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ABSTRACT Technical bias is a pressing issue in microbiome research, and variability can 
be introduced at any stage from sample collection to figure generation. In this study, 
we aim to reduce biases in studying the human vaginal microbiome by examining the 
impact of sample storage buffer and multiple swabbing events using 16S rRNA gene 
amplicon sequencing data generated from vaginal swabs. We show that AssayAssure 
Genelock, a clinically relevant preservative for urine samples, is effective in preserving 
vaginal samples for microbiome studies. When comparing Genelock to 95% (vol/vol) 
ethanol and no preservative (air only), host variability explained more variance in both 
weighted and unweighted UniFrac measurements than the preservation method. We 
further examined the impact of three successive self-swabbing events, as the relatively 
low biomass nature of vaginal samples can inherently introduce bias. It is important 
to know if taking multiple swabs can provide replicable results and thus allow for 
additional technical replicates and an increased sample size. We found that up to three 
swabbing events do not introduce bias when examining the presence or absence of 
taxa but can explain 3% of the variability in the amount of taxa calculated. A study with 
more participants is warranted to provide further validation of these findings, but in 
producing this pilot study, we aim to continue laying the groundwork so that universally 
standardized and accessible studies can be created.

IMPORTANCE The composition of the human vaginal microbiome has been linked to a 
variety of medical conditions including yeast infection, bacterial vaginosis, and sexually 
transmitted infection. The vaginal microbiome is becoming increasingly acknowledged 
as a key factor in personal health, and it is essential to establish methods to collect 
and process accurate samples with self-collection techniques to allow large, population-
based studies. In this study, we investigate if using AssayAssure Genelock, a nucleic 
acid preservative, introduces microbial biases in self-collected vaginal samples. To our 
knowledge, we also contribute some of the first evidence regarding the impacts of 
multiple swabs taken at one time point. Vaginal samples have relatively low biomass, so 
the ability to collect multiple swabs from a unique participant at a single time would 
greatly improve the replicability and data available for future studies. This will hopefully 
lay the groundwork to gain a more complete and accurate understanding of the vaginal 
microbiome.

KEYWORDS vaginal microbiome, microbiome, sample storage, sample collection, 
preservation method, 16S

T he vaginal microbiome plays an important role in many health conditions such as 
yeast infection (1), sexually transmitted infection (2) including HIV (3), preterm birth 

and premature rupture of membranes in pregnant individuals (4), and bacterial vaginosis 
(BV) (5). BV impacts an estimated 29% of females in the United States (6) and 50% of 
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females in East/Southern Africa (7) with high relapse rates after treatment (8–10) of 
58% (8). Standardization of sample collection procedures is necessary to improve 
scientific rigor and reproducibility to drive vaginal microbiome research forward. 
A thorough understanding of the vaginal microbiome will advance diagnoses and 
treatments of vaginal microbiome related health conditions.

We investigate the effects of AssayAssure Genelock (Genelock), a nucleic acid 
preservative designed, and shown to be effective, for urine samples (11–14). We compare 
samples preserved with Genelock to samples preserved with no preservative (air only) 
and 95% (vol/vol) ethanol, as ethanol has been previously shown to be an effective 
nucleic acid preservative (15–21). Additionally, we examine how swab collection order 
impacts the vaginal microbiome. If consecutive swabbing minimally impacts the vaginal 
microbiome regardless of swab order, we can strengthen sampling reproducibility and 
collect three technical replicate vaginal samples at a single time point.

Ten healthy adult females each contributed three mid-vaginal samples via self-collec
tion under UCSD IRB protocol #801735 using cotton-tipped Falcon Double Swubes (BD), 
a dual swab that provided two technical replicates per collection. Immediately after 
collection, samples were stored in one of three preservative conditions (Fig. 1A; Text 
S1A) then frozen at −20°C for 24 hours until processing. Swab order was noted and 
randomized to minimize any potential bias impacted from preservation method. Vaginal 
samples and positive KatharoSeq (22) controls (Text S1B) were then aliquoted into DNA 
extraction bead plates and extracted using Earth Microbiome Project standard protocols 
(23), further updated in Shaffer et al. (24) (Text S1C). The 16S rRNA V4 region was 
amplified via high-throughput miniaturized PCR (25) before sequencing on an Illumina 
MiSeq (Text S1D). Forward read sequences were trimmed, filtered, and demultiplexed 
using Qiita (26) (Text S1E). Using the KatharoSeq (22) protocol, we established a limit of 
detection for “true” samples, allowing us to distinguish samples from trace microbes in 
laboratory reagents and utilized known read counts as a threshold for sample exclusion. 
We utilized the KatharoSeq 50% threshold, excluding three samples with less than 649 
reads, and then rarefied to 30,000 reads per sample, to include 57 samples from 10 
individuals (Text S1E). Eleven negative controls did not meet the rarefaction depth and 
did not show systematic clustering in PcoA with weighted and unweighted UniFrac 
(weighted PERMANOVA: P = 0.4822, f = 0.921; unweighted PERMANOVA: P = 0.7, f = 
0.865).

We first examined the samples’ beta diversity metrics grouped by individual partici
pants (Fig. 1B). In both weighted and unweighted UniFrac, permutational multivariate 
analysis of variance (PERMANOVA) beta diversity was driven primarily by participant 
(PERMANOVA, unweighted P = 0.001, f = 9.23; weighted P = 0.001, f = 12.887), rather than 
preservative method (unweighted P = 0.63, f = 0.88; weighted P = 0.62, f = 0.74) or swab 
collection order (unweighted P = 0.92, f = 0.66; weighted P = 0.58, f = 0.78). Clustering of 
individuals was more apparent in unweighted UniFrac, and Fig. 1B demonstrates 
evidence for an individual vaginal microbiota at the collection time point.

