
UCLA
UCLA Electronic Theses and Dissertations

Title
Seismic Performance Enhancement of Structures Using Protective Devices and Rocking 
Components

Permalink
https://escholarship.org/uc/item/4vd474hg

Author
Peng, Yi

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4vd474hg
https://escholarship.org
http://www.cdlib.org/


  

 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

 

 

 

Seismic Performance Enhancement of Structures Using Protective Devices and Rocking 

Components 

 

 

 

 

A dissertation submitted in partial satisfaction 

of the requirements for the degree 

Doctor of Philosophy in Civil Engineering 

by 

Yi Peng 

 

 

 

 

2021 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Yi Peng 

2021



  

ii 

 

ABSTRACT OF THE DISSERTATION 

Seismic Performance Enhancement of Structures Using Protective Devices and Rocking 

Components 

 

by 

Yi Peng 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2021 

Professor Jian Zhang, Chair 

  

Significant structural damages (even collapses) have been observed in past earthquakes. 

Seismic protective devices and innovative structural systems can be used to improve the responses 

and post-earthquake serviceability. This study aims to derive the optimal design of protective 

devices for structures and evaluate the promises of rocking components to effectively improve the 

structural performance and mitigate the earthquake hazards.  

First, the hybrid simulation framework is adapted and validated to enable nonlinear 

structural control of inelastic structures with protective devices. The structure is modeled in 

OpenSees while the protective devices and control algorithms are modeled in MATLAB. 

Subsequently, guided by the actively controlled responses, the study provides different 

optimization procedures to identify the optimal design parameters of equivalent passive protective 

devices. Demonstrated by an eight-story inelastic building, the equivalent passive design yields 

much improved structural performance, comparable to actively controlled response. 
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Second, the hybrid simulation scheme is further modified to incorporate multi-support 

excitations, often observed in bridges due to significant soil-structure interaction effects. The 

methodology is applied to a benchmark highway bridge where base isolation and supplemental 

energy dissipation are used. Active control algorithms (either linear or nonlinear) are implemented 

and optimal parameters for base isolators and damping devices are derived to mimic the actively 

controlled responses. The robustness of active controls and optimal passive controls is further 

demonstrated by comparing various control schemes under different bridge systems and motion 

inputs.    

Third, rocking components are evaluated as an innovative structural system that can be 

incorporated along with conventional lateral force resisting systems. Several numerical models are 

evaluated and improved to account for complex dynamic behavior of rocking components in 

flexible structures. A probabilistic seismic demand model (PSDM) is also proposed as an 

alternative way to capture the uncertainties in predicting individual rocking responses. A new finite 

element-based rocking model is implemented in OpenSees, which consists of a zero-length rocking 

element with a Dirac-delta type impact model. Finally, a nine-story rocking wall-frame building 

is designed and analyzed. Nonlinear time history analysis results demonstrated that both strength 

and deformation demands are reduced, and the structural damage is controlled when rocking 

motion is activated.  
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1. INTRODUCTION 

1.1 BACKGROUND 

In conventional seismic design, buildings expect beams, columns, and walls to exhibit 

inelastic responses under strong earthquakes. Energy is dissipated through structural damping and 

plastic hinge development at a specific location. However, damage to the structure due to plastic 

hinge development may require expensive and time-consuming retrofit efforts, thus, lead to long-

term loss of building functionality post earthquake. Moreover, irreparable structural damages, even 

collapses in the region close to the epicenter, have been observed after a number of strong 

earthquakes, which have resulted in significant deaths and economic losses (Han et al., 2009; 

Wang, 2008). For example, the 2008 Wenchuan earthquake (Ms 8.0) in Sichuan Province, China, 

has resulted in more than 68,858 deaths and losses in the hundreds of billions RMB. Figure 1.1 (a) 

and (b) shows the complete destruction of four buildings of the Dongqi Middle School, which 

resulted in hundreds of students losing their lives, and bridge damage caused by the fell of 

abutments during the Wenchuan earthquake. Besides, highway bridges are one of the most critical 

links in the transportation network that are susceptible to earthquake damage (Chang et al., 2000; 

Jennings & Wood, 1971; Tarakji, 1997; Xie, 2017). The 1995 Kobe earthquake in Japan resulted 

in the collapse of 9 highway bridges and catastrophic damages to 16 bridges. Figure 1.1 (c) and (d) 

show the RC column shear failure and flexural failure, which caused the collapse occurred at an 

18-span viaduct of Hanshin Expressway. 

During the past several decades, many practical and research efforts have been made to 

better understand the seismic performance of structures and protect structures against strong 

earthquakes. To maintain post-earthquake serviceability, promising technologies including the use 
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of innovative seismic energy-dissipating structural systems (Anastasopoulos et al., 2014; Gelagoti 

et al., 2012; Hajjar et al., 2013; Palermo et al., 2007), the use of column retrofit measures (Kim & 

Shinozuka, 2004; Padgett & DesRoches, 2008), innovative materials (DesRoches & Delemont, 

2002), and seismic protective devices (Housner et al., 1997; Spencer & Nagarajaiah, 2003; Xi, 

2014; Xie & Zhang, 2017, 2018; Zhang & Huo, 2009), etc. are widely studied. Under this 

background, this research substantially extends the previous studies (Xi, 2014; Xie, 2017) in 

seismic modeling, optimal control, and design of buildings and highway bridges equipped with 

seismic protective devices and rocking components. 

  
(a) Complete destruction of four buildings (b) Abutments fell 

  
(c) Column shear failure (d) Column flexural failure 

Figure 1.1. Structure and bridge failures observed in case histories (Wang, 2008; Xie, 2017) 
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1.2 ACTIVE AND PASSIVE CONTROL OF INELASTIC STRUCTURES  

1.2.1 Pros and Cons of Different Seismic Protective Devices 

Based on the control mechanism, seismic protective devices can be classified into passive, 

active/hybrid, and semi-active systems (Housner et al., 1997). To date, passive devices, such as 

base isolators, viscoelastic dampers, and tuned mass dampers have been widely implemented in 

civil structures because they are relatively easy to install, and do not need external power or energy 

to sustain the control effect, thus it is easy to operate and reliable during natural hazards 

(Constantinou et al., 1998; Kunde & Jangid, 2003; Reinhorn et al., 1995; Soong & Dargush, 1997; 

Soong & Spencer, 2002; Symans et al., 2008), as shown in Figure 1.2. However, restricted by their 

mechanical characteristics, passive devices are not sufficiently adaptive to structural changes and 

the ever-varying external excitations (Christopoulos et al., 2006; Spencer & Nagarajaiah, 2003). 

For example, a tuned mass damper is only effective for the structure with a pre-designed dominant 

mode. Namely, passive control may not reach the intended performance objectives resulting in the 

need of effective optimal design of supplemental mass, stiffness, or damping parameters.  

Conversely, active control systems consist of sensors and actuators that can capture 

structural responses in time and generate appropriate external forces along with the time history of 

the ground excitation. Active control strategies to dynamically reduce the structural responses 

caused by earthquakes have been studied in many previous research and implemented on practical 

structures (Soong & Costantinou, 2014). Although active structural control is achievable by using 

active protective devices, the solution to deliver large active control forces is needed before the 

wide use of this technology in civil structures. First, active control strategies have demand of 

significant external power supply and colossal force generation equipment. Second, it is vulnerable 

to power supply outage as a severe earthquake can damage not only the structural members but 
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also the power supply system. Furthermore, the actuators have harmful potentials such as 

destabilization of the structure if, unfortunately, the actuator control computer has malfunctioned.  

  
(a) LRB base isolation system used for 

Hanshin Expressway 

(b) Viscous fluid damper on 91/5 

Overcrossing 

  
(c) MR dampers installed on Dongting Lake Bridge 

Figure 1.2. Seismic protection devices (Xi, 2014). 

Semi-active systems, such as magnet-orheological (MR) dampers (Spencer & Nagarajaiah, 

2003), include smart mechanical and material components whose physical parameters can be 

modified in real-time through switching or on-off operations. They are becoming a promising 

technology for seismic hazard mitigation of civil engineering structures. As a hybrid between 

passive and active control, a semi-active control system maintains the adaptive ability of active 

control to the vibration nature of both structural response and external excitation. While it only 

requires a small power supply such as batteries, which is a great advantage when the primary 

power source in the structure or control computer fails during seismic events. At the same time, it 
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inherits the pros of the passive control system of easy to manufacture and reliable to operate. 

However, the control capacity of a semi-active system is still limited as it can only operate within 

the capacity of the corresponding passive devices on which it is based. Besides, the finite element 

(FE) model of semi-active devices has not been addressed in typical finite element analysis 

software because structural control methods are needed to realize the semi-active control behavior. 

1.2.2 Structural Control of Inelastic Structures 

Considering the pros and cons of different protective devices, it will be a substantial 

improvement if an equivalent passive control system that can provide the same control effects of 

the active/semi-active control system could be identified. To do so, structural control of inelastic 

structures needs to be performed first. Then multiple optimization procedures need to be developed 

to determine the design parameters of passive devices based on actively controlled response.   

For structures exhibiting nonlinearity, although current finite element software typically 

has various elements and materials for modeling complex nonlinear structural components, the 

structural control task cannot be easily conducted within the typical finite element analysis 

program. Instead, the structural controls were often executed on simplified or reduced-order 

structural models generated in the same simulation platform for control algorithms. For example, 

Gluck et al. (Gluck et al., 1996) and Yang et al. (Yang et al., 1995) proposed linear quadratic 

regulator (LQR) theory and sliding mode control (SMC) to control the responses for simple elastic 

or hysteretic multistory structures; Ohtori and Agrawal had made efforts to develop benchmark 

control problems and reduced-order structural model that was exclusively built in the program of 

MATLAB/Simulink to allow for a platform to compare various control strategies (Agrawal et al., 

2009; Ohtori et al., 2004).  

Nevertheless, the ability to use advanced structural models with realistic geometry and 
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nonlinearity in conjunction with structural control is currently lacking, thus also limits the adoption 

of structural control. The purpose of this study is to utilize a hybrid simulation scheme to overcome 

the modeling difficulties of inelastic structures with multiple control technologies. Then move 

forward in a similar direction as these recent studies to present an effective optimal design 

procedure of various nonlinear protective devices. 

1.2.3 Hybrid Simulation Methodology 

Hybrid simulation is a method for examining the seismic response of structures using a 

hybrid model comprised of either physical and numerical sub-structures or numerical sub-

structures only (Saouma & Sivaselvan, 2008). This alternative way of physical testing or numerical 

modeling of an entire system allows for numerical simulations of complex coupled systems 

performed separately on different computational platforms, offers a feasible means to link control 

algorithms with realistic structural models. In this study, a novel approach utilizing the hybrid 

simulation is proposed to take advantage of the nonlinear modeling ability of existing finite 

element software programs and perform the structural control task simultaneously. As shown in 

Figure 1.3, a complex inelastic structure can be modeled in any existing finite element software, 

such as OpenSees, ABAQUS, etc. Meanwhile, the seismic protective devices such as base isolators, 

viscous fluid dampers, MR dampers, or active controllers are simulated in other software, such as 

MATLAB, where the control algorithms can be easily formulated and implemented using the built-

in toolboxes. The main inelastic structure and the control devices, as two substructure parts, can 

communicate with each other by transferring force and displacement information through a 

platform designed for hybrid simulation: UI-SIMCOR (Kwon et al., 2007).  
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Figure 1.3. Hybrid numerical simulation scheme (Xi, 2014) 

By utilizing hybrid simulation methodology, different control algorithms can be easily 

formulated and implemented in MATLAB to get the optimal structural responses, which 

furthermore guides the derivation of optimal design parameters of seismic protective devices. In 

this study, an eight-story inelastic structure equipped with nonlinear viscous dampers, MR 

dampers, or base isolators is studied using the hybrid simulation scheme. The active structural 

control tasks are executed, and the equivalent passive parameters are derived for this eight-story 

building to verify the proposed hybrid numerical simulation scheme in efficiently developing 

seismic protection strategies for inelastic structures. Moreover, the optimal active and passive 

control of a benchmark highway bridge is also evaluated to investigate the control efficiency more 

thoroughly. 

1.2.4 Optimal Passive Design Based on Control Theory 

After obtaining the actively controlled responses, an optimal passive design can be 

identified through different model identification techniques. Gluck et al. (Gluck et al., 1996) 

presented a method for designing supplemental linear passive viscous or viscoelastic devices based 

on optimal linear control theory. The stiffness and damping parameters of equivalent passive 

control are approximated using the transformed gain matrix or truncated gain matrix. The main 

advantage of this method is that the procedure is non-iterative and not computationally demanding, 



  

8 

 

and it does not need to compute the structural response. Still, the disadvantage is that it can only 

be applied to linear structures. Cimellaro and Retamales (Cimellaro & Retamales, 2007) adopted 

Gluck’s work to determine the optimal stiffnesses and capacities of softened stories and dampers 

placed in a shear-type building. Lavan et al. (Lavan et al., 2008) presented an alternative 

methodology for determining the optimal location and amount of weakened structural components 

and the added linear viscous damping devices in inelastic structures. Extended from previous 

studies, this study provides new optimization and model identification methods to find the optimal 

design of nonlinear damping devices and base isolations of inelastic structures. 

1.3 SYSTEMS EXHIBITING ROCKING BEHAVIOR 

The synopsis of Hajjar et al. (Hajjar et al., 2013) provided a large number of examples 

related to modeling, analysis, and experiments of seismic energy-dissipating structural systems. 

These systems consist of self-centering systems, systems exhibiting rocking behavior, and systems 

with energy-dissipating fuse elements. During the last decade, it’s worth noting that there were a 

series of publications (Ajrab et al., 2004; Deng et al., 2012; Gajan & Kutter, 2008; Harden et al., 

2006; Hung et al., 2011), which bring the attention of engineers to the unique advantages 

associated with allowing structures to rock. In this class of publications, the basic concept is the 

intentional generation of uplifting mechanism in traditional moment-resisting systems, either at 

the bottom of shear walls or even at the foundation level, by allowing appreciable rotations of the 

footings, such as frame – rocking shear wall structure and rocking column-foundation system. The 

series of systematic studies on the dynamic response and stability of rocking structures gradually 

led to rocking isolation -- a unique seismic protection strategy for large, slender structures at the 

limit-state and the operational state. 

As shown in Figure 1.4, once the uplift mechanism is activated, rocking motion can reduce 



  

9 

 

the seismic loading and ductility demands by forcing structural behavior to remain in the elastic 

range or mildly inelastic range. Besides, given the inherent negative stiffness, a rocking frame 

neither amplifies nor resonates with any frequency content of the input ground motion. Moreover, 

re-centering of the rocking system is achieved unconditionally through gravity, thus eliminating 

any permanent displacement. However, although rocking isolation has good seismic performance, 

their practical design aspects have not been fully addressed in the literature due to the difficulties 

in modeling rocking behaviors.  

 

Figure 1.4. (a) Conventionally designed frame compared to (b) rocking-isolation design 

(Anastasopoulos et al., 2014) 

1.3.1 Analytical Modeling  

The development of the analytical model of rocking behavior is a long history based on 

extensive observation in experiments and real earthquakes. As early as 1885, Mine presented 

analytical studies on the seismic response of slender, free-standing blocks in an effort to estimate 

levels of ground shaking (Milne, 1885). Four decades after Milne’s work, Kirkpatrick  (1927) 

presented the first minimum-acceleration overturning spectrum and brought two essential key 
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quantities other than the peak ground acceleration that affect the stability of a slender, free-standing 

column: (a) the size of the column; and (b) the duration of the period of the excitation. In the late 

1940s to 1960s, a series of studies by Ikegami & Kishinouye (1947) discovered that the dynamic 

response of a rocking column is governed by a negative stiffness. Therefore, its free-vibration 

response is described by hyperbolic sines and cosines rather than harmonic. Housner (1963) 

offered a qualitative explanation of the size-frequency scale effect and made it famous for 

earthquake engineering.  

Following Houser’s study, a large number of studies have been conducted to further 

explain the complex dynamics of the free-standing rigid blocks (Makris & Konstantinidis, 2003; 

Makris & Vassiliou, 2013; Psycharis & Jennings, 1983; Zhang & Makris, 2001). Zhang and 

Makris (2001) investigated in depth the overturning potential of free-standing rigid blocks under 

pulse-like excitations and discovered two modes of overturning: (1) by exhibiting one or more 

impacts; and (2) without exhibiting any impact. Makris and Konstantinidis (2003) presented the 

above results in the form of rocking spectra. Subsequently, several researches are conducted to 

study the practical applications of rigid structures design for rocking, such as overturning of 

anchored rocking motion and damped rocking motion (Dimitrakopoulos & DeJong, 2012; Makris 

& Zhang, 2001; Vassiliou & Makris, 2015), rigid blocks with isolated bases (Vassiliou & Makris, 

2012), and multiple aligned free-standing rigid columns (Makris & Vassiliou, 2013), theoretical 

work on the three-dimensional rocking response of free-standing column (Konstantinidis & Makris, 

2007)  and wobbling 3D frame (Vassiliou, 2018), etc. 

However, compared with research on the analytical model of rigid rocking blocks, 

additional research efforts should be made to address the complexity associated with influences of 

flexibility and impact mechanisms on rocking behaviors. Relevant studies have been conducted to 



  

11 

 

investigate the transient drift and rocking responses of the rocking system by deriving and solving 

the equations of motion, and developing discontinuous impact mechanisms (Acikgoz & DeJong, 

2012, 2016; Chopra & Yim, 1985; Oliveto et al., 2003; Vassiliou et al., 2015; Zhang et al., 2019). 

Through these studies, it has been found that fundamental discrepancies exist if the foundation is 

designed for rocking in contrast to the fixed-base condition. Particularly, geometric nonlinearity 

and the rocking impact must be considered to accurately predict the dynamic performance of the 

system. 

1.3.2 Numerical Modeling 

The physical constructions, analysis methods used to describe the seismic response, and 

practical design methodologies of two classes of rocking structures -- post-tensioned and free-

standing rocking -- are quite different since the free-standing rocking structures have negative 

stiffness. In contrast, the post-tensioned structures have positive stiffness (Makris & 

Konstantinidis, 2003). To develop the practical design method of systems with rocking 

components, numerical models to quantify the seismic response of rocking structures (post-

tensioned and free-standing rocking; rigid and deformable), simultaneously at the level of rocking 

connections, structural elements, and the entire rocking structure are needed. It would be 

advantageous if those models were consistent with existing finite element simulation frameworks. 

Although some finite element simulations of the rocking system are already available, the 

significant difficulties in numerical modeling of rocking behavior cannot be ignored. First, the 

energy dissipation mechanism in impact is instantaneous and discontinuous, which is very much 

ideologically incompatible with the energy dissipating mechanisms commonly incorporated in the 

time integration procedures employed in conventional finite element programs. For example, 

rocking structures generally be modeled as nonlinear-elastic viscously-damped systems (Nazari et 
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al., 2017; Vassiliou et al., 2014) using ordinary FEM software, such as ABAQUS (Qu et al., 2012) 

and OpenSees (Vassiliou et al., 2017). However, since the principal energy dissipation mechanism 

of impact is instantaneous and discontinuous, the use of viscous damping cannot be predicted as a 

priori (Chopra & McKenna, 2016; Hall, 2006; Petrini et al., 2008; Truniger et al., 2015; Wiebe et 

al., 2012). 

Secondly, the pure rocking problem is a stiff and geometrically nonlinear problem, which 

requires an iterative solution process considering the structure’s displaced geometry at all times. 

Furthermore, the boundary conditions for a rocking problem are nonlinear. Therefore, the response 

of the structure with rocking behavior is very much history-dependent, and errors are consequently 

cumulative (Ma et al., 2005). Hence, it is essential to precisely determine the intermittent contact 

events in the time domain for an accurate analysis. Therefore, the computation costs are increased 

much more due to the tiny timestep size, and it took much effort to avoid the convergence problem.  

Lastly, impact events associated with the complexity of rocking system, especially with 

the influences of flexibility of rocking system, is another practical obstacle for the implementation 

of rocking problem within FEM. It remains challenging to simulate both the large deformation 

effect and the non-continuous energy loss during instantaneous rocking impacts. Relatively few 

studies have been conducted to develop finite element models for the deformable rocking systems 

(Barthes, 2012; Vassiliou et al., 2014, 2017). In sum, further research needs to be done to develop 

numerical models that accurately predict the rocking behavior, then provide applicable references 

in developing practical design methodologies. 

1.4 ORGANIZATION 

The objective of this research is to investigate seismic performance enhancement by using 

protective devices and rocking components. To accomplish such a goal, this research work focuses 
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on modeling and seismic response analysis of two structural systems: one is inelastic structures 

and bridges with protective devices, the other is structures with rocking components. 

This dissertation starts with the modeling and optimal design of the inelastic structure with 

seismic protective devices. In Chapter 2, a hybrid simulation method is utilized for accurate 

simulations of inelastic structures and bridges with linear/nonlinear protective devices and control 

algorithms. First, the modeling of seismic protective devices is implemented into the existing 

hybrid simulation platform, UI-SIMCOR (Kwon et al. 2007). Then both classical linear control 

algorithm (LQR) and nonlinear control algorithm (sliding mode control, SMC) are integrated into 

the hybrid simulation framework. Finally, an optimal passive control design method derived from 

active control responses is proposed to find the optimal design of protective devices and improve 

the seismic behavior. The optimal design of an eight-story inelastic building with nonlinear viscous 

dampers is provided as an example. 

The previous optimal passive design method is extended to find optimal passive control of 

a benchmark highway bridge in Chapter 3. The multi-support excitation scheme and modified 

integration and iteration scheme are integrated into the hybrid simulation framework to enable the 

nonlinear time history analysis of bridges including soil-structure interaction elements. Both active 

and passive control responses are evaluated and compared to show the effectiveness of improving 

the seismic performance of a bridge and demonstrate the influence of different isolation systems 

and ground motion inputs on optimal design. 

Chapters 4 and 5 focus on the analytical and numerical simulation of rocking systems. In 

Chapter 4, an analytical 2D model is derived for the evaluation of a deformable rocking column-

foundation system. Various existing finite element models for rocking behavior are examined in 

depth. The emphasis is to understand the difficulties and find appropriate methods of modeling the 
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flexible rocking structures. Furthermore, a finite element-based rocking model is implemented in 

OpenSees, consisting of a zero-length rocking element with a Dirac-delta type impact model. By 

comparing both analytical and experimental results, the FEM rocking element is validated. In 

addition, a probabilistic seismic demand model is also proposed as an alternate way to account for 

the uncertainties in predicting individual rocking responses. 

In Chapter 5, the seismic responses of buildings with rocking components are examined 

through nonlinear time history analyses. A nine-story rocking wall-frame building is developed 

and analyzed. It is demonstrated that the strength and deformation demands of this prototype 

building are reduced, and the structural damage is controlled when rocking components are used.   

Finally, a summary and discussion are presented in Chapter 6. 
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2. STRUCTURAL CONTROL OF INELASTIC STRUCTURES WITH 

SEISMIC PROTECTIVE DEVICES THROUGH HYBRID SIMULATION 

This chapter provides an optimal passive design procedure based on hybrid simulation and 

structural control methodologies. The proposed approach is applied to investigate a seismically 

protected eight-story inelastic structural model whose main structure is modeled in OpenSees. At 

the same time, the seismic protective devices and the control algorithms are implemented in 

MATLAB. First, the hybrid simulation scheme for inelastic structures with seismic protective 

devices and linear/nonlinear structural control methods is developed and validated. Through 

hybrid simulation, the responses and structural control of the inelastic structure are conducted. An 

equivalent damping parameter set is derived through linear and nonlinear control results for this 

nonlinear building, and it shows much improved structural performance. 

2.1  HYBRID SIMULATION PLATFORM: UI-SIMCOR 

This study builds on an existing hybrid simulation platform: UI-SIMCOR, and implements 

changes to consider various nonlinear seismic protective devices and structural control algorithms. 

The UI-SIMCOR was initially developed to facilitate geographically distributed pseudo-dynamic 

(PSD) hybrid simulation. It has been widely used for PSD hybrid simulation and multi-platform 

simulation with OpenSees, MATLAB, ABAQUS, etc. (Kwon et al., 2008). The simulation can be 

either all experiments, a combination of experiments and numerical analyses, or all numerical 

analyses. This study's hybrid simulation scheme is all numerical analyses, i.e., modeling the main 

nonlinear structure in a major finite element software while modeling the seismic protective 

devices in another computational platform. 

The UI-SIMCOR program solves the equation of motion (EOM) of a dynamic system 
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generated by static condensation (Kwon et al., 2007). The degree of freedoms (DOFs) that have 

no mass defined or are not of interest are condensed out. UI-SIMCOR only solves the EOM with 

these remaining DOFs in analysis, and they are referred as 'effective DOFs.' After defining the 

effective DOFs, the mass matrix and damping are easily formulated. At the same time, the 

condensed stiffness matrix can be determined by applying a pre-specified displacement to each 

effective DOFs and measuring reaction forces. Due to limited space, a detailed generation of 

condensed EOM is not provided herein but can be found in Kwon et al. (2008). Nevertheless, the 

time integration method and its modifications made in UI-SIMCOR to accommodate new 

requirements associated with the active and passive control problems are described in the 

following sections.       

2.2 TIME INTEGRATION METHOD ADOPTED IN UI-SIMCOR 

An explicit integration algorithm of the Newmark family, called the α operator splitting 

(α−OS) method (Nakashima, 1990), is adopted in UI-SIMCOR to solve the condensed EOM in a 

time-stepping manner. The EOM of a structure with nonlinear restoring force can be expressed as: 

 ( ) ( ) ( ) ( )t t t t+ + =Ma Cv r f  (2.1) 

where M and C  are mass and structural damping matrix; ( )ta  and ( )tv  are acceleration and 

velocity vector; ( )tf  is the external excitation and ( )tr  is the nonlinear restoring force. Rewrite 

Equation (2.1) in discrete time form and apply the   operator, the EOM becomes: 

 1 1 1 1(1 ) (1 ) (1 )n n n n n n n     + + + ++ + − + + − = + −Ma Cv Cv r r f f  (2.2) 

where n denotes the time step. The equilibrium in Equation (2.2) is solved according to: 

(i) A predictor step: 
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and (ii) A corrector step: 
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 allows the tuning of 

numerical damping of the method. To solve the equilibrium in Equation (2.2) without iteration, 

the unknown nonlinear term  1n+r  is replaced by:  

  ( ) ( ) I

1 1 1 1 1 1( )n n n n n n+ + + + + + + −r d r d K d d  (2.5) 

which is the predicted restoring force ( )1 1n n+ +r d  corrected by a linear force term that is related to 

the system initial stiffness matrix 
I

K . Based on this assumption and substituting Equation (2.3) ~ 

(2.5) into Equation (2.2), the EOM becomes: 

  1 1
ˆˆ

n n+ +=Ma f  (2.6) 

where: 
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 (2.7) 

Finally, the acceleration at time 1nt +  can be solved by Equation (2.8): 

  1

1 1
ˆˆ

n n

−

+ +=a M f  (2.8) 

Then 1n+a  is substituted into Equation (2.4) to update displacement and velocity at time 1nt + . 

The α−OS time integrator is written in the MATLAB subprogram of UI-SIMCOR for 

solving the equation of motion and is ready to be modified by users. Due to this open-source 
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property, UI-SIMCOR can accommodate different integration schemes that are fit for hybrid 

simulation models in this study. Moreover, it is noted that the above integration scheme is linearly 

implicit and does not need iteration. This is beneficial for performing physical hybrid tests because 

the repeated or potentially cyclic loading for a single time step may damage the experimental 

specimen. It is also essential in this study because a noniterative optimization is achievable by 

implementing structural control methods into UI-SIMCOR, while the optimization remains highly 

iterative process in previous studies (Parcianello et al., 2017; Tubaldi & Kougioumtzoglou, 2015; 

Xie et al., 2018). 

2.3 IMPLEMENTATION OF SEISMIC PROTECTIVE DEVICES IN UI-SIMCOR 

The goal of implementing seismic protective device elements in a hybrid numerical 

simulation framework is to accurately analyze the dynamic response of nonlinear structures 

equipped with seismic protective devices, such as base isolation bearings, linear/nonlinear viscous 

dampers, and MR dampers, etc. Using the numerical hybrid simulation scheme in UI-SIMCOR, 

the nonlinear structures can be accurately modeled with well-developed finite element software, 

such as OpenSees, ABAQUS, etc. Meanwhile, the seismic protective devices, which are usually 

highly nonlinear, can be modeled separately on another computational program. In this study, 

MATLAB is used to formulate computational elements for seismic protective devices.  

