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Abstract

Observing the actions of other people allows us to learn not
only about their mental states, but also about hidden aspects
of a shared environmental situation — things we cannot see,
but they can, and that influence their behavior in predictable
ways. This paper presents a computational model of how peo-
ple can learn about the world through these social inferences,
supported by the same Theory of Mind (ToM) that enables rep-
resenting and reasoning about an agent’s mental states such as
beliefs, desires, and intentions. The model is an extension of
the Bayesian Theory of Mind (BToM) model of Baker et al.
(2011), which treats observed intentional actions as the output
of an approximately rational planning process and then rea-
sons backwards to infer the most likely inputs to the agent’s
planner — in this case, the locations and states of utility sources
(potential goal objects) in the environment. We conducted a
large-scale experiment comparing the world-state inferences of
the BToM model and those of human subjects, given observa-
tions of agents moving along various trajectories in simple spa-
tial environments. The model quantitatively predicts subjects’
graded beliefs about possible world states with high accuracy
— and substantially better than a non-mentalistic feature-based
model with many more free parameters. These results show the
power of social learning for acquiring surprisingly fine-grained
knowledge about the world.

Keywords: Social Cognition; Theory of Mind; Social Learn-
ing; Reinforcement Learning

Introduction

The most obvious way to learn about the world is by direct
observation. You may believe there is a Starbucks across
the street from your office because you have passed it many
times, and believe it is open at this moment because you just
passed by a few minutes ago and saw a number of people go-
ing in and out. But many aspects of the world are unobserv-
able and must be inferred indirectly, often based on observing
the actions of other people who know or perceive what you
do not. Consider the situation of driving or biking and need-
ing to turn left at an intersection onto a busy street, across
oncoming traffic. Of course before turning you will check to
see whether there are any cars coming down the busy street
from the left, but suppose there is a large truck parked on
the street, blocking your view so that you cannot see whether
there is any oncoming traffic. You may inch out slowly until
you can see, but you may also observe what other drivers or
pedestrians are doing. If they are in a position to see the on-
coming cars that you cannot, and if they are crossing the busy
street at the same point you wish to turn, then it is a good bet
that your turn would also be safe.

Making such a judgment is literally betting your life on
a mental model of another person’s cognitive processes — a
Theory of Mind (ToM) (e.g. Dennett, 1987; Wellman, 1990;
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Gopnik & Meltzoff, 1997). Implicitly you assume basic as-
pects of rationality in the person you see crossing the street:
that they want to cross safely, that they update their beliefs
about the presence of oncoming cars based on what they can
see, and that they plan their actions appropriately to achieve
their goals given their beliefs. If they are clearly paying at-
tention to the side of the street you cannot see, and they are
walking across unhurriedly and unworriedly, it is then a good
bet that no traffic is headed imminently toward them; if they
are jumping or dashing out of the way, that is another story.

Accounts of distinctively human cognition often empha-
size the sophisticated representational power of people’s
ToM, as in the capacity to represent arbitrary belief states,
false beliefs as well as true ones, and predict how people will
act accordingly. But just as or more important is the sophis-
ticated inferential power of ToM: how we can learn about the
contents of other agents’ mental states, or even the structure
of the world, by reasoning backwards to the best explanations
of agents’ observed behaviors. This kind of inverse reasoning
underlies not only the traffic example above, but many other
situations of practical importance for everyday cognition. For
example, if you see people filing out of a new restaurant with
contented looks, it is a good bet the food inside is satisfying.
If you see someone enter the restaurant with an expression of
eager anticipation, then exit a moment later and start looking
for a different place to eat, you might guess that the restau-
rant is unexpectedly closed — or perhaps he mistook it for a
different place. If your friend the foodie goes far out of his
way while visiting a new city to visit a particular restaurant,
you can bet that place is one of the city’s best.

In this paper, we present a computational model of this
social-learning capacity — inferring the world’s state from ob-
serving other agents’ behavior, guided by ToM. Similar in-
ferential abilities have been studied in infants (Csibra, Biro,
Koés, & Gergely, 2003) and adults (Goodman, Baker, &
Tenenbaum, 2009), and the latter paper presented a compu-
tational model similar to ours in key respects (but focused
on causal learning). Our work is the first to test people’s
social learning against rational model predictions in a large-
scale quantitative experiment, showing that people can form
surprisingly accurate fine-grained beliefs about the relative
probabilities of different possible worlds from sparse social
observations — just a single agent moving along a single goal-
directed path of intentional action. We contrast our model
with a non-intentional, non-ToM account based on low-level
features of the agent’s motion. Even when we introduce
many free parameters in the form of variable feature weights,



and optimize their values to best fit people’s world-state in-
ferences, the feature-based alternative performs substantially
worse than a ToM-based model with many fewer parameters.

