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EPIGRAPH 

 
 
 
 
 
 
 
 
 
 

The fundamental laws necessary for the mathematical treatment of a large part of 
physics and the whole of chemistry are thus completely known, and the difficulty lies 
only in the fact that application of these laws leads to equations that are too complex 

to be solved. 
 

Paul Dirac, 1929 
 
 

 
 

Computers are famous for being able to do complicated things starting from simple 
programs. 

 
Seth Lloyd, 2002 
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PREFACE 

 
As Prof. Dirac said, the equations that govern all of chemistry are entirely 

known. Take for example the equation that bears his name.  The Dirac equation 

provides one of the most complete descriptions of atomic/molecular realism available 

to us today. Except for situations of very close spatial or temporal proximity to a 

singularity or a deep gravity well, it accurately accounts for the quantum and 

relativistic phenomena in all but the most extreme physicochemical circumstances. 

For all situations in our experience with any biological relevance such as the 

binding of two proteins or the diffusion of ions through a cell, the Dirac equation 

would yield a Herculean mathematical task: a challenge of mammoth proportions. A 

scientist would likely doom the prospect by pronouncing the statement: “this problem 

is hard”. 

Fortunately, for virtually all biomolecular applications, the Dirac equation is 

overkill. We may choose to disregard relativistic effects by resorting to the 

Schrödinger equation. We may further simplify the problem by approximating the 

quantum aspects of a chemical system using classical descriptions, implicit solvents, 

overdamped diffusion, ODEs, PDEs, Markov models, etc. Many levels of abstraction 

with countless applications of physical theories can be combined into a scientist’s 

toolbox that we can use to examine, describe, model, simulate, approximate, emulate, 

and manipulate the universe around us. 

During the Manhattan project, the mathematical genius John Von Neumann 

was responsible for predicting the hydrodynamics of the explosion immediately after 
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the initiation of a nuclear chain reaction. This calculation would allow them to predict 

whether a given bomb design would achieve the desired explosive yield, or would 

simply fizzle away; scattering the fissile material before it could participate in the 

reaction. Because of the difficulty of the hydrodynamic equations, Von Neumann 

employed countless ingenious approximations, linearizations, and assumptions in 

order to solve the problem. Later, when faced with the design of the larger, hotter, 

and more devastating H-bomb, Von Neumann and the others decided that the only 

tractable method to perform these computations was to take a numerical approach: 

timestep by miniscule timestep. Since computing machines had not yet been 

developed for routine scientific calculation, the scientists and mathematicians 

proceeded to compute the numerical solution by hand; spending many months and 

piles of paper to determine the outcome of the explosion. I would not be surprised if a 

computation of even superior accuracy could be accomplished in less than 24 hours 

with the laptop I’m using to type this document. In the year 1947, they finally 

invented the ENIAC supercomputer (it had sufficient speed to compute ~5000 simple 

additions/subtractions per second, or ~400 multiplications per second) to remove this 

agonizing burden from the scientists. 

The computer is a wonderful (if sometimes infuriating) compatriot in 

scientific enterprise. Of course, a flippant suggestion to “use the computer” to solve 

our problems is more easily said than done. But a computational approach lowers the 

difficulty of a vast number of problems from practically impossible to attainable. 

Also, the continuous increase of computational power in recent decades, as well as 

advances in software and numerical techniques, is raising the computer’s usefulness 
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all the time. What once required simplifications, menial hand calculations, or genius 

in order to approach the problem, can now often be done routinely by the computer, 

and can even be automated for use by the non-specialist. 

So in order to accompany the countless theoretical tools, we also develop 

countless lines of code: software to remove the burden of meniality from the scientist; 

to unflinchingly and unquestioningly shovel through endless lists of arithmetic 

computations and through the branches of tortuous condition trees and algorithm 

workflows. But what makes the computer advantageous can also make it ruinous. It 

knows only what we tell it: it does not know “what we mean”. Thus, if there is even a 

hint of obscurity or ambiguity in its instructions, it will either grind its program to a 

screeching halt, or worse, it will blunder off in some random direction, wasting time 

and resources, providing all the wrong answers. Worst of all, we may not even 

immediately realize that the answers are wrong! 

Therefore, the proper use of a computer for science requires carefully 

designed, carefully coded software. Ideally, Each scientific program should be 

lovingly composed, complete with comments and unit-tests, all while keeping the 

satisfaction of the end-user in mind. 

Sadly, such careful design is a pipe dream at this time. With the exception of a 

few well-written programs, much of our available scientific software is incomplete, 

thrown together, prone to errors, difficult to use, or all of the above. Most of the 

scientific software code that I have personally encountered is almost completely 

bereft of comments. Code accuracy, readability, and extendability are very important 

issues, and our scientific community is charged with a solemn task to improve this 
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situation. I must admit that I’ve not always expended the extra time and effort needed 

to craft my code to the proper level of perfection, so I’m really in no place to criticize. 

Perhaps our negligence is due to the fact that perfection is not our only focus: new 

techniques and theories are developing all the time, with huge numbers of programs 

that need to be written; and quickly. Therefore, a computational scientist is left with a 

dilemma of goals: quality versus quantity. 

I was once told that science functioned much like a renaissance-era crafters’ 

guild. Instead of a cabinetmaker who builds furniture or a goldsmith who fashions 

jewelry, we are the scientists who build theory and fashion experiments. Even the 

professor-postdoc-graduate student hierarchy resembles the master-journeyman-

apprentice arrangement of antiquity. Examining some of the exquisite items made 

during the Baroque period in history indicates that many craftspeople of that age took 

pride in their work by building beautiful items intended to last and bring delight to the 

many generations that would follow. 

But the industrial revolution and rising population has induced a high demand 

for large numbers of cheap, disposable items. This is both a blessing and a curse. We 

can buy usable furniture, tools, instruments, and other items cheaply. Unfortunately, 

our society has transformed into a factory-reliant throwaway culture that often 

disregards and devalues the creation of items made with skill and care. Most of our 

furniture and tools are not likely to last even the time span of our own lives. Perhaps 

similarly, our scientific code is made hastily, cheaply, and quickly, and is therefore 

largely useless beyond its immediate application. While this may be appropriate in 

some instances, there is no question that a bit of extra time and effort spent by a 
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primary developer can save later developers a proportionally larger amount of time if 

the former’s code is being revisited. This extra effort could be as simple as code 

comments and intuitive variable names in a script, or as complex as coding language 

wrappers in a behemoth scientific software package like VMD or NAMD. I believe 

that the developers of both VMD and NAMD are reaping the rewards of widespread 

community use precisely because of the extensibility of their software. Their TCL 

interfaces allow for the potential of enhancements and other contributions by the 

community: several examples of which are presented in this dissertation. But there is 

always room for improvement. (For instance, at the time of this writing, the deepest 

levels of the NAMD code itself suffer a dreadful lack of comments and intuitive 

variable naming.) 

Such is the situation in which we find ourselves. Perhaps I ought to start a 

good trend by applying these criticisms and recommendations to my own code and 

research: “Physician, heal thyself.” I am optimistic that if these issues are widely 

addressed such that new approaches to solving problems are constantly innovated and 

produced, and such that the power of computation is brought rapidly and effectively 

to the entire biomedical community, we may see significant biomedical 

accomplishments in the near future, perhaps even going so far as the eradication of 

most human diseases in our lifetime. 

Although we are not as centralized or focused as the Manhattan project was 

(or the Space Program, or the Human Genome project, or other great scientific 

initiatives of the past), they had no more daunting, and no more crucial of a task than 

that which faces the biomolecular research community today.  
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Computational tools provide the automation and power that enable detailed 

modeling and analysis of many biomolecular phenomena of interest. Open source 

programs and automated tools empower researchers and provide opportunities for 

improvement to existing software. In the past few years, I have developed several 

open-source scientific software packages for the purposes of automating difficult or 

menial tasks pertaining to computational biophysics. These software packages 
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involve the analysis of molecular dynamics simulations, Brownian dynamics 

simulations, electrostatics, pocket volume measurement, solvent fragment mapping, 

binding site characterization, milestoning theory, and allosteric network 

communications. In addition to allowing my research group and me to approach 

biomedical challenges that would otherwise be intractable, I hope and intend that 

these tools will be useful to the computational and theoretical biophysics research 

community. 
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Chapter 1: Introduction to the Dissertation - Overview of 

Methods and Chapter Content 

 

This dissertation outlines the research I performed to produce and use 

scientific software and computational tools for the purposes of biomedical and 

biophysical inquiry. This software was designed with the intent to be reusable and 

extendable by other scientists, and is therefore an investment on behalf of the 

scientific community: intended to save time and also to extend research capabilities. 

 

1.1 Overview of methods 

Among many computational and theoretical resources I used for my projects, 

several major components merit brief description: molecular dynamics (MD), 

Brownian dynamics(BD), milestoning, electrostatics using the Poisson-Boltmann 

(PB) equation and Debye-Huckel theory, and computational solvent fragment 

mapping. 

 

1.1.1 Molecular Dynamics 

MD approximates the dynamics of a molecular system classically, and 

therefore can be defined as a numerical solution to Newton’s equations of motion 

where the atoms are modeled as simple point particles. Given a carefully pre-
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pared starting structure of atomic positions, atomic velocities, and position-dependent 

potential energy interaction functions between the atoms, the dynamics of a chemical 

system can be advanced in time by small increments. The longer-time trajectories of 

these simulations can then be examined to observe statistical mechanical quantities or 

interesting phenomena. We typically use MD to analyze the motions of proteins and 

other biomolecules. These trajectories are like a movie: showing the atoms of the 

biomolecule twisting and shifting. If a picture is worth a thousand words, then a 

movie is worth a thousand pictures. Unlike a static structure, the trajectory shows 

how the molecules would move: where they go, how they function, whether they 

deform or not. MD was used extensively in all my projects, and more formal, detailed 

information about MD exists in subsequent chapters 2, 3, 4, 5, 6, 7, 8 and 9. 

 

1.1.2 Brownian Dynamics 

In contrast, BD is a numerical method to simulate overdamped Langevin 

dynamics and can be described as a higher level of simplification and abstraction 

from MD. The BD simulation still includes all the atoms of the biomolecules and 

their substrates modeled as point particles, but they are rigidly constrained to drift and 

tumble with their constituent molecules: therefore, each molecule is a rigid body. 

Also, the water molecules and dissolved ions are replaced with a continuum: a field 

with charge, dielectric, and hydrodynamic properties intended to approximate those 

of an aqueous solution. If one is willing to accept the simplifying assumptions that 

BD introduces, as well as the potential inaccuracies, a relatively large range of 
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temporal and spatial scales are made available to the researcher for investigation into 

molecular activities. For instance, at the time of this writing, a MD trajectory that 

observes even a single binding event requires substantial time and cyberinfrastructure 

investment for a typical ligand-receptor system. In contrast, using BD, millions of 

binding events of a typical system can be observed within 24 hours on a multicore 

desktop computer. By counting the number of binding events versus the number of 

escape events, a probability of binding can be estimated. This can be used directly to 

compute a rate constant of binding, which can be compared to experiment or used to 

predict experimentally immeasurable rate constants of binding. I used BD in several 

of my major projects and more detailed information about BD can be found in 

chapters 8, 9 and 10. 

 

1.1.3 Milestoning 

Milestoning theory is very similar to Markov model theory: it computationally 

models kinetics and thermodynamics of processes, breaking a long process into 

multiple shorter ones, each of which is independent of the others, allowing for 

extensive parallelizability. Each of these independent trajectories generate statistics 

within a transition matrix and also an incubation time vector. These statistics are then 

propagated to compute the quantities of interest. There are a number of key 

differences between Markov models and milestoning. Many papers that provide 

extensive comparisons of the two methods1-4. In particular, if one has a system with a 

trajectory that traverses a space, the state that the system is in will be defined 
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differently for Markov models versus milestoning. In a Markov model, the state of 

the system is defined by the region or volume in which it can be found: a region 

within these surfaces. In milestoning, however, the state of the system is defined by 

the surface that the system last crossed. My project involved the use of milestoning to 

combine the trajectory results of MD and BD simulations to more accurately and 

efficiently compute rate constants of binding. Details of this project and of 

milestoning theory can be found in chapters 8 and 9. 

 

1.1.4 The Poisson Boltzmann Equation and Debye-Huckel Theory 

The Poisson-Boltzmann (PB) equation and the closely associated Debye-

Huckel theory was discovered around the turn of the last century. As the name 

suggests, the equation is a combination of both Poisson’s equation and a Boltzmann 

distribution. When solved for a particular physical system of a constellation of 

charges dissolved in a solution of electrolytes, the PB equation gives an 

approximation of the potential of mean force as a contribution by those electrolytes. 

The PB equation is essential for preparing a system BD simulations. I also generated 

a program to compute the ensemble-averaged electrostatics for a trajectory resulting 

from a MD simulation. This project, as well as additional detail about the PB equation 

and Debye-Huckel theory is outlined in chapter 3. 

 

1.1.5 Computational Solvent Fragment Mapping 
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Computational solvent fragment mapping makes use of software to 

approximate true solvent fragment mapping: an experimental process designed to 

identify druggable “hot spots” on the surface of a biomolecule. Experimental solvent 

fragment mapping can be a difficult and expensive process: it involves dissolving the 

biomolecule of interest into a small-molecule solvent, and then crystallizing the 

biomolecule for X-ray structure determination. Computation solvent fragment 

mapping imitates this process by using a molecular mechanics forcefield such as 

CHARMM along with a docking protocol to predict the location of the hot spots by 

means of these small molecular fragments. The popular FTMAP server was 

developed to make computational solvent fragment mapping available to the wider 

scientific community. I developed a program to compute, combine, and analyze 

solvent fragment mapping across multiple structures to investigate dynamic 

information about the hot spots’ evolving characteristics and transience. Details of the 

development and usage of the multistructural hot spot software is outlined in chapters 

4 and 5. 

 

1.2 Overview of Chapter Contents 

Along with numerous individual scripts and programs intended to be useful 

for specific applications, I led or participated in the development of, either alone or in 

a group, five standalone programs, plugins, or script packages including: Delphi 

Ensemble Electrostatics (DelEE), FTProd, WISP, POVME2, and SEEKR. In the 
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subsequent chapters, I describe the details of the design, development, and practical 

use of each of these. 

Chapter 2 describes the use of custom scripts to examine the variability of the 

volume and shape of the 150-pocket in influenza neuraminidase (NA). These scripts 

in turn used the pocket volume measuring program POVME 1.0, which was further 

improved in the work of Chapter 7 with the development of POVME 2.0. 

Chapter 3 concerns the development of DelEE: a plugin for the molecular 

visualization program Visual Molecular Dynamics (VMD) that computes the 

ensemble-averaged electrostatics of a collection of structures. The electrostatics are 

computed using the DelPhi program: a Poisson-Boltzmann equation solver. The 

chapter includes a brief overview of Poisson-Boltzmann theory as well as justification 

for the usefulness of ensemble-averaged electrostatics. The plugin itself provides 

complete control over the calculation using a convenient graphical user interface 

(GUI). 

Chapter 4 outlines the development of FTProd: another VMD plugin that 

receives as input, the output of FTMAP: a program that performs computational 

solvent fragment mapping. FTProd integrates the druggable hot spots and consensus 

sites that FTMAP determines across multiple structures, then clusters and 

characterized them according to user input, giving qualitative information concerning 

the changing identity, character, and transience of potentially important druggable 

sites on the surface of biomolecules. 
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A practical application of the FTProd tool has been included in chapter 5; 

where we examined the binding sites and druggable hot spots across several strains of 

influenza NA. In so doing, we determined potential interaction sites that may 

participate in substrate or inhibitor binding, the interface between monomers, or 

association with its counterpart glycoprotein hemagglutinin. 

Chapter 6 describes the WISP project, a third VMD plugin designed to 

determine pathways of communication through the protein between allosteric sites by 

means of correlated motion. 

Chapter 7 includes information about substantial improvements to the pocket 

volume measurement program: POVME. These improvements resulted in its 

subsequent version: POVME 2.0.  

Chapter 8 is an account of research combining BD simulations with MD 

simulations using the theory of milestoning for the purposes of predicting rate 

constants of binding. As a pioneering study of the effectiveness of this method, 

benchmarking was performed on two spherically symmetric “toy” systems, as well as 

two biomedically relevant “real” systems with simple ligands: calcium ion binding to 

troponin C and superoxide anion binding to superoxide dismutase. Although yet 

unreleased at the time of this writing to the scientific community, this project made 

first use of the SEEKR software; a suite of scripts, tools, and programs to prepare, 

run, and analyze MD simulations, BD simulations, and milestoning calculations for 

the purposes of binding rate constant calculations. 
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Chapter 9 includes a review of the use of Markov models and milestoning for 

investigation into the dynamics of protein kinase A (PKA) using both MD and BD.
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Chapter 2: Mechanism of 150-cavity Formation in Influenza 

Neuraminidase 

The recently discovered 150-cavity in the active site of group-1 influenza A 

neuraminidase (NA) proteins provides a target for rational structure-based drug 

development to counter the increasing frequency of antiviral resistance in influenza. 

Surprisingly, the 2009 H1N1 pandemic virus (09N1) was crystalized without the 150-

cavity characteristic of group-1 NAs. Here we demonstrate, through a total sum of 1.6 

µs of biophysical simulations, that 09N1 NA exists in solution preferentially with an 

open 150-cavity. Comparison with simulations using avian N1, human N2, and 09N1 

with a I149V mutation and an extensive bioinformatics analysis suggests that the 

conservation of a key salt bridge is a crucial mechanism in the stabilization of the 

150-cavity across both subtypes.  This result provides an atomic-level structural 

understanding of the recent finding that antiviral compounds designed to take 

advantage of contacts in the 150-cavity can inactivate both 2009 H1N1 pandemic and 

avian H5N1 viruses. 

 

2.1 Introduction 

Understanding the structural dynamics of the influenza glycoproteins has been 

a long-standing goal due to their direct impact on public health. The two major 

influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), control entry 

and exit of the viral particles from the host cell, respectively. HA binds to sialic acid 

surface receptors on the host cell, whereas NA cleaves the terminal sialic acid



	
   	
   10 

	
  

receptor linkage, facilitating viral shedding. The nine NA alleles have been 

dividedinto two groups based on phylogenetic analysis (group-1: N1, N4, N5, N8; 

group-2: N2, N3, N6, N7, N9)5. During the last century, influenza viruses carrying 

N1 (H1N1) or N2 (H2N2, H3N2) alleles have circulated in humans, first as pandemic 

strains and then, after subsequent adaptation to humans, as seasonal epidemic strains. 

Thus, a better understanding of the structural dynamics of N1 and N2 is particularly 

relevant for antiviral design. 

Oseltamivir (Tamiflu) and zanamivir (Relenza), which target the NA, are 

currently the only antivirals approved by the FDA for the prophylaxis and treatment 

of influenza. These drugs, developed against available group-2 NA structures, 

represent some of the first successful rational structure-based drug development 

efforts6. The crystal structures of group-1 NAs revealed a never-before-seen 150-

cavity adjacent to the sialic acid binding site5. It has been hypothesized, and very 

recently shown7, that targeting the 150-cavity may allow the development of new 

antivirals with increased specificity and potency against group-1 enzymes. The 

increasing frequency of oseltamivir resistance in pre-2009 seasonal H1N1 viruses8 

and the occasional observation of oseltamivir-resistance among 2009 H1N1 pandemic 

viruses motivates new antiviral development. Having additional antivirals in our 

treatment arsenal would be advantageous, and potentially critical, if a highly virulent 

strain, e.g. H5N1, evolved the ability to undergo rapid transmission among humans, 

or if the already highly transmissible 2009 H1N1 pandemic virus was to evolve 

resistance to existing antiviral drugs.  
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Recently, it was revealed that the structure of the 2009 pandemic H1N1 NA 

lacked a 150-cavity, despite being a group-1 NA9. This surprising finding suggested 

that the 2009 pandemic N1 protein was structurally more similar to the group-2 NAs 

than to the group-1 NAs. Based on alignments of sequences representing all available 

NA crystal structures, highly conserved residues in the 150-loop and the 430-loop 

(residues 147-152, and 429-433, respectively, in N2 numbering) were hypothesized to 

functionally determine the structure of the 150-cavity9. In particular, I149 was found 

to be common between the 2009 pandemic N1 and group-2 NAs, whereas V149 was 

conserved among the other group-1 NAs. In the two solved N2 structures, which have 

somewhat atypical sequences, a salt bridge between D147 and H150 appeared to 

prevent the opening of the 150-loop, despite the presence of V149. 

Here we test the hypothesis that position 149 is critical for determining the 

open or closed status of the 150-cavity. Our alternative hypothesis is that cavity status 

is plastic in the absence of a D147-H150 salt bridge, being dependent on loop 

conformations that are themselves flexible. Earlier computational studies of N1 from 

avian H5N1 showed that this isolate exhibited remarkable flexibility in the 150-

loop10. The same avian N1 was also reported to contain a closed 150-loop under 

certain crystallization conditions5 and additionally shown to be able to switch to a 

closed loop position during a MD simulation initiated from the co-crystallized 

oseltamivir-bound open-150-loop configuration10. The understanding that emerged 

was that the avian N1 was able to adopt a wide range of configurations in the 150-

loop region, favoring an open conformation of the 150-cavity overall. 
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We examined the flexibility of the 150-cavity area in the 09N1 crystal 

structure through molecular dynamics simulations using 09N1 and other available 

structures of N1 and N2 alleles derived from human clinical isolates. In combination 

with the simulations, an extensive bioinformatics analysis for these alleles in the 150- 

and 430-loop regions offers new clues as to the controlling features of 150-cavity 

formation in these critical enzymes. Ultimately, we find that a key salt bridge appears 

to control the 150-cavity formation in both group-1 and group-2 enzymes, both of 

which are able to adopt flexible loop conformations in this critical region. We 

propose that this new structural understanding can be related to antiviral design for 

any of the influenza neuraminidase enzymes. 

 

2.2 Results 

2.2.1 Molecular Dynamics Simulations 

To probe the effect of sequence on the atomic-level structure and dynamics of 

these critical enzymes, we performed four separate 100 ns molecular dynamics 

simulations for four tetrameric NA enzymes: 1) A/California/04/2009, an H1N1 virus 

isolated early in the 2009 pandemic (09N1, PDB: 3NSS)11. We note that the N1 allele 

in the pandemic strain had recently evolved from an Eurasian-lineage H1N1 swine 

virus12.  2) A mutant N1 that we engineered in silico from A/California/04/2009 by 

substituting Val for Ile at position 149 (09N1_I149V). 3) A/Vietnam/1203/04, an 

avian-derived H5N1 virus isolated from a human (VN04N1, PDB: 2HTY)5.  4) 

A/Tokyo/3/67, a seasonal human H2N2 virus (N2, PDB: 1NN2) 13. We note that the 
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I149V mutation in A/Tokyo/3/67 is atypical for a human N2 allele (Table 2.1, Table 

2.3).  

Table 2.1: Variation in the 150- and 430-loops of N1 and N2 NA alleles of avian, 
swine and human influenza viruses 
Consensus sequences contain amino acids at a frequency of at least 80%; major 
polymorphisms are indicated in white boxes, other boxes colored by residue. 
Sequences in bold font correspond to structures simulated in this paper. 

 

 
The homotetramer configuration of NA allows us to take advantage of multi-

copy simulation sampling14, amounting to the equivalent of nearly half a microsecond 

(400 ns) of sampling for each neuraminidase monomer, while accounting for realistic 

neighboring subunit effects within the structural dynamics. Alpha-carbon root mean 

square deviation (RMSD) plots for the tetramer systems and individual monomer 

chains exhibit stability over 100 ns, and there is good agreement between 

experimental and simulation-derived B-factors (Figures 2.4-2.7).  

 

2.2.2 Pandemic 2009 H1N1 exhibits open 150-cavity 

Our simulations reveal that the pandemic 09N1 NA is able to adopt open 150-

cavity conformations in normal solution dynamics, and, in contrast to the crystal 

structure, it appears to favor an open 150-cavity conformation overall (Figure 2.1, 

147 149 150 430 431 432
N1 swine H1N1 classic lineage consensus 158 G V K Q P K
N1 swine H1N1 Eurasian lineage consensus 165 G I/V K R P K
N1 human H1N1 2009 pandemic consensus & A/California/04/2009 1806 G I K R P K
N1 human H1N1 seasonal 2007-2009  consensus G V K L P R
N1 human H1N1 seasonal 1950-2007 consensus G V K R P R
N1 human H1N1 seasonal 1930-40s consensus G V K R P K
N1 human H1N1 1918 pandemic G V K Q P K

avian N1 N1 avian consensus & A/Vietnam/1203/2004 2141 G V K R P K

N2 human H3N2 seasonal mid-2000s-present consensus N/D V R R K E
N2 human H3N2 seasonal 1990-mid 2000s consensus D V H R K Q/E
N2 human H3N2 seasonal 1970-80s consensus D I H R E Q
N2 human H3N2 1968 pandemic (NA of human H2N2 origin) D I H R K Q 
N2 human H2N2 seasonal A/Tokyo/3/1967 (atypical 149V) D V H R K Q
N2 human H2N2 seasonal 1960s consensus D I H R Q/K Q
N2 human H2N2 1957 pandemic (NA of avian origin) G I H R P Q
N2 avian polymorphisms seen since the mid-1990s G T/A/S H R P K/Q
N2 avian consensus G I H R P Q

150-loop 430 loop

swine N1

human N1
1809

host N1 and N2 alleles N

human N2

1727

88

avian N2 1743
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Table 2.1). In the simulations of 09N1, the 150-loop transitions to an open 

configuration by 50 ns in all chains of the tetramer (Figure 2.7). As a reference for 

open- and closed- loop structures, the PDBs 2HTY and 2HU4 were utilized, 

respectively. The open 150-cavity crystal structure (2HTY with hydrogen atoms 

added) exhibits a 150-cavity volume of 36 Å3 as computed by POVME15 (Table 2.5). 

Closed 150-cavity crystal structures (1NN2, 2HU4, 3NSS with hydrogen atoms 

added) were used as references and uniformly exhibit a volume of 0 Å3. To quantify 

the extent to which structures within the dynamical ensemble adopt either a closed or 

open 150-cavity conformation, a time series of the pocket volume was computed over 

the course of the trajectory (Figure 2.2A, Figure 2.8). Structures were subsequently 

classified as open or closed based on 150-cavity volume, i.e. cavities with volumes 

greater than or equal to 18 Å3, or at least half of the crystal structure open cavity 

volume, are considered “open.” Through this method, we determined that the 09N1 

system adopts an open 150-cavity during the majority of the simulation (60.8%, Table 

2.2). We note that longer simulation times may further increase the percentage of 

09N1 in the open conformation, overcoming the structural bias due to the simulation 

being initiated with a closed 150-cavity. 
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Figure 2.1: Solvent accessible surface area of NA binding site  
The solvent accessible surface area of the NA binding site is shown, as computed by 
the MSMS 16 program, for the x-ray structure, and top three most dominant central 
member cluster structures (population percentages indicated in white text for each 
cluster), shown for A/Tokyo/3/67 (N2), A/Vietnam/1203/04 (VN04N1), 
A/California/04/2009 (09N1), and the 09N1_I149V mutant strain. The open 150-
cavity, where present, is outlined with a dotted circle.  
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Figure 2.2: Time series analysis of 150-cavity volume and width for a particular 
monomer in each of the simulated systems  
On the left side y-axis, the volume of the 150-cavity is computed over the course of 
simulation.  The distance between alpha carbon of residue 431 (PRO in panels a, b, 
and d; LYS in c) and the closest sidechain carbon of residue 149 (Val149 panels b, c, 
d; ILE in a) is computed and shown in red and the right-side y-axis. The black and red 
dotted lines correspond to the open crystal structure (2HTY) volume and distance, 
respectively; whereas the black dashed and red solid lines correspond to the closed 
crystal structure (2HU4) volume and distance, respectively.  The systems shown are 
A/Tokyo/3/67 (N2), A/Vietnam/1203/04 (VN04N1), A/California/04/2009 (09N1), 
and the 09N1_I149V mutant strain. 

Table 2.2: Population Analysis based on open- or closed- 150 cavity 
System (crystal 
structure) 

Crystal structure 
state of 150-cavity 

147.149,150…431 Total Open 
(%) 

Total Closed 
(%) 

N2 (1nn2) Closed D.VH…K 202 (10.1%) 1798 (89.9%) 
VN04N1 (2hty) Open  G.VK…P 1867 (93.4 %) 133 (6.6%) 
09N1 (3nss) Closed G.IK…P 1215 (60.8 %) 785 (39.2%) 
09N1_I149V (3nss*) Closed G.VK…P 742 (37.1 %) 1258 (62.9%) 
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RMSD-based clustering of the 150-loop residues enables an atomic-level 

population-based structural analysis. While the most populated cluster, i.e. the cluster 

that comprises at least 33% of the sampled ensemble, has a closed 150-loop 

configuration, structures within the next two most populated clusters adopt open 150-

cavity configurations (Figure 2.1, Table 2.4). Figure 2.2 clearly shows that the second 

most dominant cluster from the 09N1 simulations has an open 150-loop, highly 

similar to the open-150-loop of VN04N1. By comparison, the VN04N1 150-cavity is 

consistently open throughout the simulations, being present for 93.4% of the 

trajectory (Figures 2.1 and 2.2B, Table 2.1, Figure 2.9). The formation of a stable and 

open 150-cavity in 09N1 indicates that the structural dynamics of the recent pandemic 

strain appear to be more similar to the classic group-1 isolates than to the group-2 

isolates, in contrast to what the static crystal structure suggests. This finding provides 

an atomic-level structural understanding of how antiviral compounds designed to take 

advantage of contacts in the 150-cavity can be active against both the 2009 H1N1 and 

2004 Vietnam H5N1 isolates, as very recently shown in ref. 3.  

 

2.2.3 150-cavity formation controlled by a conserved salt bridge 

The dynamics of the N2 strain reveal that a key salt bridge between conserved 

residues D147 and H150 controls the formation of the 150-cavity in N2. This ionic 

contact locks I149 in the space of the 150-cavity (Figure 2.3), as suggested in ref. 5. 

However, in each chain of the N2 tetramer simulation, this salt bridge intermittently 

breaks and then reforms; in chain C, at 60 ns the contact is lost again, after which the 

open 150-cavity forms, and contact to the 430-loop is lost (Figure 2.2C, Figure 2.10). 
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The loss of the D147-H150 salt bridge allows the 150-loop to move to the open 

position, even wider than the VN04N1 open 150-loop structure (Figure 2.2). RMSD-

based clustering of the 150-loop indicates that while both the first and second most 

dominant configurations remain closed, the third most dominant configuration, 

representing 6.8% of the trajectory, exhibits an open 150-cavity (Figure 2.1). 

Volumetric calculations of the 150-cavity confirm that the open cavity conformation 

is present in 10% of the simulation and has a volume of 284 Å3. For the remainder of 

the simulation, the salt bridge does not reform, and the wide-open 150-cavity 

therefore persists in one chain of the N2 tetramer.  

 

Figure 2.3: Structural variation in N1 and N2 clinical isolates  
a) The 150- and 430-loop structures are shown for 09N1 crystal structure (purple), 
09N1 second most dominant molecular dynamics (MD) cluster representative 
structure (green backbone), and VN04N1 crystal structure (orange), indicating that 
the pandemic N1 adopts an open 150-loop conformation. Gly147, Ile149, Lys150, 
and Pro431 are shown in stick representation. b) N2 150- and 430-loops from crystal 
and most dominant cluster representative structures are shown in blue, and open 
VN04N1 crystal structure are shown in orange. The D147-H150 salt bridge 
spontaneously ruptures in Chain C of N2, extending its initial contact from 2.8 Å in 
crystal structure to 11.8 Å in the most dominant MD-generated cluster structure, 
revealing a wide-open 150-cavity. 
 

The spontaneous loss of this key contact under “physiologically relevant” 

simulation conditions provides a clear atomic-level model for 150-cavity formation in 
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the N2 clinical isolate. The loss of the salt bridge reduces the rigidity of the 150-loop, 

enabling the loop to sample more open conformations. Contacts with the neighboring 

430-loop are simultaneously lost, and significant expansions of both the 150- and 

430-cavities occur. (Figs. 2.1, 2.2C, and 2.3, Table 2.5 and Figure 2.8). Although the 

open 150-loop is energetically accessible in the N2 structures, its low population 

during the simulation makes it unlikely that this open 150-cavity would appear in x-

ray crystallography experiments. Such a cavity would be able to accommodate 

compounds targeting the 150-cavity, albeit with a lower affinity, as very recently 

shown in ref. 2.3. In all the N1 proteins, D147 is replaced with an uncharged G147, 

and therefore no salt bridge is present to lock I/V149 in the 150-cavity space. This 

may explain why an open 150 cavity is characteristically observed in crystals, even in 

09N1, which is able to adopt a stable open 150-cavity conformation. It also 

underscores the importance of considering solution-phase dynamics for these 

enzymes and not only crystallographic information, which is generally only able to 

provide one low-energy snapshot of the dynamic protein complex under crystalline 

conditions. 

