
UC Irvine
ICS Technical Reports

Title
Training software designers : lessons from a development project

Permalink
https://escholarship.org/uc/item/4vh429kh

Author
Freeman, Peter

Publication Date
1975

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vh429kh
https://escholarship.org
http://www.cdlib.org/

Training Software Designers:

Lessons from a Development Project

Peter Freeman

July, 1975

Technical Report #70

This is a preprint of a paper to be presented in November, 1975
in Baghdad, Iraq, at the International Conference on National
Planning for Informatics in Developing Countries.

AP5XRACT

A number of important considerations for training software designers are

described and illustrated in the context of an actual training project.

Suggestions for training software designers in developing countries are

made on the basis of this experience. The paper also includes a description

of the project and some general comments about software design training.

*This work was performed while the author was a UN Visiting Expert at the
UNDP-supported International Computer Education and Information Center
(SZAMOK) in Budapest, Hungary.

1. INTRODUCTION

Every computer program ever created involved some design. As programs and

systems of programs'become larger and more complex, the role of design

becomes increasingly vital. The recognition of this fact can be seen in the

increasing emphasis on design in textbooks (3,7), curricula (1,6), and

professional meetings (2).

Training software designers is a difficult task under the best of cir

cumstances and seems to be especially critical in developing countries.

This stems from the fact that most software designers learn their skills

by working alongside more experienced designers; when a country or an

organization is just beginning to create a basis of computer personnel,

this form of training is difficult to provide.

Numerous suggestions for training software designers can be made. Many seem

iike just good common sense when described, but are then found to be

difficult to apply in practice. In this paper I will try to avoid this

problem by illustrating the application of various ideas in the context of

a particular training and development projector! which I have been serving as

an advisor. (These suggestions are also based on my experience teaching

design to univeristy students-)

While this project is being carried out in a technically advanced country

(Hungary), the organizational setting of the project has many of the

characteristics found in developing countries. Thus, most of the suggestions

made should be directly applicable by readers of this paper.

1.1 Three fundamental views

Underlying much of what follows are three basic premises. The first is

that program design is different from programming, even though they are

often closely associated. Software design involves specifying the functions

to be provided and choosing logical structures (for both data and control)

necessary to carry out the required functions. Furthermore, these decisions

are usually made at several (interrelated) levels of detail. While

such decisions are ultimately concerned with programs and may involve the

choice of some detailed parts, of programs (such as data representations),

the design phase of program creation usually stops short of specifying each
I

and every instruction. More detailed discussion of program design can

be found in numerous places, including (3, 5, 7, 8).

The second premise is that one can only learn how to design by doing it,

Reading papers and listening to lectures may prepare one for and expand

one's conceptual understanding of design, but there is no substitute for

actually doing design work. The obvious corollary is that one must design

a number of systems and gradually build up expertise.

The third premise is that software design normally involves more than

technical knowledge. Since it is often a group activity, management

procedures, documentation techniques, and inter-personal psychological

factors play an important role that must be understood and properly

handled.

-3-

1.2 Central focus of this paper

I will concentrate on the software design aspect of systems, not on the

total task of systems analysis, setting of organizational goals, coding,

testing, maintenance, and so on. Many of the suggestions made may be

applicable to training for these other tasks as well, but others can make

those extensions if appropriate.

Also, it is important to note that I am addressing the problem of training

software designers, not the problem of how software designers should do

their jobs. Of course, designers must be trained to use the proper

techniques and there are obvious extensions of what I say below to the
I

activity of designing software. In addition to the other references given

in this paper, one can consult such publications as IEEE Transactions on

Software Engineering, Journal of Software Practice and Experiences, IBM

Systems Journal, and various trade magazines (such as Datamation) for up-

to-date information on software design techniques.

1.3 Organization of this paper

Having set the context and scope of my remarks, I will next describe the

project to be used as illustration. I will then provide suggestions in

three categories for training software designers: type of training and

p03^sonnel, operational parameters, and technical content. Finally, I make

some comments concerning training in developing countries.

