have historically been
difficult to resolve. Chief among these species in the Cyanobacteria are S. elongatus (two
closely related genomes PCC 6301 and PCC 7942) and Synechococcus sp. PCC 73335,
which have been suggested to form a monophyletic cluster along the marine branch near
the divergence of marine and “Core” clusters, though this branching location is
inconsistent. Using our algorithm, both S. elongatus strains do, in fact, score highest
against the marine cluster. However Synechococcus sp. PCC 7335 shows clear association
with the “Core” and Plastid clusters—even including the indicative A53:T61 base pair in its
tRNAS"_a position supported by several trees presented in previous work (Criscuolo and
Gribaldo, 2011} Falcon et al., 2011). While this branching position for PCC 7335 places it
closest to the root of the Plastid lineage, there is no clear evidence that this strain is a
direct ancestor of the progenitor species.

Cyanophora localization and red-bias

Cyanophora paradoxa is suggested to branch prior to the divergence of the red and green
algal lineages (Bhattacharya and Weber, [1997; Price et al., 2012)), however this position
has been controversial (Deschamps and Moreira, 2009; |Q1u et al., 2012). Unlike all other
phototrophic eukaryotes, the Cyanophora Plastid, termed the cyanelle, contains relic
cyanobacterial features, including a peptidoglycan cell wall and carboxysome-like
carbon-concentrating mechanisms (Fathinejad et al., | 2008]). We have also recovered that
red algal plastids are definitely closer related to Cyanobacteria than green algal plastids.
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3.4 Conclusion

In this chapter, we present a novel method for creating phylogenetic trees which recovers
all basic supported topologies (Proteobacteria and Plastids), but provides a different
topology for the branching of the Plastids from the Cyanobacteria. From this work, the
highest supported topology includes the “Marine” Cyanobacteria basally branching to the
“Core” Cyanobacteria and the Plastids. We show little to no support for any other
topology with our CIFs. Our top CIF, A53:U61-E is present in nearly all Core
Cyanobacteria and plastids, and no other sequenced organisms. tRNAS" is particularly
important due to its dual use in both protein and tetrapyrrole biosynthesis. Our
classification of the three Synechococcus elongatus cluster strains show that they are very
strongly tied to the Core Cyanobacteria. We have also shown that strain PCC 7335 should
not be included in the S. elongatus cluster. This method can be used for creating any tree
with enough genomes sequenced ( three genomes per grouping).

Recently, a study from the CyanoGEBA project (Shih et al., 2013)) came out
reporting over 50 genomes that we feel will need to be incorporated into our analysis to
strengthen our results. Data curation for this project has already begun, included in the
following chapter. Once the pipeline has been applied to this new data, the results will be
updated and then submitted for publication.
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Chapter 4

Identifying conserved traits throughout
the bacterial tree of life — an exploratory
analysis

4.1 Abstract

The search for a signal that is functionally conserved across the tree of life, and immune to
biological bias has lead us to investigate tRNA Class-Informative features (CIFs). It has
been shown in this dissertation that, in two specific cases, CIFs in combination with
machine learning can be used to classify genomes that are unique in some form that cause
classical phylogenetic methods to misrepresent their taxonomic relationships. In this
work, we have developed an general bacterial classifier that will use tRNA CIFs to
taxonomically sort bacteria into orders already populated with sequenced genomes. In our
investigations, we determined that tRNA CIFs are a promising marker to classify most
bacteria, and rare misclassifications can be explained. In an investigation of CIF
properties to justify their value in bacterial classification, we determined that the
averaging of weighted CIFs compensate for some tRNAs with a G+C bias. A site-specific
analysis determined that in some sites, Information is consistent across orders. This
unique trait could infer functional importance in the tRNA interaction network that can be
recovered through information theory and tRNA sequence alone. We conclude that CIFs
are a promising phylogenetic signal that deserve more investigation for utilization to track
vertical inheritance. This work paves the way for a streamlined utilization of all sequenced
genomes, and more careful training of a classifier will alleviate incurred issues.

