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 FINITE ELEMENT STRUCTURAL RESPONSE SENSITIVITY  

AND RELIABILITY ANALYSES USING SMOOTH VERSUS  

NON-SMOOTH MATERIAL CONSTITUTIVE MODELS  

 

KEYWORDS: material constitutive models, material constitutive parameters, finite 

element sensitivity analysis, gradient-based optimization methods, structural reliability 

analysis 

Abstract 

This paper focuses on the effects upon the design point search of gradient discontinuities 

caused by non-smoothness of material constitutive models in the context of finite element 

reliability analysis. The response computation algorithm for the Menegotto-Pinto smooth 

constitutive model for structural steel is extended to response sensitivity analysis using 

the Direct Differentiation Method (DDM). Comparisons are made between response 

sensitivity analysis and reliability analysis results of a structural system modeled using 

smooth and non-smooth material constitutive laws, respectively. Both material and 

discrete loading sensitivity parameters are considered. Structural reliability analyses are 

performed using the First-Order Reliability Method (FORM). Implications of using 

smooth versus non-smooth material constitutive models for finite element response and 

response sensitivity analyses as well as reliability analysis are discussed. A sufficient 

condition on the smoothness of uni-axial material constitutive models for obtaining 

continuous finite element response sensitivities is stated and proved for the quasi-static 

case. Based on application examples, remarks are made on the continuity (or lack 
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thereof) of response sensitivities for the dynamic case. Conclusions are drawn on the 

need to use existing or develop new inelastic material constitutive models with specified 

smoothness properties both in the monotonic as well as cyclic hysteretic behavior for 

applications requiring continuous response sensitivities such as gradient-based 

optimization.  

1 INTRODUCTION 

The field of structural reliability analysis has seen significant advances in the last two 

decades (Ditlevsen and Madsen, 1996). Analytical and numerical methodologies have 

been developed and improved for the probabilistic analysis of real structures 

characterized in general by nonlinear behavior, material and geometric uncertainties and 

subjected to stochastic loads (Schueller et al., 2004). Reliability analysis methods have 

been successfully applied to such problems, as the ones encountered in civil engineering 

and typically analyzed deterministically through the finite element method (Der 

Kiureghian and Ke, 1988).  

Several reliability analysis methods, such as asymptotic methods (First- and Second-

Order Reliability Methods) (Breitung, 1984; Der Kiureghian and Liu, 1986; Der 

Kiureghian et al., 1987; Der Kiureghian, 1996; Ditlevsen and Madsen, 1996) and 

importance sampling with sampling distribution centered on the design point(s) 

(Schueller and Stix, 1987; Melchers, 1989; Au et al., 1999; Au and Beck, 2001a) are 

characterized by the crucial step of finding the design point(s). In particular, asymptotic 

methods can provide reliability analysis results with a relatively small number of 

simulations (often of the order of 10-100 simulations for FORM analysis) and with a 

computational effort practically independent of the magnitude of the failure probability. 
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Furthermore, these methods provide important information such as reliability sensitivity 

measures, as by-product of the design point search (Hohenbichler and Rackwitz, 1986). 

Other reliability analysis methods, e.g., subset simulation (Au and Beck, 2001b; Au and 

Beck, 2003) and importance sampling with sampling distribution not centered at the 

design point(s) (Bucher, 1988; Ang et al., 1992; Au and Beck, 1999), do not use the 

concept of design point, do not require computation of response sensitivities, and 

therefore are not affected by smoothness or non-smoothness of the material constitutive 

models used. In general, the computational cost of these methods increases for decreasing 

magnitude of the failure probability. Thus, for very low failure probabilities, these 

methods could require a very large number of simulations.  

In general, the design point(s) is(are) found as the solution(s) of a constrained 

optimization problem, in which the number of variables corresponds to the number of 

material, geometric and loading parameters modeled as random variables (Ditlevsen and 

Madsen, 1996). The most effective optimization algorithms for high-dimensional 

problems are gradient-based methods coupled with algorithms for efficient and precise 

computation of response sensitivities to material, geometric and loading parameters (Liu 

and Der Kiureghian, 1991). Moreover, these methods assume some smoothness 

properties of the objective and constraint functions, on which the convergence properties 

are dependent. Constraint function(s) that arise in structural engineering problems often 

do not possess second-order differentiability, as required by gradient-based optimization 

methods in order to achieve quadratic convergence rates (Gill et al., 1981). In general, 

they present discontinuities in the first derivatives (e.g., J2 plasticity model, contact 

problems) or even in the response (e.g., crack propagation), and further discontinuities 
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are introduced by numerical solution methodologies (e.g., finite element, finite 

difference, numerical integration).  

Significant research efforts have been devoted to the development of smooth 

nonlinear material constitutive models, in order to better describe actual material 

behavior. Important characteristics such as Baushinger’s effect for steel and hysteresis 

loops for concrete are most accurately described by smooth material models. Other 

smooth versus non-smooth material behavioral properties (e.g., shape of σ−ε relation for 

concrete in tension) may have a negligible effect on simulated structural response, but a 

significant effect on response sensitivities to material parameters.  

This paper describes some features of response sensitivity analysis using smooth and 

non-smooth material constitutive laws. The response sensitivity computation algorithm is 

presented for the Menegotto-Pinto smooth constitutive model typically used for structural 

steel (Menegotto and Pinto, 1973). Continuity of finite element response sensitivities is 

analyzed and a sufficient condition on the smoothness properties of material constitutive 

models to obtain such continuity is stated and proved for the quasi-static case. Based on 

application examples, remarks are made on the continuity (or lack thereof) of response 

sensitivities for the dynamic case, which is more difficult to study mathematically. Focus 

is on the effects upon the design point search of gradient discontinuities produced by non-

smoothness of material constitutive models. The First-Order Reliability Method (FORM) 

(Ditlevsen and Madsen, 1996) is applied to reliability analysis of a structural system 

modeled with smooth and non-smooth material constitutive laws, respectively. Both 

probabilistic quasi-static pushover and dynamic analyses are considered. The Direct 

Differentiation Method (DDM) (Zhang and Der Kiureghian, 1993; Kleiber et al., 1997; 
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Conte, 2001; Conte et al., 2003) is used for finite element response sensitivity analysis. 