Considering a structure with seismic protective devices installed, the original EOM in 

Equation (2.1) is modified to contain the additional resisting forces, as shown below: 

  protective( ) ( ) ( ) ( ) ( )t t t t t+ + + =Ma Cv r f f  (2.9) 

where 
protective ( )tf  is the nonlinear force of seismic protective devices, such as bearing force 

b ( )tf  

if base isolators are installed, damper force 
d ( )tf  if passive or semi-active dampers are installed. 
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By setting vector components in b ( )tf  and d ( )tf  to be zero, the locations where bearings and 

dampers are installed can be adjusted accordingly. Due to the nonlinear behavior of seismic 

protective devices and their roles in the equation of motion, the computational elements that model 

them are implemented in terms of additionally defined MATLAB function or direct modification 

of integration scheme in UI-SIMCOR, as introduced as follows. 

2.3.1 Hybrid Simulation for Structure with Isolators 

Considering a structure with base isolators installed, the EOM in Equation (2.9) can be 

written in time discrete form: 

  
b b

1 1 1 1 1(1 ) (1 ) (1 ) (1 )n n n n n n n n n       + + + + ++ + − + + − + + − = + −Ma Cv Cv r r f f f f  (2.10) 

where the only additional unknown variable compared to the original equation of α−OS method, 

Equation (2.2), is 
b

1n+f , which is the bearing force at time 1nt + . Similar to the approximation of 

nonlinear restoring force 1n+r  in Equation (2.5), the predicted bearing force b

1n+f  can be first 

evaluated by the predictor displacement of base isolation devices 
b

1n+d , i.e., ( )b b b

1 1 1n n n+ + +=f f d . Then 

b

1n+f  is corrected by a linear term that is related to the initial stiffness of base isolation devices 
I

bK  

to approximate the true bearing force: 

 ( ) ( )b b b b I b b

1 1 1 1 b 1 1( )n n n n n n+ + + + + + + −f d f d K d d  (2.11) 

After the additional unknown force 
b

1n+f  is formulated, the response of whole structure with 

base isolation devices can be solved by the α−OS scheme explained before. Within this linear 

integration scheme, a new element that can evaluate the bearing force b

1n+f  of a given predictor 

displacement 
b

1n+d  is needed. Therefore, a MATLAB function is written based on classical 
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plasticity theory to model the kinematic hardening behavior of base isolation devices, such as 

Bouc-Wen model (Wen, 1976). This element takes in predictor displacement of base isolator and 

returns bearing force to UI-SIMCOR to proceed the time integration scheme explained from 

Equation (2.9) ~ (2.11).  

2.3.2 Hybrid Simulation for Structure with MR Damper 

There are two types of methods for modeling MR dampers. One is a clipped-optimal 

control strategy based on structural response feedback, consisting of a linear control method to 

identify the desired voltage to the current driver associated with saturation of the magnetic field in 

the MR damper to provide optimal force into the structure (Xi, 2014). This method is proper when 

the hybrid simulation is either all experiments or a combination of experiments and analyses. The 

other is a simple mechanical model of the MR damper, which is preferred for pure numerical 

analysis in this study. As shown in Figure 2.1, Spencer and his co-workers (Dyke et al., 1996; 

Spencer et al., 1997) proposed a modified Bouc-Wen model with spring and dashpot in parallel, 

and additional dashpot and spring elements were introduced to portray force-velocity 

characteristics of MR damper more accurately. The simple mechanical idealizations of the MR 

damper depicted in Figure 2.1 have been shown to predict the behavior of the prototype MR 

damper over a broad range of inputs accurately (Spencer et al., 1997).  

 

Figure 2.1. Modified Bouc-Wen model of MR damper (Dyke et al., 1996) 
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The modified Bouc-Wen model can be expressed mathematically as: 

  ( )d

1 1 0f c y k x x= + −  (2.12) 

 ( )0 0

0 1

1
y z c x k x y

c c
= + + −  +

  (2.13) 

  ( ) ( ) ( )
1n n

z t x y z z x y z A x y 
−

= − − − − + −   (2.14) 

where df  is the applied MR damper force;  ,  ,  , A  and n  are the parameters for the built-in 

Bouc-Wen model, which control the shape of the hysteresis loops for the yielding element; 0c , 1c , 

0k  and 1k  are coefficients for the linear dashpots and springs in the model, which control the 

stiffness and force-velocity loop at different stage; 0x  is the initial displacement of spring and x  

is the displacement of where the MR damper is placed. Since UI-SIMCOR adopts a time-stepping 

integration scheme with timestep t , elements that model history-dependent behavior should be 

discretized in the time domain. To work compatibly with the UI-SIMCOR integration scheme, the 

above equations are converted into the incremental form by Euler’s method, as written as follows: 

  ( )1 1 1 1 1 0

d

N N Nf c y k x x+ + += + −   (2.15) 

  ( )1 1 0 1 0 1 1

0 1

1
N N N N Ny z c x k x y

c c
+ + + + += + + −  +

  (2.16) 

  ( ) ( )
1

1

n n

N N N N N N N N N N Nz z t x y z z x y z A x y 
−

+
 = +  − − − − + −
 

  (2.17) 

  ( )1 0 0

0 1

1
N N N N N Ny y t z c x k x y

c c
+

 
= +  + + −   + 

  (2.18) 

A MATLAB function based on Equation (2.15) ~ (2.18) is developed as an element that 

provides the MR damper behavior presented in Figure 2.1. Note that the damper force at time 1Nt +  

is essentially a function of the damper’s displacement 1Nx +  and velocity 1Nx + , which can be 
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estimated by the predictor quantities in Equation (2.3). Then the error is compensated with the 

α−OS integration process in UI-SIMCOR. Namely, this element takes in predicted displacement 

and velocity of MR damper as input and returns the updated MR damper force. Before further 

applying this element, a numerical MR damper model based on the ODE solver of MATLAB is 

developed and used to verify the accuracy of the presented approach. The calibrated parameters of 

modified Bouc-Wen model for MR damper and harmonic excitation can be found in Table 4.11 of 

Xi (2014).  Figure 2.2 shows that the implemented MR damper element yields the same results as 

the ODE solver method, which validates the modeling approach. 

  

  
(a) Force-displacement (b) Force-velocity 

Figure 2.2. Verification of proposed MR damper element with ODE solver in MATLAB 

2.3.3 Hybrid Simulation for Structure with Isolators and Nonlinear Dampers 

For hybrid simulation of structure with base isolators and nonlinear viscous dampers 
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installed, after defining the computational element of base isolators as shown in section 2.3.1, the 

computational element that models nonlinear viscous dampers is incorporated in the time 

integration section of UI-SIMCOR according to their role in the equation of motion. The 

modification of the built-in α−OS method is shown in the following to model nonlinear viscous 

dampers.  

First, the displacement and velocity vectors 1n+d  and 1n+v  can be solved by the same 

predictor and corrector steps defined in Equations (2.3) & (2.4). Then 1n+a  needs to be solved 

iteratively from the time discretized form of Equation (2.19) as following: 

 ( ) ( ) ( ) ( )b d

1 1 1 1 1 1 1 1 1 1( ) 0n n n n n n n n n nt+ + + + + + + + + += + + + + − =F a Ma Cv r a f a f a f   (2.19) 

In general, a nonlinear viscous damper can be modeled by: 

  ( )d

d d dsigndf c v v


=   (2.20) 

where dc  is the damping coefficient, dv  is the velocity of the nonlinear damper and d  is a 

constant that controls the force-displacement loop of the damper. For a N-DOF system equipped 

with nonlinear dampers and bearings on each DOF, the damper forces are in the vector form: 

  
T

d1 d2 d di Nf f f f =  
d

f   (2.21) 

Approximating the restoring force term 1n+r  and b

1n+f  as shown in Equations (2.5) and (2.11) 

respectively, the derivative of Equation (2.19) about 1n+a  is given by: 

  ( )
b d

1 1 1 1 1
1

1 1 1 1 1

n n n n n
n

n n n n n

+ + + + +
+

+ + + + +

    
 = + + + +

    

v r f f v
F a M C

a a a v a
  (2.22) 

where 
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


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thi  

nonlinear damper, the derivative of damper force about velocity is given by: 
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

−
=


  (2.23) 

where the velocity across of the 
thi  nonlinear damper div  can be related to global velocity vector 

v  according to the two DOFs it is installed to. Once ( )1n+
F a  is obtained, Newton’s iteration can 

be applied to obtain the converged solution for 1n+a : 

  ( ) ( )1

1 1 1 1

k k k k

n n n n

+

+ + + +
= −a a F a F a   (2.24) 

The displacement and velocity vectors can then be obtained by Equation (2.4) once the acceleration 

vector 1n+a  is solved. 

2.4 VALIDATION OF HYBRID NUMERICAL SIMULATION SCHEME 

To validate the hybrid numerical simulation scheme proposed above, a three-story 

nonlinear frame structure, as shown in Figure 2.3, is considered for numerical simulation and 

verification hereafter. This model represents a test structure located in Harbin Institute of 

Technology, China, which was tested for validating the hybrid numerical simulation scheme 

experimentally. A detailed description of the experimental structure can be found in Xi (2014). 

Four energy dissipation strategies are adopted to investigate the structural responses under 

earthquake excitation: (a) base isolators are installed at the base level; (b) MR damper is installed 

between the first floor of the structure and outside fixture; (c) Nonlinear viscous dampers are 

installed between floors; (d) base isolators are installed at the base level, and a nonlinear damper 

is installed between the first floor of the structure and outside fixture. Figure 2.3 illustrates the 

above control strategies for the structure to be analyzed. 

In this study, OpenSees is chosen as the FE software to model the nonlinear main structure, 

and MATLAB is used to model the seismic protective devices as stated in Section 2.3. The beams 
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and columns in the frame are modeled by beam-column elements with bilinear force-displacement 

material property in OpenSees (Mazzoni et al., 2006). The model parameters of base isolators and 

nonlinear damper are shown in Table 2.1. In contrast, other structural properties and identified 

parameters of the modified Bouc-Wen model for MR damper can be found in Xi (2014). In 

implementing the hybrid simulation scheme for this structure, two horizontal DOFs are selected 

as effective DOFs corresponding to each floor and base layer, namely, six effective DOFs in total 

for case (b) and (c) while eight effective DOFs in total for case (a) and (d). The equation of motion 

is solved with the modified integration algorithm in UI-SIMCOR described in Section 2.3.  

 

  
(a) Base isolation (b) MR damper 

  
(c) Interstory nonlinear damper (d) Base isolation & nonlinear damper 

Figure 2.3. Structural control strategies for numerical simulation and verification 
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Table 2.1. Modeling parameters for protective devices 

Nonlinear damper c = 300N*s/m α = 0.5      

Bouc-Wen model parameters 

for base isolator (Wen, 1976) 

K = 131.35N/m α = 0.1 Dy = 0.25m γ = 0.5 β = 0.5 n = 20 A=1 

 

The 1940 El-Centro earthquake record (North-South component, Peknold version) is used 

as the input ground motion for all cases. This motion was used in the experimental program of the 

testing structure at HIT (Xi, 2014). For control strategies (a), (c), and (d), the dynamic structural 

responses from the hybrid numerical simulation are compared with those of the whole OpenSees 

model, whose both main structure and control devices are modeled in OpenSees. For control 

strategy (b), results solved from ODE solver in MATLAB are used to verify the structural control 

by MR damper. Figure 2.4 to Figure 2.7 compares the structural response and force-displacement 

curves of protective devices under different control strategies using the hybrid simulation and the 

whole model. As can be seen, not only the peak values but also the time histories of the inter-story 

drift, the floor acceleration, and force-displacement loops of protective devices are well captured 

by using the proposed hybrid simulation scheme. Namely, the proposed hybrid numerical 

simulation framework can accurately analyze the dynamic response of nonlinear structures 

equipped with seismic protective devices, thus builds a solid foundation for finding the optimal 

design of seismic protective devices to minimize the structural responses. 
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(a) Isolator displacement history (b) Isolator acceleration history 

Figure 2.4. Comparison of structural response under control by base isolation 

  
(a) 1st floor displacement history (b) Top floor displacement history 

Figure 2.5. ODE solver verification of hybrid numerical simulation for MR dampers 
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(a) Story drift comparison (b) Story acceleration comparison 

  
(c) Force-displacmemt loop of nonlinear 

damper at 1st floor 

(d) Force-velocity loop of nonlinear damper 

at 1st floor 

Figure 2.6. Verification of hybrid simulation for structure under control by nonlinear viscous 

dampers 
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(a) 1st floor drift (b) 1st floor acceleration 

  
(c) Nonlinear damper force-displacement loop (d) Nonlinear damper force-velocity loop 

  
(e) Displacement of base isolator (f) Force-displacement loop of base isolator 

Figure 2.7. Verification of hybrid simulation for structure under control by base isolation & 

nonlinear damper 
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2.5 STRUCTURAL CONTROL IN HYBRID SIMULATION FRAMEWORK 

In the hybrid simulation scheme stated above, the control devices are modeled separately 

in MATLAB, which make it convenient to apply control algorithms to obtain optimized structural 

responses. Classical linear control theory (such as linear quadratic regulator, LQR) is easy to be 

developed and works perfectly for linear systems. Nevertheless, nonlinear control methods (such 

as sliding mode control, SMC) are presented for better applications to nonlinear and hysteretic 

civil engineering structures under seismic loading (Utkin, 2013; Yang et al., 1995; Young, 1993; 

Zhou & Fisher, 1992). The previous study shows that the SMC method has a specific ability to 

construct robust control systems concerning structure’s parametric uncertainties and to stabilize 

nonlinear systems by using continuous state feedback laws. Therefore, two active control 

algorithms, LQR (Gluck et al., 1996) and SMC (Yang et al., 1995), are implemented and compared 

in a hybrid simulation scheme herein. 

2.5.1 Classical Linear Optimal Control Theory 

The LQR method is incorporated in the time integration section of UI-SIMCOR according 

to its role in the equation of motion. Consider an actively controlled n-DOF inelastic structure 

subjected to earthquake ground acceleration, the equation of motion with control forces is given 

by: 

   s e( ) ( ) ( ) ( ) ( )t t t t t+ + = +Mx Cx F x F HU   (2.25) 

where M , C , K  are mass, structural damping and stiffness related to the displacements 

 
T

1 2( ) , , , nt x x x=x  at various degrees of freedom; e ( )tF  is a vector representing external force 

caused by ground excitation; ( ) ( ) ( )
T

1 2( ) , , , nt u t u t u t=   U  is the control forces at locations 
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indicated by matrix H ;  s ( )tF x  is the restoring force vector which can be written as: 

     s ( ) ( ) ( )t t t= +F x Kx Hf x   (2.26) 

where linear elastic stiffness of structure will appear in the K  matrix of Equation (2.26), the 

nonlinear portion of hysteretic restoring force is    
T

1 2( ) , , , nt f f f=f x .  

If whole model of structure is built in MATLAB, the hysteretic restoring force of ith story 

unit can be modeled as (Yang et al., 1992): 

  ( ) ( )1si i i i i i yi if k x t k D z = + −   (2.27) 

where i  is the ratio of the post-yielding to pre-yielding stiffness ik ; yiD  is the yield deformation; 

iz  is hysteretic variable with 1iz  . A detailed description of this hysteretic modeling is not 

provided herein and can be found in Yang et al. (Yang et al., 1992) due to limited space. While for 

hybrid modeling in UI-SIMCOR framework,  s ( )tF x  can be directly returned from OpenSees 

module after applying the predict displacement, therefore, stiffness K  is essentially the initial 

stiffness 
I

K  that can be returned from OpenSees module. 

To apply LQR method, the equation of motion needs to be simplified in the following state 

space form by considering only the initial elastic force vectors: 

  ( ) ( ) ( ) ( )et t t t= + +z Az BU EF   (2.28) 

where ( ) ( ) ( )
T

,t t t=   z x x  is the structural response in state space. A  is the system matrix. B  

and E  are location matrices which respectively specify the locations of the control forces and 

external excitations in the state space, as shown in Equation (2.29): 

  1 1 1 -1− − −

     
= = =     

− −     

0 I 0 0
A B E

M K M C M H M
  (2.29) 
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In classical linear optimal control (Gluck et al., 1996), the control force ( )tU  is chosen in 

such a way that a performance index J  is minimized: 

  ( ) ( ) ( ) ( )T T

0
d

ft

J t t t t t = +  z Qz U RU   (2.30) 

where Q  and R  are referred as weighting matrices, whose magnitudes are assigned according to 

the relative importance attached to the state variables and control forces. The optimal control force 

is given by: 

  ( ) ( )t t=U Gz   (2.31) 

where G  is the gain matrix which given by: 

  
1 T1

2

−= −G R B P   (2.32) 

and P  is the solution of the Ricatti equation shown below: 

  
T 1 T1

2 0
2

−+ − + =A P PA PBR B P Q   (2.33) 

For the whole model in MATLAB, the EOM can be solved by using ODE solver once 

control force U  is solved. While for hybrid modeling in UI-SIMCOR framework, by rewriting 

control force ( ) ( ) ( ) ( )x xt t t t= = +U Gz G x G x  from LQR and plugging ( )tU  into Equation (2.25), 

the dynamic response of actively controlled inelastic structure can be solved by modifying 

Equation (2.7) of the original α-OS integrator to the following: 

  

( ) ( )( )

( ) ( )

( )

2 I

1 1 1 1 1

2 I

ˆ 1 1

ˆ (1 ) (1 ) (1 )n n n n n n n n n

n

t t

t t

   

     

  

+ + + + +

= +  + +  + +

= + − + + − + + + − +

 +  +  +
 

M M C K K

f f f r Kd r Kd Cv Cv

C K K a

  (2.34) 

where x= −K HG , x= −C C HG ; force r  denotes the nonlinear restoring force  s ( )tF x  returned 

from OpenSees module; force f  denotes the external force e ( )tF . 
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2.5.2 Sliding Mode Control (SMC) 

The SMC method is also incorporated in the time integration section of UI-SIMCOR 

framework to provide design control forces in the equation of motion. When using SMC on the 

inelastic structural model in MATLAB, the nonlinear portion of restoring force in the EOM is 

maintained, thus state-space Equation (2.28) becomes: 

  ( ) ( ) ( ) ( ) ( )et t t t= − + +z Az Bf z BU EF   (2.35) 

where B   is the location matrices specifying the locations of the nonlinear portion of hysteretic 

restoring force: 

 -1

 
=  
 

0
B

M H
 (2.36) 

The sliding mode control theory is to design controllers to drive the response trajectory 

into a designed sliding surface, where the motion is minimized and stable on the sliding surface. 

Namely, there are two fundamental steps: (1) design of sliding surfaces, where the system exhibits 

the designed behavior; (2) design of controllers, which guarantees the reaching of the designed 

sliding mode. Generally, the sliding surface is a nonlinear function of the state vector. As described 

by Utkin (Utkin, 2013), in cases where one controller is installed for each nonlinear element, the 

sliding surface becomes a linear combination of the state vector and can be written as: 

   = = S Pz   (2.37) 

where   
T

1 2 rS S S=S  is a vector denoting a r-dimensional linear sliding surface, with r 

denoting the number of controllers installed in structure. P  is a matrix to be determined such that 

the motion on the sliding surface is stable and minimized. According to Yang et al. (1995), the 

design matrix P  of the sliding surface is obtained by converting the state equation of motion (2.37) 

into the so-called “regular form”, then minimizing the integral of the quadratic function of the state 
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vector: 

  ( ) ( )T

0
dJ t t t



=  z Qz   (2.38) 

where Q  is a ( )2 2n n  positive definite weighting matrix. Details about the procedure to design 

the sliding surface for a nonlinear shear-type building can be found in Yang et al. (1995). The main 

steps of computing design matrix P  are shown in Appendix for the sake of completion. 

Based on the obtained sliding surface, the controller which drive the state trajectory into 

the sliding surface is achieved by using Lyapunov direct method. Detail procedures of designing 

controller can be found in Yang et al. (1995) and is not repeated here for simplicity. According to 

Yang et al. (1995), a continuous saturated controller which do not have possible chattering effects 

is presented as: 

  ( )
( )

* *

max

*

max

;

sgn ;

i i i i i i i i i

i

i i i i i

G if G u
u t

u G otherwise

     

  

 − −  
=  

−  

  (2.39) 

where 
*0 1i  ; maxiu ( )1,2,i r=  are the upper and lower bounds of the control force iu ; 

'=λ SPB ; ( ) ( )
1

e

−
= − − +G PB P Az Bf EF ; sliding margin δ  is a ( )r r  diagonal matrix with 

diagonal elements 0i  . The controllers presented in Equation (2.39) are referred as the saturated 

controllers because the control effort ( )iu t  is saturated at maxiu . Design parameters 
*

i  and maxiu  

can be specified by the designer to make a trade-off between the control effort and the structural 

response.  

The following modifications are made to make sliding mode control work compatibly with 

UI-SIMCOR integration process. First, to extend the presented SMC method to structure with 

existing protective devices, the state-space equation of motion is modified as: 
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  ( ) ( ) ( ) ( ) ( ) ( )p

s et t t t= − − + +z Az BF z Bf z BU EF   (2.40) 

where ( )p
f z  is nonlinear restoring force provided by any protective devices implemented in UI-

SIMCOR at locations indicated by matrix B . Since inelastic restoring forces ( )sF z  is returned 

from main structure in OpenSees, it can have any nonlinearity that comes from materials, sections 

or elements defined in OpenSees module. Therefore, there is no need to separate the restoring 

forces to linear and nonlinear parts as shown in Equation (2.26), which results in the system matrix 

A  becomes 
1−

 
 

− 

0 I

0 M C
, location matrix B  becomes 

-1

 
 
 

0

M
. The sliding surface and controller 

are the same as before except the matrix G  becomes ( ) ( )
1 p

s e

−
− − − +PB P Az BF Bf EF . Then 

substituting the obtained control forces into equation of motion in time stepping method, the 

structural responses can be solved by using time integration methods implemented in UI-SIMCOR. 

Namely, during the α operator splitting process at current time step 1nt + , obtain control force 1n+U  

and nU  using Equation (2.39), then put them into the equivalent external force 1
ˆ

n+f  and solve the 

structural responses. 

2.5.3 Validation of Structural Control Methods in UI-SIMCOR Framework 

An eight-story structure, as shown in Figure 2.8 (Xie et al., 2018), is adopted and analyzed 

here to verify the implemented structural control methods. The floor mass and elastic stiffness of 

each story are given in Table 2.2. The story height of the building is taken as 3.05 m (10 feet). The 

yielding displacement of all eight floors is 0.02 m, and the post-yielding stiffness ratio is 0.1. For 

simplicity, the inherent viscous damping of the structure is not considered. Both LQR and SMC 

models are evaluated for applying active control force U at each story. All weight matrices in LQR 
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and sliding mode control are considered to be identity matrices for simplicity. To provide an 

effective controller in SMC, * 0.9i =  and the maximum control force 
max 8500iu kN= , a sliding 

margin of 610 /i kN t m s =    with 1 ~ 8i =  are considered in this study. The fault normal 

component of El Centro Array no. 5, during the 1979 Imperial Valley earthquake is used as the 

input. 

  

Figure 2.8. Eight story inelastic structure 

Table 2.2. Structural properties of the sample 8DOF structure (Xie et al., 2018) 

Story # 1 2 3 4 5 6 7 8 

Story mass 𝑚𝑖 (ton) 345.6 345.6 345.6 345.6 345.6 345.6 345.6 345.6 

Story stiffness 𝑘𝑖 (
105𝑘𝑁

𝑚
) 3.4 3.2 2.85 2.69 2.43 2.07 1.69 1.37 

 

In order to verify the implemented control methods in UI-SIMCOR, for both the LQR 

method and SMC method, two equivalent models of this controlled eight-story building are 

developed and evaluated: (1) MATLAB model whose main structure and control algorithm are 

both simulated in MATLAB; (2) UI-SIMCOR model whose main structure is in OpenSees and 

control algorithm is implemented in MATLAB. The structural responses and control forces are 
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compared in Figure 2.9. It shows that the hybrid actively controlled model in UI-SIMCOR can 

provide the same results compared with the MATLAB model, which means the implemented 

active control methods are correct and ready for use in other structural control cases. The results 

from active control study provide the guidance needed for finding equivalent passive control cases 

in Section 2.6.  

  

  

(a) Linear control method (b) SMC method 

Figure 2.9. Comparison of actively controlled structural responses: MATLAB v.s. UI-SIMCOR 

The effectiveness of the two control methods is examined by comparing the actively 

controlled structure with two additional cases: (1) the uncontrolled case where the structure is fully 

fixed at the base and (2) the passively controlled case with non-optimally designed nonlinear 

viscous dampers at each story. For each story, nonlinear viscous dampers are considered to have 

the total damping coefficient, dc , equals 20 MN (s/m)0.5, and the velocity exponent, α, equals 0.5. 
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The peak responses at each story are listed in Table 2.3.  

Table 2.3. Response comparisons of various design cases 

 Drift (cm) Total acceleration(m/s2) 

Story 

(1) 

Uncontrolled 

(2) 

Passive 

(3) 

LQR 

(4) 

SMC 

(5) 

Uncontrolled 

(6) 

Passive 

(7) 

LQR 

(8) 

SMC 

(9) 

1 4.77 2.33 2.53 0.94 6.39 2.88 3.56 3.83 

2 3.66 2.11 2.03 0.95 4.88 2.55 3.63 3.93 

3 3.17 2.08 1.86 1.24 4.56 2.73 3.87 3.10 

4 2.08 1.87 1.77 0.95 4.79 3.01 4.11 3.25 

5 2.41 1.68 1.70 0.90 5.64 3.35 4.36 3.27 

6 4.14 1.46 1.65 0.83 7.35 3.74 3.97 3.25 

7 3.46 1.11 1.51 0.69 5.91 4.11 3.84 3.25 

8 1.80 0.55 1.08 0.42 8.02 4.29 4.80 3.25 

 

By comparing columns (2) and (6) with other columns, it was found that passive viscous 

dampers and active control methods can substantially reduce both the story displacements and 

accelerations. This observation is reasonable since the structural damping of uncontrolled structure 

is ignored. By comparing columns (3) and (7) with columns (5) and (9), it indicates that the SMC 

method can find an optimal design with nearly 40% smaller story drifts and roughly the same 

accelerations compared with the passive control case. To get the same story drifts as the SMC case, 

more damping should be added in the passive control case. However, the provided passive force 

from the damper cannot be sufficiently adaptive, which results in much more significant 
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acceleration. This phenomenon verifies that SMC is a robust control method that can efficiently 

minimize deformation and acceleration at the same time. On the other hand, columns (4) and (8) 

indicate that LQR can simultaneously decrease story drift and acceleration compared with the 

uncontrolled case. Nevertheless, the LQR method has no benefits when compared with the passive 

control case. Namely, the same reduction effects can be achieved by randomly assign consistent 

damping at each floor rather than putting effort into using the LQR method. Therefore, LQR is not 

as effective as the SMC method when applying to control of the inelastic structure. 

2.6 OPTIMAL PASSIVE CONTROL DESIGN 

Although active structural control is achievable using active seismic protective devices, the 

solution to deliver large dynamic control forces is needed before the wide use of this technology 

in civil structures. Therefore, an equivalent passive control system that can provide the similar 

control effects as an active control system should be identified. To do so, multiple optimization 

procedures need to be developed to identify the passive parameters of seismic protective devices 

based on the actively controlled response obtained in the previous section. Additional gradient-

based optimization procedures or model updating techniques can be easily implemented in the 

proposed hybrid simulation scheme in the UI-SIMCOR platform. The goal is to obtain the stiffness 

and/or damping coefficients of the protective devices added to the structure to provide the response 

reduction effect closest to that of the active control method. In this study, an optimal design of 

nonlinear viscous dampers of the previous eight-story inelastic structure is explained as an example. 

2.6.1 Noniterative Optimization Procedure 

According to Lavan et al. (2008), the active control effect obtained from the above 

structural control methods can be realized by weakening the structure and adding additional 
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damping. The locations and magnitudes of weakening and damping need to be calculated such that 

the passively controlled structure will have a similar response history to that of the actively 

controlled structure. Under this assumption, an error vector is formulated as the difference between 

the sum of control forces and restoring forces acting upon each DOF in the actively controlled 

structure to the sum of damping forces and restoring forces in the weakened and damped structure. 

Then, this error vector is minimized such that the total forces acting upon each DOF would be 

similar in the two cases, leading to similar response histories throughout the structure.  

However, the linear damper is considered as supplemental energy dissipation devices in 

Lavan’s paper (Lavan et al., 2008). To extend the optimization procedure to a system with 

nonlinear viscous dampers, modifications are made in the following steps. First, the error vector 

can be written as: 

 ( ) ( )        , , ( ), ( ) ( ), ( ) ( )w d s s s w dt t t t t t t= − + − +Err F F HU T F x x T F x x F x  (2.41) 

where  ( )s s tT F  and  ( )tHU  are restoring forces and the active control forces acting on the DOFs 

in the actively controlled structure, respectively. ( )s w tT F  and  ( )d tF  are restoring forces and 

nonlinear damping forces acting on the DOFs in the passively controlled structure, respectively. 

