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Abstract

Introduction: Previous bronchoalveolar lavage fluid (BALF) proteomic analysis has evaluated 

limited numbers of subjects for only a few proteins of interest, which may differ between 

asthma and normal controls. Our objective was to examine a more comprehensive inflammatory 

biomarker panel in quantitative proteomic analysis for a large asthma cohort to identify molecular 

phenotypes distinguishing severe from nonsevere asthma.

Methods: BALF from 48 severe, and 77 nonsevere adult asthma subjects were assessed for 

75 inflammatory proteins, normalized to BALF total protein concentration. Validation of BALF 

differences was sought through equivalent protein analysis of autologous sputum. Subjects’ data, 

stratified by asthma severity, was analyzed by standard statistical tests, principal component 

analysis and 5 machine learning algorithms.

Results: The severe group had lower lung function and greater health care utilization. 

Significantly increased BALF proteins for severe asthma compared to nonsevere asthma were 

FGF2, TGFα, IL1Ra, IL2, IL4, CCL8, CCL13 and CXCL7; and significantly decreased were 

PDGFaa, VEGF, IL5, CCL17, CCL22, CXCL9 and CXCL10. Four protein differences were 

replicated in sputum. FGF2, PDGFaa and CXCL7 were independently identified by 5 machine 

learning algorithms as the most important variables for discriminating severe and nonsevere 

asthma. Increased and decreased proteins identified for the severe cluster showed significant 

protein-protein interactions for chemokine and cytokine signaling, growth factor activity, 

eosinophil and neutrophil chemotaxis differing between subjects with severe and nonsevere 

asthma.

Conclusion: These inflammatory protein results confirm altered airway remodeling and 

cytokine/chemokine activity recruiting leukocytes into the airways of severe compared to 

nonsevere asthma as important processes even in stable status.

Graphical Abstract
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INTRODUCTION

Cellular gene expression from asthma BALF identified enriched components responding 

to cAMP signaling, potentially induced by immediately prior β-agonist use, but ELISA 

for these specific proteins in cell lysates did not show good agreement [1]. Those results 

confirm previously noted lack of linear association of gene expression with actual protein 

synthesized [2]. Thus, proteomic analyses may provide a more accurate view of the 

inflammation present in the lower airways.

Many reports have examined molecular differences in BALF proteins between normal 

subjects and patients with asthma [3–5], but usually were limited to small numbers of 

subjects or a few molecular mediators of interest. The results from these reports indicate 

increased inflammatory mediators in stable asthma or following allergen challenge, but 

provide little understanding of protein groups or possible molecular interactions between 

these. Recognition of heterogeneity in asthma [6] suggests that distinct patterns of cytokines, 

particularly associated with severe asthma, may be important, and call into question 

whether single biomarkers can distinguish between molecular endotypes. Limited numbers 

of cytokines and of subjects assessed may prevent more precise identification of increased or 

decreased inflammatory pathways associated with severe asthma phenotype or subgroups.

Our objective in this report was to investigate airway proteomic phenotype in a large cohort 

of adult subjects with a broad range of asthma severity assessed by a large inflammatory 

protein panel to elucidate patterns of protein heterogeneity between severe and nonsevere 

asthma. In addition, we examined replication in sputum samples, protein association with 

migratory leukocytes, and potential interactions between BALF proteins identified with 

Hastie et al. Page 3

Clin Exp Allergy. Author manuscript; available in PMC 2025 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a severe asthma phenotype. A subset of the subjects and bronchoscopy data have been 

previously analyzed in reports that do not overlap with the results reported here [7–9]; the 

results in this report were presented as a conference abstract [10].

METHODS

Subjects:

77 nonsevere, 48 severe subjects from the National Heart Lung Blood Institute (NHLBI) 

Severe Asthma Research Program (SARP) 7 clinical sites, met American Thoracic 

Society (ATS) criteria for asthma and were classified by European Respiratory Society 

(ERS)/ATS guidelines [11]. Subjects who received high dose inhaled corticosteroid (≥880 

mcg fluticasone equivalents per day) for at least 6 of the previous 12 months and 3 

months prior to enrollment were assigned to the severe asthma group; those subjects with 

asthma not meeting these criteria were assigned to the nonsevere group [1]. Subjects 

signed local institutional review boards’ (IRB) approved informed consent form and 

were comprehensively characterized (details in supplement) by IRB approved protocols at 

baseline. Subjects undergoing bronchoscopy showed similar differences between severe and 

nonsevere groups as the full cohort, but less severe if eligible for bronchoscopy; exclusion 

criteria: FEV1<40% predicted after 2.5 mg nebulized albuterol, or comorbidities of 

uncontrolled diabetes, uncontrolled coronary artery disease or hypertension. Bronchoscopy 

was performed only during a stable period for the subject (details in supplement) from April 

