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Abstract

In this paper, we investigate frailty models for clustered survival data that are subject to both left- 

and right-censoring, termed “doubly-censored data”. This model extends current survival literature 

by broadening the application of frailty models from right-censoring to a more complicated 

situation with additional left censoring.

Our approach is motivated by a recent Hepatitis B study where the sample consists of families. We 

adopt a likelihood approach that aims at the nonparametric maximum likelihood estimators 

(NPMLE). A new algorithm is proposed, which not only works well for clustered data but also 

improve over existing algorithm for independent and doubly-censored data, a special case when 

the frailty variable is a constant equal to one. This special case is well known to be a 

computational challenge due to the left censoring feature of the data. The new algorithm not only 

resolves this challenge but also accommodate the additional frailty variable effectively.

Asymptotic properties of the NPMLE are established along with semi-parametric efficiency of the 

NPMLE for the finite-dimensional parameters. The consistency of Bootstrap estimators for the 

standard errors of the NPMLE is also discussed. We conducted some simulations to illustrate the 

numerical performance and robustness of the proposed algorithm, which is also applied to the 

Hepatitis B data.
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1. Introduction

In the past decades, Cox’s proportional hazards model (Cox, 1972), along with its 

generalizations, have been widely explored and the corresponding asymptotic theories have 

been well established for independently sampled subjects. When subjects are correlated, e.g. 

under a clustered sampling plan in familial-type studies, the approaches for independent 

samples are no longer suitable. A common approach to accommodate familial or, more 

generally, clustered data is the shared-frailty model, which assumes independence for 

subjects from different clusters but a shared-frailty variable for subjects in the same cluster. 

Such a frailty model is generally useful to explain the dependency of subjects within the 

same cluster due to shared genes and environmental background.

For the Cox proportional hazards model with a shared frailty, this leads to a proportional 

hazards model with a multiplicative frailty term w, which is random and unobservable for 

subjects within the same cluster, and which explains the dependency among subjects. This 

class of models was first introduced and termed “frailty” by Vaupel, Manton and Stallard 

(1979), and subsequently studied for right censored data by Nielsen et al. (1992), Murphy 

(1994, 1995), and Parner (1998) among others. Due to the latent term in the model, the 

elegant partial likelihood approach (Cox, 1972, 1975) is no longer applicable. Two 

alternative approaches have been adopted in the literature, one reverts to the full likelihood 

approach and the other treats the frailty variables as parameters in the estimation process but 

imposes a penalty in the partial likelihood to regularize the high dimensional parameters 

induced by frailties (Therneau, Grambsch and Pankratz, 2003).

The full likelihood approach leads to nonparametric maximum likelihood estimators 

(NPMLE) when the baseline hazard function is modeled nonparametrically and an 

expectation-maximization (EM) algorithm is proposed in Nielsen et al. (1992) when the 

frailty distribution follows a Gamma distribution. The corresponding asymptotic theories, 

including consistency and asymptotic normality of the NPMLE, were well-studied by 

Murphy (1994, 1995) and Parner (1998) for the cases without and with covariates, 

respectively. All these approaches adopt the Gamma frailty assumption, mainly due to its 

computational advantages, as the posterior distribution involved in the E-step of the EM 

algorithm is also a Gamma distribution. Other frailty distributions, such as log-normal or 

Weibull distribution, could be employed at additional computational cost, since numerical 

integration methods, such as Monte Carlo (MC) integration, will be needed to estimate the 

posterior distributions at each step of the EM-algorithm. Besides using a full likelihood 

approach, Ripatti and Palmgren (2000) investigated the penalized partial likelihood 

estimator with a log-normal frailty distribution and Therneau, Grambsch and Pankratz 

(2003) showed that, with a gamma frailty distribution and a special type of penalty, this 

leads to the same estimates for the regression parameters as those obtained from an EM 

algorithm.

All the aforementioned approaches are for right censored data. Our focus in this paper is to 

study the estimating procedure and accompanying theory for the shared-frailty model when 

data are subject to both right and left censoring, i.e., double-censoring. An example is a 

familial-type study for Hepatitis B patients, whose age at e-antigen seroconversion is the 
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primary focus of the study. However, due to delayed entry into the study, subjects who have 

e-seroconverted prior to entry into the study were left censored (only their age at entry is 

available), while all other subjects are subject to the usual right censorship that is common in 

longitudinal follow-up studies. This leads to the double-censorship considered in this paper. 

We make a note here that the terminology “double-censoring” is confusing by itself, as there 

are two different definitions in the literature. The first definition is that the survival time of 

interest can only be observed within a certain window determined by the left- and right-

censoring times. Outside this window, the survival time is only known to be either less than 

the left censoring time or greater than the right-censoring time. This is the situation 

considered in this paper, and it has also been considered by Turnbull (1974), Chang and 

Yang (1987), Chang (1990), Mykland and Ren (1996), Cai and Cheng (2004), Zhang and 

Jamshidian (2004) and Kim, Kim and Jang (2010). Another definition of double-censoring, 

as adopted in DeGruttola and Lagakos (1989), Kim, DeGruttola and Lagakos (1993) and 

Kim (2006), refers to a time period where both endpoints of the time period are subject to 

either left, right or interval censoring. This second type of double censorship is not 

considered here as our data conforms to the first type of double-censorship.

Estimating the survival function when there is no covariate has been well investigated in the 

literature. For instance, Chang and Yang (1987) and Chang (1990) address the consistency 

and asymptotic normality of the self-consistent estimators of the survival function, while 

Mykland and Ren (1996) and Zhang and Jamshidian (2004) discuss algorithmic issues for 

self-consistent estimators and maximum likelihood estimators. The NPMLE under the Cox 

model had not been explored until Kim, Kim and Jang (2010) established its consistency and 

asymptotic normality. However, the numerical computation of NPMLE remains a challenge 

and, to the best of our knowledge, the shared-frailty model for the first type of double 

censoring has eluded the attention of researchers.

We investigate in this paper the nonparametric maximum likelihood approach and study the 

asymptotic theory for the NPMLEs. Additionally, a workable numerical algorithm to locate 

the NPMLEs is proposed along with sufficient conditions to ensure convergence of the 

algorithm. Our approach works with or without a frailty term and resolves the computational 

difficulties for doubly-censored data without a frailty term. We would like to make a note 

here that the proposed numerical method without frailty terms is an independent work of 

that shown in Kim, Kim and Jang (2013) though the idea of treating the left-censorship as 

missing data in the EM algorithm is similar to their work. This idea was firstly demonstrated 

in Su (2011), and further studied in this paper. The model is introduced in Section 2 

followed by a computational algorithm presented in Section 3. The left censorship present in 

the data poses computational challenges in contrast to the right censoring situation due to the 

lack of a closed-form solution for the score equation during the M-step of the EM-algorithm. 

We resolve this difficulty by introducing in Section 3 a modified MCEM algorithm which 

can be seen as a weighted version of regular MCEM algorithm. Asymptotic properties and 

estimations of the standard errors of the proposed NPMLEs are discussed in Section 4. 

Simulation studies are presented in Section 5 to provide numerical support for the new 

algorithm and an analysis of the motivating example is provided in Section 6.
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2. Model and the NPMLE

Consider a cluster sampling plan for, e.g. familial data, when n independent families are 

sampled and data are collected for each of the ni subjects in the ith cluster. The goal is to 

study the association between the response variable, the survival time T of a subject, and its 

vector covariates Z. Because the survival times of subjects from the same family may be 

correlated due to shared gene or environmental background, we assume that a shared-frailty 

variable W, which could be a vector, explains the dependency of all subjects from the same 

family/cluster. More specifically, let Tij denote the survival time of the jth subject from the 

ith cluster with frailty variable Wi and zij be the observed value of its covariates.