-4-

2. THE REMOTE TEXT-EDITOR (RTE) PROJECT

This project was initially started in September 1974 and is still underway

at SZAMOK. It has undergone several changes in personnel and direction,

but these have little hearing on our concerns here. Thus, I will concentrate

on the formal design phase of the project which has lasted from April to August

1975. During this time, the project staff has remained steady.

2.1 Project Goals and History

SZAMOK initiated this project for two purposes: 1) to provide better

student access to the main SZAMOK machine, an IBM 370/145, and 2) to

provide training in software design for SZAMOK staff members. It was

decided to use a Videoton 1010 (R-10) computer as an interactive front-

end machine to the larger 370. The R-IQ will have eight video terminals,

disk storage, an interactive text editor, and a remote-job-entry connection

to the 370/145. This will permit students to prepare small job decks inter

actively, submit their jobs to the 370 via the communication link, and

inspect their output on the video terminals after it has been sent back to

the R-10 from the 370.

For various reasons, a number of decisions were made before -the design

phase started. These included: the RTE system will be built on top of the

existing real-time monitor (RTDM) on the R-10; the well-known QED text-

editor will be used; eight terminals will be supported; the system will be

written in assembly language; and several other lesser decisions. Thus,

when the design phase started, the task was well defined. (This is import

ant, as it makes it clearer for the trainees what they must do.)

In particular, the following facilities had to be designed: QED, a file

•system, the remote job entry interface to the 370, a memory manager to

take care of swapping edit-buffers to and from disk, an I/O manager to

coordinate use of the I/O facilities, of RTDM, a command language interpre

ter to provide the user interface at the terminals, a traffic controller to

coordinate the flow of control between the various parts and to schedule

allocation of processor time, and several smaller pieces:

The design phase lasted A months. The first month was spent in three

activities: 1) refinement of requirements, 2) review of work already done

and 3) continued work on implementation of a prototype system which had

been undertaken as a familiarization project. The"next two months were

spent primarily working on the design of the RTE system, with some

additional implementation work on the prototype system (particularly the

QED module which will be the same in the final system). The fourth month

was spent in putting the design documentation into the form of a case

study for teaching and in preparing an implementation plan for the design.

In developing the design of RTE, we proceeded in a roughly top-down fashion,

being careful at all stages to explicitly record our decisions and the

alternatives we had considered.* That is, we first carefully detailed the

requirements for the overall system. We then decided on an overall division

of the RTE into major facilities (those named above) and further refined the

*lt is suggested in (A) that recording the reasoning that led to design
decisions will make the design more reviewable. In this instance, the
design will form the central part of a case study to be used in teaching,
making this especially important.

-6-

specifications for each of these parts. Then rough decisions concerning

how each part would work (i.e. data representations and control structures)

were made, followed by further decisions following from each of these high-

level decisions. Once we felt we understood the developing form of a

facility well enough, we represented the various programs of that facility

in a metacode form (Algol—like control structures plus natural language

statements of actions); this representation also was carried through two

levels of detail. Additionally, external specifications and other descrip

tive material were prepared for each facility.*

2.2 Personnel of the project

The choice of people to be trained as software designers is a critical

issue. This' subject can be treated extensively, but my discussion here

must be limited to a characterization of those participating in this

project. In this way, the reader can at least obtain a feeling for the

level of personnel on one project.

The design phase has been carried out by five staff members of SZAMOK with

the assistance of the author.** I have served essentially as project leader,

providing overall direction, leading group meetings that worked out the

first levels of detail on the individual facilities, and carrying out the

detailed design on one facility (the file system). My background consists

*The design methodology employed in a training project is of prime importance
since it will form the model for future design efforts of the students. Its
choice deserves much more careful consideration than space will permit here.

**Mr. Per Ofstad, UN Expert from Norway, worked with some members of the
group at the start of the project; we benefited from his preparatory work.

of 14 years of work in computing (including the design of a system similar

to RTE), research on design methods, and teaching of design and software

engineering methods to advanced computer science students.

The SZAMOK staff members consisted of two regular members of the Software

Development Department and three instructors assigned to the department on

a temporary basis for job training. They can be roughly characterized as

having strong educational and professional backgrounds but as being weak in

actual programming and design experience. Tabld 1 provides a profile of

each.