The implications of using smooth versus non-smooth material constitutive models on 

finite element response and response sensitivity analyses as well as on reliability analysis 

are discussed. Based on the results obtained, conclusions are drawn on the need to use 

existing or develop new inelastic material constitutive models with specified smoothness 

properties both in the monotonic as well as cyclic hysteretic behavior for applications 

requiring continuous response sensitivities such as gradient-based optimization.  

It is worth mentioning that response sensitivity analysis finds application not only in 

reliability analysis, which is the focus of this paper, but also in structural optimization, 

structural identification, finite element model updating and any other field in which 

gradient-based optimization techniques are used. The results presented in this paper are 

general and apply to any situation for which response sensitivity analysis is required. 

2 FINITE ELEMENT RELIABILITY ANALYSIS AND DESIGN POINT 

SEARCH 

In general, the structural reliability problem consists of computing the probability of 

failure Pf of a given structure, which is defined as the probability of exceedance of some 

limit-state (or damage-state) function(s) when the loading(s) and/or structural properties 

and/or parameters in the limit-state functions are uncertain quantities modeled as random 

variables. 

This paper focuses on component reliability analysis, i.e., we consider a single limit-

state function g = g(r, θ), where r denotes a vector of response quantities of interest and θ 

is the vector of random variables considered. The limit-state function g is chosen such 
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that 0≤g  defines the failure domain/region. Thus, the time-invariant component 

reliability problem takes the following mathematical form 

 
( , ) 0

[ ( , ) 0] = p ( )d
≤

= ≤ ∫
r

r Θ
θ

θ θ θf
g

P P g  (1) 

where pΘ(θ) denotes the joint probability density function (PDF) of random variables θ.  

Moreover, it is assumed that the limit-state function describes a first-excursion 

problem in one of the following simple forms: 

 
lim

lim

lim lim

( , t );                           (up-crossing problem) 
( , t ) ;                           (down-crossing problem)

( , t ) , ( 0);    (double-barrier crossing problem)

u u
g u u

u u u

⎧ −
⎪

= −⎨
⎪ − >⎩

θ

θ

θ

 (2) 

in which ( , t )u θ  is a scalar displacement response quantity (i.e., nodal displacement) 

computed at t = t , where t is an ordering parameter (loading factor in a quasi-static 

analysis or time in a dynamic analysis), t  is a specified value of t (e.g., ( )t = max t  in a 

pushover analysis), and ulim is a deterministic threshold. In this case, the time-invariant 

reliability problem reduces to computing 

 
lim

lim

lim

( , t )
( , t ) 0 ( , t )

( , t )

⎧ ≥⎡ ⎤⎣ ⎦⎪⎪= ≤ = ≤⎡ ⎤ ⎡ ⎤⎨⎣ ⎦ ⎣ ⎦
⎪ ⎡ ⎤≥⎪ ⎣ ⎦⎩

θ
θ θ

θ
f

P u u
P P g P u u

P u u

 (3) 

For time-variant reliability problems, an upper bound of the probability of failure, 

(T)fP , over the time interval [0, T], can be found as 

 
T

0

(T) (t) t≤ ∫f gP dν  (4) 
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where (t)gν  denotes the mean down-crossing rate of level zero of the limit-state function 

g. An estimate of (t)gν  can be obtained numerically from the limit form relation (Hagen 

and Tvedt, 1991) 

 [ ]
t 0

( , t) 0 ( , t+ t) 0
(t) lim

tg
P g g

δ

δ
ν

δ→

> ≤
=

Iθ θ
 (5) 

The numerical evaluation of the numerator of Eq. (5) reduces to a time-invariant two-

component parallel system reliability analysis. It is clear that the first part of Eq. (3) 

represents the building block for the solution of both time-invariant and time-variant 

reliability problems (Der Kiureghian, 1996).  

The problem in Eq. (1) is extremely challenging for real-world structures and can be 

solved only in approximate ways. A well established methodology consists of introducing 

a one-to-one mapping/transformation between the physical space of variables θ and the 

standard normal space of variables y (Ditlevsen and Madsen, 1996) and then computing 

the probability of failure Pf  as 

 
G( ) 0

[G( ) 0] = ( )d
≤

= ≤ ϕ∫ Y
y

y y yfP P  (6) 

where ( )ϕY y  denotes the standard normal joint PDF and G( ) = ( ( )), ))( (y r y yθ θg  is the 

limit-state function in the standard normal space. 

Solving the integral in Eq. (6) remains a formidable task, but this new form of Pf is 

suitable for approximate solutions taking advantage of the rotational symmetry of the 

standard normal joint PDF and its exponential decay in both the radial and tangential 

directions. An optimum point at which to approximate the limit-state surface ( )G 0=y  is 

the “design point”, which is defined as the most likely failure point in the standard 
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normal space, i.e., the point on the limit-state surface that is closest to the origin. Finding 

the design point is a crucial step for approximate methods to evaluate the integral in Eq. 

(6), such as FORM, SORM and importance sampling (Breitung, 1984; Der Kiureghian et 

al., 1987; Au and Beck, 1999). 