Among N1 alleles for which structures exist, the 2009 H1N1 pandemic isolate 

uniquely contains an I149. Thus, Li et al. 9 hypothesized that the additional extension 

of the I149 sidechain, compared to V149, may be a compensating factor in 

controlling the closed-loop structure, despite strict conservation of all other residues 

in this area. Structurally, the longer sidechain of I149 may facilitate van der Waals 

contacts to the neighboring 430-loop, and shift the population to a more closed 150-

loop state; a V149 mutation would facilitate loss of contact between the 150- and 
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430-loop, shifting the population to a more open 150-cavity state. To test this 

hypothesis, we created the 09N1_I149V mutant strain in silico and performed an 

identical 100 ns simulation. Our results indicate that the effect of this mutation on 

150-cavity status varies due to 150-loop flexibility. The time series data indicates that 

the I149V mutation caused Chain D to open almost immediately, Chain C to open 

after 60 ns, chain A to open intermittently, and had almost no effect on Chain B 

(Figure 2.12). Overall, the 09N1_I149V mutant is actually more closed, exhibiting 

the open 150-cavity less frequently, in only 37.1% of the simulation, compared to the 

normal 09N1 strain with the I149 present (Table 2.2, Figure 2.5D, Figure 2.12). 

Moreover, only one of the three most dominant structures, cluster 2, presents the open 

150-cavity, and thus, the V149 by itself cannot explain the behavior of the 

09N1_I149V.  

 

2.2.4 Evolutionary analysis of sequence conservation in 150-loop region 

To date, the evolutionary distribution of the 150-cavity among NA alleles has 

been inferred primarily from crystallographically resolved structures, which represent 

a limited subset of the genetic variation of NAs in nature. Based on those analyses, it 

seemed logical to attribute the occurrence of an open 150-cavity to having a V or I at 

position149, and by extension, to membership, in the group-1 and group-2 NAs 

respectively, as shown in Figure 3 of Li et al. Our dynamical analyses suggest that 

I/V149 is not as critical to 150-cavity status as the D147-H150 salt bridge, which 

warrants re-examination of the association of cavity status with NA group 

membership. We determined the distribution of genetic variation in the 150 and 450 
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loops among all avian, human and swine N1 and N2 sequences that had been 

deposited in GenBank and GISAID as of 12/8/2010 using phylogenetic analysis to 

construct consensus sequences for each major clade (see Supplementary Information 

(SI) section 2.5 for methodological details).   

Our phylogenetic analyses (Table 2.1) show that no single amino acid position 

in the 150 or 430-loops clearly differentiates the N1 and N2 alleles, which are in 

group-1 and group-2, respectively. The D147-H150 salt bridge is not a defining 

characteristic of N2 alleles, as it is not present in avian viruses, which were the source 

of the N2 allele in the 1957 H2N2 human pandemic strain. Nor is the salt bridge 

found in human H3N2 viruses that have been circulating since 2008, due to fixation 

of a D147N mutation. Thus, neither the amino acid at position 149 nor the salt bridge 

are fixed characters that differentiate group 1 and group 2 NAs. Nor do they, at least 

by themselves, characterize viruses capable of infection of humans. Additional tests 

of our hypothesis require the acquisition of crystal structures of additional NA alleles, 

most critically, an N2 allele that contains both the D147-H150 salt bridge and I149.  

 

2.3 Discussion 

Our results highlight the importance of interpreting influenza neuraminidase 

sequence and structural data in light of the dynamical ensemble of conformations that 

are accessible to each NA protein. This work shows for the first time that both N1 and 

N2 clinical isolates exhibit flexibility in the 150-cavity neighboring the conserved 

sialic acid binding site. While it remains possible that the open and closed 

conformation observed in crystal structures may be due to differences in 
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crystallization conditions or procedures, our results indicate that the presence of the 

150-cavity is not a strictly defining characteristic for group-1 or group-2 NA 

enzymes. Instead, it appears that both N1 and N2 enzymes are able to adopt an open 

150-cavity within their solution phase structural ensemble, in various relative 

populations, which appear to be predominantly controlled by the presence of the 

D147-H/R150 salt bridge. This suggests a new paradigm for the understanding of the 

presence of the 150-cavity in both group-1 and group-2 neuraminidases. The inherent 

flexibility of the 150- and 430-loops may play a role in full glycan receptor 

recognition, and in particular, with facilitating recognition events with the distal sugar 

residues of different glycan receptors. It is likely that the opening and closing of the 

150-cavity is required for natural sialoglycan substrates to fit into the active site, 

given the bulky nature of these glycans.  

This study additionally underscores the need to consider dynamics in 

rationalizing the structure-function relationships of various antiviral-NA pairs. 

Ensemble-based drug discovery approaches17 that account for full receptor flexibility 

towards neuraminidases that do not contain the D147-H150 salt bridge will likely 

present additional advances in the design of compounds that selectively target the 

150-cavity, opening the possibility for receptor-specific inhibitors. In closing, we note 

that whether the flexibility of the NA binding site has an impact on receptor 

specificity, virus transmissibility, or pathogenicity remains to be seen and will likely 

require a better understanding of HA receptor binding domain dynamics for each of 

the NA/HA pairs found in humans18.  

 



	
   	
   23 

	
  

2.4 Methods 

2.4.1 Simulation Protocol 

System setup was performed as follows for all simulated systems.  Atomic 

coordinates were taken from 2HTY for A/Vietnam/1203/04 (VN04N1)5, 3NSS for 

A/California/04/2009 (09N1)9, and 1NN2 for A/Aichi/3/67 (N2)13.  Protonation states 

for histidines and other titratable groups were determined at pH 6.5 by the 

PDB2PQR19 web server using PROPKA20 and manually verified.  All 

crystallographically resolved water molecules and calcium ions were retained where 

possible and taken by homology from 2HTY if not present.  The system was set up 

using the AMBER1121  program xLeap using the AMBER99SB force field22.  

Disulfide bonds were properly enforced using the CYX notation in AMBER.  A 10-

12 Å pad of TIP3P waters was added to solvate to each system.  Neutralizing counter 

ions were added to each system.  In order to mimic experimental assay conditions, a 

20 mM NaCl salt bath was introduced.  System details and additional methodological 

information can be found in the Supplementary Information. 

N1 and N2 tetramer simulations were performed with a version of the 

PMEMD module from AMBER 11 that was custom tuned for these specific 

simulations and the NICS Cray XT4 and SDSC Trestles supercomputers by SDSC 

under the NSF's TeraGrid Advanced User Support Program. The N1 and N2 apo 

tetramer complexes were minimized and equilibrated as follows.  In order to alleciate 

any steric clashes prior to performing molecular dynamics the structures were 

minimized in a number of stages in which harmonic restraints of initially 5 kcal mol-1 
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Å-2 on all non-hydrogen protein atoms were slowly reduced over approximately 

40,000 combined steepest descent and conjugate gradient minimization steps. 

Following minimization, the system was linearly heated to 310 K in the NVT 

ensemble using a Langevin thermostat, with a collision frequency of 5.0 ps-1, and 

harmonic restraints of 4 kcal mol-1 Å-2 on the backbone atoms. Then, a further three 

250 ps long runs at 310 K were conducted in the NPT ensemble with the restraint 

force constant being reduced by 1 kcal mol-1 Å-2 each time and pressure controlled 

using a Berendsen barostat23 with a coupling constant of 1 ps and a target pressure of 

1 atm. A final 250 ps of NPT dynamics was run at 310 K without restraints and a 

Langevin collision frequency of 2ps-1. Production runs were then made for 100ns 

duration in the NVT ensemble at 310 K. As with the heating, the temperature was 

controlled with a Langevin thermostat (but with a 1.0 ps-1 collision frequency),. The 

time step used for all stages was 2 fs and all hydrogen atoms were constrained using 

the SHAKE algorithm24. Long range electrostatics were included on every step using 

the Particle Mesh Ewald algorithm 25 with a 4th order B-spline interpolation, a grid 

spacing of <1.0 Å, and a direct space cutoff of 8 Å. For all trajectories, the random 

number stream was seeded using the wallclock time in microseconds. The production 

trajectories for each monomer of the tetramer were extracted and concatenated to 

approximate 400 ns of monomer sampling. 

 

2.4.2 RMSD Clustering 

RMSD clustering was performed as implemented in the rmsdmat2 and 

cluster2 programs of the GROMOS++ analysis software 26.  500 tetramer structures 
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were collected by sampling at 200 ps intervals.  Monomer structures were then 

concatenated together, yielding a total of 2000 structures.  Prior to clustering, external 

translational and rotational motions were removed by minimizing the RMSD distance 

of the alpha-carbon-atoms of the sampled structure to the equivalent atoms of the first 

frame of chain A. Using a 2.6 Å cutoff, clustering was then performed using the 

GROMOS++ clustering algorithm 27 in Gromacs 28 on the alpha-carbon atoms of the 

6-residue subset, 146 to 152, which comprise the 150 loop.  Each cluster contains a 

central structure, or “cluster representative member,” called the “centroid,” whose 

RMSD is equidistant to all other cluster members.  The cluster representative’s 

structural properties are considered characteristic of all cluster members.  Cluster 

results are summarized in Table 2.2. 

 

2.4.3 RMSD and B-factor calculations 

B-factor calculations, as well as tetramer and monomer RMSD time series, 

were performed using the ptraj analysis tool in the AMBER 10 program suite 29.  

Structures were sampled at 20ps intervals.  Prior to performing each calculation, 

external translational and rotational motions were removed by minimizing the RMSD 

distance of the alpha-carbon atoms to the equivalent atoms of the first frame of the 

trajectory.  RMSD and B-factor values were calculated for alpha-carbon atoms. 

 

2.4.4 09N1 RMSD 150-loop measurements 

RMSD values were measured using a custom, hand-written script in the VMD 

TCL-TK console 30.  Structures were sampled at 20ps intervals.  Sampled structures 
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of each monomer were RMSD-aligned by alpha-carbon to the equivalent alpha-

carbon atoms of the “reference” structure: chain A of PDB ID 2HTY, open reference; 

or chain A of PDB ID 2HU4, closed reference.  Following alignment, the RMSD of 

the 150 loop of each monomer was measured with respect to the 150 loop of each 

reference structure.  The 150 loops were defined as residues 146 to 152 for the 09N1 

monomers, as well as for the open and closed reference structures. 

 

2.4.5 Interatomic distance measurements 

The distance separating the salt bridge pair ASP147 and HIS150 was 

measured using a custom, hand-written script in the VMD TCL-TK console.  

Structures were sampled at 20ps intervals.  The distance between the two residues 

was defined as the distance separating centers of mass of the heavy atoms of the 

ASP147 carboxylate and the HIS 150 imidazole.  The distance between residues 149 

and 431 were measured for each step using a custom VMD script. 

 

2.4.6 Neuraminidase Volume Population Analysis 

The numbers of open or closed 150-cavity conformations out of a total of 

2000 snapshots were computed. Any instantaneous volume equal to or greater than 

half the volume of the crystal structure of canonical group-1 serovar (2HTY exhibits 

a total 150-cavity volume of 36 Å3) is considered to be "open". Otherwise the 150-

cavity is considered "closed" (i.e., when it exhibits less than 18 Å3). The volume of 

the 150-cavity was measured for each step by using POVME 15; a pocket volume 

measuring algorithm. To measure the volume, we used a single inclusion sphere that 
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encompassed the 150-cavity. The POVME algorithm neglected the volume occupied 

by NA atoms and not spatially contiguous with a point specified within the 150-

cavity. By rotating 90 degrees around the NA tetramer central axis, each of the other 

three 150-cavity sites were specified. The volume was thus measured for every 

snapshot of the simulation on all four chains of each NA.  

 

2.4.7 Figures and Plots 

Matlab was used to generate all plots and molecular images were created 

using VMD 30.  

 

2.4.8 Consensus sequences 

We downloaded all influenza A N1 and N2 gene sequences   from humans, 

avians and swine that were greater than 600 base pairs in length from GenBank and 

GISAID on 12/8/2010.  We aligned sequences using ClustalX 2.031 and constructed 

phylogenetic trees using MrBayes version 3.1.232 using the GTR+I+gamma model, as 

suggested by jmodeltest version 0.1.133 under the Akaike Information Criterion. All 

other MrBayes parameters were set to the default. We allowed MrBayes to run, 

sampling every 1,000 trees, until the Monte Carlo Markov chains converged as 

determined by Tracer software version 1.534. We discarded the burn-in as determined 

by Tracer. Similar results were obtained using the neighbor-joining routine of PAUP* 

4.0b10 35(results not shown). Consensus sequences containing amino acids found at a 

frequency of at least 80% were constructed for each major evolutionary clade. Results 
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are shown, along with samples sizes, in Table 2.1; major polymorphisms are 

indicated in white boxes. 

 

2.5 Supplementary Information 

2.5.1 Supplementary Figures 

 

Figure 2.4: Time series for the RMSD over alpha-carbon atoms for tetramer 
systems 
The time series for the RMSD over alpha-carbon atoms for tetramer systems is shown 
for each 100 ns simulation (for reference, N2 is shown in blue, VN04N1 in pink, and 
09N1 in black).  The plot indicates stability of the simulated systems. 
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Figure 2.5: Time series for the per-monomer RMSD 
The time series for the per-monomer RMSD, as computed over the alpha-carbons, is 
shown for the N2, VN04N1, and 09N1 systems.  For all systems, chain A is shown in 
blue, chain B in red, chain C in fuschia, and chain D in green. 
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Figure 2.6: Experimental and simulation-derived B-factors 
Crystal B-factors shown in black throughout. MD-derived B-factors shown in blue, 
orange, fuchsia, and green for tetramer chains A, B, C, D, respectively.  A-D) 
VN04N1 PDB 2HTY is a tetramer; B-factors for each chain are compared 
individually. E) N2 PDB 1NN2 has one chain; all 4 MD chains are shown, F-G) 
09N1 PDB 3NSS has 2 chains; all 4 MD monomers are shown against chain A (in F) 
and chain B (in G).  
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Figure 2.7: Structural deviations in the 150-loop residues in the 09N1 system 
 The structural deviations in the 150-loop (residues 146-152) are shown for the 09N1 
system.  150-loop RMSD from the open- (shown in blue) and closed- (shown in 
black) 150-loop crystal structures (2HTY and 2HU4, respectively) indicate structural 
deviations from the experimentally resolved data.  Locations where the two lines 
cross over indicate a loop “switching event” (from open to closed, or closed to open). 
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Figure 2.8: Time series analysis of 150-cavity volume and width for 09N1 system  
The distance between alpha carbon of residue 431 (Pro431 in 09N1) and the closest 
sidechain carbon of residue 149 (Ile149 in 09N1) is computed and shown in red and 
the right-side y-axis.  On the left side y-axis, the volume of the 150-cavity is 
computed over the course of simulation. Each plot represents a chain of the 
neuraminidase tetramer (A-D).  
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Figure 2.9: Time series analysis of 150-cavity volume and width for VN04N1 
system   
The distance between alpha carbon of residue 431 (Pro431 in VN04N1) and the 
closest sidechain carbon of residue 149 (Val149 in VN04N1) is computed and shown 
in red and the right-side y-axis.  On the left side y-axis, the volume of the 150-cavity 
is computed over the course of simulation. Each plot represents a chain of the 
neuraminidase tetramer (A-D).  
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Figure 2.10: Time series plots the key salt bridge that controls 150-cavity 
formation in the neuraminidase enzymes  
The heavy atom distance between residues Asp147 and His150 is shown for all 
monomers (chains A-D) of the N2 simulation.  In Chain C, the salt bridge breaks and 
does not reform after 60 ns. 
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Figure 2.11: Time series analysis of 150-cavity volume and width for N2 system  
 The distance between alpha carbon of residue 431 (Lys431 in N2) and the closest 
sidechain carbon of residue 149 (Val149 in N2) is computed and shown in red and the 
right-side y-axis.  On the left side y-axis, the volume of the 150-cavity is computed 
over the course of simulation. Each plot represents a chain of the neuraminidase 
tetramer (A-D).  
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Figure 2.12: Time series analysis of 150-cavity volume and width for 
09N1_I149V system  
The distance between alpha carbon of residue 431 (Pro431 in 09N1_I149V) and the 
closest sidechain carbon of residue 149 (Val149 in 09N1_I149V) is computed and 
shown in red and the right-side y-axis.  On the left side y-axis, the volume of the 150-
cavity is computed over the course of simulation. Each plot represents a chain of the 
neuraminidase tetramer (A-D).  
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2.5.2 Supplementary Tables 

Table 2.3: Description of simulated systems 
System name, crystal structure PDB identifier, human strain isolate description, 
colloquial system description, total simulation time for tetramer simulation, and total 
number of atoms are shown for each system. 
system 
name 

crystal 
struct-
ure 

strain Initial 
150-
loop 
state 

simulation 
time (ns) 

no. of 
atoms 

N2 1nn2 A/Tokyo/3/67 Closed 100 151,895 

09N1 3nss A/California/04/2009 Closed 100 165,171 

09N1-I149V 3nss* A/California/mutant Closed 100 156,338 

VN04N1 2hty A/Vietnam/1203/04 Open 100 112,311 

 
Table 2.4: RMSD-based clustering results 
System name, percent population in the three most dominant clusters and open or 
closed 150-cavity designation, and the total number of clusters are shown. 
system cluster 1 cluster 2 cluster 3 no. of 

clusters 
N2 58.8% 

(closed) 
16.7%  
(closed) 

6.8%  
(open) 

24 

VN04N1 68.9% 
(open) 

19.4% 
(open) 

11.6% 
(open) 

14 

09N1 33.4% 
(closed) 

22.4% 
(open) 

13.7% 
(open) 

25 

09N1_I149V 46.9% 
(closed) 

24.8% 
(open) 

15.2% 
(closed) 

14 

 
	
    



	
   	
   38 

	
  

Table 2.5: 150-cavity volume for all NA crystal structures (with hydrogen atoms 
added) and the 3 most dominant cluster structures from the simulations 
Structures and volumes correspond to Figure 1 in the main text. 

System Volume (Å3) Open/Closed characterization 

N2 – crystal structure 0 Closed 

N2 MD cluster 1 0 Closed 

N2 MD cluster 2 0 Closed 

N2 MD cluster 3 284 Open 

VN04N1 – crystal structure 36 Open 

VN04N1 MD cluster 1 53 Open 

VN04N1 MD cluster 2 136 Open 

VN04N1 MD cluster 3 65 Open 

09N1 crystal structure 0 Closed 

09N1 MD cluster 1 0 Closed 

09N1 MD cluster 2 77 Open 

09N1 MD cluster 3 143 Open 

09N1_I149V minimized 0 Closed 

09N1_I149V MD Cluster 1 0 Closed 

09N1_I149V MD Cluster 2 146 Open 

09N1_I149V MD Cluster 2 1 Closed 

 
Chapter 2, in full, is a reprint of “Mechanism of 150-Cavity Formation in 

Influenza Neuraminidase”, which was published in 2011 in Nature Communications, 

volume 2, page 388, by Rommie E. Amaro, Robert V. Swift, Lane W. Votapka, 
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Wilfred W. Li and Robin M. Bush. The dissertation author was the third investigator 

and author of this paper. 
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Chapter 3: DelEnsembleElec: Computing Ensemble-

Averaged Electrostatics Using DelPhi 

A new VMD plugin that interfaces with DelPhi to provide ensemble-averaged 

electrostatic calculations using the Poisson-Boltzmann equation is presented.  The 

general theory and context of this approach are discussed, and examples of the plugin 

interface and calculations are presented.  This new tool is applied to systems of 

current biological interest, obtaining the ensemble-averaged electrostatic properties of 

the two major influenza virus glycoproteins, hemagglutinin and neuraminidase, from 

explicitly solvated all-atom molecular dynamics trajectories.  The differences 

between the ensemble-averaged electrostatics and those obtained from a single 

structure are examined in detail for these examples, revealing how the plugin can be a 

powerful tool in facilitating the modeling of electrostatic interactions in biological 

systems. 

 

3.1 Introduction 

Electrostatic interactions play an essential role in the dynamics of biological 

systems.  These forces are the predominant long-range interactions influencing the 

dynamics within and between biomolecules, thus the accurate treatment of 

electrostatics is necessary for detailed models of these systems.  The electrostatic 

interactions associated with ionic and polar chemical groups found in proteins, 

nucleic acids, lipids, and other biomolecular systems are essential to both their 

structure and function36. 
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A variety of methods exist for computing the electrostatic interactions within 

the context of classical Molecular Mechanics (MM) models.  The electrostatic energy 

and potential may be obtained by computing the pairwise Coulomb interaction 

between all atoms, and many approximate methods exist to efficiently estimate these 

interactions.  While the computation of pairwise interactions is computationally 

expensive, scaling as the square of the number of atoms in a system, methods such as 

the Particle-Mesh Ewald (PME) 37 algorithm for periodic systems and the Fast 

Multipole Method (FMM) 38 can significantly reduce the complexity of computation 

by introducing well-controlled approximations. 

The Poisson-Boltzmann (PB) equation is an attractive method for computing 

the mean-field potential of biomolecules 39.  By modeling the solvent environment as 

a continuum dielectric and salt ion distribution, the electrostatic potential and 

electrostatic free energy of a biomolecule may be estimated under the given 

conditions.  In most implementations, the solvent provides dielectric screening of the 

biomolecule potential, represented as a uniform dielectric constant, while the salt is 

modeled based on the potential values within the continuum solvent by a nonlinear 

term in the PB equation.  A linearized PB treatment of salt effects is accurate for 

proteins with modest net charges in monovalent salt solutions, while the more 

sophisticated treatment of salt with the nonlinear form of the PB equation is often 

used in treating multivalent salt solutions and in modeling highly charged 

polyelectrolytes such as nucleic acids40.  Many methods of solving the Poisson-

Boltzmann equation such as presented here in DelPhi utilize the finite difference 

method to efficiently solve the electrostatic potential on a discretized grid41. 
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Realistic treatment of biomolecular dynamics requires ensemble sampling to 

understand the conformational flexibility of these molecules within their chemical 

environment.  All-atom explicit solvent Molecular Dynamics (MD) is a widely 

accepted method for generating a canonical distribution of states for biomolecules 

modeled using Molecular Mechanics force fields such as AMBER42 and 

CHARMM43.  By averaging over the trajectory of states produced in these 

simulations, ensemble properties such as the electrostatic potential may be obtained, 

giving insight into thermodynamic properties of these systems.  This approach has 

been useful in previous studies of biomolecular systems, such as in understanding the 

electrostatic environment of protein-bound drugs44 and in understanding the transport 

of ions and biomolecules through membrane pore proteins45. Notably, the use of 

ensemble information in particular, as opposed to a single static structure, when 

computing the electrostatic properties of dynamic biomolecules has been shown to 

increase agreement of the theoretical values with experiment 44. 

To facilitate the calculation of ensemble-averaged electrostatic properties with 

the Poisson-Boltzmann equation, we have developed a plugin interface for the 

visualization software package VMD30, which interfaces with the DelPhi numerical 

PB equation-solving software package41,46 .  This plugin computes the ensemble 

electrostatic potential and free energy of biomolecules from their trajectories in 

VMD-compatible formats such as those used in the MD packages AMBER and 

CHARMM.  A graphical user frontend provides a simplified interface for specifying 

all the individual options supported by DelPhi, and the plugin creates the proper 

biomolecule coordinate inputs for DelPhi from the system partial charges and radii 



	
   	
   43 

	
  

obtained by VMD from the input structure file, as well as automating the process of 

ensemble averaging.  The plugin executes DelPhi and then visualizes the electrostatic 

potential or ensemble-averaged potential from the DelPhi grid outputs in a variety of 

VMD formats, such as color-coded surface, 2D plane projection, and isopotential 

surface plots.  The plugin supports both the linear and non-linear forms of the PB 

equation provided in DelPhi. 

The application of these Poisson-Boltzmann calculations with the DelPhi 

Electrostatics plugin to biomolecular systems of current research interest such as the 

influenza virus major glycoproteins, hemagglutinin21,29 and neuraminidase47-49, are 

presented in this work as examples of the versatility of calculations that can be 

performed with this convenient new tool.  The ensemble-averaged mean-field 

potential of these proteins are obtained in identical salt and solvent conditions as the 

corresponding MD simulation trajectories. The electrostatic potential of any AMBER 

or CHARMM system may be computed from its structure file and coordinates with 

this plugin, importing the parameters into the DelPhi calculation in Protein Databank 

(PDB) format.  As the software plugin and source code is freely available under the 

GNU Public License (GPL), it is anticipated that this tool will be of general interest to 

the physics-based modeling research community. 
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3.2 Methods 

3.2.1 Molecular Dynamics Simulations 

Trajectories for two biomolecules were generated using explicitly solvated, 

all-atom molecular dynamics (MD) simulations. We chose two proteins important in 

influenza pathogenesis, neuraminidase and hemagglutinin, as subject molecules on 

which to perform the electrostatic calculations. Three different commonly used MD 

programs were used for the simulation of each molecule, as described below.  

 

3.2.2 Influenza Hemagglutinin 

Atomic coordinates were taken from accession number 1HGF in the Protein 

Data Bank (PDB). The protonation states for histidine and other titratable residues 

were determined at pH 7.0 using the PDB2PQR19 server using PROPKA20. 

Crystallographic water molecules were retained. The AMBER Tools1121 program 

sLeap was used to connect disulfide bridges and also to add a TIP3P water box with a 

10 Å box spacing along each edge beyond the dimensions of the protein and 20mM 

NaCl to act as an explicit solvent along with K+ counterions to neutralize the system. 

The composite system contained 198,533 atoms.  The hemagglutinin trimer was then 

minimized for 45,000 steps and equilibrated using four stages of harmonic constraints 

at 250,000 steps each, starting at 4 kcal mol-1Å-2 reducing by 1 kcal mol-1 Å-2 each 

time. The systems were then simulated using NAMD2.850 with the AMBER 

FF99SB22 force field under periodic boundary conditions with the isothermal-isobaric 

(NPT) ensemble at a temperature of 310 K.  Pressure was maintained at 1 atm using a 

Nosé-Hoover Langevin Piston51 and Particle-Mesh Ewald25 was used to treat long-
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range electrostatic interactions. Bonds involving hydrogen positions were constrained 

using the RATTLE algorithm24. Ranger, a massively parallel Teragrid computing 

platform, was utilized to perform the calculations (benchmark: 3.9 ns/day using 512 

cores). The final trajectory contained 100 nanoseconds of simulation, which was 

reduced to 500 frames with a stride of 200 picosecond between each frame for 

analysis of ensemble electrostatics. 

 

3.2.3 Influenza Neuraminidase  

Details for the preparation of this system has been described previously 52. 

Atomic coordinates were taken from PDB accession code 3NSS. The protonation 

states for histidines and other titratable groups at pH 6.5 were determined using the 

PDB2PQR19 server. The system was prepared using the Ambertools11 program 

xLeap with a padding of 10-12 Å of water molecules prepared in a similar fashion to 

the hemagglutinin system mentioned above. The neuraminidase tetramer was then 

energy minimized using the PMEMD module from AMBER11 with 2000 steps of 

steepest descent, followed by 5000 steps of conjugate gradient minimization with 5.0 

kcal mol-1 Å-2 harmonic restraints. Then 25,000 more conjugate gradient steps were 

performed without restraints. The neuraminidase system was then also equilibrated by 

gradual heating to 310 K in the isothermal/constant volume (NVT) ensemble using a 

Langevin thermostat with a collision frequency of 5.0 ps-1. Three subsequent 250 ps 

runs were performed at 310 K in the isothermal/isobaric (NPT) ensemble, with 4 kcal 

mol-1Å-2 restraints being reduced by 1 kcal mol-1 Å-2 in each consecutive run. A 

Berendsen barostat23 with a coupling constant of 1 ps and a target pressure of 1 atm 
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was used to maintain pressure, followed by a final 250 ps segment of NPT dynamics 

without restraints. Production dynamics was then performed for 100 ns with 

conditions similar to that of the hemagglutinin system above. Minimization, 

equilibration, and production were all performed on the NCIS Cray XT4 and SDSC 

Trestles high performance compute platforms (benchmark: 10.1 ns/ day using 256 

cores [1 core per node] on NICS Athena). We pruned the final trajectory to 500 

frames with a stride of 200 ps between each frame for analysis of ensemble 

electrostatics. 

 

3.2.4 Poisson-Boltzmann Ensemble-Averaged Electrostatics 

The PB equation (Eq. 3.1) uses an implicit and continuum-based model of the 

solvent and counterion environment surrounding a biomolecule to give a detailed 

description of its electrostatics.53 Though many variations exist, it assumes a spatially 

varying dielectric constant and takes into account the shape and irregular charge 

distribution of the biomolecule.54  A general form is given below46: 

∇ ∙ 𝜖 x ∇𝜙 x + !
!!

𝑐!𝑧! exp − !!!! x
!"! = − !

!!
𝑞!𝛿(x − x!)!     Eq. 3.1 

Here, 𝜙 x  represents the electrostatic potential at position x, 𝜖 x  is the spatially-

varying value of the dielectric constant (in units relative to 𝜖!), 𝑞! are the individual 

𝑁!  partial charges associated with the atoms of the biomolecule (with positions 

specified by x! ), and 𝑒  is the elementary electronic charge. The value 𝑘𝑇  is the 

Boltzmann factor (Boltzmann constant times temperature) and 𝛿(x) is the Dirac delta 

function.  The second term !
!!

𝑐!𝑧! exp − !!!! x

!"!  is associated with the 𝑁! -
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component ion density distribution with components having concentration 𝑐!  at a 

distance infinity away from the biomolecule and having valence 𝑧!, at the specified 

salt conditions.  Introducing the approximation !
!!

𝑐!𝑧! exp − !"!! x

!"! = −𝜅!𝜙 x  

(where 𝜅! = !!

!"!!
𝑐!𝑧!!! ) into equation 3.1 yields the linear PB equation, which is 

accurate for conditions such as modestly charged molecules (having relatively low 

electrostatic potentials in the surrounding medium) in a 1:1 monovalent salt 

environment. 

∇ ∙ 𝜖 x ∇𝜙 x − 𝜅!𝜙 x = − !
!!

𝑞!𝛿(x− x!)!   Eq. 3.2 

Typically a computational method, such as implemented in the program DelPhi, is 

used to solve the equation numerically in a system of biological scale, as its canonical 

form is a nonlinear partial differential equation. In systems without regions of large 

potential values, the equation can be simplified to a linear form (Eq. 3.2). The variety 

of approaches to approximating the PB equation allow differing degrees of accuracy 

and efficiency53, usually one at the expense of the other. 

 

3.3 User Interface 

DelEnsembleElec provides a graphical interface that can be accessed within 

the “Extensions” menu of VMD, simplifying the process of specifying DelPhi options 

and then computing single-point and ensemble electrostatic calculations, using the 

many VMD display drawing methods to visualize the resulting potential grids.  The 

code is written in the Tcl script language and is compatible with Microsoft Windows 
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and UNIX-based platforms (Mac, Linux). When DelEnsembleElec is started, the 

main window appears (Figure 3.1), which contains the most basic customizable 

options. Once one or more trajectories or structures are loaded into VMD, or if they 

have been loaded already, a menu button allows the user to select the molecule on 

which to perform the run. Entry fields allow the user to specify the atom selection of 

the molecule, as well as an option to write a Gaussian cube file upon completion of 

the run. Two additional checkboxes allow the user to specify whether and how the 

completed map data will be loaded into VMD for visualization. 
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Figure 3.1: DelEnsembleElec plugin interface   
A screenshot of the DelEnsembleElec plugin is shown; the top right window is the 
main DelEnsembleElec window. The window immediately below it is for setting the 
parameters in the DelPhi input file. The remaining windows are VMD windows; main 
display window at the top left, molecule loader and animation control at the bottom 
left, and console at the bottom right. 
 

In addition, two dropdown menu options provide additional functionality.  

Under the menu Edit>Settings, a window appears where one can specify the working 

directory of the Delphi runs(s) (set automatically to the operating system’s temporary 

directory) as well as the location of the Delphi program. The user may optionally 
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create the setup file only, but not actually initiate a Delphi run.  Under the menu 

Edit>Input File, a window enables the user to customize most of the Delphi input 

parameters, either by entering the fields manually or by loading a template Delphi 

parameter file. 

Once satisfied with the run specifications, the user may click the “Run 

Delphi” button at the bottom of the Main Window to execute the calculation. The 

time taken for execution depends on several factors, including the number of atoms in 

the system, the number of frames in the trajectory, as well as the amount of processor 

speed dedicated to the calculation. A benchmark on a single Intel Xeon 2.67 GHz 

processor takes approximately 15 minutes per frame to solve the linear PB equation 

for a system containing 20,000 atoms on a 169x169x169 static grid. Upon completion 

of the run, depending on the options selected by the user, the map data may be saved 

as a Gaussian cube file or loaded as a new molecule into the VMD main window, 

where the VMD representation window allows one to manipulate the graphical 

representation in a variety of formats.  The plugin also has the capability to compute 

and display “difference maps” between the ensemble and single frame electrostatic 

grids (ensemble-averaged grid potential minus a single-frame grid potential). 

When a single structure or a trajectory is loaded that does not contain atomic 

charge or radius information in a way that VMD can recognize (such as a pdb 

trajectory), this information must be provided to Delphi as force field parameter files.  

The paths to these files may be specified in the Edit>Input File window under the 

“Size File” and “Charge File” fields.  If the user neglects to specify a path to a size 

file, these parameters are assigned automatically using typical CHARMM radii (e.g. 
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carbon: 2 Å, hydrogen: 0.7 Å, oxygen: 1.7 Å, nitrogen: 1.8 Å, sulfur: 2.0 Å, 

phosphorous: 2.15 Å). If the user desires different atomic radii, a radii size file must 

be specified in the input parameters.  