2004 to December 2014. A subset of these subjects (N=48) had sputum supernatant samples 

with protein analysis available. All de-identified participant data will be deposited in dbGaP, 

and can be requested for legitimate scientific purposes through established channels (https://

dbgap.ncbi.nlm.nih.gov/[dbgap.ncbi.nlm.nih.gov]). Additional related documents (protocol, 

methods of procedure [MOP], and data dictionaries) may also be made available upon 

request.

BALF processing:

Pooled return, from 100ml normal saline instilled, was centrifuged to separate cells and 

fluid. BALF aliquots were stored at −80°C; the cell pellet resuspended in 2ml of phosphate 

buffered saline, for total cell number and differential leukocyte percentages determinations 

at each clinical site [7,8]. Differential leukocyte percentages were multiplied by total cell 

count/ml obtained for cell pellet suspension. BALF was concentrated either 10 or 20X; total 

protein concentration was determined by enhanced Pierce BCA protein assay. Equal volume 

of each concentrated BALF sample was assessed (75 inflammatory mediators: Milliplex 

Human Cytokine/Chemokine assay Panels I, II, and III; Millipore Sigma); standards for 

linear curve determination included two control samples representing high and low levels for 

each target protein in the assay [12]. Specific protein levels were normalized to BALF total 

protein concentration.

Induced Sputum Processing:

Sputum samples were available from a subset (N=48) of the subjects with BALF protein 

analysis; processing and analyses of the sputum samples has been described [13, 14]. 
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Sputum supernates were assessed by the Milliplex Human Cytokine/Chemokine assay 

Panels I, II, and III as performed for BALF.

Analyses and Statistics:

Subjects’ demographic, clinical characteristics and inflammatory mediator levels for severe 

and nonsevere groups were analyzed by standard parametric and non-parametric tests for 

continuous or categorical values (SigmaPlot, ver 14.5, San Jose, CA). Multiple linear 

regression models were adjusted for asthma severity, age, gender, inhaled corticosteroid 

(ICS) use, baseline FEV1%predicted, and BALF eosinophils. Principal Component Analysis 

(PCA) and five different machine learning (ML) algorithms were applied to the 52 

cytokines/chemokines/growth factors with >50% of subjects having determinations above 

the lower limit of detection. Individuals with a missing value for any of these 52 proteins 

had one-half the lowest value observed for that protein substituted in ML algorithms. R 

statistical software (version 4.0.3) was used to build the ML models [15]. PCA positive 

or negative subgroups of severe and nonsevere subjects were examined for clinical and 

protein concentration differences. Inflammatory proteins found to differ between severe and 

nonsevere groups, or PCA positive and negative subgroups, were examined in String_db.org 

(version 11.5 [16]) for protein-protein interactions (PPI), functional enrichments of 

biological process and molecular functions, with False Discovery Rates (FDR) of <e−04 

reported.

RESULTS:

Subject Characteristics:

Demographics and clinical characteristics of subjects with severe or nonsevere asthma 

enrolled in the bronchoscopy portion of the SARP program and with BALF proteomic 

analysis are presented in Table 1. Severe and nonsevere groups differed for age, asthma 

duration, FEV1% predicted and FVC% predicted, both pre- and post-bronchodilator, 

controlling medications, emergency visits or hospitalizations for breathing problems. 

Although the % return of lavage fluid was lower in the severe asthma subjects (additional 

information for % return BALF is provided in the supplement), there were no differences in 

total cell count, total protein content, or specific leukocyte percentages in either the BALF or 

in a recent sputum sample.

Inflammatory Molecular Characteristics:

Of the 75 specific proteins in BALF assessed, 23 had fewer than 50% of subjects with 

detectable levels (online supplement Table S1 and additional supporting information). 