The design point, y*, is found as solution of the following constrained optimization 

problem: 

 T1arg min G( ) = 0
2

∗ ⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

y y y y  (7) 

The most effective techniques for solving the constrained optimization problem in Eq. (7) 

are gradient-based optimization algorithms (Gill et al., 1981; Liu and Der Kiureghian, 

1991) coupled with algorithms for accurate and efficient computation of the gradient of 

the constraint function G(y), requiring computation of the sensitivities of the response 

quantities r to parameters θ. In fact, using the chain rule of differentiation for multi-

variable functions, we have 

 ( )G∇ = ∇ ⋅∇ ∇ ⋅∇y r yrr +θ θθ θg g  (8) 

where ∇r θg  and ∇ rθ g  are the gradients of limit-state function g with respect to its 

explicit dependency on quantities r and θ, respectively, and usually can be computed 

analytically (e.g., for limit-state function g given in Eq. (2)1, we have 1∇ = −r θg  and 

0∇ =rθ g ); the term ∇ rθ  denotes the response sensitivities of response variables r to 

parameters θ, and ∇yθ  is the gradient of the physical space parameters with respect to 

the standard normal space parameters (i.e., Jacobian matrix of the probability 
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transformation from the y-space to the θ-space). For probability distribution models 

defined analytically, the gradient ∇yθ  can be derived analytically as well (Ditlevsen and 

Madsen, 1996).  

For real-world problems, the response simulation (computation of r for given θ) is 

performed usually using advanced mechanics-based nonlinear computational models 

developed based on the finite element method (FEM). Finite element reliability analysis 

requires augmenting existing finite element formulations for response calculation only, to 

compute the response sensitivities, ∇ rθ , to parameters θ. An accurate and efficient way 

to perform finite element response sensitivity analysis is through the Direct 

Differentiation Method (DDM) (Zhang and Der Kiureghian, 1993; Kleiber et al., 1997; 

Conte, 2001; Conte et al., 2003; Franchin, 2004; Zona et al., 2005). 

3 MATERIAL CONSTITUTIVE MODELS 

In this paper, two different material constitutive models typically used to describe the 

behavior of structural steel are considered: the one-dimensional J2 plasticity model (also 

more commonly known as bilinear inelastic model), for which the sensitivity 

computation algorithm is presented elsewhere (Conte et al., 2003), and the Menegotto-

Pinto model (1973) in the version extended by Filippou et al. (1983) to account for 

isotropic strain hardening, for which the response sensitivity computation algorithm is 

developed and presented in Section 3.2.  

The J2 plasticity model with Von Mises yield surface is a well-known non-smooth 

plasticity model for metallic materials. Its one-dimensional version presents a kink at the 
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yielding point of the σ-ε relation, leading to discontinuities in response sensitivities at 

elastic-to-plastic state transition events (Conte, 2001).  

The Menegotto-Pinto (M-P) one-dimensional plasticity model is a computationally 

efficient smooth inelastic model typically used for structural steel, showing very good 

agreement with experimental results, particularly from cyclic tests on reinforcing steel 

bars. It presents two favorable features for finite element response, response sensitivity 

and reliability analyses: (a) the model expresses explicitly the current stress as a function 

of the current strain, so that it is computationally more efficient than competing models 

such as the Ramberg-Osgood model (Ramberg and Osgood, 1943); (b) the constitutive 

law is smooth and continuously differentiable (with respect to strain and constitutive 

material parameters), therefore producing response sensitivities continuous everywhere. 

Furthermore, the M-P model can accommodate modifications in order to account for 

local buckling of steel bars in reinforced concrete members (Monti and Nuti, 1992), and 

can be used for macroscopic modeling of hysteretic behavior of structures or sub-

structures with an appropriate choice of the modeling parameters. It is also noteworthy 

that the Menegotto-Pinto model is a physically motivated model of structural material 

hysteresis, and its performance in representing structural physical behavior is not 

undermined by mathematical features that can lead to non-physical analysis results. Such 

non-physical results have been documented for widely used models such as the Bouc-

Wen hysteretic model based on nonlinear differential equations (Thyagarajan and Iwan, 

1990). Caution is needed in the use of such mathematically-based models in order to 

avoid non-physical analysis results, and preference should be granted to physically-based 

models such as the Menegotto-Pinto model used in this paper. 
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3.1 Response Computation 

The M-P model is described by the following equations 

 
1/

(1 ) ** *
(1 * )R R

bb εσ ε
ε

− ⋅
= ⋅ +

+
 (9) 

 * r

y r

ε ε
ε

ε ε
−

=
−

 (10) 

 * r

y r

σ σ
σ

σ σ
−

=
−

 (11) 

Eq. (9) represents a smooth curved transition from an asymptotic straight line with slope 

E0 to another asymptotic straight line with slope E1, where b = E1/E0; ε* and σ* are the 

normalized strain and stress, respectively; εy and σy are the coordinates in the strain-stress 

plane of the intersection point of the two asymptotes; εr and σr (initially set to zero) are 

the coordinates in the strain-stress plane of the point where the last strain reversal event 

took place; ε and σ are the current strain and stress, respectively; and R is a parameter 

describing the curvature of the transition curve between the two asymptotes. A typical 

cyclic stress-strain response behavior is shown in Figure 1. 