 

3.4 Results 

3.4.1 Influenza Hemagglutinin Electrostatics 

Explicitly solvated all-atom MD simulations were performed on the 

hemagglutinin trimer protein for 100 ns using NAMD2.8. Afterwards, the protein 

snapshots were extracted at 200 ps intervals and aligned. Using DelEnsembleElec, a 

MD trajectory containing 500 frames of approximately 20,000 atoms required nearly 

50 hours to complete using a single Intel Xeon: 2.67 GHz processor, as Delphi must 

calculate the PB equation for each individual frame of the trajectory. Once complete 

the Gaussian cube is loaded into VMD, it is represented by the VMD graphical 

representations isosurface and solvent-accessible surface area colored by loaded data 

(Figs. 3.2 – 3.4). The grid scale DelPhi parameter was set to 1.0 Å. The exterior 

dielectric was set to 80.0, with the interior set to 2.0. The salt concentration in the 

continuum solvent was set to 20 mM; consistent with the concentration in the MD 

simulations. The probe radius defining the dielectric boundary was 1.4 Å. Since the 

solvent was a 1:1 monovalent salt distribution, the PB equation was solved linearly by 

reaching a convergence of less than a 0.0001 kT/e change of potential. For 

comparison, DelEnsembleElec was also used to perform the same calculation on only 
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a single snapshot (frame 0, representing the equilibrated hemagglutinin). 

 

Figure 3.2: Hemagglutinin stalk electrostatics   
Side view of the hemagglutinin trimer depicted by the solvent-accessible surface area 
colored by electrostatic potential calculated on a single frame (left panel) and on the 
ensemble-averaged 500-frame trajectory (right panel). Units are in !"

!
 at 𝑇 = 300K; 

these units are used in all of the presented results. 
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Figure 3.3: Close-up of hemagglutinin stalk electrostatics  
Close-up of the hemagglutinin stalk solvent-accessible surface area colored by 
electrostatic potential. The left panel depicts electrostatics calculated on a single 
frame. The center panel depicts the same surface for the ensemble-averaged 500-
frame trajectory. The right panel depicts the difference in potential as the single-
frame potential subtracted from the ensemble-averaged potential. The smoother 
distribution of surface potential values from the ensemble-averaged electrostatics 
more accurately represents the effective potential encountered over the trajectory of 
sampled protein fluctuations. Units are in !"

!
 at 𝑇 = 300K. 
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Figure 3.4:  Hemagglutinin receptor binding site electrostatics  
Top view of hemagglutinin with potential fields at positive (blue) and negative (red) 
2 !"

!
. The left panel shows the result when the calculation is performed with only a 

single frame. The right panel shows the result for the ensemble-averaged 500-frame 
trajectory. 
 

The hemagglutinin glycoprotein contains a long “stalk” region, which anchors 

the protein to the membrane at one end.  The receptor-binding domain, which is the 

major antigenic area, resides at the opposite end and controls the entry of viral 

particles through productive binding events between sialic acid receptors on the host 

cell.  In both the single frame and ensemble-averaged electrostatic maps, it is 

apparent that hemagglutinin exhibits a dipole, with the receptor-binding domain 

having a more positive potential and the bottom of the stalk having a more negative 

potential (Figure 3.2).  The ensemble-averaged potentials projected onto the surface 

of the protein indicate an increased polarity, as indicated by the increased regions of 
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negative (red) charge colored on the surface. In general, the ensemble averaging tends 

to “blur out” small pockets of variable charges that are present due to specific point 

charges on the protein surface (Figure 3.3).  Such effects are indicated by larger 

patches of unobstructed electrical charge on the surface of the protein. When the 

values present in the single-frame grid are subtracted from the ensemble-averaged 

grid, the resulting “difference map” highlights the dramatic differences between the 

two (Figure 3.3C). Grid points located near atomic centers have very extreme values 

in the single frame, and these points are greatly dampened in the ensemble-average. 

This would account for the large difference between equivalent grid points in the 

difference map. 

The ensemble-averaged electrostatic potentials also indicate a more symmetric 

electric field, as shown by isopotential values, at the receptor binding domain end of 

hemagglutinin (Figure 3.4). This dynamic electrostatic information may be of critical 

value in the rational design of improved vaccines or better understanding the 

interactions of hemagglutinin with glycan receptors on the surface of the host cell.21,29 

 

3.4.2 Influenza Neuraminidase Electrostatics 

One hundred nanoseconds of explicitly solvated, all-atom MD simulations of 

the tetrameric neuraminidase protein were performed using AMBER11. Protein 

snapshots were again extracted at 200 ps intervals and aligned based on alpha carbons 

to remove rotational and translational motion.  DelEnsembleElec was used to 

compute the electrostatics for a single frame (frame 0, representing the equilibrated 



	
   	
   56 

	
  

protein) and the MD trajectory (500 frames). The DelPhi parameters used for 

neuraminidase were the same as those used for the hemagglutinin system. 

The influenza neuraminidase protein controls viral particle exit from the host 

cell by cleaving the terminal sialic acid linkage on the host cell glycan receptors, and 

as such, is currently the major target for small molecule antiviral compounds.6 

Although most small molecule drug discovery efforts have focused exclusively on 

optimizing ligand-protein interactions within the sialic acid binding site, a secondary 

sialic acid binding site, whose exact function is yet unclear, exists on the periphery of 

the neuraminidase active site.  It was recently shown through Brownian dynamics 

(BD) simulations that this secondary sialic acid site may affect the association 

kinetics (rate) of both sialic acid and the current clinically-used drug, oseltamivir 

(Tamiflu, Roche).49  The BD calculations utilized a single crystallographic snapshot.   

Using DelEnsembleElec, it is clear that the mean field electrostatic potential exhibited 

through the ensemble-based approach substantially affects the surface potential at this 

secondary site (Figure 3.5). Although it remains to be seen what effects would result 

by repeating the BD calculations using the ensemble averaged electrostatic potential 

values as opposed to the single static structure, we hypothesize that the ensemble-

based environment would more closely align with the actual electrostatic conditions 

in vivo.  Such claims have already been substantiated for other systems through work 

shown in Ref. 44.  Notably, the general trend of the charge fields in the region of the 

secondary sialic binding site of neuraminidase can be more clearly identified in the 

ensemble-averaged view than the single frame view, where the influence of 

individual atoms obscure the electrical characteristic of the areas of the active site 
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(Figure 3.5). Looking more globally at the neuraminidase electrostatics, the 

ensemble-average electrostatic field again becomes more symmetric with the 

dynamic structural information (Figure 3.6).  Interestingly, it also appears to become 

slightly dampened, as compared to the single frame electrostatics calculation. 

 

Figure 3.5: Neuraminidase secondary sialic acid binding site electrostatics  
Close-up of the secondary sialic acid binding site of neuraminidase49 represented as 
the solvent-accessible surface area and colored by electrostatic potential.  The left 
panel depicts the surface area using potentials calculated using a single frame.  The 
center panel depicts the result for the ensemble-averaged 500-frame trajectory. The 
right panel depicts the difference in potential as the single-frame potential subtracted 
from the ensemble-averaged potential. Units are in !"

!
 at 𝑇 = 300K. 

 

3.5 Discussion 

The electrostatics of the two major influenza glycoproteins, hemagglutinin 

and neuraminidase, are of general interest to public health as they are both vaccine 

and small molecule drug targets, respectively.  In this work, we present ensemble-

averaged electrostatics calculations for both proteins using the newly developed 

DelEnsembleElec plugin for VMD. These ensemble-averaged calculations showcase 
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the utility of utilizing ensemble-based structural information in adding insight to 

outstanding biological questions.  

Performing ensemble-averaged electrostatics on the hemagglutinin and 

neuraminidase trajectory with DelEnsembleElec and comparing the results with a 

single-frame DelPhi run shows that the ensemble-averaged potential surfaces are 

generally more symmetrical, with areas of consistent charge bias more easily visible.  

Additionally, the instantaneous locations of the residues in a single frame appear to 

cause odd shapes in the potential surface (Figs. 3.4 and 3.6, left panels).  This effect is 

alleviated in the ensemble-averaged electrostatic calculations, since random outlier 

charge values often exist within individual frames of a trajectory. Though some 

“noise” still remains from these outlier values, including more protein frames in the 

averaging can potentially decrease such effects. By loading the data into a surface 

representation of the molecule, it becomes readily apparent that ensemble averaging 

filters out the influence of individual point charges. Such results provide a clearer 

indication of the general charge of a specific area on the molecule.  
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Figure 3.6: Overall electrostatics of neuraminidase  
Top view of the neuraminidase tetramer with potential fields at positive (blue) and 
negative (red) 2 !"

!
. The left panel depicts the electrostatics of neuraminidase when 

calculated using a single frame. The right panel depicts the electrostatics of the 
ensemble-averaged 500-frame trajectory. 
 

The DelEnsembleElec plugin presented in this work allows interactive and 

customizable preparation for running ensemble-averaged PB electrostatics using the 

program DelPhi. It eases the preparation of trajectories and parameters with a 

graphical user interface, while maintaining much of the functionality of a command-

line invocation of DelPhi. The increased accuracy of the PB equation combined with 

the benefit of ensemble averaging allows great precision in the prediction of a 

biomolecule’s overall electrostatics. Though we only present protein examples here, 

we have verified that DelEnsembleElec can handle nucleic acid- and lipid-containing 

systems as well, as long as the charge and radius parameters are available within the 

loaded structure or additional parameter files are specified. 
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DelEnsembleElec is freely available under the Gnu Public License. The 

language, applications, and libraries on which it depends are also freely available.  

Download instructions and a tutorial can be found at 

http://amarolab.ics.uci.edu/delensembleelec.html .  A link to DelEnsembleElec is 

provided at the Delphi webpage as well, 

http://www.ces.clemson.edu/compbio/tools.html .   

Chapter 3, in full, is a reprint of “DelEnsembleElec: Computing Ensemble-

Averaged Electrostatics Using DelPhi”, which was published in 2013 in 

Communications in Computational Physics, volume 13, issue 1, pages 256-268, by 

Lane W. Votapka, Luke Czapla, Maxim Zhenirovskyy, and Rommie E. Amaro. The 

dissertation author was the primary investigator and author of this paper. 
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Chapter 4: Multistructural Hot Spot Characterization with 

FTProd 

Computational solvent fragment mapping is typically performed on a single 

structure of a protein to identify and characterize binding sites. However, the 

simultaneous analysis of several mutant structures or frames of a molecular dynamics 

simulation may provide more realistic detail about the behavior of the sites. Here we 

present a plugin for VMD that streamlines the comparison of the binding 

configurations of several FTMAP-generated structures. 

 

4.1 Introduction 

The identification and characterization of ligand binding sites in proteins is of 

utmost importance for research into drug discovery, and biomolecular function. The 

experimental determination of regions on the surface of the protein with high 

recurrence of bound probes correlate well with the locations of drug-binding sites 55. 

Interested readers are referred to the following reviews: 56,57. One popular method for 

experimental determination of such druggable “hot spots” involves the process of 

Multiple Solvent Crystal Structures (MSCS) 58,59. During MSCS, the protein is 

solvated within various probe compounds. The structure determined using X-ray 

crystallography indicates probe binding locations. 
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X-ray crystallization of multiple structures is expensive, and computational 

fragment mapping can emulate this process to identify binding sites 60. Various 

computational methods for binding site identification are compared here: 61. The 

FTMAP algorithm 62 seeks to mimic the MSCS method and has been shown to 

predict the analogous binding of probe molecules with a high degree of success. To 

gain a comprehensive understanding about the ligand-binding characteristics of a 

protein, structural knowledge alone is often insufficient. A single structure ignores the 

dynamics of a protein, which may create variation in probe-binding location, number, 

and capacity63. 

Here we present FTProd, a program capable of clustering hot spots spanning 

multiple structures, and allows for the ease of identification and characterization of 

those hot spots with a Graphical User Interface (GUI). FTProd is a plugin for Visual 

Molecular Dynamics (VMD)64, a molecular visualization program free for academic 

use. 

 

4.2 Methods 

FTProd analyzes structures that have been processed with FTMAP, which 

contain a series of small molecular probes indicating the location of potentially 

druggable Consensus Sites (CS). When run, FTProd utilizes one of several available 

cross-structural clustering methods, and are described in detail in the SI section 4.5. 

Depending on which method the user specifies, the algorithm selects CSs that 

are the most spatially similar, grouping them together into a cluster. Several 

hierarchical clustering methods are implemented in FTProd, as well as the “greedy 
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clustering” method employed in FTMAP. FTProd can cluster sites within the same 

structure, but also provides the option to cluster CSs that only exist within separate 

structures. 

FTProd integrates with and utilizes VMD with the goal of providing a smooth, 

easy-to-use GUI, through which researchers can visualize, identify, and characterize 

cross-structural hot spots in proteins. Upon running FTProd on loaded and selected 

structures, the plugin creates a Table widget (Figure 4.1c); which tabulates every 

structure and CS that exists within its respective structure(s). Upon selecting one or 

multiple CSs, FTProd draws the relevant site and associated probe fragments in 

VMD’s viewer.  Additional FTProd features are detailed in SI section 4.5. 

To demonstrate the utility of FTProd, we performed cross-structural analysis 

over several strains of the influenza neuraminidase (NA) glycoprotein. We chose NA 

for its well-understood binding sites and relatively high flexibility63,65). In this 

example, average-link agglomerative clustering was used with an inter-CS cutoff of 

8.0Å. 

 

4.3 Results 

We demonstrate FTProd’s ability to characterize and display cross-structural 

ligand-binding sites by examining four x-ray crystal apo structures of NA obtained 

from various influenza strains downloaded from the Protein Databank (PDB). The 

strains we used were PDB id’s: 1MWE66, 2HU05, 2HU45, and 3NSS67. The primary 

role of NA in influenza pathogenesis is the cleavage of sialic acid after binding to the 

active site. Another binding site, the secondary sialic acid site, is also partially 
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responsible for substrate affinity. Depending on the strain, neuraminidase may 

possess a so-called 150 pocket, a highly variable site68 which may present a feasible 

target for drug design efforts. FTProd successfully identifies important binding sites 

across the structures, ranking them by decreasing predicted binding ability. The sialic 

acid binding site is correctly identified as the predominant binding location. PDB 

structure 2HU0 docks more than twice as many probes as the 150 sites in any other 

structure (Figure 4.1a). This is consistent with the structural understanding of 2HU0, 

which exhibits an open “150 pocket” 5. One site identified for 3NSS also corresponds 

to a location where an acetate ion has been resolved in the 3NSS crystal structure 

(Figure 4.4). Two additional examples of proteins examined with FTProd are 

provided in SI section 4.5. 
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Figure 4.1: FTProd hot spot visualization and interface 
(a) Probes docked inside the 150-cavity of structure 2HU0. (b) Probes docked into 
pocket beneath the secondary sialic acid site (circled in orange) in structure 1MWE. 
(c) Table widget allows user to select and view multiple cross-structural consensus 
sites. Surfaces in (a) and (b) colored by residue type: blue indicates positive residue; 
red, negative; green, polar; white, hydrophobic. 
 
4.4 Discussion 

The determination of potentially druggable sites on the surface of a protein 

represents an area of intense interest to drug discovery and other applications. FTProd 

provides the capability to compare the characteristics of pockets between crystal 

structures of structurally similar proteins. The burden is placed on the user to 

determine whether two structures ought to be compared. RMSD-based clustering of 

MD trajectories could be one of many methods that may be used to identify input for 

FTProd; along with binding site similarity, analogous structures, similar substrates, or 
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any other structural similarity metric. FTProd’s utility is completely extensible 

toward the analysis of the frames of a simulation trajectory, as may be generated by a 

molecular dynamics simulation. To our knowledge, FTProd is the only existing tool 

that integrates protein structural dynamics data for the purpose of binding site 

characterization. 

The inclusion of cross structural or dynamic information in the analysis of 

these “hot spots” is likely to increase the predictive accuracy and scope of these 

computational methods by providing a more realistic picture of protein activity. 

Given the high success of the FTMAP algorithm, we expect that FTProd will greatly 

aid researchers in the analysis of protein pockets by streamlining interstructural 

consensus site comparison.  

FTProd is presented as a plugin for the molecular viewer program VMD, and 

is freely available under the GNU Public License. The language, applications, and 

libraries on which it depends are also freely available.  Download instructions and a 

tutorial can be found at http://amarolab.ucsd.edu/ftprod. 

 

4.5 Supplementary Information 

4.5.1 Description of FTProd algorithm 

 Each member of the set of aligned structures to be compared is run through 

FTMAP (http://ftmap.bu.edu/)62. The output .pdb files from FTMAP now contains the 

original structures as well as the docked probe molecules. The user then loads these 

files into FTProd. Each consensus site(CS) identified by FTMAP is then clustered 

according to a method selected by the user. The clustering method options include: 
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Average-link hierarchical agglomerative, single-link hierarchical agglomerative, 

complete-link hierarchical agglomerative, and the simple greedy method employed in 

FTMAP62,69 and FTSite69. Each clustering method is described in detail in the 

“Clustering Methods” section below. The user has the option to retain FTMAP’s CS 

differentiation by toggling an option that will disable any clustering of CSs within the 

same structure. Once the clustering is complete, each structure along with its CSs is 

displayed according to the user’s preference. Cross-structural visualization is 

described in the “FTProd Interface” section below. 

 

4.5.2 Clustering Methods 

Hierarchical Agglomerative Clustering70 

 The geometric centroid of each CS in every aligned structure is calculated 

where each atom of the probe molecules is given equal weight. The distance between 

each centroid is then measured to every other centroid and the results are placed into 

the upper echelon of a pairwise centroid distance matrix, where each axis represents 

the complete set of CSs. If the option to trust FTMAP clusters is enabled, then 

distances between CSs within the same structure is set to infinity. The smallest value 

(not along the main diagonal) within the centroid matrix is identified. If the value is 

below a user-specified CS distance cutoff, then the indices of the row and column 

correspond to which two CSs will be clustered. The row and column corresponding to 

both CS are removed and combined, making a cluster. The new, combined centroid 

cluster is added as a row and column to the centroid matrix, which is updated with 

new distances to the other CSs according to the specified link method: 
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Single-link: The distance from the two closest centroids within two clusters.  

Average-link: The distance between the average of the centroids within a 

cluster to the average of the centroids in other clusters. 

Complete-link: The distance from the two farthest centroids within two 

clusters. 

This process is iterated until the smallest member of the centroid matrix 

exceeds the CS distance cutoff. 

Greedy Clustering62 

 The most dominant CS is selected along with any other CS that falls within 

the distance cutoff range. This entire selection becomes the first cluster, and is 

removed from further consideration. The process is repeated for the most dominant 

remaining CS and each subsequent cluster.  

Each clustering method may provide very different results on a set of 

structures. The Average-link clustering method is selected by default, since it is most 

likely to combine CSs into clusters that are regularly shaped. The Average-link 

method should be sufficient for most applications. However, literature suggests that 

Average-link and Complete-link may produce misleading results when clustering 

similar entries due to computational rounding errors and statistical sampling errors70. 

Since FTProd is not intended to process or produce highly robust statistical data, but 

merely to provide qualitative hints as to the characteristics of a binding site based on 

solvent probes’ predicted global energy minima, we believe the statistical issue is 

trivial in this case. We also do not anticipate that rounding error will have a 
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significant effect in this application. Users concerned by these issues should restrict 

themselves to using the Single-link method. Qualitatively, the Single-link method will 

tend to produce clusters that are long and thin, because the method is susceptible to 

‘chaining’ of its entries. Conversely, the Complete-link method will produce clusters 

that tend to be short and wide. The sizes and shapes of the active sites should be taken 

into account when choosing a proper clustering method. The Greedy method is the 

fastest and was provided for consistency: it is the method used initially by FTMAP to 

cluster probes into CSs. The nature of the greedy method causes the most dominant 

CS to determine the shape and size of all subsequent ones. CSs identified by the 

greedy method are also likely to be irregularly shaped. Therefore, it is probable that 

the CSs of two similar structures found using the greedy method will be highly 

dissimilar. We recommend that users utilize the greedy method only if they are 

concerned with being consistent by using the same clustering method used in 

FTMAP. 

 

4.5.3 FTProd Interface and Additional Features 

 The FTProd algorithm has been implemented as a plugin for the molecular 

viewing program VMD64. Figure 4.2 shows the FTProd interface. The user selects the 

relevant loaded structures to include with the calculation as well as the CS distance 

cutoff for the cross-structural CS clustering. The user may also open the Settings 

window and modify a variety of options, including whether to perform intrastructural 

CS clustering, the clustering method, the probe-residue cutoff distance for each CS, 

the method to sort sites in the table, the Gaussian sigma variable for hydrophobic 
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coloring, the cutoff for grouping atoms as hydrogen bond (H-bond) donors/acceptors, 

and the factor to classify H-bond combinations. 

Table CS sorting options 

 Four options are available for sorting CSs in the Table window. FTMAP 

output ranks each probe cluster, and FTProd attempts to retain this ranking as much 

as possible; since ranked probe clusters from multiple FTMAP output molecules may 

be included in the same FTProd CS. 

Score Sum: The CS is ranked by the sum of all participating probe cluster 

scores. 

Highest Total Score: The CS is ranked by the highest scoring probe cluster 

that it contains. 

Mean Score: The CS is ranked by the mean of all participating probe cluster 

scores. 

Mean of Each Cluster in Highest Score: The CS is ranked using the following 

process: in the case when a CS contains two or more probe clusters from the same 

FTMAP output structure, only  the score of the highest scoring probe cluster is 

considered. The mean for all FTMAP probe clusters in the CS is given as the CS 

score. 

 

Once run, the Table window appears and the graphical representations of the 

relevant molecule are changed. To make it easy for the user to globally change the 

representations, various menu options at the top of the Table window allow the user 

to change the drawing and coloring methods of the probes, receptor, and CSs of the 
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relevant molecules. Below the menu, a matrix is displayed where each CS, if found 

within that structure, has been tabulated into the same column as the corresponding 

CS for each other structure. This allows for easy comparison of cross-structural CSs. 

Each cell of the matrix also displays the total number of probes for the corresponding 

CS in its respective structure. The Table window also allows the user to display probe 

fragments by classification. The classification options include hydrophobic, polar, 

aromatic, positive, H-bond donor, and H-bond acceptor probes. The fragments, their 

abbreviations, and their respective classifications are listed in Table 4.1. Any residue 

is considered a member of a CS if it sits within the probe-residue cutoff of a probe in 

any structure that contains that CS. 

FTProd also allows the option to display locations where two or more H-bond 

contributing groups overlap. If activated, an icosahedron will be drawn at any H-bond 

contributing groups within the H-bond grouping cutoff of each other. If the 

proportion of H-bond accepting groups exceeds the H-bond combination factor 

specified in the Settings window, the entire icosahedron will be colored red. 

Conversely, if the proportion of H-bond donating groups exceeds the H-bond 

combination factor, the icosahedron will be colored blue. An H-bond accepting or 

donating proportion in between these values will have an icosahedron with alternative 

facets colored blue and red. The H-bond accepting and donating groups of each probe 

are listed in Tables 4.2 and 4.3. 

The user may also color the probes by hydrophobicity. The metric for 

hydrophobicity is determined by generating a summation of Gaussian functions 

centered at every hydrophobic probe atom as summarized in Table 4.4 with a sigma 
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value with a default of 1.0 Å. The value of this summation is calculated for every 

probe atom and is stored in each probe atom’s user3 variable; a field that VMD 

reserves for user-defined values. An external program, fast_gaussian, has been 

developed which performs the Gaussian summation quickly, and if present in the 

same directory as the FTProd script, the hydrophobic calculations will complete much 

quicker. If fast_gaussian is not present, FTProd will calculate the Gaussian 

summation at a lower precision with TCL scripts, which, despite the lesser precision, 

takes significantly more computation time. 

 

4.5.4 Supplementary Results 

In addition to neuraminidase, we also used FTProd to examine RNA editing 

ligase 1 (REL1) and RET2 proteins, both of which are essential enzymes in 

Trypanosoma brucei, the causative agent for African sleeping sickness. 

 

4.5.4.1 REL1 

The top three RMSD clusters of the frames of a  molecular dynamics (MD) 

simulation prepared according to reference: 71-73 and were run through FTMAP and 

visualized with VMD and FTProd. 

The REL1 X-ray crystal structure resolved with bound ATP (PDB ID: 

1XDN)72 shows highly similar functional group interaction with FTMAP probes 

docked into the predominant cluster. Figure 4.4A shows ATP bound to the binding 

site of REL1 and interactions according to71. Similarly, Figure 4.4B shows aromatic 

probes bound to the active site of the predominant RMSD cluster as predicted by 
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FTMAP.  The location of these aromatic probes correspond highly with the 

placement of the purine group of the bound ATP, which makes hydrophobic and 

aromatic π-π interactions with PHE 209. Similarly, Figure 4.4C shows the polar 

FTMAP probes making similar interactions as the ATP in the crystal structure with 

residues ARG111, ASN92, GLU86, and ARG288. 

 The third CS is a previously unresolved site that opens during the MD 

simulation of 71,73,who anticipated that it may provide a new opportunity for drug 

design & discovery. The site remains open in all three clusters and does not undergo 

significant structural changes. The FTMAP probes bound to this site can offer hints to 

the characteristics of a drug that may bind and inhibit REL1 activity. The 

characteristics of the site and bound probes can be easily compared with FTProd. 

 In all three clusters, FTMAP has placed hydrophobic and aromatic probes 

with similar orientations in the center of the site(Figure 4.5). In an examination of 

polar probes, many hydrogen bonds also exist between the probes and the residues of 

the active site. However, with the exception of a possible interaction between the 

probes and the sidechain of ASN92 in clusters 1 & 2, all polar interactions are 

between the probes and backbone functional groups. This insight suggests that it may 

be difficult to design a drug with high specificity against this site, because analogous 

proteins in humans have a similar backbone configuration74 

 

4.5.4.2 RET2 

RMSD cluster centroids with a minimum difference of 1.75 Å were extracted 

from an MD simulation on the apo RET2 structure75, and the top three were selected 
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for examination with FTProd. Similarly, the top 3 RMSD cluster centroids were also 

extracted from an MD simulation of the RET2 structure using an RMSD cutoff of 

1.55 Å solved in a solution containing 2 mM UTP (PDB ID: 2B51)76. All non-protein 

components were extracted and the six structures along with the original UTP-bound 

crystal structure were run through FTMAP. All these were clustered with the average-

link method with a cutoff of 8.0Å and compared simultaneously using FTProd 

(Figure 4.6). 

 One of the most apparent results that FTProd indicates is that a very 

predominant binding site exists solely in the third apo cluster centroid (Figure 4.7). 

The fact that it appears only once in the third cluster would indicate that this site 

appears relatively infrequently during only the apo simulation, and is rare or absent 

from the UTP simulations and the crystal structure. 

 

 CS1 and CS2, however, exist in all seven structures. Comparison of the size, 

shape, and probe bindings of these CSs between the seven structures shows that the 

site remains largely unchanged between them all. This is consistent with the function 

of the CS, as this is where the single strand RNA (ssRNA) would bind to RET2 for 

modification. In UTP-bound crystal structure, which served as the initial structure for 

the UTP-bound MD simulation providing three of the clusters, two of the UTPs are 

bound in each of these CSs(Figure 4.8). 

FTProd also highlights other similarities and differences between the CSs 

found for each type of simulation. For instance, CS3, another region of the active site, 

also exists across all structures. CS4 is only found in the crystal structure and one of 
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the apo simulation clusters, but is absent from the UTP-bound simulation. Similarly 

CS5 appears only in the apo simulations, CS6, CS7 and CS9 are only found in the 

UTP-bound simulations. CS8 and CS10 are found in both the apo simulations as well 

as the crystal structure. A comprehensive analysis of RET2 using FTMAP can be 

found here:75. 

 

4.5.5 Supplementary Discussion 

Although FTProd aids the determination of characteristics and transience of 

CSs across multiple structures, the identification of the CSs must be pre-determined 

by FTMAP or, potentially, another program.  The quality of FTProd’s output is 

highly dependent on the quality of FTMAP’s output. Many studies of FTMAP in its 

relation to other methods have been performed56,61. While a full comparison of 

FTProd & FTMAP with the multitude of available tools is beyond the scope of this 

paper, we believe that FTProd will greatly serve the drug discovery and 

computational biophysics community because, to our knowledge, it is the only 

available tool that allows the incorporation of dynamics and multistructural data in 

the characterization of protein binding sites and hot spots. We want to accentuate the 

fact that FTProd is not a new hot-spot identifier, but merely builds off the hot-spot 

identifying power of FTMAP, and merely allows users to easily compare FTMAP 

output on multiple structures and to help in its interpretation.  

The quality of FTProd’s output is also highly dependent on the employed 

clustering and scoring methods. Because of the diversity of binding sites and the 

qualitative nature of their characterization, the analysis of CSs can be a bit of an art. 
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There is no hard-and-fast clustering or scoring method that will give the “correct” 

results every time. For this reason, we have provided multiple clustering and scoring 

options with which the user may experiment. We also provide a great deal of 

flexibility and streamlining in the visualization of the receptor and its CSs to make 

analysis quick and easy for the user.  



	
   	
   77 

	
  

Table 4.1: Probe fragments and their classifications 

	
    

Probe Abbrev. Probe Name Classifications 

ACD Acetamide Polar; H-bond donor; H-bond acceptor 

ACN Acetonitrile Polar; H-bond acceptor 

ACT Acetone Polar; H-bond acceptor 

ADY Acetaldehyde Polar; H-bond acceptor 

AMN Methylamine Polar; positive; H-bond donor; H-bond 

acceptor 

BDY Benzaldehyde Polar; aromatic; H-bond acceptor 

BEN Benzene Hydrophobic; aromatic 

BUT Isobutanol Polar; H-bond donor; H-bond acceptor 

CHX Cyclohexane Hydrophobic 

DFO N,N-

dimethylforamide 

Polar; H-bond acceptor 

DME Dimethyl ether Polar; H-bond acceptor 

EOL Ethanol Polar; H-bond donor; H-bond acceptor 

ETH Ethane Hydrophobic 

PHN Phenol Polar; aromatic; H-bond donor; H-

bond acceptor 

THS Isopropanol Polar; H-bond acceptor 

URE Urea Polar; positive; H-bond donor; H-bond 

acceptor 
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Table 4.2: Hydrogen bond accepting groups of probe molecules 
 

 
 
 
 
 
 
 
 
 
 
 
	
    

Probe Abbrev. Accepting atoms 

ACD O4 

ACN N 

ACT O 

ADY O1 

AMN N1 

BDY O1 

BUT O 

DFO O4 

DME O1 

EOL O 

PHN O 

THS OT 

URE O 
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Table 4.3: Hydrogen bond donating groups of probe molecules 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
	
    

Probe 

Abbrev. 

Donating 

Atoms 

ACD N1 

AMN N1 

BUT O 

EOL O 

PHN O 

THS OT 

URE N1; N2 
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Table 4.4: Hydrophobic atoms of probe molecules 
Probe Abbrev. Hydrophobic Atoms 

ACD C3 

ACN C1 

ACT CH1; CH2 

ADY C1 

AMN C1 

BDY C1; C2; C3; C4; C5; C6 

BEN CG; CD1; CD2; CE1; CE2; 

CZ 

BUT C; C1; C2; C3 

CHX C1; C2; C3; C4; C5; C6 

DFO C1; C3 

DME C1; C2 

EOL C1; C2 

ETH C1; C2 

PHN C1; C2; C3; C4; C5; C6 

THS CH; CH1; CH2 
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Figure 4.2: FTProd Interface 
FTProd interface with Main Menu window (top right), Settings window (top left), and 
Table window (bottom left). The protein visualized in NewCartoon representation is a 
frame from a molecular dynamics simulation of p53. Consensus sites are represented 
as an MSMS77 surface and the probes are depicted with the licorice representation 
and are colored by hydrophobicity. 
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Figure 4.3: Resolved acetate ion located within the X-ray crystal structure of 
2009 N1 
Structure isolated from epidemic influenza virus67 (PDB ID: 3NSS). FTMAP 
identified this site as the second most predominant CS on the surface of the protein. 
The CS surface is colored by residue type: green indicates a polar residue; white, 
hydrophobic. 
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Figure 4.4: Probe clusters bound to REL1 active site 
A) X-ray crystal structure of REL1, PDB ID: 1XDN (ref). Bound ATP shown in 
licorice representation with cyan-colored carbon atoms. Residues ARG111, ASN92, 
GLU86, and ARG288 are shown in licorice with orange-colored carbon atoms. 
Aromatic carbon ring of PHE 209 also shown in thinner licorice representation. B) 
Cluster 1 with aromatic FTMAP probes interacting with PHE 209. C) Cluster 1 with 
polar FTMAP probes interacting with residues ARG111, ASN92, GLU86, and 
ARG288. 
 

 

Figure 4.5: Top three clusters for REL1 showing third CS in licorice 
representations with orange carbon atoms 
FTMAP probes colored with cyan carbon atoms. All polar interactions except 
hydrogen bonds in panels A & B with ASN92 are made with backbone functional 
groups. 
 

 

A	
   B	
   C	
  

A	
   B	
   C	
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Figure 4.6: FTProd Table window showing RET2 CSs clustered using the 
average-link method with an 8.0Å cutoff 
 

 

Figure 4.7: RET2 structure from third cluster of apo simulation 
The CS ranked highest by FTProd is a large pocket (blue) that opened during this 
simulation. The pocket is closed in the crystal structure and other top cluster 
structures.  
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Figure 4.8: RET2 crystal structure with UTP binding sites 
Sites shown in red and grey surface representation. These sites were identified using 
FTMAP and FTProd. The location of the two CSs correlates well with the locations 
of the resolved UTP molecules (shown in licorice representation) in the crystal 
structure. 