Analyses of these 23 proteins found no significant difference between severe and nonsevere 

asthma therefore, these proteins were excluded from further investigation. The median 

number of subjects having a missing level for any of the remaining 52 proteins was 11 

(Q1-Q3, 2.5–31.5) or less than 10% of subjects. Univariate analysis of these 52 cytokines, 

chemokines, and growth factors identified 8 increased and 7 decreased in subjects with 

severe asthma compared to nonsevere asthma (Table 2). Removal of 5 severe asthma 

subjects who reported omalizumab medication at baseline from the analyses resulted only in 
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a loss of significance for BALF IL5 levels in severe subjects compared to nonsevere subjects 

(severe IL5=0.72pg/mg; nonsevere IL5=1.14 pg/mg; p=0.066).

The 15 inflammatory proteins, increased or decreased in BALF univariate analyses in the 

severe asthma group, were examined in String-db.org [16] and formed recognized linkage 

groups (see additional results in supplement and Figure S1). The remaining 37 proteins 

examined showed no statistical difference between severe and nonsevere asthma subjects 

(online supplement Table S1). Multivariate analysis adjusting for asthma severity, age, sex, 

ICS use, baseline FEV1 %predicted, and BALF eosinophil count resulted in 4 proteins 

remaining significant for severe compared to nonsevere subjects: increased CCL13/MCP4 

and CXCL7/NAP2; decreased PDGFaa and VEGFa.

Available protein analysis of autologous sputum supernatants were examined for validation 

of observed specific BALF proteins’ differences between severe compared to nonsevere 

subjects. Of the 75 proteins examined in sputum, only 12 had fewer than 50% of subjects 

with detectable levels; 10 of these sputum components were identical to BALF proteins 

with <50% of subjects with detectable levels (Supplement Table S1). Four of the 15 BALF 

proteins which differed between severe and nonsevere groups were significantly different in 

sputum as well: IL1Ra and IL4, both increased in severe subjects, and CXCL9/MIG and 

CXCL10/IP10, both decreased in severe subjects (Table 2).

Cell-Protein Associations:

Multiple variable linear regression models with specific BALF leukocyte counts/ml showed 

significant positive or negative associations for 33 of the 52 proteins (R values >0.32 

to <0.67, p values <0.02). These were predominantly positive associations with BALF 

cell counts, but varied with respect to specific leukocyte (online supplement Table S2). 

Nine of the initial 15 proteins observed to differ between severe and nonsevere subjects 

(TGFa, IL2, IL5, CCL8, CCL17, CCL22, CXCL9, CXCL10 and VEGFa) had significant 

associations with BALF leukocytes, but individually were associated with different specific 

leukocytes. Positive associations (N=18 of the 33 proteins with BAL cell associations) 

were primarily with lymphocytes; only 2 were negative. Eosinophils had significant positive 

associations with 10 proteins; macrophages/monocytes had eight positive inflammatory 

proteins associations, but were negatively associated with IL2. Neutrophil counts were only 

associated with 3 proteins in BALF.

Machine Learning Analysis:

All 52 biomarker proteins having at least >50% of subjects with detectable values 

were initially examined by PCA (Figure 1A). Subject clusters had considerable overlap 

and poorly explained variance. Therefore, machine learning algorithms were explored to 

determine the most important features among the 52 proteins. Application of five distinct 

algorithms reduced redundancy of selection, and taking the most commonly selected 

features is the most successful approach for feature selection [17]. The five different 

algorithms identified three proteins as key features: PDGFaa (all 5 algorithms), FGF2 (4 

algorithms), and CXCL7/NAP2 (3 algorithms)(Table 3) which were examined by PCA 

(Figure 1B). This approach yielded greater area under the curve in receiver operating curve 
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analysis to predict severe asthma than use of all 52 proteins (Figure 1C). Adding the next 3 

features identified by CART, NB and SVM algorithms (CCL17/TARC, CCL22/MDC, and 

IL-7) to the initial 3 proteins did not enhance partitioning between the severe and nonsevere 

groups (online supplement Figure S2) nor did these improve explained variance.

PCA performed with the top 3 identified proteins (Figure 1B) clustered the majority of 

severe subjects (37/48, 77%) according to PC1 with 66.9% explained variation. A somewhat 

lower percentage of nonsevere subjects clustered together (49/77, 64%) according to PC1. 

Based on the distribution along the PC1 axis with a threshold of “0” for that axis, the severe 

and nonsevere groups each split into 2 subgroups, either PC1 positive or negative.

