# **UC Irvine**

# **SSOE Research Symposium Dean's Awards**

### **Title**

WALTER - Wireless Autonomous Litter Transportation Earth Robot

## **Permalink**

https://escholarship.org/uc/item/4vg6g7j7

### **Authors**

Hsu, Brandon Nguyen, Tommy Pham, Jeffrey et al.

### **Publication Date**

2021-03-09

# **Copyright Information**

This work is made available under the terms of a Creative Commons Attribution License, available at <a href="https://creativecommons.org/licenses/by/4.0/">https://creativecommons.org/licenses/by/4.0/</a>

Peer reviewed



# W.A.L.T.E.R.

# Wireless Autonomous Litter Transportation Earth Robot



Department of Electrical Engineering and Computer Science

CHOICE AWARD

Project Members: Brandon Hsu | Tommy Nguyen | Jeffrey Pham | Justin Lee Engineering Faculty Mentor: Prof. Rainer Doemer (Dept. of EECS)

### **Background**

In 2017, the United States produced approximately 267.8 million tons of waste, equating to about 4.51 pounds of trash by the average American everyday [1]. Additionally, 91% of all plastics in the world are not recycled and end up as waste [2]. Waste mismanagement is a serious and growing issue that negatively impacts the earth's climate, wildlife and the public health [1].

## **Objective**

To mitigate this outcome, we propose a trash collecting robot named WALTER, who will collect consumer waste products such as soda cans, bottles, chip bags, containers, etc., without human supervision, to help our environment stay clean.

## **Research and Development**

**Perception**: Vision-based deep learning trash detection model (YOLO) [3] paired with stereo camera disparity (depth) mapping. Planning: Depth perception and trash detection are used for determining actions to take, e.g. move, rotate, stop, collect, etc. Trash collection: WALTER detects trash, stops, lowers its ramp, extends its arms, and scoops trash up its ramp into its enclosure.

#### References

- [1] Environmental Protection Agency. National Overview: Facts and Figures on Materials, Wastes and Recycling. Accessed on: Nov. 9, 2020. [Online]. Available: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/nationaloverview-facts-and-figures-materials
- [2] L.Parker. A Whopping 91 Percent of Plastic Isn't Recycled. Accessed on: Nov. 10 2020. [Online]. Available: https://www.nationalgeographic.org/article/whopping-91-percent-plastic-isnt-recycled/
- [3] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," 2020

## **Cyber-Physical System Design**

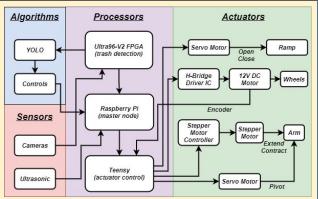



Fig. 1. High level system diagram of WALTER.



Fig. 2. CAD of WALTER (Left) and physical prototype of WALTER (Right). WALTER is assembled with 3D printed components.

## **Experimental Results**

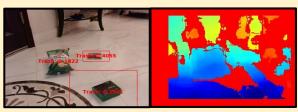



Fig. 3. Example outputs of trash detection with depth estimation from stereo cameras.



Fig. 4. Example outputs of trash detection for indoor and outdoor environments (borders represent distinct frames).

#### **Future Improvements**

- Gathering more data
- Detecting multiple trash types Adding localization and mapping
- · Refining trash detection model
- · Installing more robust wheels
- Improving degs. of freedom
- Improving operational ability
- Hands and opposable thumbs