 

Chapter 4, in full, is a reprint of “Multistructural Hot Spot Characterization 

with FTProd”, which was published in 2013 in Oxford Bioinformatics, volume 29, 

issue 3, pages 393-394, by Lane W. Votapka and Rommie E. Amaro. The dissertation 

author was the primary investigator and author of this paper. 
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Chapter 5: Variable Ligand- and Receptor-Binding Hot 

Spots in Key Strains of Influenza Neuraminidase 

Influenza A continues to be a major public health concern due to its ability to 

cause epidemic and pandemic disease outbreaks in humans.  Computational 

investigations of structural dynamics of the major influenza glycoproteins, especially 

the neuraminidase (NA) enzyme, are able to provide key insights beyond what is 

currently accessible with standard experimental techniques. In particular, all-atom 

molecular dynamics simulations reveal the varying degrees of flexibility for such 

enzymes.  Here we present an analysis of the relative flexibility of the ligand- and 

receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, 

the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent 

mapping, we investigate the various ligand- and receptor-binding “hot spots” that 

exist on the surface of NA which interacts with both sialic acid receptors on the host 

cells and antiviral drugs. This analysis suggests that the variable cavities found in the 

different strains and their corresponding capacities to bind ligand functional groups 

may play an important role in the ability of NA to form competent reaction encounter 

complexes with other species of interest, including antiviral drugs, sialic acid 

receptors on the host cell surface, and the sister protein hemagglutinin.  Such 

considerations may be especially useful for the prediction of how such complexes 

form and with what binding capacity.   
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5.1 Introduction 

The influenza A virus is a persistent public health threat that has the potential 

to cause human disease through both epidemic and pandemic events.  The two major 

glycoproteins on the surface of the influenza virus particle, neuraminidase (NA) and 

hemagglutinin (HA), have been well studied due to their involvement as major 

antiviral and vaccine targets, respectively.  Yet, despite decades of investigation, 

many intriguing questions related to their structural dynamics and biophysical 

interactions during infection and treatment remain unanswered.   

X-ray crystallographic structures provide critical information regarding the 

three dimensional structure(s) of the neuraminidase enzyme. However, they typically 

only provide one average snapshot of the protein among the ensemble of possible 

substrates that may be sampled. NA in particular has been shown to be an 

extraordinarily flexible enzyme, especially in the 150- and 430-loop regions 5,10,47. 

Although these two loops are not directly within the active site (i.e. where sialic acid 

(SA), the natural substrate of NA, binds and is cleaved), they line two other 

potentially important locations: the 150-cavity and the secondary sialic acid binding 

site. The composite “binding face” of NA is therefore comprised of the SA, 

secondary SA, and the 150- and 430-cavities (Figure 5.1).  This region of NA is 

believed to complex with HA, host cell receptors that contain its natural substrate, 

and small molecule drugs.  Four copies of the binding face would be exposed to 

incoming binding partners due to the tetramer oligomerization state of NA. 
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Figure 5.1: NA binding face   
A) The neuraminidase binding face is shown for a single monomer, with oseltamivir 
(yellow) bound in the active site. Blue indicates sialic acid binding pocket, green 
indicates 150-loop region, red indicates secondary sialic acid binding and 430-
cavities. B) The tetramer configuration of the NA binding face, shown looking down 
at the top of the NA protein. C) Side view of the tetramer, with stalk region (green) 
and membrane (orange) indicated in cartoon. 

 

The 150-cavity adjacent to the SA binding site has been recently shown to be 

accessible to small molecule compounds 7.  As some strains of NA, in particular 

VN04N1 and the 2009 pandemic H1N1, have a high predominance of this cavity in 

their native structural ensemble, it has been proposed that this area may be targeted in 

the development of drugs that preferentially target those strains.  This could be 

especially important for drug-resistant strains of N1, which periodically emerge in the 

population and are a constant public health threat. A more complete understanding of 

the binding site pockets available to different strains of NA may provide key strategic 

insights into the development of such compounds. Part of this understanding is 

evaluating the binding capacity of such newly revealed sites, which may be 

predictively assessed through computational solvent mapping experiments.  In this 

work we employ FTMAP 62 to carry out the solvent mapping experiments. Favorable 
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binding regions of small organic probe molecules are determined via the following 

steps: (1) rigid body fragment docking using a fast Fourier transform approach, (2) 

minimization and rescoring of fragment-protein complexes, (3) clustering and ranking 

of low-energy fragment-protein complexes, (4) consensus site determination. 

Populated consensus sites found by FTMap, and its predecessor CSMap 78, have been 

shown to agree with ligand binding sites identified using experimental methods 

62,79,80. 

In this work, we evaluate and compare the relative flexibility of three different 

N1 and N2 strains (A/Tokyo/3/67, A/Vietnam/1204/04, and A/California/04/2009) 

through all-atom molecular dynamics (MD) simulations, and investigate how such 

flexibility affects the binding site capabilities in different regions of the NA binding 

face, with particular emphasis on the 150-cavity and secondary sialic acid binding site 

area. Structural clustering performed on the residues that line the NA binding face 

provides information regarding the relative flexibility of this region among the 

strains.  Subsequent computational solvent mapping experiments assess the capacity 

of these regions to bind to various interaction partners for NA, including host cell 

receptors, sialic acid molecules, drugs, and potentially HA.  

 

5.2 Materials and Methods 

5.2.1 System Setup 

The system setup was performed as follows for all simulated systems (Table 

5.1). Atomic coordinates were taken from 2HTY for A/Vietnam/1203/04 (VN04N1)5, 

3NSS for A/California/04/2009 (09N1) 9, and 1NN2 for A/Aichi/3/67 (N2) 13. 
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Protonation states for histidines and other titratable groups were determined at pH 6.5 

by the PDB2PQR 19,81 web server using PROPKA 20 and manually verified. All 

crystallographically resolved water molecules and calcium ions were retained where 

possible. The system was setup using the program xLEaP from AMBERTools 1.5 82 

using the AMBER99SB force field 22. Disulphide bonds were enforced using the 

CYX residue notation in AMBER with the S-S bonds manually added in xLEaP. 

Each system was solvated in a orthorhombic box containing sufficient TIP3P 83 water 

molecules to provide a minimum distance of 10 Å between any solute atom and the 

edge of the box. Each system was neutralized by addition of Na+ or Cl- counter ions 

as appropriate and then additional Na+ and Cl- ions were added to reproduce 

experimental assay conditions of 20 mM NaCl. 

Table 5.1: Description of simulated systems 
System name, crystal structure PDB identifier, human strain isolate description, total 
simulation time for tetramer simulation, and total number of atoms, including solvent, 
are shown for each system. 
System 
Name 

Crystal 
Structure 

Strain Simulation 
Length (ns) 

No. of 
Atoms 

N2 1nn2 A/Tokyo/3/67 100 133,049 
VN04N1 2hty A/Vietnam/1203/04 100 112,311 
09N1 3nss A/California/04/2009 100 165,171 
 

 

5.2.2 Molecular Dynamics Simulations 

MD simulations were performed using a version of the PMEMD module from 

AMBER 11 that was custom performance tuned for each specific simulation and the 

NICS Cray XT4 and SDSC Trestles supercomputers by SDSC under the NSF’s 

TeraGrid and XSEDE Advanced User Support Programs. Each complex was 

minimized and equilibrated as follows: steric clashes caused by the addition of 
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hydrogen atoms, water and ions were alleviated prior to performing molecular 

dynamics by   minimization in a series of stages. Harmonic restraints, with an initial 5 

kcal  mol-1 Å-2 force constant, on all non-hydrogen protein atoms, were slowly 

reduced over ~40,000 combined steepest descent and conjugate gradient 

minimization steps. 

Following minimization, the systems were linearly heated to 310 K in the 

canonical NVT ensemble (constant number of particles, N; constant volume, V; 

constant temperature, T) using a Langevin thermostat, with a collision frequency of 

5.0 ps-1, and harmonic restraints of 4 kcal mol-1 Å-2 on the backbone atoms. This was 

followed by three sequential 250 ps long runs at 310 K in the NPT ensemble, in 

which the restraint force constant was reduced by 1 kcal mol-1 Å-2 each run.  The 

pressure was controlled using a Berendsen barostat 23 with a coupling constant of 1 ps 

and a target pressure of 1 atm. A final equilibration was carried out with 250 ps of 

NPT dynamics at 310 K without restraints and a Langevin collision frequency of 2 ps-

1. Production runs of 100 ns were then conducted in the NVT ensemble at 310 K. As 

with the heating, the temperature was controlled with a Langevin thermostat (but with 

a 1.0 ps-1 collision frequency). The time step used for all stages was 2 fs and all bonds 

to hydrogen atoms were constrained using the SHAKE algorithm 24. Long-range 

electrostatics were included on every step using the Particle Mesh Ewald algorithm 25 

with a 4th order B-spline interpolation, a grid spacing of < 1.0 Å, and a direct space 

cutoff of 8 Å. For all trajectories, the random number stream was seeded using the 

wall clock time in microseconds. The production trajectories for each monomer of the 
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tetramers were extracted and concatenated to approximate 400 ns of monomer 

sampling. 

 

5.2.3 Clustering 

RMSD-based clustering was performed identically for each strain using the 

clustering algorithms implemented in the rmsdmat2 and cluster2 programs of the 

GROMOS++ analysis software 26. Tetramer conformations were sampled at 200 ps 

intervals yielding a total of 500 conformations. Monomer conformations were then 

concatenated together, giving 2,000 conformations for each strain. To remove 

external translation and rotation, an alpha-carbon atom RMSD alignment to the first 

sampled conformation of chain A was performed for each sampled monomer 

conformation. Following alignment, clustering was carried out using the 

GROMOS++ clustering algorithm 27, implemented in GROMACS, using a cutoff of 

2.2 Å 28,84 on the alpha carbon atoms of the following 70 binding-site residues: 117 to 

119, 133 to 138, 146 to 152, 156, 178 to 180, 196 to 200, 223 to 227, 243 to 247, 276 

to 278, 293 to 295, 325, 346 to 350, 368 to 371, 403 to 406, and 426 to 441.  

 

5.2.4 Computational Fragment Mapping 

Computational fragment mapping was performed on the cluster centroids of 

each strain, using the free FTmap web service (FT-Map http://ftmap.bu.edu) 62. The 

resulting output includes the structures with ranked consensus sites (CSs).  An 

automated algorithm to assess the differences among the ensemble of structures was 

implemented in a script that takes these CSs as input. Overlapping CSs were grouped 
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with increasing distance until reaching a user-specified cutoff. Initially, the CSs in 

each frame are placed along the axes of a two-dimensional, symmetric matrix. The 

cells of the matrix are populated with the measured distance between the centroids of 

each CS. The lowest value in the matrix not located in the main diagonal is iteratively 

extracted, thereby identifying the two closest CSs. Rows that contain each of these 

CSs are merged, as are the columns. Afterwards, new distances are calculated 

between the centroid of the new CS and the rest of the CSs. This process iterates until 

the lowest distance in the matrix is higher than the user-specified cutoff. The columns 

of the matrix correspond to non-overlapping CSs. These CSs are ranked in 

accordance with the ranking provided by FT-map. 

 

5.3 Results  

5.3.1 Different Strains of N1 and N2 Exhibit Varying Degrees of Flexibility 

The three strains studied here: N2, VN04N1, and 09N1 (Table 5.1), exhibit 

varying degrees of flexibility in the region constituting the NA binding face (Figure 

5.1).  RMSD-based clustering on all of the atoms lining the binding face region was 

utilized as an indicator of flexibility.  The results of this analysis indicate that the N2 

strain was the most flexible, with a total of 17 clusters required to represent the 

structural ensemble sampled.  09N1 was the second most flexible, with 12 clusters, 

and the apo VN04N1 strain was the least flexible overall, requiring only 8 clusters.  
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5.3.2 Hot Spots in N2 

The N2 strain is among the most flexible based on the clustering algorithm, 

and exhibits three predominant clusters that represent 44%, 18%, and 16% of the 

sampled ensemble, respectively.  These clusters have variable hot spots that highlight 

how such flexibility can impact ligand and receptor binding (Figure 5.2).  In the most 

predominant cluster, although the 150-loop is in the closed conformation (indicated in 

green in Figure 5.2), there are shallow ligand-binding hot spots that persist.     

 

Figure 5.2: N2 hot spots  
Ligand- and receptor-binding hot spots are shown for the sialic acid cavity (blue), 
150-cavity (green), and secondary sialic acid and 430-cavities (red) for the most 
predominant (A), second most predominant (B), and third most predominant (C) 
ensemble structures.  Clusters of organic probes indicating actual hot spot / probe 
binding locations are shown in various colors in stick representation.  
 

5.3.3 Hot Spots in VN04N1 

The VN04N1 strain shows remarkable rigidity in the overall NA binding face 

region, as compared to both N2 and 09N1.  In thhe dominant first cluster of this 

strain, the 150-loop is in an open conformation; 88% of the ensemble falls into this 

first cluster (Table 5.2). This open cluster exhibits ligand and receptor binding hot 

spots in the secondary SA site, SA site, and the 150-loop region impling many 
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favorable ligand binding hot spots. Cluster 2, which represents only ~5% of the 

structural ensemble, has a closed 150-loop and therefore no cavity or ligand-binding 

hot spot is exhibited, in marked contrast to the predominant conformation.  Cluster 3, 

representing ~4% of the trajectory ensemble, lacks a hot spot area in the lower 430-

cavity, but exhibits hot spots in both the 150-cavity and the secondary SA binding 

site. 

Table 5.2: Cluster results from molecular dynamics simulations  
RMSD-based clustering results are presented for each system. System name, number 
of clusters total, and the individual percentages of each cluster are listed.  Highlighted 
cluster representative structures are depicted in the accompanying figures. 

System Name N2 VN04N1 09N1
No. of Clusters 17 8 12

Cl1 % 44.35 87.85 41.3
Cl2 % 17.7 4.9 28.8
Cl3 % 16.35 4.15 17.45
Cl4 % 8.7 1.45 6.2
Cl5 % 5.2 1.3 2.15
Cl6 % 3.9 0.2 1.7
Cl7 % 0.75 0.1 0.9
Cl8 % 0.7 0.05 0.55
Cl9 % 0.5 // 0.3

Cl10 % 0.5 // 0.25
Cl11 % 0.5 // 0.25
Cl12 % 0.25 // 0.015
Cl13 % 0.2 // //
Cl14 % 0.15 // //
Cl15 % 0.15 // //
Cl16 % 0.05 // //
Cl17 % 0.05 // //
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Figure 5.3: 2004 Vietnam highly pathogenic H5N1 (VN04N1)  hot spots   
Ligand- and receptor-binding hot spots are shown for the sialic acid cavity (blue), 
150-cavity (green), and secondary sialic acid and 430-cavities (red) for the most 
predominant (A), second most predominant (B), and third most predominant (C) 
ensemble structures of the VN04N1 strain.  Clusters of organic probes indicating 
actual hot spot / probe binding locations are shown in various colors in stick 
representation. 
 
 
5.3.4 Hot Spots in 09N1 

The 2009 pandemic H1N1 strain exhibits an intermediate degree of flexibility, 

as indicated by the total number of clusters (Table 5.2).  Hot spots from the first three 

clusters, which represent 41%, 29%, and 17%, respectively, are presented in figure 

5.4.  While this strain exhibited a closed 150-loop configuration in the crystal 

structure, all-atom MD simulations indicated that it would open to adopt a loop 

conformation similar to the VN04N1 strain 52.  In the most predominant cluster 

conformation, there is no hot spot in the 150-loop region.    
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Figure 5.4: 2009 pandemic H1N1 (09N1) hot spots   
Ligand- and receptor-binding hot spots are shown for the sialic acid cavity (blue), 
150-cavity (green), and secondary sialic acid and 430-cavities (red) for the most 
predominant (A), second most predominant (B), and third most predominant (C) 
ensemble structures of the 09N1 strain.  Clusters of organic probes indicating actual 
hot spot / probe binding locations are shown in various colors in stick representation. 
 

5.4 Discussion 

The current study, in which we analyze the structural dynamics and ligand-

binding capacities of the NA binding face, presents several novel insights regarding 

recognition events in NA. All of the dominant conformations for N2, VN04N1, and 

09N1 exhibit 150-cavity hot spots. However, there are subtle differences in their 

exact position relative to each other.  Despite the fact that the 150-loop of the N2 

strain does open in a small fraction of the trajectory, the ligand binding hot spots it 

presents in the 150-cavity is much more shallow, compared to VN04N1, which has a 

wide open 150-loop and a very deep cavity for ligand binding.  The additional 150-

cavity depth presented by VN04N1, which is indicated here to be amenable to ligand-

binding through consensus sites found through computational solvent mapping 

experiments, may allow for additional or modified interactions with host cell 
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receptors or inhibitors. This finding may help rationalize how VN04N1 has been able 

to infect humans in some rare cases.   

The 09N1 strain was recently reported to adopt a open conformation for the 

150-loop over the course of 100 ns  MD simulations 52.  Despite this, shallow or deep 

150-cavity hot spots are completely lacking in clusters 1 and 3 for the 2009 pandemic 

strain (Figure 5.4A, C).  This may suggest reduced capacity of this strain to bind to 

more varied host cell receptors, as compared to the VN04N1 strain; although the 

second cluster structure for this strain does indeed indicate a deep pocket available for 

binding in the 150-cavity, similar to the VN04N1 strain.  The relative population of 

this deep-150-cavity structure is much less (~17%), compared to the VN04N1 deep 

cavities (present in over 90% of the ensemble), which may also influence such 

recognition events. 

The secondary SA binding site was consistently presented in all of the cluster 

representative frames investigated, across all of the NA subtypes studied here.  Subtle 

differences in exact location, size, and binding capacity were indicated (Figures 2-4), 

but for the most part, this site was highly conserved.  It therefore seems very likely 

that this region participates in the host cell sialic acid receptor recognition events.  

Unfortunately, the exact glycosaccharide composition of these receptors and their 

configurations is not well understood; such receptors are likely to be highly complex 

in terms of glycosaccharide content and include branched topologies, which makes 

predictive models of so-called “encounter complexes” more challenging.  Yet, these 

studies indicate the areas with which such molecules favorably interact. We propose 
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such information could be utilized in complex modeling studies with either sialic acid 

receptor models 

 

5.5 Conclusions 

• Considering the structural ensemble for NA enzymes reveals important 

insights relevant to its function.  Analysis of x-ray crystal structures alone may be 

insufficient for a full understanding of these dynamic enzymes. 

• The 150-cavity exhibits varying topology and frequency among the three 

strains studied here: N2 from Tokyo in 1967, the highly pathogenic H5N1 from 

Vietnam in 2004,  and the 2009 pandemic H1N1 from California; ligand-binding hot 

spots vary correspondingly.   

• The 09N1 strain exhibits an open 150-loop, but the 150-cavity it presents is 

much more shallow than VN04N1, which has a deep cavity. Both shallow and deep 

cavities exhibit persistent ligand-binding hot spots for these two strains. 

• The secondary sialic acid binding site persists in throughout the structural 

ensembles for all of the strains studied.  This suggests that this secondary site may 

play an important role in the complexation of NA with sialic acid receptors on the 

host cell. 

Chapter 5, in full, is a reprint of “Variable Ligand- and Receptor-Binding Hot 

Spots in Key Strains of Influenza Neuraminidase”, which was published in 2012 in 

the Journal of Molecular and Genetic Medicine, volume 6, page 293, by Lane W. 

Votapka, Özlem Demir, Robert V. Swift, Ross C. Walker, and Rommie E. Amaro. 

The dissertation author was the primary investigator and first author of this paper. 
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Chapter 6: Weighted Implementation of Suboptimal Paths 

(WISP): An Optimized Algorithm and Tool for Dynamical 

Network Analysis 

Allostery can occur by way of subtle cooperation among protein residues 

(e.g., amino acids) even in the absence of large conformational shifts.  Dynamical 

network analysis has been used to model this cooperation, helping to computationally 

explain how binding to an allosteric site can impact the behavior of a primary site 

many angstroms away.  Traditionally, computational efforts have focused on the most 

optimal path of correlated motions leading from the allosteric to the primary active 

site.  We present a program called Weighted Implementation of Suboptimal Paths 

(WISP) capable of rapidly identifying additional suboptimal pathways that may also 

play important roles in the transmission of allosteric signals.  Aside from providing 

signal redundancy, suboptimal paths traverse residues that, if disrupted through 

pharmacological or mutational means, could modulate the allosteric regulation of 

important drug targets.   

To demonstrate the utility of our program, we present a case study describing 

the allostery of HisH-HisF, an amidotransferase from T. maritima thermotiga.  WISP 

and its VMD-based graphical user interface (GUI) can be downloaded from 

http://www.nbcr.net/wisp. 
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6.1 Introduction 

Allosteric regulation is a key mechanism whereby proteins respond to 

environmental stimuli that modulate their activity85-89.  Classic models of allostery 

(e.g., the MWC90 and KNF91 models) suggest that a binding event at an allosteric site 

induces substantial conformational changes in the primary catalytic site.  However, 

allostery has since been observed in the absence of large-scale conformational 

changes,92,93 suggesting that subtle alterations in protein dynamics can induce a 

population shift in the conformational ensemble without substantially changing the 

mean conformation of the protein.  This subtle form of allosteric communication can 

be modeled by dynamical network analysis.   

 Recent advances in both correlated-residue clustering and dynamical network 

analysis have helped computationally quantify allosteric states.94-103	
   Dynamical 

network models of allostery often focus on the single most direct path of residues 

leading from the allosteric to the primary active site.  However, few researchers have 

considered the state changes of slightly longer (suboptimal) allosteric pathways.  The 

statistical distribution of these additional pathways may be useful for locating 

accessible residues that, if disrupted via pharmacological or mutational means, could 

modulate the allosteric regulation of important drug targets.   

 In this paper, we introduce Weighted Implementation of Suboptimal Paths 

(WISP), a tool that compliments current dynamical network models of allostery by 

rapidly calculating the primary communicating path between two residues as well as 

the slightly longer suboptimal paths.  To facilitate use, we have also created a WISP 

plugin for the popular Visual Molecular Dynamics (VMD) package64.  WISP has 
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been specifically tested on several operating systems, using several versions of 

Python, NumPy, SciPy, and NetworkX.104-109  The program is open source and can be 

downloaded from http://www.nbcr.net/wisp. 

 

6.2 Materials and Methods 

6.2.1 Molecular-Dynamics Trajectory Input 

 As input, WISP accepts an aligned molecular dynamics trajectory in the 

common multi-frame PDB format110.  Trajectory post-processing is necessary prior to 

WISP analysis, as most trajectories are not initially aligned or PDB formatted.  We 

often use the freely available Visual Molecular Dynamics (VMD) software package64 

to perform the necessary alignment and conversion.  

 

6.2.2 Generating the Correlation Matrix 

 WISP, similar to other dynamical network analysis tools111, is based on the 

dynamic interdependence among protein constituents (e.g., amino acids).  A protein 

system is first simplified by representing each constituent as a single node.  For 

example, depending on user-specified WISP parameters, an amino acid can be 

represented by a node positioned at the residue center of mass, the side-chain center 

of mass, the backbone center of mass, or the alpha-carbon.  As a default, the residue 

center of mass is used. 

 The interdependence among nodes is represented as a connecting edge with an 

associated numeric value that reflects its strength.  There are numerous methods for 

describing the interdependence among nodes in a protein network.  Typically, this 
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interdependence is represented by a matrix 𝐶  with values corresponding to the 

weights of each edge.  By default, WISP generates a N2 matrix 𝐶 by calculating the 

correlated motion among node-node pairs as shown in Eq. 6.1 and 6.2:   

 

 

 

 

 

where N is the number of nodes, i and j are indices corresponding to individual nodes, 

ri(t) is the location of node i at time t, and Cij is the matrix element at position (i, j). 

The absolute value of Cij is larger when the motions of two nodes are highly 

correlated or anticorrelated.  In order to compute signaling pathways, it is useful to 

construct a matrix where the opposite is true, i.e., where small values indicate highly 

correlated or anti-correlated motions.  Consequently, the correlation matrix is 

functionalized according to Eq. 6.3, as outlined in previous works.96,97 

 

 

 

As a point of clarification, each wij can be thought of as a “distance” in 

functionalized correlation space.  Throughout the remainder of this paper, concepts 

like length and distance will refer to spans in this space, unless specifically described 

as “Cartesian” or “physical.”  We further note that, while WISP’s default 

 

Cij =
Δri (t) ⋅ Δ

rj (t)

Δri (t)
2 Δrj (t)

2( )1/2
Eq.	
  6.1	
  

 Δ
ri (t) =

ri (t) −
ri (t) Eq.	
  6.2	
  

Eq.	
  6.3	
  wij = − log Cij( )
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functionalized correlation matrix is generally useful, any user-specified matrix that 

defines signaling strength as inversely proportional to edge length can be used.   

 

6.2.3 Reducing the Complexity of the Functionalized Correlation Matrix 

In order to improve the speed of subsequent path-finding steps, the complexity 

of the functionalized correlation matrix W must be reduced.  To this end, two 

techniques are used.  First, a contact-map matrix Mcontact is used to separate entries in 

W that are physically distant from entries in W that exhibit physical interaction 

through contact.  By default, Mcontact is constructed using pcutoff, a user-specified 

Cartesian cutoff distance that captures physical proximity.    

The average location of each atom over the course of the aligned molecular 

dynamics trajectory is first calculated, followed by a pairwise Cartesian distance 

comparison.  Two nodes are considered to be in physical contact if the average 

locations of any of their associated residue atoms come within pcutoff of one another.  

Mcontact entries are set to zero for all node-node pairs that are not in physical contact.  

A simplified, functionalized correlation matrix Wsimp is then constructed by 

multiplying W and Mcontact element-wise.  The entries of Wsimp that equal zero 

represent node-node interactions that are subsequently ignored. Alternatively, users 

can provide their own Mcontact if desired.   

Second, to further reduce the complexity of the functionalized correlation 

matrix W, a pruning algorithm identifies nodes that only participate in pathways 

having lengths in network space that are greater than another user-defined cutoff 

(dcutoff).  As the ultimate goal is to identify suboptimal paths with lengths less than 
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dcutoff, these nodes can be effectively discarded as well.  To identify these nodes, we 

first generate the set of all forced-node paths (FNPs).  An FNP is the optimal pathway 

between two user specified nodes na and nb that is forced to pass through a given third 

node ni.  For any two fixed nodes na and nb, each third node ni is associated with a 

single FNP.  The set of all FNPs can therefore be generated by iterating over all the 

nodes, ni, of the system. 

To calculate an FNP, Dijkstra's algorithm, included in NetworkX,104 is first 

used to identify the optimal paths between na à ni, and nb à ni, respectively.  The 

FNP has a length equal to the sum of these two constituent paths.  Any path between 

na and nb that passes through ni must have a length equal to or greater than that of the 

associated FNP.  Consequently, if the length of the FNP is greater than dcutoff, all 

entries in Wsimp associated with ni are set to zero, so that ni is effectively ignored.  

 

6.2.4 Calculating Suboptimal Pathways 

 Having generated Wsimp, we are now ready to search for both the single 

optimal and multiple suboptimal paths between na and nb.  Fortunately, the optimal 

path is fairly easy to identify using Dijkstra's algorithm, mentioned above.  In 

contrast, identifying all suboptimal paths is difficult because the number of possible 

pathways between na and nb grows rapidly as the total number of nodes increases.   

To identify suboptimal paths, a recursive, bidirectional approach is employed.  

Simultaneous searches start from na and nb (Figure 1, in blue and red, respectively) 

and recursively traverse the nodes of the dynamical network.  The recursive algorithm 

ignores the connections/correlations between nodes that are physically distant (Figure 
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6.1, grey lines).  Additionally, nodes eliminated using the FNP technique described 

above are likewise ignored (Figure 6.1, grey circles).  As soon as any of the 

lengthening paths grows longer than dcutoff, that branch of the recursion is killed 

(Figure 6.1, red ‘X’).  

At each recursive step, all branches originating from na and nb are compared 

for common nodes (Figure 6.1, the node marked with an asterisk).  If a common node 

exists, the two paths are joined at this node.  If the length of this composite path is 

less than dcutoff, a suboptimal path has been identified.  As WISP has been developed 

to take advantage of multiple processors, running the program on a multi-core system 

can lead to further speedups beyond the software optimizations described above. 

 
Figure 6.1:  A schematic for path Identification  
Simultaneous searches start from na and nb (blue and red, respectively) and 
recursively traverse the nodes of the dynamical network.  Connections/correlations 
between nodes that are physically distant are ignored (grey lines). Nodes eliminated 
using the FNP technique are also ignored (grey circles). As soon as any of the 
lengthening paths grows too long, that branch of the recursion is killed (red ‘X’).  At 
each recursive step, all branches originating from na and nb are compared for common 
nodes (asterisk).  If a common node exists, the two paths are joined.  If the length of 
this composite path is sufficiently short, a suboptimal path has been identified.   
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6.2.5 Program Output 

 The program output is a directory containing multiple files, including the 

specific W and Mcontact matrices used.  The primary output file is a TCL script that, 

when loaded into VMD, draws three-dimensional splines representative of the 

optimal and suboptimal paths.  User defined parameters control the relationship 

between spline thickness, color, opacity and path length.  Useful information is also 

given as comments in the TCL file, including path lengths and participating protein 

residues.  

 

6.2.6 Graphical User Interface 

 In addition to the command-line program, we have also developed a Visual 

Molecular Dynamics64 (VMD) plugin and TCL-based GUI for easy preparation and 

visualization of WISP results. The plugin can be accessed through the VMD 

“Extensions” menu.  The main window of the WISP GUI (Figure 6.2) allows the user 

to specify the molecular trajectory and the allosteric-signal source and sink residues.  

Several additional window interfaces allow the user to modify more advanced 

program options if needed.  All options available through the WISP command-line 

interface are available to users of the GUI.  

 Once satisfied with the run specifications, the user may click the “Run WISP” 

button at the bottom of the WISP main window to execute the job.  The plugin loads 

the visualization of the allosteric pathways into the main VMD window, where the 

appearance can be further modified according to the user’s preferences. 
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Figure 6.2:  WISP Graphical User Interface (GUI)   
In this demonstration, the GUI is used to visualize the allosteric pathways between 
Leu50:HisF and Glu180:HisH.  In the main window (top left), the user selects the 
relevant molecule, and which residues to use as the source and sink.  The user may 
also select to load the visualization into VMD upon job completion.  The setting 
option windows (left and bottom right) allow the user to specify additional WISP 
arguments. 
 

6.2.7 HisH-HisF Details 

 The molecular dynamics simulations of HisH-HisF used in the current study 

have been described previously.97  In brief, a model of the HisH−HisF apo dimer was 

prepared from the 1GPW112 crystal structure (Thermotoga maritima).  To generate the 

corresponding holo structure, the 1OX5113 crystal structure (Saccharomyces  
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cerevisiae), which contains a co-crystallized PRFAR allosteric effector molecule, was 

aligned to the apo model, effectively positioning PRFAR within the 1GPW:HisF 

allosteric site.  The aligned 1OX5 PRFAR was then merged with the 1GPW-based 

apo model to yield the corresponding holo structure.  Following solvation and 

equilibration, 20 ns of production dynamics were run for both the apo and holo 

systems using NAMD114, the CHARMM27 force field115, and the same PRFAR 

parameterization used previously.116 

 

6.3 Results/Discussion 

 Allosteric regulation is crucial to many biological processes.  Consequently, 

one natural strategy for rational drug design is to impede or agonize protein function 

via allosteric modulation.  Classic views of allostery suggest that the binding of an 

effector molecule at an allosteric site induces large conformational shifts that alter the 

activity of the primary site.  However, as allostery is not necessarily limited to large 

shifts, this reasoning does not explain some examples of regulation at a distance.  For 

instance, Chung-Jung Tsai et al.93 recently showed that significant backbone 

deformations are not required for an allosteric effect; rather, in the absence of large 

conformational changes, subtle shifts in local dynamics driven by entropic effects92 

govern certain types of allostery.   

 Quasi-harmonic analysis (e.g., like that used by software packages such as 

CARMA117,118 to calculate entropy) is commonly used to build dynamical network 

models that quantify signaling pathways among protein constituents.  Optimal and 

suboptimal pathways are calculated that connect protein constituents believed to be 
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important for allostery (i.e., “sources” and “sinks”).  An optimal pathway is the 

shortest distance traversed between source and sink along weighted edges (e.g., as 

determined by correlated motions), and suboptimal pathways are those closest in 

length to, but not including, the optimal path.  Existing tools can compute optimal and 

suboptimal pathways between residues119; however, these programs lack the speed 

required to compute more than fifty suboptimal pathways within a reasonable amount 

of time (several hours or days).  As statistics related to suboptimal pathways may 

provide important insights that cannot be gleaned from the single optimal pathway, 

faster algorithmic advances must be made.   

 WISP was designed to facilitate the calculation of hundreds of suboptimal 

pathways in minutes, thereby permitting fast and robust statistical analysis of 

biological systems modeled as dynamical networks.  For example, using a modern 

workstation with 24 cores, we recently used a 20,000-frame trajectory to identify 750 

pathways.  WISP loaded and analyzed the trajectory, generated the functionalized 

correlation matrix, and identified the 750 pathways in 21 min and 52 seconds.  When 

the calculation was repeated using a copy of the functionalized correlation matrix 

saved from the first run, the 750 pathways were identified in only 5 minutes and 44 

seconds. 

