UC Irvine
ICS Technical Reports

Title
Training software designers : lessons from a development project

Permalink
https://escholarship.org/uc/item/4vh429kh

Author
Freeman, Peter

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4vh429kh
https://escholarship.org
http://www.cdlib.org/

Training Software Designers:

Lessons from a Development Project .

Peter Freeman

July, 1975

Technical Report #70

This is a preprint of a paper to be presented in November, 1975
in Baghdad, Iraq, at the International Conference on National
Planning for Informatics in Developing Countries.

ABSTRACT

A number of importantuconsiderationsAfor training software designers are
described and illustrated in the context of an actual training project.
Suggestions for training software designers in developing countries are

made on the basis of this experience. The paper also includes a description

of the project and some general comments about software design training.

*This work was performed while the author was a UN Visiting Expert at the
UNDP-supported International Computer Education and Information Center

(SZAMOK) in Budapest, Hungary.

1. INTRODUCTION

Every computer érogram ever created involved some design. As programs and
systems of prog?amsibecome larger and more complex, the role of design
becomes increasingly vital. The recognition of this fact can be seen in the
increasing emphasis on design in textbooks (3,7), curricula (1,6), and

professional meetings (2).

Training software designers is a difficﬁlt tésk under the best of cir-
cumstances and seems to be especially critical in developing countries.
This stems from the fact that most software designers learn their skills
by working alongside more experienced designers; when a country or an
organization is just beginning to create a basis of computer personnel,

this form of training is difficult to provide.

Nuﬁerous suggestions for training softwaré designers can be made. Many seem
like just good common sense when described, but are then found to be
difficul£ to apply in practice. In this paper I will try to avoid this
problem by illustrating the application of various ideas in the context of

a particular training and deveiopment project on which I have been serving as
an advisor. (These suggestions are also based on my experience teaching

design to univeristy students-)-

While this project is being carried out in a technically advanced country
(Hungary), the organizational setting of the project has many of the
characteristics found in developing countries. Thus, most of the suggestions

made should be directly applicable by readers of this paper.

1.1 Three fundamental views

Underlying much of what folléws are three basic premises. The first is

that program deéign:is different from programming, even though they ar;
often closely associated. Software design involvés specifying the functidﬁs
to be provided and choosing logical structures (for both data and control)
necéssary to carry out the reéuired functions. Furthermore, these decisions
are uspally made at several (interrelated) levels of detail. While

such decisions are ultimately concerned with programs.andfmay involve the
choice of some detailed parts of programs (such as data représentations),
‘the dési%n phase of program création usually stops short of specifying each
and ever§ instrucfion; More detailed discussion of progrém deéign can

be found'in numerous places,,includingy(3, 5, 7, 8).

The'sécond premise is that one .can only learn how to design by doing it.
Reading papefs_an& listening tq lectures may preparé one for and éxpand
one's conceptuél understanding of design, but there'ié no éﬁbstitﬁte for
actually doing design work. .The oBviouS corollary is that one mu;t design -

a number of systems and graduvally build up expertise.

The third premise is that software design normally involves‘more than
tecﬁnical knowledge. Since it is often a group activity,’management
procedures, documentation techniques, and inter-personal psychological
factors play an important role that must be understood and properly

handled.

1.2 Central focus of this paper

I will concentrate on the software design aspect of systems, not on the
total task of systems analysis, setting of organizational goals, coding,
testing, maintenance, and so on. Many of the suggestions made may be
applicable to training for these other tasks as well, but others can make

those extensions if appropriate.

Also, it is important to note that I am addressing_fhe pro@lém of training
software designers, not the problem of how software designers shogld do
their jobs. Of course, designers must be trained to use the proper
techﬁiques and there are obvious exténsions of what I say below to the

{ .
activitf of designing software. In addition to the other references given

in this paper, one can consult such publications as IEEE Transactions on

Software Engineering, Journal of Software Practice and Experiences, IBM

Systems Journal, and various trade magazines (such as Datamation) for up-

to-date information on software design techniques.