The shared-frailty model assumes that, given the value wi of the frailty variable and the 

covariate value zij, the hazard function for this subject takes the form:

(1)

where λ0 is the baseline hazard rate and β stands for the regression parameter. Besides the 

violation of the independence assumption, we face another complication for the motivating 

Hepatitis B data in that the survival time T of a subject is subject to either left- or right-

censoring by L and R, respectively. In the following we denote T̃ = max(L, min(T, R)), the 

observed event-time, and δ = I(T ≤ R) and η = I(T ≥ L), the right- and left-censored 

indicators respectively. By the fact that each subject is only subject to one type of censoring, 

δ + η = 1 or 2 always holds. One thing worths to point out is that the left-censoring time (for 

example, the time at recruitment in the Hepatitis B study) is always observed. This is 

different from the cases subject to right-censoring only. Consequently, the observed data for 

a subject is either (T̃, δ, η, Z, L) for uncensored or right-censored individual, or (T̃, δ, η, Z) 

for left-censored one where T̃ is exactly equal to L. The following conditions are for the 

identifiability of this model and the construction of the likelihood function.

C1 The left- and right-censoring times for the jth subject of the ith cluster, denoted 

respectively as Lij and Rij, are continuously distributed on [0, ∞) with density 

functions fL and fR, respectively; where Lij is the age at the entry of the study, 

and the right censoring time Rij is written as Lij + Yij with Yij ≥ 0, since right 

censoring can only occur after a subject enters the study.

C2 Let Zi be the ni × q covariate matrix for the ith cluster, where the jth row, 

denoted by Zij, is the covariate vector of the jth subject in the ith cluster. The 

probability that  is full rank is positive. Moreover, if cT Zij = 0 with 

positive probability, it implies c = 0. These conditions mean that the covariates 

are independent within and between subjects.

C3 Conditional on Wi and Zij, (Lij, Yij) are independent of Tij and their joint 

distribution does not involve β or the frailty distribution. This implies that both 

the left and right censoring schemes are noninformative.

C4 The frailty variables, W1, …, Wn, are i.i.d. from a density fW (·| γ) with mean 1 

and variance γ. The Laplace transform of fW, denoted by Mγ(t) = 
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Eγ[exp(−Wt)], for any 0 < t < ∞, satisfies the following conditions: Mγ(0+) = 1, 

Mγ(t) > 0, , and  for all γ in a compact set 

in ℝ. Moreover, the frailty W and the covariate Z are independent.

Conditions C1 and C3 are standard assumptions for survival data in the presence of left or 

right censoring to facilitate the expression of the likelihood function. Conditions C2 and C4 

are needed for the identifiability of the frailty model and integrability of those integrals that 

involve the frailty distribution.

Let f, S, and F stand for the density, survival, and cumulative density functions respectively 

of the random variable in the subscript, and Λ0 is the baseline cumulative hazard function of 

survival time, i.e. . The likelihood contributed by a left-censored subject, 

given the frailty w and covariates z, is FT (t̃|w, z). The likelihood contributed by an 

uncensored or right-censored subject, given the frailty w and covariates z, is [fT (t̃|w, z)]δη 

[ST (t̃|w, z)](1−δ)η (see Appendix 1 for the detail). Therefore, the likelihood contributed by 

the observation Oi from the ith cluster can be expressed as

(2)

In (2) we consider Λ0 instead of λ0 as the parameter, because Λ0 can be estimated at the 

same parametric rate as β and γ. As is common for models with a nonparametric parameter, 

the maximum likelihood estimator does not exist due to the infinite-dimensional parameter 

associated with Λ0. Therefore, we turn to the nonparametric maximum likelihood approach, 

which leads to a discrete probability measure with positive point mass assigned to all 

uncensored observations and an additional set of left-censored observations. This is similar 

to the left-censored case described in Mykland and Ren (1996), which is for a single 

population without covariates and the frailty term. The following lemma extends their result 

(Corollary 5) and provides a description of the NPMLE of Λ0 under double censoring. The 

proof is similar to theirs and thus omitted.

Lemma 2.1

Denote the ranked observation time points in ascending order by t̃(l), . The 

NPMLE of the cumulative baseline hazard function, Λ0(·), is a non-decreasing step function 

with jumps at all uncensored observations and an additional set of observations from left-

censored subjects. The left-censored observations that receive positive mass consist of: the 

smallest observation at time t̃(1), if it is left-censored, and for l ≥ 2 all the left-censored 

observation at time t̃(l) such that the observation immediately preceding it at time t̃(l−1) is 

right-censored. We denote those time points with positive mass in ascending order by t1, …, 

tK with corresponding jump sizes λ1, …, λK.
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Direct maximization of the NPMLE poses computational challenges due to the latent frailty 

term and the contribution to the likelihood by left censored data. The latter, which involves 

the cumulative distribution function FT in (2), is a more serious problem, as even when the 

frailty variable is known to be 1, i.e., no clustering effect and all survival data are 

independent, the profile likelihood has no explicit form. Kim, Kim and Jang (2010) 

proposed to adopt a Gauss-Seidel algorithm to solve the high-dimensional equations, which 

works well for small sample sizes but often fails to converge when the sample size grows to 

several hundreds, which is common for a medical or epidemiological study.

For computational stability and because none of the previous approaches accommodate a 

frailty variable, we took a different and more appealing approach in this paper to treat the 

left-censored survival times, along with the frailty variable, as missing variables so that a 

different and more effective EM algorithm can be employed to overcome the aforementioned 

computational challenges. Following this idea and conditioning first on the frailty variable 

and then left censored data, the likelihood (2) from the ith cluster can be written as

(3)

since .

At first glance, the likelihood in (3) involves many integrations because all left censored 

survival times are treated as missing data. However, as shown in Propositions 3.1 later, the 

actual E-step only involves one-dimensional integration over the frailty distribution due to 

the appealing structure of the proportional hazards model. This leads to a stable EM-

algorithm with only one dimensional Monte-Carlo integration in the E-steps and a low 

dimensional nonlinear maximization in the M-steps.

3. EM-Algorithm

For ease of presentation, we illustrate the EM-algorithm with gamma frailty but other frailty 

distributions could be employed with additional computational cost in the E-step. The 

computational advantage of gamma frailty is that the posterior distribution required in the 

EM algorithm remains a gamma distribution. This feature allows directly sampling from a 

known gamma distribution and enhances the computational efficiency of Monte Carlo 

integration. This will be further illustrated in this section. Treating the frailty term and left 

censored times as missing data, the integrand of (3) provides the complete likelihood. Let Uij 

= TijI(Tij ≤ T̃
ij) denote the unobserved left censored time, and is zero otherwise. The resulted 

complete log-likelihood for the ith cluster is

Su and Wang Page 6

Ann Stat. Author manuscript; available in PMC 2018 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(4)

The complete log-likelihood, denoted as lC, from all clusters is then the sum of (4) over i = 

1, …, n. For simplicity, we will denote the parameters of interest, (β, Λ0, γ), or equivalently 

(β, λ1, …, λK, γ), by θ, and the corresponding parameter space as ΘEM = Θβ × Θ(λ1,…, λK) 

× Θγ, in the following illustration.