To demonstrate the utility of the WISP algorithm, we used it to study HisH-

HisF, a multidomain globular protein known to exhibit allostery.  The activity of 

HisH-HisF, which regulates the fifth step of the histidine biosynthetic pathway in 

plants, fungi, and microbes, is substantially altered by the allosteric effector N1-[(5'-

phosphoribulosyl)-formimino]-5-aminoimidazole-4-carboxamide ribonucleotide 
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(PRFAR).120  Guided by previous work,97 we investigated the suboptimal pathways 

between residues Leu50:HisF and Glu180:HisH using 20-ns molecular dynamics 

simulations of both apo and holo HisH-HisF. 

A total of 700 pathways (Figure 6.3) between Leu50:HisF and Glu180:HisH 

were calculated using WISP’s default correlation (Eqs. 6.1-6.3) and contact-map 

matrices, described in the Materials and Methods.  Had only the two optimal 

pathways (apo vs. holo) been considered, we would have concluded that 

communication between the allosteric and primary site is fundamentally different in 

the presence and absence of the PRFAR effector molecule (Figure 6.3,6.4).  The 

optimal pathway between Leu50:HisF and Glu180:HisH in the apo state was 

LEU50:HisF à PHE49:HisF à PHE77:HisF à PRO76:HisF à LYS181:HisH à 

GLU180:HisH.  In contrast, the optimal pathway with PRFAR bound was 

LEU50:HisF à GLY80:HisF à VAL79:HisF à LYS99:HisF à ASP98:HisF à 

LYS181:HisH à GLU180:HisH. 

However, when multiple suboptimal paths were considered, it became 

apparent that the allosteric mechanism is in fact far more intricate.  The optimal path 

in the apo simulation is the shortest suboptimal path in the holo simulation (top 

0.3%), and the optimal path in the holo simulation is the 13th shortest suboptimal path 

in the apo simulation (top 2.0%).  In light of this multi-pathway analysis, the idea that 

PRFAR binding fundamentally alters a solitary line of communication between the 

allosteric and primary site becomes less tenable.  Rather, the binding of the effector 

molecule likely has small effects on multiple pathways, both optimal and suboptimal, 

that when taken together yield a substantial allosteric effect. 



	
   	
   112 

	
  

 

Figure 6.3:  WISP generated signaling pathways   
The 700 shortest paths between Leu50:HisF and Glu180:HisH, shown as red splines, 
derived from A) the apo trajectory, and B) the holo trajectory.  Wisp allows the user 
to choose between a number of graphical settings to better visualize signaling among 
nodes.   
 

We next sought to characterize the strength of the allosteric effect.  The 

lengths of the two optimal pathways did not differ substantially (apo: 2.97; holo: 

2.84).  Consequently, had only these two pathways been considered, some might have 

mistakenly concluded that the allosteric consequences of PRFAR binding are minor.  

In contrast, when hundreds of suboptimal paths were also considered, a large 

PRFAR-dependent shift in communication between the allosteric and primary site 

became apparent.  To demonstrate this shift, we generated a histogram of all path 

lengths for both the holo and apo simulations (Figure 6.4).  The distribution derived 

from the holo trajectory is substantially skewed towards shorter path lengths, 

suggesting that the motions of the residues connecting the allosteric and primary sites 
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are more tightly correlated when PRFAR is bound.  A loss of entropy along the 

pathways may therefore explain the allosteric signal. 

 

Figure 6.4:  Statistical distribution of signaling pathways  
A histogram of the 700 path lengths associated with the apo and holo trajectories are 
shown.  The optimal paths are denoted "Shortest Path."  The path distribution is 
largely shifted to the left for the holo (allosteric) state.  This shift likely results from a 
more coherent signal in the holo simulation, indicating a possible decrease in the 
entropy along the pathways due to PRFAR binding. 
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Figure 6.5:  Node degeneracy in signaling pathways  
The total number of times a given residue participates in any of the 700 paths (i.e., 
node degeneracy) is shown in A) HisF and B) HisH.  Green indicates the holo state, 
blue indicates the apo state, and cyan indicates an overlap.  Note that Leu50:HisF and 
Glu180:HisH are in all 700 paths. 
 

To identify protein residues critical for allosteric transmission, we counted the 

number of times each residue appeared in any of the 700 paths associated with the 

apo and holo trajectories, respectively (i.e., the degeneracy of each node, Figure 6.5).  

Notably, a number of residues had large effector-molecule dependent shifts in 

degeneracy (i.e., HisF: LEU47 (shifts down), VAL69 (shifts up), ALA70 (shifts up), 

ILE73 (shifts up), ASP74 (shifts up), PRO76 (shifts down), and ALA97 (shifts 

down); HisH: LYS181 (slight shift down) as seen from Table 1).  Importantly, these 

residues, which may be crucial for the regulation of protein activity, did not all appear 
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in the optimal apo and holo paths and so would not have been identified had the 

suboptimal paths been ignored.  Previous studies in evolutionary conservation have 

shown HisF: LEU47, VAL69, ALA70, and ILE73 to be partially or strongly 

conserved and HisF: PRO76, ALA97, HisH: LYS181 to be strictly conserved across 

the Glutmine Amidotransferase family.121  No conservation exists in HisF: ASP74, 

but this amino acid is still predicted to play a role in allostery.121  Compounds that 

target these residues may serve as useful precursors to future allosteric modulating 

drugs. 

The analysis of suboptimal pathways in the dynamical network of a protein 

may prove powerful, however there is an issue that should be mentioned.  The 

number of sub-optimal pathways generated by WISP is currently an arbitrary value 

that depends on the users choice of dcutoff.  Future work that quantifies criteria for the 

best number of pathways to calculate is greatly welcome.  

 

6.4 Conclusion 

 We present WISP, a program that rapidly calculates both optimal and 

suboptimal communication pathways between distinct protein residues.  The program 

is available as a VMD plugin or a standalone command-line script.  WISP outputs 

path members and lengths that can be subsequently used in the analysis of path 

distributions, node degeneracy, etc.  

To demonstrate the utility of our program, we presented a dynamical analysis 

of the HisH-HisF protein.  Allosteric modulation, in our test case, was likely the 

result of subtle changes in multiple suboptimal pathways, rather than large changes in 
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a single optimal path.  Additionally, we showed that PRFAR binding causes a large 

shift towards shorter path lengths (i.e., more correlated motions) in 700 

communication pathways between residues HisF:Leu50 and HisH:Glu180.  This shift 

conveys the strong allosteric effects of the PRFAR modulator (Figure 6.4).  The 

multiple suboptimal pathways are dominated by a few select residues, as indicated by 

the shift in node degeneracy between the apo and holo states (Figure 6.5 and Table 

6.1). 

WISP has been successfully tested on a number of platforms (Table 6.2).  We 

are hopeful that the program will be a useful tool for the computational-biology 

community. 

Table  6.1:  Node Degeneracy table   
A numerical representation of the same data from Fig. 6.5.  The comparison between 
the apo and holo states shows that certain residues are more sensitive to the allosteric 
effector PRFAR than others (shaded columns). 
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Table 6.2:  WISP operating specifications 
WISP has been tested on a number of operating systems, using various versions of 
NumPy, SciPy, and NetworkX.  We note that installation under Windows was 
difficult; however, the command-line version of the program was successfully 
executed after installing the appropriate dependencies using the ActivePython 
software package. 

 
 

Chapter 6, in full, is a reprint of “Weighted Implementation of Suboptimal 

Paths (WISP): an Optimized Algorithm and Tool for Dynamical Network Analysis”, 

which was published in 2014 in the Journal of Chemical Theory and Computation, 

volume 10, issue 2, pages 511-517, by Adam T. Van Wart, Jacob D. Durrant, Lane 

W. Votapka and Rommie E. Amaro. The dissertation author was the third investigator 

and author of this paper. 

 

Operating System Python NumPy SciPy NetworkX

Scientific Linux 6.4 2.6 1.7 0.9.0 1.7

Mac OSX 10.6 2.7.2 1.6.1 0.9.0 1.8.1

Ubuntu 12.04 2.7.5 1.7.1 0.12.0 1.8.1

Windows XP 2.7.3 1.7.0rc1 0.11.0 1.8.1
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Chapter 7: POVME 2.0: An Enhanced Tool for Determining 

Pocket Shape and Volume Characteristics 

 Analysis of macromolecular/small-molecule binding pockets can provide 

important insights into molecular recognition and receptor dynamics. Since its release 

in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted 

as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. 

We here present POVME 2.0, which is an order of magnitude faster, has improved 

accuracy, includes a graphical user interface, and has new features for improved 

pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the 

binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma 

brucei, the etiological agent of African sleeping sickness. The POVME analysis 

characterizes the full dynamics of a potentially druggable transient binding pocket 

and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that 

this new version will be a useful tool for the computational- and medicinal-chemist 

community. 
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7.1 Introduction 

Binding-pocket analysis is an active area of research that includes pocket 

detection and characterization, druggability prediction, and the study of binding-site 

flexibility.122 The advent of the Protein Data Bank (PDB123) spurred the creation of a 

number of software packages aimed at facilitating the analysis of macromolecular 

pockets.124-127 In recent years, additional programs have been developed with 

improved accuracy and increasingly advanced pocket-characterization 

algorithms,15,62,128-135 as recently reviewed by Zheng et al.136 

Pocket analysis is useful for studying receptor dynamics.52,137-158 One can get 

a good sense of the full gamut of possible binding-pocket conformational states by 

obtaining multiple structures from X-ray crystallography, NMR spectroscopy, or 

molecular dynamics (MD) simulations and comparing pocket volumes and, in 

particular, shapes. These comparisons facilitate the identification of novel, 

pharmacologically relevant binding-pocket conformations, as well as transient 

binding pockets that are not evident when a limited number of static structures are 

considered. 

Additionally, pocket analysis can also be applied to computer-aided drug 

discovery (CADD). Among the many complex factors that govern molecular 

recognition,159,160 pocket volume and shape are perhaps the most straightforward. 

Simply put, a ligand will not generally bind to a receptor if it cannot physically fit 

within the confines of the binding pocket, and receptor/ligand shape complementarity 

plays a key role in molecular recognition.161 Consequently, pocket characterization 

has been used to inform CADD efforts aimed at predicting ligand binding, whether 
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through virtual screening, QSAR, or volumetric similarity searching.162-164 Given the 

astounding variety of pocket geometries possible,165 this characterization is no trivial 

task. 

To address this challenge, both ligand- and receptor-centric approaches have 

been developed. Ligand-based methods such as OpenEye’s Rapid Overlay of 

Chemical Structures (ROCS) algorithm166 seek to identify novel small-molecule 

binders by querying a compound database for entries with three-dimensional shapes 

that are similar to that of a known template ligand,167 as assessed by the degree of 

volume-overlap mismatch. These techniques perform comparably to more traditional 

virtual-screening methods168 and have been used to successfully identify a number of 

experimentally validated ligands (see, for example, ref. 169-171).  

While ligand-based approaches will certainly continue to have high utility,172 

a more receptor-centric methodology is sometimes advantageous to consider. Bound 

ligands often occupy only a portion of their respective pockets,161,165 on average 

perhaps as little as a third of the total space available.161 Analysis of ligand volume 

and shape alone cannot account for potential interactions with pocket regions that are 

not occupied by the template ligand itself. In contrast, receptor-based pocket analysis 

elucidates the volume and shape of the entire cavity, including regions not yet 

exploited by existing pharmacophores. 

Receptor-centric techniques can also be used to select diverse pocket shapes 

for use in subsequent virtual-screening efforts. It is often advantageous to dock a 

library of small molecules into multiple receptor conformations in order to account 

for receptor flexibility. Carefully selecting conformations with unique pocket 
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geometries has been shown enhance hit rates and subsequent ligand diversity.173-176 

To simplify binding-pocket characterization, we recently developed an 

algorithm called POVME (POcket Volume MEasurer).15  POVME floods a pocket-

encompassing region with equidistant points, removes those points that are near 

receptor atoms, and calculates the volume from the remaining points. The points can 

themselves be saved, providing a specific description of the pocket shape as well. 

Inspired by the fairly widespread adoption of our program (43 citations in Google 

Scholar as of April 2014), we have now created a second, much improved version. 

POVME 2.0 is over an order of magnitude faster than POVME 1.0, includes a 

graphical user interface (Figure 7.1) that greatly improves usability, and incorporates 

new features that improve accuracy and facilitate analysis.  

POVME 2.0 has been tested on all major operating systems with various 

versions of python, numpy, and scipy (Table 7.1).107-109,177,178 A copy of the program, 

which is released under the terms of the GNU General Public License, can be 

obtained from http://nbcr.ucsd.edu/POVME. We are hopeful that POVME will be a 

useful tool for the computational- and medicinal-chemist community. 
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Figure 7.1: The POVME 2.0 graphical user interface 
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Table 7.1: Operating-system compatibility 
 POVME 2.0 has been successfully tested on all major operating systems with various 
versions of python, numpy, and scipy.  
Operating System Python Version Numpy Version Scipy Version 

Scientific Linux 6.2 2.6.6 1.6.2 0.11.0 

OS X 10.9.1 2.7.5 1.6.2 0.11.0 

Windows 7 Home Premium 2.7.6 1.8.0 0.13.3 

 
 

7.2 Materials and Methods 

7.2.1 The POVME Algorithm 

 Successful POVME use includes three required and two optional steps. 

Trajectory alignment, the construction of a pocket-encompassing region, and the 

subsequent identification of the pocket-occupying space are required. Optionally, the 

user can also instruct POVME to eliminate subregions that fall outside the receptor’s 

convex hull and/or are non-contiguous with the primary pocket. A detailed 

description of each of these steps follows. 

1) Aligning the trajectory. POVME accepts a multi-frame PDB (Protein Data 

Bank) file as input. We expect that MD simulations will be the most common source 

of these files, but multiple crystal structures or NMR conformations can also be used. 

We have found that the computer program Visual Molecular Dynamics (VMD)30 is 

useful for aligning trajectories and converting files to the PDB format, but other 

software packages can also be used for this purpose. Alignment is necessary because 

the POVME algorithm assumes the pocket being measured does not translate or rotate 

in space. Different alignment methodologies can subtly alter how this requirement is 
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met, as discussed in the Results and Discussion. We note also that single-frame PDB 

files can likewise serve as POVME input if the user wishes only to characterize a 

single pocket. 

2) Defining a region that encompasses all trajectory binding pockets. The user 

must next define “inclusion” (Figure 7.2A) and “exclusion” (Figure 7.2B) regions, 

respectively. Both of these regions are constructed from a combination of user-

specified spheres and rectangular prisms. The required inclusion region should 

entirely encompass all the binding-pocket conformations of the trajectory. The 

optional exclusion region defines portions of the inclusion region that should be 

ignored, perhaps because they are not truly associated with the pocket. To generate a 

field of equidistant points that encompasses all the binding-pocket conformations of 

the trajectory, POVME first floods the user-specified inclusion region with points and 

then removes any points also contained in the optional exclusion region (Figure 2C). 

3) Removing points that are near receptor atoms. As the purpose of POVME 

is to measure the volume of the binding-pocket cavity, the program next removes any 

points that are close to receptor atoms, leaving only those points that are likely to be 

located within the binding pocket itself (Figure 2D). 

4) Removing points outside the receptor's convex hull. POVME 2.0 introduces 

an optional new feature for removing points that lie entirely outside the binding 

pocket. Specifically, the gift-wrapping algorithm is used in combination with the Akl-

Toussaint heuristic179 to define the convex hull of receptor atoms near the user-

defined inclusion region. As the gift-wrapping algorithm runs in O(n2) time, where n 

is the number of atoms in the receptor structure, it is not necessarily the fastest 
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algorithm for computing the convex hull. However, by coupling it with the Alk-

Toussaint heuristic, the expected running time is lowered to O(n). Ultimately, any 

points that fall outside the convex hull are removed (Figure 2E). This feature is 

particularly useful when the user defines an inclusion region that protrudes into the 

surrounding solvent-occupying space. 

5) Removing points that are not contiguous with the primary pocket. Like the 

original POVME program, version 2.0 retains the optional ability to remove isolated 

patches of points that are not contiguous with the primary binding pocket. This 

feature requires that the user define a third region, again using spheres and 

rectangular prisms, that always falls within the primary binding-pocket region, 

regardless of the trajectory frame considered (Figure 2F). All pocket-occupying 

points within or contiguous to this region are retained, but isolated patches of points 

that are not directly connected are deleted (Figure 2G). 

POVME output. By default, POVME writes a number of files to the disk. The 

calculated pocket volumes, as well as user-defined parameters and progress messages, 

are saved to a simple text-based log file. POVME can also be instructed to save the 

volume measurements to a second file in a simple tabular format that can be easily 

pasted into popular spreadsheet programs. Pocket-occupying points are equidistant 

(1.0 Å by default), so each point is associated with an identical cubical volume (e.g. 

1.0 Å3). The volume of a whole pocket is calculated by simply summing the 

individual volumes associated with each unique point. 
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Figure 7.2: A graphical summary of the POVME 2.0 algorithm 
A) The user defines an inclusion region. B) The user defines an exclusion region. C) 
The portion of the inclusion region that is not also in the exclusion region is flooded 
with equidistant points. D) Any of the points that are close to receptor atoms are 
deleted. E) Any points outside the convex hull are optionally deleted. F) The user can 
optionally define a contiguous-points region. G) All points that are not contiguous 
with that region are similarly deleted. 
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POVME also optionally saves the pocket-occupying points of each frame to 

PDB file(s) on the disk. The user can instruct the program to save these points to 

separate files and/or to a single PDB trajectory. Some visualization programs (e.g. 

VMD) are only compatible with trajectories that have the same number of atoms in 

each frame. POVME can optionally write extra points to the origin (0.0, 0.0, 0.0) on a 

frame-by-frame basis to satisfy this requirement. As these POVME frames are 

formatted similarly to those produced by SiteMap, they are also compatible with the 

pocket-shape volumetric overlap clustering tools produced by 

Schrödinger.133,134,173,174 

Finally, POVME also optionally saves a volumetric density map in the Data 

Explorer (DX) format, similar to the MDpocket algorithm.132 A volumetric density 

value is associated with each of the pocket-occupying points by calculating the 

fraction of all trajectory pockets that include the given point. If the density map is 

displayed as an isosurface, the value of the isosurface expresses the fraction of time 

(e.g. over the course of the simulation) that the pocket included the displayed volume. 

 

7.2.2 Test System: RNA Editing Ligase 1 

 We obtained the 1XDN crystal structure,72 which includes enzyme residues 

52-365 as well as an ATP molecule and a magnesium ion bound in the active site, 

from the Protein Data Bank.123 Selenomethionine residues were replaced with 

methionine. All crystallographic water molecules were retained. The AMBER LEaP 

module was used to submerge the protein in a rectangular box of water molecules that 

extended 10 Å beyond the system atoms in all three Cartesian dimensions. 
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Monovalent ions were added to neutralize the system and to bring it to a 0.1 M salt 

concentration. The protein and water atoms were parameterized using the 

Amber99SB force field22 and the TIP4P-ew water model,180 respectively. 

Additionally, we used the parameters for ATP, magnesium, and monovalent ions 

developed by Meagher et al.,181 Allner et al.,182 and Joung and Cheatham,183 

respectively.  

The REL1 system was subjected to five 5000-step energy minimizations using 

the NAMD molecular-dynamics simulation package50,184 to gradually introduce full 

flexibility. We first allowed only hydrogen atoms to move, second released all water 

molecules, third released ions and ATP, fourth released the protein amino-acid side 

chains, and fifth removed all constraints. The system was then heated from 0 to 310 K 

in an NVT ensemble for 500 ps, with the protein backbone restrained. Equilibration 

was achieved in two segments, each consisting of a 250-ps simulation in the NPT 

ensemble. In the first segment, the protein backbone was restrained; in the second, no 

restraints were applied.  

Five production simulations were performed, starting from the fully 

equilibrated structure. A total of 650 ns were simulated (one simulation of 250 ns, and 

four of 100 ns). Different random seeds were used for each productive simulation to 

generate different starting velocities.  

To study the flexibility of the TbREL1 active site, we extracted 6,500 frames 

from the simulations, evenly spaced 100 ps apart. All waters, counterions, ATP 

molecules, and magnesium ions were removed. VMD’s RMSD Trajectory Tool30 was 

used to align the extracted frames. In order to determine how differing alignment 
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methodologies would impact the POVME analysis, we used several different 

protocols. The extracted frames were concatenated and aligned by 1) the atoms of the 

bound ATP ligand; 2) the atoms of the active-site residues (e.g. any residue within 5 

Å of the crystallographic ligand); 3) the alpha-carbon atoms (Cα) of the active-site 

residues; and 4) the Cα of the entire protein. Each of these four aligned trajectories 

were saved as separate multi-frame PDB files. 

Separate POVME analyses were performed for each aligned trajectory. In 

each case, we characterized the combined ATP/transient pockets using an inclusion 

region defined by 10 carefully positioned spheres. This region was filled with 

equidistant points spaced 1.0 Å apart. No exclusion regions were required. Points that 

were not contiguous with those contained within a small sphere centered at the 

opening of the ATP-binding pocket were discarded. The new convex-hull feature was 

enabled. 

To benchmark POVME 1.0 and POVME 2.0, we further considered the REL1 

trajectory aligned by all Cα. Additional analyses of this trajectory were performed 

using POVME 1.0 and POVME 2.0 with the new convex-hull feature disabled. 

 

7.3 Results/Discussion 

 As pocket volume and shape play critical roles in determining small-molecule 

binding, they are often the focus of computer-docking campaigns, QSAR studies, and 

molecular-dynamics analyses. We previously created a novel algorithm for 

characterizing macromolecular pockets called POVME (POcket Volume MEasurer) 

that has been widely adopted.15 We here present a much-improved version of the 
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algorithm, POVME 2.0.  

POVME 2.0 has four primary advantages over previous versions. First, it is an 

order of magnitude faster because it relies on the numpy and scipy python modules to 

perform matrix-based calculations at nearly the speed of compiled C programs.107-

109,177,178 Additionally, the user can instruct POVME 2.0 to take advantage of multiple 

processors to further improve the speed of the calculation. 

Second, POVME 2.0 comes with an optional graphical user interface (GUI) to 

facilitate usability (Figure 7.1). The GUI requires that Tkinter,185 a python binding to 

the Tk GUI toolkit,186 be installed. Fortunately, Tkinter is included in the standard 

Windows and OS X python distributions, as well as many Linux distributions. 

Third, POVME 2.0 includes a new convex-hull-clipping option that improves 

the accuracy of the volume calculation. Portions of the binding pocket that fall 

outside the convex hull of nearby receptor atoms are discarded; consequently, only 

portions of the pocket that are truly interior to the protein surface are considered.  

Fourth, unlike the original version, POVME 2.0 can analyze entire trajectories 

in addition to single protein conformations. With POVME 1.0, users were required to 

save each trajectory frame to a separate PDB file in order to study changes in pocket 

volume and shape over the course of a MD trajectory. In contrast, POVME 2.0 can 

read multi-frame trajectory files without requiring that each frame be saved 

separately. When analyzing MD trajectories, POVME outputs both frame-by-frame 

and whole-trajectory analyses. For frame-by-frame analysis, POVME saves the 

individual pocket shapes in the PDB format. For whole-trajectory analysis, POVME 

creates a volumetric density map showing the frequency with which different regions 
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of the protein are included in the pocket over the course of the trajectory.  

 

7.3.1 Test Case: Trypanosoma brucei RNA Editing Ligase 1 (TbREL1) 

To demonstrate the utility of this new POVME implementation, we used it to 

analyze an MD simulation of RNA editing ligase 1 (REL1) from the parasite 

Trypanosoma brucei, the etiological agent of African sleeping sickness. REL1 is a 

critical component of the T. brucei editosome, which edits transcriptional RNA prior 

to translation. This extensive RNA-editing process is essential for trypanosomatid 

survival, and REL1 has been shown to be a viable drug target.187,188 Indeed, REL1 

inhibitors have been identified that kill the whole-cell parasite.189  

Previous studies of related crystal structures have hinted at the existence of a 

transient subpocket connected to the distal portion of the primary ATP-binding site 

that may provide unique opportunities for drug discovery.139 Compounds that bind to 

the REL1 primary site may also target other ATP-binding proteins with structurally 

similar pockets; however, compounds that bind to the unique transient pocket may 

prove more target specific.  

To better characterize the dynamics of the REL1 pockets, we characterized 

6,500 combined ATP-transient pockets extracted from 650 ns of MD simulations. We 

first aligned the trajectory to ensure that the binding pocket was consistently in the 

same location. As with other pocket-analysis programs,132,136,190 simulation-trajectory 

alignment impacts the calculation of the average volumetric density maps. To 

demonstrate this sensitivity, we performed four separate POVME analyses, aligning 

the REL1 trajectory by 1) all ATP-ligand atoms; 2) all the atoms of the active-site 
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residues; 3) the alpha-carbon atoms (Cα) of the active-site residues; and 4) the Cα of 

the entire protein. Volumetric density maps were calculated for each of these aligned 

trajectories and were visualized superimposed on the receptor structure using VMD. 

When displayed as an isosurface, these density maps show the fraction of frames with 

measured pockets that included the displayed volume. 

For the purposes of comparison, we judged the utility of each alignment 

protocol by how consistently the associated POVME analysis captured the ATP-

binding-pocket region over the course of the entire trajectory. As our simulations 

included a bound ATP ligand, the ATP-binding subpocket should always be open (i.e. 

the region of the volumetric map corresponding to ATP in our simulations should 

have a high density, in excess of 95%).  

When the trajectory was aligned to all active-site Cα, the POVME-identified 

pocket consistently included the ATP-binding region (Figure 7.3B). We also found 

that aligning by all active-site atoms or even the atoms of the bound ligand itself led 

to similar POVME results (Figure 7.4). In contrast, the pocket analysis was less than 

optimal when the trajectory was aligned by the Cα of the whole receptor (Figure 

7.3C), likely because substantial protein motions distant from the active site led to 

poor binding-pocket alignment. Consequently, the transient pocket was identified as 

open only half as often when the trajectory was aligned by all Cα vs. active-site Cα.  
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Figure 7.3: Volumetric density maps of the TbREL1 active site 
Some regions of the protein have been removed to facilitate visualization. A) The 
crystallographic pose of the bound ATP molecule. Crystallographic water molecules 
indicate the location of a secondary binding pocket that is transiently accessible from 
the ATP-binding pocket. B) The region of the binding pocket identified as “open” at 
least 95% of the time when the trajectory was aligned by the active-site Cα. C) The 
same region when the trajectory was aligned by the Cα of the whole protein. D) The 
region of the binding pocket identified as “open” at least 25% of the time when the 
active-site-Cα alignment was again used. 
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Figure 7.4: TbREL1 volumetric density maps 
Some regions of the protein have been removed to facilitate visualization. The region 
of the binding pocket identified as “open” at least 25% of the time is shown, as 
determined when the trajectory was A) aligned by all the atoms of the ATP ligand, 
and B) aligned by all the atoms of the binding-pocket residues. 
 

While the best protocol to use is likely system dependent, based on these 

REL1 results we concur with others in recommending that trajectories be aligned by 

active-site Cα.190 When the binding pocket is partly composed of flexible loops, 

aligning by pocket Cα that belong to stable secondary-structure elements may be 

appropriate. 

Having considered four different alignment strategies, we ultimately chose the 

active-site-Cα aligned trajectory. POVME analysis revealed the full dynamics of the 

transient REL1 pocket, as indicated by the density maps in Figures 7.3B and 7.3D at 

isovalues of 95% and 25%, respectively. As expected given that we simulated the 

holo protein, the primary ATP-binding pocket was persistently open throughout the 

entire simulation (Figure 7.3D, 95% isovalue). The intermittent transient pocket was 
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open at least 25% of the time (Figure 7.3D), suggesting a persistence sufficient to 

support our hypothesis of druggability. 

 

7.3.2 Benchmarking 

To judge POVME 2.0 performance, we similarly analyzed a TbREL1 

trajectory using POVME 1.0. When the convex-hull algorithm was disabled, both 

POVME 1.0 and 2.0 gave nearly identical volume measurements (Figure 7.5 graph, in 

black), but POVME 2.0 completed the pocket-volume calculation over 35 times faster 

(5.0 vs. 175.4 processor-hours). When the new convex-hull feature was enabled, 

POVME 2.0 required 32.8 processor-hours (Figure 7.5 graph, in gray). Although the 

convex-hull feature does add computational expense, it leads to more accurate 

characterizations that do not include regions outside the confines of the pocket 

(Figure 7.5, bottom panel).  
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Figure 7.5: POVME 1.0 and 2.0 benchmarks  
The graph shows benchmark REL1 pocket volumes as a function of simulation time. 
POVME 1.0 and 2.0 give nearly the same volume measurements (in black). When the 
POVME 2.0 convex-hull option is enabled, the volumes are smaller (in grey). The 
bottom panel, generated using the 1XDN crystal structure, illustrates the difference. 
When the convex-hull option is enabled, the region of the binding pocket is more 
accurately captured (solid grey) than when it is deactivated (black wireframe). Some 
portions of the protein have been removed to facilitate visualization. 
 

7.4 Conclusion 

 POVME 2.0 is a much improved version of our popular algorithm for 

characterizing the volumes and shapes of macromolecular (e.g., protein) binding 

pockets. Version 2.0 implements a number of enhancements, including speed 
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improvements due to numpy/scipy integration and the optional use of multiple 

processors; better accuracy due to an optional convex-hull implementation; additional 

volumetric-analysis tools (i.e. volumetric density maps); and a graphical user 

interface that improves usability. 

 Although pocket-shape and volumetric analyses are not novel, factors such as 

the high computational cost of most algorithms have discouraged widespread 

adoption. POVME 2.0 significantly reduces the amount of time required, allowing 

users to more rapidly analyze large ensembles of pocket shapes derived from multiple 

experimental structures or simulation methods, such as MD. The added volumetric-

density-map analysis feature provides a pocket-centric view of receptor flexibility 

with potentially useful drug-discovery applications. Indeed, others have shown that 

docking into structurally distinct binding pockets can lead to enhanced hit rates and 

chemical diversity.173-176  

To demonstrate how POVME 2.0 can provide pharmacologically relevant 

information about pocket flexibility, we used it to analyze the dynamics of an 

essential, ATP-binding component of the T. brucei editosome, TbREL1.187,188 Given 

that ATP-binding pockets are ubiquitous, small-molecule inhibitors that bind 

exclusively to the primary REL1 pocket may also bind to the ATP pockets of critical 

human enzymes, leading to undesirable side effects. Consequently, we considered a 

unique secondary binding pocket that is transiently accessible from the primary REL1 

ATP-binding pocket. POVME suggests this transient pocket assumes an open 

conformation roughly 25% of the time. Identifying less promiscuous REL1 inhibitors 

that exploit this unique pocket is an important component of our ongoing efforts to 



	
   	
   138 

	
  

target this crucial enzyme. 

Chapter 7, in full, is a reprint of “POVME 2.0: An Enhanced Tool for 

Determining Pocket Shape and Volume Characteristics”, which was published in 

2014 in the Journal of Chemical Theory and Computation, volume 10, issue 11, pages 

5047-5056, by Jacob D. Durrant, Lane W. Votapka, Jesper Sørensen, and Rommie E. 

Amaro. The dissertation author was the secondary investigator and author of this 

paper. 
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Chapter 8: Multiscale Estimation of Binding Kinetics Using 

Brownian Dynamics, Molecular Dynamics and Milestoning 

The kinetic rate constants of binding were estimated for four biochemically 

relevant molecular systems by a method that combines Brownian dynamics 

simulations with more detailed molecular dynamics simulations using milestoning 

theory. The rate constants found using this method were in good agreement with 

experimentally and theoretically obtained values. We predicted the association rate of 

a small charged molecule toward both a charged and an uncharged sphere and 

verified the estimated value with Smoluchowski theory. We also calculated the kon 

rate constant for superoxide dismutase with its natural substrate, O2
-, in a validation 

of a previous experiment using similar methods but with a number of important 

improvements. We also calculated the kon for a new system: the N-terminal domain of 

Troponin C with its natural substrate Ca2+. The kon calculated for both systems closely 

resemble experimentally obtained values. This novel multiscale approach is 

computationally cheaper and more parallelizable compared to other methods of 

similar accuracy. We anticipate that this methodology will be useful for predicting 

kinetic rate constants and for understanding the process of binding between a small 

molecule and a protein receptor. 
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8.1 Introduction 

Estimating kinetics is an important and challenging task in computational 

biophysics. The kinetic rate constants of ligand-receptor interactions, in particular the 

kon and koff values, play an important role in enzymology191 and drug discovery192. 

Kinetic rate constants of ligand-receptor association and dissociation are important 

determinants of drug efficacy192, and the optimization of these quantities is an 

important problem in medicinal chemistry. Although these values may often be 

measured experimentally, an accurate computational estimate would be attractive in 

cases where experimental measurement is expensive or difficult. In addition, 

advances in computational power, particularly in parallel computing, offer great 

potential for methods that take advantage of the vast and increasing power of 

computation. 

As indicated in Eq. 8.1, ligands typically bind to receptors according to a 

second order reaction process with a rate constant of kon. Unless a nonreversible 

reaction occurs, ligands typically unbind from their receptors according to a first 

order process with a rate constant of koff. 