4.2 Introduction

tRNA identity elements function as essential pieces of a vital system throughout life. In
chapter 2, we demonstrated that tRNA Class-Informative features, computed with
Function Logos (Freyhult et al., 2006), can be used to classify bacteria with extreme
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compositional bias. In chapter three, we demonstrated that tRNA Class-Informative
features can be used as phylogenetic signal to bifurcate trees with long branches using
Jensen-Shannon Information Difference (Lin, [1991) as a distance metric. It is known that
CIFs are distinct and meaningful based on experimental verification (reviewed in Giegé
(2008)). If one randomizes class associations and calculates function logos, little to no
letters are visible in the graph of CIFs.

Questions arise when investigating using CIFs for phylogenetic signal which we
attempt to address in this chapter.

(1) Are the CIFs conserved? More specifically, is it extremely important for a
synthetase-tRNA contact to maintain the actual signal? We would expect to see universally
conserved CIFs if the actual CIF is important. Either answer to this question will provide
information on how other relatively closed systems might evolve across the tree of life.

(2) Is the amount of information conserved? We would expect to see CIFs existing
in all of the same sites, regardless of their make-up if the contact is the only important
feature of a CIF.

(3) Can CIFs travel through different loci in a tRNA of the same class? Is it a
combination of a few, or all of these factors that contribute to the evolution of informative
sites in the tRNA interaction network?

(4) how noisy are CIFs?

This final chapter will investigate these concepts in order to pave the way for
fine-tuning of a classifier that is robust to biological and methodological biases. Given the
exciting results from Chapter 2 and Chapter 3 analyses, it proved necessary to start
dissecting the properties of CIFs, and how they have evolved/are evolving.

4.3 Results and Discussion

4.3.1 G+C content across bacterial orders

In 79 orders, G+C content varies, with extremities in the bacteria in drastic environments,
including the Desulfurococcales, Sulfolobales, and Thermococcales. An evaluation of
transfer-RNA G+C content across the tree of life shows that they vary drastically (See
Figure 4.1]A). When you only look at their Information summation for each of the four
states { A,U,C,G}, the signal starts to look like other orders, despite their extremities in
tRNA base content (See Figure d.1B). This suggests that the functional residues in tRNAs
share roughly the same level of information available to charging synthetases, represented
by the heights of the letters summing to roughly the same normalized frequencies in all
four types of features.

4.3.2 Classifier development by order

Following the procedure in Chapter 2 with 79 groups instead of seven, we have trained a
Multilayer Perceptron with scores from 2374 genomes to the 79 different groups (see
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Table 4.1: Count of bacterial genomes and tRNAs represented in each taxonomic
order in curated dataset.