Clinical characteristics for these 4 subgroups (Table 4) had similar results for age, lung 

function, medication use and BALF leukocyte differentials between severe and nonsevere 

subgroups, whether PC1 positive or negative, but BALF total cell count differed. BALF total 

cell count was double or greater in the PC1 ‘positive’ subgroups, both severe and nonsevere, 

than in the PC1 ‘negative’ subgroups, but this difference was not attributable to increased 

BALF yield, percentages of specific leukocytes, or medication differences between PC1 

‘positive’ and ‘negative’ subgroups. (Additional information regarding protein adjustment 

for total cell count is provided in the supplement.)

Specific protein levels adjusted to total BALF protein concentration, re-examined across 

the 4 subgroups (severe PC1 negative or positive, and nonsevere PC1 positive or negative) 

resulted in additional increased and decreased proteins by one-way ANOVA. Those meeting 

significance for comparison of severe PC1 negative group to nonsevere PC1 positive group 

(post-hoc Dunn’s test) are listed (online supplement Table S3) The additional increased 

proteins in the PC1 negative groups (severe and nonsevere) included IFNα2, CCL7/MCP3, 

and IL-10. Additional decreased proteins in the PC1 negative groups included CCL1/I309, 

CCL14a/HCC1, IL1β, IL6, IL16, and CXCL11/I-TAC.

Protein-Protein Interactions (PPI), Biological Process and Molecular Functions Identified:

PPI for significantly increased and decreased proteins for the PC1 negative subgroups 

were examined in String-db.org (Figure 2A [increased] and 2B [decreased]). The additional 

identified proteins resulted in enhanced PPI and p values for both increased and decreased 

groups: proteins increased in PC1 negative groups had 11 nodes with 33 edges, PPI 

enrichment p value <1.0e−16; proteins decreased in PC1 negative groups had 12 nodes with 

51 edges, PPI enrichment p value <1.0e-16. Importantly, all increased and decreased groups 

of inflammatory mediators represented nodes connected in significant interactive networks.

Functional enrichments for biological processes reported in string-db.org for the increased 

proteins in PC1 negative groups were eosinophil chemotaxis (FDR 7.28e−05), neutrophil 

chemotaxis (FDR 4.40e−05), chemokine-mediated signaling pathway (FDR 5.45e−05) and 

positive regulation of receptor signaling pathway via jak-stat (FDR 5.97e−05). Molecular 

functions for increased proteins included growth factor activity (FDR 6.35e−08), growth 

factor receptor binding (FDR 2.96e−08), cytokine activity (FDR 2.54e−15), cytokine receptor 

binding (FDR 6.08e−13), and chemokine activity (FDR 8.22e−06).
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Biological processes reported in String-db.org for decreased proteins in PC1 negative groups 

included lymphocyte chemotaxis (FDR 2.32e−10), monocyte chemotaxis (FDR 2.48e−8), 

granulocyte chemotaxis (FDR 4.25e−16), neutrophil chemotaxis (FDR 4.65e−14), myeloid 

leukocyte migration (FDR 4.15e−17), and chemokine-mediated signaling pathway (FDR 

2.06e−11) among other processes. Molecular functions for decreased proteins included C-

X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor (CCR) binding (FDR 

2.89e−06 and FDR 5.37e−06, respectively), chemokine activity (FDR 3.93e−13) and cytokine 

activity (FDR 3.45e−17), and cytokine receptor binding (FDR 1.02e−14).

DISCUSSION:

A large panel of inflammatory proteins assessing BALF from a substantial cohort of subjects 

with asthma identified several molecular differences, both increased and decreased, between 

severe and nonsevere as defined by ERS/ATS guidelines [11]. CCL13/MCP4 and CXCL7/

NAP2 remained significantly increased, and PDGFaa and VEGFa remained significantly 

decreased in the severe asthma group in analyses adjusted for potential confounders. Five 

machine learning algorithms separately identified 3 proteins, increased FGF2 and CXCL7/

NAP2, and decreased PDGFaa, as the most important features. PCA with these 3 proteins 

defined 2 clusters; a PC1 ‘negative’ cluster contained 77% severe asthma subjects, and 

a PC1 ‘positive’ cluster contained 64% nonsevere asthma subjects. Additional proteins 

were observed significantly increased and decreased across these two clusters. PPI for all 

increased proteins were enhanced, highlighting functional and molecular enrichment for 

eosinophil and neutrophil chemotaxis, chemokine-mediated signaling, positive regulation 

of jak-stat signaling, growth factor receptor binding and activity. In contrast, PPI for 

significantly decreased proteins represented leukocytes’ chemotaxis, chemokine mediated 

signaling, CXCR3 and CCR receptor binding, chemokine and cytokine receptor binding and 

activity. These important observations define molecular pathways underlying severe asthma 

during stable status, and may support use of JAK inhibitors in those patients unresponsive 

to corticosteroid therapy or anti-Type 2 biologics [18]. Increased proteins’ recruiting both 

eosinophils and neutrophils in severe asthma airways, may be counterbalanced by decreased 

proteins regulating granulocyte chemotaxis. Thus, BALF granulocyte percentages did not 

differ between severe and nonsevere asthma groups. Nor did sputum cell percentages differ 

for the subset of subjects with autologous sputum data.