The model is completed by the updating rules for εr, σr, εy, σy and R at each strain 

reversal event. For example, parameter R is obtained as 

 1
0

2

a
R R

a
ξ
ξ

⋅
= −

+
 (12) 

where R0 is the value of the parameter R during the first loading; a1 and a2 are 

experimentally determined parameters; ξ  is the ratio of the maximum plastic strain 

p
max maxmax yε

ε ε ε= −  over the initial yield strain εy0. To account for isotropic hardening, 
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Filippou et al. (1983) proposed a stress shift σsh in the linear yield asymptote depending 

on the maximum plastic strain as 

 max
3 4

0 0

⎛ ⎞
= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠

sh

y y
a a

σ ε
σ ε

 (13) 

in which a3 and a4 are experimentally determined parameters, maxε  is the absolute 

maximum total strain at the instant of strain reversal and σy0 is the initial yield stress. For 

this model, the updating rules at the instant of strain reversal (detected in the time step 

[tn,tn+1]) are 

 n 1 n n 1 n;+ +r, r,= =ε ε σ σ  (14) 

 
p p
max,n max,n n ,np

max,n 1
n ,n

;  if  

;             otherwise 
+

⎧ > −⎪= ⎨
−⎪⎩

y

y

ε ε ε ε
ε

ε ε
 (15) 

 
p
max,n 1

n 1
0

+
+ =

y

ε
ξ

ε
 (16) 

 max,n max,n n
max,n 1

n

; if  
;           otherwise +

⎧ >⎪= ⎨
⎪⎩

ε ε ε
ε

ε
 (17) 

 ( )sh,n 1 3 max,n 1 4 0max ; 0+ +
⎡ ⎤= ⋅ ⋅ ⋅ Ε⎣ ⎦ya a−σ ε ε  (18) 

 n 1 n 1 0 sh,n 1
n 1

(1 )

( 1)E
+ + +

+

⎡ ⎤− Ε ⋅ ± − ⋅ +⎣ ⎦
−

r, yr,
y,

b
=

b

σ ε σ σ
ε  (19) 

 n 1 0 sh,n 1n 1 E (1 )+ ++ ⎡ ⎤⋅ ⋅ ± − ⋅ +⎣ ⎦y, yy, = b bσ ε σ σ  (20) 

In Eqs. (19) and (20), the “+” sign has to be used for strain inversion from positive strain 

increment (tensile increment) to negative strain increment (compressive increment), 
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while the “ − ” sign is required for strain inversion from negative strain increment to 

positive strain increment. 

3.2 Response Sensitivity Computation 

Following the Direct Differentiation Method (DDM), the exact response sensitivities of 

the discretized material constitutive laws are required in finite element response 

sensitivity analysis. The DDM consists of differentiating analytically the space- and time-

discretized equations of motion/equilibrium of the finite element model of the structural 

system considered. It involves (1) computing the derivatives (with respect to the 

sensitivity parameters) of the element and material history/state variables conditional on 

fixed nodal displacements at the structure level (conditional sensitivities), (2) forming the 

right-hand-side of the response sensitivity equation at the structure level, (3) solving the 

resulting equation for the nodal displacement response sensitivities, and (4) updating the 

unconditional derivatives of all history/state variables (unconditional sensitivities). For a 

more detailed explanation of the DDM, the interested reader is referred elsewhere (Zhang 

and Der Kiureghian, 1993; Kleiber et al., 1997; Conte et al., 1995; Conte 2001; Conte et 

al., 2003, 2004; Barbato and Conte, 2005; Zona et al., 2005). The response sensitivity 

computation algorithm affects the various hierarchical layers of finite element response 

calculation, namely the structure, element, section, and material levels. This section 

presents the algorithm for computing the response sensitivities of the M-P material 

constitutive model over a single time step.  

(1) Sensitivity parameters θ 
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The material constitutive parameters selected as sensitivity parameters are: elastic 

Young’s modulus (E); initial yield stress (σy0); plastic-to-elastic material stiffness ratio 

(b).  

(2) Input at time t = tn+1 

The input information for response sensitivity computation at time t = tn+1 consists of:  

• Current strain (εn+1) and stress (σn+1) and history variables h (εr,n+1, σr,n+1, 

p
max,n 1ε + , ξn+1, εmax,n+1 σsh,n+1, εy,n+1, σy,n+1) after convergence for the response 

computation at time tn+1.  

• Unconditional sensitivities at time tn:  (dε/dθ)n, (dσ/dθ)n, (dεr/dθ)n, (dσr/dθ)n, 

(d p
maxε /dθ)n, (dξ/dθ)n, (dεmax/dθ)n, (dσsh/dθ)n, (dεy/dθ)n, (dσy/dθ)n . 

(3) Algorithm 

IF strain reversal took place in time step [tn,tn+1],  

THEN compute the sensitivities of all history variables, (dh/dθ)n+1, consistently with the 

constitutive law integration scheme, i.e.,  

 
n nn 1 n 1

;
+ +

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

r rd dd d= =
d d d d
ε σε σ
θ θ θ θ

 (21) 

 

p
pmax
max,n n ,n

p
nmax

n 1
n ,n

n n

;                        if  

sign( ) ;  otherwise +

⎧ ⎛ ⎞
> −⎪ ⎜ ⎟⎜ ⎟⎪⎛ ⎞ ⎝ ⎠⎪=⎜ ⎟ ⎨⎜ ⎟ ⎡ ⎤⎛ ⎞⎪⎝ ⎠ ⎛ ⎞− ⋅ −⎢ ⎥⎜ ⎟⎪ ⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎩

y

y
y

d
dd

d dd
d d

ε
ε ε ε

θε
θ εεε ε

θ θ

 (22) 

 

p
0pmax

0 max,n 1
n 1

2
n 1 0

+
+

+

⎛ ⎞
⋅ − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠⎛ ⎞ =⎜ ⎟
⎝ ⎠

y
y

y

dd
d dd

d

εε
ε ε

θ θξ
θ ε

 (23) 
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max
max,n n

nmax

n 1
n

n

;    if  

sign( ) ;  otherwise +

⎧⎛ ⎞ >⎪⎜ ⎟
⎝ ⎠⎛ ⎞ ⎪= ⎨⎜ ⎟

⎝ ⎠ ⎛ ⎞⎪ ⋅ ⎜ ⎟⎪ ⎝ ⎠⎩

d
dd

d d
d

ε
ε ε

θε
θ εε

θ

 (24) 