3.1. E-step

The expected complete log-likelihood contributed by the ith cluster with the posterior 

parameter value θ′ is:

(5)

which involves imputation of functions of Wi, Uij, or both of them given the observed data. 

Fortunately, the imputation of functions of Wi, such as Wi, log(Wi), and log fW(Wi) in (5), 

have simple forms, if one employs the Bayes rule effectively as described below. For 

illustration purpose, we consider the imputation of a general function h(Wi).

Consider the three sets of variables, , and , where

and

By Bayes rule, the imputation of h(Wi) can be expressed as
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(6)

where . Under the gamma-frailty 

model, the posterior distribution of Wi conditioning on the non-left-censored part is a 

gamma distribution with parameters

and

The imputation of functions involving Uij, say log λ0(Uij) and WiΛ0(Uij) in (5), is more 

complicated because of the semiparametric setting on T. For a generic function of Uij, say 

h(Uij), the imputation given the observed data Oi is of the form

(7)

where Oij is the observed data from the jth subject within the ith cluster, and fW|O(w|Oi) is 

defined in (6). Since the cumulative hazard function is a non-decreasing step function with 

positive jumps at t1 < ⋯ < tK, the ordered observed time points mentioned in Lemma 2.1, 

and corresponding jump sizes λ1, …, λK, the conditional density fU|(W,O)(u|w, Oij) in (7) is

when u = tk, for any tk ≤ t̃ij, and 0 otherwise. Because of this explicit form for fU|(W,O)(u|w, 
Oij), no Monte-Carlo integration is needed to evaluate the inner integral in (7), so only one-

dimensional Monte-Carlo integration is needed for (7) and we arrive at the following 

proposition.

Proposition 3.1—The imputations of the two functions involving Uij in the imputed 

complete log-likelihood can be expressed as follows.
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1.

2.

where

and

with

Note that this proposition implies that only one-dimensional Monte Carlo integrations are 

involved in the calculation of ak,ij(θ′) and ck,ij(θ′). Let M(l+1) denote the number of Monte 

Carlo seeds generated in the (l+1)th iteration and θ(l) be the value of θ obtained in the 

previous iteration. The detailed imputation procedure in the E-step is provided below.

Step 1. Generate wi1, …, wiM(l+1) from a gamma distribution with parameters

Step 2. Evaluate the following terms at wim, for m = 1, …, M(l+1), and plug-in the 

current value, θ(l), for θ.

a.

b.

c.

d. .

Step 3. Take sample means on the four sets of M(l+1) values in (a) to (d) in Step 2 and 

replace the integrals to be evaluated by the sample means in corresponding forms.

The imputed complete log-likelihood can thus be rewritten as
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where Λ{·} represents the jump size of a step function Λ at the specified time point inside 

the bracket.

3.2. M-step

In the M-step, the NPMLE of β,γ and (λ1, …, λK) are located by taking derivatives on (5) 

and solving a system of equations. The MLE of λk is the solution to the following equation

(8)

where δk and ηk both correspond to the observed time point tk, and Rk stands for the 

corresponding risk set defined as {k′ : tk′ ≥ tk}. On the other hand, there is no explicit form 

for the NPMLE of β and υ, so a one-step Newton-Raphson method is used to update the 

estimates in each iteration. The updating formula for β is

where Sβ, the score function of β, takes the following form

(9)

One interesting finding from (8) and (9) is that the structure of the resulting forms in the 

proposed EM algorithm is very similar to those subject to right-censoring. The difference is 
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that, for doubly-censored data every left-censored observation contributes part of its 

probability mass to each jump points preceding it during each iteration of the EM-algorithm. 

This redistribution to the left algorithm is similar to the self-consistency property for right 

censored data, which redistributes the weight of each right censored observation to all 

observations after it. It also reflects the fact that for a left-censored subject, the unobserved 

event of interest has happened sometime in the past. However, there is a major difference in 

that some left censored data also carries positive masses.

Under the assumption of a gamma frailty, the Newton-Raphson algorithm for the parameter 

γ is based on the following updating rule

with Sγ, the score function of γ, defined as

3.3. Convergence of the algorithm

Since Monte Carlo errors are induced in the E-step of the MCEM algorithm, the 

convergence of the proposed algorithm to the true NPMLE is no longer guaranteed. To 

address this issue we increase the Monte-Carlo sample size M(l+1) with each iteration to 

enhance the convergence of our algorithm and refer to Chan and Ledolter (1995), Booth and 

Hobert (1999), Fort and Moulines (2003), and Caffo, Jank and Jones (2005) for the 

discussions there on how this overcomes the convergence issue. Although the frailty model 

is formulated under a semi-parametric setting, the problem of locating the NPMLE given an 

observed sample via the MCEM algorithm is no different from the parametric setting since 

the jump points t1, …, tK of the NPMLE of Λ0 are fixed across iterations. This feature 

allows us to investigate the convergence issue similar to those in existing parametric 

literature as long as the stationary points of the observed log likelihood (points where the 

derivative of the observed log likelihood is zero) are all isolated points and there is no left 

censoring involved. See Fort and Moulines (2003) for more details. However, the situation is 

much more complicated in the presence of left-censoring, because the Monte Carlo 

approximation in the proposed algorithm is nonstandard. In standard MCEM algorithms the 

sample mean of the Monte Carlo samples were used but in the our set up a weighted average 

(as an empirical counterpart to (6)) is employed in Step 2 of the EM algorithm to 

approximate the needed integrals in the likelihood. A new convergence theory is thus needed 

and we establish this in the proposition below, which provides some sufficient conditions for 

the convergence of the proposed algorithm in the presence of left-censoring. The proof of 

Proposition 3.2 is relegated to the supplemental material (Su and Wang, 2015). In the 

following context, we denote L(θ|O) and l(θ|O) as the observed likelihood and log-

likelihood respectively with the cumulative baseline hazard function Λ replaced by a non-
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decreasing step function. The notation  stands for the set of stationary 

points of l(θ|O).

Proposition 3.2—Under the following conditions (a)–(e), the sequence {l(θ(l)|O)} of the 

observed log-likelihood evaluated at {θ(l), l = 1, 2, …} converges with probability 1 to l(θ*|

O), where θ* is a local maximizer of l(·), and {θ(l)} converges to θ*.

a. fW (w|γ) is continuous w.r.t. to w. Moreover, Eθ′(Wi|Oi), Eθ′(log W|O), ak,ij(θ′), 

and ck,ij(θ′) are all continuous w.r.t. θ′.

b. {θ ∈ ΘEM : L(θ) ≥ c} is compact for any given constant c and the stationary 

points of l(θ|O) are all isolated points in ℒ.

c. The initial value θ(0) falls in a compact neighborhood * of θ*, and θ* is the 

only point in {θ ∈ ℒ : l(θ|O) = l(θ*|O)}.

For any compact subset  ⊆ ΘEM,

where h(1)(W, t, Oij) = log(W), h(2)(W, t, Oij) = W, h(3)(W, t, Oij) = fU|(W,O)(t|W, 
Oij), and h(4)(W, t, Oij) = fU|(W,O)(t|W, Oij)W.

d.

The Monte Carlo sample size {M(l)} satisfies , and grows fast 

enough such that l(θ(l)|O) ≥ l(θ*|O) − M infinitely often, for some constant M > 

0, and {l(θ(l)|O)} ≤ l(θ*|O) with probability 1.