However, important functional details may differ despite similar differential leukocyte 

percentages in severe and nonsevere BALF. Differences in expression of receptors CXCR3 

and CCR5 expression noted in BAL cells could alter response to CXCL9, CXCL10, and 

CXCL11 ligands for CXCR3, or CCL5 ligand for CCR5 [19]. Al-Rashoudi et al. similarly 

noted differential expression of CCR2 and CX3CR1 on CD16+ monocyte subsets associated 

with asthma severity [20]. Camiolo et al. [21] concluded separate molecular mechanisms 

contributing to two separate severe asthma groups, one enriched for IL4 positive cells. Our 2 

PCA clusters defined by FGF2, CXCL7/NAP2 and PDGFaa show similar division of severe 

subjects. Moreover, decreased NK cells relative to CD4+ T cells observed in severe asthma 

BAL [8], indicate different proportions of lymphocyte phenotypes, even though lymphocyte 

numbers may not differ.
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Other airway cell types: innate lymphoid cells 2 (ILC2), airway epithelial cells, mast cells, 

dendritic cells and airway smooth muscle may all release various proteins into the airways 

[6]. Determining whether one or more of these cell types contributed some of the protein 

differences observed here was beyond the scope of this study, but is acknowledged.

Although our expanded analysis of 52 proteins out of 75 assessed in BALF from a large 

cohort of severe and nonsevere asthma patients confirms increased IL2 and IL4, and 

decreased CXCL9/MIG and CXCL10/IP10 reported by Brasier and colleagues [22–23], 

we found increased IL1Ra, contrasting to their decrease. Other BALF proteomic analyses 

reported for asthma are restricted to single inflammatory proteins of interest or differ in 

methodology; for example, high-sensitivity single protein ELISA [24] versus our multiplex 

Luminex assays, or a different proteomic assay platform such as Meso Scale Discovery 

[25]. Broad variation for correlations of specific protein between proteomics assays, such 

as SOMAscan, Meso Scale Discovery and Myriad Rules Based Medicine, shown in chronic 

obstructive pulmonary disease cohorts [26], reinforce caution in comparing results from 

different protein assays. Assessments of BALF proteins by mass spectrometry are generally 

limited in sample number analyzed; for example, Wu and colleagues [27] included only 4 

patients with mild asthma compared to 3 healthy subjects. That approach excludes subgroup 

heterogeneity characterized by different molecular mechanisms within severe asthma, as 

observed here for the small number of severe subjects clustered with mainly nonsevere 

subjects in PCA results.

Complex overlapping patterns of types 1, 2 and 17 inflammatory mediators have been 

observed in both BAL [28] and sputum [13], which associate with increasing neutrophils 

in severe asthma [13, 14, 28, 29]. Although our observations of increased BALF IL2, 

IL4 and CXCL7 and decreased CXCL10 correspond with previous observations in sputum 

from severe asthma subjects [13], other proteins, significant in BALF, did not differ in 

sputum from autologous subjects, suggesting separate, but overlapping, lung compartments. 

Cell type differentials, and dissimilarities in protein associations with specific leukocytes 

in BALF and sputum further support distinct compartments. In fact, the majority of the 

BALF proteins significantly associate with lymphocyte counts, whereas, sputum proteins 

associate primarily with neutrophil counts [13]. Thus, comparison of SARP BALF proteins, 

for example with UBIOPRED sputum proteomic analyses [30, 31], may differ not only due 

to technical differences in proteomic assays [26] but also inherent sample differences.

BALF inflammatory protein results support complex protein interactions [13]. including 

significant interactions between Types 1 and 2 inflammation. The identification of protein-

protein linkage groups containing Type 2 and other T cell regulators of inflammation 

emphasize heterogeneity underlying pathologic processes important in severe asthma [32, 

33]. Growth factor enrichment points to airway remodeling, supported by observed elevated 

FGF2 in sputum of severe asthma, inversely correlating with FEV1/FVC ratio [34]. VEGF 

is induced by IL-4,, and subsequently induces angiogenesis in asthmatic airways [35], 

but we found decreased VEGFa despite increased IL-4 in our severe subjects’ BALF. 