Consider that the weakening and softening of each element are proportional, i.e., the strength and 

stiffness of the element are reduced at the same ratio (Lavan et al., 2008), the restoring force 

provided by the weakened structure is: 

   ( )  ( ), ( ) diag ( ), ( )w st t t t=F x x β F x x  (2.42) 

where  β  is a vector of coefficients for weakening and softening in the different structural elements. 

( )diag v  is an operator that generates a diagonal matrix with diagonal elements equals to elements 

of a given vector v . Damping force of nonlinear viscous dampers distributed in the structure can 
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be written as: 

   ( )   ( ) diag ( ) sign ( )dT

d d d d dt t t


= F x T c T x T x  (2.43) 

where dT  is the transform matrix whose element ,Td ij  is the contribution of velocity j to the 

damper i. dc  is a vector of coefficients whose element ,cd i  is the damping coefficient of thi  

damper added to structure. d  is a constant that controls the force-displacement loop of the 

damper. Substituting Equation (2.42) and (2.43) into Equation (2.41), the error vector can be 

written as: 

 

( ) ( )   

( )   ( )    
, , ( ), ( )

diag ( ), ( ) diag ( ) sign ( )d

w d s s

T

s s d d d d

t t t t

t t t t


= − +

− + 

Err F F HU T F x x

T β F x x T c T x T x
 (2.44) 

For any two vectors v  and u  of the same dimensions, ( ) ( )diag diag=v u u v , therefore 

the error vector can be written as:  

 

( ) ( )   

 ( )  ( ) 
, , ( ), ( )

diag ( ), ( ) diag ( ) sign ( )d

d s s

T

s s d d d d

t t t t

t t t t


= − +

− + 

Err β c HU TF x x

T F x x β T T x T x c
 (2.45) 

which can be written in a compact linear form as the following: 

 ( ) ( ) ( ), t t t= −Err y A y b  (2.46) 

where y  is vector of unknown variables, ( )tA  and ( )tb  are known matrix and vector varying 

with time defined as follows: 

 

( )  ( )  ( )
( ) ( )   

 
T

diag ( ), ( ) diag ( ) sign ( )

( ), ( )

dT

s s d d d

s s

d

t t t t t

t t t t

 = − 
 

= − − +

=

A T F x x T T x T x

b HU T F x x

y β c

 (2.47) 

Once the error vector has been established as a linear function of the design variables, an 
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optimization problem can be easily formulated by using many scalar functions of this error vector 

as a measure of the error between actively controlled system and passively controlled system. For 

example, in Lavan’s paper (Lavan et al., 2008), a weighted least squares error could be formulated 

as: 

 ( ) ( ) ( ) ( )T , , derr t t t t= y Err y W Err y  (2.48) 

where ( )tW  is a diagonal matrix of positive weights for different unknown variables at each time 

step. Taking into account that the unknown variable y  is not a function of time since it’s a set of 

constant design variables of structural properties and supplemental dampers, the optimization 

problem can be formulated by substituting Equation (2.46) into Equation (2.48) and minimizing 

the weighted least square: 

 ( ) Tmin 2 constTerr = − +y y Ψy d y  (2.49) 

where ( ) ( ) ( )T dt t t t= Ψ A W A , ( ) ( ) ( )T dt t t t= d A W b . The weighted least square can be 

minimized by using gradient based optimization methodology, which could be easily adopted and 

solved with any available optimization program. In the proposed hybrid simulation scheme, a built-

in optimization toolbox in the MATLAB library is used to minimize the scalar error, subject to 

constraints on the variables if desired. Finally, the optimal values of the vector y  yields to the best 

values for the design parameters. In reality, the location of weakening and damping is also 

represented by the value of β  and dc . If 1i = , it is expected that weakening is not required for 

element i ; If 0i = , it means that element i  needs to be removed; If , 0d ic = , it indicates that 

additional damper is not required at that location. 
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2.6.2 Equivalent Average Optimization Procedure 

Instead of solving one set of design variables y  throughout the entire integration time, the 

maximum likelihood estimator of the previous linear model can be used to find different sets of 

optimal design parameters ( )ty  at each time step. For general linear model as shown in Equation 

(2.46), ( )ty  at each time step t  can be calculated by using closed form solution of maximum 

likelihood estimator ( )ˆ ty , 

 ( ) ( ) ( )( ) ( ) ( )
1

ˆ t t t t t
−

 =y A A A b  (2.50) 

An equivalent average design variable y  can be easily established as follows: 

 
( )ˆ

end

start

t

t
t

t
=



 y
y  (2.51) 

where startt  and endt  are selected integral time period. To fit the peak value of structural response, 

the integral time period can be specified by designer to ensure that several peak structural response 

cycles appear in the integration.  

2.6.3 Example of Optimization Procedure 

To verify the effectiveness of implemented optimization procedures in identifying 

passively controlled design from actively controlled results, structural responses and control forces 

obtained from the eight-story structure used in Section 2.5.3 are adopted and analyzed here. For 

each story, nonlinear viscous dampers are considered to have the total damping coefficient, dc , 

ranges from 0 to 50 MN (s/m)0.5, and the velocity exponent, α, equals 0.5. Both LQR and SMC 

models are evaluated to get the optimal value of dc . 

(1) Noniterative optimization versus equivalent average optimization 
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To compare the accuracy and efficiency of optimization procedures, the peak inter-story 

drift ratio and peak floor acceleration of actively controlled structure, as well as responses of 

passively controlled structures identified from two optimization procedures, are plotted as shown 

in Figure 2.10. It shows that: (i) When comparing the “Sliding Mode Control” curve with the 

“Noniterative opt.” curve, namely, when using noniterative optimization procedure, peak floor 

acceleration of passive control structure matches well with that of active control structure. In 

contrast, peak inter-story drift of passive control structure is overall 50% larger than that of active 

control structure; (ii) When comparing “Sliding Mode Control” with “Equivalent average opt.”, 

namely, when using average optimization procedure and do the integration for whole time history, 

both inter-story drift and floor acceleration are way off from actively controlled responses.  

  
(a) Peak inter-story drift ratio (b) Peak floor acceleration 

Figure 2.10. Comparison of actively controlled and passively controlled structural responses 

However, by carefully selecting the integrating peak cycles of structural response (i.e., for 

“Equivalent average opt._Peak” curve), the fitting of both inter-story drift ratio and acceleration 

are improved and reaches a better fitting compared with the noniterative optimization procedure. 

These phenomena are reasonable because a weighted least squares error is minimized in obtaining 
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one set of design parameters using the noniterative optimization procedure. Nevertheless, accurate 

responses can only be approached when errors at each time step are minimized, which requires 

different sets of design parameters at each time step. Besides, the damping force provided by 

nonlinear viscous dampers has a solid physical relationship with structural responses and its 

modeling parameters, so it is hard to reproduce an arbitrary active control force with high accuracy.  

In sum, the passively controlled structure can produce similar structural responses to the actively 

controlled model, which means the proposed optimal design procedures are applicable.  

(2) Linear control versus nonlinear control 

By comparing the actively controlled responses (i.e., “Linear control” and “Sliding Mode 

Control” curve) and passively controlled structural responses (i.e., “Passive control from LC” and 

“Passive control from SMC” curve) of different control methods with the uncontrolled response, 

as shown in Figure 2.11, it can be concluded that: for both active and passive control cases, sliding 

mode control can get better optimal responses than linear control. Because LQR only produces 

control force that is generated by considering the linear part of restoring force of inelastic structural 

element, while SMC has a saturated controller which generated by the whole nonlinearity of the 

structure. Moreover, besides of weighting matrix, the SMC controller has additional parameters 

(
*

i  and maxiu ) to make a trade-off between the control effort and the structural response, thus 

leads to a much more robust control system. In conclusion, the SMC method is more effective not 

only in actively controlling the structural response of the inelastic structure, but also in identifying 

passively controlled responses.  
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(a) Peak inter-story drift ratio (b) Peak floor acceleration 

Figure 2.11. Comparison of LQR and SMC methods 

(3) Proposed optimal design versus hybrid genetic method 

In order to verify the efficiency of identified optimal design parameters in controlling the 

structural response, the optimal design parameters and controlled structural responses are 

compared with those of the hybrid genetic method presented in Xie et al. (2018), as shown in Table 

2.4 and Figure 2.12. From Figure 2.12, it can be concluded that: (i) Passively controlled structural 

responses identified from LQR and SMC fits well with the optimal responses from the hybrid 

genetic method, which means the proposed active control methods and optimization procedure can 

provide effective optimal design parameters and accurate prediction of structural response; (ii) 

Peak inter-story drift ratio optimized from SMC method is smaller than that of LQR method and 

hybrid genetic method. Meanwhile, the passive model identified from the SMC method has smaller 

peak accelerations compared with the passive LQR model and hybrid genetic method. Therefore, 

the passive model identified from the SMC method is most effective when considering the 

simultaneous minimization of story drift and floor acceleration.  

The identified optimal design parameters and dimensionless damping coefficients are 
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shown in Table 2.4. One can observe that: (i) the passive model identified from the SMC method 

and hybrid genetic method has a more considerable damping cost than the passive model identified 

from the LQR method. It is because the LQR method only controls the linear deformation of the 

inelastic structure, which leads to a smaller supplemental damping coefficient but larger structural 

responses. (ii) When comparing the passive model identified from SMC and hybrid genetic model, 

the dimensionless damping index and equivalent damping ratio are very close, but peak inter-story 

drifts and peak floor accelerations of the passive SMC model are smaller along with the story 

height. It means that the passive SMC model can provide an optimal design to achieve better 

optimized structural responses by using the same cost of additional damping. 

  
(a) Peak inter-story drift ratio (b) Peak floor acceleration 

Figure 2.12. Comparison of different optimal design methods 
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Table 2.4. Optimal design damping coefficients identified from different methods 

Optimization 

Method 

Optimal Design [MN(s/m)0.5]   

1 2 3 4 5 6 7 8 𝛱𝜉,𝑛* 𝜉𝑑* 

Passive Control LC 5.5 5.8 5.0 4.4 2.9 1.7 1.0 0.6 0.10 0.20 

Passive Control SMC 13.3 9.6 5.1 8.5 9.9 8.9 7.7 5.4 0.24 0.56 

Hybrid Genetic* 12.4 9.7 7.9 7.1 6.5 6.4 8.3 8.0 0.23 0.56 

*Hybrid Genetic results are obtained from reference paper. (Xie et al., 2018) 

 

(4) Sensitivity test of SMC method 

To apply this implemented SMC method to other cases, it should be verified that the SMC 

method is not sensitive to structural properties. To doing so, 10% disturbance is applied to the 

initial stiffness and yield displacement of the first floor. It is shown in Figure 2.13 that the orange 

curve and yellow curve are lapped together. Namely, the actively controlled response for original 

structure and disturbed structure are almost the same, which means the SMC method is stable and 

can be used in other cases. Besides, it is observed that both peak inter-story drift ratio and peak 

floor acceleration of the SMC method can be 20% ~ 50% less than those of the hybrid genetic 

method. This will be a significant benefit if active control is achievable for a specific type of 

structure. 
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(a) Peak inter-story drift ratio (b) Peak floor acceleration 

Figure 2.13. Original structure versus disturbed structure 

2.7 CONCLUDING REMARKS 

This chapter explores using of the proposed hybrid numerical simulation scheme to 

conduct structural control of nonlinear structures so as to derive the optimal passive stiffness and 

damping values to mimic the actively controlled devices. In order to achieve this objective, an 

existing hybrid simulation software (UI-SIMCOR) is adopted and modified to enable the 

integration algorithm to include nonlinear seismic protective devices such as nonlinear dampers, 
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base isolation devices and MR dampers. While the realistic behavior of nonlinear structures can 

be modeled separately in current finite element analysis software package (e.g. OpenSees, 

ABAQUS etc.), the nonlinear seismic protective devices can be modeled in MATLAB and pieced 

together through hybrid simulation to produce the most realistic overall structural responses. Using 

a numerical model of a real test structure equipped with various protection devices, the study 

demonstrated the accuracy and versatility of the hybrid numerical simulation scheme.  

Furthermore, this leads to the easy application of different control algorithms, such as 

classical linear optimal control and nonlinear sliding mode control, under this framework. 

Subsequently, it yields the optimal selection of stiffness and damping values for control devices in 

design. The optimal design of an eight-story inelastic structure with nonlinear viscous damper is 

evaluated to validate the proposed structural control based optimal design procedure. The 

following conclusions can be drawn from this study: 

1. The developed hybrid simulation framework can provide accurate assessment of seismic 

behavior of inelastic structure with energy dissipation devices.  

2. The developed hybrid simulation framework possess convenience in integrating 

advanced structural model with different seismic protective devices, structural control methods 

and optimization procedures. It has ability to use inelastic structural models in conjunction with 

nonlinear structural control, thus overcomes the limits in the adoption of structural control. 

3. The equivalent passive control structure obtained from optimization procedure can 

produce similar structural responses to the active control model, which means the proposed active 

control methods in conjunction with optimization procedure can provide effective optimal design 

parameters of protective devices. The equivalent passive control provides comparable response 

reduction effect compared with active control but has stability and less cost. 
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4. The eight-story inelastic structure study case demonstrates that SMC method has robust 

ability in controlling the structural response of inelastic structure. Moreover, the implemented 

SMC method is not sensitive to structural properties thus can be used in other cases. 

In summary, this chapter offers effective means to analyze and optimize seismic protective 

devices for inelastic structures. The structural control and hybrid simulation methodology-based 

optimization procedure can be further extended to optimal design of protective devices for other 

advanced inelastic system. The obtained nonlinear structural response and optimal design 

parameters provide a valuable guidance to evaluate and design the seismic protective devices. The 

main contents in Chapter 2 are under preparation in a journal publication (Peng et al. 2021a).
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3. OPTIMAL PASSIVE CONTROL OF THE BENCHMARK HIGHWAY 

BRIDGE BASED ON HYBRID SIMULATION 

3.1 INTRODUCTION  

In Chapter 2, this study provides a hybrid simulation scheme to enable the structural control 

for inelastic structures. This chapter further extends that scheme to implement structural control 

techniques to improve the seismic performance of highway bridges. A benchmark problem was 

defined for the 91/5 highway overcrossing, which is a two-span prestressed concrete box girder 

bridge with base isolators and fluid dampers installed at end abutments (Agrawal et al., 2009; 

Makris & Zhang, 2004; Zhang, 2002). In the past studies, considering that the structural control 

task cannot be directly conducted in finite element programs, the dynamics of the bridge in the 

benchmark problem were represented by a reduced-order model that was exclusively built in the 

program of MATLAB/Simulink. Therefore, the active control algorithms and bridge dynamics 

could be modeled in one platform so that the state space information of the bridge at each time 

step can be available for performing structural control. Various control strategies and devices have 

been implemented and compared under this benchmark framework  (Nagarajaiah et al., 2009; Tan 

& Agrawal, 2009), where active and semi-active controls were discovered as promising strategies 

to protect highway bridges (Ali & Ramaswamy, 2009; Nagarajaiah et al., 2009).  

However, the typical layout of highway bridges, namely two-to-four spans of girder deck 

supported by center bents and end abutments, in together with the commonly short span length 

renders that highway bridges are subjected to multiple soil-structure interaction (SSI) effects (Xie 

et al., 2017; Xie et al., 2018; Zhang & Makris, 2002b). On the other hand, inherent structural 

nonlinearity has to be considered because the use of protective devices cannot guarantee that the 
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structure’s elastic limit is not exceeded (Makris & Zhang, 2004; Palermo et al., 2013). As a result, 

it remains questionable whether active control can still be effective if SSI effects and nonlinearities 

of protective devices and bridge columns are rationally incorporated. To this end, the MATLAB 

framework developed for the benchmark problem is somewhat deficient because a much-

simplified bridge model was considered therein. The current study is motivated by the need to 

couple active control algorithms with the advanced finite element model (FEM) of highway 

bridges to investigate the control efficiency more thoroughly. 

Hybrid simulation, originally developed as a tool to combine physical testing with 

numerical modeling, offers a feasible means to link control algorithms with realistic structural 

models (Kwon et al., 2005; Schellenberg & Mahin, 2006; Yang et al., 2017). Large coupled 

systems can be analyzed in parallel on different software platforms by maintaining the 

displacement compatibility and force equilibrium at the interface. In this chapter, the benchmark 

bridge control problem is readdressed using the hybrid simulation scheme proposed in Chapter 2. 

As an example depicted in Figure 3.1, the bridge structure and SSI effects are modeled using the 

finite element program of OpenSees (Mazzoni et al., 2006), while supplemental protective devices 

and control algorithms are implemented in MATLAB. The sub-models in OpenSees and 

MATLAB are coupled by sharing forces and displacements at common nodes through the hybrid 

simulation platform UI-SIMCOR (Kwon et al., 2008; Kwon et al., 2007). Modifications have been 

made in UI-SIMCOR to account for multi-support excitation, the SSI effects, and solving 

nonlinear system equations of motion. The proposed hybrid simulation methodology is verified 

against the complete finite element model of the as-built case of the benchmark bridge. This study 

concludes that both linear and nonlinear active controls can effectively improve the seismic 

performances of the benchmark bridge when the associated SSI effects and structural 
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nonlinearities are considered.  
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Figure 3.1. Hybrid simulation scheme for controlled highway bridges 

Furthermore, an equivalent passive control system that can provide the similar control 

effects as the active control system is identified. To do so, an optimization procedure needs to be 

developed to determine the design parameters of passive protective devices based on actively 

controlled response. In this study, equivalent stiffness and damping coefficients of the protective 

devices added to the structure are derived based on the energy dissipating curve obtained in the 

active control process. An optimal design of the base isolator and linear viscous dampers of the 

benchmark bridge is derived and explained as an example.  

3.2 HYBRID SIMULATION SCHEME AND VALIDATION FOR HIGHWAY BRIDGES 

3.2.1 Multi-support Excitation Scheme 

Previous studies have recognized that kinematic responses of approach embankments 

would notably amplify the free-field motions(Maroney et al., 1990; Zhang & Makris, 2002a). This 

embankment motion amplification effect leads to distinct input motions at end abutments and pier 

foundations, which will alter the bridge responses significantly (Rahmani et al., 2016; Xie et al., 

2017; Xie et al., 2018; Zhang & Makris, 2002b). Therefore, multi-support excitation needs to be 

considered when solving the dynamic responses of the bridge. As shown in the Figure 3.2, for the 
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analysis of system under multi-support excitation, the displacement vector should be extended to 

include the degrees of freedom at the supports. Namely, 
T( ) [ ( ) ( )]s gt t t=X X X  is the total 

displacement vector, where ( )s tX  includes the N DOFs of the superstructure, ( )g tX  contains the 

Nb components of support displacement. 

 

Figure 3.2. Definition of superstructure and support DOFs 

Equation (3.1) provides the partitioned form of the equation of motion for all the DOFs: 

 
( )( ) ( )

( ) ( )( ) ( )

ss sg ss sg ss sg ss s

gs gg gs gg gs gg g gg g

tt t

t tt t

               
+ + =            

               

M M C C K K X 0X X

M M C C K K X pX X
 (3.1) 

As given in Equation (3.1), Mss, Css, and Kss are the system matrices that consist of 

superstructure DOFs, and Mgg, Cgg, and Kgg are the system matrices composed by the support 

DOFs. The rest matrix parts (e.g., Msg, Ksg, and Csg) are composed by the connecting elements. 

( )g tp  is the support force. The support DOFs are numbered with the highest values such that they 

are in the bottom rows of the system matrices. Hence, support DOFs and input vectors can be 

extracted and moved to the right-hand side of Equation (3.1), and combined as an external force 

vector. Namely, expanding the first block row of the Equation (3.1), one obtains: 

 ( ) ( ) ( ) ( ) ( ) ( )ss s ss s ss s sg g sg g sg gt t t t t t− − −M X + C X + K X = M X C X K X  (3.2) 

where ( )s tX  and ( )s tX  are structural acceleration and velocity vectors, ( )g tX  and ( )g tX  are 



  

56 

 

input acceleration and velocity vectors at support DOFs. Equation (3.2) turns out to be the modified 

system equation of motion that can incorporate different input values at each support DOF. As 

such, distinct motion inputs are considered.  

Note that the superstructure responses ( )s tX  here are absolute or total displacements. The 

benefit of solving responses in absolute coordinates is that it is straightforward when solving the 

new EOM, Equation (3.2), in the integrator in UI-SIMCOR. Namely, we only need to replace the 

original system matrices with condensed system matrices and generate new external force 

( ) ( ) ( )sg g sg g sg gt t t− − −M X C X K X . However, it requires both ground displacement and velocity, 

which cannot be easily obtained from typical seismic instrumentations. Therefore, a relative EOM 

approximation might be used, as discussed in Li et al. (2012). In this study, the ground 

displacement and velocity are obtained using integration with baseline correction, so that we can 

directly solve EOM in absolute coordinate instead of using relative EOM approximation. 

3.2.2 Modified Integration and Iteration Schemes 

In this study, multi-support excitations are realized by reformatting the system matrices in 

UI-SIMCOR. First, the condensed system matrices Mss, Css, and Kss are used instead of the original 

system matrices returned from the OpenSees subprogram to account for multi-support excitation 

effects. To easily facilitate such operation, the support DOFs are numbered with the highest values 

in UI-SIMCOR such that they are located in the bottom rows of the system matrices. Besides, a 

new excitation force ( ) ( ) ( )sg g sg g sg gt t t− − −M X C X K X  should be used instead of the original 

external excitation force ( )g t−MX .  

To account for the nonlinear forces of the bridge structure and controllers, the integration 

scheme in UI-SIMCOR needs to be modified to incorporate passive and active controllers for the 
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benchmark problem. The majority of the work has been done in Chapter 2 for active and passive 

control of inelastic structures with seismic protective devices. In this chapter, the α-OS integration 

scheme in UI-SIMCOR is combined with Broyden’s method to converge the nonlinear force 

vectors (Broyden, 1965). Instead of completely composing the Jacobian matrix at each iteration 

step, Broyden’s method computes the approximate inverse of the Jacobian matrix. As shown in 

Equation (3.3), the acceleration vector at the (k+1)th iteration step can be expressed as: 

 
1

1

1 1 1 1( )k k k k

n n n n

−
+

+ + + +
 = −  a a B F a  (3.3) 

where 1

k

n+a  is the acceleration vector of the kth iteration step; 1( )k

n+F a  is the system force vector; 

and 1

k

n+B  is the approximate Jacobian matrix that has the general form as: 

 
1 1

1 1 1 1 1( ) ( ) ( )k k k k k

n n n n n

− −

+ + + + +− = −B a a F a F a  (3.4) 

Note that multiple solutions of 1

k

n+B exist by solving Equation (3.4), whereas an 

appropriate choice of 1

k

n+B  is a minor modification of 
1

1

k

n

−

+B  (Broyden, 1965): 
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where 1

k

n+h  and 1

k

n+F  are the incremental force vectors that can be calculated as 
1

1 1 1

k k k

n n n

−

+ + += −h a a  

and 
1

1 1 1( ) ( )k k k

n n na a −

+ + + = −F F F , respectively. With the initial guesses of 
1

1n+a , 
2

1n+a , and 
1

1n+B , the 

approximate Jacobian matrix can be determined at each iteration step, from which converged an+1 

can be obtained by using Equation (3.3). Then the nonlinear system equation of motion in the 

general framework as shown in Chapter 2 can be solved. Especially, the use of Broyden’s method 

avoids a dramatic change in the system Jacobian matrix, which solves the convergence issue. 
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3.2.3 Numerical Validation of the Hybrid Simulation Scheme 

The as-built case of the benchmark bridge (i.e., the 91/5 Overcrossing) is utilized to verify 

the proposed hybrid simulation scheme. As shown in Figure 3.3(a), 91/5 Overcrossing is a 

continuous two-span prestressed concrete box-girder bridge supported by an outrigger beam at 

mid-span. The bridge is installed with four elastomeric bearings and fluid dampers at each end 

abutment (Makris & Zhang, 2004). As the reference for validation, the complete FEM of the bridge 

(Figure 3.3(b)) is built in OpenSees, where modeling considerations of each component are based 

on the study of Zhang et al. (Zhang et al., 2004). Note, the modeling scheme considered for the 

complete FEM has been well-documented and discussed in previous studies (Xie & Zhang, 2017, 

2018; Zhang & Makris, 2002a, 2002b; Zhang et al., 2004). Especially, the modeling considerations 

of SSI effects and structural nonlinearity have been validated by comparing the numerical 

responses against the recorded counterparts of two instrumented bridges in California (Zhang & 

Makris, 2002b). SSI effects are captured through macro dashpots and springs attached at 

foundation nodes to quantify soil damping and stiffness, respectively. Using a shear-wedge model, 

the dynamic stiffness of the approach embankment is estimated through an iteration process that 

calculates the appropriate level of dynamic shear strains under earthquakes (Zhang & Makris, 

2002a). The dynamic stiffnesses of a pile group are computed by superposing the dynamic 

stiffnesses of single piles, initially developed for static loads by Poulos (1968) and later justified 

for dynamic loads by Kaynia and Kausel (1980) and Roesset (1984). The low-frequency values of 

the dynamic stiffnesses for both approach embankments and pile groups are used to develop the 

frequency-independent macro dashpots and springs (Zhang et al., 2004). Further, the shear-wedge 

model yields estimates for the motion amplification functions of typical embankments, which are 

subsequently used to obtain the amplified motion inputs at end abutments (Zhang & Makris, 
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2002a).  
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Figure 3.3. Numerical validation scheme of the benchmark highway bridge: (a) benchmark 

highway bridge of 91/5 Overcrossing; (b) complete OpenSees model; and (c) hybrid UI-

SIMCOR model 

Modeling parameters of isolation bearings and fluid dampers are selected based on the 

material properties, device sizes, and test results of the devices that have been designed and 

installed on the 91/5 highway overcrossing (Zhang et al., 2004). Isolation bearings are considered 

as a perfectly plastic material with an elastic stiffness of 5 MN/s and the yielding displacement of 

0.06 m. The nonlinear fluid dampers installed at bridge ends are modeled through a nonlinear 
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dashpot (as given in Equation 2.20) with the damping coefficient Cα = 1.09 MN(s/m)0.35 and the 

fractional exponent αd = 0.35. Nonlinear beam-column elements are used to model bridge columns, 

whose moment-curvature relationship regresses as a bilinear curve. The bridge deck is simulated 

by the elastic beam elements, whereas transverse rigid components are modeled to preserve the 

skew geometry and connect the deck with columns and end abutments. Based upon the complete 

FEM, the UI-SIMCOR model (Figure 3.3(c)) is modified by decoupling the as-built bridge into 

two substructures. Namely, the OpenSees substructure consists of the bridge structure and the SSI 

springs, and the MATLAB substructure consists of isolation bearings, fluid dampers, and SSI 

dashpots. 

Seismic responses of the benchmark bridge are simulated when subject to the Newhall 

motion record under the 1994 Northridge earthquake. Figure 3.4 presents the acceleration time 

history of the Newhall record at free field and the amplified motion at end abutments. For 

validation purposes, responses of four critical components are examined, such as bridge deck, 

bridge columns, isolation bearings, and fluid dampers. Figures 3.5(a) compares the deck total 

acceleration responses at the bridge center (i.e., node B shown in Figure 3.3(b)), whereas Figure 

3.5(b) presents the drift responses of the southern column. As shown in both figures, not only the 

peak values but also the time histories of the bridge deck and columns are well captured by using 

the hybrid simulation scheme. In addition, Figures 3.5(c) and 3.5(d) compare the force-

displacement curves of one sample bearing and two sample dampers, respectively (bearings and 

dampers are numbered in Figure 3.3(b)). As can be seen, minor discrepancies exist in the force-

displacement loops, resulting from that: (1) different nonlinear solvers have been used in the 

complete FEM and the hybrid model; and (2) the initial stiffness matrix is used to obtain the 

nonlinear restoring force in the hybrid model. However, the overall trends and peak values 
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calculated from the hybrid model are generally consistent with those from the complete model. 

Figure 3.5 confirms that the hybrid simulation method effectively predicts the benchmark bridge's 

seismic responses.  

  
(a) 

  
(b) 

Figure 3.4. Acceleration time histories of the Newhall record at (a) free field and (b) end 

abutments 

  
(a) 
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(c) 

  
(d) 

 

Figure 3.5. Response comparisons of the hybrid model and the complete OpenSees model: (a) 

total acceleration comparisons at bridge center; (b) column drift comparisons of the southern 

column; (c) force-displacement relationship comparisons of bearing No.1; and (d) force-

displacement relationship comparisons of dampers No.3 and No.4 
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3.3 ACTIVE CONTROL OF BRIDGE MODEL IN HYBRID SIMULATION SCHEME 

3.3.1 Controller Design 

The second phase of the benchmark problem is considered hereafter as the testbed for 

active and optimal passive control designs (Nagarajaiah et al., 2009). To this end, two additional 

bearings are installed at the top of the columns to fully isolate the bridge. As shown in Figure 3.6, 

the active design of the benchmark highway bridge consists of ten base isolators and twenty 

orthogonal actuators, all of which are installed at the marked locations.  

