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Abstract 

The impacts of sleep and sleep deprivation on human brain and behavioral 

incentive processing 

By 

Stephanie Morgan Greer 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Matthew P. Walker, Chair 

Despite an emerging link between alterations in motivated behavior and a lack of 
sleep, the impact of sleep deprivation as well as the potential benefit of sleep, 
when it is achieved, on human brain mechanisms of reward and punishment 
remain largely unknown. Targeting these unanswered questions, this thesis aims 
to determine the impact sleep loss on human brain incentive processing in topics 
of 1) food desire and 2) monetary gains and losses. From these investigations 
four main findings have emerged that make up the first four chapters of this 
report: 1) In the context of food choices, sleep deprivation leads to significantly 
decreases activity in appetitive evaluation regions within the human frontal cortex 
and insular cortex during food desirability choices, combined with a converse 
amplification of activity within the amygdala ultimately leading to increased high 
calorie food choices. 2) In the context of monetary rewards and losses, sleep 
deprivation did not lead to measurable changes in activation to the anticipation of 
rewards and losses in the nucleus accumbens or insula respectively. However, 
sleep deprivation did lead to diminished medial prefrontal cortex responses to 
gain outcomes and increased anterior insula response to loss outcomes. 3) 
Although there were no observable sleep deprivation group effects on 
anticipation of monetary gains and losses, there was a significant interaction of 
sleep deprivation with a trait dopamine transporter genetic polymorphism that 
determined the impact of sleep deprivation on anticipatory response to gain and 
loss in the nucleus accumbens and anterior insula respectively. 4) In the context 
of learning from monetary incentives, sleep deprivation led to a specific deficit in 
the ability to learn from monetary gains but no change in the learning profile for 
monetary losses. Finally, in addition to these four findings on the impacts of sleep 
deprivation on human incentive processing, the final chapter (5) focuses on the 
relationship between sleep, when it is achieved, and next day reward 
responsivity. Here there is a significant relationship between individual 
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differences in REM sleep beta power and next day nucleus accumbens response 
to anticipation of rewards. Beyond these basic scientific insights, such results 
offer potential clinical relevance given that sleep disruption is highly co-morbid 
with numerous psychiatric and neurological conditions associated with 
dysfunctional dopaminergic reward processing (e.g., Parkinson’s disease, 
substance abuse, and obesity). Such findings further indicate that sleep 
intervention may represent an under appreciated and novel therapeutic target 
particularly for disorders of the reward system.
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I. Introduction 
Sleep is vital to survival and common across a vast array of phylogeny (Allada 
and Siegel, 2008). We, as humans, spend nearly one-third of our time sleeping, 
yet our scientific understanding of the functions of sleep remains surprisingly 
limited.  Initial speculation described sleep as an “inactive” state, or assumed that 
sleep had a singular function. However, discoveries over the past two decades 
have made clear that sleep serves a myriad of bodily and brain functions 
(Perogamvros and Schwartz, 2012, Abel et al., 2013, Goldstein and Walker, 
2014), the latter including affective brain processing (Perogamvros and Schwartz, 
2012, Goldstein and Walker, 2014). 

To date, research examining the interaction between sleep and affective brain 
processing has predominantly focused on negative emotion, demonstrating that 
sleep deprivation leads to poor mood (Zohar et al., 2005) and increased neural 
sensitivity to negative emotional stimuli (Yoo et al., 2007, Prather et al., 2013). In 
contrast, relatively little attention has been paid to how sleep (and a lack thereof) 
influences positive affective processing and associated reward network 
functioning. The importance of addressing this knowledge gap, particularly for 
reward system processing, extends translationally, beyond the basic scientific 
merit, for at least three additional reasons: 1) professionally, in the context of 
circumstances where sleep loss and risk-taking co-occur (e.g. financial money 
markets), 2) within public health, especially in the context of vulnerable 
populations where risk-taking and insufficient sleep are common (e.g. obesity, 
adolescent youth), and 3) clinically, shedding light on disorders where sleep 
disruption and dysfunctional reward processing are co-morbid (including 
disorders of addiction, mood disruption and Parkinson’s disease). 

Building on these unanswered questions, this thesis aims to determine the 
impact of sleep and sleep loss on human brain incentive processing. Specifically 
the studies will examine 1) the influence of sleep deprivation on neural and 
behavioral food desire, 2) the influence of sleep deprivation on dissociable 
networks involved in gain and loss processing and their interactions with 
dopamine transporter genetics, 3) the affects of sleep deprivation on incentive 
reinforcement learning and 4) the relationship between sleep physiology and next 
day neural reactivity to reward anticipation. 

The remaining introduction will provide context motivating these investigations. 
Beginning by offering initially separate overviews of sleep and reward brain 
processing, followed by a discussion of what is currently known about their 
interaction. The introduction will then conclude by stating the overarching thesis 
hypothesis and associated predictions.  
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Sleep 

Sleep is a dynamic brain process that can be monitored in humans using 
Polysomnography (a method combining electroencephalogram (EEG), 
electroculargram (EOG) and electromyogram (EMG)) and characterized into two 
primary types: rapid-eye-movement (REM) sleep and non-rapid-eye-movement 
(NREM) sleep (Rechtschaffen and Kales, 1968). NREM sleep is further 
subdivided into four NREM sleep stages characterized by progressively slower 
frequency brain oscillations as well as changes in the presence of sleep spindles 
(short 1-1.5 sec bursts of sigma frequency activity). REM sleep is characterized 
by markedly faster EEG brain activity as well as atonic muscle activity and 
distinct fast eye movements (Rechtschaffen and Kales, 1968).  

In addition to these electrically monitored sleep characterizations, there are also 
marked alterations in neurotransmitter levels as well as regionally specific brain 
glucose consumption that are dissociable between REM and NREM sleep 
states(Goldstein and Walker, 2014). Focusing here on REM sleep due to its 
association with affective processing, neuroimaging of REM sleep brain function 
reveals increased brain activity in affectively relevant brain areas including, 
amygdala, striatum, hippocampus, insula cortex and medial prefrontal cortex 
(Nofzinger, 2005, Miyauchi et al., 2009, Dang-Vu et al., 2010). REM sleep is also 
characterized by substantial reductions in noradrenaline/norepinephrine levels 
throughout the brain (Ouyang et al., 2004) and, as discussed below, dopamine 
levels are increased during REM sleep within the striatum and this action may be 
important for transitioning into REM sleep (Dahan et al., 2007). 

The influence of sleep on waking neural activity can be studied in a variety of 
ways to uncover progressively more subtle affects of sleep function. One 
powerful manipulation is comparing the impact of total sleep deprivation, relative 
to a full night of sleep. This affords the ability to bi-directionally test the functional 
brain alterations caused by the absence of sleep, relative to the presence of 
sleep, and for the latter, help determine what type and physiological quality of 
sleep supports specific brain processes. This widely used method offers an 
important first line of evidence for establishing the involvement of sleep in specific 
processing domains. 

Reward 

The mesolimbic reward system governs a range of survival-motivated behaviors, 
including the ability to approach rewards and avoid punishments (Haber and 
Knutson, 2010, Perogamvros and Schwartz, 2012). Additionally, this system 
powerfully influences learning and memory, biasing the encoding of salient 
rewarding information and further contribute to the experience and recognition of 
positive emotions more generally (Haber and Knutson, 2010, Perogamvros and 
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Schwartz, 2012). At the same time, dysfunction of this system can lead to a wide 
range of deleterious and even life-threatening conditions including substance 
abuse, impulsive risk-taking, uncontrolled thrill seeking and has been recently 
linked to overeating behavior that causes obesity.  

Central to these motivation functions are a network of dopaminergic governed 
brain centers. These including the mid-brain ventral tegmental nucleus (VTA) and 
substatia nigra that project most abundantly to the striatum in the basal ganglia, 
and specifically the nucleus accumbens (Haber and Knutson, 2010). Stimulation 
along this pathway leads to approach behavior and thus this system is widely 
considered to be the reward system or the seeking system (Ikemoto and 
Panksepp, 1999). In contrast, avoidance behaviors, can be elicited by stimulation 
of a separate pathway, descending from the anterior insula and basolateral 
amygdala through the stria terminalis to the periaquiductal grey (Panksepp, 
1998). Furthermore, both systems are further connected to, and regulated by, 
areas of the frontal lobe that are important for integrating and guiding motivated 
action, as well as experiencing emotional feelings (Kringelbach, 2005, Wallis, 
2007, Haber and Knutson, 2010).  

The mesolimbic reward system is responsive to a variety of incentives including 
primary rewards (e.g. food and water) as well as secondary rewards (e.g. money 
and pleasurable visual stimuli). In human studies of reward processing, money is 
often used as an incentive stimulus because the value is easily manipulated and 
also because it can be both given (i.e. monetary gains) or taken away (i.e. 
monetary loss). Although evidence is still limited, studies have begun to 
investigate the altered response to these variable types of rewards under sleep 
deprivation. There is now clear evidence that the anatomical systems, and 
associated brain functions discussed here are sensitive to sleep; both its 
beneficial presence and detrimental absence. However, the specific dynamics of 
this interaction and the consequences of the sleep and incentive system 
interactions on human behavior are still under active investigation.  

Sleep & Dopamine 

Recent evidence is uncovering an important reciprocal relationship between 
dopamine regulation and sleep (Perogamvros and Schwartz, 2012). This 
neurochemical may represent one direct mechanism through which interactions 
between sleep/sleep loss and reward processing can be understood. Several 
lines of evidence offer tentative support.  

Dopamine function has a significant governing influence on sleep. Levels of 
dopamine activity alter the timing of sleep through its wake promoting (hence 
sleep inhibiting) effects (Dahan et al., 2007). Interestingly, the wake-promoting 
action of stimulant drugs also appears to operate, in part, through blockade of 
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dopamine metabolism thereby increasing dopamine transmission(Qu et al., 2008, 
Andersen et al., 2010). Conversely, depleting catecholamines, which include 
dopamine, will induce sleepiness (McCann et al., 1993). However, once sleep is 
initiated, dopamine neurons influence the initiation and maintenance of REM 
sleep, increasing in their phasic firing just before REM sleep onset (Dahan et al., 
2007). Furthermore, lesions to dopaminergic brain circuitry, including the 
midbrain and striatal regions, dysregulates REM sleep, which can manifest as 
increases or decreases, depending on the specific striatal area targeted (Qiu et 
al., 2010).  

Not only does dopamine influence sleep, but reciprocally, sleep and a lack 
thereof regulates dopamine function. Human PET studies have shown that one 
night of total sleep deprivation down-regulates dopamine D2/D3 receptors within 
the striatum in humans (Volkow et al., 2008, Volkow et al., 2012). Moreover, the 
extent of indexed D2/D3 receptor down-regulation correlates with self-reported 
subjective sleepiness. This latter finding suggests that dopamine receptor 
decreases may be related to the severity of the sleep deprivation, at least in 
terms of subjective perception of tiredness. One explanatory hypothesis of these 
data relates to the chemical adenosine, which accumulates from energetic 
cellular processes with increasing time awake. The increased adenosine buildup, 
due sleep deprivation, may trigger the down-regulation of the D2 receptors by 
way of the adensosine A2a receptors, which, when activated, can drive D2 
receptor internalization (Volkow et al., 2012).  

Interestingly, reductions in D2/D3 receptors in the striatum are common across 
many substance use disorders (Volkow et al., 2007), as well as the condition of 
obesity (Volkow et al., 2011). Moreover, this functional change has been linked to 
the transfer from casual substance use to compulsive substance use (Volkow et 
al., 2007). However, it remains unclear what process(es) trigger these D2/D3 
receptor reductions in these circumstances, with theories including genetic 
vulnerability, the drugs themselves, and environmental factors. Given the robust 
link between sleep deprivation and substance abuse disorders as well as obesity 
(Wong et al., 2004, Cappuccio et al., 2008, Berro et al., 2014), this sleep 
deprivation dependent reduction in D2/D3 receptors provides an intriguing 
candidate mechanism for how chronic D2/D3 reductions may emerge.  

Sleep Deprivation & Reward  

Building on this knowledge that sleep and dopaminergic reward systems actively 
interact, experiments in humans have further elucidate the neural and behavioral 
consequences of sleep deprivation on reward-related behavior. In this context, 
sleep deprivation in humans has been associated with an increase in high-risk 
gambling behavior, primarily when it comes to the possibility of uncertain financial 
gains (McKenna et al., 2007, Venkatraman et al., 2011). Complementing these 
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behavioral observations, neuroimaging findings have shown that sleep 
deprivation increases ventral striatum activation during mixed monetary gamble 
decisions, specifically for trials involving high risk (Venkatraman et al., 2007b, 
Mullin et al., 2013). However, it is relevant that studies have employed tasks that 
involve mix possible monetary gains and losses combined in each trial. 
Therefore, it currently remains unclear whether the profile of enhanced risk-taking 
caused by sleep deprivation arises from (1) a heightened sensitivity to gain, (2) a 
decreased sensitivity to loss, or (3) a combination of both. This is relevant since 
gain- and loss-processing are governed by at least partially discrete anatomical 
networks (Yacubian et al., 2006, Knutson and Greer, 2008). As a result, any 
disambiguation will require tasks that isolate gain and loss separately. 
Furthermore, pharmacological dopamine manipulations can lead to specific 
deficits in gain related learning independently of loss related learning 
(Pessiglione et al., 2006). Understanding these differential gain and loss biases 
will be important for predicting behavior under sleep deprivation as well as further 
understanding disorders that elicit systematic gain or loss processing biases.  

Enhanced reward-sensitivity associated with insufficient sleep does not appear to 
be limited to monetary stimuli. Amplified reactivity within the striatum and 
amygdala following sleep deprivation has been observed in response to 
pleasurable emotional pictures. Moreover, these neural changes are associated 
with an increased behavioral tendency to rate neutral pictures as positive (Gujar 
et al., 2011b). Given that much of human daily reward-related decision-making is 
not restricted to money, it is relevant to elucidate if/how sleep-deprivation 
changes reward system functioning in response to non-monetary incentive 
stimuli. Food rewards provide a particularly interesting target considering 1) their 
status as a primary reward, 2) their ubiquity in daily life, and 3) their contribution 
to health and, conversely, obesity. 

It is important to note that some reports have failed to show significant reward-
brain group/condition differences caused by sleep deprivation, or only 
demonstrate effects on an individual subject level (Libedinsky et al., 2011, 
Libedinsky et al., 2013). Furthermore, studies do not commonly identify increases 
in impulsivity or impulsive behavior under conditions of sleep deprivation that 
might be expected given the changes in reward-approach behavior discussed 
above (Acheson et al., 2007, Libedinsky et al., 2013). Understanding individual 
differences (that could potentially mask group effects) in these studies will be an 
important target of future research. Perhaps most obvious are genetic inter-
individual differences. Genetic variations in the serotonin system have already 
been shown to functionally interact with sleep deprivation, resulting in different 
therapeutic responses to sleep deprivation in bipolar-depression patients 
depending on genotype (Benedetti et al., 2007). Similar polymorphisms 
associated with the dopamine system may offer one explanatory cause of inter-



	
  

	
   6	
  

individual differences (and lack of overall group effects) in reward sensitivity 
caused by sleep deprivation. 

Sleep & Reward Function 

In contrast to detriments caused by sleep loss, emerging evidence indicates that 
the presence of sleep beneficially supports several affective reward brain 
functions. For example, greater amounts of sleep from night to night predict 
higher positive mood ratings the following day (de Wild-Hartmann et al., 2013). 
Moreover, a daytime nap increases positive ratings of affiliative (Happy) facial 
expression, particularly if the nap includes REM sleep (Gujar et al., 2011a). Sleep 
has also been demonstrated to play a role in reward-motivated memory 
processing, enhancing the offline consolidation of both procedural skill memory 
(Fischer and Born, 2009) as well as declarative memory(Oudiette et al., 2013). In 
the latter study, the amount of REM sleep predicted changes in incentive 
processing, an interaction that preferentially biased memory items of high-reward 
value (Oudiette et al., 2013). Taken together, these findings signal a role for 
sleep, and REM sleep in particular, that optimally guides the assignment of 
appropriate reward value to a range of affective experiences. As a consequence, 
the brain is better capable of modulating the degree of reward-related reactivity, 
and furthermore, selectively shape the selection and thus long-term memory 
retention of these waking events.  