( ) 0max
3 max,n 1 4 0 4 shsh

n 1
n 1

>;  if 0

0;                     otherwise

+
+

+

+ −
⎧ ⎧ ⎫⎡ ⎤Ε ⎛ ⎞⎪ ⎪⋅ ⋅ ⋅ ⋅ ⋅ Ε⎪⎛ ⎞ ⎨ ⎬⎢ ⎥⎜ ⎟= ⎨ ⎝ ⎠⎪ ⎪⎜ ⎟ ⎣ ⎦⎩ ⎭⎝ ⎠ ⎪
⎩

y
y

ddda a ad
d d d

d
−

εε
ε ε σσ

θ θ θ
θ

 (25) 

{ }

0 sh
n 1 0

n 1 n 1 n 1

n 1 n 1 0 sh,n 1

n 1

2 2

E (1 )

( 1)E

E (1 ) E (1 )

(1 ) E

+
+ + +

+ + +

+

− − ± − − +

−

− ± − + − −

−
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⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎜ ⎟
⎝ ⎠

Ε⎡ ⎤⎡ ⎤ ⋅ ⎢ ⎥⎣ ⎦ ⎣ ⎦−

y
r, y

r, r, y

r r

y

d dd dd dbb
d d d d d d d

=
d b

db db b
d d

b

σ σσ ε
ε σ

ε θ θ θ θ θ θ
θ

σ ε σ σ
θ θ

(26) 

 
n 1 n 1

n 1

0 sh
0

n 1

n 1

EE E

(1 )

+ +
+

+

+

− − +

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞± ⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

y, y,

y
y

y yd ddb d= b b
d d d d

d ddbb
d d d

σ ε
ε ε

θ θ θ θ

σ σ
σ

θ θ θ

 (27) 

In Eqs. (26) and (27), the “+” sign has to be used for strain inversion from positive strain 

increment (tensile increment) to negative strain increment (compressive increment), 

while the “ − ” sign is required for strain inversion from negative strain increment to 

positive strain increment. 

ELSE (dh/dθ)n+1 = (dh/dθ)n (since all the above history variables h remain fixed between 

two consecutive strain reversal events). 

END IF 

COMPUTE 
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( )

1 2
2

n 1 n 1 2 n 1

a adR d
d d a

ξ
θ θ ξ+ + +

⋅⎛ ⎞ ⎛ ⎞= − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ +

 (28) 
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2
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END 

The DDM requires computing at each analysis step, after convergence is achieved for 

the response calculation, the structure resisting force sensitivities for nodal displacements 

kept fixed (i.e., conditional sensitivities). At the material level, the required conditional 

sensitivities (for εn+1 fixed) can be obtained from Eqs. (28) through (31) after setting 

(dε/dθ)n+1 = 0. 

4 APPLICATION EXAMPLE 

A three-story one-bay steel shear-frame is considered as application example in this paper 

(Figure 2). The structure has been chosen simple enough to allow for closed-form 

computation of the design point (for pushover analysis and in the case of J2 plasticity), 
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yet realistic and complex enough to illustrate the main features and difficulties 

encountered in the general class of problems under study. A key objective of this paper is 

to show clearly the detrimental effects that discontinuities in finite element response 

sensitivities could have on the search for the design point(s). More complex examples or 

more complete and advanced reliability analyses would not achieve this objective as 

simply and as clearly. In fact, problems of dimension higher than two in the parameter 

space do not allow simple visualization of the limit-state function and limit-state surface 

(visualization is still possible for limit-state surfaces of three parameter problems). 

Moreover, other not easily recognizable difficulties for the design point search could be 

superimposed to the detrimental effects of response sensitivity discontinuities (e.g., 

multiple design points, saddle points).  

The shear-frame has three stories of height H = 3.20m each, and one bay of length L 

= 6.00m. The columns are European HE340A steel columns with moment of inertia 

along the strong axis I = 27690.0cm4. The steel material has a Young’s modulus E = 

52 10× N/mm2 and an initial yield stress fy0 = 350N/mm2. The initial yield moment of the 

columns is My0 = 587.3kN-m. The beams are considered rigid to enforce a typical shear-

building behavior. Under this assumption, the initial yield shear force for each story is Fy0 

= 734kN.  

The frame described above is assumed to be part of a building structure with a 

distance between frames L’ = 6.00m. The tributary mass per story, M, is obtained 

assuming a distributed gravity load of q = 8kN/m2, accounting for the structure own 

weight, as well as for permanent and live loads, and is equal to M = 328.8 10× kg. The 

fundamental period of the linear elastic undamped shear-frame is T1 = 0.38s. Natural 
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frequencies, natural periods and effective modal mass ratios for the undamped structure 

are given in Table 1. Viscous damping in the form of Rayleigh damping is assumed with 

a damping ratio ξ = 0.05 for the first and third modes of vibration.  

The story shear force – interstory drift relation is modeled using three different 

hysteretic models, which have in common the initial stiffness K = 40.56kN/mm, the 

initial yield force Fy0 = 734kN and the post-yield stiffness to initial stiffness ratio b = 

0.10. The three models are: (a) Menegotto-Pinto model with parameters R0 = 20, a1 = 

18.5, a2 = 0.15, a3 = a4 = 0, denoted as ‘M-P (R0 = 20)’ in the sequel; (b) Menegotto-Pinto 

model with parameters R0 = 80, a1 = 18.5, a2 = 0.15, a3 = a4 = 0, denoted as ‘M-P (R0 = 

80)’ hereafter; (c) uni-axial J2 plasticity model with Hkin = K/9 = 4.057kN/mm (kinematic 

hardening modulus), Hiso = 0kN/mm (isotropic hardening modulus), and α0 = 0kN/mm 

(initial back-stress), denoted as ‘J2 plasticity’ hereafter. The M-P (R0 = 20) model is 

characterized by typical values of the parameters used for common structural steel, while 

the M-P (R0 = 80) model is used only for the purpose of reproducing as closely as 

possible with a smooth inelastic model the behavior of the non-smooth J2 plasticity 

model. 