This dual characterization — well-educated, but lacking in actual exper

ience — can be expected to be found in developing countries where machine

time and/or opportunities for programming experience are in short supply.

As we note below, this lack of programming experience caused problems and

ideally should be remedied before design training begins.

2.3 Project evaluation

Until our design is Implemented (which is just now starting) and until the

Staff members try to use their new skills in teaching or in other projects,

it is impossible to evaluate it objectively. My feeling as a teacher is

that the project personnel have benefited and are now capable of more than

they were before — they certainly understand better some of the difficul

ties in doing design. Their ability to deal with complex situations at a

logical level, to analyze a problem and throw out unimportant factors, and

to represent their design ideas has improved. They,also feel the experience

has been beneficial.

-8-

Table 1: Project Personnel Profile

Number of yrs teaching
or working in computing

Number of machines whose

structure is understood

Number of languages
(reading knowledge)

Educational level

Prior software design
experience

Number of programs
written and debugged

Largest program created
(number of lines)

TjiTjT'fB'w imn 'i trnawiwu—u^n

(dept.i (dept
head

M.S. I M.S. i M.S. I M.S. I, M.S.
ma>th/phy.j engrng. | engrng. | math/phyf engrng.

<100

(instr.) j TnGmbeir) j i Ci^istzr#/

<100

-9-

3. IMPORTANT CONSIDERATIONS. FOR TRAINING SOFTWARE DESIGNERS

There are many things to consider in planning snd carrying out a training

program for software designers. In this section I have tried to touch on

those which can he illustrated from Our experience on the RTE project. I

have arranged them into three broad categories to facilitate comprehension.

3.1 Type of personnel and training

Clearly the first thing one must consider is what type of people to train

and what basic form of training to provide them.

3.1.1 Minimum qualifications are essential. Software design is an intellec

tually demanding task for which not everyone is well-suited. A good general

education and a familiarity with computing in general is necessary; the

ability to deal with a large nimiber of details and to separate them into

manageable groupings is critical; first-hand experience with programming

and the use of software systems is indispensable.

In the RTE project, as noted in Table 1, the personnel were well-educated

and familiar with many computing concepts. This background made it easy

for them to deal with new concepts that arose in the design as well as to

carry out complex tasks (subparts of the design) without much direct

supervision.

Their lack of programming experience, however, seriously detracted from

their performance as designers. When considering design alternatives, they

did not have the intuition of an experienced programmer which would have

permitted them to make such decisions more easily. Further, since some of

them were not fluent in a higher-level language, they were not comfortable

at first with the design representation we used. Finally, their lack of

actual programming experience seemg to be related to their difficulty in

dividing the total task into manageable-pieces, and in shutting out of

their minds unheeded details. (The concept of subroutines in programming;,

which an experienced programmer will have used extensively, encourages

this form of thinking.)

On the basis of this project and my teaching experience, it seems one could

safely get by with somewhat less educational background than the RTE

project members had and, perhaps, with less professional maturity. However,

significantly more actual programming experience is clearly needed.

3.1.2 Actual design work is necessary. Designing can be mastered only

through practice. This is true in most technical areas and is certainly

true in software design where the techniques used are often informal. In

effect, it is an art which cannot be fully explained and which must there

fore be learned by doing it under the direction of someone who already

knows the art. (One explanation of this is the fact that design involves

making decision involving many different factors whose interrelationships

cannot be explicitly stated. Thus, one cannot learn a simple rule that

will enable one to design, but instead must learn by experience what factors

to consider.)

The amount of design work in the RTE project was just about right. There

was enough of it (and enough time) so that people could try different

approaches, discovering as they did which worked best; yet, it was small

enough that the task did not seem impossible. Also, the implementation

(the real test) can be done in a reasonable amount of time so that the

designers can see precisely how their ideas work out. It is worth noting

that much of the implementation work will be done by the designers (now

working as an implementation team), which can be a very valuable carry-on

project if people implement parts other than those they designed.