Hypotheses 

Taken together this collection of findings leads to the overarching prediction that 
sleep deprivation will lead to dysregulation in the dopaminergic mesolimbic 
networks with consequences for 1) appetitive food choices, 2) monetary incentive 
gain and loss sensitivity, 3) ability to learn form monetary gian and loss feedback 
and 3) the restorative benefit of REM sleep on next day reward processing. 
Specifically, this report will test the following four experimental hypotheses across 
the five chapters: 

Hypothesis 1: Sleep deprivation will lead to increases in subcortical sensitivity to 
desirable foods and/or a failure to recruit cortical regions necessary for properly 
evaluating food choices. Ultimately, this further predicts that this neural profile will 
lead to increased desire for high calorie foods. (Chapter 1) 

Hypothesis 2: Sleep deprivation will lead to dissociable alterations in the 
mesolimbic responses to anticipation of gains and losses in the nucleus 
accumbens and anterior insula. Furthermore, these changes will depend on a 
sleep-deprivation interaction with dopamine functioning, tested using individual 
differences in dopamine transporter genetics (which influence synaptic 
dopamine). (Chapters 2&3) 
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Hypothesis 3: Sleep deprivation will lead to dissociable differences in the ability 
to learn from incentive based reinforcement feedback. Building on literature 
showing that blockade of dopamine D2 receptors leads to specific deficits in the 
ability to learn form monetary gain (but not loss) feedback, similarly, sleep 
deprived subjects are predicted to show a deficit in the ability to learn from gains 
relative to losses. (Chapter 4) 

Hypothesis 4: The quantity and spectral quality of REM sleep will predict 
individual differences in next day neural reward processing across subjects, 
specifically determining the relationship between REM-dopamine-related theta 
and beta EEG activity and next-day striatal reward reactivity. (Chapter 5)
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Chapter 1 

The neural and behavioral impact of sleep deprivation 
on food desire 
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Introduction 

Mounting epidemiological data implicates sleep loss as a risk factor for obesity in 
both children and adults worldwide (Cappuccio et al., 2008). Moreover, sleep 
deprivation alters appetite-regulating hormones and increases caloric intake 
(Brondel et al., 2010, Hanlon and Van Cauter, 2011). Given the continued decline 
in sleep duration in industrialized nations, mirrored by the steep rise in obesity in 
these same populations (Cappuccio et al., 2008), understanding the association 
between sleep loss and weight gain has become of paramount concern for global 
public health.  

Despite such population-level as well as peripheral body evidence, the central 
brain mechanisms explaining the impact of sleep deprivation on appetitive food 
desire that can lead to weight-gain remain unknown. Discovering such sleep-
dependent neural dysfunction may represent a critical component to 
understanding the link between sleep loss and obesity (Hanlon and Van Cauter, 
2011). It would further contribute to a central nervous system explanation for the 
failure to appropriately regulate dietary intake and thus develop or maintain 
obesity under conditions of insufficient sleep. Finally, this information will also 
help uncover the general brain mechanisms that support (or fail to support) 
proper incentive based decision making under conditions of sleep deprivation. 
Using a food-desire task in combination with human functional MRI (fMRI), here 
we sought to characterize the impact of sleep loss on the brain mechanisms 
governing appetitive food desire.  

The study focused a priori on a discrete set of well-characterized cortical and 
subcortical regions of interest (ROIs) known to be instrumental in appetitive 
desire and food stimulus evaluation (Tang et al., 2012). At the cortical level, the 
anterior insula cortex, lateral orbital frontal cortex and anterior cingulate cortex, 
all have well established roles in signaling stimulus value across contexts, 
including appetitive choices, and in integrating food features that govern 
preferences (e.g., the odor and flavor of food) (Small and Prescott, 2005, 
Hollmann et al., 2012). Moreover, disrupted functional activity within frontal 
cortex, including these anterior cortical regions, is widely considered to be one 
hallmark of sleep loss (Muzur et al., 2002). At the subcortical level, both the 
amygdala and the ventral striatum have been strongly implicated in governing the 
motivation to eat (Tang et al., 2012). The amygdala has consistently 
demonstrated responsivity to food stimuli, especially when the salience of food 
stimuli are high (van der Laan et al., 2011). Activity in the ventral striatum in 
response to foods accurately predicts immediate food intake (Lawrence et al., 
2012), binge eating (Wang et al., 2011) as well as real world weight gain (Demos 
et al., 2012). Moreover, previous work has demonstrated that activity in the 
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amygdala and striatum in other (non-appetitive) affective tasks is elevated 
following sleep loss (Venkatraman et al., 2007a, Yoo et al., 2007).  

Building on this established literature, the current study sought to test two non-
mutually exclusive hypotheses regarding the central brain mechanisms that may 
lead to weight-promoting food choices following sleep loss: 1) failure to recruit 
cortical regions necessary for optimal evaluation of food stimuli (the anterior 
cingulate, the lateral orbitofrontal cortex and the anterior insula); a profile that 
could lead to improper food choice selection (i.e. choosing items with greater 
weight-gain potential), and 2) excessive reactivity in two subcortical regions 
known to signal food salience and promote eating behavior (the amygdala and 
the ventral striatum); a consequence of which may exaggerate food salience and 
motivated consumption for appetitive food stimuli, also leading to weight-gain 
potential. The findings reported here demonstrate not only reduced recruitment of 
all three key cortical regions necessary for food stimulus evaluation, but also 
amplified subcortical amygdala (yet not ventral striatal) reactivity under sleep 
deprivation. Such changes offer a novel explanatory brain mechanism by which 
insufficient sleep may lead to altered food choices and thus the development or 
maintenance of obesity. 

Methods 

Experiment Overview: twenty-three healthy participants (13 female; age: 20.5± 
1.8 s.d.; body mass index: 23.0±1.8 s.d.) underwent a repeated measures, 
counterbalanced cross-over design involving a night of normal rested sleep 
(average 8.2 hr asleep) and a night of monitored total sleep deprivation (average 
24.6 hr awake), separated by at least 7 days. Participants ate a controlled snack 
(see eating schedule procedures below) at 2:30am in the sleep deprivation 
condition that contained a calorie amount sufficient to alleviate increased energy 
demands estimated to be expended due to staying awake. Together with a 
standardized breakfast in both conditions in the morning, this eating schedule 
resulted in hunger ratings (measured on 100mm visual analog scale (Spiegel et 
al., 2004)) that did not differ statistically (p=0.28) between sleep deprived 
(47.7±25.53 s.d. mm) and rested conditions (39.7±24.0 s.d. mm) preceding the 
MRI scan sessions. During each fMRI session (scan time 9:29AM±49min s.d.) 
participants rated 80 different food items that varied in calorie content on a 1-4 
rating scale, according to how much they wanted that item “right now” (Fig 1.1). 
fMRI BOLD signal was correlated with these 1-4 ratings on a trial-to-trial basis, 
resulting in neural activation maps expressly sensitive to increasing food-choice 
desire. After the scan, participants actually received one food item based on their 
ratings, enhancing ecological incentive context and potentially reducing demand 
characteristics. Therefore, using this task we simultaneously monitored 
behavioral food desire as well as identified brain areas underlying these 
appetitive decisions, modeled and hence sensitive to increasing food desire. 
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Sleep condition procedures: Participants completed two experimental sessions 1) 
a night of normal sleep in the lab monitored by PSG (See sleep recording 
procedures in section IV. Common Methods) and 2) a night of total sleep 
deprivation (See sleep deprivation procedures in section IV. Common Methods) 
monitored by lab personnel from 9pm and wrist actigraphy. Sessions were 
separated by a minimum of 7 days (average 10 days) and counter balanced in 
order across participants. Participants completed fMRI scanning sessions the 
morning after each experimental night, starting at 9:08 AM +- 45min (range: 
8:05am to 10:39am) on the sleep deprivation day and 9:50 AM +- 45min (range: 
8:17am to 11:00am) on the sleep rested day. To ensure that participants were 
well rested before each session, they kept a regular sleep schedule (7-9 hours 
time in bed between 10pm and 10am) for three days prior to each session, 
verified by daily sleep diaries and wrist actigraphy. Subjects attained 8.08±1.0 
s.d. hours time in bed across the three nights proceeding the sleep deprivation 
and 8.07±1.0 s.d. hours preceding the sleep rested condition.  

Eating schedule procedures: Participants ate according to their normal diet 
throughout enrollment. During the sleep deprivation night, participants were 
provided with a controlled snack from 2:30-3:00am. This consisted of calorie 
content sufficient to offset increased energy expenditure associated with one 
night of sleep loss over a 24 hr period (reported as 134±2.1 s.d. Cal) (Jung et al., 
2011). The snack contained the following four items: Fig Newtons (200 Cal), Gold 
Fish crackers (130 Cal), Ritz peanut butter crackers (150 Cal) and an apple (95 
Cal), resulting in a total of 575 Cal available. On average, participants ate an 
estimated 485.2 Cal, with the least amount of calories consumed being 
approximately 160 Cal; and this was the only participant who consumed less 
than 300 Cal. Note that these estimates are based on calories per serving 
reported on the packaging and the proportion of the serving eaten by the 
participants (reported as none, half or all of the item). In addition, and in both 
sessions, all participants were given, and consumed, a small breakfast (one 
piece of toast with strawberry jam) approximately forty-five minutes before their 
scan session. Participants were monitored throughout both sessions to ensure 
that they did not eat anything in addition to this provided food (although water 
was not restricted). Self reported hunger levels (assessed on a 100 mm visual 
analog scale (Spiegel et al., 2004)) immediately preceding the scan session were 
no different between the rested and deprived conditions (p=0.28; also reported in 
Results). Both groups showed an increase in hunger levels compared to their 
study arrival baseline (Fig 1.2); important considering previous studies have 
shown that brain reactivity to food stimuli can be enhanced by subjective hunger 
(Siep et al., 2009). 

Food Desire Task: In the food desire task, participants saw 80 food items and 
rated them on a 1-4 scale according to how much they wanted that food right 
now (details provided in Fig 1.1). In order to control for lateralized motor effects, 
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approximately half of the participants used their left hand to rate wanted items (1-
strongly want; 2-somewhat want; 3-somewhat do not want; 4-strongly do not 
want) and the other half used their right hand (scale reversed). For all analyses, 
ratings were re-coded so that higher ratings indicated higher wanting. 
Participants were not informed of the hypotheses of the study nor were they told 
that they would be seeing foods that experimentally varied in terms of calorie 
content or food types that could otherwise establish preconceived biases. 

In the task instructions, participants were informed that two food items would be 
revealed at the end of the scan, and a serving of whichever item they had rated 
as wanting more would be given to 
them to eat (which was carried out). 
They were further instructed that this 
meant it was in their best interest to 
rate each food item according to how 
much they actually wanted that item 
at the time of the session. This 
procedure was used to encourage 
participants to rate the food items 
according to their actual preferences 
(rather than according to 
experimental expectations or 
demand characteristics), and to 
ensure incentive compatibility in the 
task as in previous studies (Hare et 
al., 2009).  

Stimuli: The task used 80 pictures of food with no packaging collected from 
internet searches and cropped to standardized circles. The items were evenly 
distributed across five categories (salty, sweet, starchy, fruit or dairy) and varied 
in calorie content (Range: 7.2 – 523.4; Mean: 139.8± 94.8 s.d. Cal per serving 
based on USDA database listings (ndb.nal.usda.gov)). The same 80 food items 
but a different picture of each item was used in each experimental session. 

fMRI General Linear model: See fMRI scanning acquisition and preprocessing 
sections in IV. Common Methods for details on these methods. A separate 
general linear model was constructed for each subject which included 1) all trial 
onsets convolved with a canonical hemodynamic response function with a 3 
second duration 2) A parametric regressor of the individual want ratings (1-4) for 
each food item convolved with a canonical hemodynamic response function with 
a 3 second duration (this was the regressor of interest) 3) The six movement-
related covariates (three rigid-body translations and three rotations determined 
from the realignment preprocessing step). Separate regressors were used within 
the same model for each of the 2 scanner acquisition runs. 

1 s

1                        2                       3                    4
    Strongly         Somewhat       Somewhat       Strongly
 Do Not Want   Do Not Want         Want               Want

How much do you want this food right now?

3 s 1.5-4 s

+

Fig 1.1) Food desire task trial structure. 
Participants saw and rated 80 food items on 
a scale from 1-4 according to how much they 
wanted the food item at that moment under 
sleep rested and sleep deprived conditions. 
	
  



	
  

	
   13	
  

ROI Analysis: Guided by suggested ROI reporting policies (Poldrack, 2007, 
Poldrack and Mumford, 2009), regions of interests were taken as the average 
parameter estimates from 5 mm spheres centered around coordinates form 
previous literature examining food evaluation for the three cortical regions of 
interest as well as the amygdala, and reward responsivity for the ventral striatum. 
MNI Coordinates [x, y, z] were: amygdala (18, -12, -22) (van der Laan et al., 
2011); ventral striatum (-12, 12, -10) (Knutson et al., 2008); Anterior cingulated 
cortex (15, 6, 38) (Small et al., 2003); Lateral orbital frontal cortex (-36, 42, -10) 
(Beaver et al., 2006); and bilateral anterior insula (-31, 22, 11 & 36, 17, 0) (Small 
et al., 1999).  

Behavioral comparisons: Behavioral comparisons between rested and deprived 
conditions were carried out using paired t-tests. Correlation analysis was used for 
results in Fig 1.4B. Spearman’s correlation analysis was used to investigate the 
relationship between calories across food items with the mean change in desire 
ratings across items. 

Results  

Neural responses to food desire under sleep deprivation: Compared to the sleep 
rested state, sleep deprivation significantly reduced activity in all three cortical 
regions of interest ⎯the 
anterior cingulate cortex 
(T=3.87; p=0.0008), lateral 
orbital frontal cortex (T=2.08; 
p=0.0491) and anterior insula 
cortex (T=2.63; p=0.0154) ⎯as 
food desire progressively 
increased (Fig 1.3A) confirmed 
by t-tests of averaged 
parameter estimates at 5mm 
spheres placed around 
literature based sites (see 
Methods). Note that this 
significance threshold is p< 
0.05 for each region, however, 
if all five regions of interest are 
considered as a family of 
independent tests and 
correcting for multiple tests we 
find that lateral orbital frontal 
cortex and anterior insula no longer survive this more stringent statistical 
threshold while the anterior cingulate remains significant. It should be noted that 
this approach makes an assumption of independence of these regions, which 

Fig 1.2) Self reported hunger levels. Collected 
using a visual analog scale with a 10cm line, y-axis is 
in millimeters. There were no significant differences 
between sleep rested and sleep deprived sessions 
either at arrival or before the scan session. However, 
hunger levels were significantly greater before the 
scan compared to arrival in both groups (p < .05; 
paired t-tests across 23 participants; error bars show 
standard error). 
	
  

At Arrival Before Scan

H
u
n
g
e
r 

R
a
ti
n
g

Arrival Baseline Before Scan

50

40

30

20

10

Rested

Deprived

n.s.

n.s.