Computational framework

A rapidly growing body of research suggests that human
judgments about intentional agents’ mental states (goals,
preferences, beliefs) can be modeled as probabilistic in-
verse planning, inverse optimal control, or inverse decision-
making: Bayesian inferences over predictive models of
agents’ rational behavior (Baker, Saxe, & Tenenbaum, 2009;
Lucas, Griffiths, Xu, & Fawcett, 2009; Bergen, Evans, &
Tenenbaum, 2010; Jern, Lucas, & Kemp, 2012; Baker, Good-
man, & Tenenbaum, 2008; Ullman et al., 2010; Tauber &
Steyvers, 2011). Here we adopt the Bayesian ToM (BToM)
formulation of Baker, Saxe, and Tenenbaum (2011), express-
ing relations between the world’s state, an agent’s state, and
the agent’s observations, beliefs, desires, and actions in terms
of a rational-agent model known as a partially observable
Markov decision process (POMDP) (Kaelbling, Littman, &
Cassandra, 1998). This captures a probabilistic version of the
classical rational agent who updates their beliefs to conform
with their observations and chooses sequences of actions ex-
pected to achieve their desires given their beliefs. The causal
schema for BToM is shown in Fig. 1(a).

Baker et al. (2011) used the BToM model to explain hu-
man observers’ joint inferences about agents’ beliefs and de-
sires, based on how these mental states guided agents’ ac-
tions exploring a small, spatially structured world with dif-
ferent sources of utility (candidate goals) in different loca-
tions. Observers had full knowledge of the agent’s situation
and world state, but the agent only learned about the world
piecemeal (based on line-of-sight perceptual access) as it ex-
plored. In contrast, in this paper we consider scenarios where
neither the agent nor the observer have full access to the state
of the world. The agent again has line-of-sight perceptual
access, but the observer sees none of the utility sources (can-
didate goals) in the environment; these must be inferred from
observing the agent’s movements. At first blush, this infer-
ence problem might seem hopelessly underconstrained; how-
ever, we will show that when the observer knows the agent’s
preferences, and if those preferences are strong enough, then
joint inferences about the agent’s beliefs and the unobserv-
able world state are possible.

To illustrate how this works, consider the scenario shown
in Fig. 2. At a certain university food hall, every day at
lunchtime three different food carts arrive: an Afghani (A)
cart, a Burmese (B) cart, and a Colombian (C) cart. The food
hall contains three rooms, West (W), North (N) and East (E),
and on any given day, any cart can be in any room. Harold,
the student shown in the figure, always prefers to eat at cart
A over carts B and C, and prefers to eat at cart B over cart
C. Furthermore, carts A and B can be open or closed when
Harold arrives; he only goes to a cart if he sees that it is open.
Cart C is always open and is the last resort when all others are
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Figure 1: Causal structure of Theory of Mind. Traditional accounts
of ToM (e.g., Dennett, 1987; Wellman, 1990; Gopnik & Meltzoff,
1997) have proposed informal versions of these schemata, charac-
terizing the content and causal relations of ToM in commonsense
terms, e.g., “seeing is believing” for the principle of rational be-
lief. (a) Schematic of the Bayesian theory of mind (BToM) model
proposed by Baker et al. (2011). Grey shaded nodes — World State
and Agent State — are assumed to be observed (for the observer; not
necessarily for the agent, as described in the main text). (b) Our ex-
tension of BToM to allow inference of hidden aspects of the World
State by observing an agent’s behavior. Here, the Agent State and
Desire are observed, but the World State is only partially observable
for both agent and observer.

closed.

Fig. 2(a) shows a hypothetical path that Harold could take,
ending in the North room. What, if anything, does this tell
us about the cart locations? From where Harold enters the
food hall, he can observe the cart in the North room. Next,
he checks the East room, indicating that either cart A is not
in the North room, or that cart A is in the North room, but
is closed. When Harold returns to the North room, only one
possibility remains: that he saw cart A in the East room, but it
was closed, so he returned to the North room to eat at cart B,
which was open (this cart configuration is shown in Fig. 2(d),
row 1, column 3). Crucially, this inference also depends on
Harold’s not checking the West room, which is consistent
with several other configurations in Fig. 2(d). In our exper-
iment, 66% of participants rated the correct configuration to
be the most likely in this condition (chance = 17%).