In the following examples, finite element response and response sensitivity analyses 

are performed using the general-purpose nonlinear finite element structural analysis 

program FEDEASLab (Filippou and Constantinides, 2004). FEDEASLab is a Matlab 

(The Mathworks, 1997) toolbox suitable for linear and non-linear, static and dynamic 

structural analysis, which also incorporates a general framework for parameterization of 

finite element models and for response sensitivity computation using the DDM (Franchin, 

2004). Reliability analysis is performed using the Matlab-based software FERUM 



 19

(Haukaas, 2001). The optimization problem to find the design point(s) is solved using 

three different optimization algorithms: (a) the (improved) Hasofer-Lind Rackwitz-

Fiessler (HL-RF) algorithm (Rackwitz and Fiessler, 1978; Der Kiureghian and Liu, 

1986), available in FERUM; (b) the function FMINCON of the Matlab Optimization 

Toolbox (The Mathworks, 2004); and (c) the nonlinear programming code SNOPT (Gill 

et al., 2002; Gill et al., 2005). While the improved HL-RF algorithm is a gradient-based 

iterative method specialized for structural reliability problems (Liu and Der Kiureghian, 

1991), FMINCON and SNOPT are general-purpose optimization routines based on 

Sequential Quadratic Programming (SQP) (Gill et al., 1981). The algorithms used by 

FMINCON and SNOPT are similar for small-scale dense problems (as the ones examined 

in this paper), with differences involving mainly efficiency and robustness issues. In this 

paper, the above three different optimization methods are used in order to reach a higher 

confidence level on the results obtained. Research is currently underway to assess the 

relative performance characteristics of these optimization methods when applied to 

structural reliability problems of increasing complexity and dimensionality. 

4.1 Finite Element Response Sensitivity Analysis 

Response sensitivity analysis can be used to gain insight into the effects and relative 

importance of the loading and material parameters θ on the response behavior of a 

structural system. The example structure presented above is subjected to a response and 

response sensitivity analysis for quasi-static cyclic loading and dynamic loading in the 

form of seismic base excitation. Some response quantities and their sensitivities to 

various material and loading parameters are presented and carefully examined below. 
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In the quasi-static analysis, horizontal loads are applied at floor levels with an upper 

triangular distribution, with a maximum load maxP P=  at roof level and a total horizontal 

load (= total base shear)  totP 2P=  (Figure 2). The loading history is presented in the 

inset of Figure 3. 

In the main part of Figure 3, the relation between the total base shear Ptot and the roof 

horizontal displacement u3 is plotted for the three constitutive models considered. After 

the first unloading (point B), the response of the M-P (R0 = 20) model deviates 

significantly from the responses corresponding to the J2 plasticity and M-P (R0 = 80) 

models. 

Figures 4 and 5 display the normalized sensitivities of the roof displacement u3 to the 

initial yield force Fy0 and the load parameter Pmax, respectively. The normalized 

sensitivities are obtained by multiplying the response sensitivities with the nominal value 

of the corresponding sensitivity parameters and dividing the results by one hundred. 

Thus, these normalized sensitivities represent the total change in the response quantity of 

interest due to one percent change in the sensitivity parameter value and can be used for 

assessing quantitatively the relative importance of the sensitivity parameters in the 

deterministic sense. Similar to the response results, the response sensitivities obtained 

from the J2 plasticity model are very close to the ones produced by the M-P (R0 = 80) 

model and quite different from the ones given by the M-P (R0 = 20) model. It is 

important to note that, while the response sensitivities for the J2 plasticity model are 

discontinuous at elastic-to-plastic material state transition events, the response 

sensitivities produced by the M-P models are continuous everywhere (see for example the 
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inset in Figure 4, corresponding to point A in Figure 3). These conclusions are consistent 

with previous findings of other researchers (Haukaas and Der Kiureghian, 2004).  

The absence of discontinuities in the response sensitivities for all three constitutive 

models at unloading events is noteworthy (see for example the inset in Figure 5, 

corresponding to point B in Figure 3). It has been proven (Haukaas and Der Kiureghian, 

2004) that no discontinuities arise from elastic unloading events. This proof assumes 

explicitly a linear elastic unloading branch in the material constitutive law (as for the uni-

axial J2 plasticity model considered herein) and implicitly that the entire structure (i.e., all 

yielded integration points) undergoes elastic unloading at the same load/time step. The 

M-P model presented herein does not have a linear elastic unloading branch; 

nevertheless, it does not exhibit discontinuities at unloading events as well. It can be 

proven (see Appendix) that, if only one-dimensional constitutive models are employed, 

unloading events in quasi-static finite element analysis do not produce response 

sensitivity discontinuities provided that the unloading branches of the material 

constitutive laws can be expanded in Taylor series about the unloading points. A physical 

explanation of this statement is that any material unloading event can be seen as 

connecting two stress-strain points on the same (unloading) branch of the constitutive 

model, as opposed to a material yielding event which connects two stress-strain points 

belonging to two different branches in the case of a non-smooth constitutive model (see 

Figure 6). 