	
  

	
   14	
  

may not be the case considering their collective function in appetitive processing. 
When considering the subcortical regions of interest, the amygdala responsivity 
to the desirability of food items was significantly increased (T=3.08; p=0.0055) 
following sleep deprivation, compared to the sleep rested state (Fig 1.3B). In 
contrast, this profile of amplified subcortical activity was not observed in ventral 
striatum (T=-0.28; p=0.7852), showing no significant difference in responsivity 
between the sleep deprivation and rested conditions. Here again the amygdala 
survives correction for five comparisons if these regions are taken as a family of 
independent tests. Additionally, all ROIs demonstrating significance when 
comparing the average activity described above also express clusters of 
significant activity within these ROIs that survive familywise error (FWE) rate 
correction for multiple comparisons (p<0.05; Table 1.2). Taken together, these 
findings indicate that sleep deprivation diminished activity in an established set of 
cortical appetitive evaluation regions as food desire progressively increased, yet 
triggered a converse increase in subcortical amygdala reactivity known to signal 
food salience in the context of appetitive choice (van der Laan et al., 2011).  
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**
Rested 
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Fig 1.3) Neural consequences of sleep deprivation on food desirability. Sleep 
deprivation led to marked decreases in the anterior cingulate, left lateral orbital frontal cortex 
and anterior insula reactivity to food desirability (A). In addition, sleep deprivation led to a 
significant increase in amygdala reactivity to food desirability but no significant difference in 
ventral striatum reactivity (B). All parameter estimates are from a GLM with a parametric 
contrast of individual “want” ratings from twenty-three participants. Whole brain analysis 
(above) thresholded at p<0.005 for display purposes for sleep deprivation increases (B) and 
decreases (A). Region of interest analysis (below) are mean parameter estimates with 
standard errors of the mean extracted from 5mm spheres centered at foci taken form previous 
literature (See methods; circles indicate general areas of interest not specific foci; * indicates 
p<0.05 uncorrected for paired t-tests across 23 participants and ** indicates p<0.05 with 
Bonferroni correction for five regions of interest; error bars show standard error).  
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Table 1.1) Exploratory whole brain analysis 
 

Region T Cluster 
Size  

X Y Z 

Sleep Rested > Sleep Deprived 

* L Putamen 4.99 104 -16 4 0 

* L Hippocampus 4.00 -14 -10 -8 

* R Thalamus 4.46 42 4 -10 -2 

* R Cingulate 4.37 24 16 2 40 

* R Insula 4.22 20 32 24 -4 

* L Superior Parietal 4.21 25 -30 -68 52 

L Parahippocampus 4.18 4 -20 -32 -8 

* L Middle Frontal 3.91 17 -34 30 54 

L Thalamus 3.84 8 -6 -18 -8 

L Middle Frontal 3.72 2 -36 38 46 

L Superior Frontal 3.69 9 -22 32 50 

L Orbital Frontal 3.65 1 -34 48 -14 

R Postcentral gyrus 3.58 7 32 -28 42 

R Precuneus 3.51 1 18 -64 30 

Sleep Deprived > Sleep Rested 

* R Parahippocampus/Amygdala 4.39 29 18 -8 -26 

* R Inferior temporal lobe 4.11 30 48 -48 -18 

R Supperior temporal pole 3.84 5 32 28 -24 

L Fusiform 3.69 3 -30 -22 -28 

L Cerebellum 3.69 7 -14 -72 -38 

L Inferior temporal lobe 3.68 6 -56 -64 -22 

L Inferior temporal lobe 3.60 3 -50 -56 -24 

R Cerebellum 3.55 1 58 -50 -32 

R Parahippocampal gryrus 3.55 2 28 -22 -32 

R Superior temporal pole 3.54 1 52 20 -14 

 
Exploratory whole brain analysis showing all peak activations (MNI coordinates) significant at 
p<0.001 (no cluster criteria) for paired comparison (Sleep Rested < > Sleep Deprived) of the 
parametric contrast of want ratings (i.e. regions correlated with increasing food desire and 
differing by condition). Bold indicates a priori regions of interest. Cluster size is in voxels; voxel 
size is 2 mm3. Regions marked with * survive cluster correction criteria of ten voxels. 
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Importantly, self reported hunger levels were no different between the sleep 
rested and sleep deprived conditions (p=0.28; see Fig 1.2), indicating that 
differences in brain activity could not be explained on the basis of hunger 
differences alone. 

Behavioral changes in food desire under sleep deprivation: Complimenting these 
changes in brain responsivity, we further examined whether sleep deprivation 
triggered an increased desirability for food items that carried the greatest weight-
gain promoting potential i.e. high-calorie food items. Relative to the sleep rested 
state, sleep deprivation resulted in a significant increase in the proportion of 
“wanted” food items carrying high-caloric content (T=2.21, p=0.04). In contrast, 
no corresponding differences between the sleep rested and deprived states were 
observed for low calorie items (T=1.15, p=0.26; Fig 1.4A). Indeed, the total 
calorie content of all wanted items (summed together) in the sleep-deprived 
condition was significantly greater compared to sleep rested state (T=2.07, 
p=0.05), representing an additional 600 ±289 s.d. Cal average increase. 
Additionally, the level of caloric content across food items significantly predicted 
the extent to which desirability ratings increased after sleep deprivation; such that 
the highest calorie foods accrued the largest increase in desirability ratings 
following sleep deprivation (Spearman’s r=0.23, p=0.04). Further implicating an 
association with insufficient sleep, increasing perceived severity of sleep 
deprivation across individuals, indexed by self-reported subjective sleepiness 
(Hoddes et al., 1973), was positively and significantly correlated with the 
percentage of wanted high-
calorie foods (Fig 1.4B), and 
this correlation remained 
significant when controlling 
for body mass index using 
linear regression (T=3.41, 
p=0.003). Confirming the 
specificity of this finding to 
the state of sleep 
deprivation, no such 
association between 
subjective sleepiness and 
percentage of wanted high-
calorie foods was observed 
in the sleep rested state 
(r=0.19; p=0.39). 
Additionally, body mass 
index was not correlated 
with the percentage of high 
calorie choices in either the  
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Fig 1.4) Behavioral consequences of sleep 
deprivation on food desirability. Behavioral responses 
(taken from in-scan ratings) are shown for the percentage 
of wanted high and low calorie items respectively (A) and 
the degree to which individual differences in 
sleepiness(Hoddes et al., 1973) (after sleep deprivation) 
predict high-calorie choices (B). High/low calorie items 
are based on median split on Calories per serving; 
wanted items were collapsed across “somewhat” and 
“strongly” wanted ratings (* indicates p<0.05; paired t-test 
across 23 participants; error bars show standard error).	
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Table 1.2) Small Volume corrections analysis 
Region T Cluster 

Size  
X Y Z Correct

ed p-
value 

Sleep Rested > Sleep Deprived 

R Anterior cingulate 4.37 20 16 2 40 0.006 

L Orbital Frontal  3.65 1 -34 48 -14 0.026 

R/L Insula 4.21 6 32 22 -4 0.017 

Sleep Deprived > Sleep Rested 

R Amygdala 4.39 27 18 -8 -26 0.006 

 
Small volume correction analysis for a priori regions of interest taken as 8mm spheres centered at 
literature based ROIs (Sleep Rested < > Sleep Deprived) of the parametric contrast of want 
ratings (i.e. regions correlated with increasing food desire and differing by condition). The ROIs 
are the same as reported in the main manuscript (see Methods). Cluster size is in voxels; voxel 
size is 2 mm3. 
 
sleep rested or sleep deprived condition (r=-0.23, p=0.30, and r=-0.05, p=0.80, 
respectively), consistent with previous studies examining calories from snacks 
rather than meals (Nedeltcheva et al., 2009). Therefore, paralleling the observed 
change in the neural reactivity, sleep deprivation induced a concomitant 
behavioral profile of increased desire for weight-gain promoting (high-calorie) 
food choices, with inter-individual differences in the magnitude of such a change 
in food choice behavior being accounted for by the severity of perceived 
subjective sleepiness. 

Discussion 

Taken together, these findings establish a disrupting impact of sleep deprivation 
that blunts activity in established appetitive evaluation regions (Small and 
Prescott, 2005) within the human frontal and insula cortex during food desirability 
choices, yet a converse subcortical amplification of reactivity within the 
amygdala, known to code salience in the context of food decisions (van der Laan 
et al., 2011). Furthermore, these neural changes were associated with a 
significant increase in appetitive desire for weight-gain promoting (high-calorie) 
food items following sleep loss, the magnitude of which was proportional to the 
subjective severity of sleep loss across participants. In addition, these changes 
occurred despite participants consuming more calories during the sleep 
deprivation session (provided in a controlled manner in order to offset any 
increased energy expenditure). Moreover, participants’ self-reported hunger 
levels were not different in the sleep rested and sleep deprivation session, 
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suggesting that the condition of sleep loss, rather than metabolic need or hunger, 
as a primary factor influencing the observed changes.  

The characterization of these neural and behavioral changes following sleep loss 
may provide several explanatory insights into a central nervous system (brain) 
mechanism by which insufficient sleep leads to the development/maintenance of 
obesity.  

First, these data describe a profile of bi-directional change in responsivity in 
appetitive-relevant brain regions following sleep deprivation. All three cortical 
regions of interest with recognized roles in appetitive stimulus evaluation 
demonstrated activity reductions following sleep loss in response to increasing 
food desire, while one of the two subcortical target regions of interest – the 
amygdala, associated with salience signaling of food items – expressed 
significant increases in response to food desirability. Interestingly, no significant 
differences in reactivity were observed in the classical reward region of the 
ventral striatum following sleep loss. It is important to note that while these brain 
areas do have specific and recognized functional roles in the context of appetitive 
food stimulus evaluation and choice, as we examined using the current task, 
theses regions are not limited to performing such functions. For example, the 
anterior cingulate has been associated with conflict monitoring (Botvinick, 2007) 
as well as autonomic (especially cardiovascular) regulation (Critchley et al., 
2003), the orbital frontal cortex has been associated with inhibitory control(Stuss, 
2011), the anterior insula has been associated with interoception (Craig, 2003) 
and the amygdala has been associated with fear and arousal processing (Zald, 
2003). While our interpretation of the impact of sleep loss on these regions is 
made within the context of appetitive food evaluation and choice, due to the 
nature of the task, they may nevertheless extend beyond appetitive processes, 
and include alterations in other functions such as those described above.  

Second, this collection of brain changes may not only help account for 
recognized shifts in dietary intake and altered food choices following insufficient 
sleep (Brondel et al., 2010), but further reconcile potentially dissonant previous 
findings. Specifically, prior reports have demonstrated that sleep restriction leads 
to increased caloric intake following sleep loss under non-laboratory or “free-
living” conditions where food selection was not fixed (Brondel et al., 2010), fitting 
with impoverished mechanisms of appetitive evaluation and choice regulated by 
the frontal lobe as well as heightened salience signaling within the amygdala. 
However, such altered food choices following sleep loss can also occur without 
any significant change in ratings of the hedonic qualities of food pleasantness or 
food desire when smelling foods directly (Brondel et al., 2010), consistent with 
our observations of unaltered responding in this reward-related region of ventral 
striatum. Furthermore, such a neural dissociation may additionally explain why 
some studies have failed to observe increases in caloric intake under sleep 
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restriction when food choices are limited to small selection arrays and eating 
opportunities are fixed (Nedeltcheva et al., 2009, Schmid et al., 2009), since 
increases in the motivated drive to eat in the absence of food choices has been 
primarily associated with activity in the ventral striatum independent of the effects 
of sleep loss (Lawrence et al., 2012). Therefore, one plausible interpretation 
emerging from our data is that impoverished recruitment of cortical regions 
involved in appetitive choice selection following sleep loss, combined with 
enhanced responsivity from the amygdala, may result in improper valuation of 
food stimulus features, shifting behavioral choice-selection to high calorie 
desirable items driven more so by salience, when food is available. The current 
neural observations would therefore predict that if a range of freely attainable 
food choices and eating opportunities are offered (as is ecologically the case in 
the majority of real-world situations), then the effect of sleep deprivation would 
lead to a significant increase in food consumption choices considered non-
optimal in the context of obesity (i.e. high calorie items).  

Third, and congruent with these predictions, the changes in neural reactivity to 
food desirability under sleep deprivation were additionally accompanied by a 
significant shift in preferences for food items carrying the highest caloric content. 
While a shift in food desire ratings was observed following sleep deprivation, the 
controlled eating schedule of the study precluded the ability to measure actual 
changes in caloric intake under ad libitum (rather than the current controlled) food 
availability. Interestingly, the alteration in food desire observed here, coinciding 
with changes in brain activity, are consistent with previous behavioral findings 
describing increases in actual caloric intake following sleep loss when ad libitum 
food conditions are presented (Brondel et al., 2010, Markwald et al., 2013) and 
increased cravings for higher caloric food categories (e.g. sweet, salty and 
starchy foods) (Spiegel et al., 2004). Given the established increase in energy 
needs induced by sleep deprivation (Jung et al., 2011, Penev, 2012, Markwald et 
al., 2013), it is possible that this tendency toward increased caloric intake, and 
high calorie preferences reported here, supports an adaptive homeostatic 
function to recover such energy expended. However, a recent study which 
assessed ad libitum caloric intake as well as energy expenditure in sleep-
restricted humans reported increased calorie consumption beyond that which 
could be explained by expended energy or altered metabolic rate (Markwald et 
al., 2013). Moreover, this increase in calorie intake resulted in significant gains in 
weight. This finding leads to the hypothesis that changes in central nervous 
system disruption due to sleep loss, such as the alterations in appetitive brain 
signaling described in the current study, may contribute to decisions that led to 
increased calorie consumption in excess of energy expenditure changes, one 
consequence of which is weight gain. We additionally demonstrated that the 
magnitude of change (increase) in desire for high calorie foods was positively 
correlated with the perceived subjective severity of sleep deprivation across 
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participants (indexed in the measure of sleepiness). Therefore, our data provide 
indirect support linking the state of sleep deprivation, and the subjective severity 
of this state, to altered internal homeostasis following extended time awake, and 
is consistent with already established alterations in metabolism and temperature 
regulation following sleep loss (Knutson et al., 2007, Romeijn et al., 2012). This 
may reflect a progressive deterioration in the brain and body systems that 
regulate and maintain optimal energy balance, potentially reflected in the current 
study by increases in energy consumption through heightened desire for high 
calorie foods.  

Finally, and related to such whole organism considerations, elegant prior work 
has describe peripheral body changes in appetite and metabolic regulating 
hormones following sleep loss that can lead to weight-gain (Knutson et al., 2007, 
Van Cauter et al., 2007, Hanlon and Van Cauter, 2011). Our findings raise the 
presence of a central nervous system dysfunction that stands along side these 
increasingly well-described peripheral body changes following sleep deprivation 
that together, may converge on a common impact sleep loss on weight-gain 
potential.  

Beyond the implications stated above, it is important to note that the current 
findings should be considered in the context of several limitations. First, this 
study used a carefully controlled feeding schedule that was standardized across 
participants which did not allow us to assess actual changes in calories 
consumed due to sleep deprivation (although see (Brondel et al., 2010, Markwald 
et al., 2013)) or to assess he relationship between the neural responses 
observed and behavioral shifts in actual calories consumed. Furthermore, due to 
this limitation it will be important for future studies to assess whether access to 
ad libitum high calorie food would normalize the observed brain responses under 
sleep deprivation due to potentially reduced motivational demands for high-
calorie items after consumption. Second, all scan sessions for this study took 
place during the morning. Since both appetite and sleep patterns are significantly 
influenced by circadian phase (Saper, 2006), future studies will be needed to 
examine the interactions of measurements at different circadian phases. Indeed, 
recent behavioral studies indicate that the largest impact of sleep loss on altered 
food choices occurs during the evening (Baron et al., 2011, Markwald et al., 
2013) leading to the testable hypothesis that changes observed in the current 
study would be further exaggerated when repeated later in the day. Finally, it 
should be noted that the current findings were measured in a group of healthy 
young and lean participants (20.5±1.8 s.d. years of age; 23.0±1.8 s.d. BMI). An 
important future challenge will be to examine whether similar alterations caused 
by sleep deprivation are expressed across a broader age and body mass range; 
pertinent considering that hormones, metabolism as well as neural responses 
change over the life span (Wilson and Morley, 2003), and across a spectrum of 
lean to obese ranges (Wang et al., 2009). 
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In summary, these findings contribute to a novel brain mechanism by which sleep 
loss may lead to the development and/or maintenance of obesity through the 
potentially maladaptive selection of foods carrying obesogenic (weight-gain) 
potential, thereby explaining the large-scale significant association between 
reduced sleep time and obesity reported in population level studies (Cappuccio et 
al., 2008). They further support the proposal of sufficient sleep as an important 
mechanistic factor promoting weight control, one pathway of which appears to be 
the regulation of central brain mechanisms governing appropriate food choices. 
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Chapter 2 

The neural and behavioral impact of sleep deprivation 
on processing of monetary rewards and punishments 
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Introduction 

Reward represents a guiding principal governing a broad array of human 
behaviors. Optimal interpretation of reward signals to be approached, and 
punishments to be avoided, supports decisions and actions that favor survival 
(Berridge and Robinson, 2003, Schultz, 2006, Knutson and Wimmer, 2007a). 
However, reward-seeking can lead to deleterious and life-threatening behaviors, 
exemplified by abusive drug addiction, impulsive thrill seeking and adverse risk 
taking (Schultz, 2006, Volkow et al., 2007). Furthermore, emerging evidence now 
also shows sleep to be an important regulator of this reward system, with sleep 
loss as a potential risk factor in the development of reward system disorders 
(Perogamvros and Schwartz, 2012). 