A number of computational techniques exist to predict rate constants. The 

timescale of kinetic events vary wildly in biomolecular systems, and can extend 

between 108 events per second to less than 1 event per hour191 for a single reaction 

event at physiological concentrations of reactants. For computational methods that 

estimate kinetic quantities, there is typically a high correlation between accuracy and 

 
𝑹+ 𝑳  

𝒌𝒐𝒏

𝒌𝒐𝒇𝒇

  𝑹𝑳 
Eq. 8.1 
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computational cost. Explicit all-atom molecular dynamics (MD) is one approach to 

estimate the kon between a protein and a small molecule193-196. Though it offers a 

relatively high degree of accuracy, this technique involves extensive 

cyberinfrastructure overhead or access to specialized hardware such as the Anton 

machine197. To our knowledge, the longest MD simulations to date are limited to the 

low millisecond range198.  

Various simplification theories and algorithms offer cheaper alternatives to 

making kinetic approximations using brute-force, all-atom explicit MD simulations. 

Examples include two closely related techniques: Markov state models (MSM)199-207 

and milestoning1,2,208-211 among many others. 

Brownian dynamics (BD) is a simulation method used to model 

macromolecular diffusion in an aqueous solvent212. Compared to MD simulations of 

intermolecular encounters, BD simulations typically require far less computation to 

simulate an association event. Due to various approximations, including rigid body 

dynamics, reduced point-charge interactions, implicit solvent, and relatively large 

timestep, millions of protein/small molecule binding or association events can be 

simulated in 24 hours using modest parallelization. However, the approximations and 

assumptions made when using BD to simulate molecular binding can also introduce 

inaccuracies. BD can be used alone to model ligand association213. However, an 

accurate recovery of experimentally determined observables related to a binding 

process frequently requires additional models to approximate physical effects due to 

solvation shells & polarization, solvent entropic effects, and solute internal degrees of 
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freedom. Schemes to include these factors in BD simulations have been 

implemented214-217.  

Methods for combining the speed of rigid body BD simulations with the 

precision of all-atom MD simulations to predict kinetics have been used in the past. 

In a technique invented by Luty, El Amrani, & McCammon, the kon of superoxide 

dismutase (SOD) with its natural substrate O2
- was estimated by partitioning space 

into a region close to the binding site for simulation with MD, and a region far from 

the binding site where simulation with BD was more appropriate218,219. The statistics 

of each were combined into a kon estimate using a MSM. 

Although Luty et. al.’s original method dramatically decreased the cost to 

estimate binding kinetics compared to brute-force MD, a number of optimizations can 

be made to the procedure. Though proportionally smaller, the MD regime was 

disproportionally more expensive than the BD in Luty et. al.’s initial implementation. 

In this work, we used milestoning theory instead of an MSM to utilize the transition 

probabilities and incubation times between states. We modified Luty et. al.’s method 

by further partitioning the MD regime into additional milestones. We also used a first 

hitting point distribution (FHPD) as the starting phase space points for the 

milestoning trajectories rather than an equilibrium distribution208,210, a required 

procedure in milestoning theory. It is interesting to note that Luty et. al.’s method was 

remarkably similar to milestoning. Their use of surface states in phase space and a 

transition matrix to represent traversal between the states was somewhat prescient. 

However, Luty et. al. did not go so far as to integrate time information into the 

method to estimate mean first passage times (MFPT), nor did they did use FHPDs. 
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Milestoning proper came later1 and the formalism has since been extensively 

developed by others1,2,208-210. A milestoning model is very similar to an MSM; so 

much so that milestoning techniques have been used to perform MSM calculations3, 

and a number of papers provide extensive comparisons of the two approaches2,220,221. 

In addition to repeating the analysis of SOD made by Luty et. al. with our new 

method, we also estimated kon values for three additional systems. We calculated kons 

for two simple, analytically verifiable “spherical receptor” systems: the rate that a 

Na+ particle crosses an uncharged sphere of radius 6.0, and the rate the same particle 

crosses a charged sphere of radius 6.0 (Figure 8.1). We also estimated the kon of 

binding between the N-domain of Troponin C (TnC) and its natural substrate Ca2+.  

Since experimentally measured kons existed for each of the two protein systems 

mentioned above, we attempted to closely recreate the experimental conditions within 

our simulations and subsequently recapture the correct kons to validate our methods. 

Armed with this technique, one can make new attempts to estimate kinetic values for 

biologically or pathogenically interesting systems. 
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Figure 8.1: A cartoon depiction of a hypothetical path taken by a ligand as it 
diffuses in the vicinity of its binding site in the MD simulation regime  
As the ligand travels, it crosses a series of milestones. Upon crossing, the ligand is 
considered to be in the crossed milestone’s state until it diffuses across a different 
milestone. The trajectory is terminated when the ligand crosses the “binding surface”, 
where it is considered bound, or when it crosses the BD surface, thus existing the MD 
simulation regime. 
 

8.2 Theory 

8.2.1 Molecular dynamics  

MD is a simulation technique that uses Newton’s or Langevin’s equations of 

motion in combination with a specified molecular bond structure, parametrized force 

fields, and a starting conformation of atomic positions and velocities in order to 

propagate the dynamics of atoms within a molecular system. Ensembles of 

conformations or trajectories can be sampled to estimate thermodynamic or kinetic 

quantities208,222,223.  
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8.2.2 Brownian dynamics  

In addition to MD, BD simulation is another technique can be used to model 

macromolecular diffusion in an aqueous solvent212,213,224,225. BD can also be used to 

model the association of biomolecules in solution226. BD simulations rely on the 

assumptions inherent in the theory of Brownian motion212,226,227. In its simplest form, 

these assumptions include: a solvent whose atoms may be approximated by a 

dielectric and ionic continuum and whose hydrodynamic properties can be described 

using diffusion coefficients or tensors, solute molecules that can be adequately 

represented as rigid bodies, and forces that can be reduced to electrostatics, steric 

hindrances, and other inter-solute interactions. BD simulations are propagated 

according to the general equation of Brownian motion215 (Eq. 2) which has been 

derived from the N-particle Fokker-Planck Equation228,229.  

 𝒅
𝒙𝒊
𝝋𝒊

=
𝒅𝒕
𝒌𝑩𝑻

𝐃 ∙ 𝐅𝒊
𝚻𝒊

+ 𝟐𝒅𝒕𝐒 ∙𝒘+ 𝛁 ∙ 𝐃𝒅𝒕 Eq. 8.2 

Where i is the index of a particle in the system. The values xi, 𝝋!, Fi, Ti are 

the position, rotation, force, and torque of particle i respectively, D is the diffusion 

tensor, S is the matrix square root of D, w is a random vector whose components are 

Gaussian variables with unit variance and zero mean. The Northrup-Allison-

McCammon algorithm213 solves these equations numerically, and can be used to 

propagate timesteps within a BD simulation.  

When BD is used to estimate the kon of a ligand-receptor association reaction, 

the kon rate constant can be split into two terms. (Eq. 8.3) 
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 𝒌𝒐𝒏 = 𝒌𝒃𝜷 Eq. 8.3 

Where kb is the rate of diffusion of the ligand to a spherical surface of radius b 

(b-surface) centered on the ligand. The kb can be analytically calculated by using Eq. 

8.4.  

 
𝒌𝒃 = 𝟒𝝅

𝐞𝐱𝐩  (𝑼(𝒓)/𝒌𝑩𝑻)
𝒓𝟐𝑫(𝒓) 𝒅𝒓

!

𝐛

!𝟏

                                             
Eq. 8.4 

 

Where U(r) is the effective potential energy between the sphere and the 

substrate at a distance r from the center of the sphere, kB is Boltzmann’s constant, and 

T is temperature, and D(r) is the spatially-varying diffusion coefficient. β is the 

probability that a ligand located on the b-surface will continue on to react with the 

enzyme rather than escaping to an infinite distance. Normally, β can be determined by 

running BD simulations started from random locations on the b-surface and then 

counting the proportion of trajectories that lead to binding. In this study, β was 

determined by combining BD with MD using milestoning. 

 

8.2.3 Milestoning Theory 

Milestoning computationally models the kinetics as well as the 

thermodynamics of chemical processes, with the benefit of extensive parallelizability 

1,2,210,230. Using milestoning techniques, the stationary flux distribution q and the 

probability distribution p can be found across a reaction coordinate along which a 

number of milestones have been defined. Milestoning can also be used to find the 

mean first passage time (MFPT) of a transport process starting from one milestone 

and ending at another. The methods within milestoning theory provide a flexible 
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approach to investigate a wide range of dynamics, including non-equilibrium 

conditions 209,211 and has been applied in a variety of contexts 3,211,220,231,232. 

Milestoning does not rely on any assumption concerning system damping 1, and thus 

can be applied to Newtonian, Langevin, and Brownian systems alike 1,2,210. 

In our implementation, we defined a number of concentric spherical surfaces 

in phase space that encircle the binding site on each receptor. These surfaces in phase 

space are termed “milestones” and are roughly perpendicular to the reaction 

coordinate (Figure 8.1).  

In a typical milestoning procedure, unbiased simulations are initiated from a 

set of equilibrium distributions along the milestones, which one obtains using 

umbrella sampling. Each of these simulations is independent from the others, and the 

ligand center of mass is positioned at or very near the milestoning surface. As the 

simulations progress, transitions between milestones are recorded to construct a 

proper FHPD across the milestones, and then used to construct a transition kernel 

matrix with elements K, whose entries describe the probability that a ligand in one of 

the milestones will subsequently transition to another. An incubation time vector 𝒕  

is also obtained by determining the average time the system takes to transition from 

each milestone to an adjacent one. Given these quantities, stationary fluxes q across 

each milestone, the probability distribution p, and MFPT 𝜏  are found using eqs. 8.5-

8.7. 

 

 𝒒𝒔𝒕𝒂𝒕 𝐈− 𝐊 = 𝟎 
𝒑𝒊,𝒔𝒕𝒂𝒕 = 𝒒𝒊,𝒔𝒕𝒂𝒕 ∙ 𝒕𝒊  
𝝉 = 𝐩 ∙ (𝐈− 𝐊)!𝟏 𝐭  

Eq. 8.5 
Eq. 8.6  
Eq. 8.7 
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where I is the identity matrix, and i is the index of a particular milestone. 

Milestoning theory, as well as the method employed by Luty et. al., defines 

states using surfaces in phase space. The current state of the simulated system is the 

surface that has been most recently crossed. Each of the surfaces must be sufficiently 

far apart from one another in order to ensure that velocity is decorrelated between 

transitions. In our implementation, we defined our milestones as concentric spheres in 

order to closely approximate isosurfaces of the committor function. For a rigorous 

discussion of ‘surface’ states and their requirements and assumptions, the reader is 

referred to additional publications on milestoning theory1,2,208,210. 

In our implementation, all trajectories used to populate the statistics in the 

milestoning model are started from FHPDs calculated on each of the surface states. 

The FHPD represents the distribution of system conformations that have just crossed 

a surface state and that were previously in a different state. The difference between 

the FHPD and an equilibrium distribution is that the latter also includes 

conformations whose last crossing event was the same as the current state.  A 

trajectory is started from the FHPD and allowed to propagate according to the 

simulation dynamics, crossing surfaces as it diffuses (Figure 8.1). If the trajectory 

ever crosses the surface of a sink state, such as the bound state or a state leading to 

another simulation regime, the trajectory is halted. As surfaces are crossed, the counts 

are tallied to construct the transition matrix K and the average incubation time vector 

𝐭 . Error estimation of computed values were made using a Monte Carlo method to 

sample matrix distributions defined in Milestoning210,221 similar to one used in MSM 
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theory233. Details of error estimation are outlined in the Supplementary Information 

(SI) section 8.6.3. 

 

8.2.4 Theoretical determination of kon 

The flux rate k(r) of a particle across a sphere of radius r may be solved 

analytically for some simple systems. The value k(r) is equivalent to kon if a sphere of 

radius r is modeled as a binding surface. In the uncharged spherical receptor system, 

there are no average forces on the substrate and the k(r) can be obtained by solving 

the Smoluchowski equation234. 

 𝒌(𝒓) = 𝟒𝝅𝒓𝑫 
 

Eq. 8.8 

Where r is the radius of the reacting sphere, and D is the diffusion coefficient 

of the substrate. The k(r) can also be calculated for systems with centrosymmetric 

forces by solving the Smoluchowski equation in spherical coordinates234,235. The 

result is expressed as Eq. 8.4. Assuming a constant diffusion coefficient and that the 

effective potential energy is defined by Coulomb’s Law in a uniform dielectric, Eq. 

8.4 can be reduced and solved exactly for the charged spherical receptor system (Eq. 

9): 

 𝒌(𝒓) = −
𝑫𝑸𝒄𝑸𝒔

𝟏− 𝒆𝒙𝒑 𝑸𝒄𝑸𝒔
𝟒𝝅𝜺𝟎𝜺𝒓𝒌𝑩𝑻𝒓

𝜺𝟎𝜺𝒓𝒌𝑩𝑻
 Eq. 8.9 

 

Where Qs is the charge of the diffusing particle, Qc is the charge in the center 

of the receptor sphere, ε0 is the permittivity of a vacuum, and εr is the dielectric 

constant of the solvent. The derivation of Eq. 8.9 from Eq. 8.4 is described in the SI 
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section 8.6.2. A solution to more complicated scenario can also be derived 

numerically236. 

In addition to the flux rate k(r) across spheres, the MFPT that a particle 

remains within a certain domain of space can also be obtained. For a system that 

obeys Smoluchowski theory, Eq. 8.10 describes how the MFPT relates to a stationary 

distribution in that domain. 

 

 
𝝉 =

𝑵
𝑱 =

𝒖𝒅𝑽𝑽

𝑫 (𝛁𝑨𝒊
𝒖)𝒅𝑨𝒊𝒌

𝒊!𝟏

 Eq. 8.10 

 

Where 𝜏  is the MFPT, N is the total number of particles present in the 

system, J is the total flux of particles across all absorbing boundaries at any given 

time, u is the stationary distribution of particles, V is the volume of the system, D is 

the diffusion coefficient of the particle, k is the number of absorbing boundaries, and i 

is the index of a particular absorbing boundary Ai
237. 

 

8.3 Materials & Methods 

8.3.1 Preparation of MD 

All MD simulations were carried out using NAMD 2.950. The MD FHPDs 

were made with the help of MDAnalysis238. All calculations were performed on the 

Gordon supercomputer at the San Diego Supercomputer Center, the Stampede 

supercomputer at the Texas Advanced Computing Center, and on local machines. 
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8.3.2 Spherical Receptor Systems 

MD simulations of the charged and uncharged spherical receptor simulations 

were prepared using a simple 40 Å x 40 Å x 40 Å TIP3P83 water box with a Cl- 

placed in the center of the box for only the charged spherical receptor. Both systems 

contain approximately 7600 atoms. Na+ and Cl- parameters were obtained from the 

ions94 library of the AMBER ff03 forcefield239.  The spherical receptor systems were 

minimized for 10000 steps to allow the water molecules to relax in relation to each 

other and to the Cl-. Both systems were then equilibrated for 20 ns at a constant 

temperature of 300K using the Langevin thermostat and constant pressure using the 

Langevin piston at 1 atm with a damping coefficient of 5 ps-1. The Cl- was 

constrained to a stationary position in the center of the charged spherical receptor 

system. 

Following this equilibration, four copies were made of the systems, and a Na+ 

was placed at the milestones located at 7 Å, 8 Å, 9 Å and 10 Å from the center of the 

water box in the uncharged system (Figure 8.2), and from the Cl- in the charged 

system. Two additional milestones were also placed at 6Å and 11 Å. Waters clashing 

with the Na+ were removed. The system was once again allowed to minimize for 

another 5000 steps to relax the waters around the ions. Then the system was heated in 

10 K increments up to 350 K and then reduced back to 300 K at 2 ps intervals each at 

constant volume. Then, in order to obtain an ensemble distribution, the systems were 

simulated at constant temperature at 300 K at constant volume for 20 ns. To this 

point, all ions have been constrained. In order to obtain a FHPD, 900 

position/velocity configurations were uniformly chosen between the 2 ns and 20 ns 
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marks in the ensemble simulations. Velocities were reversed, and the trajectories 

were allowed to propagate backwards. If the trajectory struck another milestone 

before re-crossing the one it came from, that trajectory was considered part of the 

FHPD.  All members of the FHPD were then allowed to proceed with their velocities 

in the forward direction. Each transition event was monitored for future milestoning  

analysis. Reverse simulations were carried out using a special plugin for NAMD 2.9 

by Cameron Abrams, which allows velocities to be reversed at arbitrary timesteps. 

For comparison with the milestoning results, brute-force MD simulations were 

run and Smoluchowski theory were calculated to obtain a β, kon, and MFPT for the 

spherical receptor systems. All brute-force MD simulations were set up with the same 

parameters as for milestoning above, except that the system was equilibrated for 40 ns 

and 10000 frames were sampled between the 20 and 40 ns time. Each of the 10000 

simulations were started with the Na+ placed on the 10Å milestone and monitored for 

a crossing event at either the 6Å or the 11Å milestone. The value β was simply the 

number that crossed the 6Å milestone out of the total number of simulations. The 

MFPT was the average amount of time that all the simulations lasted before a 

crossing event.    
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Figure 8.2: A cartoon depiction of the two spherical receptor systems drawn 
approximately to scale 
The uncharged system in panel A has no central charged molecule. The charged 
system in panel B has a Cl- constrained to the center of the spherical milestones. Both 
systems contain the escape milestone (light blue curves), four intermediate milestones 
(curves in shades of orange and yellow), and binding milestone (dark red curves). 
Two hypothetical paths are also depicted per system. The upper path shows a 
trajectory where Na+ diffuses within the simulation region, crossing surfaces and 
finally reacting with the 6Å spherical milestone. The bottom path shows Na+ 
diffusing across a few states before escaping to the 11Å milestone. 

 

8.3.3 SOD System 

MD force field (FF) parameters for SOD were obtained as a generous gift 

from Branco et. al.240 The system was surrounded by a TIP3P83 water box with 150 

mM NaCl solution. The simulation contained approx. 44,000 atoms. The SOD system 

was then equilibrated for 80 ns at a constant temperature of 300 K using the Langevin 

thermostat and constant pressure using the Langevin piston at 1 atm using a damping 

coefficient of 5 ps-1.  

Following equilibration, ten copies were made of the apo system, and O2
- was 

inserted at eight different milestones (located at 4Å-11Å in 1Å increments) from each 

of the two copper ions in SOD’s two active sites, yielding a total of sixteen different 

milestones simulated (Figure 8.3). Waters clashing with O2
- were removed. The 
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solvent molecules in the system were minimized for another 5000 steps to relax 

around the newly placed ions. Then the system was heated in 10 K increments up to 

350 K and then reduced back to 295 K at 2 ps intervals each at constant volume. The 

protein and O2
- atom positions were constrained during the minimizations and 

heating/cooling. In order to obtain an ensemble distribution, the systems were 

simulated at a constant temperature of 300 K and constant volume for 200 ns each 

with an imposed harmonic “spring” force of 300 kcal mol-1 Å-2 that constrained O2
- 

close to a spherical milestone at each system’s proper distance from the SOD active 

site catalytic copper. In order to obtain a FHPD, 700 position/velocity configurations 

were uniformly chosen between the 60 ns and 200 ns marks in the ensemble 

simulations. Velocities were reversed, and the trajectories were allowed to propagate 

backwards in time. If the trajectory struck another milestone before recrossing the one 

it came from, that trajectory was considered part of the FHPD.  The autoimage 

function in CPPTraj241 was used to center the ligand in the waterbox before the 

reversal stage. All members of the FHPD were then allowed to proceed in the forward 

direction. Each crossing event was monitored for future analysis. The reversal phases 

were simulated using the custom plugin for NAMD 2.9 by Cameron Abrams.  
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Figure 8.3: A cartoon depiction of the SOD system 
The system has two binding sites, b-surface (dark blue circle), BD milestones (light 
blue curves), MD milestones (curves in shades of orange and yellow), and the binding 
milestone (dark red curves). The catalytic coppers at the center of the spherical 
surfaces are also depicted as tan circles in the bottom of each active site. 

 

FF parameters for TnC were prepared according to the protocol followed by 

Lindert et. al.140 The system was surrounded by a TIP3P83 waterbox with 100 mM 

KCl solution. The simulation contained approximately 27,000 atoms. The TnC 
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system was then equilibrated for 100 ns at a constant temperature of 288 K using the 

Langevin thermostat and pressure using the Langevin piston at 1 atm using a damping 

coefficient of 5 ps-1.  

Following this equilibration, twelve copies were made of the systems, and the 

Ca2+ was inserted on the binding side of the TnC site II loop at 1 Å increments from 2 

Å to 9 Å from the center of mass of the alpha carbons of residues ASP 65, ASP 67, 

SER 69, THR 71, and GLU 76 (Figure 8.4). Waters clashing with Ca2+ were 

removed. The solvent molecules in the system were minimized for another 5000 steps 

to relax around the newly placed ions. Then the system was heated in 10 K 

increments up to 350 K and then reduced back to 295 K at 2 ps intervals each at 

constant volume. The protein and Ca2+ atoms were constrained during the 

minimizations and heating/cooling cycles. In order to obtain an ensemble distribution, 

the systems were simulated at a constant temperature of 300 K and constant volume 

for 100 ns each with an imposed harmonic force of 300 kcal mol-1 Å-2 that constrained 

Ca2+ close to the spherical surface at each system’s proper distance from the active 

site center of mass. In order to obtain a FHPD, 700 position/velocity configurations 

were uniformly chosen between the 30 ns and 100 ns marks in the ensemble 

simulations. Velocities were reversed, and the trajectories were allowed to propagate 

backwards in time. If the trajectory struck another milestone before re-crossing the 

one it came from, that trajectory was considered part of the FHPD. CPPTraj241 was 

used to center the ligand in the waterbox before the reversal stage. All members of the 

FHPD were then allowed to proceed in the forward direction. Each crossing event 
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was monitored for future analysis. The reverse phase of MD simulations were carried 

out using a custom plugin for NAMD 2.9 developed in Cameron Abrams’ lab.  

 

Figure 8.4. A cartoon depiction of TnC 
The system contains a b-surface (dark blue circle), BD surfaces (light blue curves), 
MD surfaces (curves in shades of orange and yellow), and binding surface (dark red 
curves) all located in the Ca2+ binding site (site II). Each curve represents a milestone. 
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8.3.4 Preparation of BD 

All Brownian dynamics simulations were performed using BrownDye215 with 

desolvation forces and hydrodynamic interactions activated. All electrostatics 

calculations were performed using the Poisson-Boltzmann Equation solver APBS242. 

The solvent dielectric was left at the default of 78, the solvent viscosity was left at the 

default of 8.9 * 10-4 kg*m-1s-1, and the permittivity of a vacuum was left at the default 

of 8.854×10-12 C2N-1m-2. All solute dielectrics were set to 2. A 6-12 hard sphere 

Lennard-Jones interaction was used. Simulations were distributed across 10 to 20 

threads on a local computing node. The BrownDye program bd_top was used to 

prepare all systems for simulation. A phantom atom of zero charge and zero radius 

was placed at the center of the active sites in order to detect crossings of spherical 

milestones. The phantom atom has no effect on the dynamics, but is merely a 

convenient way to detect surface-crossing events. The BrownDye program 

nam_simulation was used for simulation, and the program compute_rate_constant 

was used to aid in the calculation of the association rate constants. Trajectories were 

processed using the BrownDye programs process_trajectories and xyz_trajectory in 

combination with in-house Python scripts. 

 

8.3.5 BD for SOD 

A PQR file for SOD was prepared from the crystal structure PDB ID: 1CBJ243  

using LEaP244 and DelEE245 with the AMBER forcefield246,247 and PROPKA,47 

assigned protonation states at a pH of 7.0. A PQR file for O2
- was made by hand, with 

each oxygen given a partial charge of -0.5 and a radius of 1.5 Å. APBS242 was then 
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used to calculate the electrostatic field at 295 K and a NaCl concentration of 150 mM 

to approximate conditions used during the experimental measurement of kon for 

SOD248. BrownDye was used to prepare and run 1×106 BD simulations at 295 K with 

the ligand starting from a b-surface at ~61 Å from the SOD center of mass. Based on 

experimentally determined diffusion coefficient249 of 1.5×10-5 cm2s-1, a 

hydrodynamic radius of 2.01 Å was used for O2
- in the simulations (See SI section 

8.6.1). Reactions with both active sites, and also escape events were counted. 1000 

configurations of ligand encounters with both active sites (12 Å from catalytic 

copper) were extracted to make two additional FHPD distributions. 1000 simulations 

were started from each configuration (2×106 total). These were allowed to react with 

a surface further down the site (11 Å from the catalytic copper) react with the surface 

around the other site (12 Å from the other catalytic copper) or escape to infinity.  All 

reaction and escape events were counted to construct the statistics of the transition 

kernel K and incubation time vector 𝐭 . 

 

8.3.6 BD for Troponin C 

A PQR file for TnC was prepared from the crystal structure 1SPY250. Partial 

charges were assigned according the AMBER forcefield244 using LEaP 246and 

DelEE245  and PROPKA247 assigned protonation states at a pH of 7.0. A PQR file for 

Ca2+ was made by hand, given a charge of 2.0 e and an atomic radius of 1.14 Å. 

APBS242 was then used to calculate the electrostatic field at 288 K and a KCl 

concentration of 100 mM to approximate conditions used during the experimental 

measurement of kon and koff for TnC251. A hydrodynamic radius of 5.5 Å was assigned 
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based on an experimentally determined diffusion coefficient252 of 6.73×10-6 cm2s-1 at 

291 K (See SI). BrownDye was used to prepare and run 1×106 BD simulations at 

288K with the ligand starting from a b-surface at ~57 Å from the TnC center of mass. 

Diffusion to the active site surface, and escapes were counted. 1000 configurations of 

ligand encounters with the active site (10 Å from binding site center of mass of 

residues ASP 65, ASP 67, SER 69, THR 71, and GLU 76) were extracted to make a 

FHPD distribution. 1000 simulations were started from each configuration (1×106 

total). These were allowed to react with a surface further down the site (7 Å from 

binding site center) or escape to infinity. All reaction and escape events were counted 

to construct the milestoning model.  

 

8.3.7 Theoretical Calculations 

For our spherical receptor calculations, we used a dielectric of 92 to mimic the 

dielectric of TIP3P water253, a permittivity of 8.854×1012 C2N-1m-2, and a diffusion 

coefficient252 of 1.33×10-5 cm2s-1 for Na+.  

The rate constants k(a), k(b), and k(q) were calculated using Eq. 8.8 for the 

uncharged spherical receptor and Eq. 8.9 for the charged spherical receptor for the 

reaction surface, b-surface, and q-surface, respectively. The rate constant k(a) is the 

analytic solution to the spherical receptor association. For comparison, we deduced 

k(a) using only k(b), and k(q) by using a transition matrix K obtained from 

monitoring transitions of the spherical receptor systems in a series of MD 

simulations.  A binding probability β was calculated using Eq. 8.5 where β=qstat,i 
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where i is the index of the bound milestone that has been modified to be a sink state. 

The kon for each spherical receptor system was calculated using Eq. 11. 

 

𝒌𝒐𝒏 = 𝒌 𝒃
𝜷

𝟏− (𝟏− 𝜷) 𝒌 𝒃
𝒌 𝒒

 

 

Eq. 8.11 

The MFPT represents the mean time taken a particle started on the b-surface 

and allowed to diffuse until touching either the reaction surface or the q-surface. The 

MFPT was calculated using Eq. 8.10. The values k(b) and k(q) are obtained using Eq. 

8.8 or Eq. 8.9, depending respectively on the absence of presence of a receptor 

charge. 

 

8.3.8 Milestoning Calculations 

For each system, the milestoning calculations were performed using custom 

scripts that used Numpy 1.7, Scipy 0.9.0 and the GNU Parallel tool254. 

 

8.4 Results 

Using Smoluchowski theory, milestoning, and brute force MD simulations, 

the probability β of each system starting on the b-surface and continuing on to touch 

the reaction surface is listed in Tables 1 and 2 along with the resulting kon. The MFPT 

is also listed for the spherical receptor systems.  
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Table 8.1: Computationally and theoretically determined results for the 
uncharged spherical receptor system  
All simulations were carried out in a dilute aqueous environment. β is the probability 
of a particle starting on the b-surface to reach the bound state before touching the q-
surface. MFPT refers to the mean first passage time of a particle started on the b-
surface to reach either the reaction surface or the q-surface.  

Method β kon (M-1s-1) MFPT (ps) 

Milestoning MD 0.113±0.012 5.9±0.9×109 7.4±0.5 

Analytic solution 
(using Eq. 8.7) 

0.12 6.039×109 13.5 

Brute-force MD 0.114±0.013 5.9±0.9×109 7.2±0.3 

 

Table 8.2: Computationally and theoretically determined results for the charged 
spherical receptor system  
All simulations were carried out in a dilute aqueous environment. β is the probability 
of a particle starting on the b-surface to reach the bound state before touching the q-
surface. MFPT refers to the mean first passage time of a particle started on the b-
surface to reach either the reaction surface or the q-surface. 

Method β kon (M-1s-1) MFPT (ps) 

Milestoning MD 0.127±0.013 9.1±1.3×109 7.6±0.4 

Analytic Solution 
(using Eq. 8.9)  

0.146 9.589×109 14.2 

Brute-force MD 0.135±0.012 9.3±1.2×109 8.3±0.3 

 

Using the stationary probabilities obtained with milestoning of SOD, Eq. 8.5, 

Eq. 8.6, and Eq. 8.12 below, we constructed a free energy profile for the approach of 

O2
- to the SOD binding site (Figure 8.5) setting that the 10Å milestone to zero energy 

as a reference.   

 ∆𝑮𝒊 = −𝒌𝒃𝑻𝒍𝒏(
𝒑𝒊,𝒔𝒕𝒂𝒕
𝒑𝒓𝒆𝒇,𝒔𝒕𝒂𝒕

) Eq. 8.12 
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Where ΔGi is the estimated free energy of milestone i, kB is Boltzmann’s 

constant, T is temperature, and pi,stat and pref,stat are the stationary probabilities of 

milestone i and the reference milestone at 10Å, respectively, obtained using Eq. 8.6. 

Luty et. al. assumed that the bound state was a spherical surface of radius 6Å 

centered on the catalytic copper. This location does appear to have a shallow local 

minimum at 6Å in the free energy as depicted in Figure 8.5. Because Luty et. al. 

assumed that the 6Å sphere was the bound state, and because it is the location of a 

shallow local minimum in the free energy profile in Figure 8.5, we assume that 6Å is 

the bound state in all subsequent SOD milestoning calculations.  

Table 8.3: Computationally and experimentally determined kons for SOD by us 
and others 
The experimental value that this study attempted to emulate248 measured a kon is listed 
along with the kon that Luty et. al. determined for SOD using different simulation 
conditions and model setup. 

Researchers kon (M-1s-1) Temp. (K) Ion  Conc. (mM) Method 
This study 8.8±0.7×108  295 150 NaCl MD/BD/milestoning 
Cudd, et. al.248 8.5×108  300 140 NaCl Pulse-Radiolysis 
Argese, et. 
al.255 

1.6×109 295 160 NaClO4 Polarographic method of 
catalytic currents & NMR 

Luty, et. al.218 1.62±0.86×109  300 0 MD/BD, 7-state MSM 
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Figure 8.5: SOD system free energy profile 
This plot depicts the free energy in kcal/mol at each milestone along the reaction 
coordinate in the SOD system relative to the 10Å milestone, the nearest to the bulk 
solution. These free energies were computed using milestoning theory according to 
Eq. 8.12. A slight local minimum occurs at 6Å and we assume this to be the bound 
state. 

 
As with the SOD system, we used the stationary probabilities obtained with 

milestoning of TnC, Eq. 8.5, Eq. 8.6, and Eq. 8.12 to construct a free energy profile 

for Ca2+ in its approach to the TnC binding site (Figure 8.6) with the 10Å milestone 

free energy as the reference. According to this profile, the lowest energy state is 

located at 3Å from the binding site center. We assume that when the Na+ has reached 

this distance, it is in the bound state. We use a 3Å binding surface for all subsequence 

milestoning calculations on TnC. 
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Figure 8.6: TnC system free energy profile  
This plot depicts the free energy profile of TnC binding (in kcal/mol) relative to the 
10Å milestone at each milestone along the reaction coordinate of the TnC system. 
These free energies were computed using milestoning theory according to Eq. 8.12. 
The lowest relative free energy is at the 3Å milestone, the location we assume to be 
the bound state of the TnC system. 

Table 8.4: Computationally and experimentally determined kons for TnC by us 
and others 
The kon we predicted is listed along with that of the experimental value that this study 
attempted to emulate, along with additional experimental kons. 

	
  
Researchers Kon (M-1s-1) Temp. (K) Ion Conc. (mM) Method 

This study 1.5±0.7×108  288 100 KCl MD/BD/milestoning 

Tikunova, et. al.251 1.7±0.3×108 288 90 KCl Stopped-flow 

Hazard, et. al.256 2-4×108 277 90 KCl Stopped-flow 

Ogawa, et. al.257 >4.0×107 293 100 KCl Stopped-flow 
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In addition to the calculation of kon rate constants, the milestoning models and 

distributions across the states can be used to visualize the path of the ligand in its 

approach to association within the binding site. The FHPD for SOD at 12 Å is 

displayed in Figure 8.7 and the FHPD for TnC at 10 Å is displayed in Figure 8.8.  