Conditions (a)–(c) are also required for standard parametric MCEM (Fort and Moulines, 

2003), where condition (a) ensures the continuity of Eθ′ [lC(θ|O)], the expected complete 

log-likelihood w.r.t. θ′, and condition (c) requires a good initial value which is close to the 

local maximizer. A sufficient condition for condition (b) is the continuity of the (K + 3)th 

derivative of l(θ|O), where K varies with the sample size in the semi-parametric setting in 

contrast to parametric settings where K is fixed. This is the major price for the convergence 

of the proposed EM algorithm under a semi-parametric model. Condition (d) controls the 

error induced by the Monte Carlo approximation, and condition (e) specifies the required 

size of the Monte Carlo samples.

The convergence of {l(θ(l)|O)} suggests a stopping rule based on the difference of the 

observed likelihood. The algorithm stops when the difference between the observed 

likelihood at two consecutive iterations is smaller than a pre-specified tolerance of error.

Corollary 3.1—Under the conditions (a)–(e) in Proposition 3.2 and given a good set of 

initial values in a neighbor of the NPMLE, the estimators from the proposed MCEM 

converges a.s. to the NPMLE.
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4. Main Theorems

We first list the technical assumptions for the theoretical results of the NPMLE. Hereafter, τ 
denotes the endpoint time of the study.

A1 The baseline hazard rate function λ0(t) is bounded and positive in [0, τ]. 

Moreover, the cumulative hazard function is bounded at τ, i.e. Λ0(τ) < ∞. Let 

Di be the number of right-censored subjects at time τ in the ith cluster. E(Di) > 

0.

A2 The expected number of subjects in a family, E(ni), is bounded above. Also ni is 

noninformative to the parameters of interest.

A3 Θβ × Θγ, the parameter space of (β, γ) is compact, and the true value (β0, γ0) 

falls in the interior of the parameter space.

A4 The covariate Z is bounded, i.e. there exists MZ > 0, such that |Z| ≤ MZ. 

Moreover,  exists and is bounded away from 0 

over the parameter space.

A5 Eθ0 [W exp(β0Z)I(T ≥ t)] exists and is bounded away from 0 for all t ∈ [0, τ]. 

Moreover, Eθ0 [WΛ0(T̃)Z2 exp(β0Z)] exists and is greater than 0.

A6 The distribution fW (·|γ) is continuous with respect to γ and has a continuous 

second derivative with respect to γ. Furthermore, the Fisher information matrix 

from fW is of positive definite.

The assumption that Λ0(τ) < ∞ and E(Di) > 0 in A1 are satisfied for a follow up study that 

needs to end early before all subjects have failed. This is common in medical studies. 

Assumption A2 is typically satisfied in familial type studies. A3 is a common assumption on 

the true values of the parameter. Assumptions A4–A5 are technical assumptions for the 

boundedness of Λ̂
n(τ), the invertibility and the boundedness of the Fisher information 

operator for the proof of the consistency and asymptotic normality of the proposed 

estimators. The differentiability of the frailty distribution with respect to γ and the 

invertibility of its Fisher information are stated in A6.

4.1. Asymptotic properties of the NPMLE

Theorem 4.1 (Consistency)—Under assumptions C1–C4 and A1–A5, the NPMLE θ̂ = 

(β̂, Λ̂, γ̂) converges strongly to θ0 = (β0, Λ0, γ0) under the Euclidean norm |·| for vector 

parameters and the supreme norm |·| for functions on [0, τ] respectively.

Theorem 4.2 (Asymptotic Normality and Efficiency)—Under assumptions C1–C4 

and A1–A6, which imply the consistency (for functions on [0, τ]) in Theorem 4.1, the 

process  converges in distribution to a normal 

element G in l∞(Hp), where Hp is a collection of directions as defined at the beginning of 

section A.2, with mean 0 and a covariance structure
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∀h, h* ∈ Hp, where σθ0,k, k = 1, 2, 3, are the information operators derived in Appendix. 

Moreover, β̂ and γ̂ are efficient estimators for β0 and γ0 respectively in the semi-parametric 

sense.

We provide the detailed proofs for the two theorems in the Appendix. Basically, the proofs 

are based on demonstrating the Glivenko-Cantelli property on the terms involved in the 

NPMLE, and the Donsker property on the score functions.

4.2. Estimating the standard error of β̂

As pointed out in the literature under a semiparametric setting with latent variables, 

estimation of the standard error of the estimates for finite dimensional parameters involves 

the inversion of a high-dimensional matrix, where each entity further involves integrals. This 

often poses computational challenges and is also the case with our setting, where the inverse 

of the information operator has no explicit form. Thus, even under the right censorship, the 

straight-forward method of utilizing asymptotic variance-covariance matrix, as proposed by 

Murphy (1995) and Parner (1998), is not applicable to estimate the standard errors. There 

are two alternative methods in the literature to estimate standard errors under a 

semiparametric setting: the profile likelihood approach (Murphy, Rossini and van der Vaart, 

1997) and the bootstrap method (Tseng, Hsieh and Wang, 2005). The first approach has also 

been successfully implemented by Zeng and Cai (2005) in joint modeling right censored 

survival data and its longitudinal covariates. Therefore, we explored both approaches in 

order to compare them. It turns out that the profile likelihood approach in Murphy, Rossini 

and van der Vaart (1997) and Zeng and Cai (2005) does not work well in our setting, but we 

are able to modify it and the modified version works well in the simulation study reported in 

Section 5.

A profile log-likelihood is defined as

The curvature of pln around β̂ provides an estimate for the negative value of the information 

matrix. However a direct derivation of the second derivative of pln is not feasible since there 

is no closed form for pln due to the integration involved in the likelihood function. Murphy, 

Rossini and van der Vaart (1997) proposed a second difference method to numerically 

approximate the information. The second difference method is a numerical approach to 

approximate the second derivative of a target function pln at a point of interest β̂. We start 

with the first difference: the basic principle is that if we are interested in estimating the first 

derivative of pln at β̂, we can use the first difference,  for a 

small h to approximate . By applying this idea twice the second time on the first 
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differences  and , the second difference as defined in Murphy, Rossini 

and van der Vaart (1997) gives a numerical second differentiation of the target function. 

However, in the presence of double censoring, their method often results in negative 

estimates. We were thus motivated to look for an alternative approach to estimate the second 

derivative of pln around β̂.

The key idea of our approach is, instead of the simple difference method which are very case 

sensitive, we fit a quadratic curves on pln around β̂ and then take the estimated leading 

second-order term to estimate the second derivative of pln. To implement this method, we 

evaluate pln on d equal-distant points β1 …, βd within a window (β̂ − hn, β̂ + hn), with the 

half-width hn taken to be of the order O(n−1/2). Although there is no closed form for pln, the 

evaluation can be done by the EM algorithm. A point regarding the calculation of the profile 

likelihood in our algorithm needs to be addressed as following. Although left-censored data 

are treated as missing data in the estimation of NPMLE, we use the original form of the 

likelihood (3) to calculate the profile log-likelihood after obtaining the maximizer Λ(β) and 

γ(β) corresponding to each fixed β. Specifically, we fit a quadratic model a0 + a1β + a2β2 on 

the pairs (β1, pln(β1)), …, (βd, pln(βd)), the stand error of β̂ is estimated by . This 

method only involves fitting a linear regression model with two predictors, so a moderate 

number of points β1, …, βd, say 20, is enough for the implementation.