The same example structure is subjected to finite element response and response 

sensitivity analyses for dynamic seismic loading. The balanced 1940 El Centro 

earthquake record scaled by a factor 3 is taken as input ground motion with a resulting 
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peak ground acceleration ( )g,max gt
a max u (t) 0.96g= =&& . The structure is modeled with 

the J2 plasticity, the M-P (R0 = 20), and the M-P (R0 = 80) constitutive law, respectively. 

Time integration is performed using the constant average acceleration method (special 

case of the Newmark-beta family of time stepping algorithms that is unconditionally 

stable, see Appendix for more details). The computed time histories of the roof 

displacement u3 are plotted in Figure 7. The results corresponding to the M-P (R0 = 80) 

model are not shown, being very close to the ones obtained from the J2 plasticity model. 

For all three constitutive models, the structure undergoes large plastic deformations as 

shown in Figure 7 by the non-zero centered oscillations of the response.  

Figures 8 and 9 display the time histories of the normalized sensitivities of the roof 

displacement u3 to the initial yield force Fy0 and the peak ground acceleration g,maxa , 

respectively. Again, the results for the M-P (R0 = 80) model are very similar to those for 

the J2 plasticity model and are not shown in Figures 8 and 9. Even a close inspection of 

these time histories does not reveal any discontinuities in the response sensitivities along 

the time axis. In fact, both the smoothing effect of the inertia terms in the sensitivity 

equation of the structure (Haukaas and Der Kiureghian, 2004) and the oscillatory 

behavior of the sensitivities contribute to hide discontinuities of small magnitude. 

However, examining response sensitivity results along the sensitivity parameter axis 

(for a fixed time step t∆  sufficiently small, herein t = 0.001s∆ ) reveals a very different 

behavior: discontinuities arise clearly in the response sensitivities obtained from the non-

smooth J2 plasticity model, while the M-P models response sensitivities are smooth along 

the parameter axis, as shown in Figure 10.  Figures 11 and 12 plot the time histories (for 

0 t 5s≤ ≤ ) of the displacement u3 for fixed peak ground acceleration g,maxa  and variable 
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initial yield force Fy0 obtained using the M-P (R0 = 20) model and the J2 plasticity model, 

respectively, and the integration time step t 0.001s∆ = . It is observed that the response 

surfaces are continuous in both time and parameter Fy0 and present small differences 

overall between the two different constitutive models. Figures 13 and 14 show the time 

histories (for 0 t 5s≤ ≤ ) of the normalized sensitivities of the displacement u3 to the 

initial yield force Fy0 for fixed peak ground acceleration g,maxa  and variable initial yield 

force Fy0 obtained using the M-P (R0 = 20) model and the J2 plasticity model, 

respectively, and the integration time step t 0.001s∆ = . The response sensitivity surface 

obtained for the M-P (R0 = 20) constitutive model is continuous in both time and 

parameter Fy0, while the response sensitivity surface obtained using the J2 plasticity 

model exhibits clear discontinuities along the parameter axis. It is important to notice that 

continuity along the parameter axis is obtained only for a sufficiently small integration 

time step t∆  (see Appendix). If the time step used to integrate the equations of motion of 

the system is not small enough, spurious discontinuities can be introduced by the time 

stepping scheme employed, as illustrated in Figure 15, which shows the surface of the 

normalized sensitivities of the displacement u3 to the initial yield force Fy0 for fixed peak 

ground acceleration g,maxa  and variable initial yield force Fy0 obtained using the M-P (R0 

= 20) model and the integration time step t 0.02s∆ = .  

In finite element reliability analysis, response sensitivity discontinuities in the 

parameter space can be detrimental to the convergence of the computational optimization 

procedure to find the design point(s). Therefore, the use of smooth constitutive laws is 

also beneficial in the dynamic case for avoiding discontinuities in the response 
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sensitivities along the parameter axes, provided that the integration time step is small 

enough.  

4.2 Time-Invariant Reliability Analysis: Probabilistic Pushover Analysis 

In this section, the same example structure is subjected to a probabilistic pushover 

analysis based on the same upper triangular distribution of horizontal loads defined in the 

previous section (Figure 2). The load variable P increases monotonically from zero to 

Pmax. The load parameter Pmax and the initial yield shear force Fy0 are modeled as random 

variables and a limit-state function g is defined in terms of the maximum roof 

displacement u3 up-crossing the threshold level ulim as 

 lim 3 y0 maxu (F , P )= −g u  (32) 

For the given shear-frame structure with the story shear behavior modeled using the 

J2 plasticity model, the above limit-state function can be obtained in closed-form from 

structural analysis principles. The limit-state function consists of the union of four planar 

surfaces (in the Pmax-Fy0-g space), each surface corresponding to a different number of 

yielded stories of the shear frame. For the same structure modeled using the Menegotto-

Pinto constitutive model, a closed-form expression of the limit-state function is not 

available and the function g can only be evaluated numerically.  

The two uncertain/random parameters Pmax and Fy0 are assumed to be independent 

Gaussian random variables with mean and standard deviation 
maxPµ  = 424kN, 

maxPσ  = 

42.4kN for Pmax and 
y0Fµ  = 734kN, 

y0Fσ  = 36.7kN for Fy0, respectively. The choice of 

Gaussian distributions allows to conveniently keep the piecewise linear geometry of the 
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limit-state function in the transformation from the physical parameter space (Fy0, Pmax,) to 

the standard normal space (
y0 maxF P, U U ).  

The limit-state function in the standard normal space for the J2 plasticity model can 

again be obtained in closed-form as a linear transformation of the limit-state function in 

the physical space. For any specified value of ulim, the limit-state surface is piecewise 

linear because the response function u3 is a surface obtained as the union of planar 

surfaces joined by straight lines corresponding to the yield points of the shear-frame 

stories (Figure 16a). Figure 16b shows the response surface for quasi-static pushover of 

the example structure modeled using the M-P (R0 = 20) smooth constitutive model. 