 

Figure 8.7: The FHPD for O2
- encounter on the 12Å around the active site of 

SOD  
Blue indicates zero crossing events per square Å, and the color scale increases to red, 
indicating up to 1.2×105 crossing events among all 1×106 simulations. The 
distribution suggests that O2

- approaches directly from the solvent instead of 
approaching laterally from another portion of the protein surface.  The image was 
generated using VMD30 with an MSMS surface77. 
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Figure 8.8. The FHPD for Ca2+ encounter on the 10Å around the binding site of 
TnC 
Blue indicates zero crossing events per square Å, and the color scale increases to red, 
indicating up to 8.8×104 crossing events among all 1×106 simulations. The 
distribution suggests that Ca2+ approaches the site directly from the solvent instead of 
approaching laterally from another portion of the protein surface. The region of the 
sphere where no ligands crossed was removed to reveal the site II loop over the 
binding site, though the binding site itself is concealed by the FHPD. The image was 
generated using VMD30 with an MSMS surface77. 

 
 
8.4.1 Computational Performance 

The total computational cost of all systems simulated in this study for both 

MD and BD was approximately 65,000 CPU hours. Computational costs of each 

simulated system and simulation regime are listed in Table 8.5. The cost of 

performing all non-simulation calculations was negligible. Table 8.5 includes all 

computer time spent on the supercomputer as well as on local machines. The β, kons 

and error estimates for all systems were well-converged and are reported in the SI 

section 8.6. 
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Table 8.5: The computational cost of calculating kinetics for each system using 
milestoning 
BD simulations were not run for the spherical receptor systems, so no costs are listed. 
Also, brute force MD simulations were not run for SOD and TnC. 

System Cost of 
MD 
(CPU- 
hours) 

Length 
of MD 
(ns) 

Cost of 
BD 
(CPU- 
hours) 

Computer 
used for MD 

Computer 
used for BD 

Cost of 
Brute-force 
MD (CPU- 
hours) 

Uncharged 
spherical 
receptor 
system 

~600 ~100 - Linux desktop - ~1350 

Charged 
spherical 
receptor 
system 

~600 ~100 - Linux desktop  - ~1450 

SOD ~53,000 ~1630 ~100 Stampede 
Supercomputer 

Linux 
desktop 

- 

TnC ~5100 ~900 ~100 Gordon 
Supercomputer 

Linux 
desktop 

- 

 

8.5 Discussion 

8.5.1 Idealized Systems 

The kon calculated using milestoning for the uncharged spherical receptor 

system matches within 3% to the theoretically determined value and 0.3% to the 

brute-force MD value. These estimates are well within the bounds of uncertainty 

introduced by the milestoning model. As a system that can diffuse freely without 

forces or solvation shells, it is expected that Smoluchowski theory would yield such a 

close result to simulation. This similarity to a value obtained using well-established 

theory is a good validation of our basic methodology. The large difference between 

the MFPT predicted by theory and the MFPTs predicted by milestoning and brute 
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force MD could be due to a difference between the experimentally measured 

diffusion coefficient of Na+, and the diffusion coefficient that is observed in an MD 

simulation using the AMBER forcefield.  

The kon calculated using milestoning for the charged spherical receptor system 

differs by 13% from the kon predicted by Smoluchowski theory and by only 6% from 

the kon obtained by brute force MD simulation. This difference between the 

simulation-obtained values and the value obtained by theory is likely due to effects 

caused by the explicit solvent in our simulations, for which this simple 

implementation of Smoluchowski theory does not account. Very likely, solvation 

shells have formed around the Cl- placed in the center of the system, as well as the 

diffusing Na+. Solvation shells create unevenness in the potential of mean force and 

the position-dependent diffusion coefficient of Eq. 8.4.  As such, using Coulomb’s 

law for the electrostatic potential and a constant diffusion coefficient may not be 

sufficiently valid assumptions for ions in solution at such close proximity. Previous 

studies on close NaCl ion pair interactions in dilute solvent show oscillations in the 

mean force potential of the interionic distance that extend several molecular layers 

into the solvent258-260. Accounting for these factors and using an alternative solution 

to Eq. 8.4 would likely result in a calculated value much closer to what we obtained 

using milestoning and the brute force MD. The fact that the milestoning results and 

the brute-force MD results are so similar supports the validity of the milestoning 

methodology. Similarly, with the charged receptor, the large difference in the MFPT 

predicted by theory and the MFPTs predicted by milestoning and brute force MD 

could be due to a difference between the experimentally measured diffusion 
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coefficient of Na+, and the diffusion coefficient that would be observed in an MD 

simulation using the AMBER forcefield. It could also be due to same effects observed 

on β caused by the aforementioned solvation shells.  

 

8.5.2 Superoxide Dismutase (SOD) 

SOD is an enzyme found in a wide variety of organisms255. It is a homodimer 

that makes use of a catalytic copper bound in its active site to catalyze the 

dismutation of the superoxide ion O2
- into O2 and H2O2 

248,255. SOD was the subject of 

many early enzymology experiments261 and ligand-receptor binding simulations225,262. 

The SOD kon estimated using milestoning is within 4% of the experimentally 

measured kon; this falls well within the uncertainty bracket calculated for the 

milestoning model. The kon we calculated is also close to the value obtained by Luty, 

et. al. in their seminal study of SOD kinetics218. It is well understood that a higher salt 

concentration slows the rate of O2
- binding to SOD255. Therefore, the kon measured in 

this study is likely smaller than the value measured by Luty, et. al. because they 

simulated MD and BD with a solvent salt concentration of zero.  The discrepancy 

could also be due to differences used by Luty et. al. in their implementations of 

atomic constraints on the protein, different boundary conditions in the MD phase, and 

the lack of desolvation forces in the BD phase.  

While it is not clear how much error is introduced by using an equilibrium 

distribution across the milestones, our use of a FHPD should, theoretically, provide a 

more accurate treatment due to its consistency with formal milestoning theory1,2. An 

assertion reinforced by the similarity of our calculated SOD kon rate to the 
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experimental value. The insertion of additional states in the MD region also allowed 

us to obtain much better sampling of transition events than would be available for a 

comparable computation time if the MD region had been composed of only a single 

milestone. The FHPD of SOD at 12Å (Figure 8.7) indicates that O2
- approaches 

directly from the solvent and does not seem to sample much of the protein surface 

before entering the active site. Although a kon has already been obtained for this 

system by Luty et. al. using similar methods, our approach offers a number of key 

improvements and very closely resembles the experimentally obtained rate constant; 

both insofar as the conditions that the system was exposed to, as well as the final 

result.  

 

8.5.3 Troponin C (TnC) 

In order to try this milestoning method on a new system, we also calculated 

the kon of TnC. The troponin complex is a set of proteins that regulates muscle 

contraction in skeletal and cardiac muscles250,251,257. One of the subunits, TnC is 

attached to the thin filaments of a muscle fiber, and regulates the binding of Ca2+ to 

the N-terminal domain of TnC263. Ca2+ binding triggers changes within the complex 

that allow myosin to latch onto the thin filaments and induce muscle contraction. TnC 

has been extensively studied due to its critical involvement with heart function and 

failure, and has been marked as a therapeutic target in heart disease and other 

disorders251. 

Our method is able to determine the kon to a value that is within 11% of the 

experimentally measured kon. This discrepancy falls within both the experimental 
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uncertainty as well as the uncertainty of the milestoning calculation. The FHPD of 

TnC at 10 Å (Figure 8.8) indicates that Ca2+ approaches directly from the solvent, 

probably due to the high desolvation penalty incurred when the highly charged Ca2+ 

is removed from its aqueous environment. The surface map seems to indicate two 

close but distinct minima on the FHPD, suggesting that Ca2+ may have two possible 

routes to binding.  The kon value for the TnC system is relatively unaffected by the 

choice of reaction criteria (Figure 8.6); remaining within ten percent of the estimated 

amount even when the bound milestone was chosen to be within the 2Å to 5Å range. 

This insensitivity to the reaction criteria offers some tolerance when choosing the 

reaction criteria for this system. Tolerance of the reaction criteria was less for the 

SOD system (Figure 8.5), and the calculated kon was more sensitive to the choice of 

reaction criteria. This relative intolerance was likely related to the flatness of the free 

energy profile, where a diffusing ligand has low barriers when traversing between the 

bound and unbound states. 

In total, the entire project, including all simulations of all systems analyzed in 

this study, cost approximately 65,000 hours of CPU usage. The vast majority of this 

computation was spread across hundreds or thousands of cores at any one time due to 

the highly parallel nature of milestoning. The total length of MD simulation for our 

systems required anywhere between 100 and 1600 ns of total MD time each with 

relatively low uncertainty due to the high rate of sampling along the milestones 

leading to binding. The cost is significantly less per target than brute force MD 

simulations run in past studies to observe kinetic events while yielding similar or 

superior resemblance to experiment194,195, which were indicated to require between 
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600 and 15000 ns of MD simulation to achieve even just a single binding event, with 

some simulations never even yielding a binding event.  

Our multiscale MD-BD-milestoning method offers many advantages; yielding 

predictive kon estimates for biologically relevant molecular systems within 

experimental error at a cost much less than brute-force MD alone and at accuracy 

much greater than could be obtained using BD alone. This method also benefits from 

high parallelism due to the spread of MD computation across multiple states. Given a 

large number of cores and sufficient CPU hours, the MD portion of the calculation 

can be completed rapidly. Another advantage of this method is its flexibility, giving 

the user the ability to adjust the cost-to-accuracy balance by performing additional 

simulation and adding trajectory samples to increase result convergence.  

 The main disadvantage of this method lies in its complexity of concept and 

implementation. However, with sufficiently robust software-based automation, the 

burden of maintaining many parallel instances of simulation, as well as simulation 

preparation and analysis, can be greatly reduced. Another disadvantage of the 

milestoning framework is that the simulations are still relatively expensive at this 

time; requiring a supercomputer or cluster to obtain sufficient sampling within a 

reasonable time frame, although GPU-based MD could potentially alleviate this 

burden. 

 

8.5.4 Conclusions 

We present a new method to estimate kinetic rates. This method uses 

milestoning to leverage the strengths and minimize the weaknesses of MD and BD, 



	
   	
   174 

	
  

thereby offering an efficient, high-accuracy estimation of kon rate constants. This 

multiscale method has been successfully used to estimate the kon rate constant for 

both idealized and realistically sized, biologically relevant systems. Our work 

demonstrates that milestoning can be used to obtain kinetic quantities of interest with 

a high resemblance to experiment. We anticipate that this multiscale approach can be 

used to determine rate constants of interest as well as system-specific binding details 

that are applicable to drug discovery, biomolecular modeling, and protein-ligand 

interactions. 

 

8.6 Supplementary Information 

8.6.1 Hydrodynamic Radius 

The hydrodynamic radius a of a molecule relates to its diffusion coefficient D 

according to Eq. 8.13 264 

 𝐷 =
𝑘!𝑇
6𝜋𝜂𝑎 Eq. 8.13  

Where T is the temperature, kB is Boltzmann’s constant, and 𝜂 is the viscosity of the 

solvent. 

 

8.6.2 Calculation of error for Milestoning 

 The statistical error of all milestoning calculations can be estimated by 

generating a distribution of rate matrices according to Eq. 8.14 2,210. 

 𝑝 𝐐 𝑁!" , 𝑡 ! ∝ 𝑞!"
!!"𝑒!!!"!! ! !

!!!!

𝑃(𝐐) Eq. 8.14 
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Where N is a count matrix whose element Nαγ is equal to the number of times in the 

milestoning simulation that the system started at milestone α and ended at milestone 

γ, 𝐭  is the incubation time vector whose element 𝑡 ! is the average amount of time 

a system started at milestone α spends before crossing another milestone. P(Q) is a 

prior probability distribution that, in this case and typically, we set to uniform density. 

Q is a rate matrix whose nondiagonal elements qαβ can be used to reconstruct the 

transition kernel K and the incubation time vector 𝐭  found in Eqs. 8.5-8.7 according 

to Eqs. 8.15a and 8.15b 

 𝐾!" =
𝑞!"
𝑞!"!!!

 

𝑡 ! =
1
𝑞!"!!!

 

Eq. 8.15a 

 

Eq. 8.15b 

The diagonal elements of Q are defined as: 𝑞!! = − 𝑞!"!!! . All non-diagonal 

elements qαβ > 0 and all diagonal elements qαα < 0. 

By extracting a large number (hundreds or thousands) of matrices from this 

distribution, and performing the necessary milestoning calculations with each of 

them, a distribution of any of the results can be found, giving an estimate of the error 

for each result by finding a standard deviation of the distribution.  

We used a nonreversible element shift Monte Carlo algorithm to sample the 

posterior probability in Eq. 8.14 Inspired by an algorithm used to compute the error of 

Markov state models (MSM)233, our algorithm is defined below: 

Algorithm for sampling rate matrices. To sample the distribution Eq. 8.14, a 

metropolis criterion is defined that evaluates whether to take a proposed step in Q 
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space. The first rate matrix Q* is the matrix that maximizes the likelihood of Eq. 

8.14. 

 𝑞!"∗ = 𝑁!"/(𝑁!𝑡!) Eq. 8.16 

 

Given a proposed matrix Q’ and a current matrix Q, the probability of accepting that 

member of the distribution is defined as: 

 
𝑝!""#$% =

𝑝(𝐐!| 𝐍, 𝐭 )
𝑝(𝐐| 𝐍, 𝐭 )  

Eq. 8.17 

 

A proposed change Δ relates the difference between an element of Q and Q’.  

 𝑞!"! = 𝑞!" +   Δ 

𝑞!!! = 𝑞!! −   Δ 

Eq. 8.18a 

Eq. 8.18b 

 

The proposed change must ensure that all non-diagonal elements of Q’ remain 

positive, and that all diagonal elements remain negative. Thus, Δ is drawn from an 

exponential distribution on the range: 

 Δ ∈ −𝑄!" ,∞  Eq. 8.19 

With a mean value at zero. Finally,  

 
𝑝!""#$% =

𝑝(𝐐!| 𝐍, 𝐭 )
𝑝(𝐐| 𝐍, 𝐭 ) =

𝑞!" + ∆
𝑞!"

!!" 𝑒!(!!!!!)!! ! !

𝑒!!!"!! ! !
 Eq. 8.20 

Example 1. To support that the above workflow is correct, we have constructed a 

simple system to validate it. Figure 8.9 compares the distributions of the off-diagonal 

elements of a 2x2 rate matrix computed using the count matrix and incubation time 

vector below: 
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 𝐍 = 0 12
30 0                                                𝐭 = 500

150   

A set of 1×106 rate matrices were generated stochastically using the algorithm 

outlined above and the off-diagonal elements were binned to generate the 2-

dimensional histogram in panel (a) of Fig. 8.9 For comparison, an analytic probability 

distribution was constructed in panel (b) of Fig. 8.9 by simply plotting the likelihood 

L for sampling that point in Q-space given the count matrix N and incubation vector 

𝐭 . 

 𝐿(𝑞!", 𝑞!") =   𝑞!"
!!"𝑞!"

!!"𝑒!!!"!! ! !!!!"!! ! ! 

The high degree of similarity between the two plots of Figure 8.9 supports the 

correctness of the algorithm. These computations were done using a custom script. 

 

Figure 8.9: Plot illustrating the sampling of rate matrix  
The rate matrix was constructed using count matrix 𝐍 = 0 12

30 0  and the 

incubation time vector 𝐭 = 500
150 . 1×106 Q matrices were sampled from Eq. 8.14 

using these criteria and the off-diagonal elements were binned into a histogram to 
generate the plot in panel (a).  The plot in panel (b) was generated analytically for 
comparison. 
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8.6.3 Error Estimate Convergence 

For the spherical receptor systems, 1×107 matrices were generated from the 

distribution in Eq. 8.14 Of these, every 1000 were skipped, and the remaining 1000 

were used to construct the error estimates for the spherical receptor systems. Figure 

8.10 and Figure 8.11 were also constructed from those same samples to demonstrate 

convergence. For both SOD and TnC, only 100 matrices were skipped between 

samples, though 1000 total were sampled to construct Figure 8.12 and Figure 8.13 

 

Figure 8.10 Convergence of error estimate for the β of the uncharged spherical 
receptor  
The estimate is well converged before the full 1000 matrices have been sampled. 
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Figure 8.11 Convergence of error estimate for the β of the charged spherical 
receptor 
The estimate is well converged before the full 1000 matrices have been sampled. 
 

 
Figure 8.12 Convergence of error estimate for the β of SOD 
The estimate is well converged before the full 1000 matrices have been sampled. 
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Figure 8.13 Convergence of error estimate for the β of TnC 
The estimate is well converged before the full 1000 matrices have been sampled. 
 

8.6.4 Results Convergence 

The convergence of β, the mean first passage time (MFPT), and the kon for 

each system was calculated by progressively increasing the number of MD 

trajectories from each milestone included in the milestoning computation (Figures 

8.14 – 8.17). 
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Figure 8.14 Convergence of the results of the uncharged spherical receptor 
system 
The β convergence is displayed in blue, the MFPT (×1011 s) in red, and the kon (×10-10 
M-1s-1) in green. 
 

 
Figure 8.15 Convergence of the results of the charged spherical receptor system 
The β convergence is displayed in blue, the MFPT (×1011 s) in red, and the kon (×10-10 
M-1s-1) in green. 
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Figure 8.16 Convergence of the results of SOD system 
The convergence of β is displayed in red, the kon (×10-10 M-1s-1) in blue. 
 
 

 
Figure 8.17 Convergence of the results of TnC system 
The convergence of β is displayed in red, the kon (×10-10 M-1s-1) in blue. 
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8.6.5 Derivation of Eq. 8.9 

 Eq. 8.4 describes the solution to the diffusion-convection equation for a 

charged particle diffusing around an absorbing spherical surface surrounded by a 

centrosymmetric force. We assume D(r) is a constant D and U(r) is defined by 

Coulomb’s law, 

 𝑈 𝑟 =
𝑄!𝑄!

4𝜋𝜀!𝜀!𝑟
 (8.21) 

Where Qs is the charge of the diffusing particle, Qc is the charge in the center of the 

receptor sphere, ε0 is the permittivity of a vacuum, εr is the dielectric constant of the 

solvent, and r is the radius from the sphere center. Note that 

 
𝑟!!𝑒!!!!𝑑𝑟

!

!
= −

1
𝐶 1− 𝑒

!
!  (8.22) 

Where C is some constant. By assuming that  

 𝐶 =
𝑄!𝑄!

4𝜋𝜀!𝜀!𝑘!𝑇
 (8.23) 

We obtain Eq. 8.9. 

Chapter 8, in full, is a reprint of “Multiscale Estimation of Binding Kinetics 

Using Brownian Dynamics, Molecular Dynamics, and Milestoning”, which was 

published in 2015 in PLOS Computational Biology, volume 11, issue 10, by Lane W. 

Votapka and Rommie E. Amaro. The dissertation author was the primary investigator 

and author of this paper. 
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Chapter 9: Bridging Scales Through Multiscale Modeling 

The goal of multiscale modeling in biology is to use structurally based 

physico-chemical models to integrate across temporal and spatial scales of biology 

and thereby improve mechanistic understanding of, for example, how a single 

mutation can alter organism-scale phenotypes. This approach may also inform 

therapeutic strategies or identify candidate drug targets that might otherwise have 

been overlooked. However, in many cases, it remains unclear how best to synthesize 

information obtained from various scales and analysis approaches, such as atomistic 

molecular models, Markov state models (MSM), subcellular network models, and 

whole cell models. In this paper, we use protein kinase A (PKA) activation as a case 

study to explore how computational methods that model different physical scales can 

complement each other and integrate into an improved multiscale representation of 

the biological mechanisms. Using measured crystal structures, we show how 

molecular dynamics (MD) simulations coupled with atomic-scale MSMs can provide 

conformations for Brownian dynamics (BD) simulations to feed transitional states 

and kinetic parameters into protein-scale MSMs. We discuss how milestoning can 

give reaction probabilities and forward-rate constants of cAMP association events by 

seamlessly integrating MD and BD simulation scales. These rate constants coupled 

with MSMs provide a robust representation of the free energy landscape, enabling 

access to kinetic and thermodynamic parameters unavailable from current 

experimental data.  
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These approaches have helped to illuminate the cooperative nature of PKA 

activation in response to distinct cAMP binding events.  Collectively, this approach 

exemplifies a general strategy for multiscale model development that is applicable to 

a wide range of biological problems. 

 

9.1 Introduction 

The goal of multiscale modeling is to understand how the hierarchy of 

biological structures integrates to produce biochemical, cellular and physiological 

functions.  At the single cell scale, signaling networks are analyzed using system 

analysis methods to provide mechanistic insights into the functional interactions 

between proteins and second messengers. Network models of cell signaling have 

recently been developed for neurons 265, myocytes 266, and pancreatic beta cells 267, to 

name a few. These cell-scale network models are helpful to understanding normal cell 

physiology, pathobiology and therapeutic mechanisms. Interest in the 

phenomenological effects of protein mutations 268,269 are driving the development of 

new methods to incorporate atomic and molecular-scale models and data into whole 

cell simulations.  To this end, advances in atomic-scale modeling, particularly 

molecular dynamics (MD) and Brownian dynamics (BD) simulations, have provided 

insights into the effects of mutations on protein folding and protein-protein 

interactions 270-273.  However, bridging these scales and disciplines to create models 

that can predict the effect of a point mutation or post-translational modification on 

cellular phenotypes remains a daunting task. Frequently, even nomenclature does not 

readily transcend disciplines, making interdisciplinary collaborations across scales 
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more difficult. Furthermore, understanding the limitations of models and methods at 

each scale to avoid error propagation is essential to obtaining physiologically 

meaningful solutions. In this article, we describe atomic and protein-scale Markov 

state modeling (MSM), as well as milestoning, which allow us to bridge atomic-scale 

molecular models to cell-scale signaling networks (Figure 9.1).  

 

Figure 9.1: Bridging gaps through multiscale modeling 
Simulation and modeling methods are limited in the spatial and temporal scales that 
can be represented. Arrows show the information that can be fed from one simulation 
regime to another.  

 

Over the past decade, the availability of high-resolution protein structures and 

the capabilities of atomistic molecular modeling techniques has improved 

dramatically. MD and atomic-scale MSMs use atomic-resolution structural data to 

model the position of atoms in a protein and calculate the forces between them. This 

is helpful in predicting functional states and rates of conformational change. 

However, these methods cannot easily calculate the rates of interactions between 

molecules, which are needed for higher scale reaction network models.  
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Advances in BD simulations and milestoning have provided tools that are 

specialized in calculating diffusion-limited association rate constants. Previously, the 

data used for parameterization of the transitions in protein-scale MSM came almost 

exclusively from in vitro experiments where conditions are controlled to limit the 

number of potential states. These data included phosphorylation rates, kon/koff of 

binding events, and ion channel transitions 274-276. However, many molecular events 

occur at time-scales that cannot be easily accessed by experiments277. Fortunately, 

computational simulations have provided alternative methods for determining 

parameters for whole-cell models. BD simulations rely on simplifying assumptions 

that allow simulations of microscopic events that span larger systems and timescales 

than more detailed methods, such as MD, allow. BD can be used to determine 

association rate constants (kon) for diffusion-limited protein-protein and protein-small 

molecule interactions. It specifically examines how electrostatic and steric properties 

of molecules affect molecular encounter rates. Combining this information with in 

vitro experiments and MD-derived states will enable a new generation of protein-

scale MSMs to be developed for incorporation into whole cell models. 

As an example problem necessitating the integration of approaches across a 

broad range of spatial and temporal scales, we focus here on protein kinase A (PKA), 

which is activated by cAMP and is a key regulator of many cellular processes. In 

cardiac myocytes, for example, PKA is a critical regulator of intracellular calcium 

handling cycling, and its dysregulation is well known to be a contributing factor in 

heart failure278. The PKA holoenzyme consists of two regulatory (R) subunits and 

two catalytic (C) subunits. Each R subunit has two cAMP-binding domains (CBD), a 
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DD-docking domain, and a disordered linker region containing the inhibitory 

sequence that interacts with the C subunit. PKA is activated upon cAMP binding to 

the CBDs on the R subunit inducing release of the C subunit. Over the last 15 years, 

several whole-cell models of ventricular myocytes that incorporate calcium release 

and beta-adrenergic stimulation through a simplified PKA activation mechanism were 

developed 266,279. More recently, a mechanistic protein-scale MSM of PKA 

holoenzyme activation was developed 274. Still, incorporating an improved PKA 

MSM into existing whole cell models will provide a more physiological testing of 

PKA activation as well as the capability to predict the effects of PKA mutations on 

the whole cell scale.     

In this review, we highlight some of the tools and techniques used to develop 

integrative models that span scales from the molecule to the cell, including: MD, 

atomic MSM, BD, milestoning models, protein MSM, and whole cell modeling. We 

provide the nomenclature necessary to bridge these scales and discuss the limitations 

of these approaches as well as ways to minimize error propagation. Finally, we show 

the role of MD and BD simulations have played in the development of a protein scale 

MSM of PKA RIα and discuss the role this new protein-scale MSM of PKA will play 

in existing whole cell models of cardiac function and disease states.    

 

9.1.1 Nomenclature 

This paper deals primarily with Markovian models, or models that are only 

dependent on the current state of the model and not the history of the states it has 

visited. Both MSM and milestoning models operate under a Markovian assumption. 
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Also, for this paper we use “atomistic” or “atomic-scale” to describe any model that 

treats atoms explicitly. This generally includes MD, MSM, BD, and milestoning. 

These models stand in contrast to “protein-scale” Markov models and cell-systems 

models which primarily focus on protein and cell function and general protein-protein 

and small molecule-protein binding events. Even though atomistic MSM and protein 

MSM are both Markovian models, they serve distinct purposes.  

 

9.1.2 Accessing the Conformational Ensembles of Proteins  

A protein’s function is governed by its conformational ensemble, which can 

be modulated though mutations and intermolecular interactions280-285. Therefore, to 

build multiscale models starting at the atomic scale, one needs to elucidate the key 

conformational states of a protein and the dynamics of those states from atomistic 

data associated with those states. This can be achieved through exploration and 

characterization of the protein’s conformational ensemble. In this section, we review 

computational methods for modeling the conformational ensembles of proteins 

important in cell signaling. We begin with an overview of molecular dynamics 

simulation methods and conclude with a discussion on the use of MSM to determine 

the conformational ensemble more efficiently.  

 

9.1.3 Molecular Mechanics and Molecular Dynamics Simulations  

Atomistic models of conformational ensembles can be computationally 

generated from molecular mechanics simulations. These simulations require two 
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components: a force field that describes how the atoms interact with each other and a 

method for exploring the conformational ensemble286,287.  

To simplify the complex quantum mechanical interactions between atoms, 

molecular mechanics simulations use empirical force fields to describe the 

interactions between atoms. These force fields are described in terms of classical 

mechanics286,288,289. For example, each atom of a system is described as a charged 

particle in space. Bonding interactions between atoms are described as springs using 

Hooke’s law. Nonbinding interactions between atoms are described as Columbic and 

van der Waals interactions. Commonly used force fields include CHARMM290, 

AMBER 291, OPLS292 and GROMOS293. While a discussion on force field selection is 

beyond the scope of this review, it is important to understand the assumptions and 

performance bias of a force field used in any simulation294,295. 

The motion of the atoms resulting from the force field determines the 

conformational ensemble of the system. The motions of these particles are generally 

simulated either with Monte Carlo techniques that randomly sample conformational 

space, or through MD simulations, where Langevin’s or Newton’s laws of motion are 

solved over time 286,287. While MD is more computationally expensive than MC, it 

retains the temporal relationship between conformations, which is advantageous when 

quantification of kinetic parameters is desired. Popular MD programs include 

AMBER244, CHARMM290, GROMOS26 and NAMD50. 

Theoretically, MD simulations can sample the entire conformational ensemble 

of a system given infinite simulation time. While certain specialized supercomputers 

have been built to sample into the millisecond range296, with current commodity-level 
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resources, MD simulations can only continuously sample a system for a few 

microseconds at most, which is insufficient to effectively sample most ensembles, 

including the CBD. However, with the increasing performance of supercomputers, 

GPU-accelerated MD simulations 297-299, and the use of highly distributed 

computing300,301, multiple parallel MD simulations can achieve total non-continuous 

sampling time approaching the high-microsecond to low-millisecond range. MSMs 

can subsequently be used to stitch together the many short-timescale simulations into 

one cohesive framework that allows the extrapolation of longer-timescale data.  This 

MSM framework was used for the CBD system discussed below. 

 

9.1.4 Atomic-Scale Markov State Models of a Conformational Ensemble 

An atomic-scale MSM describes the conformational ensemble of a protein as 

the probability of transitioning between discrete collections of conformational states 

at a fixed time199,302. This can be visualized as a bidirectional graph,(see Figure 9.2), 

where each node represents a cluster of similar conformations. The probability of 

transition between states is indicated by the thickness of the connecting lines in figure 

9.2. If the conformational states and the transitions can be accurately determined, then 

the MSM describes the thermodynamics and the kinetics of the system’s 

conformational ensemble. Thus one can derive the key parameters required for higher 

scale models with a MSM303.  
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Figure 9.2: Protein Kinase A cyclic nucleotide binding domain Markov state 
model 
This figure shows a graph repensantion the transtions between metastable states of the 
CBD with cAMP bound. Each node repesents the conformational state. The edges the 
transition between the node with their thickness being proportional to the probiblity 
of transtion.   

 

Atomic-scale MSMs of the conformational ensemble of a protein are built 

from MD simulations. Each conformation sampled during the simulation is assigned 

to a discrete conformational state, usually by clustering. Then the transitions between 

the discrete states are determined from the MD trajectory by counting the transitions. 

The transition counts are then used to generate a transition probability matrix, the 

mathematical representation of the MSM199,302-304. The transition probability matrix 

can be analyzed to determine the equilibrium population of each confrontational state, 

to identify metastable conformational states, to understand the principal motions of 

the protein, and to study the mechanisms of conformational will change199,302-304.  

Because a MSM depends on the probabilities of transitions between discrete 

conformational states, the conformational ensemble of the protein can be sampled 
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more efficiently than with traditional MD.  To effectively sample the conformational 

ensemble of a protein at equilibrium using traditional MD simulations requires 

running the simulation long enough to explore the conformational ensemble multiple 

times. However when building a MSM the MD simulations can be focused on the 

transitions between states avoiding spending time sampling stable conformations and 

improving the sampling of rare events. For example, a hypothetical transition 

between active and inactive states can be determined from multiple short simulations 

that explore the intervening conformations without requiring a single simulation to 

bridge the two states. Additionally, once a preliminary MSM is build poorly sampled 

transition can be additionally sampled to improve the quality of overall MSM. 

Detailed methods for building MSMs for MD simulations have already been 

described304,305. Here we highlight key considerations for building a MSM that will be 

integrated with higher-scale models with examples from a recently developed MSM 

of the cyclic-nucleotide binding domain of the R subunit of PKA306. The overall 

process of building a MSM is as follows: (1) defining the conformational space; (2) 

initial molecular dynamics sampling; (3) iterative refinement of the MSM; and finally 

(4) selection of the final model for analysis.  

The goal of our study was to determine the kinetics of the conformational 

ensemble of the CBD with and without cAMP bound. We defined the conformational 

space as the atomic coordinates of the alpha carbons in a protein, dividing the 

conformational states discrete into stats using RMSD-based clustering. We started 

sampling the CBD in either a crystallographic predetermined active or inactive state 

with and without cAMP bound. Building the final MSMs required over 70 µs of total 
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sampling time comprised of both long-timescale initial sampling iterative adaptive 

sampling to refine the models306. 

Throughout the sampling and refinement process, the quality of a MSM is 

judged using implied timescale plots199,304. Data points of the plot are constructed 

with eigenvalues of the transition probability matrix populated at different lag times, 

or times between events. The plots indicate at what lag times the models are 

Markovian and if the models are consistently capturing the principal conformational 

changes of the system. Additionally, a Chapman-Kolmogorov-test is used to validate 

the consistency of a MSM with molecular dynamics simulations303. Using these two 

metrics, a final model is selected, the statistics of which are sampled at a specific lag 

time, which represents the fastest transition within the conformational ensemble that 

is also Markovian. This final model can then be used to derive the parameters for the 

multiscale model.  

As described before, a MSM consists of the equilibrium probabilities for each 

conformational state. These probabilities are used to derive thermodynamic 

properties. Spectroscopic analysis can be used to identify metastable states within the 

conformational ensemble that can be used to build coarse-grained models of the 

system303,307. Transition path theory308 can be employed to approximate the kinetics 

of transitions between states. These rates become the parameters to feed into the 

multiscale model. For the CBD model we were able to obtain the rates of transitions 

between the active and inactive states and show how cAMP modulates the 

conformational ensemble, changing the function of the CBD. These rates have been 
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an important benchmark in understanding the dynamics of the CBD, and form the 

foundation for examining the total R subunit and its interactions with the C subunit. 

While the use of MSMs provides to conformational ensembles, there are still 

several important considerations and limitations to this method that should be 

considered in context of integrating them into a multiscale model. First, because 

conformational space is discretized, all kinetic rates are artificially fast 303,304, and 

should be considered an upper bound, especially when applied to high scale models. 