A rich research literature has now characterized the neural mechanisms 
mediating incentivized behavior and reward processing. From this work has 
emerged common pathways within the mesolimbic system across all mammalian 
species that, when electrically stimulated, unconditionally elicits either approach 
or avoidance behavior (Panksepp, 1998). Approach behaviors can be instigated 
by stimulating projections of the midbrain dopamine neurons ascending from the 
ventral tegmental area (VTA) to the ventral striatum, including the nucleus 
accumbens (NAcc) (Panksepp, 1998, Ikemoto and Panksepp, 1999). In contrast, 
avoidance behaviors, can be elicited by stimulation of a separate pathway, 
descending from the anterior insula and basolateral amygdala through the stria 
terminalis to the periaquiductal grey (Panksepp, 1998). 

Given that separate neural mechanisms support approach and avoidance 
behavior, functional MRI (fMRI) techniques have been designed to isolate the 
study of these separate pathways in the human brain (Knutson et al., 2001a, 
Yacubian et al., 2006). In particular, monetary incentives have proven reliable 
tools for the study of incentive processes (Knutson and Cooper, 2005, Knutson 
and Greer, 2008). A meta-analysis of 21 human neuroimaging studies using the 
monetary incentive delay task or a similar paradigm, revealed dissociable 
pathways responding to monetary gain and loss that strongly converge with 
incentive circuits identified in other mammalian species using electrical 
stimulation. These regions included the NAcc during the anticipation of gain, and 
conversely, sub-regions of the anterior insula for the anticipation of loss. 
Demonstrating that event-related fMRI incentive paradigms, in particular the 
monetary incentive delay (MID) task, provides a potent methodology for probing 
functional changes in mesolimbic reward networks of the human brain and 
specifically for disambiguating processes related to gain and loss. 

While there are several studies that now characterize an impact of sleep 
deprivation on monetary risk taking, to date, these studies have primarily used 
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mixed stimuli where the relative contributions of gain seeking or loss aversion 
cannot be teased apart. Furthermore, there has also not been a clear 
investigation of the reactivity to the anticipatory trial phase and the outcome trial 
phase on a trial-by-trial basis. This is an important distinction because the 
anticipatory incentive signal may contain more information about individual 
choice tendencies (e.g. being drawn to rewards or away form losses) and the 
outcome incentive signal may hold more information about integration of 
incentive information and potentially incentive learning. In order to distinguish 
between these aspects of incentive processing, the current study employed the 
monetary incentive delay (MID) task under conditions of sleep deprivation as well 
as rested sleep in order to test the hypothesis that sleep deprivation will lead to 
dissociable alterations in the mesolimbic responses to 1) gain anticipation in the 
NAcc, 2) loss anticipation in the anterior insula, 3) gain outcome in the medial 
prefrontal cortex (MPFC) and 4) loss outcome in the anterior insula. 

Methods 

Methods overview: Thirty-five participants either completed a night of normal 
rested sleep recorded with polysomnography in the laboratory (N=18; 8 female; 
age 20.1+-2.0sd) or a night of total sleep deprivation monitored in the lab by 
laboratory personnel as well as objective wrist actigraphy (N=17; 11 female; age 
20.6+-1.5sd). In the morning of either session each participant completed an 
fMRI session (average scan time 9:30 AM) where they completed the monetary 
incentive delay task (Fig IV.i in Common Methods). In order to assess brain 
responsivity to monetary gain and loss anticipation, fMRI BOLD signal was 
correlated with monetary value for gain and loss separately on a trial-to-trial basis 
at the time of the cue presentation. In addition neural responses to outcomes, or 
receipt, of monetary reward was assessed by modeling responses to gain versus 
non-gain outcomes and loss v s. non-loss outcomes separately. All monetary 
delay task procedures as well as fMRI acquisition, preprocessing and modeling 
procedures can be found in section IV. Common Methods. 

ROI Definition & Analysis: In accordance with recommended ROI reporting 
policies (Poldrack, 2007), regions of interests were taken as the average 
parameter estimates from 4 mm spheres centered around MNI coordinates from 
previous literature on reward-motivated action (Harsay et al., 2011) for the ventral 
striatum (L: -12, 18, -8; R: 6, 10, -6) as well as monetary outcome processing in 
the medial prefrontal cortex (R: 6, 46, 4)(Knutson et al., 2001b). An area of the 
right anterior insula sensitive to loss evaluation (Wu et al., 2011) was used to 
asses responses to both loss anticipation and loss outcome processing in this 
study (R: 36, 27, -1). All of these regions have substantial dopaminergic 
innervation, and have been reliably linked to motivated behavior (Haber and 
Knutson, 2010).  
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Results 

Neural response to anticipation under sleep deprivation: While both sleep rested 
and sleep deprived groups equally robustly activated the NAcc in response to 
monetary gains, there were no observable differences in responding between the 
two sleep groups. This was true both in the region of interest analysis (Fig 2.1A) 
and when looking at whole brain differences at a low threshold (Table 2.1; 
p<0.001 uncorrected). Similarly, in the anterior insula, there were no systematic 
differences in loss anticipation activation between the sleep groups either at ROI 
level (Fig 2.1B) or the whole brain level (Table 2.1; p<0.001 uncorrected). 
Finally, to verify that there were no differences in neural activations to incentive 
anticipation due to sleep deprivation in any brain regions, we performed a whole 
brain analysis (p<0.05 FWE corrected). Taken together these data indicate that 
there are no systematic differences in incentive anticipation due to sleep 
deprivation when gains and losses are isolated in separate trials and when no 
choice is required. 
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Fig 2.1) Neural consequences of sleep deprivation on processing of monetary gains 
and loss. Sleep deprivation led to no significant group differences in either gain anticipation in 
the nucleus accumbens (A) or loss anticipation in the right anterior insula (B). Sleep 
deprivation led to a significant decrease in responding of the medial prefrontal cortex to 
monetary gain outcomes (C) and a significant increase in the response of the right anterior 
insula in response to monetary loss outcomes (D). Whole brain analysis is thresholded at 
p<0.005 for display purposes for group comparisons of sleep deprivation compared to sleep 
rested. Region of interest analysis (bar graphs) are mean parameter estimates with standard 
errors of the mean extracted from 6mm spheres centered at foci taken form previous literature 
(See ROI methods; circles indicate general areas of interest not specific foci; error bars show 
standard error). 
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Neural response to gain outcomes under sleep deprivation: Sleep deprivation led 
to a marked decrease in responsivity of the MPFC to the receipt of monetary 
gains (i.e. winning $0.20, $1 or $5) compared to non-gain outcomes (i.e. missing 
the opportunity to win and receiving $0) (Fig 2.1C). In contrast to this diminished 
activity seen in the MPFC, the anterior insula showed an amplification of activity 
under sleep deprivation in response to the outcome of losing money as 
compared to a non-loss outcome (Fig 2.1D). Taken together, there was a 
significant disruption in the neural processing of the receipt of monetary 
incentives such that there was a simultaneous diminished responsivity to the 
receipt of monetary gains and an amplified responsivity to the receipt of monetary 
losses. 

Discussion 

In summary, while anticipatory reactivity remained unchanged after sleep 
deprivation, neural responses to the receipt of monetary gains and losses 
showed a significant change. Specifically, the medial prefrontal cortex showed a 
decrease in sensitivity to positive events while the anterior insula showed an 
increase in sensitivity to negative events following sleep deprivation.  

To date, investigations into the neural consequences of sleep deprivation on 
incentive processing have largely focused on paradigms that combine potential 
gain and loss outcomes in order to assess risk taking behavior (Killgore et al., 
2006, Venkatraman et al., 2007a, Venkatraman et al., 2011, Mullin et al., 2013). 
These studies attributed observed neural and behavioral shifts in risk taking to 
changes in valuation of gains (specifically, increases) and losses (specifically, 
decreases). However, more recent reports have questioned the gain/loss 
valuation hypothesis due to new contradictory evidence (Menz et al., 2012, 
Libedinsky et al., 2013). After distinguishing anticipation of gains and losses in 
distinct trials, we did not observe group-level effects of sleep deprivation on 
neural activity during anticipation of either monetary gains or monetary losses. 
Therefore, a more parsimonious explanation for previous findings may be that 
sleep deprivation reduces peoples’ ability to integrate competing incentives (i.e. 
gains and losses), rather than a biased perception of either gain or loss 
individually. Such an account is additionally consistent with evidence that 
responses to conflict (i.e. cognition associated with processing conflicting 
options) are decreased under sleep deprivation (Menz et al., 2012). Importantly, 
although effects may not be evident at the group level, trait differences may still 
bias incentive processing on the individual level.  

One possible explanation for the lack of group differences in incentive 
anticipation under sleep deprivation is that there may be large individual 
differences in sleep deprivation response that serve to mask the effects of the 
group difference. It is well know that sleep deprivation can lead to increased 
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variability in subject responses, however, it is unclear what drives the variability 
(Durmer and Dinges, 2005). Genetic variation, particularly in the dopamine 
systems, presents an intriguing possibility given the known associations with this 
system in both reward processing (Dreher et al., 2009, Aarts et al., 2010, Stice et 
al., 2012) and sleep regulation (Holst et al., 2014). Chapter 3 will test this 
emerging hypothesis in a subset of the participants reported on here who have 
been genotyped to identify natural variation in the dopamine transporter gene. 

Looking next at the responses to monetary outcomes under sleep deprivation, 
reveals both a decreased sensitivity to monetary gain outcomes in the MPFC as 
well as an increased sensitivity to monetary losses in the anterior insula. The 
medial prefrontal cortex has been previously demonstrated to be important for 
learning from feedback and goal maintenance (Hitchcott et al., 2007), thus a lack 
of responsivity to monetary feedback in this brain area may be indicative of a 
reduce capacity to learn from incentives as a result of sleep deprivation which 
may underlie previous reports of poor incentive decision making under sleep 
deprivation. In contrast the anterior insula displayed an increased response to 
monetary loss, perhaps in line with previous accounts of an amplified negativity 
bias under sleep deprivation (Yoo et al., 2007, Goldstein et al., 2013). Taken 
together these data led to the hypothesis that under sleep deprivation, there may 
be a deficit in the ability to learn from monetary gains while there may be an 
amplified sensitivity and ability to learn form monetary losses. This hypothesis is 
specifically tested in Chapter 4 of this report. 

Considering this evidence in the broader context of this report we see that the 
lack of a significant difference in NAcc responding to monetary gain anticipation 
seen here is in line with the similar lack of sleep dependent responding in the 
NAcc to desirable food stimuli presented in Chapter 1. Furthermore, the 
decreased responding to monetary gain outcomes under sleep deprivation 
reported here is in line with the decreased responding of frontal regions to 
desirable foods in Chapter 1, although it should be noted that these were non-
overlapping regions within the frontal cortex. Finally, the reactivity of the anterior 
insula under conditions of sleep deprivation presents the more complicated story. 
Specifically, under sleep deprivation the anterior insula showed diminished 
activity to desirable food stimuli, no change in activity to the anticipation of 
monetary loss, and finally a significant increase in activity to the receipt of 
monetary losses. This differential responding (even within overlapping 
participants) highlights the importance of understanding context specific 
interactions when assessing the influence of sleep deprivation on incentive 
processing. Furthermore, this highlights the potential importance of sleep in 
facilitating integration of information, which may underlie these diverse results.  

The pattern of results across both this chapter and Chapter 1 presents an 
intriguing possibility that one general effect of sleep deprivation may be to shift 
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the balanced of networking incentive brain processing toward heightened 
subcortical activity, and diminished cortical activity, which is in agreement with 
several other reports in different topic domains (Drummond et al., 2005, Yoo et 
al., 2007, Gujar et al., 2011b). While these studies alone are unable to define the 
precise underlying neurobiological mechanism for this change in activity profile, 
at least two theoretical underlying mechanisms are worthy of consideration. 1) 
The neuro-cellular systems level which differs between cortical and subcortical 
areas may be differentially affected by sleep deprivation. 2) The regional 
connectivity level which may determine how and when regional brain areas are 
recruited under sleep deprivation. In support of the second idea, previous reports 
have described diminished connectivity between cortical and subcortical areas 
resulting in increased subcortical activation (Yoo et al., 2007, Gujar et al., 2011b). 
Interestingly, the pattern in the anterior insula of both increased, sustained as 
well as decreased activation under sleep deprivation depending on the incentive 
context may offer further support of regional brain connectivity disruption under 
sleep deprivation. Thus, the anterior insula may be more or less recruited by 
other brain areas depending on the context.  
 
As discussed above, these results open important unanswered questions as to 1) 
the nature of individual genetic differences in gain and loss anticipatory reactivity 
and 2) the consequences of diminished gain outcome and increased loss 
outcome sensitivity on incentive reinforcement learning. These topics will be 
specifically tested and discussed in the next two chapters.  

 
 



	
  

	
   29	
  

Table 2.1) Sleep Rested > Sleep Deprived. Exploratory whole brain analysis 
 

Region T Cluster 
Size  

X Y Z 

Gain Anticipation 

R Lingual Gyrus 4.57 144 16 -62 10 

3.74 22 -68 18 

L Cerebellum 4.33 40 -40 -40 -44 

L Inferior Frontal lobe 4.27 32 -46 12 18 

L Inferior Frontal lobe 4.20 30 -32 10 22 

3.59 -24 20 22 

L Cerebellum Vermis 3.98 44 -2 -70 -16 

Loss Anticipation 

R Fusiform Gyrus  4.26 57 24 -78 -10 

3.64 12 -82 -6 

L Inferior Frontal Opercular 4.23 38 -26 2 26 

R Lingual Gyrus 3.80 26 4 -60 12 

L Middle Frontal 3.77 22 -24 16 30 

Gain Outcomes 

L Superior Frontal 5.09 54 -18 44 38 

R Inferior Frontal Opercular 4.79 28 54 14 2 

R Fusiform 4.56 94 40 -44 -22 

R Middle Frontal 4.36 47 24 48 32 

R Medial Frontal 4.33 154 12 52 10 

4.28 2 50 10 

4.20 6 50 -2 

L Supramarginal 3.62 29 -60 -36 26 

3.56 -64 -28 20 

Loss Outcomes 

L Postcentral Gyrus 4.14 30 -66 -18 24 

 
Exploratory whole brain analysis showing all peak activations (MNI coordinates) 
significant at p<0.001 uncorrected (20mm3 cluster criteria) for paired comparison 
(Sleep Rested > Sleep Deprived) of the parametric contrast of gain anticipation, 
loss anticipation, gain outcomes (non-gain < gain) and loss outcomes (non-loss > 
loss). 
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Table 2.2) Sleep Deprived > Sleep Rested. Exploratory whole brain analysis 
 

Region T Cluster 
Size  

X Y Z 

Gain Anticipation 

R Frontal Middle Gyrus 4.32 69 48 16 52 

3.94 46 24 50 

3.64 42 12 58 

L Frontal Middle Gyrus 4.16 26 -48 26 46 

Loss Anticipation 

None      

Gain Outcome 

None      

Loss Outcome 

Cerebelum 5.25 88 24 -72 -28 

R Fusiform 4.81 141 28 -64 -12 

4.23 36 -52 -12 

3.98 30 -74 -2 

L Cerebellum 4.69 76 -12 -82 -28 

3.58 -8 -88 -32 

L Cerebellum 4.64 49 -32 -66 -28 

3.49 -38 -68 -34 

R Inferior Orbital Frontal 4.59 42 38 24 -8 

L Middle Frontal  4.57 114 -44 56 18 

4.01 -22 66 24 

3.78 -34 60 22 

R Superior Medial Frontal 4.56 24 10 26 52 

R Anterior Cingulate 4.48 186 2 48 12 

4.14 -8 36 24 

4.10 -2 60 20 

L Anterior Cingulate 4.48 78 -6 36 -6 

4.38 6 36 -6 

R Superior Frontal 4.40 43 18 66 30 

R superior Frontal 4.34 30 16 40 50 
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L Middle Occipital  4.33 74 -24 -96 14 

3.83 -16 -
106 

8 

3.55 -18 -98 8 

R Cerebellum 4.31 23 12 -80 -24 

L Cerebellum 4.21 20 -6 -60 -38 

L Medial Superior Frontal  4.19 84 -2 38 44 

4.18 -10 38 52 

L Middle Temporal 4.12 59 -62 -56 4 

R Angular gyrus 4.12 22 50 -50 34 

R Middle Frontal  4.08 31 30 6 44 

L Middle Cingulate 3.96 27 -6 -24 26 

L Posterior Cingulate 3.96 21 -6 -34 20 

R Middle Cingulate 3.94 67 6 -6 32 

R Superior Frontal 3.88 20 26 66 18 

 
Exploratory whole brain analysis showing all peak activations (MNI coordinates) 
significant at p<0.001 uncorrected (20mm3 cluster criteria) for paired comparison 
(Sleep Rested < Sleep Deprived) of the parametric contrast of gain anticipation, 
loss anticipation, gain outcomes (non-gain < gain) and loss outcomes (non-loss > 
loss). 
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Chapter 3 

The interaction of sleep deprivation and a genetic 
polymorphism of the human dopamine transporter on 

neural anticipation of monetary rewards and 
punishments 
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Introduction 

Dopamine-related brain circuits modulate approach towards rewards and 
avoidance of punishments, thus guiding motivated behaviors (Nitschke et al., 
2006, Knutson and Greer, 2008). Dopaminergic projection areas in the nucleus 
accumbens (NAcc) and anterior insula have consistently been implicated in the 
anticipation of gains and losses. Further, abnormal responses in these neural 
circuits—due to genetics, disease, or environmental factors—have been linked to 
a range of disadvantageous outcomes, including suboptimal risk-taking, deficits 
of attention, mood disturbance, and addiction (Knutson and Greer, 2008).  