Interestingly, increased CCL13/MCP4, recruits eosinophils in asthma [36,37], is released 

from A549 alveolar type II cells upon stimulation by IL4 [38], and along with CCL7 

and CCL8, is located on chromosome 17q11, adjacent to a region strongly identified with 
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asthma susceptibility and severity [39]. These highlighted molecular mechanisms indicate 

alternative areas to explore for treatments for subjects less predominantly characterized by 

type 2 inflammation, resistant to corticosteroids, or unresponsive to anti-Type 2 biologics 

[40].

A limitation already mentioned for this study is the total number of proteins, N=75, which 

although larger than previously examined [22,23], is less than what may be evaluated by 

other methods. Levels below detection limits for 23 of the 75 proteins in BAL assessed 

was a further constraint, despite BALF concentration before assay. Thus, we were unable 

to further assess certain inflammatory proteins, including IFNγ, IL13, IL17, IL33, and 

TSLP among others, which have been associated with severe asthma [41–43], to determine 

whether those proteins’ concentrations differed in this cohort.

Conclusion:

In summary, we have examined inflammatory proteins identified in BALF from subjects 

with severe and nonsevere asthma. Through PCA, machine learning algorithms, and 

string analysis the identified proteins defined 2 clusters of subjects with primarily severe 

or nonsevere asthma. Increased and decreased proteins differentiating the 2 clusters 

comprised significant PPI networks with functional enrichment for eosinophil and neutrophil 

chemotaxis, positive regulation of signaling pathways via jak-stat, and growth factor 

activity. These additional identified protein networks underlying pathologic inflammatory 

mechanisms in severe asthma suggest novel therapy targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BALF bronchoalveolar lavage fluid

CART classification and regression trees

CCL C-C chemokine

CCR C-C chemokine receptor

CXCL C-X-C chemokine

CXCR C-X-C chemokine receptor

ELISA enzyme-linked immunosorbent assay

ERS European Respiratory Society

FDR False discovery rate

FGF2 fibroblast growth factor 2

ICS inhaled corticosteroid

IL Interleukin

ILC innate lymphoid cells

IRB Institutional Review Board

NB naïve Bayes classifier

PCA principal component analysis

PDGFaa Platelet derived growth factor a-a dimer

PPI protein-protein interaction

RF random forest classification

SARP Severe Asthma Research Program

NHLBI National Heart Lung Blood Institute

SVM support vector machine

TGFa transforming growth factor a

VEGF vascular endothelial growth factor
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Key Messages:

• Proteomic analysis of BALF identified increased and decreased proteins 

which differentiate severe from nonsevere asthma.

• FGF2, CXCL7 and PDGFaa were key features differentiating two clusters, 

predominantly severe or nonsevere asthma.

• Significant protein-protein interactions identified confirm airway remodeling, 

receptor signaling, and leukocyte recruitment in severe asthma.

Hastie et al. Page 15

Clin Exp Allergy. Author manuscript; available in PMC 2025 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hastie et al. Page 16

Clin Exp Allergy. Author manuscript; available in PMC 2025 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hastie et al. Page 17

Clin Exp Allergy. Author manuscript; available in PMC 2025 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
A:PCA distribution of subjects according to analysis with 52 cytokines, chemokines and 

growth factors. Subjects classified as severe (red markers) or nonsevere (black markers) 

by ERS/ATS guidelines are indicated. The two clusters overlap with only 28% of PC1 

explained variation. B: PCA distribution of subjects according to top 3 features (PDGFaa, 

FGF2 and CXCL7/NAP2) identified by machine learning. PCA 1 shows two main clusters, 

one primarily of severe and one mainly of nonsevere subjects, although some severe subjects 

group with nonsevere, and some nonsevere subjects group with severe. The explained 

variation for PC1 in this analysis is more than double at 66.9%. Ellipses in both PCA figures 

indicate the 95% confidence limits. C: Comparison of Receiver Operating Curves (ROC) for 

all 52 proteins (red line) and for top three features (blue line). The top three features have 

a better area under the curve (AUC=0.74) for predicting severe subjects than all 52 proteins 

(AUC=0.69).
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Figure 2: 
A:Protein-Protein Interactions between increased biomarkers identified by PC1 ‘negative’ 

subjects, both severe and nonsevere. The node designated as PPBP is CXCL7. B. Protein-

Protein Interactions between decreased biomarkers identified for PC1 ‘positive’ subjects, 

both severe and nonsevere.
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Table 1.