 

Figure 3.6. Active control system of the benchmark highway bridge 

As introduced in Chapter 2, LQR and SMC control methods are applied to observe the 

effectiveness of active control in the bridge model. Since there are numerous nodes and DOFs in 

the bridge model, it is impossible to control the responses of all DOFs. Instead, a control target 

vector y(t), also known as the measurement output vector, can be formed as: 

 ( ) ( ) ( ) ( )t t t t= + +m ey C z DU HF  (3.6) 

where ( )tz  is the structural responses vector in state space; ( )tU  is the active control force; ( )teF  

is the external force; Cm, D and H are coefficient matrices that can be determined on the basis of 
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the components in y(t). The measurement vector y(t) of the LQR method should be designed to 

capture the overall seismic performance of the benchmark bridge. In this study, the vector y(t) 

measures the peak acceleration demand of the deck at the bridge center and peak bearing 

deformations, as shown in Equation (3.7). 

 
Acceleration demand of the deck at bridge center

=
Peak deformations of all the bearings

 
 
 

y(t)  (3.7) 

The peak acceleration demand of the deck at the bridge center is positively correlated to 

the base shears and drift demands of columns, while the peak bearing deformations controls the 

damage of isolation bearings. It is worth mentioning that bearing deformation and deck 

acceleration in general conflict with each other. To wit, a stronger (i.e., more rigid) connection 

between the deck and the column would decrease the bearing deformation but increase the deck 

acceleration, and vice versa. As such, the proposed measurement vector y(t) captures the 

correlations between critical bridge components. It also reflects the overall seismic performance 

of the benchmark bridge. As shown in Figure 3.6, twenty string potentiometers are used to measure 

the bearing displacements at each marked location in both transverse and longitudinal directions, 

whereas two accelerometers are used at the middle center of the bridge deck to measure the 

longitudinal and transverse accelerations at this location. 

Correspondingly, the quadratic performance index J of the LQR method can be formed as: 

 
0

[ ( ) ( ) ( ) ( )]
ft

T TJ t t t t dt= + y Qy U RU  (3.8) 

where Q and R are weighting matrices that can be determined based on the relative importance of 

the state variables and control forces. The weighting matrices are chosen as: 

 
 
 
 

a

d

q I 0
Q =

0 q I
; nd ndR = I  (3.9) 
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where qa = 103 weights the total acceleration at bridge center and qd = 106 weights the bearing 

deformations, R is chosen to be the nd×nd identical matrix, where nd is the number of control 

devices. These two weighting matrices are determined through a trial-and-error process to ensure 

that (1) no unstable bridge response has occurred and (2) the active control force at each location 

stays within the range of 0-2500 kN. 

Similarly, a trial and error process is conducted to determine the SMC sliding surface, 

where the associated weighting matrix contains (1) 750 to weight the transverse displacements of 

bearing No.5 and No.6, (2) 1×107 to weight the transverse displacements of all other bearings, (3) 

1×108 to weight the longitudinal displacements of all the bearings, (4) 100 to weight the transverse 

displacement of the deck at bridge center, (5) 1×104 for the longitudinal displacements of the deck 

at multiple locations, (6) 100 to weight the longitudinal velocities of the deck at multiple locations, 

and (7) 1 for all other parameters. A sliding margin of δi = 100 kN·kg·m/s with i = 1-20 is 

considered in this study. The coefficient α* is chosen appropriately such that the maximum control 

force is around 2500 kN at each location. 

3.3.2 Active Control Results 

The effectiveness of the two active control designs is examined by comparing the actively 

controlled bridge with two additional cases: (1) the uncontrolled case where the bridge is fully 

isolated by ten isolation bearings, and (2) the initial passive design case with each numbered 

location in Figure 3.6 equipped with isolation bearings and two orthogonal fluid dampers. Existing 

protective devices (i.e., bearings with the elastic stiffness of 5 MN/m and the yielding displacement 

of 0.06 m, dampers with Cα = 1.09 MN(s/m)0.35 and αd = 0.35) are considered for the uncontrolled 

and initial passive design cases. Table 3.1 lists the response comparisons of various control cases 

when subject to the aforementioned Newhall motion record. Because isolation bearings at the same 



  

66 

 

locations (i.e., west ends, east ends, and pier tops) yield similar responses, the mean displacement 

values at each location are listed in the table. By comparing column (5) in the table with other 

columns, it can be found that passive viscous dampers are able to substantially reduce the bearing 

displacement. However, the provided passive forces from the dampers are not sufficiently adaptive, 

which in turn generates much larger deck accelerations. This phenomenon verifies that bearing 

deformation and deck acceleration are two conflicting demand parameters, and a robust control 

shall efficiently minimize these two parameters at the same time. On the other hand, columns (7) 

and (8) in Table 3.1 indicate that both LQR and SMC can simultaneously decrease bearing 

displacements and deck accelerations compared with the uncontrolled case. Although active 

controls deliver less reductions of bearing displacements than the initial passive design case, 

significant decreases in deck accelerations can be achieved. As such, the active controls are more 

rational in a way that both columns and bearings will have smaller and more balanced responses. 

Conversely, the initial passive design case is somewhat inappropriate by viewing that bridge deck 

(or equivalently, bridge columns) will dominant the seismic response of the bridge.  

Figure 3.7 compares the acceleration time histories at the deck center between the initial 

passive design, the LQR design, and the SMC design. As is depicted, the main acceleration pulses 

experienced in the initial passive control are significantly diminished when active controls are used. 

Force displacement curves of the base isolators are also compared in Figure 3.8 between the 

uncontrolled case and two active control designs. For brevity, one bearing at each location is 

compared (i.e., bearing No.1 at the west end, bearing No.5 at pier tops, and bearing No.9 at the 

east end). Evidently, bearing deformations in the transverse direction are decreased through the 

implementation of active controls. 
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Table 3.1. Response comparisons of various design cases under the Newhall record 

Direction Demand Location Uncontrolled Initial  

Passive 

Optimal 

Passive 

LQR SMC 

(1) (2) (3) (4) (5) (6) (7) (8) 

Transverse Δu*(m) West end 0.47 0.12 0.51 0.36 0.21 

Pier top 0.47 0.11 0.50 0.33 0.21 

East end 0.49 0.20 0.49 0.35 0.24 

am
* (m2/s) Deck center 4.17 7.25 1.19 1.61 3.35 

Performance Index J* 1.00 1.03 0.67 0.56 0.63 

Longitudinal Δu* (m) West end 0.21 0.12 0.16 0.18 0.17 

Pier top 0.20 0.13 0.14 0.17 0.16 

East end 0.20 0.09 0.14 0.16 0.14 

am
*(m2/s) Deck center 1.15 4.46 0.81 0.85 0.99 

Performance Index J* 1.00 2.22 0.72 0.79 0.81 

*Δu is the peak bearing displacement, and am is the peak deck total acceleration at bridge center. 

 

 

Figure 3.7. Response histories of deck total accelerations at bridge center with different control 

schemes 
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Figure 3.8. Base isolator force displacement loops with different control schemes 

3.4 OPTIMAL PASSIVE CONTROL DESIGN 

3.4.1 Optimal Passive Control Design and Results 

After verifying the effectiveness of active control design and obtaining actively controlled 

responses, we can find the optimal passive design to mimic the behavior exhibited by active control 

roughly. The optimal passive design of the benchmark highway bridge consists of ten base 

isolators and twenty orthogonal fluid linear dampers, all of which are installed at the same marked 

locations, as shown in Figure 3.6. The key is how to design the optimized stiffness of bearings and 

damping coefficients of additional dampers to achieve optimal performance, which depends on the 

characteristics of structures and ground motions.  
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Figure 3.9. Method of the optimal passive control design 

As shown in Figure 3.9, an optimal design of effective stiffness of isolator and additional 

damping at each controlling location can be identified based on active control force and bearing’s 

response at that location. After conducting an active control analysis, the force and displacement 

of each bearing, as well as active control forces can be recorded. Then, based on the energy 

dissipating curve, which is bearing’s displacement versus total resisting force generated from 

bearing and active control, an equivalent effective stiffness effk  and additional damping ( )C   can 

be derived using Equations (3.10) and (3.11):  

 eff

F FF F
k

+ −+ −

+ − + −

+−
= =
 −  + 

 (3.10) 

 ( )
( )

2

4 DW
C

 + −

 =
  + 

 (3.11) 

where F is total bearing force plus total active control force at each controlled location. Δ is the 

relative displacement of the top and bottom of isolation. At abutment, relative displacements at 

each bearing location might not be the same if there is out-of-plane rotation, so average 
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displacement is used for Δ.   is the dominant frequency of ground motions identified after 

transforming ground motion records from the time domain to frequency domain. To this end, an 

optimal passive control design is achieved by providing the optimized stiffness effk of bearings 

and damping coefficient ( )C   of additional linear viscous dampers. 

The aforementioned active control responses are used to identify optimal passive control 

design, as shown in Table 3.2. Due to the different control effects of two active control methods, 

two different optimal designs are obtained accordingly. When focusing on controlling results in 

the transverse direction in Table 3.1, it is observed that SMC controls bearing displacement better 

than acceleration, namely, 50% reduction of bearing displacement and only 20% reduction of total 

acceleration of deck center. Therefore, the optimal passive design identified from SMC has linear 

dampers with relatively larger damping coefficients work along with strengthened bearings at pier 

tops and softened bearings at abutments, as shown in Table 3.2. In contrast, LQRY control can 

yield much less acceleration but provide less benefit in controlling bearing displacement, namely, 

almost 60% reduction of total acceleration and only 30% reduction of bearing displacement. Thus, 

the optimal passive design identified from LQRY has linear dampers with relatively small damping 

coefficients work along with softened isolation bearings. By comparing column (6) and column 

(7) in Table 3.1, it can be found that the equivalent passive design identified from LQRY can 

provide a good approximation of the behavior exhibited by active control. The bearing deformation 

in the transverse direction and deck acceleration in both directions are well approximated, while 

the bearing deformations in the transverse direction are less accurate.  

It should be noted that the controlling effect of deformation and acceleration can be tuned 

by changing active controller design in section 3.3.1 to get new active control behavior then find 

the equivalent passive design accordingly. For better quantifying the conflicting responses of 
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critical components, a performance index that combines bearing deformations and deck 

acceleration is proposed in this study as: 

 
1 0 0

1*

2 2

N
i m

i

u a
J

N u a=


= +


  (3.12) 

where N is the total number of the bearings, which is ten in this study, |am| is the deck total 

acceleration demand at bridge center, |Δui| is the bearing displacement demand at location i in 

Figure 3.6, and Δu0 and a0 are the mean value of bearing demands and acceleration demand at deck 

center for the uncontrolled case, respectively. Note that the proposed performance index equals 

unity for the uncontrolled case, which serves as a reference value to compare the effectiveness of 

different control schemes. The choices of performance index can be modified based on the needs. 

Besides, we can go one step further, which is to relate the response quantities to repair cost of 

bridge. Then a probabilistic repair cost ratio developed in an earlier study (Xie & Zhang, 2018) 

can be utilized to provide more direct indication about the performance. 

As is calculated in Table 3.1, the initial passive design amplifies the performance index by 

inappropriately changing the two demand parameters. Taking the bridge’s longitudinal responses 

as an example, the initial passive control reduces the bearing displacement from an already tiny 

number at the cost of increasing the deck acceleration from 1.15 m/s2 to 4.46 m/s2, which in turn 

is reflected by a 122% increase of the final performance index. In contrast, the LQR successfully 

reduces the performance index by 44% and 21% in the transverse and longitudinal directions, 

respectively. Likewise, 33% and 28% reductions can be expected using optimal passive control in 

transverse and longitudinal directions, respectively. Similarly, SMC successfully reduces the 

performance index by 37% and 19% in the transverse and longitudinal directions, respectively. 
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Table 3.2. Response comparisons of active control and optimal passive control designs 

 
Optimal passive design from 

LQRY 
Optimal passive design from SMC 

 C [kN(s/m)] Keff [kN /m] C [kN(s/m)] Keff [kN /m] 

South Pier (transverse) 250 3569 820 11760 

South Pier (longitudinal) 212 3107 544 9934 

North Pier (transverse) 251 3561 861 12401 

North Pier (longitudinal) 250 4113 515 9807 

Est end (transverse) 76 956 176 3038 

Est end(longitudinal) 155 2490 172 3337 

West end(transverse) 49 582 216 3614 

West end(longitudinal) 119 2112 147 2990 

 

3.4.2 Influence of Different Isolation Systems 

The effectiveness of active control and optimal passive control is further investigated when 

various bridge systems are considered. The dynamic characteristic of the fully isolated benchmark 

bridge is highly contingent on the isolation designs. To this end, three additional bearing designs 

are considered to vary the bridge’s natural periods. Isolation bearings are assumed to possess a 

perfectly plastic behavior with a yielding displacement of 0.06 m. Three elastic stiffness values of 

2500 kN/m, 10000 kN/m, and 15000 kN/m are assigned to each of the additional three bridge cases. 

Note that the change of elastic stiffness also changes the yielding strength of the bearing, which 

will alter the dynamic characteristic of each bridge (Xie & Zhang, 2017). For brevity, location 

variance is not considered here, namely, bearings at different locations are assumed to have 

identical parameters.  

Figure 3.10 compares the performance indices of different bridge systems under the 
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Newhall record during the 1994 Northridge earthquake. The initial passive control uses the viscous 

dampers with the same design parameters as the benchmark model. The optimal passive control 

uses the optimized design parameters of bearings and dampers identified from LQR and SMC. As 

is depicted, both LQR and SMC can substantially decrease the performance index no matter which 

isolation design is considered. Specifically, the LQR design yields an average performance 

reduction of 38% in the transverse direction and 18% in the longitudinal direction. Likewise, the 

SMC design can decrease the performance objective by 26% and 16% in the transverse and 

longitudinal directions, respectively. Conversely, the initial passive control using the existing 

design of viscous dampers amplifies the performance index for most cases. For the case with a 

strong base isolation effect (e.g., when the bearing elastic stiffness is 2500 kN/m), initial passive 

control will sharply increase the already very small deck acceleration, resulting in a much higher 

performance index, i.e., an 84% increase in the transverse direction and 265% increase in the 

longitudinal direction. However, the amplified performance due to initial passive control can be 

well controlled after conducting the proposed optimal passive control design to identify their 

optimal design parameters. Similar to active control, the optimal passive control is able to 

substantially decrease the performance index in both directions except isolation design with 

Ks=1500kN/m.  
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(a) 

 
(b) 

Figure 3.10. Performance index comparisons with different bridge systems in (a) transverse 

direction and (b) longitudinal direction 

3.4.3 Influence of Different Ground Motions 

Ground motion uncertainty is another factor that will affect the control efficiency. In this 

regard, three additional near-fault ground excitations, as given in Table 3.3, are used as the ground 

motion inputs. The fault normal component of each motion is exerted in the transverse direction 
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of the bridge, whereas the fault parallel component is applied in the longitudinal direction.  

Table 3.3. Strong earthquake records selected for various control designs 

Record Station Earthquake Magnitude  Fault distance Peak acceleration* (g) 

Cape Mendocino 1992 Petrolia 7 3.8 1.50 (1.04) 

Rinaldi 1994 Northridge 6.7 9.9 0.89 (0.39) 

Sylmar 1994 Northridge 6.7 12.3 0.73 (0.60) 

* The peak accelerations of the fault parallel component are offered in parentheses. Values outside the parentheses 

are peak accelerations of the fault normal component. 

Figure 3.11 compares the performance indices of the benchmark bridge when subject to 

these three strong motions. Promisingly, the two active control designs and optimal passive design 

are demonstrated to be able to improve the bridge performance under all three motions in both 

directions. The LQR and SMC controls bear average reductions of 37% and 23% in the transverse 

direction, respectively, and 27% and 28% in the longitudinal direction, respectively. The optimal 

passive design can provide a very similar response reduction. Therefore, it is proven that the 

proposed active control schemes and optimal passive control design are robust when ground 

motion uncertainty is taken into account. On the other hand, the initial passive control still 

amplifies the bridge response due to its inadaptability to adjust when facing different ground 

excitations. 



  

76 

 

 
(a) 

 
(b) 

Figure 3.11. Performance index comparisons with different ground motion records in (a) 

transverse direction and (b) longitudinal direction 

3.5 CONCLUDING REMARKS 

The benchmark seismic control problem of highway bridges is revisited in this chapter 

using hybrid simulation that couples control algorithms with the realistic seismic model of the 

bridge. Two active control methods are shown to effectively improve the seismic performance of 
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the benchmark bridge when subject to a variety of bridge systems and ground motions. Optimal 

passive control designs are then delivered to approach the same effective improvement as the 

active controls. Our study concludes the following: 

1. The hybrid simulation platform of UI-SIMCOR with the modifications made to 

accommodate the unique requirements associated with the benchmark control problem can reliably 

predict the bridge's seismic performance when validated against the complete finite element model. 

The hybrid model considers SSI effects and nonlinearities of both bridge columns and protective 

devices. 

2. Initial passive control using viscous fluid dampers reduces bearing displacements at the 

cost of substantially increasing the deck acceleration. Bridge’s system-level performance index 

indicates that initial passive control remains unattractive in some instances by inappropriately 

redistributing deck and bearing responses. Much amplified responses of the bridge’s critical 

components such as deck and columns can be expected if the mechanical parameters of the passive 

viscous dampers are not optimally designed.  

3. The proposed two classic active controls, the LQR method and the SMC method, are 

able to provide superior seismic performance for the benchmark bridge problem.  

4. The optimal passive control identified from active controls can provide similar seismic 

performance for the benchmark problem among various active control schemes. The optimal 

passive design offers an appealing way to improve the bridge performance in general. Such 

improvement stays when the benchmark bridge has a different isolation design and subjects to 

different ground motion inputs. 

In summary, this study develops a hybrid simulation framework to verify that active control 

can be considered an effective technique to alleviate the shaking of highway bridges when the 



  

78 

 

bridges’ seismic responses are rationally simulated. The proposed optimal passive design can 

achieve the similar control effects and overcome related issues of active control, such as reliability 

of the power supply system, hydraulic noise, and time delays in the process of sensing. The main 

contents in Chapter 3 are under preparation in a journal publication (Peng et al. 2021b). 
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4. ANALYTICAL AND FINITE ELEMENT MODELING OF ROCKING 

BEHAVIORS 

4.1 INTRODUCTION 

Aiming at precisely predict the seismic responses of rocking structures subjected to seismic 

shaking and assess the efficiency of using the free-standing rocking components to enhance the 

seismic performance of structures, the objectives of the current study could be classified into the 

following items: 

(1) To validate the prediction of rocking behavior by using different FE models. 

(Comparing with analytical models and experimental data). 

(2) To compare the accuracy, efficiency, and limitations of different FE models for both 

rigid and deformable rocking structures. 

(3) To assess the benefits of the free-standing rocking components for enhancing the 

seismic behavior of structures. 

This chapter is devoted to introducing both analytical and numerical models for rocking 

simulation. For analytical modeling, two analytical models for a free-standing block and 

deformable rocking column-foundation are evaluated to investigate the influence of flexibility on 

impact mechanism during rocking motion. Both models can be solved by using the ordinary 

differential equation (ODE) solver in MATLAB. It also presents three existing finite element 

rocking models, i.e., nonlinear-elastic viscously damped spring model (SM), the deformable 

rocking body (DRB) model, and the augmented DRB model. All three models are verified for both 

rigid rocking and deformable rocking cases by comparing their results with those of the analytical 

models and experimental data. The comparison of accuracy, efficiency, and limitations for 
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different models are concluded. Suggestions for obtaining a better behavior of these FE models 

are also provided. A probabilistic seismic demand model (PSDM) is proposed to capture the 

uncertainties in predicting individual rocking responses from numerical models. Finally, a 

modified zero-length impact rocking model is proposed and implemented in OpenSees to provide 

more accurate and stable numerical solutions. 

4.2 ANALYTICAL MODEL OF ROCKING BEHAVIOR 

In this section, an analytical model of a free-standing block (Zhang & Makris, 2001) and 

an analytical model of deformable column-foundation are introduced, respectively. For a free-

standing block, the equation of motion can be derived from the dynamic moment equilibrium since 

it only has one variable, i.e., the uplift angle  . The kinetic energy dissipation at impact is 

considered by the value of the coefficient of restitution r  (Housner, 1963) given from the 

conservation of angular momentum. For deformable column-foundation, the analytical model 

becomes more complicated since the system has two variables, the uplift angle   and the column 

drift u . Besides, it experiences a distinct impact mechanism because of the additional vibrational 

mode that comes from the column flexibility. Following Lagrange formulation, the nonlinear 

equations of motion of the system excited by horizontal near-fault ground motions are derived and 

solved numerically. The kinetic energy dissipation at impact is derived differently under two 

different impact mechanisms: first, it is assumed that the system will stay full contact on the ground 

after each impact; Second, it is assumed that after each impact, the system will either remain full 

contact on the ground, or immediately uplift about the new pivot and continue to rock. For both 

impact mechanisms, if the post-impact kinematic energy is larger than the pre-impact one, the 

post-impact horizontal velocity is given by considering the loss of vertical pre-impact kinematic. 
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Both analytical models for rigid and deformable rocking can be easily solved using ODE solvers 

in MATLAB and can be used to validate the numerical models presented in this study.  

4.2.1 The Rocking Response of a Free-Standing Block 

(1) Equation of motion  

Consider a free-standing rigid block as shown in Figure 4.1 with a size 2 2R b h= + , a 

slenderness ( )1tan /b h −= , a mass m , a moment of inertia oI  about the pivot point O . The 

block will oscillate about the centers of O  and O  when it is set to rocking. It is assumed that the 

coefficient of friction is sufficiently large, so there will be no sliding between the block and the 

base. 

 

Figure 4.1. Schematic of a free-standing block in rocking motion (Zhang & Makris, 2001) 
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Under a negative horizontal ground acceleration gu , as shown in Figure 4.1, the block will 

initially rotate with a positive rotation, 0  . If it does not overturn, it will eventually rotate with 

a negative rotation, and so forth. When the block is rotated through a positive angle  , the weight 

of the block will exert a restoring moment ( )sinmgR  − , then the equation of motion is: 

 ( ) ( ) ( ) ( )0 sin cos , 0gI t mgR t mu t R t     + − = − −         (4.1) 

when the block is rotated through a negative angle  , 

 ( ) ( ) ( ) ( )0 sin cos , 0gI t mgR t mu t R t     + − − = − − −         (4.2) 

For rectangular blocks, 2

0

4

3
I mR= , Equation (4.1) and (4.2) can be expressed in a compact 

form: 

 ( ) ( ) ( ) ( ) ( )2 sin sgn cos sgn
gu

t p t t t t
g

      
 

   = − − + −          
 

 (4.3) 

where 
3

4

g
p

R
=  is the frequency parameter of the block. The larger the block (larger R ), the 

smaller p . According to the literature (Housner, 1963), the oscillation frequency of a rigid block 

under free vibration is not constant because it strongly depends on the vibration amplitude. 

Nevertheless, the quantity p  can still be used as a measure of the dynamic characteristics of the 

block.   

(2) Uplift condition  

Figure 4.1 (bottom) shows the moment-rotation relationship during the rocking motion of 

the free-standing block. Uplift of the block happens when the seismic demand (overturning 

moment) gmu h  reaches the seismic resistance (re-centering moment) sinmgR  . Namely, the 

system has infinite stiffness until the magnitude of the applied moment reaches sinmgR  . 
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Therefore, the uplift condition can be determined as: 

 tangu g   (4.4) 

Once the rocking motion is initiated, the restoring moment of the block decreases 

monotonically, then reaches zero when  = . Notice that, the moment-rotation curves follow the 

curve in Figure 4.1 (bottom) without enclosing any area during the oscillatory rocking motion. 

Energy is dissipated only during the impact when the rotation angle reverses. 

(3) Impact mechanism  

Energy loss of free-standing rigid block during the rocking impact was originally addressed 

by Houser (Housner, 1963). It is assumed that the impact is inelastic thus there is no bouncing. 

The pivot point switches smoothly from point O  to O  as shown in Figure 4.2, and the moment 

of momentum about O  is conserved. 

 

Figure 4.2. Rocking impact when the base pivot changes from O  to O  

Momentum of dm can be written as 1d dJ r m= . Its moment of momentum about point 

O  before impact is: 

 1d d d dJ r x y    =  =  (4.5) 
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where 2o

x
r r b

r
 = − = −  . By substituting it to Equation (4.5), the moment of momentum of the 

rigid block before impact is: 

 1 1d = 2 sino
A

I m bR   =  −  (4.6) 

Then the conservation of momentum about point O  just before the impact and right after the 

impact gives: 

 1 1 22 sino oI m bR I   − =  (4.7) 

The reduction of kinetic energy during the impact is defined as: 

 

2

2

2

1

r



=  (4.8) 

which means that the angular velocity after the impact is r times the angular velocity before the 

impact. Combining of (4.7) and (4.8) gives: 

 

2
2 22 sin

1
o

m R
r

I

 
= − 
 

 (4.9) 

Given 2

0

4

3
I mR=  for rectangular block, the coefficient of restitution is given by: 

 

2

23
1 sin

2
r 

 
= − 
 

 (4.10) 

Note that, the value of the coefficient of restitution given by (4.10) is the upper limit of r  

for a rigid block undergo rocking motion. When considering additional energy lost due to interface 

mechanism, the true value of the coefficient of restitution, r , will be less than the one computed 

using Equation (4.10). 

By combining the condition of rocking initiation, the equation of motion of block during 

rocking, and the coefficient of restitution, the analytical solution of rocking response can be 
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derived using the technique of solving differential equations, such as rocking response of rigid 

blocks under near-source ground motions (Makris & Roussos, 2000; Zhang & Makris, 2001). In 

this study, the ordinary differential equation (ODE) solver in MATLAB is utilized to solve the 

rocking response. 

4.2.2 Analytical Modeling of the Deformable Column-Foundation 

(1) Equation of motion  

Figure 4.3 shows a rocking column-foundation system supported on the rigid surface. The 

system has a detached rocking interface at the bottom of the shallow foundation, which facilitates 

the foundation to uplift and re-center when subjected to horizontal ground excitations. As shown 

in Figure 4.3, considering that the self-weight of the column is much less than the participating 

weight from the deck and foundation, the system can be idealized as a two degree of freedom 

system when foundation rotates along the pivot points of the base. Namely, the dynamics of the 

system can be defined as the uplift angle denoted as   and the column drift denoted as u . The 

column-foundation has a mass of deck m , a mass of foundation bm , a moment of inertia of the 

base around pivot point bcI , a height of H , a base width of 2b , an elastic stiffness of c cE I , and a 

damping coefficient of C . 