Although the proposed method needs more computational effort than the method in Murphy, 

Rossini and van der Vaart (1997), for which pln is evaluated at only 3 points, it provides a 

more stable and accurate estimate for the standard errors. Based on our experience, the 

performance of both profile likelihood methods depends on the half-width of the window, 

hn, and the method by Murphy, Rossini and van der Vaart (1997) is much more sensitive to 

the choice of hn. If the window is too narrow, the profile likelihood approach may yield a 

negative estimate of the standard error due to the highly oscillatory behavior of the profile 

log-likelihood around β̂. A wider window may overcome this issue of negative estimate but 

at a cost of higher biases. For the procedure advocated in Murphy, Rossini and van der Vaart 

(1997), the bias is always downward and quite serious. Moreover, negative estimates for the 

standard errors occur much more frequently than our approach based on quadratic 

approximations. We compare these two profile methods through a simulation study in 

Section 5, and the simple profile method fails to produce meaningful results.

On the other hand, the bootstrap method has been widely used to estimate the standard error 

of estimates under many semiparametric models when a simple closed form of the standard 

error is not available. It provides a numerically valid estimation for the standard error of the 

estimates by resampling from the observed sample when the number of resampling is fairly 

large. However, a theoretical justification of the bootstrap method under semiparametric 

models has not been brought up until Cheng and Huang (2010) and Cheng (2012), which 

demonstrate the distribution consistency and moment consistency respectively. Those works 

provide general theories for us to investigate the consistency of the nonparametric bootstrap 

standard error under the frailty model subject to double censoring as stated in the following 

theorem. The proof involves verifying the conditions listed in Theorem 1 in Cheng (2012) 

Su and Wang Page 15

Ann Stat. Author manuscript; available in PMC 2018 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and is presented in the Appendix. Below we denote  as the bootstrap sample standard 

error and σβ̂ as the standard error of β̂.

Theorem 4.3 (Consistency of the bootstrap standard error)—Under the 

assumption A1–A6, the nonparametric bootstrap standard error  converges in probability 

to σβ̂, as n → ∞.

5. Simulation

5.1. Evaluate the proposed EM algorithm

To study the numerical performance of the proposed EM algorithm, four simulation settings 

were conducted, each based on 100 Monte Carlo samples. For each setting, we consider a 

binary covariate with equal probability to take the value 0 or 1, and the number of subjects 

within each family is chosen randomly from {2, 3, 4} with equal probabilities, which 

reflects the structure of the familial data in Section 6, where 49 families participated in the 

study. The survival times are generated from a Cox model with β = 1, λ0 is the hazard 

function from an exponential distribution with mean 1, and the frailty term is generated from 

a gamma distribution with mean and variance both equal to 1.

The four simulation settings correspond to two cluster sizes, 50 and 100, and the following 

two types of left censorship: (1) Left-censoring time is generated from an exponential 

distribution with mean 0.05, and (2) Left-censoring time is from an exponential distribution 

with mean 0.2. In each of the four settings, the right-censoring time is the sum of the left-

censoring time and an independent random variable from exponential distribution with mean 

8 (cf. Condition C1). For type (1) left censorship above, this resulted in an average of 8% 

left-censored data and an additional 17% right-censored data, leading to a total of 25% 

censoring. This reflects a light left-censored case in contrast to the scenario in type (2), 

where on average 22% of the data are left-censored with an additional 16% right-censored.

The results of the NPMLE for the finite dimensional parameters are listed in Table 1. For the 

case n = 50, the bias for β under light left-censoring is 0.0072 with a standard error of 

0.2173. The variance of the gamma-frailty term can be estimated with a bias of 0.0468 and a 

standard error of 0.3026. Overall, β can be estimated with more precision than γ. Both the 

biases (and standard errors) for β and γ decreases, to 0.0070 (0.1549) and 0.0465 (0.2293) 

respectively, as the number of clusters increases to n = 100. As expected, the performance of 

both estimates for β and γ generally deteriorates under the heavier left-censoring scenario 

(2), but the differences are not large. Considering that a total of 38% of the data are missing 

under scenario (2), the numerical performance of the procedure seems satisfactory. In 

addition to the accuracy and precision of the estimator, the proposed EM algorithm also 

performs well in the aspect of numerical stability. It possesses high convergence rate under 

all scenario. In the simulation, we allow the maximum iteration as 100 along with a 

tolerance of relative error of 0.001. The convergence rates with 50 clusters are 100% and 

99% under 8% and 22% of left-censoring respectively. When the number of clusters 

increases to 100, the convergence rates achieve 100% under both 8% and 22% of left-

censoring.
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For estimating the stand error of the estimates, we started by comparing three approaches: 

the bootstrap method, the profile likelihood method by Murphy, Rossini and van der Vaart 

(1997), and our version of the profile likelihood method as discussed in Section 4.2. The 

bootstrap method is similar to the one described in Tseng, Hsieh and Wang (2005). Both 

versions of the profile likelihood method involve the choice of a window width h, as 

demonstrated in Section 4.2. Based on our experience in simulations, the performance of the 

estimated standard errors depends on the choice of the window width and the approach by 

Murphy, Rossini and van der Vaart (1997) more sensitive to the window width than ours. If 

the window width is too small, the profile likelihood method may result in unreasonable 

values of standard error, while a larger width leads to biases. We tried different widths, 

, with k = 1, 3, 5, 7, 9 for both profile likelihood approaches but the approach of 

Murphy, Rossini and van der Vaart (1997) still resulted in many negative estimates up to 

. Our profile approach resulted in a few negative estimates for small h but none for 

 and . Naturally,  performed better than . Because of 

these reasons, we report in Table 2 only our results for  together with the results by 

bootstrap method. Both approaches are comparable and produce results close to the Monte-

Carlo standard deviation, σ̂β,MC. Since it is difficult to know in reality how to choose the 

window width, a bootstrap method may be the preferred choice if computational time is not 

a concern. Otherwise, we recommend our profile likelihood method with a small width h 
that leads to a positive estimate.

5.2. Ascent property of the proposed EM algorithm

One issue commonly encountered in Monte Carlo EM algorithms is the convergence to the 

true maximizer of the (marginal) likelihood function. As discussed in the literature, 

maximizing the approximated likelihood by Monte Carlo integration will not locate the 

MLE exactly due to the presence of Monte Carlo errors. An efficacious EM algorithm 

should sustain the so-called ascent property which describes the increasing pattern of the 

targeted marginal likelihood along iterations. Herein a simulation is conducted to verify the 

ascent property of the proposed EM algorithm. In order to obtain an analytical form of the 

marginal likelihood in each iteration, we consider a simple scenario with 100 clusters of size 

2. The survival times are generated by a gamma frailty model with β = 1, λ0 as the hazard 

function of an exponential distribution with mean 1, and γ = 1. The left-censored rate is 

about 8% and there is at most 1 left-censored subject within each cluster. The marginal 

likelihood function is evaluated at the estimated values obtained by maximizing the 

surrogate likelihood in each iteration. Figure 1 shows the patterns of the marginal log-

likelihood along with iteration steps obtained from 12 randomly selected sets of simulations. 

As observed in the plots, the marginal log-likelihood increase drastically in the first few 

iterations and continues to climb up till the algorithm converges. The ascent property of the 

proposed EM algorithm is clearly demonstrated by the trends in the plots.