Subject demographics and clinical characteristics with comparison of severe to nonsevere asthma subgroups. 

Levels given as mean +/− standard deviation from t-test, or median (25%−75% intraquartile) from Mann-

Whitney (if not meeting test for normal distribution), or % positive for the group as indicated for each variable.

 Variables: Nonsevere (N=77) Severe (N=48) P-value

Age 33.57 (24.84–43.6) 45.86(33.31–52.96) <0.001*

Sex (% Female) 69.74 60.42 0.38

Race (%White/%AA/%Other) 57.9/38.2/3.9 54.2/39.6/6.3 0.82

Asthma Duration 22.07 +/− 10.62 27.64 +/− 12.94 0.018*

Body Mass Index 28.17 (23.76–34.02) 29.59 (25.87–36.38) 0.16

Baseline FEV1%predicted 82.17 +/− 13.99 70.95 +/− 19.00 <0.001*

Baseline FVC%predicted 93.82 +/− 13.93 84.93 +/− 17.07 0.003*

FEV1/FVC 0.72 (0.69–0.76) 0.71 (0.68–0.73) 0.20

Maximum FEV1%predicted 93.73 +/− 14.12 84.40 +/− 18.97 0.005*

Maximum FVC%predicted 99.79 +/− 13.75 93.24 +/− 16.66 0.026*

PC20 0.94 (0.35–2.26) 0.62 (0.29–0.93) 0.09

IgE 159.0 (90.50–34) 172.2 (83.70–528.80) 0.60

Number of positive allergen tests 5 (3–8) 6.5 (2–9) 0.80

Log FeNO (ppb) 1.54 +/− 0.33 1.39 +/− 0.33 0.019*

Total % positive for ICS 66.67 100 †

Total % positive for LABA 46.05 93.75 †

Oral Corticosteroid (%) 0 16.67 †

Leukotriene receptor antagonist (% positive) 13.16 37.5 †

Emergency Visit for breathing problem in past year (% positive) 12.86 45.83 †

Intubation For Breathing problem ever (% positive) 4.29 16.67 †

Hospitalization for Breathing problem ever (% positive) 40.00 60.42 †

BALF Yield (% return) 51.3±14.3 38.3±14.1 <0.001*

BALF Total Protein (concentrate) 1.06 (0.78–1.36) 0.95 (0.75–1.23) 0.30

BALF Total Leukocyte Count x106 6.7 (3.13–13.1) 4.9 (2.80–7.70) 0.09

BALF Macrophage% 92 (87.08–95.48) 91.25 (83.38–94.80) 0.21

BALF Lymphocyte% 5.7 (2.63–8.88) 4.8 (2.90–10.60) 0.83

BALF Neutrophil% 1.25 (0.50–2.30) 1.7 (0.38–3.93) 0.33

BALF Eosinophil% 0.3 (0–1.08) 0.35 (0–0.93) 0.84

Autologous Subjects with Sputum proteomics N 28 20

Sputum Supernate Total Protein concentration mg/ml 2.10 (1.61–3.63) 2.77 (1.92–3.62) 0.34

Sputum Total Cell Count x106 1.6 (1–2.6) 1.45 (1–2.2) 0.82

Sputum %White Blood Cells 53.5 (30–79) 40.7 (15–71) 0.13

Sputum Macrophage% 43.7 (24–62) 30.9 (18–61) 0.13
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 Variables: Nonsevere (N=77) Severe (N=48) P-value

Sputum Lymphocyte% 1.5 (1–3) 1.1 (0.4–2) 0.11

Sputum Neutrophil% 48.4 + 26.4 54.3 + 25.4 0.29

Sputum Eosinophil% 1.2 (0.2–4) 0.7 (0.2–2.5) 0.77

*
P values considered significant are in bold font.

†
These characteristics are criteria for “severe” asthma definition, and therefore differ, by definition, between severe and nonsevere asthma groups.
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Table 3.

Specific BALF proteins (adjusted to total mg protein concentration of BALF) identified by X as most 

important features by the five different machine learning algorithms. The protein ‘features’ identified as the 

top 3 are highlighted by bold font; importance according to each algorithm is provided in parentheses.