 

Figure 4.3. Schematic of the flexible rocking column-foundation system 
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The kinematics of the mass point m  when rotates along the pivot are: 

 
( )

( )

sgn cos sin cos

sgn sin cos sin

x

y

u b H u

u b H u

   

   

= − + +  
 

= + −  
 (4.11) 

where xu  and yu  are the relative displacements of the mass point to the pivot point in the 

horizontal and vertical directions, respectively. The sign of   is used to consider the rotates 

direction. Therefore, the kinematic energy of the mass point m  and bm  can be calculated as: 

 

( )

( )( )

2 2 2

2 2 2 2 2 2

1 1

2 2

1 1
sgn 2 2

2 2

bc x y

bc

T I m u u

I m H b u bu u Hu



   

= + +

 = + + + − + +
 

 (4.12) 

The potential energy of the mass point m  and bm  that comes from gravity and the 

D’Alembert force, and the column strain energy can be summarized as: 

 

( ) ( )

( ) ( )

( ) ( )

2

3

2

3

3
sgn sin sgn cos

2

sgn sin sgn sin cos sin

sgn cos sgn cos sin cos

3

2

c c
y b g x b g

b

b g g

c c

E I
V mgu m gb mu u m u b u

H

m gb mg b H u

m u b mu b H u

E I
u

H

   

     

     

= + + + − +  

= + + −  

+ − + − + +      

+

 (4.13) 

where gu  is the acceleration magnitude of the input ground motion. The Lagrange’s equation shall 

be satisfied during the rocking motion: 

 

( ) ( )

( ) ( )

d
0

d

d

d

T V T V

t

T V T V
Cu

t u u

 

 −  − 
− = 

  
 

 −  − − = −
   

 (4.14) 

Substituting the equations (4.12) and (4.13) into equation (4.14) gives the equations of 

motion of the rocking system: 
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( ) ( )

( ) ( )

( ) ( )

2 2 2sgn 2 2 sgn

sgn cos sin sgn cos cos

sgn sin cos sgn sin sin

bc

b

b g g

I m H b bu u mHu m u b u

m g b mg H b u

m u b mu H b u

    

     

     

 + + − + + − −   

+ − − +  

= − − + −  

 (4.15) 

 ( )2 22 sgn sin cosn n gH u w u b u g w u u     + + + − − + = −    (4.16) 

where 33 /n c cw E I mH=  is the vibration natural frequency of the column, 
3

2 3 c c

C H

E I m
 = is the 

associated damping ratio. It’s noted that when 0  = = = , Equation (4.16) turns out to be the 

equation of motion during full contact, i.e., 

 
22 n n gu w u w u u+ + = −  (4.17) 

(2) Uplift condition 

Like the uplift condition of rigid block, uplift happens when the overturning moment, 

( )o gM m u u H= + , due to external loads exceeds the resisting moment, ( )r bM m m gb mgu= + , 

that provided by gravity. Namely, uplift happens when: 

 ( ) ( )g bm u u H m m gb mgu+  +  (4.18) 

By substituting gu u+  in Equation (4.17) to Equation (4.18), the uplift condition can be 

determined as: 

 ( )22 b
n n

m m
w u w u H g b u

m


+ 
 +   

 
 (4.19) 

For undamped system and assume u b , bm m  the above uplift condition can be 

further simplified to (Acikgoz & DeJong, 2012; Vassiliou et al., 2015): 

 2

n

gb
u

w H
  (4.20) 

(3) Different impact mechanisms 
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Because of the additional vibration mode that comes from column flexibility, the 

deformable rocking column-foundation shall experience a distinct impact mechanism when 

compare with the rigid block case (Housner, 1963). In previous studies (Acikgoz & DeJong, 2012; 

Oliveto et al., 2003), it was assumed that after each impact, the system will either stay full contact 

on the ground, or immediately uplift about the new pivot point and continue to rock, and the state 

with less total energy will govern. In the recently completed experiment study (Truniger et al., 

2015), the post-impact velocity is calculated by assuming the column remains full contact after 

each impact and system’s kinematic energy associated with vertical velocity components is lost 

during the impact. In the study of Zhang et al. (2019), they considered that the full contact 

condition will follow each rocking impact, thus, the post-impact horizontal velocity is the only 

variable that needs to be determined by forcing the conservation of momentum. It is possible that 

the post-impact kinematic energy is larger than the pre-impact one (Vassiliou et al., 2015), which 

is not physically meaningful. Therefore, in the study of Zhang et al. (2019), the conservation of 

momentum is abandoned when the previous physically unmeaningful situation happens. Instead, 

the equilibrium of kinematic energy is calculated by considering the pre-impact vertical kinematic 

energy is lost (Chopra & Yim, 1985). 

To evaluate different impact energy dissipation mechanisms, two impact mechanisms -- 

full contact mechanism and check uplift mechanism -- are proposed and evaluated in this study. 

 (a) “Full contact” impact mechanism 
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Figure 4.4. Rocking impact when the base pivot changes from point O  to O  

Considering that the full contact condition will follow each rocking impact (Zhang et al., 

2019), consequently, there will be zero post-impact rocking angle and angular velocity of base, 

i.e., 2 2 0 = = . Since the impact is instantaneous, it is reasonable to assume pre-impact horizontal 

displacement and post-impact horizontal displacement are the same, i.e., 1 2u u= . As shown in 

Figure 4.4, the conservation of angular moment of momentum around point O  leads to: 

 ( ) ( )2

2 1 1 2 1 12bc bmu H m R R mu H I m b = + + −  (4.21) 

where ( )
22

1R H b u= + −  and 

( )

2 2 2

2
22

H u b
R

H b u

+ −
=

+ −

 are the distances from the pre-impact 

rotational velocity tensor to the pivot O  and O  respectively. 1  is the pre-impact angular velocity 

of the base, 1u  and 2u  are the pre-impact and post-impact horizontal velocities respectively. By 

substituting 1R  and 2R  into equation (4.21), the post-impact horizontal velocity can be solved as: 

 
( )2 2 2 2

2 1 1

2bc bI m b m H u b
u u

mH


− + + −
= +  (4.22) 

The system kinetic energy of the rocking phase and full contact phase are defined as: 

 ( )2 2 2 2 2 21 1
2 2

2 2
r bcE I m b H u bu u H u   = + + +  + +

   (4.23) 

m 

,bc bI m  
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21

2
fE mu=  (4.24) 

If the post-impact energy 2, fE  is larger than the pre-impact energy 1,rE , use vertical 

velocity energy lost (VVEL) model (Chopra & Yim, 1985; Zhang et al., 2019) instead, leading to: 

 2 1 1u H u= +  (4.25) 

(b) “Check uplift” impact mechanism 

Assume that the either full contact or immediately rocking will follow each rocking impact, 

the uplift condition (4.19) needs to be checked at each impact. If the uplift condition is not satisfied, 

i.e., full contact phase happens after impact and 2 2 0 = = , 1 2u u= , use the conservation of 

angular moment of momentum to compute post-impact horizontal velocity 2u , as shown in 

Equation (4.22). If the uplift condition is satisfied, i.e., immediate rocking after impact results in 

2 0 = , 1 2u u= . Assume 1 2u u=  (Acikgoz & DeJong, 2012), applying conservation of angular 

momentum around the impacting corner gives: 

 
( )

( )

2 2 2 2

2 12 2 2

2

2

bc b

bc

I m b m H u b

I m H u b bu
 

− + + −
=

+ + + 
 (4.26) 

After checking the uplift condition and calculating the post-impact response, if the system 

energy post-impact is larger than the energy pre-impact, then use vertical velocity energy lost 

(VVEL) model (Chopra & Yim, 1985; Zhang et al., 2019), which leads to: 

 2 1 1u H u= + , 2 2 0 = = , 1 2u u=  (4.27) 

By combining the uplift condition, the equation of motion, and the impact mechanism, the 

analytical solution of the rocking response can be derived using the technique of solving 

differential equations. In this study, the ODE solver in MATLAB is utilized to solve the rocking 

response for deformable rocking structures. The effectiveness of these two impact mechanisms is 
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examined by applying them to predict (1) the dynamic response of deformable cantilevers rocking 

on a rigid surface under pulse like ground motion input (i.e., forced vibration case); (2) Free 

vibration of rigid and deformable bridge pier on a shallow foundation. The comparison with 

experimental results and impact mechanisms from previous studies (Zhang et al., 2019) are shown 

in the following section. It is found that the introduced model is more consistent with the 

experimental results that were presented in the literature (Truniger et al., 2015). 

4.2.3 Comparation with Shaking Table Test 

(1) Prediction of rocking behavior under forced vibration 

First, an experiment of deformable cantilevers rocking on a rigid surface from Truniger et 

al. (Truniger et al., 2015) is adopted to examine the different impact mechanisms. A specimen 

consists of a steel base plate, two columns made using steel threaded rods, and a steel weight at 

the top (shown in Figure 4.5). The specimen configuration is deliberately similar to the 

configuration of the model of a deformable rocking column utilized in this study. Two horizontal 

stiffeners were mounted between the two columns, as shown in Figure 4.5, to increase the out-of-

plane horizontal stiffness and, thus, impede out-of-plane movement. Different column diameters 

are used to make specimens with different fixed-base natural frequencies. Specimen with 1Hz and 

2 Hz are considered in this study. In addition, base plates with widths of 15 cm (short base case) 

and 30 cm (long base case) were used to investigate the influence of the specimen slenderness on 

the response. Dimensions and masses, together with values of the slenderness α and rocking 

parameter p as well as the measured fixed-base natural frequencies and damping ratios of the eight 

specimens, can be found in Table I of the original paper (Truniger et al., 2015). 
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Figure 4.5. Sketch of deformable cantilever structure (Truniger et al., 2015)  

The rocking response of a specimen was induced by dynamics excitation at its support. 

Each specimen was tested under pulse-type ground motions. A Ricker wavelet approximates the 

main pulse of pulse-type ground motions (Ricker, 1943). The acceleration amplitude, ap, and 

period, Tp, of a Ricker wavelet are discussed further in Vassiliou and Makris (2012). The Ricker 

wavelets used in this study had the pulse periods Tp=0.5s, 1.0s, and the acceleration amplitudes 

ap = 0.16 g to 0.24 g. For the forced vibration case, as shown in Figure 4.6, it can be concluded 

that both models with different impact mechanisms yield good predictions in the dynamic response 

of these deformable cantilevers.  

However, it’s hard to say which one works better. For the 1Hz case, the model with the 

“check uplift” impact mechanism works better; For the 2Hz case, the model with the “full contact” 

impact mechanism works better. Since the flexibility of structure coupled with rocking behavior 

in the experiments, the vibration of structure could either increase or decrease the energy loss at 

the impact. To further quantify the influence of impact mechanisms on energy dissipation, the 

kinetic energy responses of different models are plotted in Figure 4.7. Quantities α, the slenderness 

of the rocking system, ucr, the relative displacement of the elastic column when uplift occurs, Eref, 

the reference energy, are defined in Vassiliou et al. (2015). It is observed that the energy dissipated 

at impact is different when using different impact mechanisms. However, it is impossible to predict 
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which impact mechanism will always dissipate more energy due to the complexity of flexibility 

coupled with the rocking of structure. Thus, we can only say that the one with similar energy 

dissipation with experimental data works better. More research should be done to obtain the real 

energy dissipation curve in experiments. 

  

 

Figure 4.6. Dynamic response of deformable cantilevers (a) 1Hz short case; (c)1Hz long base 

case; (c) 2Hz short base case 

Figure 4.8 shows the impact behavior of different models, i.e., the changing of rocking 

angle during impact. For model with “check uplift” impact mechanism, as shown in Figure 4.8 (a), 

“double impact” could happen. Which means, at current time immediate rocking will happen after 

the impact. Then structure goes into a small rocking phase and reached the second impact. 

(a) (b) 

(c) 
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However, in the recently experiment study (Truniger et al., 2015), it’s discovered that the “double 

impact” doesn’t exist during the impact. Therefore, the model with the “full contact” impact 

mechanism is selected as the analytical solution when verifying the FE models in the following 

sections.  

  

Figure 4.7. Dynamic response of deformable cantilevers (a) 1Hz short case; (c)1Hz long base 

case 

  

  

Figure 4.8. Impact mechanism of 1Hz long base case 

 

 

(a) (b) 

(a) (b) 
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(2) Prediction of rocking behavior under free vibration 

Secondly, the free vibration of a prototype of the experimental model of a bridge pier on a 

shallow foundation, as shown in Figure 4.9 (a) (Chen, 2017), is used to observe the proposed 

analytical model. The reinforced concrete pier has a height of 3.32m and a diameter of 0.53m. The 

deck can be simulated as a lumped mass of 95 tons. The bridge is fixed on a shallow foundation. 

The shallow foundation has a width of 1.6 m and a mass of 17.6 tons. The fundamental frequency 

of the structure with a fixed-base assumption is 1.47Hz. The slenderness o13.5 = . The details 

about the similitude of an uplift structure between the prototype and physical model are performed 

in the literature (Chen, 2017). The experimental model was scaled down by a factor of 4, as shown 

in Figure 4.9 (b). Secondary beams were installed to limit out-of-plane and torsional motion during 

uplift. A fundamental frequency of 2.94 Hz has been achieved, which satisfies the similitude in 

model scaling. 

 

Figure 4.9. Prototype (a) and dimensions of the physical model (b) (Chen, 2017) 

Strain gauges were glued on the columns near the supports to measure the bending moment. 

Two displacement transducers were placed on both the edges of the footing to measure the vertical 

displacement. As shown by R1, R2, L1, and L2 in Figure 4.9 (b), four load cells were fixed under 

the columns beneath the footing to measure the contact forces. Sandpaper was attached at the 



  

96 

 

contact surface to increase the friction so that sliding is minimized. For simulation of a rigid 

structure, light-weight aluminum cross braces were added. A fundamental frequency of 20.5 Hz 

has been determined experimentally for the rigid structure. 

An initial vertical footing displacement was first applied to the system by lifting one side 

of the footing. Then, the model is suddenly released from the initial vertical displacement and 

started free vibration. The structure overturns once the center of mass lies beyond the center of 

rotation, i.e.,   . Therefore, six initial vertical footing displacements, which provided an initial 

footing rotation within 10-20% of the maximum footing rotation  , are considered for the 

structure to avoid overturning. The initiation of free vibrations was carried out twice on each side. 

Due to the excellent behavior of the ODE model with “full contact” impact mechanism, it 

is used to predict the free vibration of a previous rigid/deformable bridge pier on a shallow 

foundation, as shown in Figure 4.10. It’s observed that the rocking responses of this model match 

well with the experimental data for rigid structure. However, there are discrepancies between the 

analytical solution and experimental data for the flexible case. It shows that structural flexibility 

has a more significant influence on the coupled free vibration and rocking behavior than coupled 

forced vibration and rocking behavior, resulting in the inaccurate analytical model. 

  

Figure 4.10. Free vibration of (a) rigid and (b) deformable bridge pier on a shallow foundation 

(a) (b) 
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4.3 FINITE ELEMENT MODEL OF ROCKING BEHAVIOR 

 As described in section 4.2, the dynamic response of a solitary rigid block or deformable 

column-foundation can be easily solved by using any numerical computing package, e.g., 

MATLAB, to solve differential equations. However, the equations of motion of more complex 

rocking structures become much more complicated, and their solution becomes cumbersome. 

Therefore, a finite element model of rocking which can be directly used in commercial finite 

element software is needed. The following three FE models that can be modeled in OpenSees are 

selected in the current study. 

4.3.1 Introduction of Existing FE Models 

The first FE model is a non-linear elastic viscously damped zero-length spring rocking (SM) 

model for the rigid and deformable body (Vassiliou et al., 2014). A zero-length rotational spring 

with classical damping is used to simulate the rocking behavior. The real strength of this proposed 

SM rocking model is: (1) The properties of the rocking body can entirely determine the value of 

variables of SM; (2) it can be directly used in commercial finite element software, OpenSees. If 

any criticism were to be leveled at the SM model, it would be to note that: First, the vertical 

displacements do not match the analytical solution. This behavior may limit the use of the SM to 

model rocking structures post-tensioned using vertical pre-stressing tendons. Second, a too 

simplistic method is used to capture the impact mechanism using a viscous damping ratio, which 

works not that well for a rocking body with less slenderness. Since the principal energy dissipation 

mechanism of impact is instantaneous and discontinuous, the use of viscous damping cannot be 

predicted as a priori (Chopra & McKenna, 2016; Hall, 2006; Petrini et al., 2008; Truniger et al., 

2015; Wiebe et al., 2012). Moreover, without verification, it is further assumed that the energy 
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dissipated through rocking impact does not depend strongly on the flexibility of the rocking body. 

To overcome the difficulties mentioned above, i.e., modeling the instantaneous and 

discontinuous energy dissipation mechanism using viscous damping, Vassiliou et al. (Vassiliou et 

al., 2017) presented a deformable rocking body (DRB) model to quantify the in-plane rocking 

response of system consisting of either rigid or deformable rocking bodies. Unlike the SM rocking 

model, the energy dissipation of the DRB model during rocking motion is modeled using a 

numerically dissipative time step integration scheme instead of using equivalent viscous damping 

ratio c. Namely, no damping is associated with the rocking body model and rocking surface model. 

Since the viscous damping coefficient, which is derived from the coefficient of restitution 

(Housner, 1963), is only valid for an ideally rigid case and can cause increasing of energy 

dissipation grossly (Truniger et al., 2015), the dissipative time-stepping integration procedure is a 

better approach by damping out high-frequency shock waves during the rocking impact. The other 

difference between the SM model and DRB model is that the rocking surface of DRB is modeled 

using the zero-length fiber cross-section element instead of using rotational spring. Therefore, it 

has a more accurate prediction of vertical displacement and can be used for post-tension rocking 

bodies. 

As the rocking body becomes more deformable, the frequency of the generated shock wave 

during the impact decreases, causing the amount of energy numerically dissipated by dissipative 

time-stepping integration procedures to diminish. The presence of undamped high-frequency 

components of motion causes the divergence of the solution predicted by the DRB model. To 

overcome this unwanted divergence, the DRB model is augmented by creating an alternate energy 

dissipation path to avoid the generation of shock waves in the rocking body. Namely, using a set 

of springs and dashpots rather than using a fixed finite element model node to model the stiff 
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ground on which the body is rocking. 

In summary, these three FE models reveal a typical research process in the modeling of 

rocking behaviors. Although there might be more or less flaws in each model, their union should 

indicate a good picture of numerical simulation of rocking behaviors. In this section, the details of 

these FE models are introduced and validated by comparing the numerical dynamic response 

analysis with the analytical model and experimental data (Chen, 2017). Suggestions are provided 

to make each model works better under different situation. 

4.3.2 Evaluation of Existing FE Models  

(1) Nonlinear-elastic Viscously Damped Spring Model (SM) 

As shown in Figure 4.11, the equivalent nonlinear-elastic viscously-damped Spring Model 

(SM) (Vassiliou et al., 2014) consists of a cantilever column connected to a nonlinear damped 

rotational spring. The cantilever column, whose cross-section and height are identical to the cross-

section and height of the rocking block, is used to simulate the geometric behavior of the block. 

The rotational spring has a rigid-plastic moment-rotation response envelope, as shown in Figure 

4.12, right. It has a yield moment equal to the seismic resistance (re-centering moment) 

( )sinmgR   of the block, i.e., rocking motion is initiated only when the moment demand of 

rotational spring reaches the yield moment. After the initiation of rocking, there is no stiffness in 

the spring, and the moment unloads along the loading path during the rocking. This model does 

not involve explicit modeling of rocking body impact. The energy dissipation of body impact is 

captured by a viscous damper, which is added in parallel with the nonlinear elastic spring, with 

damping coefficient c. Sliding on the rocking surface is not permitted. 
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Figure 4.11. Rocking Model (top) and the Spring Model (bottom) (Vassiliou et al., 2014) 

 

Figure 4.12. Moment relationship for a rigid block with slenderness α and size R (left) and a 

nonlinear elastic spring of the SM (right) (Vassiliou et al., 2014) 

The equation of motion of the SM is given as:  

 ( ) ( )' sin sgn cos sin cos coso gI t mgR mu R      + − = −  (4.28) 
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where ' 2 24
cos

3
oI mR = . Comparing with the EOM of a free-standing block introduced in Section 

4.2.1, it is reasonable to assume that the differences between the two models come from the 

difference in the moments of inertia of the two models (Vassiliou et al., 2014). Namely, the rigid 

block's rotational inertia, 24

3
oI mR= , refers to rotation about the corner of the rigid block and 

accounts for the shape of the rocking body (here, the body has a rectangular shape, it could be a 

different shape). While the rotational inertia of the SM model, ' 2 24
cos

3
oI mR = , refers to rotation 

about the mid-point of the base, i.e., the endpoint of the cantilever column, and does not account 

for the shape of the rocking body. For this reason, the SM model was modified by evenly 

distributing the rotational inertia difference, ( )2 24
1 cos

3
oI mR  = − , among the rotational 

degrees of freedom (DOF) of the nodes used to model the column. Namely, a rotational mass equal 

to 
oI

nnod


 is added to the rotational DOF of each node in the finite element model. 

The restitution factor r (Housner, 1963) is adopted to describe the energy dissipation ratio 

/ oE E  per cycle for free rocking of the SM: 

 

4

2 23
1 sin

2o

E
r

E


 
= = − 

 
 (4.29) 

where E  is the energy at the end of one complete cycle,  and oE  is the energy at the beginning of 

that cycle with initial conditions ( )0 o = , ( )0 0 = . The viscous damping in the SM utilizes a 

viscous damper with a damping coefficient c associated with the angular velocity at the base of 

the column to capture the equivalent per-cycle energy loss ratio, 2

eqr , which is defined as: 
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2 , ,o

eq

o

E
r c

E


 



 
= =  

 
 (4.30) 

where 
0.5 1.5

c
c

mg R
= . As shown in Figure 4.13 (Vassiliou et al., 2014), Equation (4.30) is plotted 

for tan  equals to 0.1, 0.2 and 0.3, c equals to 0.02, 0.08 and 0.18, and 0 / 1o   .  

 

Figure 4.13. Equivalent per-cycle energy loss ratio,  2

eqr  (Vassiliou et al., 2014) 

Based on the data in Figure 4.13, for / 0.5o    and tan 0.3  , a relationship between 

c  and   can be established such that the energy dissipation during a free rocking cycle in the 

analytical model of rocking block and SM are the same. Then, the equivalent damping coefficient 

for the rotational damper in SM can be defined as a function of the body mass, size, and slenderness: 

 

2

0.5 1.50.02
0.1

c mg R
 

=  
 

 (4.31) 

The SM is implemented in the FEM software framework OpenSees (OpenSees, 2017). The 

rigid rocking body is modeled by using elastic beam-column elements. The rotational spring is 

modeled as a zero-length element, which has the nonlinear-elastic material with yield moment 

( )sinmgR  in rotational DOF, parallel with the other zero-length element, which has the viscous 

material with equivalent damping ratio c in rotational DOF.  
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Rocking responses of an 8m tall block ( tan = 0.25), subjected to a Type-A pulse (one-

cycle sinusoidal pulse) excitation with amplitude 0.45pa g= , are computed using the SM model, 

as shown in Figure 4.15. While, the rocking response of a 25.6m tall block ( tan = 0.36), 

subjected to a Type-A pulse excitation with amplitude pa g= , are computed using the SM model, 

as shown in Figure 4.16. The Young’s modulus, E, of the material of elastic beam-column is set 

to a tremendous value such that the column is quasi-rigid. It is observed that both the rotation and 

angular velocity computed using SM match well with the analytical solution when 

tan 0.25 0.3 =  , while the SM is not as good when tan 0.36 0.3 =   because the equation of 

equivalent damping ratio is derived based on data of tan 0.3  . The damping dissipation is 

underestimated for tan 0.3  , thereby, the amplitude of rotation is overestimated. The period of 

free rocking depends on the amplitude of the motion; hence, errors of amplitude lead to an error 

of the phase of the motion. 

 

Figure 4.14. Type-A pulse excitation 
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Figure 4.15. The rocking response of an 8m tall block with the slenderness tan = 0.25 to a 

Type-A pulse excitation computed using the SM model and analytical model 

 

Figure 4.16. The rocking response of an 25m tall block with the slenderness tan = 0.36 to a 

Type-A pulse excitation computed using the SM model and analytical model 
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(2) The deformable rocking body (DRB) model 

As shown in Figure 4.17, the rocking body of DRB model is modeled using beam-element 

finite elements. The linear elastic beam-column is used for a rigid block; however, other beam-

column finite elements are also valid for different cases. To represent the rocking of a rigid body, 

the values of Young's Modulus bE  should be set to sufficiently large. As mentioned before, rigid 

block's rotational inertia, 24

3
oI mR= , refers to rotation about the corner of the rigid block and 

accounts for the rectangular shape of the rocking body. While the rotational inertia of the DRB, 

' 2 2 21
cos

3
oI mR mR= + , refers to rotation about the endpoint of the fiber section and does not 

account for the shape of the rocking body.  Therefore, the DRB was modified by evenly 

distributing the rotational inertia difference ( )2 21
1 cos

3
oI mR  = −  among the rotational DOF of 

the nodes used to model the column following an approach similar to the one describes in the SM 

model. Namely, a rotational mass equal to oI

nnod


 is added to the rotational DOF of each node in 

the finite element model. 

The rigid rocking surface is modeled using the zero-length fiber cross-section element 

placed between node i and node j. If only considering the in-plane rocking motion, one row of 

fibers is sufficient to simulate the rocking surface. The fiber material is an elastic-no tension 

material, with an elastic response in compression and no resistance in tension to capture the uplift 

motion. Note that the stiffness of fibers, fE , needs to be selected wisely. First, fE  is not 

numerically comparable to Young’s modulus bE  of the beam-column element. fE  has units of 

[force]/[length]3, while bE  has units of [force]/[length]2. To simulate rocking of a rigid body on a 
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rigid surface, both fE  and bE  should be set to sufficiently large values. Secondly, fE  should be 

selected that increasing the stiffness of the rocking surface does not result in appreciable changes 

in the computed results. Lastly, the relative values of fE  and bE  should be selected that the impact 

forces deform the rocking body, not the rocking surface. 

 

Figure 4.17. A solitary rigid block in rocking motion (left) and the DRB model (right) (Vassiliou 

et al., 2017) 

The Corotational Coordinate Transformation (Argyris et al., 1964) is used for the DRB at 

each time step to account for the effect of large displacements and rotations that may occur during 

the rocking. A dissipative time-stepping integration procedure is used to numerically damp out the 

shock waves in the beam-column element to approximate energy dissipation caused by impact. 

The two most widely used dissipative time-stepping integration procedures are selected in this 

study. One is the Hilber-Hughes-Taylor (HHT) algorithm, and the other is the Newmark method. 

The HHT algorithm damps out the unwanted high-frequency components of the computed 

response without markedly affecting the low-frequency components, thus increasing the amount 

of numerical damping without degrading the order of accuracy (Hilber et al., 1977). Numerical 
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damping of the HHT is controlled by a dissipation factor d  and the time integration step dt . For 

the Newmark method, numerical damping is controlled by factor  , factor  , and the time 

integration step dt . However, numerical damping of Newmark also affects the lower modes and 

reduces the accuracy of the integration scheme from second order to first order.   

Both HHT and Newmark integration algorithms are available in OpenSees. Note that, for 

the HHT algorithm, the dissipation factor d  is defined differently in Hilber’s paper (Hilber et al., 

1977). 1d d = −  , where d  is the dissipation factor used in the OpenSees implementation of 

the HHT integration algorithm, d  is that used in Hilber’s paper. 1.0d =  corresponds to the 

Newmark method and d  should be between 0.67 and 1.0. The smaller the d  the greater the 

numerical damping. For the Newmark algorithm,  
1

2
   results in numerical damping 

proportional to 
1

2
 − . The method is second-order accurate if and only if 

1

2
 = . The method is 

conditionally stable for 
1

2 4


 = = . Achieving a good match in the rocking response time 

history requires that the energy dissipation calculated in the numerical integration in DRB model 

perfectly matches the analytical model. 

As shown from Figure 4.19 to Figure 4.22, the rocking responses of a solitary free-standing 

block with 2 2 4 12b h m m =   and material density of 25 ton/m3 are computed using the analytical 

model in MATLAB, as well as the DRB model in OpenSees with different integration algorithms, 

timestep sizes and mech sizes. A recorded ground motion excitation, the Takatori 090 ground 

motion from the 1995 Kobe earthquake, is plotted in Figure 4.18. According to Vassiliou’s paper 

(Vassiliou et al., 2017), 9 330 10 kN/mfE =   and 
930 10 kPabE =  are selected to simulate rigid 
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body rocking on the rigid surface.  

 

Figure 4.18. The Takatori 090 ground motion from the 1995 Kobe earthquake 

 

  

 

Figure 4.19. Demonstration of convergence for a recorded ground motion excitation (Takatori 

090, Kobe 1995) for different time-stepping integration algorithm 
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Figure 4.20. Demonstration of convergence for a recorded ground motion excitation (Takatori 

090, Kobe 1995) for different element sizes 

 

Figure 4.21. Convergence of rotation for a recorded ground motion excitation (Takatori 090, 

Kobe 1995) for different timestep sizes 
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Figure 4.22. Convergence of angular velocity for a recorded ground motion excitation (Takatori 

090, Kobe 1995) for different timestep sizes 

From Figure 4.19, it can be concluded that: (1) both Newmark and HHT algorithm works 

well in this case; (2) the DRB model is not sensitive to the selected OpenSees numerical dissipation 

factor values for HHT if they are below 1.0. Results in Figure 4.20 reveals that the DRB model is 

not sensitive to the number of beam-column elements used to model the rocking body, which will 

save much more computation costs and make it possible to use DRB model in large scale structures. 

In this example, using five or more elements produces an essentially identical response. Figure 

4.21 and Figure 4.22 indicate that the DRB model is not sensitive to the variation of the integration 

time step if it is reasonably short with the periods of the dominant motion components. A smaller 

time step size also saves much more computation costs. 

As shown from Figure 4.24 and Figure 4.25, the parameter sensitivity analysis is conducted 

for the same DRB model excited by PEER strong motion database record, El Centro array #12, 

140 (USGS station 931) with an amplification factor equals to 5, as shown in Figure 4.23. From 

Figure 4.24, it can be concluded that: (1) results for two different earthquakes reveal that the DRB 

works well for different earthquake; (2) both Newmark and HHT algorithm works well in this case; 

(3) different from the previous case, the DRB model is not sensitive to the selected OpenSees 

numerical dissipation factor values for HHT if they are below 0.95. From Figure 4.25, it can be 



  

111 

 

concluded that using five or more elements produces an essentially identical response.  