Informal Model Sketch

Fig. 1 sketches the causal schema for BToM. For concrete-
ness, we will describe the content of the model in terms of
our food carts scenario, but in principle the BToM framework
can be defined over arbitrary state and action spaces. In our
food cart examples, there are 24 possible World States: 6 pos-
sible cart configurations (shown in Fig. 2(d)) times 4 possible
joint combinations of open/closed for carts A and B. There
are 12 possible Agent States, one for each grid square in the
food hall scenario. Agents’ Observations provide information
about the World State, conditioned on the Agent State, and
are based on line-of-sight visibility — Fig. 2(b,c) give exam-
ples of what can be seen from different vantage points. The
observer represents an agent’s Belief as a probability distri-
bution over possible World States. The observer maintains a
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Figure 2: Example experimental stimulus. (a) Example of an ob-
served path. The task is to figure out where each of three food carts
is, given the trajectory the agent took. (b) In the agent’s initial posi-
tion he can observe the North spot with food truck B in it. However,
he doesn’t know where his favorite cart A is. (c) Agent’s state when
he travels to the entrance of the East hallway. He can now observe
cart A being closed and remembers having seen cart B in the North
spot. With this information he can deduce that cart C is in the West
room and so his best option is to choose the North spot, produc-
ing the path shown in (a). (d) Possible configurations the carts can
take independent of them being closed or open. In the experiment,
subjects ranked these six configurations for each path.

finite set of possible Beliefs the agent could hold, drawn from
a prior over initial Beliefs, and simulates the agent’s Belief
update for each possible Observation, given the Agent State
and World State. An agent’s Desire is captured by utilities for
each cart which capture the preference relation A > B > C.

Given the representational content of the nodes, BToM ex-
presses the functional form of the causal relations in Fig. 1 in
terms of POMDPs, which capture the dual principles of ratio-
nal Belief and Action in Fig. 1. To generate a POMDP policy
for each initial Belief point, we employ an implementation of
the SARSOP algorithm (Kurniawati, Hsu, & Lee, 2008), pro-
vided by the APPL POMDP solver. These policies represent
a predictive, Belief- and Desire-dependent distribution over
the agent’s actions.

The schema in Fig. 1 illustrates the conditional dependen-
cies involved in the model of the agent. For clarity, in this in-
formal sketch we suppress the temporal nature of the model;
technical details of dynamic inference are provided in Baker
et al. (2011). The predictive distribution over the agent’s Ac-
tion, given its Desire, Beliefs, the World State and the Agent
State (abbreviating variable names as A, D, B, W, S respec-
tively) is:
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p(AID,W,S)

) p(A|B,D)Y p(BlO)p(OIW,S). (1)
B o

In Fig. 1(b), the World State is unknown, and the prob-
lem of “learning what is where” involves inferring the World
State, given an agent’s Desire and Action using Bayes’ rule:

).

Intuitively, this involves evaluating the likelihood of every
possible World State, given the agent’s Action, Desire and
Agent State, and integrating these likelihoods with the prior
over possible World States. Evaluation of each likelihood also
requires simultaneously inferring and updating the agent’s
Beliefs over time.

p(W[A,D,S) < p(A|D,W,S)p(W 2)

An alternative cue-based model

To assess the intrinsic difficulty or logical complexity of our
task, we formulated a cue-based alternative to our BToM ac-
count of social inference of food cart locations. We name the
alternative model F-40; the model considered 7 key features
and fit 40 free parameters (one for each feature, plus an addi-
tive constant, multiplied by 5 independent response variables)
using multinomial logistic regression to minimize the error
in prediction of human judgments. The features were cho-
sen to capture key moments in the paths that were strongly
indicative of a preferred cart being in a particular location.
Specifically, for each room, we assigned a unique vantage
point at which the agent could see what was in that room,
and could choose to either commit to eating at that room by
moving North/South, or commit to moving to another van-
tage point by moving East/West. The set of vantage points is
indicated by the marked cells in Fig. 5. Features Toward and
Away were computed for each room by counting the number
of times the agent moved to or away from that room, starting
from that room’s vantage point. In addition to the 6 Toward
and Away features, the 7th feature recorded whether or not the
condition was part of the introduction (in which carts could
not be closed) or the main experiment. Because of its large
number of free parameters, we hypothesized that F-40 would
capture those regularities in people’s judgments that could be
explained by low-level movement properties.