3.2 Operational factors

Even if one starts with personnel with goo(i background and organizes a

training project that includes ^ple practical experience, many factors

associated with carrying out the project can make it a success or ruin it,

3.2.1 Projects must be realistic. The goals of a training project should

be realistic in extent—that is, not too small and not too large; a real
I

need for the systems being designed should exist—phony projects, made up

just for training, make it difficult to motivate people; the work conditions

of the project should be as much like actual design conditions as possible.

It is especially important that projects be realistic in terms of their

actual demand (see 3.3.4 below) and that they be broken up into relatively
/ • •
I •

small segments so that people can see more tangible form of progress every

week or 10 days.

The RTE project is a good example of the right kind of project. The need

for the product existed independently; it was a large enough task to provide

ample opportunity for training, but not impossibly large; the technical

content was challenging, but not too difficult. The work conditions were

hot ideal from the standpoint of designing (see 3.2.3 and 3.2.4), but were

consistent with the future conditions the people involved must work under.

3.2.2 Experienced and strong project leader needed. The central theme of

design training must be apprenticeship. Thus, the presence of an exper

ienced designer is essential; but, further, this experienced designer must

also be able to lead the trainees and guide them in useful directions, both

organizationally and technically. It should be noted that not all good

designers are also good project leaders.

In the E,TE case, the lack of experience internal to the SZAMOK organization

in this respect was solved by bringing in o'utside assistance (the author).

This is often an excellent solution, but must be approached carefully to

insure that the "expert" has the right design and leadership qualities in

fact, as well as on paper. One problem in this project was that a project

leadership structure existed before 1 arrived; initially 1 served primarily

as an advisor only, leaving the actual direction to staff members. This

did not work out well. When we later changed so that 1 took a more active

role in project management, the difference in design progress could easily

be seen.

3.2.3 Full-time involvement necessary. Design tasks usually require a large

amount of effort. A "critical-mass" effect operates so that if the task

is worked at only 1 or 2 hours per day, the chances are great that the work

will never be finished. It is essential that the trainees (and leader, too)

have no duties or responsibilities and be able to concentrate full-

time (6 to 8 hours per day) on the design task.

This proved to be a major problem in the RTE project. Three of the five

trainees were instructors relieved of most of their normal teaching duties

on a job-rotation plan designed to provide them experience in the tech

nical areas in which they teach. Yet, a number of small, but time-consum

ing activities remained for them (consultations with former students,

planning of future teaching duties, etc.). Further, normal administrative

interruptions took a large amount of time. Finally, the simple business of

living (housing, transportation, income) took a high percentage of the

trainees's time. The net result was a good bit less than full-time involve

ment; this seriously comprised the success of the project.

3.2.4 Proper support must be given. People working at a complex activity

require two kinds of support in order that they may concentrate on and

carry out the task. First, they must feel that their work is important,

that their employer values it, and that the result will be valuable to them

selves as well. Second, the physical arrangements necessary must be present;

proper office conditions, freedom from distractions, documentation of

equipment, reproduction and typing facilities, and machine time if required.

The first type of support was not always present in the RTF project and

this presented problems of motivation. It must be recognized that organiza

tional support is perceived by people not only through official statements

but even more through organizational actions. The second type of support

was a special problem in this situation and seriously effected progress.

For example, normal turnaround time on Xeroxing a piece of paper was at

least 7 days; since the physical objects produced by a design consists of

pieces of paper, and since it is often necessary to distribute copies of

working documents to all project members, it can be seen why this lack of

support was so critical.

3.3 Technical content of the training project

When one considers the various rules of good design that should be taught

to potential designers and the principles underlying the system being

designed (for instance, operating system principles), we find a multitude

of factors. In what follows, I concentrate on several points important to

a wide range of projects.

3.3.1 Emphasize the difference between programming and design. Programmers

typically approach a design task as though it were the same as a programming

task. Likewise, people trained in systems analysis may approach a software

design strictly from the viewpoint of pyerall organization. Software

design requires a special blend of programming and system design know-^

ledge. It is essential that trainees be constantly reminded of this and

shown by example how to create a software design.

The need for this was evident in the RTE project. Some trainees had only

experience with assembly-language programming and found it quite difficult

to think about the functional requirements of a module and its interconnec

tions to other modules without thinking about the details of implementation.