 

Figure 4.23. The PEER strong motion database record, El Centro array #12, 140 (USGS station 

931) with an amplification factor equals to 5 

 
 

 

Figure 4.24. Demonstration of convergence for a recorded ground motion excitation (El Centro 

array #12) when using different time-stepping integration algorithm 
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Although the DRB model can provide a good prediction for rigid rocking responses without 

limitation of slenderness, the FE response is more sensitive to the model parameters than the SM 

model. First, the modulus of fiber material and beam-column elements need to be carefully 

selected. Second, tests on the value of numerical damping and the number of elements should be 

conducted to ensure the rocking response is converged. 

 

 

Figure 4.25. Demonstration of convergence for a recorded ground motion excitation (El Centro 

array #12) when using different element sizes 

(3) Augmented DRB model for deformable rocking structures 

As the rocking body becomes softer, the frequency of the generated shock waves during 

the impact will decrease. Thus, the amount of energy numerically damped by the dissipative time-

stepping integration algorithms will diminish. Although the accuracy of the predicted rocking 

response will not be considerably affected when the deformations of the rocking body are still 
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small enough, the solution will diverge due to the presence of the undamped high-frequency 

components of motion. Namely, increasing the number of elements and decreasing the integration 

time step does not lead to a unique solution, as observed in Vassiliou’s paper (Vassiliou et al., 

2017).  

To overcome the problem mentioned before, the DRB model is augmented by creating an 

alternate energy dissipation path, namely, considering the energy radiated into the ground under 

the rocking surface. The rocking body and rocking surface are preserved. At the same time, the 

supporting ground is modeled as a rigid massless foundation slab that rests on a stiff and dissipative 

ground (soil) surface, which is represented by a horizontal, vertical and rotational support, as 

shown in Figure 4.26 (left). An elastic spring and a viscous dashpot in each support are arranged 

in parallel. The rigid foundation slab does not uplift. Besides, sliding between the rocking body 

and foundation is not allowed. The finite element model of the augmented DRB model is shown 

in Figure 4.26 (right). Instead of using a fixed node of finite element model to model the stiff 

ground, a zero-length element with stiff springs and dashpots arranged in parallel in vertical, 

horizontal, and rotational directions is used to create an alternate energy dissipation path. Note, 

modeling of a rocking body on soft soil lies beyond the scope of this study, namely, the supporting 

ground (soil) is still stiff. 
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Figure 4.26. A rigid or deformable body rocking on a massless foundation supported by spring-

dashpot support (left) and the augmented DRB model (right) (Vassiliou et al., 2017) 

The spring stiffness K and dashpot damping coefficient C are determined according to 

machine vibration theory (Gazetas, 1983). Since the underlying ground is assumed stiff, the 

stiffness should be selected that increasing its value further does not change the natural vibration 

periods and modes of the structure. As verified in Vassiliou’s paper (Vassiliou et al., 2017), for 

hard soils and structures as tall as 80m, the computed rocking response is insensitive to the values 

of damping coefficient of dashpot. Besides, that paper pointed out that increasing of the ground 

stiffness could be realized by increasing the shear wave velocity of the supporting ground, Vs, thus 

leading to convergence of the time history of column rotation. However, the column base moment 

may not be reliable. 

(4) Evaluation of existing FE models 

In order to evaluate the modeling of existing FE models, the results from the FE models 

are compared with the experimental data and analytical results. In this section, the SM, DRB and 

augmented DRB models (Vassiliou et al., 2014, 2017) are used to simulate the same rigid/ flexible 

bridge pier (Chen, 2017) with footing uplift described before. The experimental model is idealized 
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as a two degree-of-freedom system with mass concentrated at the top node, as shown in Figure 

4.27. For FE models, 2 1.6mb = , 2 3.32mh = , the vibrational natural frequency of the column 

1/1.47Hznw = , the Rayleigh damping ratio 0.5% = . The rocking column is modeled using 20 

elastic beam column elements with area 2A r= , second moment of area about the local z-axis 

4

4
z

r
I


= , Young’s modulus 

( )
3

2

3
b

z

K h
E

I
= . The mass of the beam column elements is 

concentrated to the top node, as shown in Figure 4.27.  

 

Figure 4.27. FE models with mass concentrated on the top 

It is noted that the additional rotational moment of inertia oI  of SM is changed. As shown 

in Figure 4.27, the moment of inertia of the experimental column rotating around the corner point 

of the foundation is ( )( )2'2 22oI mR m h b= = + , which is the same as that of DRB and augmented 

DRB model with mass concentrated on the top node. While for the SM, the moment of inertia 

refers to rotating around the endpoint of the rotational spring is ( )
2

2oI m h= . Therefore, the 

difference 
2 2 2sinoI mb mR  = =  is added to the rotational degree of freedom of the top node. 

The Es of rotational spring for SM is 30e6 kPa, the Ef of zero-length fiber section of DRBs is 30e9 
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kN/m3, 0.0001sdt = , soil density 
32.5ton/m = , 7000 /sV m s=  is needed to represent the stiff 

ground under the rocking surface for the rigid structure, 1000 /sV m s=  is sufficiently large for the 

flexible structure. 

 

Figure 4.28. Uplift of rigid structure during free vibrations initiated by 25 mm 

As shown in Figure 4.28, analytical and FE models work well for the rigid structure. 

Results reveal that: 

(1) DRB and augmented DRB work better than the SM after 1.5sec. There is a phase shift 

for SM after 1 sec due to the slenderness tan 1.6 / 3.32 0.48 = = . Since the equation for the 

damping coefficient is derived base on the data of tan 0.3  , the SM is not as good in the less 

slender case because of the highly nonlinear nature of the rocking problem. 

(2) The amplitudes of the uplift of FE models are slightly smaller than the experiment. 

Besides, there is no uplift after 2.6sec in experimental data. However, there is still a very small 

uplift in FE models but these differences within 5 mm seem acceptable. 

Additionally, to validated the rocking behavior under forced vibration, the proposed 

analytical model, existing SM, DRB, and augmented DRB models (Vassiliou et al., 2014, 2017) 

are performed to simulate the rigid and deformable rocking bodies under the type-A pulse 

excitation and earthquake excitation, respectively. The responses of a rigid model, which is 
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identical to the model used in the reference  (Zhang et al., 2019), and a deformable model, which 

is identical to the model in Chen’s test (Chen, 2017),  are calculated respectively. 

The response of rigid block for type-A pulse excitation is plotted in Figure 4.29. It is 

observed that the results of FE models match well with the analytical model. Although only the 

results of the Newmark algorithm are shown here, the HHT algorithm also works when 0.67d = . 

 

Figure 4.29. Comparison of rocking rotation subjected to type-A pulse excitation for 

( )/ tan 1.30pa g  = , / 11.9nw p = , / 5.1w p = , 0.2 =  and 0.005 = ( pa  refers to the peak 

ground acceleration) 

The responses of deformable column-foundation for an earthquake excitation, the same 

Takatori 090 ground motion from the 1995 Kobe earthquake shown in Figure 4.18, is plotted in 

Figure 4.30. It is observed that: 

(1) All the results of all FE models match well with the analytical model. Although the 

rotation peak value around 7sec of DRB and augmented DRB is slightly larger than the analytical 

value (difference within 0.05), the peak value of the complete time history is well captured. 

(2) Both SM and DRB models have a slight response fluctuation after 20 sec. However, 

the most critical part of response time history, i.e., from 5sec to 15sec, is well captured by all three 

models.   
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Figure 4.30. Comparison of rocking rotation subjected to earthquake excitation (Takatori 090, 

Kobe 1995) 

As shown in Figure 4.31, the drifts of the column, u , defined in Figure 4.3 of different 

models are compared. u  of FE models is computed using sintopu u H = − , where topu  is the 

recorded total displacement of top node, sinH   represents the displacement due to rigid rotation 

caused by rocking. It is observed that: 

(1) A high frequency fluctuation due to the elastic deformation of the flexible structure can 

be seen after each impact, especially in those episodes with large amplitudes. This vibration 

subsequently decays to near zero before the initiation of the next uplift phase. The drift fluctuation 

will disappear when the rocking rotation is near zero. 

(2) The vibration of the drift of FE models decays faster than the analytical model. This 

may be due to the Rayleigh damping in the structure, which may cause the energy dissipation 

during the uplift phase of the structure to grossly increase, according to the experiments presented 

in Truniger et al. (2015). 

(3) Although the drift is occasionally more or less overestimated or underestimated when 

using FE models, the peak value of drift is well captured. 
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Figure 4.31. Comparison of the column’s top drift u subjected to earthquake excitation (Takatori 

090, Kobe 1995) 

4.3.3 Zero-length Impact Rocking Model 

According to the observation from previous comparison results, the modeling of flexible 

rocking behaviors using existing FE models is not accurate and sometimes not stable. This is 

mainly caused by the impact mechanism is not directly modeled, namely, viscous damping or 

numerical damping is used to approximate the energy dissipation during the impact. Besides, 

modeling energy dissipation is difficult if the deformation of the superstructure needs to be 

considered. Therefore, a better finite element model of rocking needs more intuitive modeling of 

the impact mechanism. To do so, a finite element based rocking model is implemented in 

OpenSees, consisting of a zero-length rocking element with a modified Dirac-delta type impact 

model.  

The so-called “zero-length impact rocking element” is developed based on a modification 

of an earlier work (Acikgoz & DeJong, 2016). To improve the stability and convergency issue, 

modifications are derived in this study: (1) a complete energy dissipation cycle is adopted to 

capture the energy dissipation during impact, and to avoid dramatically changing of stiffness 

matrix which causes numerical issues; (2) The “zero-length impact element” is engaged with 
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rotational zero-length spring to model the uplift condition and rocking behavior. The modified 

Dirac-delta type impact model and implementation of the finite element model are introduced 

herein. 

In finite element modeling in OpenSees, it is assumed that the rocking movement and phase 

transition can be captured by the modeling of rocking surface and structure components. Therefore, 

the zero-length impact element works to generate the impact force Fi and stiffness matrix Ki. In 

the Dirac-delta type impact model, as the structure approaches θ = 0, an impact force Fi will act 

on the rigid foundation beam at the impending pivot point P′. This force applies moments 

counteracting the rocking, resulting in rotational decelerations that influence the elastic motion of 

the structure during the impact. After the phase transition at θ = 0, the force is terminated as any 

forcing from the pivot point will no longer influence the moment equilibrium. This process is 

schematically illustrated in Figure 4.32. To maintain the numerical stability, the original model is 

modified that the impact force will gradually go to zero within a short time instead of a sudden 

drop to zero, thus the zero-stiffness matrix issue can be avoided.  

 

Figure 4.32. Schematic illustration of the applied impact forces for the modified Dirac-delta type 

impact model (Acikgoz & DeJong, 2016) 

The impact force Fi is approximated by an amplitude scaled Gaussian function of the 

rocking angle θ. The Gaussian function is defined by a zero mean and a standard deviation of 

𝑛/√2, where n is a width parameter of the Gaussian function that influences the sharpness of the 
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impact force. Independent of the value of n, when the unscaled Gaussian function is integrated 

over values of θ in the domain (-∞, +∞), a value of 1 is obtained. Using this property, the amplitude 

of the Gaussian function can be scaled to deliver an energy loss of 𝐸𝑖𝑛𝑖(1 − 𝑟2), where 𝐸𝑖𝑛𝑖 is the 

initial energy when impact happens, r is the coefficient of restitution. Then the impact force Fi has 

the following expression: 

 𝐹𝑖(𝜃) = ±
𝐸𝑖𝑛𝑖(1−𝑟2)

2𝑏𝑛√𝜋
𝑒−𝜃2/𝑛2

 (4.32) 

where b is half of rocking base width. A physically motivated approach is necessary for 

determining the width parameter n. It is assumed that the maximum impact force would be 

proportional to the angular velocity of the structure when impact forces are activated, which is 

denoted by 𝜃̇𝑖. Additionally, considering the limit case of zero angular velocity, the maximum 

impact force on the corner can be considered bound by the static support force at rest position, 

mtg/2, where mt denotes the total mass of superstructure. These assumptions result in the following 

expression: 

 𝑛 =
𝐸𝑖𝑛𝑖(1−𝑟2)

2𝑏√𝜋(
𝑚𝑡𝑔

2
+𝐶𝑝|𝜃̇𝑖|)

 (4.33) 

where Cp is a proportionality constant that describes the relationship between 𝜃̇𝑖 and Fi. Because 

this term relates to the mass and stiffness of the specific impacting surfaces, an empirical value for 

Cp needs to be determined to produce the best fit with the experimental results. Equation (4.33) 

depends on the system state at the moment of initiation of impact forces, as described by 

parameters Eini and 𝜃̇𝑖 . Therefore, at each time step during the simulation of a rocking phase, 

conditions governing the initiation of the impact force need to be checked: 

 |𝜃| < 𝜃𝑖 = 2.576 (
𝑛

√2
),   𝜃̇ < 0,     𝜃̇𝑖 > 𝜃̇𝑚𝑖𝑛 (4.34) 

The first two conditions in Equations (4.34) ensures that the impact forces are only 
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activated at small rocking angles when the structure approaches impact. As a result, the impact 

forces do not interfere with large rocking motion. In particular, the coefficient 2.576 in the first 

condition describes the 99.5% confidence interval of the Gaussian function. This coefficient 

ensures that the specified amount of energy can be dissipated during the impact. The last condition 

sets a minimum angular velocity 𝜃̇𝑚𝑖𝑛 to ensure numerical stability. 

At every time step, n and θi are recalculated using the current system state, and conditions 

in Equations (4.34) are evaluated. When the rocking initiation conditions are not met, the impact 

forces will not be activated. When these conditions are satisfied at a particular time step, the 

specific values of Eini, θi, 𝜃̇𝑖 and n are fixed. Until the impact force is deactivated, these constant 

parameters are used alongside the current value of θ in the calculation of Fi with Equation (4.32). 

At each time step during the simulation of an impact phase, conditions governing the deactivation 

of the impact force needs to be checked: 

 |𝜃| > 1.1𝜃𝑖 (4.35) 

The condition deactivates two phenomena: (1) The first phenomenon describes the system 

moves away from impact shortly after the initiation of forces. A constant coefficient of 1.1 has 

been arbitrarily specified to define this phenomenon. With reference to Figure 4.33, this case 

implies that impact forces are activated at Stage 2, but then the structure moves back towards Stage 

1. (2) The second phenomenon describes the end of a complete rocking cycle. Then transition to a 

new full contact or rocking phase is automatically determined in the OpenSees model.  

The effect of changing the value of modeling parameters on the function form of Equation 

(4.32) is illustrated in Figure 4.33. It can be observed that: A smaller r value or larger Eini results 

in more energy dissipation; A smaller values of n are obtained for smaller rocking motion, resulting 

in sharper impact forces and smaller values for 𝜃̇𝑖. A larger value of Cp results in a smaller value 
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of n and sharper impact forces. The parameters r and Cp can be designed to provide specific energy 

dissipation amount and impact force shape.  

  

  

Figure 4.33. The effect of parameters on the shape of impact force 

The following Figure 4.34 demonstrates the implementation of the zero-length element 

into OpenSees framework. The FE rocking element gets information from the nodal level, 

generates force and stiffness matrices, then passes the element resistance force and stiffness back 

to the structural level to form the residual force and solve the equation of motion. By directly 

taking the derivative of impact force to rocking angle θ in Equation (4.32), the rotational stiffness 

term can be determined by: 

 𝐾𝑖 =  
𝑑𝐹𝑖

𝑑𝜃
=

𝐸𝑖𝑛𝑖(1−𝑟2)

2𝑏𝑛√𝜋
𝑒−𝜃2/𝑛2

∙
−2𝜃

𝑛2
 (4.36) 

Then the tangent stiffness needed in the zero-length element can be obtained by 𝐾𝑖
𝑑𝜃

𝑑𝑢
, where 𝑢 is 

the deformation of the rocking element that generates impact force.  
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Figure 4.34. Implementation of FE rocking element 

To model the rocking initiation of the structure, the implemented rocking element is 

engaged in a zero-length rotational spring, as shown in Figure 4.35. The uplift and close of the 

rocking gap are modeled by the elongation and shortening of the zero-length impact rocking 

element. The rocking initiation condition is the same as that of the SM model. Namely, a rotational 

moment and angle relation, as shown in Figure 4.6, is modeled by the zero-length rotational spring. 

Since the rocking about two pivot points is simulated by rocking about central rotational spring, 

the deformation 𝑢 of the rocking element equals relative displacement between two pivot points. 

Then, the rotational angle θ is calculated by 
𝑢

2𝑏
. Besides, a rotational mass equal to oI

nnod


 is added 

to the rotational DOF of each node along with the rocking component in the finite element model. 

For column-foundation type rocking component with lumped mass at top and base, such as bridge 

pier, 
2 2 2sinoI mb mR  = = . For rectangular rocking components, such as a rocking shear wall, 

( )2 24
1 cos

3
oI mR  = − . 
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Figure 4.35. Modeling of rocking behavior in structural level 

The user command of the zero-length impact rocking element is: 

“ZeroLengthImpactRocking $tag $cNd $rNd $pNd $m_b $m_r $b $h $r_er $r_el $Cp 

$thetadot_min”. The detailed explanation of each variable is shown below.  

$tag Unique element object tag 

$tNd Constrained node tag 

$bNd Retained node tag 

$pNd Pivot point tag 

$m_b Mass of foundation 

$m_r Mass of superstructure 

$b Half of rocking base width  

$h 
Height of rocking component. (Total height for column 

foundation system, half height for rectangular block) 

$r_er Restitution factor when impact happens at right pivot point 

$r_el Restitution factor when impact happens at left pivot point 

$Cp Cp value of impact force model 

$thetadot_min 𝜃̇𝑚𝑖𝑛 of impact force model 

 

The modified zero-length impact rocking model is also implemented in MATLAB and 

solved by ODE solver as a comparison in verifying the implementation of zero-length impact 
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rocking element in OpenSees. The stiff nature of the equations of motion resulted in the use of 

maximum time step limits. For computational efficiency, a minimum value of min(n) = 0.0001 

was additionally specified. The phase transition conditions of the MATLAB model are the same 

as what were introduced in Dejong’s model (Acikgoz & DeJong, 2016). A rigid column foundation 

model with b= 1.7m, h = 6.8m, m_r = 10kg, m_b = 0kg, r_er = r_el = 0.75, Cp = 1300kg*m/(rad*s), 

𝜃̇𝑚𝑖𝑛 = 0.01 is obtained by using MATLAB model and OpenSees model. The rocking responses 

under type-A excitation with T = 1sec, ap = 0.4514g are shown in Figure 4.36. The same rocking 

responses obtained from the ODE solver and OpenSees model verified the assumption that the 

rocking initiation and rocking phase transition can be automatically captured in the OpenSees 

model by accurately model the moment rotation relationship of the rotational spring element, as 

well as mass and geometry properties of rocking components. Besides, it is observed that the 

impact force generated is also well captured. A slight difference may be due to different timestep 

used between the MATLAB model and the OpenSees model. The impact force of the MATLAB 

model has positive and negative value because the rocking angle can be positive or negative when 

directly solving the EOM using ODE solver. In the OpenSees model, the impact force always 

points up to dissipate energy. 

The previous experiment of deformable cantilevers rocking on a rigid surface from 

Truniger (Truniger et al., 2015) is adopted hereby to verify the implemented 

“ZeroLengthImpactRocking” element. As shown in Figure 4.37, the rocking response of case 

“1HZ Short Base (10)” obtained by using the OpenSees model matches well with the shaking table 

test. In the OpenSees model, r_er=0.95, r_el = 0.97 and Cp=150kg*m/(rad*s) are selected so that 

the difference between FE response and test data can be minimized. The restitution factor r of rigid 

rocking with the same α as 1HZ short base case is 0.987, which can be used as a maximum 
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reference value for r_er and r_el.  

  

  

Figure 4.36. Validation of rocking phase transition in OpenSees model 

 

Figure 4.37. Comparison of flexible rocking case  
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4.4 PROBABILISTIC SEISMIC DEMAND MODEL (PSDM) 

4.4.1 Background 

Response results from previous studies revealed substantial sensitivities in rocking 

responses with respect to structural flexibility, treatment of rocking impact, and consideration of 

boundary conditions at the rocking interface. To capture the uncertainties in predictions from 

numerical models, the probabilistic seismic demand model (PSDM) can be an alternative way. 

This study is in response to the PEER blind prediction contest of shaking table tests for the seismic 

response of a rocking podium structure. Two different modeling schemes have been developed to 

predict the rocking responses of the test specimen under various earthquake ground motions. First, 

a 3D wobbling and rocking model based on Vassilou (2018) was implemented in MATLAB using 

a slightly different numerical treatment of solution when the uplift angle approaches zero. The 

second model is a high-fidelity finite element model developed in ABAQUS with all constitutive 

components being realistically modeled. In particular, responses from the ABAQUS model when 

subjected to small motions are found to be dominated by the sliding mode, resulting in unrealistic 

predictions that are sensitive to the assigned friction coefficients at the interface.  

To capture the uncertainties in predictions from numerical models, the probabilistic seismic 

demand model (PSDM) was developed by evaluating the responses from the 3D MATLAB model 

under 800 scaled earthquake ground motions. The PSDM analysis demonstrates a reasonable 

correlation of the displacement response with the earthquake intensity, PGA, although noticeable 

variation can be observed. Based on PSDM results, the responses for 200 testing ground motions 

are re-predicted with randomly introduced variation and the mean response from PSDM. 

Additionally, the average response is taken between the responses from the ABAQUS model under 

large motions with that of the responses of the 3D MATLAB model. The cumulative distribution 
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functions (CDFs) are generated and compared using the predictions from PSDM and the average 

responses, which show very similar trends. Finally, the predictions from the PSDM are selected as 

the final results for test predictions. 

4.4.2 PEER Center Shaking Table Tests 

Seismic performance of rocking structures has long attracted the attention of the research 

community (Makris, 2014). Rocking isolations have shown great promise of improving the seismic 

resilience of civil structures by limiting forces, permanent displacements, damage, and cost. In this 

regard, the PEER center at the University of California, Berkeley is organizing a blind prediction 

contest to predict the peak bi-directional seismic responses of a four-column rocking podium 

excited by artificially generated ground motions applied by a shaking table. Such a blind prediction 

contest would allow the research community to be aware of the existence of public data on shaking 

table tests of three-dimensional rocking structures. It also enables different research teams to verify 

their analytical and/or numerical modeling techniques in simulating rocking behaviors under a 

wide range of ground motions, and to understand and capture the salient features associated with 

rocking dynamics. 

The shaking table tests feature a rocking podium that was excited through the 6-dof shaking 

table located at the Earthquake and Large Structures (EQUALS) Laboratory of the University of 

Bristol. The rocking podium structure was designed by the ETH Zurich team, as shown in Figure 

4.38. The tested model consists of four hollow circular steel columns with height, diameter and 

thickness of 1000, 244.5, and 8mm, respectively. Each of the columns was placed on the restrainer 

with conical end to limit the columns from wobbling out of their original position. 200 sets of 3D 

ground motions, correspond to tests EC1-EC100 (EC: El Centro) and tests CC1-CC100 (CC: Chi-

Chi), measured on the shaking table surface were used here to investigate the seismic responses 
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("PEER Blind Prediction Contest," 2019). Each group has x-y-z entries, and the time interval and 

duration are 2.0×10-3s and 45s, respectively.  

 
 

(a) Specimen (b) Section view 

Figure 4.38. Specimen and section view of specimen 

The displacement prediction of the vertical projection of each column center to the top 

surface for each of the 200 conducted tests are provided in the blind test: 

 
( ) ( ) ( ) ( )1 3 4 6M M M M

M max
4

ave
t

t t t t
abs
 + + + 

=   
   

 (4.37) 

where M1 to M6 are the displacements of the points marked in Figure 4.38(a) in the horizontal 

plan.  

4.4.3 Numerical Models of the Rocking Podium 

Considerable modeling efforts have been made in previous studies to investigate the 

rocking behaviors for various types of rocking structures, including free-standing rocking blocks 

(Zhang & Makris, 2001), two-dimensional (2D) rocking frames (Makris & Vassiliou, 2013), three-

dimensional (3D) rocking bodies (Vassiliou et al., 2017), flexible rocking structures (Vassiliou et 

al., 2017), as well as rocking elements coupled with other structural components (Palermo et al., 

2005). A comprehensive literature survey has been conducted herein, indicating that the analytical 
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model developed by (Vassiliou, 2018) for the 3D rocking podium is consistent with the shaking 

table test setup (as shown in Figure 4.39). Therefore, this model was adopted and implemented in 

MATLAB. However, as will be discussed later, modifications have been made on this model in 

dealing with the rocking impact (i.e. when uplift angle approaches zero). In addition, a high-

fidelity 3D ABAQUS model with brick elements and surface-to-surface contact was also 

developed as the second case.  The use of multiple models results from the fact that seismic rocking 

behavior is extremely sensitive to the imperfection of the specimen, the variation in initial 

conditions, as well as different modeling considerations (Bachmann et al., 2018).  

 

Figure 4.39. Illustration of the 3D podium structure (Vassiliou, 2018) 

(1) 3D rocking podium model 

Equations of motion for the 3D rocking podium under ground motion excitation was 

proposed by Vassiliou (Vassiliou, 2018). Based on several analytical assumptions in the 3D model 

of a free-standing rigid cylinder (Vassiliou et al., 2017), the model has two degrees of freedom: 

the tilt angle, θ, and the rolling angle, φ, which determines the location of the contact point between 

the cylinder and the supporting plane. The parameter γ = ms/(Nmc) is introduced to normalize the 

mass between the rigid slab and N rocking columns, where ms and mc are the mass of the slab and 

one rocking column, respectively. The position vector of the center of mass, S, is given by: 
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where gxu  and gyu  are the two horizontal components of the ground motion. Using Lagrange’s 

energy method, the equations of motion for the 3D rocking podium can be derived as (Vassiliou, 

2018): 
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where R and α are semi-diagonal and slenderness of the rocking column; 

( )2

2

12 2 1
ˆ

48 15 cos

g
p

R



 

+
=

+ +
;  

It is worth mentioning that Equation (4.40) cannot deal with the condition when  

approaches 0, such as the initial condition and the rocking impact. To deal with this issue without 

manually forcing any discontinuity on the equations of motion, an asymptotic equation is derived 

by applying the limit conditions of sin   and cos 1   when 0 → . As such, Equation (4.40) 
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can be updated as: 
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Equation (4.41) provides a new form of equation that can effectively substitute the original 

Equation (4.40) when   approaches 0. Essentially, Equation (4.41) is theoretically sound as it 

provides a limit condition-based formula to quantify the system behavior without contradicting the 

mechanics that was initially held. Furthermore, it does not require any manual interruption on the 

system’s equations of motion every time when  approaches 0 during the numerical 

implementation. 

Although few impact may occurs, a conservative coefficient of restitution approach by 

Housner (Housner, 1963) is used to consider the energy dissipation: 
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+
 (4.42) 

where 1  and 2  are angular velocities right before and after impact. This 3D rocking model is 

implemented in MATLAB and solved using ODE solver. This model is termed as the MATLAB 

model in this study. 

(2) ABAQUS Model 

A second 3D finite element model was built in ABAQUS to represent the testing rocking 

structure, as shown in Figure 4.40. The credit of modeling and analysis of the ABAQUS model 

should go to Zhenlei Jia, one of the team members from Beijing University of Technology for this 

PEER blind prediction contest. 3D linear brick elements with reduced integration (C3D8R) were 

used to model all constitutive parts. Table 4.1 lists the parameters for the elastic materials used in 
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the model. To bear a proper balance between computational efficiency and model accuracy, local 

mesh size of the rocking interfaces was set finer than the other parts, as is shown in Figure 4.40. 

Fine mesh

Rough mesh

Fine mesh

Fine mesh

Rough mesh

 

Figure 4.40. Finite element model in ABAQUS 

Table 4.1. Property of the Materials Considered in the ABAQUS Model 

Materials Density (ton/mm^3) 
Young’s Modulus 

(MPa) 
Poisson ratio 

Steel 7.8e-9 200000 0.3 

Aluminum 2.7e-9 69000 0.34 

 

To simulate the rocking behavior between columns and steel footings, contact pairs were 

modeled by a surface-to-surface contact algorithm. The contact pair definition in ABAQUS 

consists of two parts: behavior in the normal direction and the tangential direction. The hard 

contact algorithm, which is based on the classical Lagrange multiplier method of constraint 

enforcement, was adopted in the normal direction. The penalty friction was used to simulate the 

tangential effect with a coefficient of 0.15. Gravity was first applied on the model, and then 

dynamic-implicit procedure in ABAQUS was utilized to calculate the dynamic response of the 

specimen. Acceleration on the three direction was applied on the bottom of the steel footings. 