5.3. Misspecification on the frailty distribution

To study the effect of misspecifying the frailty distribution, we conducted some simulations 

with misspecified frailty distributions. The frailty term is generated from (1) a log-normal 

distribution with the mean and the standard deviation after logarithm transformation as −0.5 
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and 1 respectively, and (2) a mixture of two gamma distributions, Gamma(2,0.1) and 

Gamma(18,0.1), with equal weights. The two scenarios on frailty distributions represent a 

unimodal non-gamma distribution with mean 1 and variance about 1.72 and a bimodal 

distribution with mean 1 and variance about 0.74. We explore the two types of misspecified 

frailty distributions with the numbers of clusters as 50 and 100, and the settings on other 

factors similar to the first two simulations in Section 5.1. The left-censoring rate is about 8% 

with an additional 17% of right-censorship in average. Under both scenarios, a gamma 

frailty model is fitted via the proposed method for estimating the parameters.

The results of the NPMLE obtained from a misspecified model are shown in Table 3. The 

performance of the estimated regression coefficient β̂ is comparable to the results under the 

correct model in Table 1. The biases are slightly greater than that under a correct model, yet 

still within 4% (0.0277 and 0.0328 based on 50 clusters for unimodal and bimodal models 

respectively). Increasing the number of clusters to 100 reduces the bias to less than 2% 

(0.0193 and 0.0154 for unimodal and bimodal respectively) and gains efficiency as well. 

However, the variance component of the frailty cannot be accurately recovered under model 

misspecification. As demonstrated in Table 3, there can be a non-negligible bias on 

estimating γ. The relative biases are about 60% and 50% of the true parameter γ0 for 

unimodal and bimodal cases respectively. This is expected under model misspecification as 

the targets have changed. To summarize, given that the survival regression coefficients are 

usually the primary interest of a study, the proposed NPMLE is fairly robust against 

departure of the frailty distribution. In particular, the survival regression coefficient can be 

estimated with high accuracy and precision even when the frailty component is incorrectly 

modeled.

6. Numerical Example

Our motivating example is a hepatitis B study for children with chronic Hepatitis B virus 

(HBV) infection. Hepatitis B is an infectious liver disease causes by HBV. About a quarter 

of the world populations have been infected. Patients with chronic HBV may infect others 

over a long period of time and are more likely to develop liver cirrhosis and cancer. It is thus 

important to control and monitor this disease. HBeAg (Hepatitis B e antigen) is a marker of 

a patient’s degree of infectiousness with positive result indicates the person has high levels 

of virus and greater infectiousness. E-seroconversion occurs when an infected individual’s 

immune system produces the corresponding antibodies to the e antigen. This is an important 

therapeutic end point and the primary interest of this study.

Our goal is to understand the seroconversion process of e antigen and its association to two 

risk factors, one is ALT (Alanine Aminotransferase) measured at the baseline clinical visit 

and the other is the HBV (Hepatitis B virus) status (yes=1, and no=0) of the child’s mother. 

ALT (alanine aminotransferase) is the liver enzyme marker that is followed most closely in 

those chronically infected with hepatitis B. An elevated level of ALT indicates the damage 

on liver cells. Due to the extremely large values of ALT level, a logarithm transformation is 

often applied and the covariate we used in the analysis is the logarithm of the baseline ALT 

levels.
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The study includes 107 HBeAg positive children from 49 families recruited between 1974 

and 1992 and followed up till 2008. Since subjects entered the study at different ages and 

some of them had completed e-seroconversion before the first clinical visit, the survival time 

of those patients are thus left censored. For those who have not developed e-seroconversion 

at the time of entry into the study, they are subject to the usual right censorship. Thus, this 

data set is subject to the double censorship considered in this paper. The left-censoring rate 

is about 2.8% and the right-censoring rate is about 19.4%. Detailed description of the data 

can be found in Wu et al. (2006), which included a subset of the sample and focused on a 

different problem. Although the left-censoring rate is low in this data, ignoring the left-

censored subjects may result in a bias sample as left-truncated data. To avoid the issue of 

bias samples, we retain those subjects in the dataset.

Due to the familial structure, a frailty model is employed to accommodate the dependence 

among subjects from the same family. We consider a shared-frailty model with these two 

covariates and apply the proposed approach in Sections 2 and 3 to obtain statistical 

inferences. The results are provided in Table 4. The mother’s HBV status, is insignificant but 

negatively associated with the incidence rate of HB e antigen seroconversion. In the final 

model, the regression coefficient of logarithm of baseline ALT level is 0.6091 with a p-value 

0.0030 indicating a positive and significant effect on the incidence rate of e-seroconversion, 

which may seem surprising at first but is consistent with clinical observation that patients 

with higher level of ALT when entering the study tend to have a higher incidence rate to e-

seroconvert. This could explained as higher ALT levels are more likely to trigger the 

development of antibodies to HBV e antigen. The estimated variance of the frailty term is 

1.4065 with an estimated standard error of 0.6865. That is, children from the same family 

tend to have correlated seroconversion time. The estimated cumulative baseline hazard 

function is shown in Figure 2 along with a 95% pointwise confidence band obtained from 

bootstrap.

We close this section with a remark on the usage of the baseline ALT. Due to the sampling 

plan, the ALT measurements taken from the left-censored subjects at their first clinical visits 

are post-seroconversion; hence it can be an issue that the significant results are likely 

contributed by a reverse causation. The validity of using the baseline ALT obtained from the 

left-censored subjects can be justified by the following two reasons: (1) the left censoring 

proportion is very low (only 3 out of 107 subjects) for this data, so unlikely to induce a 

serious bias, and (2) ALT levels tend to stabilize to a normal level after seroconversion, so 

the ALT level at entry of the study for a left censored data is likely to be lower than the ALT 

levels prior to seroconversion. The implication is that the actual p-value should be smaller 

than the ones reported in Table 4 leading to an even more significant finding. Thus, the 

significance finding observed in this paper is not a result of the reverse causation. To provide 

further assurance, a separate analysis is conducted on the same data but omitting the three 

left-censored subjects. This resulted in a left-truncation (left censored data are truncated) and 

right-censoring (LTRC) scenario. The new algorithm we developed for LTRC clustered 

survival data resulted in an estimate of 0.7238 (S.E. = 0.2570) for the regression coefficient 

of ALT (p-value=0.0049). Thus, the new analysis underscores the significant association 

between the baseline ALT level and seroconversion time.
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7. Conclusions

In this paper, we propose a likelihood approach to estimate the unknown components in a 

shared-frailty model for clustered survival data that are subject to double-censoring. We 

show that the non-parametric maximum likelihood method leads to  and 

semi-parametrically efficienct estimator for all finite-dimensional parameter and 

 for the cumulative baseline hazard function.

Two estimates for the standard deviation of the NPMLE for finite-dimensional parameters 

are investigated, one based on bootstrap method and the other based on a new quadratic 

approximation for the profile likelihood. Both approaches are supported by numerical 

evidence and lead to reliable and stable estimates. They complement each other in that the 

bootstrap method is conceptually simpler but computationally costly. The quadratic 

approximation method is computationally efficient and a remedy for the simple profile 

likelihood approach proposed in Murphy, Rossini and van der Vaart (1997), which often 

leads to negative estimates of the standard errors when data are doubly censored.

In addition to theoretical contributions, a new and effective algorithm is proposed to estimate 

the nonparametric maximum likelihood estimates through a modified EM algorithm by 

treating the unobserved frailty terms and all left-censored survival times as missing data. 