Independent of these findings, emerging evidence indicates that sleep 
deprivation can disrupt dopaminergic function by modifying dopamine receptor 
sensitivity and availability (Tufik, 1981, Volkow et al., 2012). However, neural 
evidence that sleep deprivation alters brain activity during incentive processing, 
particularly in the NAcc and anterior insula, has been inconsistent—with some 
reports demonstrating significant disruptions (Venkatraman et al., 2007b, 
Venkatraman et al., 2011, Mullin et al., 2013), but others indicating a lack of 
significant changes (Libedinsky et al., 2011, Menz et al., 2012, Libedinsky et al., 
2013). However, as reported in Chapter 2, when gain and loss anticipation are 
properly isolated we do not see systematic differences in reward system 
responding under sleep deprivation. 

One possible explanation for this is that individual differences (including genetic 
polymorphisms that alter incentive brain processing) may interact with sleep 
deprivation, obscuring differences when not explicitly considered. One candidate 
for individual differences in dopamine function involves the polymorphism on the 
dopamine transporter (DAT) gene, which has been associated with altered 
dopamine availability (Aarts et al., 2010). Individual differences in this genetic 
polymorphism may therefore modulate incentive brain processing during sleep 
deprivation, due to the functional influence of the DAT polymorphism on (a) 
synaptic dopamine function, (b) brain reactivity to reward (Aarts et al., 2010), and 
(c) sleep homeostasis (Holst et al., 2014). Further, characterizing the interaction 
between trait dopamine genetics, sleep deprivation and reward brain activity has 
potential clinical importance, since sleep disruption is highly co-morbid with 
numerous psychiatric and neurological conditions associated with dysregulated 
dopaminergic reward processing, including Parkinson’s disease, attention 
hyperactive deficit disorder (ADHD), and substance abuse (Perogamvros and 
Schwartz, 2012, Moreau et al., 2013). 

One method used to assess individual differences in dopaminergic function 
involves examining functional genetic polymorphisms, which constitute naturally 
occurring variations in alleles that can lead to altered gene expression and thus 
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function (Dreher et al., 2009). While several genes affect dopamine action, the 
dopamine transporter (DAT) gene polymorphism is particularly well-suited for 
examining the interaction between striatal dopamine function and sleep loss. 
DAT is a protein that clears synaptic dopamine after release in the striatum, 
homeostatically governing the fidelity of dopamine signaling (Williams and Galli, 
2006). Evidence from human radioligand studies (Heinz et al., 2000); but see 
also (Jacobsen et al., 2000)) and in vitro models (VanNess et al., 2005) 
demonstrate that carrying at least one allele characterized by nine tandem 
repeats of a nucleotide base pair sequence on the 3’ untranslated region of the 
DAT gene (“9R carriers”) results lower levels of DAT protein and therefore higher 
dopamine synaptic availability, while having homozygous alleles with ten tandem 
repeats (“10R homozygotes”) results in lower dopamine synaptic availability. 
Moreover, the highest concentrations of DAT are found within the striatum (Ciliax 
et al., 1999, Williams and Galli, 2006), and human neuroimaging studies have 
demonstrated alterations in both striatal activity and mesolimbic and related 
cortical functional connectivity that depends on the DAT polymorphism (Dreher et 
al., 2009, Aarts et al., 2010, Zhong et al., 2012). Offering a further link with sleep 
and sleep deprivation, DAT function is necessary for the wake-promoting 
properties of stimulants such as cocaine and modafinil, including under sleep 
deprivation (Wisor et al., 2001), and recent evidence demonstrates that the DAT 
polymorphism has functional effects on sleep homeostasis (Holst et al., 2014). 
Thus, investigating individuals with trait differences in the DAT polymorphism 
offers a unique human in vivo opportunity (advocated when studying candidate 
gene targets (Meyer-Lindenberg, 2012)) to examine dopamine-related incentive 
brain functioning following sleep deprivation. 

Combining an established incentive paradigm independently assessing gain and 
loss with functional MRI (fMRI), here we investigated the differential affects of 
sleep deprivation on gain anticipation processing within the nucleus accumbens, 
and loss anticipation processing within the anterior insula. We tested the 
hypothesis that individual trait differences in the dopamine transporter gene—
associated with altered dopamine availability—confer a significant sleep 
deprivation vulnerability-interaction in such gain and loss incentive processing.  

Methods 

Methods overview: Twenty-nine participants who had been genotyped were 
included in this analysis (17 female; mean age: 20.5± 1.8 s.d; 3 participants were 
left handed).Each participant either completed a night of normal rested sleep 
recorded with polysomnography in the laboratory (N=15) or a night of total sleep 
deprivation monitored in the lab by laboratory personnel as well as objective wrist 
actigraphy (N=14). In the morning of either session each participant completed 
an fMRI session (average scan time 9:30 AM) where they completed the 
monetary incentive delay task (Fig IV.i in Common Methods). In order to assess 
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brain responsivity to monetary gain and loss anticipation, fMRI BOLD signal was 
correlated with monetary value for gain and loss separately on a trial-to-trial basis 
at the time of the cue presentation. In addition neural responses to outcomes, or 
receipt, of monetary reward was assessed by modeling responses to gain versus 
non-gain outcomes and loss v s. non-loss outcomes separately. All sleep 
monitoring procedures as well as monetary delay task procedures, fMRI 
acquisition, preprocessing and modeling procedures can be found in section IV. 
Common Methods. 

Genetic analysis: In order to assess this genetic variation, saliva samples were 
collected from participants using Oragene kits (DNA Genotek Inc, Ottawa, 
Onterio, Canada) after the experimental session. DNA extraction was then 
carried out by the Functional Genomics laboratory at the University of California, 
Berkeley and genotyping was performed by the Institute for Human Genetics at 
the University of California, San Francisco. The polymorphism on SLC6A3/DAT1 
includes a 40-bp variable number of tandem repeats (VNTR) in the 3’ 
untranslated region of the gene that is repeated between 3 and 13 times, with the 
greatest frequency being either 9 repeats (9R) or 10 repeats (10R) (Dreher et al., 
2009). This information was used to classify participants into two groups 1) those 
who were homozygous for the 10R allele, and 2) those who were either 
homozygous for the 9R allele or who had one copy of the 9R allele and one copy 
of the 10R allele (i.e. 9R carriers). No participants carried any other number of 
VNTR alleles. Participant counts in each genotype and sleep group are included 
above in the participant section. The percentage of 10R homozygotes and 9R 
carriers in our sample was consistent with percentages in previous reports 
(Dreher et al., 2009, Stice et al., 2012, Holst et al., 2014).  

After genotyping, participants were separated into four groups according to sleep 
condition (rested or deprived) and genotype status (9R or 10R/10R; see genetic 
analysis below for details): 1) Sleep rested & 10R/10R: N=7, age 20.86+-2.9sd, 2 
female, 2) Sleep deprived & 10R/10R: N=7, age 20.86+-1.8sd, 6 female, 3) Sleep 
rested & 9R: N=8, age 19.63+-1.2sd, 5 female, and 4) Sleep deprived & 9R: N=7, 
age 20.57+-1.3sd, 4 female. 

ROI Definition & Analysis: In accordance with recommended ROI reporting 
policies (Poldrack, 2007), regions of interests were taken as the average 
parameter estimates from 4 mm spheres centered around MNI coordinates from 
previous literature on reward-motivated action (Harsay et al., 2011) for the ventral 
striatum (L: -12, 18, -8; R: 6, 10, -6), and loss anticipation (Wu et al., 2011) for 
the right anterior Insula (R: 36, 27, -1). Both of these regions have substantial 
dopaminergic innervation, and have been reliably linked to motivated behavior 
(Haber and Knutson, 2010). The parameter estimates from the voxels in these 
regions of interest were averaged for each subject and then entered into a two-
way analysis of variance across subjects using the MATLAB (Mathworks Inc.) 
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function anova2 with factors of sleep condition (rested or deprived) and DAT 
status (10R homozygous or 9R carriers).  

Results 

Effects of sleep deprivation and dopamine polymorphism on gain anticipation: 
Consistent with several previous reports (Libedinsky et al., 2011, Menz et al., 
2012, Libedinsky et al., 2013) and as reported in Chapter 2, sleep deprivation 
did not have a significant main effect on NAcc ROI activity during the anticipation 
of monetary gain, relative to the rested condition (Fig 3.1A). However, supporting 
the experimental hypothesis, there was a significant Sleep-condition by Genotype 
interaction for NAcc activity during anticipation of monetary gain (p=0.01; Fig 
3.1B). Post-hoc t-tests revealed that the 9R carriers—associated with elevated 
phasic striatal dopamine—expressed significantly amplified reward responsivity 
relative to the 10R homozygotes following sleep deprivation (p=0.005), as well as 
the 9R carriers in the sleep rested condition (p=0.05). No significant changes in 
NAcc reward-reactivity were observed across sleep conditions in the 10R 
homozygotes (p=0.13).  

Therefore, markedly different NAcc reward responses were observed following 
sleep deprivation depending on the DAT functional polymorphisms, with elevated 
trait-synaptic dopamine (represented by the 9R carriers) leading to heightened 
striatal reward-reactivity under conditions of sleep deprivation, relative to the 10R 
homozygotes. 

Effects of sleep deprivation and dopamine polymorphism on loss anticipation: As 
with monetary gain, no significant main effects of sleep deprivation were 
identified during monetary loss anticipation in anterior insula activity, and as 

Fig 3.1) Neural responses to gain anticipation in the nucleus accumbens by 
sleep condition and genotype. Overall, nucleus accumbens activity showed no 
sleep condition differences during gain anticipation (A), however, there was a 
significant sleep condition (rested or deprived) by DAT genotype (9R or 10R/10R) 
interaction of activity during gain anticipation (p=0.01) (B & C).  
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reported in Chapter 2 (Fig 3.2A). However, consistent with the experimental 
hypothesis, there was a significant Sleep-condition by Genotype interaction in 
anterior insula activity during loss anticipation (p=0.01; Fig. 3.2B). While similar 
to the interaction for gain reactivity in the NAcc, post-hoc t-tests revealed that the 
loss-dependent anterior insula interaction was driven by the 10R homozygous 
group—those associated with reduced synaptic striatal dopamine—expressing a 
significant reduction in loss anticipation reactivity under sleep deprivation 
compared to the sleep rested condition (p=0.03). There were no significant 
differences in loss activity in the anterior insula between the rested and deprived 
conditions in the 9R carrier group, and non-significant trends in response 
difference between the two genetic groups in the sleep rested condition 
(p=0.075), and between the two genetic groups in the sleep-deprived condition 
(p=0.085).  

Thus, similar to activity in the NAcc, significantly different anterior insula 
response profiles were observed following sleep deprivation depending on the 
DAT functional polymorphisms. Specifically, reduced trait-synaptic dopamine 
(represented by the 10R homozygotes) resulted in a blunted anterior insula 
activity following sleep deprivation, relative to the sleep rested condition. 

Discussion 

This study provides an initial exploration of interactions between sleep 
deprivation and genetics on incentive processing. Despite a relatively modest 
sample size, these findings provide preliminary evidence of the interactive 
influence of genetic trait dopaminergic variants and sleep deprivation on neural 
processing of rewards and punishments. 

While sleep deprivation did not significantly alter incentive brain processing at the 
group level (see Chapter 2), when dopamine genotype subgroup was 

Fig 3.2) Neural responses to loss anticipation in the anterior insula by sleep 
condition and genotype. Overall, anterior insula activity showed no sleep condition 
differences during loss anticipation (A), however, there was a significant sleep 
condition (rested or deprived) by DAT genotype (9R or 10R/10R) interaction of 
activity during loss anticipation (p=0.01) (B & C).	
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considered, significant interactions emerged. For NAcc activity during gain 
anticipation, sleep-deprived individuals with 9R DAT polymorphism (associated 
with more phasic dopamine) showed enhanced responses relative to either 9R 
carriers under sleep rested conditions or to 10R/10R homozygotes (associated 
with less phasic dopamine). Therefore, the impact of sleep loss on striatal reward 
processing was not universal, but instead depended on the trait dopamine-
regulating genotype status of individuals. 

This finding offers several mechanistic insights into reward brain processing 
under conditions of sleep loss. First, sleep deprivation has previously been 
shown to reduce the availability of dopamine D2/D3 receptors in the human 
striatum(Volkow et al., 2012), which could suggest a potential mechanism 
underlying the current findings. Specifically, the unique combination of elevated 
phasic dopamine (here, the 9R carriers), and reduced availability of D2/D3 
receptors after sleep deprivation (Volkow et al., 2012), may consequently 
increase the availability or receptivity of remaining D1 receptors, resulting in 
enhanced reward-reactivity in the striatum. This appears further tenable 
considering that activation of postsynaptic D1 receptors may preferentially 
increase striatal fMRI signal (Knutson and Gibbs, 2007). Second, since D2 
receptors can facilitate DAT functioning (Williams and Galli, 2006), sleep loss-
related reductions of D2 receptors may impair the efficacy of the dopamine 
transporter protein on an individual genotype-specific basis. As a result, sleep 
deprivation may exaggerate deficits of the dopamine transporter protein in the 9R 
group, resulting in increased phasic dopamine availability, resulting in an 
increase in NAcc reward reactivity following sleep deprivation. Third, sleep 
deprivation may decrease tonic dopamine (Miller et al., 1983), “unmasking” 
individual differences in phasic dopamine. While each of these mechanisms is 
distinct, they could also interact to produce the observed findings. Some 
combination of these accounts might provide a mechanistic explanation of how 
changes in dopamine function due to sleep deprivation can ultimately lead to 
individual level interactions with DAT genotype. 