1.3 Organization of this paper

Having set the context and scope of my remarks, I will next describe the
project to be used as illustration. I will then pfovide suggestions in
three categories for training software designers: type of training and
persomnel, operational parameters, and technical content. Finally, I make

some comments concerning training in developing countiies.

b

2. THE REMOTE TEXT-EDITOR (RTE) PROJECT

This project was initiaily.started in September 1974 an& is still underway

at SZAMOK. It has undergone several changes in personnel and direction,

but these have little bearing on our concerns here. Thus, I will concentrate
on the formal design phase of the project which has lasted from April to August

1975. During this time, the project staff has remained steady.

-

2.1 Project Goals and History

SZAMOK initiated this project for two purposes: 1) to provide better
student access to the main SZAMOK machine, an IBM 370/145, and 2) to

provide training in software design for SZAMOK staff members. It was
degided to use a Videoton 1010 (R-10) computer as an interactive frént~
end.machine to the larger 370. The R-10 will-have eight video terminals,
disk storage, an interactive text editor, and a remote-job-entry connection
to the 370/145. This will permit students to prepare small job decks inter-
actively, submit their jobs to the 370 via the communication link, and
inspect their output on the video terminals after it has been sent back to

the R-10 from the 370.

For various reasons, a number of decisions were made before -the design
phaée started. These included: the RTE'system will be built én top of the
existing real-time monitor (RTDM) on the R-10; the well—known'QED text-
editor will be used; eight terminals will be supported; the system will be
written in assembly languége; and several other lesser decisions. Thus,
when the design phase started, the task was well defined. (This is import-

ant, as it makes it clearer for the trainees what they must da,)

In particular, the following facilities had to be designed: QED, a file
.system, the remote job entry interface to the 370, a memory manager to

take care of swapping edit-buffers to and from disk, an I/O manager to
coordinate use of the I/0 facilities of RTDM, a command language intérpre-
ter to provide the user interface at the terminals, a traffic controller to

coordinate the flow of control between the various parts and to schedule

allocation of processor time, and several smaller pieces.

- The design phase lasted 4 months. The first month was spent in three
activities: 1) refinement of requirements, 2) review of wérk already done
and 3) continued work on implementation of a prototype system which had
been undertaken as a familiarization project. The'neit two months were
spent_primafily working on the design of the RTE system, with some
additional implementation work on the prototype system (particularly the
QED module which will be the same in the final sYstem). The fourth month
was spent iﬁ putting the‘design documentation into the form of a case

study for teaching and in preparing an implementation plan for the design.

In developing the design of RTE, we proceeded in a roughly top-down fashion,
being careful at all stages to explicitly record our decisions and the’
alternétives_we had considered.* That is, we first carefully detéiled the
requirements for the overall system; .We then deci&ed on én o§erali division

of the RTE into major facilities (those named above) and further refined the

*It is suggested in (4) that recording the reasoning that led to design
decisions will make the design more reviewable. 'In this instance, the
design will form the central part of a case study to be used in teaching,
making this especially important.

specifications for each of these parts. Then rough decisions concerning
how each part w&uld work (i.e. data representations and control structures)
were made, followed'by further decisions following from éach of these high-
level decisions. Once we felt we understood the developing form of a
facility well enough, we represented the various programs of that facility
in a metacode form (Algol-like.control structures plus naéural language
statements of actions); fhis representation also was carried through two
levels éf detail. Additionally, external specifications and other descrip-

tive material were prepared for each facility.*

2.2 Personnel of the project

The choice of people to be trained as software deéigners is a critical
issue. This"subject can be treated extensively, but my discussion here
muét be limited to a characterization of those participating in -this
project. In this way, the reader can at-least obtain a feeling for the

level of personnel on one project.

The design phase has been carried out by five staff members of SZAMOK with
the assistance of the author.*#* 1T have served essentially as project leader,
providing overall direction, leading gfoup meetings that worked out the
first levels of detail on the individual faciliFies, and carrying out the

detailed design on one facility (the file system). My background consists

*The design methodology employed in a training project is of prime importance
since it will form the model for future design efforts of the students. Its
choice desérves much more careful consideration than space will permit here.

**Mr. Per Ofstad, UN Expert from Norway, worked with some members of the
group at the start of the project; we benefited from his preparatory work.

of 14 years of work in computing (including the design of a system similar

to RTE), research on design methods, and teaching of design and software

engineering methods to advanced computer science students.

The SZAMOK staff members consisted of two régular_membérsrof the Software)
Development Department and three instructors assigned to the department on
a temﬁorary basis for job tréining.‘ They can be roughly characterized as
having strong educational and professional backgrounds but as being weak in

actual programming and design>experience. Table 1 provides a profile of

each.
This dual characterization -- well-educated, but lacking in actual exper-
ience —- can be expected to be found in developing countries where machine

time and/or opportunities for programming experience are in short supply.
As we note below, this lack of programming experience caused problems and

ideally should be remedied before design training begins.