The distinctive features of the proposed algorithm are: (i) it provides a computationally 

simple and stable algorithm that involves only one-dimensional Monte-Carlo integrations, 

with respect to the latent frailty, in the E-step of the EM-algorithm, (ii) it involves simple 

and tractable maximization in the M-step of the EM-algorithm, and (iii) for a special and 

simpler case where the frailty variable is constant, it involves no Monte-Carlo integration 

and overcomes the computational instability of an existing method (Kim, Kim and Jang, 

2010) that tackles the full nonparametric likelihood by the Gauss-Seidel method, which 

involves solving high-dimensional equation systems. Thus, we not only provide a viable 

solution to a new problem but also resolve a lingering computational issue for independent 

left- or doubly-censored data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the Editor, the Associate Editor and two anonymous reviewers; their insightful suggestions greatly 
improve this paper. Furthermore, we are grateful to Dr. Masanao Yajima at Fred Hutchinson Cancer Research 
Center for his helpful comments.

This research is partially supported by NIH grants R21ES022332 and R01AG014358.

This research is partially supported by NIH grants 1R01AG025218-01 and 1R56AG043995-01.

Su and Wang Page 20

Ann Stat. Author manuscript; available in PMC 2018 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix

A.1. Construction of the likelihood contributed by uncensored and right-

censored subjects

We focus on uncensored subjects. An analogous argument can be extended to right-censored 

subjects. For an uncensored subject, the observed data are (T̃ = t̃, δ = 1, η = 1, Z = z, L = l), 
where t̃ > l. Under the assumption of independence between W and Z, the conditional 

density fobs of the observed data given W = w is

(10)

The last equation holds since whenever t̃ > l it implies that η = 1. By substituting δ = 1 with 

R ≥ T,

(11)

By the conditional independence in C3 between T and (L, Y) given (Z, W) the right-hand 

side of (11) becomes

(12)

The non-informative assumption on L and Y in C3 implies that the second term above does 

not involve any parameter of interest, hence the observed left-censoring time does not 

contribute information to the likelihood.

A.2. Proof of Theorem 4.1

OUTLINE OF THE PROOF

We shall use a subscript n, the number of families, for the NPMLE since the asymptotic 

properties are constructed according to n. We would like to point out here that the NPMLE 

exists with probability 1 under our setting. This can be verified by an apagogic argument 

analogous to page 2140–2141 in Zeng and Cai (2005). Consistency of the NPMLE can be 

demonstrated by first showing that Λn̂ (τ) is bounded almost surely as n → ∞. This implies 

that Λ̂n can be regarded as a bounded measure. Then by Helly’s selection theorem and the 

compactness of the parameter space Θβ × Θγ, every subsequence of θ̂n = (Λ̂
n, βn, γn) has a 

subsequence {q(n)} of {n} such that θ̂q(n) = (βq(n), Λq(n), γq(n)) converges to a certain inner 

point θ* = (β*, Λ*, γ*), where Λ* is continuous as shown in Zeng and Cai (2005), and 

Λ̂
q(n) converges uniformly to it in the whole parameter space. The proof will be completed if 

we can show that θ* = θ0. However, we do not know what θ* is, since there is no close form 

solution for θ̂n. Therefore, we rely on an intermediate function Λ̄n (·), which converges to 

Λ0 uniformly on [0, τ]. The claim that θ* = θ0 can next be established similar to the 
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arguments in the literature (Murphy, 1994; Dupuy, Grama and Mesbah, 2006). Below, we 

provide details of the proof.

To prove the boundedness of Λ̂n (τ), we take derivatives on the observed log likelihood 

function with respect to all λk’s, and it can be shown that

(13)

The second term in the numerator of (13) is bounded above by , since the sum 

of ak,ij (θ̂) over all k such that t ̃k ≤ t̃ij is bounded above by 1. Then

(14)

The upper bound in (14) converge a.s. to a finite number as n tends to infinite by the Law of 

Large Number and assumptions A1, A2, and A4. This implies the boundedness of Λ̂
n (τ). 

Consequently the NPMLE Λ̂
n is a finite measure on [0, τ]. According to Helly’s selection 

lemma, every subsequence of Λ̂
n has a further subsequence Λq̂(n) such that ‖Λq̂(n) − Λ*‖ 

converges to 0 with probability 1 on [0, τ].

Before defining an intermediate term used in this proof, we re-write Λ̂
n as
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where

and

stands for the empirical process. Then the intermediate term Λ̄ is defined as

Since the class {Q2(·, O, θ0) on [0, τ]} can be shown to be Glivenko-Cantelli by establishing 

the uniform boundedness and bounded variation of Q2, assumption A5 then implies the 

convergence of the first term to  as n goes to infinite. 

Likewise, the pointwise convergence of the second term to 

, for each t* in [0, τ] can be established. 

It is easy to see that sum of the above two limits is Λ0 (t). Glivenko-Cantelli Lemma and the 

continuity of Λ0 imply that ‖Λ̄n − Λ0‖ converges to 0 with probability 1. By the definition of 

Λ̂
n (t*) and Λn̄ (t*), we have that Λ̂

n (t*) is absolutely continuous with respect to Λ̄
n (t*), 

and
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where . By applying the 

Glivenko-Cantelli property along with the dominance convergence theorem the convergence 

of θ̂q(n) to θ* implies that

Then the absolute continuity of Λ* with respect to Λ0 holds. Moreover,  converges 

uniformly to .

Now we consider the following difference in log-likelihood

The left-hand-side converges a.s. to Eθ0 [l(θ*) − l(θ0)] by Lebesgue’s theorem. Since the 

limit is the Kullback-Leibler divergence which is non-positive, the only possibility is that the 

limit is exactly zero. By the identifiability under conditions C1 to C4, we conclude that θ* = 

θ0. The proof is now complete.

A.3. Proof of Theorem 4.2

Proof of Asymptotic Normality

The proof will follow the framework of Theorem 3.3.1 in van der Vaart and Wellner (1996) 

and involves several key steps.

Let Hp = {h = (h1, h2, h3) : |h1| + ‖ h2 ‖v + |h3| ≤ p}, where h1 and h3 ∈ ℝ1, h2 is a function 

of bounded variation on [0, τ], and ‖ h2 ‖v denotes the sum of the absolute value of h2 at 0 

and the total variation of h2 on [0, τ]. Here we consider θ = (β, Λ, γ) as a functional on Hp 

defined as

Hence the parameter space Θ is a subspace of l∞(Hp). To verify the Fréchet differentiability 

of the score function, for a fixed h = (h1, h2, h3) ∈ Hp, we shall consider an one-dimensional 

submodel θt = (β + th1, Λt(h2), γ + th3), where t ∈ ℝ1 and . 

Here, for sufficiently small |t|, Λt(h2) satisfies the requirements of a cumulative hazard 

function since h2 is a function of bounded variation on [0, τ].

Let θ̃ denote a certain value of θ, the score function for t at θ along the direction h is
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(15)

where

and

The corresponding Fréchet derivative of the score at the true value θ0 can be shown to be

(16)

where

and
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We shall term σθ0 = (σθ0, 1, σθ0, 2, σθ0, 3) the Fisher information operator. Since the Fréchet 

derivative ∇θSθ0 (θ0) is a linear form of σ, it suffices to show the continuous invertibility of 

σ by proving: (i) its one-to-one property, and (ii) it can be expressed as a sum of a 

continuously invertible operator and a compact operator. The one-to-one property (i) can be 

illustrated by a pagogical argument which is a consequence of the identifiability of the 

model.