Algorithm: Boruta feature 
selection

CART Modeling 
via rpart

Naive Bayes classifier Support Vector 
Machine

Random Forest 
Classification

Top Protein features:

PDGF-AA X (10) X (100) X (100) X (100) X (1.5)

FGF2 X (4.5) X (62) X (67) X (67)

CXCL7(NAP2) X (6) X (56) X (56)

IL-8 X

CCL17/TARC X (66) X (70) X (71)

CCL22/MDC X (60) X (71) X (71)

IL-7 X (58) X (69) X (69)

IFNalpha2 X

sCD40L X X

VEGF X X

IL-4 X X

IL-2 X X
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Table 4.

Severe and Nonsevere groups split into subgroups based on PC1 distribution for PCA determined with FGF2, 

CXCL7 and PDGFaa. Levels given as mean +/− standard deviation from ANOVA, or median (25%−75% 

intraquartile values) from Kruskal Wallis (if not meeting test for normal distribution), or % from Chi-square as 

indicated.

Variable Nonsevere PC1 
positive

Nonsevere PC1 
negative

Severe PC1 
positive

Severe PC1 
negative P value

N 49 28 11 37

Age in years 33.3
(24.6–43.1)

34.6
(25.6–44.9)

41.6
(33.5–53.5)

49.9
(32.9–52.9) 0.003*

Asthma Duration in years 19.8±8.9 23.7±12.4 23.3±12.9 27.8±12.5 0.034*

Baseline FEV1%predicted 80.9
(70.5–88.5)

87.1
(79.4–94.5)

85
(57.3–91)

70
(54.3–81.6) <0.001*, †

Baseline FVC%predicted 90.9±15.5 98.2±9.6 87.1±17.7 84.3±17.1 0.004†

FEV1/FVC 0.73
(0.68–0.78)

0.72
(0.70–0.73)

0.72
(0.65–0.80)

0.70
(0.69–0.73) 0.457

Maximum FEV1%predicted 89 (81.5–99) 101 (90.8–109) 97 (78–106) 83 (67–93) <0.001†, ǁ

Maximum FVC%predicted 97±15 104±10 97±14 92±17 0.021†

Maximum FEV1/FVC %pred 0.84
(0.80–0.86)

0.97
(0.94–1.01)

0.81
(0.79–0.85)

0.88
(0.81–0.95) <0.001†,‡,ǁ

Maximum Reversal to 
albuterol 11.7 (7–20) 9.7 (5–16) 12.2 (9–30) 12.4 (7–18) 0.356

BALF Yield (return %) 0.56±0.13 0.44±0.14 0.43±0.12 0.37±0.14 <0.001*,ǁ,**

BAL Total cell count 9.7
(5.7–18.1)

3.2
(1.9–5.4)

8.6
(6.6–16.9)

4.5
(2.8–6.8) <0.001*,‡,§,ǁ

BALF Macrophage/Monocyte 
% 92 (87–95) 92 (89–96) 92 (79–95) 91 (83–94) 0.431

BALF Lymphocyte % 5.9 (2.9–10.9) 4 (2.5–8) 3.7 (2.9–15) 5 (3.1–10.3) 0.533

BALF Neutrophil % 1.3 (0.55–2) 1.25 (0.4–2.4) 1.3 (0.2–3.3) 1.8 (0.5–4) 0.710

BALF Eosinophil % 0.3 (0–1) 0.25 (0–1.15) 0.6 (0–0.9) 0.3 (0–1) 0.992

Inhaled Corticosteroid 
(%positive) in past yr 58.8 80.0 100 100 <0.001

Daily Oral Corticosteroid use 
(%positive) 2.38 0 0 21.62 0.002

Long Acting Beta-Agonist use 
(%positive) in past yr 52.1 35.7 90.9 94.6 <0.001

Leukotriene Receptor 
Antagonist (%positive) 14.6 10.7 45.4 35.1 0.014

Pairwise comparisons by Dunn’s method post-hoc tests of continuous variables with significance; p values were <0.05 for each:

*
for severe PC1negative vs nonsevere PC1 positive

†
for severe PC1negative vs nonsevere PC1negative

‡
for nonsevere PC1negative vs severe PC1positive

§
for severe PC1positive vs severe PC1 negative
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ǁ
for nonsevere PC1 negative vs nonsevere PC1 positive

**
for nonsevere PC1 positive vs severe PC1 positive.
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