order # genomes | # tRNAs | order # genomes | # tRNAs
Acholeplasmatales 6 202 Methanobacteriales 8 350
Acidithiobacillales 4 224 Methanocellales 3 153
Acidobacteriales 5 241 Methanococcales 15 566
Actinomycetales 219 11197 Methanosarcinales 13 675
Aeromonadales 6 626 Methylococcales 3 135
Alteromonadales 48 4093 Methylophilales 5 234
Aquificales 12 520 Mycoplasmatales 65 2096
Archaeoglobales 5 238 Myxococcales 11 647
Bacillales 185 14625 Neisseriales 21 1302
Bacteroidales 24 1424 Nitrosomonadales 5 202
Bdellovibrionales 4 140 Nitrosopumilales 3 124
Bifidobacteriales 32 1758 Nitrospirales 4 194
Burkholderiales 95 5461 Nostocales 12 741
Campylobacterales | 87 3432 Oceanospirillales 15 784
Caudovirales 4 213 Oscillatoriales 9 486
Caulobacterales 7 349 Pasteurellales 32 1830
Chlamydiales 88 3281 Planctomycetales 6 368
Chlorobiales 11 518 Pleurocapsales 3 134
Chlorofiexales 5 239 Prochlorales 12 473
Chromatiales 13 604 Pseudomonadales 63 4126
Chroococcales 36 1613 Rhizobiales 97 5008
Clostridiales 113 7176 Rhodobacterales 22 1120
Coriobacteriales 8 379 Rhodocyclales 6 356
Cytophagales 12 537 Rhodospirillales 26 1535
Deferribacterales 4 169 Rickettsiales 63 2132
Dehalococcoidales 7 327 Selenomonadales 7 400
Deinococcales 8 384 Sphingobacteriales 8 462
Desulfobacterales 8 408 Sphingomonadales 14 714
Desulfovibrionales 17 1027 Spirochaetales 53 2081
Desulfurococcales 12 550 Sulfolobales 19 859
Desulfuromonadales | 11 570 Synergistales 4 193
Enterobacteriales 216 16972 Syntrophobacterales 4 192
Entomoplasmatales | 3 94 Thermales 12 575
Flavobacteriales 44 1780 Thermoanaerobacterales | 29 1483
Fusobacteriales 6 297 Thermococcales 15 691
Halanaerobiales 5 311 Thermoplasmatales 4 184
Halobacteriales 23 1122 Thermotogales 16 757
Lactobacillales 184 11419 Thiotrichales 23 885
Legionellales 17 729 Vibrionales 23 2520
Xanthomonadales 27 1528
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table for details). All bacterial orders, except the viruses in Caudovirales (four
genomes) are primarily filled with probability density from their order, meaning that most
all genomes classify with the correct order (see Figure d.2). Misclassifications are
described, and in some cases justified, in the next section, which are arguably excellent
positive controls.

4.3.3 Detection of misclassified bacteria

Using a Multilayer Perceptron to train a classifier for classifying bacteria from 79
taxonomic orders, ten genomes misclassify according to their NCBI taxonomy (0.4% of
all total data) . Saccharophagus degradans 2 40 (prob 0.446), currently classified in the
gammaproteobacterial order Alteromonadales (48 genomes), the only species currently
defined in its genus, classifies with the gammaproteobacterial Methylococcales (3
genomes). Teredinibacter turnerae T7901 (prob 0.697), another member of
Alteromonadales (48 genomes), groups with gammaproteobacterial order
Oceanospirillales (15 genomes) Both of the previously listed strains are ill sequenced in
their respective genera, and thought to be relatively closely related to each other by 16S
rRNA comparison (Ekborg et al., 2005; |Yang et al., 2009). This could be a similar case to
the Pseudovibrio, Stappia and Labrenzia strains in chapter 2, where they are so distantly
related to their sequenced sister taxa that they don’t classify well to anything. Stappia and
Labrenzia strains are not classified into any specific order in the training set, but when
tested against the training set, they classify strongly with Rhizobiales). Further, some of
these genomes contain selenocysteine residues, and we do not incorporate selenocysteine
class tRNAs into our analysis, which are charged by a unique synthetase (Commans and
Bock, |[1999). This could be implemented to improve the classifier.

Candidatus Hodgkinia cicadicola Dsem, in the order Rhizobiales, classifies as it is
from order Caulobacterales. Halothiobacillus neapolitanus c2, a bacterium in
gammaproteobacterial order Chromatiales classifies as if it is in the order
gammaproteobacterial Oceanospirillales. Leptolyngbya PCC 7376, from cyanobacterial
Oscillatoriales classifies as cyanobacterial order Chroococcales. Chamaesiphon PCC
6605, located in cyanobacterial order Chroococcales classifies as if it is from
cyanobacterial Nostocales. Both of these genomes were recently sequenced and
taxonomically grouped based on 16S rRNA sequences (Shih et al., 2013).

Aggregatibacter actinomycetemcomitans D118S 1, Streptococcus salivarius 57 1,
Thermoanaerobacterium saccharolyticum JW SL YS485, and Brachyspira hyodysenteriae
WA 1 which make up all of the fully sequenced members of the Caudovirales—group 1
viruses (characterized by double stranded DNA )—classify with other various groups,
showing that this does not look good for virus classification, and it should be further
investigated if the viruses classify with genomes in which they have shared DNA.