Experiment
Design

Fig. 2 illustrates our experimental design. On each trial, sub-
jects were shown either a complete or an incomplete path that
the agent took. They were then asked to rate on a scale from 0
to 10 (with 0 meaning “Definitely Not”; 10 “Definitely”’; and
5 “Maybe”’) how much they believed each possible configura-
tion of carts was the real one. Fig. 2(d) shows the six possible
configurations of carts that subjects rated on each trial. Food
cart names as well as stimulus order were randomized across
subjects. For simplicity we will refer to the carts as Afghani
(A), Burmese (B), and Colombian (C), always with the pref-
erence order: A >~ B > C.



In this scenario there are 24 possible worlds (6 possible
permutations of the cart’s locations multiplied by 4 permuta-
tions of carts A and B being open or closed). Stimuli were
generated as follows. We assume that the agent always starts
at the entrance of the North hallway, being able to chose be-
tween entering that hall, going to the West hall, or going to
the East hall. An exhaustive list of possible paths was con-
structed by listing all possible combinations of the short-term
goals of the agent (go to entrance of W hall, go to entrance of
N hall, and go to entrance of W hall), assuming that the first
time a hall is selected it is for the purpose of exploration, and
any selection of a hall that had been selected before is for ex-
ploitation, meaning the agent has chosen where to eat. From
the eleven exhaustively enumerated paths, two paths that only
produced permutations of beliefs were removed, leaving a to-
tal of 9 complete paths. In addition, 7 incomplete paths (sub-
sequences of the 9 complete paths) which produce different
judgments were selected. Lastly, three of these paths were
duplicated in initial displays in which all carts are assumed
to be open, shown to subjects to familiarize them with the
task. This produced a total of 19 different paths (see Fig. 3)
for which each subject rated the six possible configurations
of carts, for a total of 114 judgments per subject.

Participants

200 U.S. residents were recruited using the Amazon Mechan-
ical Turk. 176 subjects were included in the analysis, with 24
excluded due to server error.

Procedure

Subjects first completed a familiarization stage, which began
with an explanation of the basic food cart setting, and allowed
subjects to provide judgments for three paths where the food
carts were assumed to always be open. Next, the possibility
that carts could be closed was introduced with a step by step
example. The experimental stage immediately followed.

Results

We begin by analyzing the fit between people’s judgments
and our two models. Fig. 3 shows the average human rat-
ing of the likelihood of each cart configuration, the BToM
model, and the F-40 model. In Fig. 3 it is clear that both
models perform well in capturing the general contours of the
mean subject belief, but with a quantitative difference in their
explanatory power.

The BToM model has four parameters that were not fit to
the data: three parameters indicating how strong the prefer-
ence for each food cart is, and a discount parameter indicating
the tradeoff between immediate and delayed rewards. Intu-
itively, these four parameters together determine whether an
agent is willing to spend time and energy finding food carts
he likes better or whether he should settle for a closer cart.
These parameters were set only qualitatively, to ensure that
the agent would have a strong preference order that would
motivate him to explore the environment until he finds the
best option.
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In contrast, the F-40 model has forty free parameters fit
to the average subject ratings, and so, by construction, the
fit is very close to human judgment. Looking deeper into
the model, there were no outstanding predictive features of
the path that would determine the food cart ordering. That
is, F-40 shows a great capacity to mimic human reasoning,
but it fails to capture the essence of the task. This clear in
Fig. 4, where we can see that mean human judgments have a
r = 0.91 correlation with the BToM model, but a correlation
of r = 0.64 with the F-40 model. As we can see in the scat-
terplot, BToM comes much closer to explaining the variance
in the human data, while F-40 is much less accurate over-
all. Fig. 4(c) shows that for a strong majority of individual
subjects, the BToM model provides a superior fit. To further
assess the statistical significance of the models we performed
a Bootstrap Cross-Validated Correlational Analysis (Cohen,
1995). For 10,000 iterations, we trained F-40 on randomly
selected subsets of paths and compared its performance on
the remaining untrained paths. This produced average cor-
relations of r = —0.0733, —0.0832 and 0.0830, for training
sets of size 16, 17 and 18 (and testing sets of size 3, 2, and 1),
respectively. A similar analysis with BToM (for which no pa-
rameters were fit to data) yielded correlations of » = 0.9015,
0.8922 and 0.8714 for testing sets of size 3, 2 and 1, respec-
tively. These analyses suggest that the feature-based model is
not tapping into the cognitive mechanisms underlying human
performance, but rather just fitting the data without strong
predictive power.