Genotype interactions with sleep deprivation were not limited to reward 
processing, but also occurred in the context of punishment. Specifically, while 
sleep deprivation did not influence anterior insula activity during anticipation of 
loss at the group level, a significant interaction again emerged after accounting 
for individual differences in the DAT polymorphism. In contrast to the interaction 
of NAcc activity during gain anticipation and sleep deprivation in the 9R carriers, 
this interaction was driven by diminished anterior insula activity during loss 
anticipation in sleep-deprived 10R carriers, relative to rested conditions. In 
contrast, 9R carriers displayed no significant changes in anterior insula activity 
during loss anticipation, suggesting resilience to the impact of sleep deprivation. 



	
  

	
   39	
  

Several lines of evidence may offer mechanistic insights explaining the genotypic 
difference between the 9R carriers and 10R homozygotes during loss 
anticipation. The insula, particularly the anterior (agranular) region, receives 
dense dopamine innervation from brainstem nuclei. Further, dopaminergic 
projections to this area appear necessary for certain forms of avoidance (rather 
than approach) behavior (Zito et al., 1988, Treadway et al., 2012). Therefore, the 
increased phasic dopaminergic activity within the 9R carriers may confer a 
protective benefit to the effects of sleep deprivation during loss anticipation, in 
contrast to enhanced phasic dopaminergic activity in the striatum during gain 
anticipation. As a consequence, elevated phasic dopamine action in the anterior 
insula of 9R carriers may negate the normal blunting of loss sensitivity caused by 
sleep loss seen in 10R homozygotes. 

Together, individuals show opposing alterations in neural responses during 
anticipation of gains and losses on the basis of genotype. Specifically, DAT 9R 
carriers show increased neural responses during gain anticipation (with no 
changes during loss anticipation), while 10R homozygotes show decreased 
neural responses during loss anticipation (with little change during gain 
anticipation). Interestingly, both of these profiles could promote reward seeking in 
the face of mixed incentives (i.e. gain and loss trade-offs, combined), consistent 
with behavioral findings (Killgore et al., 2006, McKenna et al., 2007). However, 
the current findings suggest that these two genetic sub-groups may express a 
similar behavioral phenotype through different underlying mechanisms.  

More generally, these findings may be of clinical relevance when considering 
disorders in which the DAT genetic polymorphism presents a known risk factor 
with concomitant sleep disruption. Known risks include disorders like ADHD 
(Sharp et al., 2009) and symptoms related to substance abuse (i.e., cue-induced 
craving and withdrawal; (van der Zwaluw et al., 2009)). In these cases, sleep 
disruption presents a potentially compounding risk factor, which may generate 
divergent pathological profiles, and thus different therapeutic responses to sleep 
restorative interventions, depending on an individual’s dopaminergic genotype.  

For example, NAcc activity during reward anticipation is blunted in individuals 
with ADHD (e.g., (Scheres et al., 2007)), and representation of 9R carriers is 
increased (Franke et al., 2009). NAcc activity during reward anticipation, 
however, is apparently not significantly influenced by DAT genotype in children 
with ADHD (Hoogman et al., 2013). Given recognized sleep disruptions in ADHD 
(Moreau et al., 2013), the present results imply that sleep deprivation might 
“unmask” genetic influences on the striatal function of individuals afflicted with 
ADHD. If correct, such findings might indicate that sleep disruption and 
dopaminergic genotype are interactive risk factors as well as therapeutic targets 
for relevant disorders.  
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Introduction 

Learning what in the environment should be approached, and what should be 
avoided, represents a fundamental survival principal across most all species, 
including humans (Haber and Knutson, 2010, Maia and Frank, 2011). One way 
that the brain acquires such knowledge is through trial and error. This process is 
supported by fronto-striatal-midbrain networks, the underlying dynamics of which 
have further been described by computational models of reinforcement learning.  
Despite evidence indicating that sleep deprivation impairs forms of hippocampal 
learning (Walker and Stickgold, 2006), no study to date has investigated the role 
of sleep in preparing the brain for next day reinforcement learning. 
Translationally, this may be of special relevance in the context of understanding 
the interaction between co-morbid sleep disruption and addiction disorders, 
where learning about the reinforcing properties of a drug stimulus represents a 
significant contributing mechanism (Park et al., 2010, Maia and Frank, 2011). 

Reinforcement learning refers to a specific algorithm (originally identified by 
computer scientists) by which information about a stimulus is adaptively learned 
by trial-and-error based exposure to rewarding or punishing feedback from that 
stimulus (Sutton, 1998). This algorithm relies on repeated exposure to a stimulus 
such that, on each exposure, a prediction is made as to the value of the stimulus 
and the outcome of the interaction is compared against this prediction to 
determine if the experience was better than expected or worse than expected. 
This comparison between the observed and expected outcome results in a 
“prediction error” signal that is used to update value representations. Neural 
recordings in animal models have revealed that the phasic firing of dopamine 
neurons, and subsequent release of dopamine in the ventral striatum, follow a 
pattern consistent with trial-by trial encoding of a prediction error signal that can 
be used for this adaptive learning process (Schultz et al., 1997, O'Doherty et al., 
2003). 

The dopaminergic mechanism of reinforcement learning has also been 
demonstrated in humans through a collection of neuroimaging and 
pharmacological studies (O'Doherty et al., 2003, Pessiglione et al., 2006, 
Yacubian et al., 2006). For example, pharmacological increases in dopamine 
levels led to improved learning from monetary rewards in a reinforcement 
learning paradigm, while pharmacological blockade of dopamine D2 receptors 
led to diminished learning from such incentives. Interestingly, neither of these 
drug manipulations lead to observable changes in learning from monetary losses 
(Pessiglione et al., 2006). This would suggest a dissociable involvement in the 
dopamine system for modulating reinforcement learning from rewards but not 
losses (Pessiglione et al., 2006, Yacubian et al., 2006). 
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Such dopamine-specific evidence is especially relevant in the context of sleep 
deprivation, since significant decreases in the availability of dopamine D2/D3 
receptors have been reported in humans when sleep deprived using PET 
radioligand experiments (Volkow et al., 2008, Volkow et al., 2012). Together with 
the findings that gain-based reinforcement learning is diminished with 
pharmacological blockade of D2 receptors (Pessiglione et al., 2006), such data 
leads to the hypothesis that sleep deprivation will similarly lead to deficits in 
reward based reinforcement learning. Furthermore, given that pharmacological 
blockade of D2 receptors does not disrupt learning from losses (Pessiglione et 
al., 2006), this would further predict a specific dissociation, such that loss-based 
reinforcement learning will remain intact and unaltered by the state of sleep loss. 

Beyond pharmacological manipulations of reinforcing learning, neuroimaging 
studies have also been important for identifying regional brain networks that 
support such information acquisition, the findings of which have additional 
relevance on the context of sleep deprivation. Specifically, areas of the prefrontal 
cortex have been implicated in integrating reward-related feedback and coding 
the value signal of reinforced stimuli, particularly in the context of gains 
(Pasupathy and Miller, 2005, Knutson and Wimmer, 2007b, Park et al., 2010). 
Results from the previous chapter (using the monetary incentive delay task) 
demonstrate that vmPFC reactivity to monetary gain feedback is diminished by 
sleep deprivation, which may be a further indication of the potential for sleep 
deprivation to diminish the capacity to learn from monetary gain feedback. 

Taken together, dopaminergic alterations as well as disrupted regional brain 
activity in mesolimbic regions, support the hypothesis that sleep deprivation will 
diminish learning from reward-based feedback, while leaving punishment-based 
feedback learning unaltered. The following study tested this hypothesis using a 
monetary reinforcement-learning paradigm that employs both gains and losses, 
and compares sleep deprivation to a sleep rested state.  

Methods 

Experiment overview: Thirty-two subjects completed a probabilistic reinforcement 
learning task either after a night of rested sleep (N=16; 9 female) or after a night 
of total sleep deprivation (N=16; 8 female). Five participants (3 rested and 2 
sleep deprived) from an original thirty-seven participants were excluded from 
analysis because they acquired net loss earnings over the task, indicating that 
they did not learn the task correctly, or misunderstood the instructions. All sleep 
condition procedures can be found in section IV. Common Methods. 

Probabilistic reinforcement learning task: The learning task (Fig 4.1) was based 
on a previously used paradigm known to be sensitive to dopamine manipulations 
(Pessiglione et al., 2006, Samanez-Larkin et al., 2008, Knutson et al., 2011). The 
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task included three blocks, each with thirty gain- and thirty loss-trials. On each 
trial (Fig 4.1) participants were asked to choose between one of two symbols. 
After this choice, feedback was provided regarding whether they won $0.50 or $0 
on a gain trial, or whether they lost $0.50 or $0 on a loss trial. In each pair, one 
symbol resulted in winning or avoiding losing on 70% of the trials. Participants 
were instructed to try and win as much money as possible by learning to pick the 
symbol that resulted in winning money or avoiding losing money more often. 
Importantly, each block contained a novel set of symbols, so that learning could 
be assessed, anew, on each block. Trial-by-trial choices as well as reaction times 
were recorded for assessing behavior in this task.  

 

Behavioral performance analysis: Learning was assessed by plotting the 
percentage correct choices (i.e. choosing the symbol with a higher probability of 
reward) across each trial of the blocks, across subjects. A power function 
(y=a*Xb) was fit using the Matlab curve fitting toolbox to each group and 
conditions’ learning profile in order to assess whether the learning profile was 
consistent with previously reported learning trajectories (Delany, 1998). Median 
reaction times across all trials (separately for gain and loss) were calculated for 
each subject and sleep group differences in these reaction times were calculated 

Selection

(Self paced)

Choice Feedback

(0.5 sec)

+$0.50
*

Monetary Feedback

(1 sec)

Fig 4.1) Probabilistic reward task design. Participants were first presented with a 
pair of cues (Selection face) and were given unlimited time to make a choice. 
Once the choice was selected, a star appeared above the cue to indicate the 
choice. Finally, monetary feedback was given at the end of the trial. A cue pair 
could either be associated with gaining (i.e. either winning $0.50 or $0) or with 
losing (i.e. either losing $0.50 or $0). Participants were instructed to try and win as 
much money as possible by learning the cue in each pair with either the highest 
probability of winning money or avoiding losing money. Cumulative winnings were 
reported at the end of the task and paid out in cash to the participants. 
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using a t-test across subjects. Finally, total cumulative monetary winnings across 
reward trials, and total cumulative monetary losses across punishment trials, 
were evaluated (Pessiglione et al., 2006). Here, the outcomes of the first 5 trials 
of each block were excluded, since these trials do not contain adequate 
information as to the correct choice. 

Results 

Before comparing performance between the sleep and sleep deprivation 
conditions, a first analysis confirmed that the learning trajectories for each group, 
for both grain and loss cues, were well fit by a standard reinforcement learning 
power function reported in previous studies (Delany, 1998)(y=a*Xb) (all R2>0.7 & 
RMSE <0.08 Fig 4.2). Notably, in the first two gain trials the sleep rested group 
appears to have fortuitously picked the correct stimulus more frequently than the 
sleep deprived group (Fig 4.2), however, this percentage was not significantly 
different from chance for any block. Additionally, these percentages normalized 
between groups in the following few trials. Both groups performed well above 
chance (50%) for both gain and loss cues in the last ten trials of each block, 
when there has been sufficient time for learning (mean and (sd) reported for: 
Rested - Gain: 89%(15.9); Sleep Deprived - Gain: 79%(21.4); Rested - Loss: 
82%(14.8); Sleep Deprived - Loss: 80%(15.6)). Thus, proficiency of 
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Fig 4.2) Probabilistic reward task behavior across trials. Individual dots represent averaged 
percentage of correct choices across subjects. Lines show best-fit power function to the group 
data. Red indicates sleep deprived participant group and grey represents the sleep rested 
group. A one-way ANOVA across the learning trials determined a significant difference 
between the sleep and sleep deprivation groups (F=25.03; p<0.001) for gain based learning 
(left), yet no such significant difference was observed (right) for learning from loss-based 
feedback (F=1.18; p=0.28). 
	
  



	
  

	
   45	
  

reinforcement learning was expressed in both groups, for gain and loss cues.  

Next, percent correct performance across trials was compared between the sleep 
groups and incentive conditions. Fig 4.3 shows average performance over each 
third of the task (first 10 trials; middle 10 trials; last 10 trials) for rested (grey) and 
deprived groups for gain (A) and loss (b). For each set of ten trials an ANOVA 
was used to test for interactions between sleep groups and incentive conditions. 
This revealed a statistical trend level interaction for sleep by incentive type in the 
middle set of trials (F1,30 =3.05; p=0.09) but not for the first ten trials (F1,30=0.65, 
p=0.54) or the last ten trials (F1,30 =1.82; p=0.19). In addition to correct 
performance, cumulative monetary earnings (from gain) and retention (from loss) 
over the learning session were also assessed as in previous reports (Pessiglione 
et al., 2006). Here, an additional ANOVA verified a significant group (sleep rested 
or deprived) by reinforcement cue type (gain or loss) interaction (F1,30=5.07; 
p=0.03; Fig 4.4). Post-hoc tests 
revealed that, consistent with the 
original prediction, this interaction 
was driven by the sleep deprived 
group gaining less money on 
reward trials compared to the 
rested group, though this was a 
statistical trend (p=0.07), yet not 
suffering any greater debt across 
the loss trials (p=0.53). These 
data provide a direct test of the 
relative deficit of the sleep 
deprived group to earn money 
from gain trials relative to the lack 
of a deficit in losing money over 
loss trials. 

Performance was also compared 
for gain and loss separately, in 
order to determine the impact of 
sleep deprivation. This was 
tested using a one-way ANOVA 
across all the learning trials, 
between the two sleep groups. 
Consistent with the original 
hypothesis, a significant 
difference across reinforcement 
learning from reward was 
observed between the sleep and 
sleep deprivation groups 
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$ANOVA 
                Effect DFn DFd         F          p p<.05        ges 

2            sleepCond   1  30 1.4452362 0.23869749       0.03344683 
3           rewardCond   1  30 0.5984894 0.44520867       0.00558822 

4 sleepCond:rewardCond   1  30 3.0548410 0.09072646       0.02788415

$ANOVA 
                Effect DFn DFd         F          p p<.05         ges 

2            sleepCond   1  30 3.5544809 0.06910296       0.071995205 
3           rewardCond   1  30 0.7491036 0.39362913       0.008546400 

4 sleepCond:rewardCond   1  30 0.6555631 0.42450653       0.007487202

$ANOVA 
                Effect DFn DFd         F         p p<.05         ges 

2            sleepCond   1  30 1.3452413 0.2552596       0.032124986 
3           rewardCond   1  30 0.7701656 0.3871401       0.006625632 

4 sleepCond:rewardCond   1  30 1.8228771 0.1870701       0.015541223 

Fig 4.3) Bars represent percentage of correct 
stimulus choices across subjects for sleep rested 
(grey) and sleep deprived (red) groups. The trials 
are grouped in blocks of ten trials during the first, 
middle and last stages of the task. An ANOVA 
verified a statistical trend level group (sleep rested 
or deprived) by reinforcement cue type (gain or 
loss) interaction (F1,30 =3.05; p=0.09) for the middle 
section of trials.  
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(F1,58=25.03; p<0.001), yet no such significant difference was observed for 
learning from loss cues (F1,58=1.18; p=0.28). Similarly, for reaction time, sleep 
deprived subjects had significantly slowed reaction times across reinforcement 
learning from rewards, relative to sleep rested subjects (T=2.62; p=0.02), and not 
during learning from losses (T=1.26; p=0.22). This pattern of results reveals that 
while performance and reaction times related to gain learning are impaired under 
conditions of sleep deprivation, loss 
learning was not significantly 
impoverished, suggesting selective 
learning deficits and preservation, 
respectively.  

Discussion 

Consistent with the experimental 
hypothesis, these results established 
a dissociable deficit in reinforcement 
learning under conditions of sleep 
loss. Specifically, they demonstrate 
an impaired ability to learn from 
monetarily rewarding feedback under 
sleep deprivation, yet a preserved 
capacity to learn from monetary 
punishments. Importantly, the 
relatively preserved learning from 
monetary punishment following a 
lack of sleep suggests that the 
impairments in learning from 
monetary gain is unlikely due to a 
general cognitive deficit (e.g. 
alterations in working memory or 
attention), but rather, a selective 
reward-related learning deficiency.  