We then attempted to score the eight SAR11 genomes, and Stappia, Pseudovibrio
and Labrenzia genome from Chapter 2 against the 79-way classifier. The only strain
included in the creation of the classifier was Pseudovibrio. Stappia and Labrenzia score
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Figure 4.2: Multiway classifier of all fully sequenced bacterial genomes in 79 orders
with greater than three genomes. A stacked bar graph in which the classification
probabilities for all genomes within a given nominal bacterial order according to NCBI
taxonomy have been sorted and summed by bacterial order according to the classifier
model. The height of the bars are representative of the number of genomes in the dataset
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well against order Rhizobiales (probabilities 0.863 and 0.975 respectively). Pseudovibrio
unexpectedly scores well against the Rhodobacterales (probability 0.97), and only SAR11
strain HIMBS59 has a strong score against any order, and it classifies again with
Rickettsiales (probability 0.94). All other SAR11 genomes score poorly against orders in
and out of Alphaproteobacteria (probabilities range from 0.14-0.51). This could mean that
along with a LOO-CV to compute the training dataset, a perturbation of the standard
parameters for MLP training are necessary steps to fine-tuning this process for unknown,
unclassified genomes.

Looking throughout the bacterial tree in all 79 orders curated in this chapter,
Functional Information height distribution across sites is strikingly similar, across orders
(see Figure These site variations could be an artifact of the automated alignment, or
they could be the transfer of a putative functional site in the tRNA. Given that Information
is a biased estimator, the number of genomes in each order range from three to 200+, one
might expect information values with wide ranges in sequences with no pattern to
informative features. Looking more closely, some regions have smaller variation than
others than others, like the anticodon loop across all four states. G information heights
seem to be the most conserved, but larger heights are seen in cites containing nucleotides
A and U.

4.3.4 Site-variation in total Information across orders

Small variation in the information heights across all four states in the anticodon loop
essentially normalizes Figure showing that in every system, the same amount of
information exists in the datasets to form a functioning system. Other noticeable traits in
this plot are when there are the small variability in the G+C plots vs the A+U plots.
Possible evidence of some shifting in CIFs shows up in the T-stem in state U. One order
has a high information peak next to a densely populated peak from other orders. Sites can
clearly be identified where no information exists across orders, and looking more closely,
it can be determined if there are sites in which there are large peaks in state graphs at a site
where in other state graphs, there is no information.

This plot can be further dissected taxonomically to investigate class switching, site
shifting, and gains and losses of CIFs across the bacterial tree of life. Employing a sliding
window of information across taxa to see if windows have shifted could be employed to
show CIF site shifting. Breaking out by class to see if any classes are consistently showing
higher information values. If this is true, one could assess how many more conserved CIFs
are in classes with more/less information.

4.3.5 the true value of CIFs

Since all heights are incorporated into the scoring scheme outlined in this dissertation, it
would be wise to simulate an estimated amount of random Information that will
potentially be generated with the type of data used in the CIF analyses. As you can see in
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Fig. randomizing class associations of the exact same subset of bacterial whole
genome tRNA sequences that were used in Chapter 2 “RSR” grade ( containing
Rhodospirillales, Sphingomonadales, Rickettsiales) cause very little heights of Functional
Information that are distinct from the background distribution expected for the data. It is
clear that Class-Informative features truly do distinguish tRNAs from each other, most
likely related to their function.