(3) Simulation results 
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According to the structural drawings of plan and section view of specimen, modeling 

parameters used in 3D MATLAB model are base radius 122.25mmb = , height 2 1000mmh = , 

size 2 2 514.7mmR b h= + = , slenderness 1tan ( / ) 0.24b h −= =  and mass ratio 3.214 = . 

Ground accelerations in x and y direction are applied simultaneously in the 3D MATLAB model. 

The bi-axial displacement is obtained by 2 2

x yu u u= + , where xu  and yu  can be obtained by 

using Equation (4.38). In 3D MATLAB model, since all columns are considered to be moving 

identically and they are assumed to be always in contact with the support and no sliding is allowed, 

it is determined that there is no rotation coupled with the horizontal translation. Therefore, all 

columns and the slab undergo identical motion, thus, ( )M maxave
t

abs u=    .  

Figure 4.41 shows ABAQUS model results for the displacement time history responses at 

M1, M3, M4, and M6. It can be seen that displacements at M1, M3, M4, M6 are almost the same, 

namely columns are under identical movement and yaw of cap slab is not observed. Note that this 

phenomenon actually contradicts to the test results, which have shown some levels of slab torsion 

in the recorded movie. As previously mentioned, such discrepancy comes from the inherent 

significant sensitivities of the dynamic rocking behaviors. Specific actions will be proposed in this 

study to tackle such sensitivity and randomness associated with the rocking podium. 
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Figure 4.41. Displacement history of ABAQUS model under ground motion 150 excitation 

Figure 4.42 compares the responses between ABAQUS and MATLAB 3D models for the 

testing structure under ground motion #120. It is observed that the 3D MATLAB model yields 

larger displacement than that of the ABAQUS model in this case. However, there are plenty other 

cases that the trends are reversed. The results demonstrated the sensitivity of responses due to 

different modeling methods.   

 
(a) X-direction 

 
(a) Y-direction 

Figure 4.42. Comparison of ABAQUS model and MATLAB model under ground motion 120 

4.4.4 Probabilistic Seismic Demand Analyses 

Both the MATLAB and ABAQUS models are used to simulate the rocking responses when 

subjected to the given 200 ground motions. However, due to the required long running time of 

simulation, only 98 simulations have been completed using the ABAQUS model. To compensate 
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this limitation, the 98 cases in ABAQUS were randomly selected to cover a similar level of 

variances embedded in ground motions. Results of Mave from both the MATLAB and ABAQUS 

models are provided in the appendix. Note that based on the geometry, an upper bound 

displacement of 315mm is assigned on the MATLAB model when columns hit the restrainer. 

As reflected from the simulation results, rocking responses can hardly be the same should 

a different modeling scheme is used. Rocking dynamics are substantially affected by several 

modeling considerations, including rocking impact, boundary conditions, response solvers, etc. 

Moreover, as revealed in the testing movie, the same rocking columns cannot yield consistent 

responses under the same set of ground motions. In other words, repeatability can be a significant 

challenge for shaking table tests of rocking structures (Bachmann et al., 2018). To this end, this 

study will tackle the very sensitive rocking responses in a probabilistic manner. 

First, it has been observed that the given 200 ground motions mainly come from two 

earthquake records with discrete levels of intensity measures. As such, 600 additional ground 

motions are generated by scaling the original set of 200 motions. In particular, 300 ground motions 

were obtained by scaling up 1.5, 2.0, and 2.5 times of the original El-Centro records, whereas the 

remaining 300 ground motions were generated by scaling down 1.5, 2.0, 2.5 times of the original 

Chi-Chi records.  

800 sets of time history analyses have been conducted using the 3D MATLAB model. For 

the purpose of revealing the physical trend between the rocking demand and the ground motion 

intensity measure, probabilistic seismic demand model (PSDM) have been developed using the 

following form:  

b

D
S a IM  or In In In

b

D
S a b IM                                   (4.43) 

where a and b are the regression coefficients; SD is the median value of the seismic demand for 

the specific intensity measure (IM). The dispersion of the seismic demand σ is determined by: 
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Figure 4.43 presents the PSDMs with respect to two commonly used intensity measures, 

peak ground acceleration (PGA) and peak ground velocity (PGV). It can be found that the 

coefficient of determination (R2) of PGA is much larger than that of PGV. Therefore, in this study, 

the PGA is taken as the intensity measure, and the corresponding PSDM was used to predict the 

displacement of the slab. 

One key consideration of using the PSDM lies in that it provides a viable way to effectively 

deal with the very sensitive rocking responses. To be specific, at each PGA level, the dispersion σ 

provide a potential solution space for rocking demand predictions. Namely, rocking responses can 

be anywhere within the two-sigma range away from the median values. Such probabilistic nature 

of the responses enables the extraction of the most reasonable set of data by comparing them with 

the results from other models, such as the ABAQUS model in this study.  

 

  
(a) PGA (b) PGV 

Figure 4.43. Probabilistic seismic demand model of the displacement for different intensity 

measures 
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Four sets of results have been obtained by using two models, one in MATLAB and the 

other in ABAQUS. Figure 4.44 presents the cumulative distribution functions (CDFs) for these 

four sets of results. As is depicted, the first CDF illustrates the distribution of 98 rocking demand 

calculated from the ABAQUS model. An evident change of CDF slope can be found between the 

35% small responses and the remaining 65% large responses. Such sudden change of slope results 

from the dominant sliding motions in ABAQUS when the model is subjected to the El-Centro 

motions with small PGAs. Under these cases, rocking was not initiated, and the response motions 

are very sensitive to the friction coefficient considered for the model. Therefore, the 35% small 

responses in ABAQUS bear very limited information and are most likely inaccurate. Conversely, 

the 65% large response data are considered to be reasonable in this study. In particular, because 

the ABAQUS model was excited by ground motions in three directions, which is consistent with 

the shaking table tests, realistic movements occur by observing both sliding motions and 

detachments at rocking column ends (as illustrated in Figure 4.45). 

The second CDF curve is for the rocking responses from the MATLAB model when 

subjected to the given 200 testing motions. Using this model, about 10 cases (5%) have the rocking 

columns touch their end restrainers, leading to constant displacement values of 0.315m for the 

CDF range between 95% and 100%. The 3D MATLAB model can yield deterministic and 

repeatable results if same initial conditions were assigned. However, a small change in the initial 

conditions can often lead to different responses. As such, this CDF curve is considered to be 

partially accurate in predicting the test results.  

The third CDF curve comes from the PSDM prediction that was developed by using 800 

analysis results from the 3D MATLAB model. The curve covers a wider range of ground motion 

inputs and a level of uncertainty in rocking responses. The PSDM prediction was generated by 
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resampling the responses using 200 testing motions, where the embedded dispersion has been 

successfully considered in this process. In particular, a random number within the two-sigma range 

away from the median value was generated at each PGA level using the PSDM shown in Figure 

4.43. As such, this curve has dealt with both the un-repeatability and randomness in association of 

the rocking responses. The PSDM predicted CDF curve is close to the CDF curve obtained by the 

3D MATLAB model under small motions, and is in the middle of the ABAQUS and MATLAB 

results under large motions.  

 

Figure 4.44. Cumulative distribution functions of the ABAQUS, analytical, and prediction 

results 

The last case takes into account the perceived higher reliability of the ABAQUS results 

under large motions, as shown in Figure 4.45. Hence, the CDF curve is developed by taking the 

average between ABAQUS and MATLAB model results for the data that are larger than 0.05m 

and smaller than 0.315m. It can be observed that the PSDM and average curves yield very similar 

CDF outcomes. Finally, the prediction from the PSDM method is selected for final submission as 

the predicted test results. 

The comparison between test results and predicted results are also compared. As shown in 

Figure 4.46. It is observed that the PSDM prediction matches very well with the experimental CDF 
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curve under Chi-Chi motions, but does not match well with the experimental CDF under EI Centro 

motions. It means that the PSDM is weighted toward larger earthquakes. PSDM should performs 

better if the modeling was conducted separately for large and small earthquakes.  

 

  

Figure 4.45. Large response caused by un-idealized motion in ABAQUS model 

  
 

Figure 4.46. Comparison between empirical cumulative distribution and predicted cumulative 

distribution 

4.5 CONCLUDING REMARKS 

Both analytical models, FE models and probabilistic seismic demand models are used to 
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study the modeling of individual rocking response and CDF curves in this chapter. First, an 

analytical model of the rocking flexible column-foundation model is proposed. Comparing 

analytical rocking responses with shaking table results shows that the rocking behavior is sensitive 

to different energy dissipation mechanisms during impact. Moreover, this analytical model can be 

used to verify the FE models’ accuracy in modeling rocking behavior of the flexible structures. 

Second, three existing FE rocking models are evaluated by comparing them with analytical 

model and experimental results. It is observed that the existing FE models can accurately model 

the rigid rocking behavior, while they are not accurate when modeling the rocking behavior of 

flexible structures. The discrepancies are mainly caused by inappropriate modeling of the impact 

mechanism. Namely, viscous damping or numerical damping is used to approximate the energy 

dissipation during the impact.  

To better model the instantaneous energy dissipation during impact, a finite element based 

rocking model is implemented in OpenSees, which consists of a zero-length rocking element with 

a modified Dirac-delta type impact model. A new user element, “ZeroLengthImpactRocking”, is 

implemented in OpenSees and verified by comparing with shaking table tests. This new user 

element is useful when modeling the seismic performance of structures with rocking components 

in OpenSees. 

Finally, the PEER Center shaking table tests of a four-column rocking podium are studied 

to reveal the sensitivities and uncertainties in rocking responses. A PSDM-based model is 

proposed to predict the rocking behavior through probabilistic seismic demand analyses. To 

generate the PSDM model, two different modeling schemes are presented in predicting the test 

results: one is the MATLAB model modified from a previous analytical study, and the second is 

the finite element model developed in ABAQUS. By addressing the significant uncertainty of the 
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rocking dynamics, four sets of response data are obtained. The following conclusions can be drawn 

from this study: (1) Seismic responses of the 3D rocking podium are sensitive to the variations in 

initial conditions, rocking impact treatment, and boundary conditions at the rocking interface. 

Rocking responses for individual testing cases are often difficult to predict. (2) PSDM-based 

model can successfully tackle the uncertainty issue embedded in the rocking responses.  
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5. CASE STUDY: SEISMIC PERFORMANCE OF 9-STORY ROCKING 

SHEAR WALL BUILDING 

5.1 INTRODUCTION 

Reinforced concrete (RC) walls are commonly used in mid-rise and high-rise buildings as 

the primary lateral force-resisting system. From extensive experimental results, it has been found 

that relatively slender RC walls, whose height-to-length ratio is about three or larger, are generally 

dominated by flexural behavior. In contrast, stout RC walls are essentially impacted by the 

interaction between flexure and shear (Wallace, 2007). A wide range of modeling approaches has 

been used to simulate the behavior of RC walls, e.g., lumped plasticity, distributed plasticity, and 

continuum elements. The model evaluation indicated that the most viable option to achieve 

accuracy and efficiency was using beam-column line elements with fiber-type cross-section 

models at integrated points (Pugh et al., 2015). A force-based beam-column is chosen in this study 

because displacement-based beam elements resulted in inaccurate axial force distribution and need 

a larger number of elements per story (Pugh et al., 2015). 

Previous studies show that structures with partly rocking components, particularly a 

moment-resisting frame structure coupled with a rocking wall, have a better seismic performance 

than fixed base structures. For example, using nonlinear analysis in ABAQUS, Qu et al. (2012) 

found that the rocking wall associated with the energy dissipation devices effectively avoids weak 

story failure and reduces damages in other components. Shake table tests on four single rocking 

walls shows that although the walls were expected to have limited energy dissipation capacity, 

they showed satisfactory performance without experiencing visible damage up to the design-level 

earthquakes (Nazari et al., 2017). The seismic response of one-third-scale three-story steel frames 
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with columns allowed to uplift reveals that (Midorikawa et al., 2009): the maximum base shears 

of the rocking frames are effectively reduced; the maximum column tensile forces for the rocking 

frames are limited to a relatively constant value less than those for the fixed-base frames after the 

uplift motion occurs, whereas the maximum compressive forces are almost equal to or less than 

those for the fixed-base frames. 

However, most available nonlinear analysis methods, shake table tests and design 

methodologies are for rocking components with tendons or restrainers, even though free-standing 

rocking might be more appealing when the lower cost is desired since it does not require anchoring 

to both wall and foundation. Namely, much emphasis is placed on the energy dissipation by the 

supplemental protective devices, yield steel plate, anchorages, and self-centering by tendons, while 

few comments are offered to what extent the mobilization of the rotational inertia of shear walls 

is modifying the dynamic response of the coupled reinforced concrete structure. In this chapter, 

nonlinear analyses of a moment-resisting frame structure coupled with a free-standing rocking 

wall are conducted to illustrate the effects of rocking components on the dynamic response of the 

structure.   

5.2 FE MODEL OF SHEAR WALL 

In this study, the force-based distributed-plasticity fiber beam-column element (Spacone 

et al., 1996) implemented in the OpenSees is utilized to model the slender shear wall. Figure 5.1 

illustrates the procedure to establish the computational model of a shear wall specimen with fiber 

beam-column elements aggregating with an uncoupled equivalent linear shear spring (Pugh et al., 

2015).  

For the fiber sections, 1D concrete and steel response models are used to define the 

nonlinear material response, as shown in Figure 5.1. The concrete material response was 
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determined using the uniaxial Kent-Scott-Park model with linear tension softening, i.e., concrete02 

model in OpenSees (Yassin, 1994). Steel material response was defined using the uniaxial Giuffré-

Menegotto-Pinto model with isotropic strain hardening, i.e., steel02 model in OpenSees (Filippou 

et al., 1983). The model parameters to define the nonlinear behavior of material need to be 

calibrated from the material test data. 

Since the fiber-type section model does not simulate the deformation due to shear, an 

equivalent shear spring was incorporated into the fiber section to provide an indirect way to 

consider the flexure-shear interaction. For the force-based beam-column element, a shear-response 

model can be integrated at the section level using section aggregation function (Marini & Spacone, 

2006). The shear response of the wall was defined by the V −  relationship: 

 eff s cvV G A =  (5.1) 

where V  is the shear force on the section,   is the shear strain on the section, s  is the shear 

form factor taken as 5/6 for rectangular walls, cvA  is the shear area of the section. For the current 

study, 0.1 0.04eff c cG G E= =  is used considering the cracking of section, and cE  is the elastic 

modulus of concrete.  
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Figure 5.1. Scheme to establish the computational model of a shear wall using fiber beam-

column element and an uncoupled equivalent shear spring (Tang & Zhang, 2011) 

As shown in Figure 5.2, left, the modeling scheme described above is validated by 

simulation of cyclic test of an experimental shear wall, PW1 specimen with a height of 12ft, 6in 

by 120in in plan. The design details of the PW1 specimen can be found in Birely et al. (2008). 

Three nonlinear beam-column elements with five integration points in each element are used for 

the OpenSees model. The model parameters to define the nonlinear behavior of material were 

calibrated in the reference (Tang & Zhang, 2011). Figure 5.2, right, shows the comparison between 

the numerical analysis results from OpenSees and the measured cyclic behavior of the PW1 

specimen. It can be seen that the nonlinear hysteretic behavior of the wall can be well captured 

using fiber beam-column elements in OpenSees. The generally good agreement between the 

numerical and experimental responses indicates that the outlined modeling technique is adequate 

to simulate the nonlinear force-displacement behavior of slender RC shear walls, furthermore, 

made it possible to use the force-based distributed-plasticity fiber beam-column element to 

simulate the rocking behavior of slender shear wall by combining with rocking models. 
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Figure 5.2. Simulation of the PW1 shear wall: PW1 specimen in laboratory (left) and simulation 

results against test data (right) 

5.3 VALIDATION OF 9-STORY ROCKING SHEAR WALL 

A 9-story shear wall with a height of 108ft, 20ft by 1.5ft in the plane, is shown in Figure 

5.3. The model parameters are shown in Tables 5.1 and 5.2. First, the convergence of nonlinear 

response is checked by using different mesh sizes, as shown in Figure 5.4. The nonlinear force-

displacement behavior of the 9-story RC shear wall can be well captured by using nine elements, 

i.e., 1 element per story, which will save much more computation costs while using this shear wall 

into a whole building model. 



  

149 

 

 

Figure 5.3. Reinforcement and geometric details of the planar RC shear wall 

Table 5.1. Reinforcement material model and parameters used in numerical analysis 

Material Model in  

OpenSees 

  Model Parameters         

  
fy E b R cR1 cR2 

  
(ksi) (ksi)         

#5 rebar Steel02   65 29000 0.01 15 0.925 0.15 

#11 rebar Steel02   70 29000 0.01 18 0.925 0.15 

 

Table 5.2. Concrete material model and parameters used in numerical analysis 

Material Model in  

OpenSees 

  Model Parameters           

  
f'c ε0 fcu εu λ ft Ets 

  
(ksi) (ksi) (psi)     (psi) (psi) 

Confined Concrete  Concrete02   -7500 -0.00372 -1500 -0.0186 0.1 500 416667 

Unconfined Concrete Concrete02   -5000 -0.00248 -1000 -0.00496 0.1 500 416667 
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Figure 5.4. Demonstration of convergence of modeling for different mesh size under a recorded 

ground motion excitation (Takatori 090, the 1995 Kobe earthquake) 

After verification of mesh sensitivity, this 9-story shear wall is combined with three 

existing FE rocking models introduced in Chapter 4 to model the rocking behavior of a free-

standing shear wall. The outlined modeling technique is augmented by adding rigid arms on each 

floor to simulate the geometry of the shear wall, as shown in Figure 5.5. Since the shear wall model 

is a distributed-plasticity model with mass distributed along with the element, the analytical 

solution of the deformable rocking column-foundation model cannot be used as a comparison here. 

Therefore, the analytical model for the rigid rocking body (Zhang & Makris, 2001) is used to check 

the accuracy of rocking response of the augmented rocking shear wall model when the shear wall 

has sufficiently large stiffness, such as 
730 kPabE e= . The rocking responses is evaluated under 

the same PEER strong motion database record used in Chapter 4, El Centro array #12, 140 (USGS 

station 931) with a scale factor of 5. 
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Figure 5.5. The finite element model of a rocking shear wall with geometry 

The response time histories of SM using different time-stepping algorithms are shown in 

Figures 5.6 and 5.7. Note, there is no numerical damping in the SM model according to Vassiliou 

et al. (2014). However, for the SM model without numerical damping, the time history of both 

rotational and angular velocity cannot match well with the analytical solution, as shown in curves 

of “HHT 0.99 = ” and “Newmark 0.5 = ”. A good agreement of response time history is 

attained if we use the numerical damping incorporate with the viscous damping in the rotational 

spring, as shown in curves of “HHT 0.67 = ” and “Newmark 1.0 = ”. There is no convergence 

problem if a relatively softer pre-yield stiffness of rotational spring is used. 
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Figure 5.6. The time history of SM model using HHT time-stepping method with different 

damping factor 

 

Figure 5.7. The time history of SM model using Newmark time-stepping method with different 

damping factor 

The response time histories of the DRB model using the Newmark time-stepping algorithm 

are shown in Figures 5.8 and 5.9. The time step 0.005secdt = , the tolerances at each step are 

8Tol 10e−=  (in Figure 5.8) and 16Tol 10e−=  (in Figure 5.9). As shown in Figure 5.8, no further 

appreciable changes in the computed response are observed if 7 330 kip/infE e , therefore, fE  is 

selected as 
9 330 kip/ine . It’s observed that the time histories don’t match well with analytical 

solution after 30sec, as shown in Figure 5.8. In comparison, a better agreement can be achieved by 

setting 16Tol 10e−= , as shown in Figure 5.9. There is also no convergence problem using the DRB 
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model when the Newmark algorithm is used. 

 

Figure 5.8. The time history of DRB model using Newmark time-stepping method with different 

stiffness of fiber section 

 

Figure 5.9. The time history of DRB model using Newmark time-stepping method with 

16dt 10e−=  

However, it took some effort to make the DRB model converge if the HHT algorithm is 

used. The DRB model failed to converge when using the same time step 0.005secdt = . Although 

the response time histories can be obtained by using smaller 0.0001secdt = , as shown in Figure 

5.10, it does not match well with the analytical solution. Even if changing the numerical damping 

d  of the HHT algorithm cannot improve the accuracy. Moreover, the computation costs rapidly 

increase if a smaller 0.0001secdt =  is used. Therefore, the Newmark algorithm works better than 
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the HHT algorithm in this case. 

 

Figure 5.10. The time history of DRB model using HHT time-stepping method with 4dt 10e−=  

The comparison of response time histories of different FE models for both rigid and 

flexible cases is shown in Figures 5.11 and 5.12. As shown in Figure 5.11, for rigid case, the SM 

and DRB model with Newmark numerical damping 1.0 =  have good agreement with the 

analytical solution. For the response of flexible case as shown in Figure 5.12, although there is no 

analytical solution to compare with, some conclusions can be observed as follows: 

(1) For SM, the existence of numerical damping changes the response time history a lot. 

Besides, the results will diverge when using the SM model. Therefore, the SM model is not 

applicable when rocking structures become more flexible. 

(2) The results of DRB model also diverge. As the rocking body becomes softer, the 

amount of energy numerically dissipated by the dissipative time-stepping integration algorithms 

diminishes, then the solution will diverge due to the presence of the undamped high-frequency 

components of motion. This behavior agrees with the observation in Vassiliou et al. (2017). 

(3) For the augmented DRB model, results converge when using both Newmark and HHT 

algorithms. Because the augmented DRB model creating an alternate energy dissipation path, 

namely, considering the energy radiated into the ground under the rocking surface. However, 
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although the augmented DRB leads to convergence of the rotation time history, the same does not 

hold for the time history of the base moment response, and its ability to accurately predict the 

internal forces in deformable rocking frames has not been proven. 

 

Figure 5.11. The comparison of response time histories of different FE models for rigid case 

 

Figure 5.12. The comparison of response time histories of different FE models for flexible case 

Due to the observed shortcomings in using three existing FE models, the implemented 

zero-length impact rocking element is used hereby to predict the seismic responses of the 9-story 

rocking shear wall and 9-story building equipped with the rocking shear wall. As shown in Figure 

5.13, the rocking surface is modeled by using two zero-length impact rocking elements at two 

pivot points and one rotational spring with nonlinear moment-rotation behavior at the base center. 

The modeling of shear wall elements remains the same as described earlier.  
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Figure 5.14 plots the rocking responses (rotation and angular velocity in (a)) of the rigid 9-

story shear wall using the zero-length impact rocking elements, where the realized impact forces 

are shown in Figure 5.14 (b) and (c). As shown in Figure 5.14, the predicted rigid rocking 

responses using the new FE model match well with the analytical solution when r=0.9 and Cp = 

850 k*in/(rad*s) are used. Since the complete energy dissipation cycle is used, the impact force 

generated is gradually decreased to zero, thus maintaining the stability of the FE model.  

Similarly, Figure 5.15 plots the rocking responses (rotation and angular velocity in (a)) of 

the flexible 9-story shear wall using the zero-length impact rocking elements, where the realized 

impact forces are shown in Figure 5.15 (b) and (c). As shown in Figure 5.15, the flexible rocking 

responses become much more stable and seem reasonable when compared with rigid rocking 

responses: the rocking period becomes larger while the impact force becomes smaller.  

 

Figure 5.13. The FE model of a rocking shear wall using zero-length impact rocking element 
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(a) 

  
(b) (c) 

 

Figure 5.14. Rocking responses of rigid 9-story shear wall using “ZeroLengthImpactRocking” 

FE element 
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(a) 

  
(b) (c) 

Figure 5.15. Rocking responses of flexible 9-story shear wall using “ZeroLengthImpactRocking” 

FE element 

5.4 SEISMIC PERFORMANCE ASSESSMENT OF THE 9-STORY BUILDING 

5.4.1 Numerical Model of 9-story Building 

The 9-story office building is designed based on a seven-story office building described in 

Tang and Zhang (2011). The slenderness of the shear wall is increased by adding two stories and 

decreasing the length of the planar shear. The schematic sketch of the 9-story building is shown in 

Figure 5.16. It uses a dual system, consists of 5 RC planar shear walls and special moment frames, 
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for lateral loading resisting in the short-side direction. The seismic design in the long-side direction 

is not considered here because only the in-plane behavior of one bay in the short-side direction is 

of interest in this study. This building is assumed to be located at a Class-D NEHRP site in Bell, 

California, the same site as the benchmark building in the PEER report 2007/12 (Haselton et al., 

2008).  

The planar shear wall is expected to be dominated by its flexural behavior under lateral 

loads because its height-to-length ratio is 5.4. The planar 9-story shear wall, which is the same as 

the shear wall shown in Figure 5.3, is designed using the equivalent lateral force procedure and 

load combinations (dead load = 135psf, live load = 50psf) for strength design in ASCE 7-10 (ACI, 

2011) and ACI 318-11. As shown in Figure 5.17 and Figure 5.18, the beams and columns are 

designed using the SAP2000 version 19 (SAP2000, 2017), an integrated software for structural 

analysis and design. The detailed design calculation of the shear wall can be found in the Appendix.  

  
(a) (b) 

Figure 5.16. The schematic sketch of the 9-story building: prospective view (a) and plan view (b) 
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Figure 5.17. Reinforcement and geometric details of the exterior beams and interior beams  

 

Figure 5.18. Reinforcement and geometric details of the exterior columns and interior columns 

One interior bay in the long-side direction is modeled by a 2D four-bay plane frame with 

a shear wall along the short-side direction. Dynamic response of the 9-story building with two 

different support conditions, i.e., fixed base and free to rock, are evaluated through nonlinear 
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dynamic analysis in OpenSees. Once the rocking of the shear wall is activated, unique beam and 

column connections will be formed, as shown in Figure 5.19, to allow for the uplifting and rotating 

motion of the structure. The force-based distributed-plasticity fiber beam-column element 

(Spacone et al., 1996) implemented in the OpenSees is utilized to model the beams, columns, and 

slender shear wall. The model parameters of the element in OpenSees are shown in Tables 5.3 and 

5.4. A Rayleigh damping model with a 5% damping ratio is assigned for the 1st and 9th modes. 

Using the modeling parameters r and Cp of previous 9-story rocking shear wall as a reference, a 

trial-and-error process is conducted to determine that r=0.8~0.9 and Cp = 850~1500 k*in/(rad*s) 

to make sure the impact force amplitude is reasonable compared with the total weight loaded on 

the shear wall.  

 

Figure 5.19. The 2D model of rocking wall-frame system (Qu et al., 2012)   

Table 5.3. Reinforcement material model and parameters used in numerical analysis 

Material Model in  

OpenSees 

  Model Parameters         

  fy E b R cR1 cR2 

  (ksi) (ksi)         

#5 rebar Steel02   65 29000 0.01 15 0.925 0.15 

#6 rebar Steel02  65 29000 0.01 16 0.925 0.15 

#8 rebar Steel02  65 29000 0.01 17 0.925 0.15 

#11 rebar Steel02   70 29000 0.01 18 0.925 0.15 
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Table 5.4. Concrete material model and parameters used in numerical analysis 

Material Model in  

OpenSees 

  Model Parameters           

  f'c ε0 fcu εu λ ft Ets 

  (ksi) (ksi) (psi)     (psi) (psi) 

Confined Concrete  Concrete02   -7500 -0.00372 -1500 -0.0186 0.1 500 416667 

Unconfined Concrete Concrete02   -5000 -0.00248 -1000 -0.00496 0.1 500 416667 

 

5.4.2 Results and Discussion 

Seismic responses of the 9-story building are simulated when subject to the fault normal 

component of Newhall motion record under the 1994 Northridge earthquake with scale factor of 

0.5. The time history of rocking angle, top displacement, and top acceleration of the fixed base 

model and rocking model are shown from Figure 5.20 to Figure 5.26. It is observed that: 

(1) The rocking angle of the shear wall inside the building is smaller than that of the single 

rocking shear wall. This is expected since the moment frames connected with the rocking shear 

wall provide additional restraint after rocking is initiated. 

(2) For top displacement: a) The displacement time history of the rocking shear wall and 

columns are similar because the pinned connection is triggered when rocking motion is activated. 

b) The peak value of the top displacement of the rocking model is two times that of the fixed base 

model due to the rigid motion caused by rotation during rocking. In contrast, the top displacements 

of the fixed base model and rocking model are very close when the rocking rotation is small. 

Although the total displacement of the rocking model is larger than that of the fixed base model, 

later it will be demonstrated that a large portion of this displacement is due to the rigid body motion, 

thus, will not lead to damage in the structural components. c) Note that, even though there are no 

post-tensioned tendons in the shear wall, the re-centering force provided by the wall gravity can 

bring the whole system back to the original position, while there is visible residual displacement 
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in fixed-base case. It validates the self-centering ability of a free-standing shear wall. 