2.3 Project evaluation

Until our design is impleméntéd (which is‘;just now starting) and until the
staff members try to use their new skills in teaching or in other prdjegfs,
it is impossible to evaluaté it objectively. My féeliné as a teacher is
that the project personnel have;benefited and are now capable of more than
they were before -- they certainly undérstand better some of ghe difficul-
ties in doing design. Their ability to deal with complex situations at a
logical level, to analyzeva problem and throw out unimportant factors, and
to représenﬁ their design.ideas'has improved. They\alsd feel the experience

has been beneficial.

“Table 1: Project Personnel Profile

1 200

A B C D K .
(dept ; |
dept. ,
(h:zd) : (dnstr.) member) (instr.) & (1nstr.1
Number of yrs teaching 4
or working in computing 5 5 8 5 2
Number 6f machines whose
structure is understood ; 5 5 4 5 2
Number of languages
(reading knowledge) 8 3 5 5 1
' M.S. M.S. M.S. M.S. | M.S.
Educational level math/phy! engrng. engrng. math/phyg engrng .
Prior software design
experience some none none none none
Number of programs _
written and debugged <100 <100 <10 <100 <10
Largest program created
. (number of lines) 500 1000 700 e 200

3. IMPORTANT CONSIDERATIONS FQR TRAINING SQFTWARE DESIGNERS

There are many things to consider in planning and carrying out a training
program for software designers. In this section I have tried to touch on
those which can be illustrated from our experience on the RTE project. I

have arranged them into three broad categories to facilitate comprehension.

3.1 Type of personnel and training

Clearly the first thing one must consider is what type of people to train

and what basic form of training to provide them.

3.1.1 Minimum qualifications are essential. Software design is an intellec-

tually demanding task for which not everybne is well-suited. A good general
éducation and a familiarity with computing in general is necessary; the
ability to éeal with a large number of details and to separate them into
manageable groupings is critical; firsf—hand.ekpefiénée with programming

and the use of software systems is indispensable, -

In the RTE project, as noted in Table 1, the personnel were well-educated
and familiar with-many computing concepts. This background made it easy
for them to deal with new concepts that arose in the design as well as to
carry out complex tasks (subparts of the design) without much direct

supervision.

Their lack of programming experience, however, seriously detracted from
their performance as designers. When considering design alternatives, they
did not have the intuition of an experienced programmer which would have
permitted them to make such decisions more easily. Further, since some of
them were not fluent in a higher-level languége, they were not comfortable

at first with the design representation we used. Finally, their lack of

éctual_programming experiencé.seems to be related to their difficulﬁy in
dividing the total task inte maﬁageable~£ieces and in sh;tting‘out of
their minds unﬁeédéd'details.' (The concept ;f'subroﬁtines in p?ogramﬁing,
Which‘én experienéed programmér will have used ektensivély,:encoﬁrages

this form of thinking.)

On the basis of this project and my teaching experience, it seems one could
safely get by with somewhat less educational background than the RTE
project members had and, perhaﬁs, with less professional maturity. "However,

significantly more actual programming experience is ciearly needed.

3.1.2 Actual design work is necessary. Designing can be mastered only

through practice. This is true in most technical areas and is certainly
true in software design where the techniques used are.often inforﬁal. In
effect, it is én art which cannot be fully explained and Which must there-
fore be learned by doing it under the difection of someone who already
knows the aré.‘ (One explanation of this is the fact that design involves
making decision involving many different factors whbée interrelationships
cannot be explicitly stated. Thus, one cannot learn a simple rule that

will enable one to design, but instead must learn by experience what factors

to consider.)

The aﬁount of design work in the RTE project was jusf about right. There
was enough of it (and enough time) so that people could try dlfferent
approaches, dlscoverlng as they did which worked best; yet, it was small
/enough that the task did not seem impossible. Also, the implementation
(the real test) can be doné.in a reasonable amoﬁnt of time so that the
designeré can see precisely how their ideas work out, It is worth notiné
that much of the implementation work will;be done by the designers (now

working as an implementation team), which can be a very valuable carry-on

Project if people implement parts other than those they designed.