4.4 Materials and Methods

4.4.1 Data

Genomes from a total of 2515 bacterial strains were downloaded on June 2, 2013 from
NCBTI’s ftp site (Sayers et al.,[2010). We custom annotated tRNA genes in these genomes
as the union of predictions from tRNAscan-SE version 1.3.1 (with -B option, (Lowe and
Eddy, |1997)) and Aragorn version 1.2.34 (Laslett and Canbackl, 2004). We classified
initiator tRNAs and tRNAy using TFAM version 1.4 (Taquist et al., 2007) using a
model previously created to do this based on identifications in (Silva et al., [2006). We
excluded any tRNAs that contained more than 350 bases, as done in (Freyhult et al.,
2007). We aligned tRNAs with INFERNAL 1.1rc1 (Nawrocki et al., 2009) with the
bacterial covariance model from RFAM (Burge et al.,|2013)), conservatively hand-picked
the sites in Seaview 4.1 (Gouy et al., 2010) to include, cutting the alignment to 74
canonical sites (CCA tails excluded), and then separated them by order using a
bioperl-based utility named fastax (Stajich et al., 2002). We mapped sites to Sprinzl
coordinates manually (Sprinzl et al., |1998)) and verified by spot-checks against
tRNAdb-CE (Abe et al., 2009, 2011)). We further removed sequences with more than ten
gaps out of the 74 sites in an attempt to remove poorly aligned sequences. Most sequences
removed were Aragorn-predicted and contained large introns. This was a conservative
inclusion that is justified by the number of sequences that contain any number of gaps
(See Figure 4.5). We have excluded gaps due to the fact that a gapped site may have
functional importance in a tRNA, and tRNAs need most sites to function. Inclusion of
gapped sequences can skew Information to present a state that mimics functional
importance when in fact there is alignment error.

4.4.2 Order-Specific Data Curation

In order to assess Class Informative Features, we have initially separated data into
taxonomic orders. Genomes exist for 118 bacterial orders.To make logos, we have
narrowed our order sets down to orders that contain three or more genomes, leaving us
with 81 orders. Two orders do not have annotated methionine tRNAs that fit our data
curation pipeline, and are therefore removed (Thermoproteales—13 genomes and
Methanomicrobiales—8 genomes). The final order-specific dataset contains 79 orders with
134544 tRNAs from 2374 genomes with every class (amino acid type) represented in
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Figure 4.4: Function logos from the randomization of class association in the

alphaproteobacteria. Separating tRNAs into 22 random associations, instead of their

defined classes produces nearly empty Function Logos.
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Figure 4.5: Justification for excluding sequences with more than ten gaps. Histogram
of the number of sequences with a given amount of gaps. Each bin represents an increment
of one gap. Most sequences contain five or less gaps. We chose ten to be conservative,
which includes over 95% of sequences.
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every order. We separated the genomes in each order by class with a possibility of fitting
into 22 groups including the 20 canonical amino acids with tRNA¥St; and tRNAL,y as the
two other possibilities. From here, we estimated Functional Information using Logofun
(Freyhult et al., 2006)) with exact entropy calculation of error up to 5 sequences and a
forced alphabet of ACGU- (ignoring ambiguous codons).

4.4.3 Functional Information Base Composition

To calculate Functional Information base composition, Functional Information was
extracted from Logofun output and summed over sites, normalized by the number of
sequences in each order.

4.4.4 79-Model Classifier

Following the methods from Chapter 2, we used the sequence logos in the data curation to
create models 79 groups 2374 genomes from 79 orders were classified against the models,
scored as described in Chapter 2.

4.4.5 Class Randomization

Sequences from chapter two were combined into one alignment, and then randomly
partitioned into 22 sets of tRNAs, equal to the size of the original classes using the
Fisher-Yates shuffle implemented in Perl Fisher and Yates| (1948]). Function logos were
then generated using logofun (Freyhult et al.,[2006) with exact calculations for up to three
sequences and gorodkin heights (Gorodkin et al., [1997).

4.4.6 Conclusion

We have shown that using tRNAs as a complete bacterial classifier trained as a Multilayer
perceptron is promising with positive controls and excellent preliminary data. Fine-tuning
of the parameters and variations of the MLP will be crucial to take the seven-model
classifier from Chapter 2, to the 79-model classifier described in this chapter.

In our investigation of CIFs, we have seen cases of conserved CIFs across large
portions of the tree of life, but they are subject to changes (see Chapter 2). Each tRNA
class has a varying number of CIFs, some being more important than others, with a few
even experimentally quantified.