When the staff members approached the design task from a programmer's

standpoint (worrying about the smallest details of data representation and

control flow from the very start) they had great difficulty in solving the

larger problems of overall system design. As they gradually became accus

tomed to thinking about parts without considering their implementation in

details (via stating functional specifications and gross implementation

decisions) they found they were better able to see how the various.parts of

the system should fit together. This, of course, was essential to stating

a correct design.

3.3.2 Use good conceptual models. A design of any size is normally complex

enough that it is impossible to keep all of its details straight without

some aid. Some type of abstractions (conceptual models) are needed so that

one can consider important details while ignoring irrelevant ones. Typ

ically, different models for different parts of the design may.be needed.

For example, in the RTE system we used the process concept to aid in

determining the interconnections between parallel activities and a logical

model of lines of text in designing the file system. Without the process

model, it was impossible to correctly determine the proper connections

betweea, ' aces;,, Once vre represented the system in this way, we could

see more clearly what was needed. Likewise, the file system design was

made easier by divorcing the local requirements for operations on lines

of text from the particular physical characteristics of the R-IO disk.

3.3.3 Design representation is important. The way in which the final design

is stated is quite important, of course. (That is, it must be well doc

umented.). But, it is also quite important to make designers aware of the

need for good working representation of the design. It is quite impossible

to think out all the details of a design and only write down the results.

Further, much of the activity in a design consists of evaluating proposed

solutions and changing decisions already made. The use of good representa

tions for the design and its attendant information as it progresses is thus

quite important.

In the RTE project we found it useful to use two types of representation,

augmented by the usual tabular presentations of data structures. As we

made initial decisions, we wrote them down in a carefully numbered scheme.

We tried to think through one topic at a time, collecting all the decisions

concerning that topic together. At that stage, the decisions were represen

ted simply as short, natural-language statements. After refining these

decisions to the point where we felt we understood the particular point, we

would start to represent actual programs in the form of a metacode

(described above in 2.1). This provided us a very explicit representation

of our design for the various parts without getting bogged down in many of

•the extraneous details involved in actual programs. Further, we often used

metacode to represent our concepts of the overall system structure and

interconnections. Fpr ej^ample, this permitted us to represent in a single

notation the interaction between hardware interrupts and software signals.

As noted in our discussion of conceptual models, the difference in our

ability to deal with the developing design was markedly improved when we

used hhese representations.

Build on existing knowledge of trainees. Learning to design is not an
easy task. If the trainees must also at the same time learn new concepts
of hardware of software, then their task is made much more difficulty
Further, their attention is diluted so that neither their grasp of the new
concepts or the training in design is as effective.

In the RTE project this effect could be seen quite easily. Those staff

members with some knowledge of operating systems could more readily deal
with the problems of representing their design in a proper fashion. Like

wise, those with command of a high-level language were better able to deal

with the metacode representation.

Bxplluitly deal with decision making. One of the ways in which design
differs from programming is in the existence of many difficult decisions to

be made. It is an important part of the training to sensitize people to
the need for identifying critical design decisions, gathering information

relevant to them, and making the decisions only at the appropriate time.

If this is not treated explicitly, then one of the important differentia

tions between design and programming may be lost.

Our approach to this in the RTE experience was to point out the existence

of critical decisions as they arose. (This is one of the places the need

for an experienced designer as leader is most evident.) Once we had clear

ly stated the decision to be made, we tried to think of as many different

-17-

L

possible solutions as we could. We, would,list these and,for each write

down a brief evaluation of it as a possible solution.: As suggested in(4)j

this permitted us-to go back and rev:l&w our decisions in depth at a later time.

3.3.6 Don't forget the organizational aspects of design. Software design

very often requires the cooperation of several people working together in a

group. This type of activity is usually new to people who have just been

programming. It is important to help people deal with this mode of activity

during the training project. The need for readable working documentation,

the necessity of disciplined working meetings, management techniques for ^

assigning work loads, the importance of interpersonal working relationships,

and so on should all be dealt with carefully.