Figure 1C shows the distances between each preservation method and no preserva
tive, grouped by each participant. The beta diversity shown in Fig. 1C reveals that UniFrac 
distance between the different preservation methods is below the mean distance 
between participants (inter-human), suggesting host as primary contributor of beta 
diversity. Additional multivariate analyses of variance were performed using ADONIS (27) 
to capture variance explained by host and preservative. Two-way comparisons were 
performed between Genelock vs. 95% ethanol, Genelock vs. no preservative, and 95% 
ethanol vs. no preservative. When comparing Genelock vs. 95% ethanol, the host 
accounted for more variance in both weighted and unweighted UniFrac (ADONIS: 
weighted, R2 = 0.83, P = 0.001; unweighted, R2 = 0.72, P = 0.001) than samples preserved 
in Genelock vs. no preservative (weighted, R2 = 0.69, P = 0.001; unweighted, R2 = 0.64, P = 
0.001) and samples preserved in 95% ethanol vs. no preservative (weighted, R2 = 0.76, P = 
0.001; unweighted, R2 = 0.68, P = 0.001). Variance explained by preservative was less 
when comparing samples preserved in Genelock vs. 95% ethanol (weighted, R2 = 0.11, P 
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= 0.001; unweighted R2 = 0.09, P = 0.28, not significant) than samples preserved in 
Genelock and no preservative (weighted, R2 = 0.22, P = 0.001; unweighted, R2 = 0.16, P = 
0.001) and samples preserved in 95% ethanol vs. no preservative (weighted, R2 = 0.12, P = 
0.000; unweighted, R2 = 0.14 P = 0.001). This suggests that both Genelock and 95% 
ethanol may work as effective preservatives for vaginal microbiome samples, as more 

FIG 1 Experimental overview and data grouped by individual. (A) Experimental overview: Ten adult 

females contributed three sets of vaginal samples via dual swabs. After collection, swabs immediately 

went into AssayAssure Genelock (Genelock), 95% ethanol, or no preservative, then stored at −20°C until 

sample processing. (B) Principal-coordinate analysis plots of weighted and unweighted UniFrac distances 

grouped by individual. (C) Distances between each preservation method and no preservative, grouped 

by each participant. For example, the red dots in the Genelock bar represent the distances between the 

Genelock and no preservative samples from participant N while the red dots in the no preservative bar 

represent the distances between the no preservative replicates of participant N. (D) Shannon and faith PD 

alpha diversity differences between different preservative methods and no preservative.
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variance was explained by the preservative when compared to samples with no preser
vative. This aligns with Kumar et al. (14), where samples preserved in Genelock had little 
effect on the variance of urine samples when compared to urine samples preserved in 
95% ethanol.

Phylogenetic and non-phylogenetic alpha diversity analyses also provide evidence 
that Genelock and 95% ethanol work as effective preservatives, as samples preserved by 
these methods had a richer diversity compared to samples with no preservative (Fig. 1D). 
Individual variation in Fig. 1C and 1D show that some individuals, such as participant O, 
have unique microbiomes that are more host-driven compared to the average partici
pant in this cohort. We also observe that some (participant N) rank lower than average 
on richness, evenness, and phylogenetic-based diversity, while others (participant T) rank 
higher than average on phylogenetic-based diversity. Despite the small sample size, 
these findings further support that the vaginal microbiome is highly individualized.

Obtaining three consecutive swabs permitted analysis of collection order, which did 
not appear to have significant order-based clustering (Fig. 2A). There were no discernable 
differences in beta diversity between the first swabs collected and consecutive swabs 
(Fig. 2B) when considering which taxa are present (ADONIS: unweighted UniFrac, P = 
0.358). When the amount of each taxa is considered, swab order explains approximately 
3% of the variability (ADONIS: weighted UniFrac, R2 = 0.027, P = 0.009). This suggests 
that the vaginal microbiome is minimally altered when three vaginal swabs are collected 

FIG 2 Data grouped by sample collection order. (A) Principal-coordinate analysis plots of weighted and unweighted UniFrac 

distances grouped by preservative method. (B) The Unifrac distance between the first swab collected from each participant 

and their following swabs. For example, the bars at collection point one show the UniFrac distance of the replicates for first 

swabs collected while the bars for swab two show the UniFrac distance between swabs 2 and 1 for each participant. (C) The 

UniFrac distance between different preservation methods and swab collection order.
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consecutively. The unweighted and weighted UniFrac distances data support the beta 
diversity comparability of Genelock and 95% ethanol, the current laboratory standard 
(21), by swab order (Fig. 2C). In this small cohort, we detected minimal differences 
between collection order 1, 2, or 3. However, larger-scale studies with additional 
participants and consecutive swabbing events are warranted to confirm these findings 
and improve the power of the study.

Overall, our study supports the use of Genelock, as well as 95% ethanol, for vaginal 
swab sample storage for microbiome studies. Individual variation seems to play a more 
impactful role than preservation method in vaginal microbiome results, pointing towards 
the growing understanding of an individual vaginal microbiome. Given the possibility 
that swabbing order appears to have a minor effect on the vaginal microbiome, future 
studies may be able to incorporate additional consecutive technical replicates from 
individuals. Ultimately, this improves scientific rigor and reduces reproducibility concerns 
and sample-to-sample microbial biases that are common in microbiome research, 
especially in relatively lower biomass sample types including vaginal samples. Despite 
the clear limitations of a small sample size, this data will inform larger studies that wish 
to include vaginal sample collection for subsequent microbiome analyses. The pragmatic 
ability of research participants to self-collect vaginal samples, augmented with robust 
evidence for sample storage and microbiome analysis, holds great promise for advancing 
obstetric and gynecologic research in the near future.
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