We have learned that the amount of information seems to be conserved at certain
sites in tRNAs, as shown by the site-specific analysis in this chapter. It is possible that as
these sites undergo substitutions, that other sites in the tRNA with varying Information
content across all species are compensating for the loss of specificity. The sliding window
method described would be a great test for this possibility.
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Overall, tRNA CIFs continue to prove to be interesting and unique phylogenetic
markers that should be further investigated to fully understand their potential in
phylogenetic tree-building and bacterial classification.
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Chapter 5

Conclusion

5.1 Accomplishments

5.1.1 Methodology

In this dissertation, we have presented a method of biological sequence analysis uniquely
and successfully provides bacterial classification using Information theory as our base.
The use of tRNAs allows for fast, inexpensive computation. Information theory has
proven to be accurate in prediciting tRNA identity elements (Freyhult et al.,|2006) and, in
Chapter 2. Identifying putative identity elements is now limited only by the amount of
sequencing data available.

Using the same metric, we have deveolped methods to create phylogenetic trees that
prove accurate in various parts of the tree of life including Plastids and Proteobacteria.
Jensen-Shannon Divergence is a fast calculation that can be modified for any function
logos contrasting different species to infer relatedness.

5.1.2 Scientific Impact

We have a much better understanding of the tRNA system trends that span the entire
bacterial tree. It has been demonstrated that applying Conditional Information theory to
tRNA class partitions, we can identify elements that are evolving slowly, and vary in
importance to the organism based on the site in the tRNA where they reside.

We have successfully re-created topologies that have recently been proposed with
more careful and biologically sound analyses (P. ubique in chapter 2, and S. elongatus in
Chapter 3).

We have successfully identified tRNA features that potentially quantify the
biological relevance of identity elements (C73-H in Chapter 2 and A53:U61-E in Chapter
3). We have also predicted putative features that can be verified/refuted experimentally in
both Alphaproteobacteria, Cyanobacteria, and Plastids.

We have shown that scoring tRNA profiles against compiled scores made from
strongly supported associations (or clade partitions), we can successfully classify bacteria
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across the bacterial tree. Positive controls in the classification of viruses prove that tRNA
profile scores truly do look only like their closely related species.

5.2 Next Steps

In Chapter 2, the conclusion would be stronger if order Caulobacterales contained more
sequenced genomes, and if order Parviculales contained more than one sequenced genome
(which could not be included in the study due to the small sample size).

The genomes of 54 new strains of Cyanobacteria were completed and published
after the analysis in Chapter 3. Recalculation of the trees using Jensen-Shannon
Divergence will provide more robust trees and add confidence to our conclusion. This will
be done prior to publication of this work.

In Chapter 4, the Multilayer Perceptron provided interesting results with the poor
classification of viruses (expected) and the misclassification of the SAR11 with poor
probability scores. Going from seven classifications in Chapter 2 to 79 classifications in
Chapter 4 calls for a more careful look at the implementation of Machine Learning. The
perturbation of the priors in the training of the Chapter 4 Bacterial MLP will improve the
quality and strength of the analysis.

A sliding window analysis of clade-specific identity profiles will allow for a better
understanding of CIF movement in the tRNA, and more sequences will add depth to the
classifier.

Aside from the modifications in the analysis of the CIFs, the actual calculation of
the Information that makes up the score needs to be further developed to include base-pair
dependent calculations to relay maximum biological relevance. Treating the sites as
independently and identically distributed is counting “features” that act in one base-pair
two times, when in fact biologically, they most likely act as one CIF. The Ardell lab has
developed a base-pair functional information calculation that would be the very next step
in fine-tuning this method.

Unfortunately, the main limitation to scientific discovery using CIF analysis lies in
the lack of diverse sequencing across the bacterial tree of life. Entire genomes are not
needed, but entire “tRNA-omes,” or complete sets of tRNAs from any organism, are
necessary for conditional information to be accurately calculated. This will be alleviated
with time as more bacterial genomes are published, and potential short-term solutions
could include the direct sequencing of all of the tRNAs of any organism.
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