To demonstrate (ii), we consider the following decomposition of the Fisher information 

operator.

where

and

The continuous invertibility of σθ0,L is straightforward under assumptions A1 to A6. To 

show the compactness of σθ0,C, we consider a sequence hn = (h1,n, h2,n, h3,n) ∈ Hp, and 

prove the existence of a convergent subsequence of σθ0,C (hn). By applying Helly’s selection 

theorem along with the Bolzanno-Weierstrass theorem, we obtain a subsequence hq(n) of hn 

which converges to a limit . Since the norm of the distance between σθ0,C 

(hq(n)) and σθ0,C (h*) can be expressed as
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(17)

assumption A1 to A6 imply that (17) is bounded above by

for some constant c. The dominated convergence theorem gives the convergence of the upper 

bound to zero, and then implies the convergence of σθ0,C (hq(n)) to σθ0,C (h*). The operator 

σθ0,C has been shown to be compact and then the continuous invertibility of σθ0 holds.

In the following step, we demonstrate the convergence of the difference between the 

empirical score process Sn,θ̂n and the mean score process Sθ0 evaluated at the true θ0. The 

definition of Sn,θ̂n (θ) and Sθ0(θ) are defined as follows. For the empirical score process, we 

define

where
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For the mean score process, we define

where

To illustrate the convergence of the process , the main point is to 

demonstrate the Donsker property of the classes of functions shown in Sn,θ̂n (θ0). The 

Donsker property on the class {h1Sn,θ̂n,1(θ0) + h3Sn,θ̂n,3 (θ0) : |h1|, |h3| ≤ p} holds due to the 

boundedness assumption in A4 and A5, and the fact that it is a parametric class, 

parameterized by h on a bounded subset, of measurable score function. This is illustrated by 

van der Vaart (Example 19.7 in van der Vaart (1998)). Moreover, according to the fact that a 

class of functions that are both uniformly bounded on [0, τ] and of bounded variation is 

Donsker, the Donsker property holds for the class {Sn,θ̂n,2(θ0)(h2) : h2 ∈ BVp}, where BVp 

is the space of functions of bounded variation whose total variations are smaller than p on [0, 

τ]. This leads to the convergence of  to a tight element on l∞
(Hp).

Next, we verify condition (a) in Theorem 3.3.1 in van der Vaart and Wellner (1996). From 

now on, we denote the score functions based on one cluster by sθ̃,O (θ)(h) = h1sθ̃,O,1(θ) + 

sθ̃,O,2(θ)(h2) + h3sθ̃,O,3(θ), where
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According to Lemma 3.3.5 in van der Vaart and Wellner (1996), it suffices to show the 

following two steps: (i) the class of random functions {sθ,O(θ)(h) − sθ0,O(θ0)(h)} :‖ θ − θ0 ‖ 

< δ, h ∈ H}, for certain δ > 0, is Donsker, and (ii) 

as θ → θ0. The Donsker property for the class in (i) can be verified in a similar way as 

shown previously for condition (b) by looking at sθ,O,k(θ) − sθ0,O,k(θ0), k = 1, 2, 3. The 

second step follows from the dominated convergence theorem. Therefore, condition (a) 

holds.

We have now verified condition (a), (b), and (c) in Theorem 3.3.1 in van der Vaart and 

Wellner (1996). Along with the consistency of θ̂n shown in Theorem 4.1, the weak 

convergence of  is concluded.

Proof of semiparametric efficiency

The Fréchet differentiability and the  of θ̂ shown previously imply

(18)

where op(1) is a random term converges in probability to zero element in l∞(Hp). Since the 

continuous invertibility of the Fisher information operator σ has been verified, its inverse 

operator, denoted as σ−1, exists and for each given h we have h̃ = (h̃1, h̃2, h̃3) = σ−1(h). By 

replacing h by h̃ on the right-hand-side of (18) and according to (16), we obtain the 

following equation.
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(19)

Hence,  converges weakly to a tight Gaussian element in l∞(Hp). By taking h2 = 

0 in (19), we observe that the influence function for (βn̂h1, γ̂
nh3) is a linear span of the score 

functions. By applying proposition 3.3.1 in van der Vaart and Wellner (1996), the 

semiparametric efficiency of (β̂, γ̂) is concluded.

A.4. Proof of Theorem 4.3

We complete the proof of the consistency of the bootstrap standard error by verifying the 

three conditions M1–M3 listed in Theorem 1 in Cheng (2012). In the following, we denote 

the log-likelihood contributed by a cluster by l(θ). Condition M1, which states the quadratic 

behavior of the log-likelihood, can be illustrated by considering the second-order Taylor 

expansion on the expected log-likelihood Eθ0 l(θ). By the identifiability of the model, θ0 

maximizes Eθ0 l(θ); hence the expected difference between l(θ) and l(θ0) can be expressed 

by a linear form of the information operator defined in (16), with θ replaced by θ − θ0, plus 

the remainder term. By assumptions A1–A6, Eθ0 [l(θ) − l(θ0)] is bounded above by a certain 

constant times . Thus condition M1 holds for the current 

model. Condition M3 in Theorem 1 in Cheng (2012) requires the  of the 

NPMLE Λ̂ and the bootstrap NPMLE Λ̂*. The  of Λ̂ is illustrated in 

Theorem 4.1. Analogously, the  of Λ̂* can be verified since the log-

likelihood from a nonparametric bootstrap sample can be expressed as , where 

Mni is the frequency of the ith cluster being resampled, and (Mn1, …, Mnn) ~ Multinomial 

(n, (n−1, …, n−1)).

Condition M2 in Theorem 1 in Cheng (2012) describes the moment condition of the 

empirical process over a class of functions defined as δ = {l(θ) − l(θ0) : θ ∈ Θ,| β − β0 |≤ 

δ, | γ − γ0 |≤ δ, ‖ Λ − Λ0 ‖∞ ≤ δ} for some δ > 0. Here we introduce some notations for 

later use. Let δ be the envelop function of the class δ. Define empirical processes 

 and , where Pf = ∫ fdP, , and 

. The notations with * denote the corresponding terms based on bootstrap 

samples. Moreover, we define  and , and use the 

notation “a(b) ≲ b” to mean that a(b) is smaller than b, for all b, up to an universal constant.
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Since the function l(θ)−l(θ0), for fixed θ0, is globally Lipschitz continuous with the 

Lipschitz coefficient function as a finite constant function under the assumption A1–A6, we 

have the Lp′−norm of the envelop function

(20)

It also implies that

(21)

By the compactness of the finite-dimensional parameter space Θβ × Θγ and the fact that the 

class of bounded monotone functions is VC-hull class, the class δ has finite uniform 

entropy integral. This fact along with (20) imply

(22)

Moreover, under nonparametric sampling scheme, (21) and (22) lead to the following 

inequality according to Appendix A.5 in Cheng (2012).

(23)

The two inequalities in (22) and (23) complete the verification of condition M2, and hence 

the theorem.
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Fig 1. 
Plots of marginal log-likelihood evaluated at the NPMLE calculated in each iteration step 

based on 12 datasets with 100 clusters of size 2.
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Fig 2. 
The solid line stands for the estimated cumulative baseline hazard function obtained from 

the proposed method. A pointwise 95% confidence band from bootstrap is presented by the 

dash lines.
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Table 4
The Fitted results on HB study under full and reduced models

Model Parameters Estimates Esti. SD p-value

Full Mom HBV carrier −0.0311 0.4348 0.9430

Baseline ALT 0.6191 0.2101 0.0032

v 0.5303 0.2370 –

Reduced Baseline ALT 0.6091 0.2053 0.0030

v 0.4723 0.2350 –
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