Second, a recent study indicates that modern force fields used in MD simulations 

produce varying transition kinetics 294. Therefore, the same force field should be used 

for all models of a system, and the limitations of the force fields should be 

understood. Thirdly, while the MSM is somewhat robust to errors in clustering, give a 

sufficiently fine division of conformational space (i.e. a lot of clusters) 303, the MSM 

is still dependent on the starting conformation used to initialize the simulations and 

the limitations of MD.  Therefore, it is possible to not have included states important 

conformational states leading to an incomplete model of the conformational 

landscape and incorrect predictions. However, limitation can be overcome using 

enhanced sampling methods 309 and from understanding acquired in the large-scale 

models. Finally, the MSMs are computationally demanding. This cost limits their 

usefulness in multiscale models, as a significant amount of time can be required to 

describe only one state in a higher scale model. Other sampling methods may be 

sufficient to obtain parameters for larger models. For example, if the opening and 

closing of a flap on a protein is the only permutation of interest, elastic network 

models are more computationally efficient in estimating those rates than MSM. 
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9.2. Investigating Intermolecular Interactions  

As we extend into larger spatial scales of modeling, the focus of our 

discussion shifts from intramolecular investigations with MD to the study of 

intermolecular encounters using BD. BD simulations are used to estimate the rate 

constants of second-order association events between two molecules. The output of 

these simulations provides kinetic on-rates used directly in higher levels of modeling. 

The application of BD simulations has extended beyond bi-molecular encounters in 

simulations of molecular crowding310 in cellular environments. In this section, we 

discuss the methodology and limitations of BD simulations, what can be gained from 

their use, and a brief overview of their application to multiscale modeling.  

 

9.2.1 Brownian Dynamics Simulations 

In BD, molecular diffusion is modeled using the theory of Brownian motion; 

where internal dynamics of each molecule are frozen, constraining the molecules into 

rigid bodies that are free to diffuse and tumble in solution, but may not change shape. 

Popular programs used to carry out BD simulations include BrownDye215, SDA214,224, 

ReaDDy311,312, Brownmove312, and BD_BOX313. Similar to MD, one must choose a 

force field for BD simulations of the molecular system: AMBER314, CHARMM315, 

GROMOS293, etc. However, the only force field quantities utilized in BD simulations 

are the partial charges and Van der Waals radii of each of the atoms of the 

biomolecule. In conjunction, these properties can be used to obtain the electrostatic 

potential from software that can solve the Poisson-Boltzmann (PB) equation. The 
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electrostatic potentials of the biomolecules determine the long-range forces that the 

molecules impose on each other. Thus, electrostatics function as one of the most 

important determinants of the outcomes of BD simulations. Popular software 

packages that solve the PB equation include APBS242,316 and DelPhi36,41. Rigorous 

derivations and discussions of the form and proper usage of the PB equation can be 

found in the literature39,317,318.  

In BD simulations, the solvent is modeled as a continuum; that is, there are no 

water molecules or dissolved ions modeled in atomic form in the simulation. Instead, 

the solvent is modeled as a field that surrounds the biomolecules and can have 

varying degrees of physical realism. This significantly reduces the computational 

power necessary for BD simulations in comparison to explicit solvent MD. The user 

typically specifies parameters that control solvent dielectric, hydrodynamics, 

desolvation, and ion screening, all which affect the realism of the solvent model and 

the computational cost of the simulation. 

In addition to the long-range forces imposed by inter-molecular electrostatics, 

a stochastically determined force is also imposed on the molecules in a BD 

simulation. This stochastic force is directed randomly with a magnitude sampled from 

a Gaussian distribution centered at zero whose variance depends on the simulation 

time-step and the molecule’s diffusivity properties. The stochastic force is intended to 

approximate the random “kicks” that would be caused by the solvent, but are 

otherwise absent in the continuum model. 

Finally, the simulation must ensure that the Van der Waals radii of the atoms 

of different molecules do not overlap; a phenomenon known as a steric clash. Often, 
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simulation steps that result in a steric clash are discarded and recomputed. 

Alternatively, many BD programs can impose a Lennard-Jones force at close 

molecular proximity to prevent a steric clash215,226. BD simulation and the theory 

behind it compose a rich and expansive field, and many sources exist to allow the 

interested reader to improve his or her knowledge and technique212,226,227,319-322.  

 

9.2.2 Considerations for Brownian Dynamics Simulations 

A key starting point for BD simulations is the selection of the encounter 

complex, which describes the atomic interactions that define a reaction between 

molecules. Ideally, crystal structures will inform this step. If crystal structures of the 

encounter complex do not exist, molecular docking programs can serve as a 

substitute. In the case of PKA, two crystallized structures of the regulatory subunit of 

protein kinase A RIα show very different conformations when bound to either cAMP 

323 or the catalytic subunit 324 To test the effects of structure on cAMP association 

with BD methods, one can use the crystal structure conformations of the regulatory 

subunit in separate BD simulations. Alternatively, the two different conformations 

can be used as starting points of separate MD simulations. A number of structures in 

the conformational ensemble will be generated and can serve as structures for 

separate BD simulations. 

At the start of a simulation, the ligand is placed at a distance b from the 

receptor, at a location known as the b surface, which is defined as the distance where 

forces between the two molecules are centrosymmetric. Simulations terminate either 

upon the molecules reaching the predefined bimolecular encounter complex (a 
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binding event), or when the molecules separate beyond a greater intermolecular 

distance q. The distance q, the radius of the q surface, is typically 10 to 50nm larger 

than the distance b224. The probability of association versus escape is then used to 

calculate the association rate constant (kon). This schematic, including the surfaces at 

the b and q distances, are depicted using PKA as the receptor and cAMP as the ligand 

(Figure 9.3). BD can be used to model the association of cAMP with PKA, and 

predict features of the binding event, including the route of approach, the encounter 

complex, and the rate constant of association. 

 

Figure 9.3: Brownian dynamics simulation method 
BD simulations begin by placing molecules at a distance b from one another, shown 
here as a b-surface around PKA. When molecules diffuse toward the encounter 
complex (gold) a “reaction” (green arrow) occurs. Alternatively, molecules can 
“escape” (red arrow) by diffusing past a distance equal to q, shown here as the q-
surface.   

 

A second important factor in BD simulations is the structure of the molecules 

used in the simulations. Recall that BD simulations use a rigid-body approximation of 
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molecules, meaning that the conformation of the molecule will not change throughout 

the simulation as it does in MD. Typically, crystal structure conformations are used. 

Another attractive possibility is the use of conformations generated by MD as starting 

points for BD simulations. Using this method, the user can select meta-stable or even 

rare conformations of a protein generated in MD simulations and compare the 

association rates and probabilities with respect to structural changes in the protein. 

MD trajectories can also be used to generate ensemble-averaged electrostatics245 

where the simulated molecular motions are combined to form an electrostatic 

potential that includes the dynamic properties of the molecule. This effectively leads 

to a more holistic, dynamic representation of the electrostatic potential, effectively 

mediating some of the limitations of the rigid-body approximation of the simulations.  

Solutions to the Poisson-Boltzmann equation include variations in the dipole 

moment and especially the charge density, with respect to how the solute affects the 

solvent, but also how the solvent affects itself. So while common implementations of 

the Poisson-Boltzmann equation solvers do not include many features of true aqueous 

solvents, it at least does assume that certain aspects of the solvent are heterogeneous. 

In addition, BD simulations themselves often model such things as hydrodynamics 

and desolvation forces, which are intended to approximate additional solvent features 

such as inertia and entropy at a surface, respectively. 

Despite their ability to calculate association rate constants with respect to 

steric and electrostatic properties of molecules, BD simulations have limitations that 

users should know and recognize. First, the results of BD simulations depend on the 

encounter complex criteria. Such criteria must usually be tested and optimized in 
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order to reproduce a reasonable association rate constant. Incorrectly chosen 

encounter criteria can significantly limit the accuracy of the simulation outcomes. 

Second, the rigid-body approximation of molecules in BD can only represent one part 

of the binding process: the diffusion—meaning that the rate constant calculated by 

simulations is that of association and not actual binding. Nevertheless, alternative 

methods that combine intermolecular investigations of BD with intramolecular 

dynamics of MD are being developed that promise kinetic rate estimations through 

simulation 325. These developments represent an approach toward spanning the MD 

and BD simulation regimes into a unified multiscale framework. 

To our knowledge, no systematic method yet exists for estimating the true 

amount of error propagated by the assumptions inherent in BD. However, general 

consensus agrees that BD performs relatively well if the rate constants of an event it 

is estimating can be classified as a diffusion-limited process; that is, a process whose 

time to completion is primarily limited by particle diffusion. In the case of binding, 

the range of diffusion-limited rate constants is considered to include values of 

approximately 108-109 M-1s-1191.  

Schemes do exist to approximate the precision of a kon based on the statistical 

sampling of a binding probability versus escape. Specifically, the uncertainty of the 

rate constant of binding is proportional to the inverse square root of the number of 

trajectories in BD simulations that have completed in a binding event. Since millions 

or even billions of BD trajectories can usually be completed at relatively little 

computational cost, it is typically not difficult to obtain relatively high precision of a 

rate constant using BD. However, while the estimated rate constant may be precise, it 
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still may be inaccurate if the rigid molecules, implicit continuum solvent, or some 

other approximation assumed by BD do not adequately model the system. 

Comparison to experimental rate constants of the simulated ligand-receptor system, 

or perhaps of similar systems, can give an indication of the discrepancy between the 

“true” value, and the value obtained using BD. 

 

9.2.3 Unifying MD and BD simulations through Milestoning 

The possibility of combining the speed of rigid-body BD simulations with the 

flexibility of all-atom MD simulations to predict kinetic and thermodynamic 

quantities of interest is an attractive option.  Ensembles of conformations or 

trajectories can be sampled from each simulation method, and statistics involving the 

probability and timescales of transitions between predefined states from the 

simulations can be combined using MSMs or the theory of milestoning1 to model the 

details of intermolecular interactions. 

Milestoning is a technique that is similar to the theory used in MSMs and can 

serve as an alternative approach to investigating biomolecular events, such as 

conformational sampling209,326, diffusion326, and membrane permeation211, among 

others. Milestoning retrieves the kinetics as well as the thermodynamics of chemical 

processes 2,208,210, and can make use of extensive parallelization. Although similar to 

MSMs, milestoning models have a number of key differences, and may or may not be 

well suited to address a particular biophysical question. Unlike MSM states that are 

volumes in phase space where the system exists until it crosses into another, 
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milestones are surfaces in phase space that the system traverses, and where the 

system’s current “state” is the surface that the system has most recently crossed.  

To give an example, we examine the hypothetical case where the kon of 

binding between PKA and cAMP can be predicted. In this milestoning model, we 

define a set of concentric spheres of different radii, all centered on the binding site of 

PKA (Figure 9.4). These concentric spheres define the milestones. MD simulations 

are started from conformations where cAMP is located on each spherical milestone, 

and each simulation is similarly terminated once cAMP diffuses to another surface. 

Thus, to the milestoning model, whichever simulation method is used to populate the 

transition kernels and incubation time vectors with statistics is of no consequence. 

The most appropriate simulation method can be chosen when cAMP is started on a 

particular surface. 

 

Figure 9.4: Milestoning applied to unite MD and BD 
MD and BD Simulations are run to populate transition times and probilities in a 
milestoning model of cAMP binding to PKA. BD simulations are used to model an 
encounter event, and subsequent MD simulations model the details of the actual 
binding or reaction event. 
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Unlike MSMs, milestoning transitions may only occur to states that are 

adjacent in the positional or conformational space and lag times (or incubation times) 

can vary between inter-state transitions. Therefore, milestoning may be a desirable 

technique in situations where the system crossing surfaces would more appropriately 

represent transitions than the system traversing regions of space. For instance, 

because current implementations of BD simulations make extensive use of surfaces, 

such as the surfaces at the b and q distances and the encounter surfaces, milestoning is 

a natural choice to utilize transition statistics obtained in BD simulations. MD 

simulations modeling a binding event can make use of either milestoning models or 

MSMs, but when a combination with BD is desired, milestoning offers a promising 

framework to combine statistics from the two simulation methods. 

Milestoning theory can be used to investigate a wide diversity of biophysical 

scenarios, and has been applied in a variety of contexts1,209,211,220,232. In some physical 

situations, implementations of milestoning outperformed MSMs in resemblance to 

experimental results2. The application of milestoning to intermolecular interactions is 

still a recent development, and many possible improvements may enhance the 

efficiency and accuracy of the estimation of binding rate constants. Examples of these 

include further discretizing the system into grid-like milestones, rotational milestones, 

or milestones that can represent internal degrees of freedom. Extensive derivations 

and discussions of milestoning theory are discussed elsewhere1,2,208,210. 
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9.3 From Atomistic to Protein-Scale Models 

Bridging the gap from atomic simulations to whole cell models is challenging. 

Protein-scale MSMs connect the atomistic scale to cell or tissue phenomena by 

reducing the complexity of molecular models. This enables simulations on larger time 

and spatial scales, while maintaining structural details required for protein function. 

These models simulate biological phenomena relevant to a whole-cell model, 

including ionic currents, fraction phosphorylated, or percent activation, and the output 

can be compared to in vivo experiments. 

Protein-scale MSMs have been used to represent protein interactions since the 

early-1990’s327. Several papers have been written on the development of protein-scale 

MSM, particularly of ion channels328,329 327,330. Ion channel MSMs have been made 

possible by the detailed statistical data that comes from single channel patch clamp 

recordings331. These models have started to replace traditional phenomenological 

Hodgkin-Huxley style models of ion channel kinetics in whole cell action potential 

models 332.  They have been most useful when there is a need to model the effects of 

specific channel modifications, such as drug binding 333, gene mutation 332 or post-

translational modifications 334. But the use of protein-scale MSMs is not limited to 

those systems where dynamic biophysical recordings are available; instead, these 

models can be built from BD and MD simulations. 

 

9.3.1 Protein-Scale MSM 

The first step in model development is to determine the overall structure of the 

model. Unlike atomic-scale MSMs, protein-scale MSMs do not represent every 
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conformation of atoms as a state; instead, each state represents an ensemble of related 

atomic conformations that comprise a functional structure. This significantly limits 

the number of degrees of freedom and decreases the computational power needed, 

which enables multiple protein-scale MSMs to be combined into system-scale 

models. However, because these models are a simplification of the total potential 

states, the choice of which states are relevant becomes essential to making a useful 

model of a protein.  

 

9.3.1.1 Functional State Discovery through MD Simulations  

Frequently, several different states are captured by molecular-scale 

experiments, including X-ray crystallography and mass spectrometry. These 

experimental approaches can provide data on particular stable conformations (e.g., 

active or inactive states); however, due to the static nature of these tools, significantly 

less information is known about the transitions between states. For example, there are 

published structures of the R subunit of PKA bound either to cAMP or to the C 

subunit, but little is known about the transition between these end states. MD 

simulations can suggest intermediate states for incorporation into protein-scale 

MSMs. Similarly, atomic-scale MSMs provide insights into which states are 

populated and the rates of transitions between conformations. 

 

9.3.1.2 Using BD Simulation to Inform Kinetics  

For small molecule-protein interactions and protein-protein interactions, BD 

and experimental data can serve complementary roles in determining kinetics. 
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Dissociation-rates are typically slower than association rates and are therefore easier 

to measure experimentally using techniques such as surface plasmon resonance 335. 

Additionally, most dissociation events are limited by conformational changes and not 

by diffusion—the latter of which BD is designed to model. For these same problems, 

MD simulations would be required to run for inaccessibly long periods of time (msec 

to sec) to register release events. Association-rates, on the other hand, tend to be 

orders of magnitude faster and therefore are harder to measure experimentally. BD 

simulations are ideal for measuring fast interaction rates on the ns to µs time scales, 

many of which are limited by diffusion. In combination with equilibrium data, these 

techniques can be used synergistically to determine rates for small molecule-protein 

and protein-protein interactions. By basing the ensemble of states of the model on 

MD simulations, and the kinetic interactions on BD simulations, it is possible to 

predict the effect of a mutation on protein function and, by extension, on the whole 

cell.  

 

9.3.1.3 Testing with Empirical Data  

Data from experiments, MD simulations, and BD simulations can be 

integrated into a simplified protein-scale MSM with states and interactions relevant to 

protein function.  Frequently, these combined methods will suggest several possible 

functional state ensembles. Competing models are generated, with different states or 

different relationships between the states. Subsequently, the resulting models are 

tested to determine their ability to fit relevant experimental data. (Boras 2014) For 

protein-scale MSMs, the data used for fitting most often comes from in vitro 
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experiments. Ideally, the data used to differentiate between competing models is 

collected under conditions that are most relevant to a whole cell. For example, in the 

PKA-RIα model developed by Boras, et. al.,274 all of the data used for fitting was 

collected in the presence of excess Mg2+ and ATP, both of which have been shown to 

affect PKA activation 336. These conditions are similar to what is found in a cell; 

however, recently published data has also highlighted the role of ADP in PKA 

activation337, which could affect the role of PKA in metabolism but is absent in the 

current MSM.  

The accuracy of each theoretical model is determined using an error function 

based on the weighted sum of squares difference between the model’s predictions and 

the available experimental data. Minimizing this error function optimizes unknown 

parameters. If the MSM are nested (all possible states in a model with fewer degrees 

of freedom can be represented in the model with more degrees of freedom) then a 

statistical F-test can be performed to determine if the added degrees of freedom 

significantly improve the fit338. This ensures that MSMs do not become needlessly 

complex without an improvement in the accuracy of the model’s predictions.   

Frequently, data acquired with mutant proteins that cannot reach specific 

states is used to differentiate competing models. The MSMs are altered slightly by 

removing those states, without refitting any parameters, and the output is compared 

against the experimental results 274. For example Clancy et. al., used MSM of a 

cardiac sodium channel to show that a mutation in its C terminus can lead to long-QT 

syndrome, which causes life-threatening arrhythmias (Clancy 2002). This highlights 
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how protein-scale MSM based on atomistic data can predict the effect a mutation will 

have on the whole cell and eventually on the organ scale as well.  

To mitigate error propagation when the protein-scale MSM is added to whole 

cell models, a sensitivity analysis can be performed to test the robustness of the 

solution275. In this process each rate is perturbed to determine its effect on the desired 

output of the model. States can also be removed to see how essential they are to the 

final result. The objective is to quantify how much the final result relies on any 

individual rate or state and compare that to the uncertainty in the experimental 

measurements. This technique can also highlight which states predicted from atomic 

scale modeling would have the greatest effect if mutated or pharmaceutically 

targeted. This is especially useful in quantifying the potential effect of rare 

conformations.  Due to sampling bias they may not be captured in MD simulations 

but by adding them to the model their potential effect can be determined even if 

precise kinetic parameters are not known.  

 

9.3.2 Applying to MD and BD modeling to Protein Scale PKA-RI MSM 

These techniques have been applied to the development of a novel PKA 

protein scale MSM 274(Figure 9.5). First, the effects of cAMP binding on CBD-A of 

the regulatory subunit of PKA were examined. (Malmstrom 2015) Using extensive all 

atom molecular dynamics simulations integrated with atomic-MSM, the conformation 

of the CBD with and without cAMP bound was determined. Conformational selection 

was identified as the general mechanism of allostery within a single CBD, which 

transitions between an active and an inactive conformation whether or not cAMP is 
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bound. cAMP was found to regulate the function of the CBD by deepening the free 

energy landscape and selecting conformational states that favor the active 

conformation.  Interestingly, cAMP modifies the transition rate between the active 

and inactive conformation and not the transition between the inactive and active 

conformations. Additionally, the roles of each of the signaling motifs in the CBD 

were elucidated.  

 

Figure 9.5: The Markov State Model of PKA-RIα R2C2 holoenzyme 
A representation of MSM states for the activation of PKA-RIα R2C2 holoenzyme by 
cAMP first published in JBC 274. The red arrows represent the dominant pathway 
during activation.  The two R- and C-subunits are identical but for simplicity of 
naming the first R-subunit to bind C-subunit is named R, while the first R-subunit to 
bind cAMP is R’.  
 
 

Based on these findings and crystal structure data, five nested protein scale 

MSM were considered. Each model was structured to test competing theories of PKA 

R2C2 activation based on MD simulations. The crystal structures suggested that a 

model that treated each R-C heterodimer as independent would be insufficient to fit 



	
   	
   211 

	
  

the data, due to the compactness of the R2C2 holoenzyme. Atomistic MSM predicted 

that a conformational selection mechanism would most accurately fit the data for 

isolated CBDs. The models were developed in the Virtual Cell computational 

environment339 before being translated into MATLAB to take advantage of 

optimization programs340.The models were fitted to kinase activity and cAMP 

binding data under physiological conditions341. Additionally, the various models were 

then compared to mutant PKA experimental data with either an inhibited CBD-A or 

CBD-B binding site. One model was shown to fit the wild type and predict the 

experimental results better than any other. This model validated the atomistic MSM 

by showing that CBD-B binding leads to release of the C-subunit prior to CBD-A 

binding similar to a conformational selection mechanism and created a 

thermodynamic protein-scale MSM of PKA activation. 

However, since the fitting data, as well as the mutant data, were collected at 

long enough intervals that an assumption of thermodynamic equilibrium was valid, 

the resulting MSM could only reproduce equilibrium behavior. From a cellular 

perspective, PKA’s response to a stimulus over time is essential to understanding 

PKA function. The single turnover rate in response to a stimulus has been implicated 

in activation due to A kinase anchoring proteins that bind PKA near one target 342. 

Therefore, the addition of kinetic rates would significantly increase the utility of the 

MSM a whole cell model.   

Owing to the fast rate of activation of PKA in the presence of cAMP, the 

amount of experimental kinetic data on PKA activation, particularly on-rates, is 

limited. This is a problem ideally suited to solving using atomic simulations. The 
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atomic scale MSM suggested that cAMP binding only affects the rate of transition 

from active to inactive states but not the reverse. BD simulations can be combined 

with experimental data to suggest binding and release rates for R-C and R-cAMP 

interactions. In conjunction with in-vitro experimental data this type of data will 

allow the thermodynamic MSM to become a kinetic MSM better suited to whole cell 

scale analysis of signaling network properties  

 

9.4.0 Integrating Protein scale MSM into Whole Cell Models 

The potential of molecular and protein-scale models culminate in whole-cell 

and tissue-scale models that can predict phenotypes and mechanistically explain 

disease states. These models combine several MSMs to predict cellular responses to 

either internal or external stimuli by tracing behavior down to molecular interactions. 

When developing these protein-scale MSMs, it is best to keep in mind what broader 

biological function will be modeled at a larger scale since this will determine not only 

what states are relevant but also what type of model is best for a given phenomena. 

 

9.4.1 Stochastic and Deterministic MSM in the Whole Cell 

 Some cell functions are best simulated using a continuum of species 

concentrations and smooth probability distributions, while statistically rare events are 

better modeled when individual molecules are tracked and the stochasticity of 

interactions is accounted for.  Correspondingly, protein-scale MSM can be either 

stochastic or deterministic in nature. The stochastic models, like the atomic-scale 

MSM described earlier, are based on Monte Carlo simulations where the probability 
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of transitioning between states is dependent on the kinetics of the binding and/or the 

conformational shift that each transition represents. This is the most accurate 

representation, where each event is dependent on the chance that two molecules will 

interact or that a conformation will be sampled based on random motion.  

Many biological processes, such as calcium sparks in cardiac myocytes, can 

be explained with stochastic simulations. Calcium sparks occur when calcium is 

released from the sarcoplasmic reticulum via an isolated cluster of ryanodine receptor 

calcium release channels in the absence of a depolarizing event. In other words, a 

single cleft or a cluster of clefts acts differently than the rest of the cell. Whole-cell 

deterministic models require that every channel of a given type are identical and 

therefore every channel could be fractionally open but no one channel could be fully 

open while the others were fully closed without changing the conditions. Therefore, 

to model phenomena like this, a stochastic model is necessary. When translating these 

models up to the whole cell, the stochastic models are ideal for agent based spatial 

modeling tools, such as MCell343, where each molecule is tracked and diffusion is 

represented by a random walk; although, it is worth noting that a whole-cell model 

can consist of a continuum diffusion approximation but still contain stochastic 

protein-scale MSMs. Agent-based models are ideal for small numbers of molecules or 

short time and spatial scales, where tracking each molecule is computationally 

reasonable or average approximations may be invalid. 

Over a long enough time-scale or a large enough population of molecules, the 

Monte Carlo simulation will approach the deterministic solution. The deterministic 

solution is represented by a system of ordinary differential equations, instead of being 
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represented by a transition matrix of probabilities. In these models, the states of the 

MSM are frequently populated by concentrations instead of a specific number of 

molecules. 

Many biological processes can be represented deterministically, most often 

when the system has a large number of molecules, or covers a long time and spatial 

scales. Models of the calcium concentration in a cell, for example, would require a 

deterministic model because computationally there are too many molecules to follow 

and the simulation becomes intractable. However, even on a small scale a 

deterministic approximation can be valid. For example, Hake et al. 344 showed that for 

a single dyadic cleft in a cardiac myocyte, the random walk and the deterministic 

continuum approximation gives the same result for a calcium induced calcium release 

event, even though a continuum approximation of the calcium in the cleft is 

unrealistic due to the scarcity of calcium ions. By treating the continuum as 

deterministic but the protein-scale MSMs as stochastic we can reproduce the 

stochastic sparks while limiting the required computational power.  

 

9.4.2 Advantages in Whole Cell Modeling  

The potential of molecular and protein-scale models culminate in whole-cell 

and tissue-scale models that can predict phenotypes and mechanistically explain 

disease states. These models combine several MSMs to predict cellular responses to 

either internal or external stimuli by tracing behavior down to molecular interactions. 

The power of building atomic-scale and protein-scale MSMs for wild type and 

disease mutants comes from their integration into whole cell models. At the whole 
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cell scale, differences in sub-cellular dynamics of protein mutations can be studied 

comparatively with their wild-type counterparts. Several disease states come from 

known protein mutations. For example, in the case of PKA-RIα, 117 polymorphisms 

and mutations have already been discovered345. Owing to the complexity of signaling 

pathways, how these mutations affect cell function is frequently unclear but by 

creating a whole cell model from molecular mechanisms it is possible to predict how 

a given mutation will lead to a particular a cellular phenotype.  

Whole cell models based on atomic resolution information have opened 

entirely new avenues of research into drug discovery. In addition to suggesting which 

protein is a viable target, mechanistic whole cell models can suggest which protein 

conformation is most favorable and even the chemical shape of a small molecule 

necessary to inhibit/promote activation. This allows a scale of specificity that could 

decrease toxicity and limit side effects.  

Cardiac arrhythmias are a prime example of the potential relevance of whole 

cell models. Currently, one of the most commonly prescribed classes of drugs to treat 

arrhythmias are beta-blockers. Beta blockers bind the beta adrenergic receptors to 

inhibit epinephrine and norepinephrine binding to reduce the chance of a second heart 

attack346. However, this inhibits the entire beta-adrenergic pathway. By combining 

this new PKA protein-scale MSM with previously published adrenergic signaling 

models of the heart266,279, it is possible to suggest drug targets and even specific 

binding pockets to inhibit parts of the pathway while limiting their effect on the rest 

of the cell.   
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9.5 Conclusions 

For years, atomic-resolution protein structures have aided our understanding 

of protein function not only through static structures provided by NMR and 

crystallographic experiments, but also through the prediction of dynamic properties 

with MD simulations. MD has revealed ensembles of structures that comprise the 

conformational landscape of a protein. Due to computational limitations, classical 

MD simulations are only able to generate microseconds (or less) of simulated time. 

This significantly limits the extent of the protein conformational ensemble sampled. 

However, information generated by MD simulations can be integrated into atomic 

scale MSMs, which are used to link states generated in a conformational ensemble 

through a kinetic scheme. The outputs of structures from MD simulations are 

analyzed according to a chosen conformational state description and are discretized 

into microstates. The MD trajectory informs which transitory states are most 

favorable and calculates the transition rates between these states to be used in 

different scales of modeling. 

MD simulations subsequently inform both the atomic scale MSMs and BD 

simulations. BD simulations typically use rigid-body representations; therefore 

selected conformations are important for understanding the effect of different 

structures on association probability. MD simulations provide relevant conformations 

for BD by generating stable conformations. In addition, ensemble-averaged 

electrostatics can be generated from the MD trajectories, reflecting the dynamic 

properties of a molecule in a static electrostatic potential map. Finally, MD and BD 
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simulations can be directly integrated through milestoning to derive association rate 

constants (kon) of diffusion-limited processes; a process that combines the two distinct 

simulation regimes—utilizing the advantages and minimizing the disadvantages of 

each. Such a scheme can vastly expand the time and length scales accessible in the 

simulation of multimolecular interactions between proteins and small molecules 

and/or other proteins to be combined with experimental data in protein-scale MSMs. 

Protein-scale MSMs draw on every facet of the atomistic models to bridge the 

atomic and cellular scales. MD simulations and atomistic-scale MSMs suggest which 

ensemble of states will reproduce a molecular function. BD simulations combined 

with milestoning predict association rate constants that would be difficult to 

experimentally reproduce. This information, when combined with in vitro 

experimental data and statistical analysis tools, leads to the development of protein-

scale MSM’s for incorporation into whole cell models. Whole cell models based on 

atomic level details provide a new scale of specificity. The ability to scale up the 

effects of a protein mutation on a cellular level function is the ideal goal of a robust 

MSM of this kind.  

As discussed throughout this paper, during the process of multiscale modeling 

it is essential to consider error propagation, or the effect of inaccuracies in small-scale 

models and the translation of this error into higher levels. For example, conditions 

such as molecular crowding in the cell likely affect the energetic landscape of a 

protein, a phenomenon not explicitly represented in an MD simulation. The limited 

sampling time of MD simulations can bias the conformational landscape of the 

protein, affecting the kinetic rates determined by the MSM. Structures and kinetics 
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abstracted from biased simulations can further limit the accuracy of BD simulations 

and protein-scale MSM, respectively. Furthermore, coarser-grained simulations such 

as BD and protein-scale MSMs are not free of their own inaccuracies. The sources of 

errors in many modeling methods may or may not be easy to recognized and the best 

practices for quantifying the errors is still an active area of research. Iterating through 

the multiscale modeling process is extremely time consuming, since frequently 

MSMs must be fully recreated when new constrains are added. With ample 

computational resources, a multiscale modeler can incorporate recursive feedback 

loops from multiple scales to converge to a steady solution of the represented system.  

Building a multiscale model, despite inaccuracies, is extremely useful. The 

findings of larger scale models can be used to inform the finer scales, like the 

identification of unknown conformational states in protein-small molecule energetic 

landscape. Carefully considering the whole-cell constraints of a given disease state or 

drug target before creating the initial model can allow these multiscale models to be a 

powerful and efficient tool for understanding the mechanisms behind some of the 

most intriguing biological questions.  

Chapter 9, in full, is a reprint of “Bridging Scales Through Multiscale 

Modeling: A Case Study on Protein Kinase A”, which was published in 2015 in 

Frontiers in Physiology, volume 6, by Britton W. Boras, Sophie P. Hirakis, Lane W. 

Votapka, Robert D. Malmstrom, and Rommie E. Amaro. The dissertation author was 

the third investigator and author of this paper. 
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Conclusion of the Dissertation 

In this dissertation, I outline several projects, all of which make extensive use 

of dynamic structural information obtained using one or more computer simulation 

methods. Multiple algorithms and techniques were utilized and developed to perform 

the necessary preparation, execution, and analysis of the simulations and the resulting 

trajectories. 

I presented four tools that are variously used to perform ensemble-averaged 

electrostatics (DelEE), multistructural hot-spot determination using computational 

solvent fragment mapping (FTProd), allosterical communication pathway 

determination (WISP), multistructural pocket volume determination (POVME). All of 

these tools allow the user to utilize multistructural or dynamic information; that is, 

they are not bound by a single static structure. Proteins and other biomolecules are 

almost never static crystals. They are dynamic nanomachines that vibrate, fluctuate, 

breathe, tumble and drift. Therefore, a multistructural approach can offer superior 

insight into biomolecular characteristics compared to a single static structure. 

Through the use of simulation and other computational methods, the understanding of 

a protein, and its relation to other molecules and to its cellular environment, can be 

enhanced by including information about its thermodynamic and kinetic properties. 

In addition to the tools mentioned in the paragraph above, I also present a tool 

that performs prediction of rate constants of binding by combining MD with BD 

using the theory of milestoning (SEEKR). By utilizing multiple simulation methods 

of differing accuracy and computational cost and combining the trajectories using 
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appropriate mathematical techniques, the strengths of the simulation methods can be 

utilized while simultaneously diminishing their weaknesses. This can allow for vastly 

larger time and space scales to be made available in the investigation of a 

biomolecular system, and thereby allows one to predict interesting thermodynamic or 

kinetic quantities that may otherwise be more difficult or expensive to compute using 

only a single simulation method. 

For many of these projects, particularly in the case where molecular 

visualization or a graphical user interface was desirable, I utilized VMD as a 

convenient platform. Since VMD is widely used and contains frameworks to crowd-

source improvements and additions to its plugin library, I wrote several plugins for 

VMD that are open to free use and improvement by the scientific community. Other 

tools were developed as standalone programs that, either because they require no 

graphical visualization or for speed or other reasons do not work inside any another 

program’s framework.  

Computer software has immense potential to be used to compute solutions to 

the numerous equations used in science for which an analytic solution is difficult or 

impossible. Open-source computational scientific tools provide free use and 

improvement of these resources, and therefore function as important assets for 

streamlining and expediting scientific advancement. Therefore, one general goal for 

this body of work was to generate automated and interactive tools that allow myself 

and others to easily perform calculations that are useful for biophysical and 

biomedical research. 
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