3.2 Operational .factors

Even if one starts with persommnel with good background and organizes a
‘ . !

training project that includes ample practical experience, many factors

associated with carrying out the project can make it a success or ruin it,

3.2.1 Projects must be realistic. The goals of a training project should

'be realistic in extent;-that is, not too small and not too large; a’real

- need for the systems being designed should exist--phony projects, made up
just for training, 'make it difficult to.motivate people; the work cqnditiﬁns
of the froject should be as much 1ike actual design conditions as possible.

It is especially important that projects be realistic in terms of their

. actual demgnd«(see 3.3.4 below) and that they be broken.up'into relatively

{
f

small segments so that people can see more tangible form of progress every

weekor 10 ‘days.

The RTE project is a good exampie of the right kind of project. Thé need
for the product existed independently; it was a large enough task to p?ovide
ample opportunity for training, but not impossibly large; the technical
content was challenging, but not too difficult, The work conditions were
not ideal from tﬁe standpoint of designing (see 3.2.3 and 3.2.4), but were

consistent with the future conditions the people involved must work under.

3.2.2 Experienced and strong project leader needed. The central'theme of
design training must be apprenticeship. Thus; the presence of én'exper—
ienced designer is essential; but, further, this experiénced designer must
also .be able to lead the trainees and guide them in useful directions, both
organizationally and technically. It should be noted that not all good

designers are also good project leaders.

In the RTE case, the lack oﬁ eiperience interna1 to the SZAMOK organization
in this respect.Was-solved by bringing in.dutside.assistance (the authbr),
This is often an egcellent soiution,'but must be approacﬁedAcarefully to
insure that the "expert" has the right design and leadership qualities in
fact, as well as on paper. One problem in this project‘was that a project
leadership strgcture_existed.before I arrived;Aihitially'I served primarily
as an advisor only, leaving the actual direction to staff members. This
did not wo?k out well. When wevlatér changed*so that I took a more active

role in project management, the difference in design progress could easily

be seen.

3.2.3 Full-time involvement necessary. Design tasks usually require a large ¢

amount of-éfforf. A "critical-mass" effect'operates éo that if the task

is worked at only 1 or 2 hours per .day, the chances are great that the work
will never be finished. It is essential that the trainees (and 1eader; too)-
have no duties or responsibilities and be able to concentrate full-

time (6 to 8 hours per day) on the design task.

This éroved to be a major problem in the RTE project. Three of thg five
trainees were instructors relieved of most of their normal teaching duties
on a job-rotation plan &esigned to provide thém experience in the tech—
nical areas in ﬁhich they teach. Yet, a number of small, but time-consum-
ing activities remained for them (consultations with former students,

planning of future teaching duties, etc.). Further, normal administrative

interruptions took a large amount of time.. Finally, the simple business of

living (housing, transportation,. income) took a high percentage of the
trainees's time. The net result was a good bit less than full-time involve-

ment; this seriously comprised the success of the project.

3.2.4 Proper support must be given., People working at a -complex activity
requife two kinds of support in order that they may concentrate on and

carry out the task. First, they must feel that their work is important,

that their employer values it, and that the result will be valuable to them-
selves as well. Second, the physical arrangements necessary must be present:
propef office conditions, freedom from distractions, docUmenta;ion of

equipment, reproduction and typing facilities, and machine time if required.

The first type of support was not always present in the RTE project and

this presented problems of motivation. It must be recognized that organiza-
tional support is perceived by people not .only through official statements
but even more through organizational actions. The second type of support
was a special problem in this situation and seriously éffected progress,

For example, normal turnaround time on Xeroxing a piece of paper was at
least 7 days; since the physical objects produced by a design consists of
pieces of papér, and since it is often necessary to distribute copies of
working documents to all Erojéct members, it can be-seen why this lack of

support was so critical.

3.3 Technical content of the training project

When one considers the various rules of good design that should be taught

to potential designers and the principles underlying the system being
designed (for instance, operating system principles), we find a multitude
of factors. In what follows, I concentrate on several points important to

a wide range of projects.

3.3.1 Emphasize the difference between programming and design, Programmers

typically approach a design task as though it were the same as a programming

task. Likewise, people trained in systems analysis may approach a software

design strictly from the yiewpoint of overall Qfganizatibnﬂ Software
design requires a special blend of programming and system design know-
ledge. It is essential that trainees be constantly reminded of this and

shown by example how to create a software design. .

fhe need fon this-was evident in the RIE project. Some»trainees had only
experience with assembly-language programming and found it quite difficult
to think about the functional requirements of a module and its inferconnec—
tions to other modules without thinking-abont the details of implementation.
When the staff members approached the design task from a programmer's
standpoint (worrying about the smallest details of data representation and
control flow from the very start)vthey had great difficulty in solving the
1arger.problems of overall system design. As they gradually became accus-
tomed to thinking abont_parts without considering their implementation in
_details (Via>stating functional specifications and gross implementation
deéiéions) they found they were better able to see how the various.parts of
the system should fit together. This, of nOurse, was essential to stating

a correct design.