The RTE project members had worked together prior to this project so that

some of these concerns had already been dealt with. However, in the area

of assigning workloads an important lesson was learned. Initially, broad

areas of responsibility were assigned and specific tasks within those areas

were not explicitly assigned. This did not work well since the trainees

were not accustomed to producing working documentation, external specifica

tions and the other intermediate products of a design. When I began

providing more detailed assistance on how to organize the task, progress

improved. Later, the project members were able to subdivide the work more

appropriately themselves,

4, SPECIFIC SUGGESTIONS FOR DEVELOPING COUNTRIES

There are a number of factors to consider in training software designers

besides those mentioned above. These are chosen because of their import

ance and because they illustrate problems often encountered in developing

countries. Thus, each point should be evaluated with this in mind.

Beyond these specific points, there ^re four; general points that-should be

carefully considered by those dealing with coDjpute'n technology in develop

ing countries,

4.1 Keep software design in proper perspective.

There is sometime the tendency on the part of those interested in software

to build an extensive capability to design compilers, operating systems,

file systems, and numerous other types of software. This is often unneeded

since many such systems are readily available.

On the other hand, the tendency of those whose personal interests are more

along the lines of organizational structure is sometimes to assume that

software design is the same as programming. As a result, little attention

is paid to the problem of building some design capability.

In short, the needs of each country or organization must be carefully

evaluated. Enough design expertise should be developed to permit a reason

able amount of independence of others, but not more than is required by the

jobs to be done.

4.2 Don't try to skip essential steps.

It is often tempting to hurry past or even skip over important steps. For

example, it might be felt that a well-educated person with an understanding

of, but no experience in, programming should not worry about the lack of

experience and be trained as a software designer. As we pointed out above,

this would be a mistake.

Building a technological capability in a society is a slow process and

skipping stages can often lead to trouble. This is not to say that the

process always takes the same time. Hopefully we can learn from the

mistakes of those who have already tried it and thus improve the develop

ment process. (That is the point of this paper, after all!)

Finally, it is worth remembering that the technologically advanced countries

with much experience in utilizing new technologies, are only now starting

to have much success in the area of training•software designers. Many of

the failures known so well in our field were due in part to people skipping

logically necessary steps in training.

3 Carefully choose techniques.

As with most human affairs, there are competing concepts dealing with soft

ware design and the training of those who practice it. Alternatives should

be carefully evaluated with respect to the needs, people, and resources of

each situation.

4.4 Get good advice.

Just as techniques, advice must also be carefully chosen. All advisors

are not equal, either in capability or purpose. Likewise, no piece of

advice (including this one!) is universally applicable!

5. SUMMARY

After setting the context of this brief discourse, I described a particular

software design training project. I then drew a number of lessons pertinent
to training software designers and illustrated them in the setting of the

RTE project.. Finally, several general suggestions were made for training

in developing countries.

ACKNOWLEDGEMENTS

This paper could not have been written without the members of the RTE

project group: Zoltan Szekely, Andras Kelen, Sandor Majoros, Sandor Zold,

and Mary KoOs-Hutas. The advice of A.G, Dale and Per Ofstad was most helpful.

-20-

REFERENCES

1. Ashenhurstj R.L. C^d), "Curriculum Recommendations for Graduate
Professionel Programs in Information Systems", Communications of
the ACM, Hay, 1972,. , , ^

2. Brown, . R.R. "1974 Lake Arrowhead Workshop on Structured Programming",
Computer, IEEE Press, New York, October, 1974.

3. Freeman, Peter Software Systems Principles: A Survey
Science Research Associates, Palo Alto, 1975.

4. Freeman, Peter "Towards Improved Review of Software Designs",
Proceedings 1975 National Computer Conference, AFIPS Press,
Mpntval, New Jersey.

5. Hice, G.F., W.S. Turner, and L.F. Gashwell, System Development
Methodology, North Holland Publishing Company, Amsterdam, 1974.

6. Intergorvernmental Bureau for Informatics. "An International Curriculum
for Information.Systems Designers", Rome, no date

7. Ledgard, Henry F. Programming Proverbs, Hayden Press, Rockelle Park,
New Jersey, 1975.

8. Simon, H.A. The Sciences of the Artificial. MIT Press,
Cambridge, 1969.

-21-