Building on known alterations in 
dopamine function caused by sleep 
loss (Volkow et al., 2012), these 
finding lead to a theoretical model in 
which sleep deprivation causally 
induces a decrease in dopamine D2 
receptors, which, in turn, causally 
disrupts reward-based reinforcement 
learning. Thus, dopamine may 
modulate the relationship between 
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Fig 4.4) Bars represent cumulative winnings 
over the last 25 trials of each block for sleep 
rested participants (grey) and sleep deprived 
participants (red).  An ANOVA verified a 
significant group (sleep rested or deprived) 
by reinforcement cue type (gain or loss) 
interaction (F=5.07; p=0.03). Post-hoc tests 
revealed that this interaction was driven by 
the sleep deprived group gaining less 
money on reward trials compared to the 
rested group, though this was a statistical 
trend (p=0.07), yet not suffering any greater 
debt across the loss trials (p=0.53). 
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sleep deprivation and disrupted gain (but not loss) reinforcement learning. 
Although it is known that sleep deprivation induces reductions in D2 receptor 
sensitivity, it has been unclear whether this reduction is enough to be 
behaviorally relevant. While the data presented here are consistent with this 
model, and offer a potential resulting behavioral deficit, future research 
measuring direct effects of sleep deprivation on dopamine processing and 
reinforcement learning would be needed to verify this prediction. For example, an 
important follow-up experiment might be to pharmacologically increase sensitivity 
of dopamine D2 receptors under sleep deprivation and determine if this rescues 
the gain feedback leading. It is important to note that while there is evidence of 
involvement of both D1-like and D2-like receptor involvement in reinforcement 
learning, here we focus on the role of D2 receptors due to the combined evidence 
from sleep deprivation as well as pharmacological studies which is absent for D1 
receptors. 

Characteristics of reinforcement learning behavior have also been shown to be 
affected in addiction disorders (Maia and Frank, 2011). While the connection 
between sleep disruption and addiction disorders as well as substance abuse is 
broadly recognized (Perogamvros and Schwartz, 2012), the mechanisms 
underlying these interactions remain poorly understood. Based on findings 
described earlier, one potential candidate bridging these reciprocal interactions is 
the link between sleep loss and D2/D3 receptor down regulation (Volkow et al., 
2012). Reductions in D2/D3 receptors in the striatum are common across many 
substance use disorders (Volkow et al., 2007). Moreover, this functional change 
has been linked to the transfer from casual substance use to compulsive 
substance use (Volkow et al., 2007). The data described here is in line with a 
behavioral functional cause of decreased D2 receptor stimulation that may 
suggest a role in sleep deprivation in facilitating addictive behaviors. 

The dissociation reported here between the impacts of sleep deprivation on gain 
learning and loss learning may have important implications for real world financial 
decision making for sleep deprived individuals. Previous reports have shown that 
performance on such gain- and loss-learning tasks correlate with real world asset 
and debt accruement respectively over the lifespan (Knutson et al., 2011). 
Specifically, individuals who performed poorly on laboratory measures of gain-
based reinforcement learning had reduced real world assets, while individuals 
who performed poorly on loss based reinforcement learning were more likely to 
carry significant debt, defined by credit reports (Knutson et al., 2011). Based on 
the observed disruption in gain based reinforcement learning under sleep 
deprivation, one intriguing speculation is that, over time, chronic sleep deprivation 
may lead to an incremental reduction in financial assets due to the mechanism 
described by the current findings. Important economic implications additional 
emerge from such findings, considering increased need for retirement savings 
(Bloom BE, 2003). This may be particularly relevant for, and explanatory of, low-
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income populations, since recent evidence has established that these same 
populations have less total sleep and lower sleep quality relative to higher 
income populations (Okun et al., 2014, Wilson et al., 2014). 

In summary, the data presented here build on previous reports of brain-reward 
system dysfunction associated with sleep loss, extending them by establishing 
ecologically relevant deficits in incentive learning behavior with potential real 
world clinical and financial consequences.  
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Introduction 

The mesolimbic reward system governs a range of survival-motivated functions 
and supports goal directed behaviors (Haber and Knutson, 2010, Perogamvros 
and Schwartz, 2012). At the same time, dysfunction of this system can lead to 
deleterious and even life-threatening conditions including substance abuse, 
impulsive risk-taking and uncontrolled thrill seeking. Recent evidence has 
uncovered a critical interaction between sleep and these brain functions as 
evidence by disruption of these neural systems due to sleep deprivation. 
However, beyond investigations into the role of sleep deprivation on neural and 
behavioral reward processing, it is also important to consider the possible 
benefits of sleep, when it is achieved, on neural systems supporting reward 
processing. Doing so can help shed light on the specific elements and 
physiogical properties of sleep that selectively support proper reward system 
function. Thus, highlighting potential areas of therapeutic intervention with 
specific sleep targets.  

To date a circumscribed number of studies have begun investigating the 
beneficial effects of sleep (when it is obtained) on reward-associated functions. 
This research can be grouped in two general areas: 1) positive emotional 
processing, and 2) reward-related memory. Research supporting beneficial 
effects of sleep on positive emotional processing has demonstrated that sleep 
length predicts daily variations in positive mood (de Wild-Hartmann et al., 2013). 
Moreover, the presence of a daytime nap, and expressly on containing REM 
sleep, can enhance perceived happiness of happy face stimuli (Gujar et al., 
2011a). Beyond these studies on positive emotion, sleep can preferentially 
support the consolidation of highly rewarded information (as opposed to non-
rewarded or low-reward information). This has been shown for both procedural 
skill memory (Fischer and Born, 2009) and declarative memory (Oudiette et al., 
2013). For the latter, the amount of REM sleep attained once again predicted the 
degree of reward biased memory recall (Oudiette et al., 2013). Taken together, 
these data suggests a role of sleep, and particularly REM sleep, in supporting 
optimal next day reward processing within specific incentive circuits of the brain.  

Evidence has further implicated an important interaction during sleep with the 
dopamine system, specifically REM sleep. For example, dopamine neurons in 
the brainstem exhibit burst firing during the onset and maintenance of REM 
sleep, resulting in a high release of dopamine into the striatum during REM sleep 
(Dahan et al., 2007). Furthermore, this dopaminergic activity has been shown to 
be part of the neural mechanism for transitioning to and maintaining the REM 
sleep state (Dahan et al., 2007), without which REM sleep becomes 
dysregulated. While this effect of dopamine on sleep regulation is clear, the 
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functional benefit of such REM-sleep regulation of mesolimbic dopamine on next-
day waking dopamine and/or reward brain processing is unknown.  

Considering that dopaminergic processing during sleep and during wake are 
unlikely to be independent in individuals, it is therefore beneficial to study the 
relationships between sleep physiology and waking reward processing to gain 
better insight into the dopamine system as well as the purpose of sleep. 
Furthermore, pinpointing physiological processes of sleep that specifically serve 
reward functions will be critical from a therapeutic standpoint because it will 
provide researchers and clinicians with direct sleep targets that can potentially be 
manipulated (either pharmacologically or behaviorally) for optimal therapeutic 
benefit. 

Characterizing such function(s) has the potential to inform clinical disorders, most 
notable Parkinson’s disease development, where sleep disruption is highly 
comorbid (estimates range from 24%-98%) (Porter et al., 2008). REM sleep 
problems also often precede the development of Parkinson’s disease. For 
example, 50% of middle-aged individuals expressing REM sleep behavioral 
disorders (which is thought to be pathologically linked to the dopamine system), 
go on to develop Parkinson’s disease within 16 years of the original diagnosis, 
and 81% developed some form of dementia within this time period (Schenck et 
al., 2013). Furthermore, older adult males (age 71-93) with excessive daytime 
sleepiness are more likely to develop Parkinson’s than match controls without 
daytime sleepiness (Abbott et al., 2005). Nevertheless, it remains unclear 
whether these early sleep problems are an epiphenomenon of early sub-clinical 
deterioration of the dopamine system or whether such sleep disruption 
contributes to the development of the disease (and would therefore be a target 
for intervention). 

Although the state of REM sleep stage has been linked to optimal functioning of 
the dopaminergic reward system, it is qualitatively less clear what 
electrophysiological properties of this REM sleep are involved in such regulation. 
Two spectral EEG bands represent potential candidates: 1) theta (~4-8Hz) 
power, and 2) beta (~18-35Hz) power. Theta band power, particularly at frontal 
electrode sites, has been linked to reward prediction errors as well as Pavlovian 
conditioning during task related waking behavior (Cavanagh et al., 2010, 
Cavanagh et al., 2013). Furthermore, specifically during REM sleep, theta band 
activity has been linked to the consolidation of negative emotional memories and 
amygdala responsivity (Nishida et al., 2009, Popa et al., 2010) which could 
potentially reflect an emotional arousal signal common to reward processing. 
Alternatively, beta band activity has been more specifically linked to dopamine 
and reward processing. Specifically, beta band power increases as neuro-
degeneration of the dopamine system develops during Parkinson’s disease 
(Delong and Factor, 2008, McCarthy et al., 2011). Furthermore, beta power 
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decreased with anticipation of higher rewards during an EEG monitored cued 
incentive experiment (Donamayor et al., 2012). These data therefore indicate that 
increasing theta band power or decreasing beta band power during REM sleep 
represent dopamine-sensitive a priori candidates that may accurately predict 
reward-dependent brain activity the next-day. 

Here, we seek to address this unresolved question by investigating how 
individual differences in sleep physiology (using EEG sleep recordings) predict 
next-day variability in striatal reward reactivity, assessed with fMRI. Specifically, 
this study tests the hypothesis that the quantity and EEG spectral quality 
(specifically increased theta and decreased beta band power) during REM sleep 
determine the amount next day reward-dependent activation in the nucleus 
accumbens of the ventral striatum. 

Methods 

Study overview: Thirty healthy participants (18 female; age 20.4 +- 1.9sd) came 
into the sleep lab for a full night of PSG recorded (19-channel EEG) sleep (see 
section IV. Common Methods) and completed an fMRI monitored monetary 
incentive delay task the next morning (see section IV. Common Methods). The 
signal from the NAcc was extracted based on a meta-analysis of the monetary 
incentive delay task (MNI coordinates: R: 16, 20, -9; L: -10, 12, -3) (Knutson and 
Greer, 2008). Only the signal during the anticipation of monetary gains was used 
since this signal has been most robustly associated with NAcc activity and 
positive arousal states (Knutson and Greer, 2008). All monetary delay task 
procedures as well as fMRI acquisition, preprocessing and modeling procedures 
can be found in section IV. Common Methods. 

Sleep Physiology: On the experimental night in the sleep rested session, 
polysomnography (PSG) sleep monitoring was recorded in the laboratory using 
19-channel electroencephalography (EEG) (locations according to international 
10-20 system), together with electro-oculography (EOG) at right and left outer 
canthi and electromyography (EMG) via three chin electrodes (Klem et al., 1999). 
Sleep-staging was performed manually in 20-sec epochs in accordance with 
standardized techniques (Rechtschaffen and Kales, 1968) from the C3-A2 
electrode derivation. Recordings from two minutes of quite wake (with eyes 
closed) were averaged from before and after the sleep period and used for 
comparison analysis. 

Following sleep scoring, full-head EEG recordings were then re-referenced to the 
right and left mastoids (A1 & A2) for spectral processing. EEG recording from the 
total dark period (the start of lights off to the end of lights on) was extracted, 
binned into four-sec epochs, and band pass filtered using Finite Impulse 
Response (FIR) filters (low-pas at 50Hz, High-pass at 0.6Hz). Then the full night 
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of EEG was visually inspected for artifacts (Achermann, 2009, Saletin et al., 
2013) and any four-second epoch suspected to contain artifactual signal was 
marked and removed from later analysis. The remaining epochs were entered 
into a fast Fourier transform in order to filter the EEG signal into its component 
frequencies (Achermann, 2009). This transform was used to quantify the spectral 
amplitude of the EEG signal into frequency bands of interest (delta .6-4Hz, theta 
4-7Hz, alpha 7-12, sigma 12-15, beta 15-35, gamma 35-45Hz). Relative power 
was computed by dividing the power in each band by the average power in all 
other bands and was used in order to correct for inter-subject variability in total 
spectral power (Pivik et al., 1993). Correlation analyses reported here used the 
natural log of this relative power in order to normalize the distribution of power 
values across participants(Achermann, 2009). All analyses were conducted using 
MATLAB (The Mathworks Inc. Natick, MA) and the EEGLAB toolbox 
(http://sccn.ucsd.edu/eeglab/). 

Results 

Sleep profiles: All participants attained a full night of sleep in the laboratory 
(Mean total sleep time: 8.3+-0.77 sd hrs). The percentages of sleep time spent in 
each sleep stage are presented in Table 1; values that are within expected 
ranges for normative sleep (Walker et al., 2002).  

Table 5.1) Sleep statistics. 
 
Stage Minutes % Sleep period 
Wake after sleep onset 39.49 (30.0) 7.26 (5.4) 
NREM Stage 1 46.17 (19.1) 8.49 (3.3) 
NREM Stage 2 259.61 (43.9) 47.90 (6.2) 
NREM Stage 3 40.98 (14.9) 7.72 (3.1) 
NREM Stage 4 42.16 (24.8) 7.93 (4.8) 
REM 109.20 (26.9) 20.16 (4.4) 
Total NREM 388.91 (35.1) 72.04 (4.7) 
Total Slow Wave Sleep 83.13 (33.2) 15.65 (6.7) 
Total Sleep time 498.11 (46.4) 92.19 (5.3) 

 
Data are reported in mean time (in minutes and percentage of the sleep period time) spent in 
each sleep stage with standard deviation in prentices. Sleep period time is defined as the time 
between sleep onset and the final awakening. 
 
Sleep stage quantity and reward activation: Focusing first on REM sleep quantity, 
a statistically significant negative association was observed between minutes of 
REM sleep and next day NAcc BOLD reactivity (r=-0.4; p=0.026). This 
relationship was such that such that fewer minutes of REM sleep was associated 
with higher levels of reward reactivity (Fig 5.1). There was also a similar 
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relationship between total minutes of sleep and next day NAcc reactivity (r=-0.4; 
p=0.029) which is not surprising given the high correlation (and dependence) 
between total sleep time and REM sleep (r=.66; p<0.0001). However, 
demonstrating specificity to REM sleep, there was no significant association 
between NAcc reactivity and either minutes of NREM sleep (r=-0.2; p=0.25; Fig 
5.1) or minutes of wake after sleep onset (r=0.1, p=0.72). Additionally, in this 
sample minutes of REM and minutes of NREM sleep were not significantly 
correlated (r=0.11; p=0.57; Fig 5.1). 

Together, these results confirm the predicted association between REM sleep 
quantity (amount) and next day reward reactivity, leading to the following analysis 
of whether the EEG spectral power quality of REM sleep also predicted its next 
day reward system activity. 
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Fig 5.1) Correlation between minutes spent in REM sleep (left) as well as NREM sleep (right) 
with parameter estimates (P.E.) of next day NAcc reactivity to increasing monetary gains (A). 
Minutes spent in REM sleep were not significantly correlated with minutes spent in NREM 
sleep (B).	
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REM sleep quality and reward activation: In agreement with the hypothesis, there 
was a significant negative correlation between the amplitude of the average beta 
response during REM sleep and the next day NAcc reactivity to monetary 
rewards (Fig 5.2), averaging over the frontal electrodes of interest (Fp1, Fp2, F7, 
F3, Fz, F4 and F8; r=-0.55, p=0.002). A whole head analysis also confirmed 
significant correlations between beta power during REM sleep and next day 
NAcc reward responsivity at the individual electrode sites F7, F3, F4, T3 and C3 
(all p<0.05, corrected for multiple comparison’s across electrode sites). Since the 
time spent in REM sleep differed across participants and this difference could 
effect average beta-power if this power changes over the night, an additional 
analysis was conducted to control for time spent in REM sleep. Here, beta power 
from only the first hour of REM sleep for each participant was analyzed. 
Normalizing the time spent in REM sleep in this way did not diminish the 
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significant correlation between beta power in the average frontal electrodes and 
the next day NAcc reactivity (r=-0.53, p=0.003). 