3.3.2 Use good conceptual models. A design of any size is normally complex

enough that it is impossible to keep all of its details straight without
some aid. Some type of abstractions (conceptual models) are needed so that
one can consider important details while ignoring irrelevant ones, Typ-

ically, different models for different parts of the design may be needed.

For example, in the RTE system we used the process concept to aid in
determining the interconnections between parallel activities and a logical
model of lines of text in designing the file system, Without the process

model, it was impossible to correctly determine the proper connections

-

between .eces. Once we represented the system in this way, we could
see more clearly what was needed. . Likewise, the file system design was
made easier by divorcing the local requirements for operations on lines

of text'from the particular physical characteristics of the R-10 disk.

3.3.3 Design representation is'importént. The way in which thé final design
is stated is qﬁite important, of course.: (That ié, it must be well doc-
umented.)., But, it is also quite important to make_designers aware of the
need fér good working representation of the deéign. It is qgite impossible
to think out all.the details of a design and only write down the results.
Fﬁrther, mucp of the activity in a.design consists of evaluating proﬁdsed'
solutions aéd changing deéiéions already made. The use of good representa-
tions for thé design and its atténdant information as it progresses is thus

'quite important.

In the RTE project we found it useful to use two types of representation,
augmented by the ﬁsual tabular présentations of aata'structufés. As we
made initial décisions, we wrote them down in a carefully numbered scheme.
We tried to think through one topic at a time, collecting all the decisions
concerning that topic together. At that stage, the decisions were représen—
ted simply as short, natural-language statements. After refining these
decisions to the point where we feltiwe understood the pafticulaf point, we
would start to represent 'actual programs in the form of a metacode
(described abové in 2.1). This provided us a very explicit representation
of our design for the various parts without getting bogged down in many of
. the extraneous details involved iﬁ actual programs. Further, we often used

metacode to représent our concepts of the overall system structureand

interconnections. For egample, this permitted us to represeht in a single
notation the interaction between hardware iﬁterrupts and.software signals.
As noted in our discussion of conceptual models, the dlfference in our
ab111ty to deal with the developing design was mar kedly improved_when we

used these representations.

3.3.4 Build on existing knowledge of trainges. Learning to design is not an

easy-task. If the trainees must also at the same time learn new concepts
of hardware of software, then their task is made much more difficulty
Further, their attention is diluted so that neither their grasp of the new

concepts or the training in design is as effective.

"In the RTE project this effect could be seen quite easily. Those staff
members with some knowledge of operating systems could.more readily deal
with the problems of representing their design in a proper fashion. Like-
wise,.phose with command of a high-level language were bettér able to deal

with the metacode representation.

3.3.5 Explicitly deal with decision making. One of the ways in which design
differs from programming is in the existénce of many difficult decisions to
be made. It is an important part of the training to sensitize péople to

the need for identifying critical design decisions, gathering informatidn
relevant to them, and making the decisions only at the apprépriéte»time.

If this is not treated explicitly, then one of the important differentia-

tions between design-and programming may be lost.

Our approach to this in the RTE experience was to point out the existence
of critical. decisions as they arose, (This is one of the places the need
for an experienced designer as leader is most evident.) Once we had clear-

ly stated the decision to be made, we tried to think of as many different

-1 7~

possible solutions as we could. WeAwouldulist these and. for .each write
down avbrief'evaluation-of_it as a possible SOlution.a'Aé'suggesfed in(&),

this permitted us-te'go back and review our.decisions in depth at a later time.

' 3.3.6 bon;t forgetfthe;organiZational aspeCtS'of'desigﬁ. Software design.
very often requires the cooperation of several people working together in a
group. This type of activity is usually new to people who have just been
programmiﬁg. It'is iﬁportant\to help people deal witﬁ this mode of aétivity
during tﬁe training project. The heéd fbrrreadable working documentation,
thé negessity of diéciplined working meetings, managément techniques for
assigning work loads, the importance of interpersonal working relationships;

and so on should all be dealt with carefuily.