(3) For top acceleration: a) The top acceleration of the rocking model is smaller than the 

fixed base model during the time history -- the acceleration amplitude is reduced nearly 55% after 

rocking motion is initiated. Therefore, the structure with a rocking shear wall has a smaller 

acceleration demand. b) The acceleration is damped out after 25 sec for structure with the fixed 

base shear wall, while the acceleration is damped slower for structure with rocking shear wall due 

to the rocking motion. But the acceleration after 25sec is small enough not to cause any problem. 

  
 

Figure 5.20. The rocking response of shear wall 

  

Figure 5.21. The top displacement time history of shear wall 
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Figure 5.22. The top displacement time history of exterior column  

  

Figure 5.23. The top displacement time history of interior column  

  

Figure 5.24. The top acceleration time history of shear wall  
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Figure 5.25. The top acceleration time history of exterior column 

   

Figure 5.26. The top acceleration time history of interior column 

Additionally, interstory drift ratio is commonly used as a measure of damage in assessing 

the seismic performance of multistory building structures. Figure 5.27 plots the interstory drift 

ratio of exterior column in the 9-story building computed by different FE models. The interstory 

drift ratio for rocking model is the elastic deformation interstory drift ratio obtained by subtract 

the rigid deformation from the total deformation. Interstory drift ratio of rocking structure is 

smaller than that of fixed base structure along each story. The maximum interstory drift is reduced 

from 1.52% to 0.35% by using the rocking shear wall. Besides, a much more uniform distribution 

of interstory drift ratio, which usually be treated as a benefit of using rocking shear wall in 
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retrofitting, is observed in upper floors. Note, the rocking behavior in this study is obtained by 

setting the existing shear wall to rocking. For the case of adding additional rocking shear wall as 

a retrofit (Qu et al., 2012), the benefit of uniform distribution of interstory drift ratio will be more 

significant since it brings in additional translational resistance. 

  

Figure 5.27. Interstory drift ratio of the exterior column in 9-story building 

 As shown in Figure 5.28 and Figure 5.29, the performance enhancement of flexural 

resistance is evaluated by comparing the moment-curvature plots of the fixed-base model and the 

rocking model. It is observed that the base of the rocking shear wall and other critical locations 

have almost linear behavior, while those of the fixed-based structure go further into the nonlinear 

state. Once the uplift mechanism is mobilized, the seismic demand on other critical locations of 

the structure will be reduced. Meanwhile, seismic resistance of rocking structures originates 

primarily from the mobilization of the rotational inertia of its members. Therefore, the structure 

survives with negligible or repairable damage.  
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Figure 5.28. Moment-curvature relationship at the base of exterior column (left) and interior 

column (right) in 9-story building 

  

Figure 5.29. Moment-curvature relationship near the base (second integration point of the first 

element) of shear wall (left) and at the base of shear wall (right) in 9-story building 
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The 9-story building is analyzed under the excitation of a set of broad-band ground motions, 

which are selected from the PEER Strong Motion Database (http://ngawest2.berkely.edu/) by 

Baker et al. (2011). The mean and variance of their logarithmic response spectra match that 

predicted for a ‘generic earthquake scenario’ typical of high-seismicity sites in California. The 

ground motions were selected to match a magnitude 7 strike-slip earthquake at a distance of 10k 

for a soil site (shown in Table 5.5). The fault normal components of these ground motions are used 

as input ground motions. The normalized maximum responses of structure with rocking shear wall 

are presented in Table 5.6. It is observed that: 

(1) Notable rocking motion, i.e., 
𝜃

𝛼
> 5%, only happens under specific ground motion cases, 

which are highlighted in bold font in Table 5.5. For other case, 0.1% <
𝜃

𝛼
< 5%.  

(2) The general benefit of using rocking components is observed. For large rocking cases, 

the drift reduction is 42%, the reduction of shear wall’s base moment is 59%, the reduction of 

column’s base shear is 14%, the reduction of top floor acceleration is 27%. At the same time, for 

small rocking cases, the drift reduction is 30%, the reduction of shear wall’s base moment is 56%, 

the reduction of column’s base shear is 13%, the reduction of top floor acceleration is 29%. 

(3) By comparing the performance enhancement between large and small rocking cases, it 

can be concluded that the energy dissipation during impact is just a small portion of the seismic 

resistance of rocking structures. The mobilization of the rotational inertia and gravity of rocking 

structures provide sufficient seismic resistance in reducing the dynamic response. 

(4) More research needs to be done to improve the proposed FE model. First, the rocking 

initiation condition, rotational moment of inertia, and energy computation are approximated by 

those of rigid rectangular block. An accurate value of the restitution factor and Cp value are still 

relying on the experimental test. The shear wall’s slenderness and size remain to be optimized to 
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improve the rocking performance. 

Table 5.5. Selected 14 soil motion inputs (M=7, R=10 KM) (Baker et al., 2011) 

No. Earthquake, Year Station Mag- 

nitude 

Peak 

acceleration(g) 

1 Mammoth Lakes,1980 Long Valley Dam 6.06 0.24 

2 Chi-Chi, Taiwan,1999 CHY036 7.62 0.32 

3 Cape Mendocino,1992 Rio Dell Overpass - FF 7.01 0.42 

4 Imperial Valley-06,1979 Delta 6.53 0.24 

5 Kocaeli, Turkey, 1999 Yarimca 7.51 0.28 

6 Imperial Valley-06,1979 Calipatria Fire Station 6.53 0.13 

7 Chi-Chi, Taiwan,1999 CHY034 7.62 0.29 

8 Chi-Chi, Taiwan,1999 NST 7.62 0.37 

9 Kocaeli, Turkey, 1999 Duzce 7.51 0.28 

10 Spitak, Armenia,1988 Gukasian 6.77 0.22 

11 Loma Prieta,1989 Gilroy Array #4 6.93 0.36 

12 Chi-Chi, Taiwan,1999 TCU060 7.62 0.21 

13 Victoria, Mexico,1980 Chihuahua 6.33 0.11 

14 Chi-Chi, Taiwan,1999 TCU118 7.62 0.11 

 

Table 5.6. Normalized maximum responses of structure with rocking shear wall            

No. θ/α (%) 

R,rocking/R,fixed-base* 

Drift 

ratio 

Wall base 

moment 

Column 

base shear 

top floor 

acceleration  

1 0.5 1.02 0.65 0.92 0.71 

2 11.6 0.49 0.31 0.84 0.78 

3 3 0.47 0.23 0.81 0.70 

4 4.5 0.78 0.39 0.87 0.76 

5 18.1 0.38 0.26 0.85 0.62 

6 0.9 0.89 0.84 0.98 0.51 

7 2.6 0.43 0.28 0.82 0.67 

8 2.0 0.79 0.42 0.88 0.83 

9 12.9 0.58 0.28 0.83 0.76 

10 1.5 0.54 0.31 0.85 0.81 

11 6.8 0.59 0.31 0.83 0.72 

12 6.9 0.54 0.35 0.85 0.67 

13 7.7 0.86 0.76 0.94 0.71 

14 9.9 0.65 0.62 0.92 0.88 

* R,rocking/R,fixed-base is the maximum responses of rocking structure 

normalized by maximum responses of fixed-base structure. 
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5.5 CONCLUDING REMARKS 

 First, a slender shear wall modeling technique of using force-based distributed-plasticity 

fiber beam-column element is verified. Then three existing FE models and one new FE model with 

zero-length impact rocking element are added into this slender shear wall model to predict the 

dynamic response of a rocking shear wall. All FE models can provide a good prediction for the 

rocking response of the rigid shear wall. However, the existing FE models are not applicable for 

modeling flexible rocking shear walls. In contrast, the proposed zero-length impact rocking model 

shows good numerical stability and prediction of both rigid and flexible rocking behavior. 

Subsequently, the dynamic responses of a 9-story building with a fixed base shear wall and 

rocking wall are evaluated through nonlinear dynamic analysis in OpenSees by using the proposed 

zero-length impact rocking model only. The general benefit of improving the dynamic responses 

related to the design demand and damage, such as floor acceleration, interstory drift, base moment, 

base shear, and moment-curvature relationship, is observed under the excitation of a set of broad-

band ground motions. Comparing the performance enhancement of large rocking and small 

rocking cases shows that the energy dissipation during impact is a small portion of the seismic 

resistance of rocking structures. The mobilization of the rotational inertia and gravity of the 

rocking structure provides sufficient seismic resistance in reducing the dynamic responses. 

It should be noticed that more research needs to be done to improve the proposed FE zero-

length impact rocking model. First, modeling parameters are still approximated by properties of 

rigid rectangular block and relying on the experimental test. Second, the shear wall’s size and 

slenderness remain to be optimized to improve the rocking performance. 
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6. CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

To investigate the performance enhancement of seismically protected structures, this 

research explores numerical simulation and nonlinear response analysis of two structural systems: 

one is inelastic structures and bridges with seismic protective devices, the other is structures with 

rocking components. 

In the first half of the research, an equivalent passive control design procedure is proposed 

and verified for optimal design of inelastic structures and bridges with protective devices. An 

existing hybrid simulation software (UI-SIMCOR) is adopted and modified to enable the 

integration algorithm to include nonlinear seismic protective devices (such as base isolation, 

various dampers), different active control schemes (such as classical linear optimal control and 

nonlinear sliding mode control) and multi-support excitation scheme. While the realistic behavior 

of nonlinear structures is modeled separately in current finite element analysis software package 

(OpenSees), the nonlinear seismic protective devices and active structural control algorithms can 

be modeled in MATLAB and pieced together through hybrid simulation to produce the most 

realistic overall structural responses.  

Then, the optimal design of equivalent passive control devices can be identified from the 

overall structural responses and active control forces. By applying the proposed passive control 

design procedure to an eight-story inelastic structure and a benchmark highway bridge with base 

isolation and nonlinear dampers, the following conclusions can be drawn: (1) The developed 

hybrid simulation framework can accurately assess the seismic behavior of inelastic structure and 

bridge with protective devices and active control schemes. (2) The optimal passive control design 
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are able to provide same seismic performance for the structures with various protective devices 

and various active control schemes. (3) The optimal passive design offers an appealing way to 

improve the seismic performance in general, namely, such performance enhancement stays when 

the structure has a different isolation design and subjects to different ground motion inputs. 

Additionally, both analytical and numerical modeling, as well as probabilistic modeling of 

rocking behavior are studied in order to provide effective ways to evaluate the performance 

enhancement of structure using rocking components. After studying the existing models and an 

analytical model of the rocking flexible column-foundation model, a zero-length impact rocking 

model is proposed and implemented in OpenSees. All models are verified by comparing with 

analytical solutions and shaking table tests. It is found that the rocking responses are very sensitive 

to initial conditions, impact mechanism and structural flexibility. Therefore, a PSDM-based model 

is proposed to predict the 3D rocking behavior through probabilistic seismic demand analyses.  

Finally, the reduction of strength demand and deformation demand, as well as the damage 

control by using rocking shear wall in a multi-story frame building are evaluated through a case 

study of 9-story rocking shear wall building. First, a slender shear wall modeling technique of 

using force-based distributed-plasticity fiber beam-column element is verified. Then the FE 

rocking models validated before are added into this slender shear wall model to predict the 

dynamic response of a rocking shear wall. Afterwards, the dynamic responses of a 9-story building 

with fixed-base shear wall or rocking shear wall are evaluated through nonlinear dynamic analysis 

in OpenSees. The dynamic response related to the design demand and damage, such as top 

displacement, top acceleration, interstory drift and moment-curvature relationship, are evaluated 

and it is observed that: (1) the interstory drift is reduced and uniformed by using rocking shear 

wall. (2) the edge elements of rocking model stay in the linear state while the elements of fixed 
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based model go further into the nonlinear state. (3) the moment demand of columns, beams and 

shear wall is significantly decreased by using the rocking shear wall.  

In summary, this study provides an effective hybrid simulation scheme to evaluate the 

seismic performance of buildings with protective devices and structural controllers; provides 

efficient ways to find optimal design of protective devices which can improve the structural 

performance and mitigate earthquake hazards; provides accurate model to quantify the rocking 

responses and verify that the strength demand and deformation demand, as well as the damage can 

be well controlled by using rocking components. 

6.2 FUTURE WORK 

This research implemented seismic protective devises and active control algorithms into a 

hybrid simulation framework that could work for comprehensive numerical models of inelastic 

structure and benchmark highway bridge. The optimal passive control design can be derived by 

using active control responses and model identification methods. The method showed great 

promises in effectively improving structural performances with protective devices. 

Recommendations for future research and directions are as follows: 

(1) Models of other seismic protective devices and different active control methods can be 

implemented in the hybrid simulation scheme.  

(2) Other accurate model identification methods should be applied to identify equivalent 

passive control design. 

(3) The choices of performance index when evaluating the control effects can be modified 

based on the needs. Besides, we can go one step further, which is relating the response quantities 

to the repair cost to provide more direct indication about the performance at the system level. 

(4) In this study, after finding the optimized passive design using the proposed procedure, 
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the performance enhancement can be seen for this specific structure. However, this kind of benefit 

could be evaluated under the lifecycle assessment framework to give a big picture. For example, 

assessing whether it will significantly cut the lifecycle cost for the structures on a regional scale 

using the knowledge that is learned from this study. 

For modeling and analysis of structure using rocking components, more study should be 

applied to understand the influence of impact mechanism and the uncertainty of FE rocking 

simulation. Furthermore, recommendations for future research using the implemented zero-length 

impact rocking element are as follows: 

(1) Consider the soil flexibility to include the damage of the soil and SSI effects when 

rocking is initiated, as observed in real cases.  

(2) Consider the vertical ground motion effects on the rocking behavior and structural 

responses, as vertical ground motion can be significant and impact the uplift of rocking 

components. 

(3) The real rocking would be a 3D movement. More research should be done to improve 

the analytical and numerical modeling of the 3D rocking behavior and quantify the 3D motion.  

.  
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APPENDIX 

A.1 CALCULATION OF SLIDING SURFACE FOR SMC 

Consider an n-DOF nonlinear building with the number of r controllers installed, for the 

determination of the P  matrix, first convert the state equation of motion into the regular form by 

the transformation (Utkin, 2013): 

 =Y Dz  (a.1) 

where D  is a transformation matrix defined by: 

 1

2 1 2n r

r

−

−
 −

=  
 

I B B
D

0 I
; 

1

2

 
=  
 

B
B

B
 (a.2) 

where 2n r−I  and rI  are ( ) ( )2 2n r n r−  −  and ( )r r  identity matrices respectively; 1B  

and 2B  are ( )2n r r−   and ( )r r  submatrices obtained from the partition of the B  matrix. In 

terms of transformed state vector Y , the performance index J  becomes ( ) ( )T

0
dJ t t t



=  Y TY , 

where 

 
( )

'
1 1− −=T D QD ; 

11 12

21 22

 
=  
 

T T
T

T T
 (a.3) 

where 11T  and 22T  are ( ) ( )2 2n r n r−  −  and ( )r r  submatrices obtained from the 

partition of the T  matrix. Q  is a ( )2 2n n  positive definite weighting matrix. Minimizing the 

performance index J  one obtains (Yang et al., 1995): 

 ( )1 '

2 22 12 21 1
ˆ0.5 2−= − +Y T A P T Y  (a.4) 

where 1Y  and 2Y  are ( )2n r−  and ( )r  vectors obtained from the partition of the vector

Y . 1−=A DAD . P̂  is a ( ) ( )2 2n r n r−  −  matrix satisfying the following Riccati equation: 
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 ( )' 1 ' 1 '

12 22 12 11 12 22 12
ˆ ˆˆ ˆ ˆ ˆ0.5 2− −+ − = − −A P PA PA T A P T T T T  (a.5) 

Where 1

11 12 22 21
ˆ −= −A A A T T , 11A  and 22A  are ( ) ( )2 2n r n r−  −  and ( )r r  submatrices 

obtained from the partition of the matrix A . Finally, the design matrix P  of the sliding surface 

= = S PZ  is obtained as: 

 
1 r

 = =  P PD P I D  (a.6) 

where ( )1 '

1 22 12 21
ˆ0.5 2−= +P T A P T . 

A.2 3D ROCKING RESPONSES DATA FOR PSDM 

Table A.1. Predicted Mave using different methods 

GM # 
Maximum displacement Mave [mm] 

ABAQUS Model 3D MATLAB model PSDM Average 

EC1 3.1 25.6 25.1 25.6 

EC2  27.6 39.8 27.6 

EC3 3.1 0.0 1.5 0.0 

EC4  15.1 34.1 15.1 

EC5 9.0 24.0 41.1 24.0 

EC6  51.0 71.6 51.0 

EC7  37.4 29.6 37.4 

EC8  30.4 28.6 30.4 

EC9 6.6 50.2 29.7 50.2 

EC10  24.2 48.4 24.2 

EC11 10.1 51.0 27.1 51.0 

EC12 8.0 31.3 28.9 31.3 

EC13  63.6 57.9 63.6 

EC14 9.1 41.8 52.9 41.8 

EC15 8.2 18.8 36.7 18.8 

EC16 9.1 52.5 66.7 52.5 

EC17  30.5 57.1 30.5 

EC18 7.1 39.2 31.6 39.2 

EC19 28.7 31.2 50.7 31.2 

EC20  35.8 45.1 35.8 

EC21  20.4 25.7 20.4 

EC22 6.3 32.6 30.7 32.6 

EC23  121.7 53.0 121.7 

EC24  38.2 51.5 38.2 
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EC25  28.9 26.1 28.9 

EC26  12.6 22.9 12.6 

EC27  21.1 52.5 21.1 

EC28 11.1 19.7 33.2 19.7 

EC29  50.7 37.7 50.7 

EC30  30.4 24.9 30.4 

EC31  48.2 41.8 48.2 

EC32  29.6 22.1 29.6 

EC33  14.7 32.6 14.7 

EC34  15.1 43.1 15.1 

EC35 10.2 59.3 68.7 59.3 

EC36  34.2 36.9 34.2 

EC37  21.4 43.5 21.4 

EC38  30.2 49.1 30.2 

EC39  41.9 37.0 41.9 

EC40  18.0 33.5 18.0 

EC41 12.3 32.9 48.9 32.9 

EC42  39.2 51.4 39.2 

EC43 12.1 45.4 25.1 45.4 

EC44  32.7 20.4 32.7 

EC45  84.8 27.8 84.8 

EC46  43.6 29.2 43.6 

EC47 9.7 54.1 22.0 54.1 

EC48  27.1 34.8 27.1 

EC49  24.2 30.0 24.2 

EC50 13.9 61.2 39.9 61.2 

EC51 7.1 47.7 48.9 47.7 

EC52  17.3 37.9 17.3 

EC53 9.9 18.9 24.7 18.9 

EC54  21.8 43.4 21.8 

EC55  40.6 20.2 40.6 

EC56 15.1 21.5 52.8 21.5 

EC57  31.2 34.5 31.2 

EC58  21.2 33.3 21.2 

EC59  13.1 49.4 13.1 

EC60  18.9 33.1 18.9 

EC61  19.6 41.9 19.6 

EC62  47.4 42.4 47.4 

EC63  21.2 33.7 21.2 

EC64  68.6 48.2 68.6 

EC65  52.3 35.7 52.3 

EC66  27.8 38.6 27.8 

EC67  24.4 23.9 24.4 

EC68  39.6 29.2 39.6 

EC69 16.4 48.5 21.5 48.5 
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EC70 7.2 34.7 31.2 34.7 

EC71  27.4 27.2 27.4 

EC72  37.6 73.0 37.6 

EC73 6.7 18.9 28.8 18.9 

EC74  39.3 52.8 39.3 

EC75  13.6 32.1 13.6 

EC76  24.5 55.2 24.5 

EC77  39.6 35.6 39.6 

EC78 5.9 41.5 26.4 41.5 

EC79  65.3 25.0 65.3 

EC80  0.0 26.3 0.0 

EC81 8.5 29.6 23.8 29.6 

EC82 7.3 13.7 32.3 13.7 

EC83  54.5 33.2 54.5 

EC84  48.4 73.9 48.4 

EC85  45.1 70.6 45.1 

EC86  30.0 59.2 30.0 

EC87  25.6 20.7 25.6 

EC88  62.6 46.2 62.6 

EC89  17.8 32.1 17.8 

EC90 9.1 32.4 22.1 32.4 

EC91  0.0 27.1 0.0 

EC92  78.3 33.7 78.3 

EC93  41.2 36.4 41.2 

EC94  32.3 54.9 32.3 

EC95 7.7 40.2 20.3 40.2 

EC96 10.1 24.5 35.3 24.5 

EC97 9.0 42.4 26.7 42.4 

EC98 11.7 44.2 31.9 44.2 

EC99  8.2 32.4 8.2 

EC100 3.6 25.9 20.1 25.9 

CC1  156.5 104.4 156.5 

CC2  153.2 132.6 153.2 

CC3 68.6 135.1 111.6 101.9 

CC4 99.4 101.8 56.9 100.6 

CC5  140.7 136.7 140.7 

CC6 50.3 112.8 93.5 81.6 

CC7  65.4 148.8 65.4 

CC8 166.9 209.4 85.2 188.2 

CC9  44.0 45.1 44.0 

CC10 47.8 105.5 76.5 105.5 

CC11 136.1 172.0 81.4 154.1 

CC12 74.9 271.7 189.1 173.3 

CC13  108.9 129.6 108.9 

CC14 475.0 148.0 106.4 311.5 
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CC15  130.5 102.7 130.5 

CC16 77.6 315.0 104.3 196.3 

CC17 112.4 72.2 312.6 92.3 

CC18  50.2 79.5 50.2 

CC19  118.2 144.1 118.2 

CC20 104.4 193.8 102.7 149.1 

CC21  315.0 140.6 315.0 

CC22 216.5 69.1 93.2 142.8 

CC23 96.4 137.1 124.5 116.7 

CC24 99.5 112.2 114.5 105.9 

CC25 111.8 98.4 64.1 105.1 

CC26 111.0 128.8 157.8 119.9 

CC27  315.0 179.1 315.0 

CC28  135.9 194.1 135.9 

CC29 85.2 188.7 131.2 137.0 

CC30  61.4 144.1 61.4 

CC31  315.0 156.3 315.0 

CC32 60.2 52.2 168.4 56.2 

CC33 90.5 176.4 241.9 133.5 

CC34  96.7 140.6 96.7 

CC35 68.9 315.0 100.3 192.0 

CC36 185.3 315.0 70.4 250.2 

CC37 109.5 96.4 133.5 102.9 

CC38  96.8 120.3 96.8 

CC39 99.1 180.9 189.7 140.0 

CC40 44.7 82.5 87.5 82.5 

CC41  252.2 108.6 252.2 

CC42 54.3 108.9 130.4 81.6 

CC43 71.9 226.9 111.6 149.4 

CC44 123.5 109.0 250.3 116.2 

CC45 67.0 91.2 149.3 79.1 

CC46  315.0 168.7 315.0 

CC47 126.5 181.2 137.3 153.8 

CC48 156.7 161.0 86.2 158.9 

CC49  44.6 110.3 44.6 

CC50 89.5 107.6 107.7 98.5 

CC51  94.0 95.6 94.0 

CC52  170.3 68.2 170.3 

CC53  171.2 127.4 171.2 

CC54  126.0 149.0 126.0 

CC55 80.7 110.8 113.6 95.8 

CC56  144.1 129.6 144.1 

CC57 145.1 214.5 126.5 179.8 

CC58  214.5 139.6 214.5 

CC59  88.2 116.0 88.2 
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CC60  163.1 125.4 163.1 

CC61  161.3 84.6 161.3 

CC62 5.7 16.5 42.1 16.5 

CC63  159.6 165.5 159.6 

CC64  315.0 165.3 315.0 

CC65 85.0 108.9 154.0 96.9 

CC66  175.3 314.1 175.3 

CC67  81.1 100.1 81.1 

CC68  315.0 156.5 315.0 

CC69 48.4 83.7 251.2 83.7 

CC70 120.1 148.9 111.2 134.5 

CC71 53.2 201.2 152.7 127.2 

CC72  92.1 67.9 92.1 

CC73 75.3 84.3 159.6 79.8 

CC74 85.0 178.9 116.8 131.9 

CC75  84.0 142.1 84.0 

CC76  74.6 194.4 74.6 

CC77 53.2 153.9 95.5 103.5 

CC78 55.7 47.4 139.8 51.5 

CC79  52.3 94.1 52.3 

CC80 121.6 144.8 147.0 133.2 

CC81  81.3 92.2 81.3 

CC82  129.8 156.0 129.8 

CC83 6.7 126.3 98.7 126.3 

CC84 115.4 137.9 86.9 126.7 

CC85 44.5 128.0 184.6 128.0 

CC86  52.8 174.8 52.8 

CC87  106.0 112.0 106.0 

CC88 73.3 80.5 100.9 76.9 

CC89 102.0 315.0 62.3 208.5 

CC90 90.1 128.5 274.9 109.3 

CC91 58.4 103.6 201.7 81.0 

CC92  166.2 86.0 166.2 

CC93  145.6 127.6 145.6 

CC94  120.9 137.5 120.9 

CC95 107.4 125.2 101.5 116.3 

CC96  199.7 84.6 199.7 

CC97 93.3 121.1 80.9 107.2 

CC98 99.4 149.5 119.7 124.4 

CC99  166.4 179.3 166.4 

CC100 152.2 138.0 99.9 145.1 
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A.3 SHEAR WALL DESIGN OF 9-STORY OFFICE BUILDING 

A nine-story residential building with five shear walls of 20ft (length)×1.5ft 

(thickness)×108ft (height) 

 

Dead load: 135 psf on each floor; 

Live load (office use): 50 psf on each floor  

Reduction in live loads per ASCE 7-05 4.8.1: 
15

50 0.25 23.1
4 1250

psf psf
 

+ = 
 

 

Self-weight of a wall: 150 20 1.5 108 486pcf ft ft ft kips   =  

Self-weight of beams: 150 (20 /12) (16 /12) 25 8.3pcf ft ft ft kips   =  

Self-weight of slab: 150 25 45 (6 /12) 84.375pcf ft ft ft kips   =  

Seismic weight of each floor: 135 150 100 2025iw psf ft ft kips=   =  

Effective seismic weight for each wall: 9 2025 / 5 486 8.3 9 84.375 9 4965W kips=  + +  +  =  

Estimate the period of the structure by rule of thumb: 
0.750.02 (108) 0.67secaT =  =  

Assume the building locates in Bell, Los Angeles, site class D: 

6×25ft=150 ft 

1
0
0
 f

t 

25ft×50ft 
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1 1

1

0 1
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(2 / 3) 1.0

(2 / 3) 0.9
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Occupancy category, II 

Importance factor I=1.0 

Seismic design category E    S1> 0.75g 

For dual systems with special moment frames capable of resisting at least 25% of prescribed 

seismic forces with special reinforced concrete shear walls, R=7 

Following equivalent lateral force procedure, 

1.0
0.143

( / ) 7

DS
s

S
C

R I
= = =  

Check the maximum and minimum limits on Cs, 

1 0.9
0.192

( / ) 0.67 7

D
s

S
C

T R I
 = =


, OK! 

0.01SC  , OK! 

10.5 0.5 0.9
0.064

( / ) 7
s

S
C

R I


 = = , OK! 

Therefore, 0.143sC =  

Design base shear due to equivalent seismic load: 0.143 4965 710SV C W kips kips= =  =  

Linear distribution of equivalent seismic force according to  

Floor # xF  (kip) x xF h (kip-ft) 

1 14 163 

2 29 691 
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3 45 1610 

4 61 2933 

5 78 4671 

6 95 6831 

7 112 9420 

8 130 12444 

9 147 15908 

  710 54671 

 

Equivalent earthquake loads applied at the base of the shear wall: 

7

1

710

54671

EQ

EQ x

x

V kips

M M kip ft
=

=

= = −
 

The deal load and live load within the tributary area (dashed rectangle in the figure at beginning) 

at each floor:   

135 25 50 169

23.1 25 50 29

DL psf ft ft kips

LL psf ft ft kips

=   =

=   =
 

The total dead load at the base of the shear wall:  

9 169 486  (self-weight of wall)+9 8.3+9 84.375 2841DLP kips kips kips=  +   =  

The total live load at the base of the shear wall:  

9 29 261LLP kips kips=  =  

Summary of Loads at the base of a central shear wall: 

2841

261

710

54671

DL

LL

EQ

EQ

P kips

P kips

V kips

M kip ft

=

=

=

= −

 

Load combinations for Strength Design (ASCE 7-05 12.4.2.3): 

(1) U=(1.2+0.2SDS)D+ρQE+0.5L=1.4D+QE+0.5L 
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1.4 0.5 4108

710

54671

u DL LL

u EQ

u EQ

P P P kips

V V kips

M M kip ft

= + =

= =

= = −
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Design of boundary vertical reinforcement: 

Load combination (2) is critical because of the smaller axial force 
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