In order to confirm the correlation between beta power and next day reward 
reactivity was specific to REM sleep, beta power during NREM sleep and during 
quite wake activity was also assessed. This analysis revealed no significant 
correlations between beta power during NREM sleep and reward reactivity at any 
electrode site (maximum T28=-2.35; p>0.2 corrected), or averaged frontal 
electrode activity (T28=-1.71; p=0.10; Fig 5.3). This was similarly true for the quite 
waking EEG activity (whole head maximum T28=-1.62; p>0.2 corrected; averaged 
frontal electrode sites: T28=0.03; p=0.89; Fig 5.3).  

Counter to the experimental hypothesis, however, no correlations were observed 
between theta band power during REM sleep and next day NAcc reward 
reactivity (Fig 5.4) when averaged across all frontal electrodes (T28=0.91; 
p=0.37), or at any individual electrode (maximum T28=2.43; p>0.2 corrected).  

Taken together, these results indicate that beta power during REM sleep is 
predictive of next day NAcc reward system reactivity. Furthermore, this 
association is specific to REM sleep (as opposed to non-REM sleep or wake) and 
specific to the beta band as opposed to theta power.  

Discussion 

Despite rapidly accruing evidence of dopaminergic reward system activation 
during REM sleep, whether specific patterns of human REM sleep EEG 
physiology the night prior significantly predict next day reward-system reactivity 
has remained unknown. The current experiment addresses this question, 
demonstrating that inter-individual differences in next-day reward brain reactivity 
can be accounted for by the quantity and electrophysiological quality of REM 
sleep the preceding night. This qualitative correlation was specific to REM sleep, 
and a specific frequency band – beta power – during REM sleep, with neither 
NREM sleep or waking brain activity and associated EEG power activity 
predicting reward activity. Therefore, beta band power during REM sleep may 
represent a physiological individual difference marker and thus nocturnal 
signature of the dopaminergic mesolimbic system, that accurately predicts next 
day striatal reward-brain reactivity. 

Several lines of evidence offer explanatory insights into this dopaminergic 
reward-brain association with beta power. First, beta band amplitude decreases 
during an incentive task as reward value increases (Donamayor et al., 2012). 
Second, patients with Parkinson’s disease, associated with the loss of dopamine 
brain stem neuronal loss, express aberrantly high beta band activity (Delong and 
Factor, 2008, McCarthy et al., 2011). Third, beta frequency suppression is a well 
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characterized response to motor system activity which is also be driven by a 
dopaminergic network (Engel and Fries, 2010). Taken together, this evidence 
suggests that dopamine system activation is linked to beta EEG power in an 
inverse relationship, with great dopaminergic activity resulting in diminished beta 
EEG power. Linking this relationship to the fMRI NAcc reward reactivity 
measured in the current experience, BOLD fMRI responses in the NAcc during 
reward processing activity has also been suggested to be an indirect measure of 
dopamine transmission to this region (Knutson and Gibbs, 2007).  

Therefore, aligning these two prior sets of literature within the context of the 
current findings, there are at least two theoretical frameworks which can explain 
these findings. First, one explanatory interpretation is that both the beta power 
during REM sleep and BOLD response to reward in the NAcc during wake are 
commonly reflecting underlying (phasic) dopamine transmission from the 
brainstem to the striatum in a trait-like manor. This relationship is specific to REM 
sleep (as opposed to wake or NREM sleep) because the phasic firing of 
dopamine neurons is only present during REM sleep, discussed earlier, due to its 
role in regulating this sleep phase (Dahan et al., 2007). A second explanatory 
interpretation is that beta power during REM sleep is reflective of a regulatory 
process of the dopamine system that occurs during sleep and determines the 
responsivity of the system during next day reward processing. In this way beta 
activity during REM sleep would be reflective of a state-like process, which 
regulates dopamine function on a nightly basis. 

This study shows a relationship between the REM beta power physiology and the 
reward system reactivity during next day performance. One limitation of this study 
is that it is not possible to distinguish whether this relationship is reflective of trait 
differences in reward system activity or state specific differences whereby the 
sleep immediately before reward reactivity is reflective of the specific next day 
responding. Although not devoid of state-specific difference, previous research 
has indicated that the BOLD responding in the NAcc during the MID task is 
reflective of trait differences in reward responding (Wu et al., 2014). In this study, 
participants were administered the MID task with fMRI monitoring twice with an 
approximately one year interval in between tests and statistical analysis revealed 
a strong trait-like stability of responding in the NAcc. Sleep patterns and 
physiology have also been shown to have strong state like and trait-like qualities 
(Tucker et al., 2007). However, if the relationship between REM sleep physiology 
and reward system responding was state-like, it may have been expected that 
the absence of sleep (including REM sleep) reported on in Chapter 2 would have 
resulted in a group shift in increased reward anticipation responding. Therefore, 
perhaps the most parsimonious explanation for the relationship reported here 
between REM beta power and NAcc reward responsivity may be that it is 
reflective of trait-like responding of the dopamine system during both REM sleep 
and reward response.  
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Translational implications also emerge from the hypothesis that beta power 
during REM sleep reflects trait differences in dopamine system activity. It can be 
difficult to monitor dopamine function in humans (Haber and Knutson, 2010). 
Thus, REM sleep beta activity may be reflective of a biomarker of dopamine 
activity that could be used to assess the nature and progression of dopamine-
dependent diseases, most notable being Parkinson’s disease. This is particularly 
compelling given the intimate relationship between Parkinson’s disease 
development and sleep disruption, discussed earlier. Future research targeted at 
mapping the relationship between REM sleep beta power and dopamine 
degeneration during Parkinson’s will be needed to confirm this relationship.  

Finally, these results may also be informative to research into the mechanisms of 
major depression, where REM sleep is often excessive, both in its speed of 
arrival during the sleep cycle, its amount, and its intensity (Goldstein and Walker, 
2014). Here we show that longer durations of REM sleep are correlated with 
lower next day reward reactivity. It is possible that in depression, the signature 
excess REM sleep may causally contribute to the well characterize diminished 
sense of pleasure (anhedonia) that is symptomatic of major depression, as well 
as blunted reward responses seen in these patient cohorts (Treadway and Zald, 
2011). This is particularly intriguing given the anti-depressant effects of sleep 
deprivation (particularly REM sleep deprivation) that occurs in a proportion of 
people with depression (Clark et al., 2006), whereby the loss of REM sleep my 
increase the sensitivity of next-day reward systems, alleviating anhedonia. 
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III. General Conclusions 

Overall, this report finds significant evidence supporting the overarching 
hypothesis that sleep deprivation would lead to dysregulation in the mesolimbic 
system with consequences for 1) appetitive food choices, 2) monetary incentive 
gain and loss sensitivity, 3) ability to learn form monetary gian and loss feedback 
and 4) the restorative benefit of REM sleep on next day reward processing. 
Beyond the discussion points described in each chapter individually, when 
viewed collectively two synthetic general conclusions emerge each discussed 
below. 

First, brain processes and behaviors related to integrating information about 
incentives, particularly positive incentives, are uniquely detrimentally impacted by 
sleep deprivation. This pattern initially emerged in Chapter 1 which showed that 
sleep deprivation significantly decreases activity in appetitive evaluation regions 
including the anterior cingulate, orbitofrontal cortex and anterior insula during 
food desirability choices and resulting in a higher proportion of high calorie 
choices. Furthermore, in Chapter 2 sleep deprivation led to decreased reactivity 
in the medial prefrontal cortex to gain outcomes, which is also a region and trial 
period that has been linked to incentive information integration (Knutson and 
Wimmer, 2007b). Finally, learning about cue values in the context gains, a 
process dependent on integration of cue information across trials, was similarly 
disrupted under sleep deprivation as shown in Chapter 4. Importantly, all of 
these findings are in the context of positive incentives. However, previous reports 
that have shown sleep deprivation deficits using stimuli of mixed (positive and 
negative) incentive value and these results may also reflect failures in the system 
to integrate information across incentive types (Venkatraman et al., 2007b, 
Venkatraman et al., 2011). 

Second, as hypothesized based on previous literature, dopamine signaling 
changes appear to be a key neural mechanism for sleep dependent changes in 
reward system processing. This report further supports this theory based on 
three key findings. First, individual differences in dopamine transporter genetics 
determine the interaction between sleep deprivation and reward system 
activation during anticipation of gains and losses (Chapter 3). Thus implicating 
trait synaptic dopamine as a key factor in determining the effect of sleep 
deprivation on reward anticipation. Second, as reported in Chapter 4 
reinforcement learning from monetary gain feedback (as opposed to loss) was 
selectively disrupted under sleep deprivation, which is the same profile seen 
when dopamine is pharmacologically manipulated. Third, during sleep REM 
sleep beta power, which is a period of sleep and a spectral band likely to reflect 
dopamine function, significantly predict individual differences in next day reward 
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anticipation reactivity in the nucleus accumbens (Chapter 5). Collectively, these 
data highlight the potential role of dopamine as a mechanism of sleep 
deprivation’s effects on reward processing, yet they are far from conclusive. An 
important next step experiment might be to see if dopamine agonists (particularly 
D2 receptor agonists) if administered under sleep deprivation might “rescue” 
some of the reward system dysfunction seen under sleep deprivation, for 
example the ability to learn from gain feedback.  

More generally, this report collectively implicates sleep (and a lack there of) in 
regulating mesolimbic reward system functioning, both cortically and 
subcortically, with resultant behavioral consequences. Considering estimates that 
over a third of the world’s population currently fails to obtain the recommended 
quota of sleep, these findings become particularly relevant for understanding how 
sleep loss may be driving some of societies most critical decisions (e.g., financial 
investing, aviation, military, and medicine) as well as public health issues (e.g. 
obesity, addition and mental illness).  



	
  

	
   61	
  

IV. Common Methods 
Participants: The Institutional Review Board of the University of California, 
Berkeley approved the experimental protocol and we obtained written informed 
consent from participants. Participants were free of general medical, 
neurological, psychiatric or sleep disorder diagnoses and did not report any 
history of drug abuse or head trauma. Further, participants were free from MRI 
contraindications and no individuals had dietary restrictions or food allergies to 
any of the food stimuli.  

Pre-experimental Procedures: Participants abstained from drugs, alcohol and 
caffeine for 3-days before each session. Participants also kept a regular sleep 
schedule for three days before all experimental sessions (rested and sleep 
deprived) in order to ensure that they were not sleep deprived coming into the 
study. During the regular sleep schedule participants went to bed between 10pm 
and 1am, slept for 7-9 hours and woke between 7am and 10am. The sleep 
schedule was verified using sleep diaries and wrist actigraphy. Any participants 
that did not adhere to these requirements were excluded from the experimental 
session. 

Sleep Deprivation Procedures: The day of the sleep deprivation experimental 
session, participants were asked to wake between 7am and 10am, not to take 
any naps during the day and to arrive for monitoring at the lab at 9pm. This 
behavior was verified by self-report as well as objective wrist actigraphy (Paquet 
et al., 2007). Starting at 9pm participants were continually monitored over night 
by lab personnel. Participants were free to use their time as they wished (e.g. 
complete homework, watch TV, play games) but were required to remain in the 
experiment room and remain awake. Participants were given a small snack from 
2:30am-3:00am and water ad libitum. No other food or drink was allowed during 
the night. All sleep deprivation sessions were separated from sleep rested 
sessions by at least 7 days. 

Sleep monitoring and recording procedures: On the experimental night in the 
sleep rested session, polysomnography (PSG) sleep monitoring was recorded in 
the laboratory using 19-channel electroencephalography (EEG) (locations 
according to international 10-20 system), together with electro-oculography 
(EOG) at right and left outer canthi and electromyography (EMG) via three chin 
electrodes(Klem et al., 1999). Sleep-staging was performed in accordance with 
standardized techniques (Rechtschaffen and Kales, 1968) from the C3-A2 
electrode derivation.  

fMRI scanning Acquisition: Blood oxygenation level-dependent contrast 
functional images were acquired with echo-planar T2*-weighted (EPI) imaging 
using a Siemens 3 Tesla MRI scanner with a 12-channel head coil. Each image 
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volume consisted of 32 ascending 3.5mm slices (96 x 96 matrix; TR = 2000ms; 
TE = 28ms; voxel size 2.5 x 2.5 x 3.5 mm, FOV 224mm, flip angle = 90°). One 
high-resolution, T1 weighted structural scan was acquired at the end of the sleep 
rested session (256 x 256 matrix; TR=1900; TE = 2.52; flip angle = 9°; FOV 
256mm; 1 x 1 x 1mm voxels). Concurrent eye tracking was utilized in order to 
further verify wakefulness.  

fMRI scanning Preprocessing: Preprocessing and data analysis were performed 
using Statistical Parametric Mapping software implemented in Matlab (SPM8; 
Wellcome Department of Cognitive Neurology, London, UK). First, scan to scan 
variance was assessed for quality assurance using time-series difference 
analysis (http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics) and 
individual scans with supra-threshold shifts (indicating high subject movement) 
were removed and replaced with the average of surrounding scans, these time-
points were modeled out with dummy regressors (this affected 6 subjects total). 
Images were then slice time corrected, the time series was linearly detrended 
(Macey et al., 2004), then motion corrected, smoothed using a 6mm full-width-at-
half-maximum (FWHM) Gaussian kernel and finally time-series were high pass 
filtered (width of 128s). 

Monetary incentive delay Task: The validated monetary incentive delay (MID) 
task included both a gain condition (where money could be won) and loss 
condition (where money could be lost) associated with partially discrete neural 
responses (Knutson and Greer, 2008). Each trial begins with a cue indicating 
potential monetary gain (circle symbol) or loss (square symbol) of a certain 
amount of money (Fig IV.i), followed by an anticipatory fixation. Next, during a 
2000 ms time window, a target briefly appears (180–280 ms), and participants 
attempt to press a button before the target is replaced by a fixation cross. Finally, 
Participants see the outcome of their performance (whether they “hit” or 
“missed” the target) and their cumulative session earnings. The target duration is 
individually set for each participant, based on a practice session  prior to the scan, 
and adapted throughout the task so that the overall success  rate is ~66% for each 
cue type. This importantly ensures that the difficulty (and end payout) is 
approximately equivalent across participants, and across the sleep rested and 
sleep deprived states. Eight cue types were used (Gain: $5, $1, $0.20, $0 and 
Loss: $5, $1, $0.20, $0), providing a parametric manipulation of the extent of 
potential gains and losses (Knutson and Greer, 2008). The value of each cue 
was explicitly told to the participants before the session and participants 
completed a short “quiz” on cue values before scanning to ensure that they 
understood the cue meanings. A total of 120 trials were administered in 
pseudorandom order, divided evenly among gain and loss trials, as well as the 
four incentive magnitudes. 
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General Linear model: A separate general linear model was constructed for each 
subject which included 1) all gain anticipation period onsets for each trial 
convolved with a canonical hemodynamic response function with a 4 second 
duration 2) A parametric regressor of increasing reward value (for gains from $0 
to $5) convolved with a canonical hemodynamic response function with a 4 
second duration (this was the regressor of interest) 3) all gain outcome period 
onsets for each trial convolved with a canonical hemodynamic response function 
with a 2 second duration 4) A parametric regressor of gain trial outcomes (hits = 
+1; misses= -1) convolved with a canonical hemodynamic response function with 
a 2 second duration, 5-8) The same regressors described for 1-4 were also 
defined for the loss condition 9) Six movement-related covariates (three rigid-
body translations and three rotations determined from the realignment 
preprocessing step). Separate regressors were used within the same model for 
each of the 2 scanner acquisition runs. All canonical hemodynamic response 
functions (HRF) refer to the default HRF in SPM8. First level general linear 
models were run on the functional scans in subject space and coordinate maps 
were transformed to standardized MNI space before implementation of the 
second level analysis. 

Fig IV.i) Monetary incentive delay (MID) task trials. One of eight monetary cues 
(gain: $0, $0.20, $1, $5; loss: $0, -$0.20, -$1, -$5) is followed by a fixation and then 
a jittered target presentation. The participant must respond as quickly as possible to 
the target in order to win (or avoid losing) the cued incentive, with outcome success 
signaled thereafter.	
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