‘The RTE project members had worked together prior to this project so that
some of these>éoncérns had already been dealt with, However, in the area
'of assigning workloads an important lesson was learned. Initially, broad
areas of respbnsibility were‘aséigned aﬁd specific tasks within those éreas
were not explicitly assigﬁedf This did not work well since the trainees

. were not accustomed to producing working documentation, external specifica-
tions and the other intermediate products of a design. When I began
providing more detailed assistance on how to organize the task, progress
improved. Later, the project members were able to subdivide tpe work more

appropriately themselves.

4. SPECIFIC SUGGESTIONS FOR DEVELOPIﬁG COUNTRIES

There are a number of factors to consider in training software designers
besides thosé mentioned abofe. These are chosen because of their import—
ance and gecause they illustrate problems often encountered in devgloping

countries. Thus, each point should be evaluated with this in mind.

- 0O

Beyond these specific points, there are four general points that.should be
carefullyAconsidered by those dealing with éomputer.techndlogy in develop-

ing countries,"

4.1 Keeﬁ softﬁare design in froper per§pective.

There is sometime the tendency on the part of those,interested in software
to build an extensive capability to design compilers, operating systems,
file systems, and numerous other types of software. This is eften unneeded

since many such s&stems are readily available.

On the other hand, the tendency of those whose personal interests are more
along the lines of organizational structure is sometimes to assume that
software deeign is the same as progfamming. As a result, little attention .
is paid to ihe problem of‘building some design capability.

In short, the needs of each country or.organization.must_be carefully
evaluated. Enough deeign expertise should be developed to permit a reason-—

able amount of independence of others, but not more than is required by the

jobs to be done.

4.2 Don't try to skip essential steps.

It is often tempting to hurry past or even skip over important steps. For
example, it might be felt that a well-educated person with an understanding
of, but no experience in, programming should not worry about the lack of
experience and be trained as a software designer. As we pointed out above,

this would be a mistake.

Building a technological capability in a society is a slow process and
skipping stages can often lead to trouble, This is not to say that the
process alwayg takes the same time. Hopefully we can learn from the

mistakes of those who have already tried it and thus improve the develop-

ment process. (That is the point of this paper, after alll)

Finally, it is worth remembefing that the technologically.advanced countries
with much experience in utilizing new technologies, are only now starting

to haye much success in the area of training software designers; Many of
the failures known so well in our field were due in part to people skipping

logically necessary steps in training.

4.3 Carefully choose techniques.

As with most human affairs, there are competing concepts dealing with soft-
ware design and the training of those who practice it. Alternatives should
be carefully evaluated with respect to the needs, people, and resources of

each situation.

4.4 Get good advice.

Just as techniques, advice must also be carefully chosen. All advisors
are not equal, either in capability or purpose, Likewise, no piece of

advice'(including this one!) is universally applicable!

5. SUMMARY

“After setting the context of this brief discourse, I described a particular
software design training project. .I then drew a number of lessons pertinent
to training software designers and illustrated them in the setting of the
RTE project.. Finally; several general suggestions were made for training

in developing countries.

ACKNOWLEDGEMENTS
This paper could not have been written without the members of the RTE
project group: Zoltan Szekely, Andras Kelen, Sandor Majoros, Sandor Zold,

and Mary Koos-Hutas. The advice of A.G, Dale and Per Ofstad was most helpful.

REFERENCES

1'

Ashenhurst, R.L. (ed). ""Cutrriculum Recbﬁmendations _for -Graduate
Professional Programs in Information Systems', Communications of
the ACM, May,-1972,.

Bpéﬁﬁ,“R.R. "1974 Lake Arrowhead Workshop on Structured Programming",
Computer, IEEE Press, New York, October, 1974.

Freeman, Peter Software Systems Principles: A Survey
Science Research Associates, Palo Alto, 1975. -

Freeman, Peter "Towards Improved Review of Software Designs",
Proceedings 1975 National Computer Conference, AFIPS Press,
Montval, New Jersey.

Hice, G.F., W.S. Turner, and L.F. Cashwell, System Development
Methodology, North Holland Publishing Company, Amsterdam, 1974.

Intergorvernmental Bureau for Informatics. "An International Curriculum
for Information. Systems Designers', Rome, no date

Ledgard, Henry F. Programming Proverbs, Hayden Press; Rockelle Park,
New Jersey, 1975.

Simon, H.A. The Sciences of the Artificial. MIT Press,
Cambridge, 1969.

-21-