This is clear in Fig. 5, where two paths that contrast the
models’ performance are shown. For path 1, BToM is capa-
ble of realizing that if the carts were set as C, B, A/closed in
positions West, North, and East respectively, then the agent
would have no reason to visit the West position, since by the
time it has observed B and A/closed it already has all the in-
formation it needs to make its final choice. It is this type of
fine grained reasoning that allows BToM to make subtle infer-
ences when F-40 fails as a result of mimicking the data rather
than predicting it.

Discussion

In this work we have proposed a Bayesian Theory of Mind
model to explain how we make sense of the world by observ-
ing how others interact with it. Our experiment shows that
subjects produce very similar predictions to that of the ideal
Bayesian observer. We have compared the BToM model to
a feature-based regression model (F-40) that was fit to sub-
jects’ mean judgments. Although the F-40 model appears to
be a good competitor, we show that at both the individual and
average level, the correlation with the BToM model is sub-
stantially higher compared to the correlation with F-40. Fur-
ther analysis showed how BToM is capable of more subtle,
fine-grained reasoning, making sensible inferences in several
situations where F-40 gives counter-intuitive predictions.
One interesting point is that the BToM model is more sensi-
tive to the precise geometry of the environment than humans
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Figure 3: Mean subjects’ judgments (normalized degrees of belief in each of six possible configurations of the food carts), along with BToM
and F-40 predictions for the 19 displayed paths. The agent’s preference order for these carts is always known to be A >~ B > C, and carts A
and B may be open or closed. The first three conditions were those used in the familiarization phase. The second block used “completed”
paths, in which the agent committed to a particular cart in the last frame. The last block of conditions used “incomplete” paths, in which the

agent’s final destination had not yet resolved.

seem to be. Specifically, because of the asymmetry of the
hallway in our experiment, the model assigned a significantly
higher cost to checking the West hallway versus checking the
East hallway. Thus, when the model observed the agent go-
ing West, it reasoned that the agent must have had some prior
belief in the presence of a high value cart in the West hall-
way or a low value cart in the East hallway that made him
go through the more lengthy path versus the shorter path to
check the East hallway. In contrast, subjects did not appear to
be sensitive to the distance mismatch and produced relatively
symmetric judgments on paths that had the same structure
but traveled in opposite directions. This is particularly evi-
dent in the plot (3,1) of Fig. 3. In this path, subjects believed
that the agent had already found carts (A) and (B) and there-
fore had no need to visit the East room. The model however,
when observing the agent choose the longer path, reasoned
that there was some prior belief the agent had that could have
been wrong. This leads the model to consider it possible that
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the (B) food truck was in the East room but that the agent had
a prior belief that it was closed and therefore did not bother
checking it. Analogous disparities were found by Baker et
al. (2011), and in ongoing work we are investigating more
qualitative representations of the spatial structure of the en-
vironment that might support a closer match between BToM
model reasoning and human judgments.

In sum, these results show the power of social inference
for acquiring surprisingly fine-grained knowledge about the
world. ToM is typically thought of as a system of knowl-
edge for reasoning about the mental states and actions of in-
tentional agents, but it is not only that. In the context of a
Bayesian framework, actions of other agents become clues to
any aspects of the environment that causally influence their
behavior — sometimes the only clues available. ToM thus also
provides an essential tool for learning about the world.
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Figure 4: Comparison of models and normalized human judgments.
(a) BToM vs. mean normalized human judgments. Each point repre-
sents a mean human rating plotted against the corresponding model
prediction; there are 114 points in all (19 conditions times ratings
for 6 possible cart configurations), with an overall correlation of
r=0.91. (b) F-40 vs. mean normalized human judgments; analo-
gous to analysis (a), with an overall correlation of r = 0.64. (c) Scat-
ter plot of individual subjects’ correlations with BToM vs. individ-
ual subjects’ correlations with F-40; 176 points in all (one point for
each subject). For 80% of subjects, the correlation between BToM
and that subject’s ratings is higher than the correlation of F-40 with
that subject’s ratings. The bold “X” plots the correlation of BToM
with the mean human judgments vs. that of F-40.
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