For the example structure modeled using the J2 plasticity constitutive law, the design 

point in the standard normal space, ( )y0 maxF P
* *= U ,U*U , can also be found in closed-form 

as function of the threshold level ulim as 
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in which ulim is expressed in mm. Figure 17 shows the locus of the design point for 

variable ulim, when the structure is modeled using the J2 plasticity model, in the domain 

y0 maxF P2 2; 2 2⎡ ⎤− ≤ ≤ − ≤ ≤⎣ ⎦U U  (thick black line). On the same figure, the projections of 

the lines on the limit-state function corresponding to yielding of the first and second 

stories are plotted together with some representative limit-state surfaces corresponding to 
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specified values of ulim, namely, (a) ulim = 41.46mm (design point on the first branch of 

the locus of the design point), (b) ulim = 42.50mm (design point on the second branch of 

the locus of the design point), (c)  ulim = 80.14mm (design point on the third branch of the 

locus of the design point), and (d) ulim = 100.00mm (design point on the fourth branch of 

the locus of the design point). Furthermore, it can be readily shown that, if the structure is 

modeled using the J2 plasticity model, in the range lim42.22mm 43.07mm≤ ≤u  (second 

branch of the locus of the design point), the design point is located at a kink of the limit-

state surface, and is not an origin projected point. In this case, the design point cannot be 

found with a gradient-based optimization algorithm. For values of the threshold level 

outside this range, the design point is located on one of the linear branches of the limit-

state surface and its search is not hampered by non-smoothness of the material 

constitutive model.  

The same probabilistic pushover analysis is performed on the example structure 

modeled using the Menegotto-Pinto constitutive model (with R0 = 20 and R0 = 80) with 

lim 42.5mm=u  (value for which a gradient-based optimization algorithm fails to 

converge to the design point in the case of the J2 plasticity model). This unrealistically 

low threshold is chosen for illustrating aspects of convergence to the design point(s) that 

could also apply to more realistic cases. In this case, using the improved Hasofer-Lind 

Rackwitz-Fiessler (HL-RF) algorithm (Liu and Der Kiureghian, 1991) for the design 

point search, the design point is found in seven iterations and the corresponding 

reliability index is 1.29β = − . The same results are obtained using FMINCON and 

SNOPT, with a similar number of function evaluations. 
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A comparison between Figures 16a and 16b indicates that the response surfaces for 

the J2 plasticity and M-P (R0 = 20) constitutive model, respectively, are numerically very 

close, but only the one corresponding to the M-P model is smooth and continuously 

differentiable everywhere. In Figure 18, the sensitivities of the roof displacement u3 to 

the initial yield force Fy0 (normalized with the mean value of the sensitivity parameter 

y0Fµ ) are shown for both (a) the J2 plasticity and (b) the M-P (R0 = 20) models. Again, the 

response sensitivities for the J2 plasticity model are discontinuous, while the M-P model 

produces continuous (and smooth) sensitivities. 

The numerical results of the three probabilistic pushover analyses (for the three 

constitutive models) are summarized in Table 2 and the corresponding limit-state 

surfaces and design points are shown in Figure 19. The limit-state surface for the J2 

plasticity model is piecewise linear and made of four branches. The probability of failure 

for the structure modeled with the J2 plasticity constitutive law is evaluated numerically 

from the exact solution considering the problem as a four component series system 

(requiring computation of a four-variate standard normal cumulative distribution 

function). It is noteworthy that the approximate solution obtained considering only the 

two of the four components with lower absolute value of the reliability index iβ  (i = 

1,2,3,4) practically coincides with the exact solution ( f .9101=P ), while the value for the 

probability of failure obtained using a FORM approximation based only on the distance 

β  of the design point from the origin ( f ,FORM ( ) .9022= Φ −β =P , where Φ  denotes the 

uni-variate standard normal cumulative distribution function) is less accurate. Obviously, 

in the present case, accuracy is not a real concern, because of the unrealistically high 

value of the probability of failure. However, for other applications it may be necessary to 
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have accurate evaluation of the probability content of the safe domain (e.g., when solving 

a mean-outcrossing rate problem as a two-component parallel system).  

It is important to report that the improved HL-RF algorithm is not able to converge to 

the design point in the case of the example structure modeled with the J2 plasticity 

constitutive law; after about 10 iterations, it enters an infinite iteration cycle (i.e., cycling 

over the same set of three points). Failure to converge to the design point in this 

particular case is due to the response sensitivity discontinuity exactly located at the 

design point (see Figure 19). The same convergence difficulties are encountered using 

FMINCON and SNOPT and are typical of any gradient-based optimization technique 

when discontinuities are located near the searched local optimum. 

4.3 Time-Variant Reliability Analysis: Mean Out-Crossing Rate Computation 

An analysis for computing the mean down-crossing rate of the roof displacement u3 

below the threshold ulim = -33mm at time t = 1.66s was performed on the same example 

structure. Both the threshold value and the time were selected for convenience purposes. 

The input ground motion was taken as the balanced 1940 El Centro earthquake record 

scaled by a factor 3. The peak ground motion acceleration ag,max  and the initial yield 

force Fy0 are modeled as  statistically independent Gaussian random variables with mean 

and standard deviation µa = 9.38m/s2, σa = 0.938m/s2 for ag,max and 
y0Fµ  = 734kN, 

y0Fσ  = 

36.7kN for Fy0, respectively.  

In Figure 20, the response surfaces of the roof displacement u3 at time t = 1.66s, 

obtained from deterministic dynamic analyses varying parameters ag,max and Fy0 (over a 

fine grid) are plotted for the structure modeled with the (a) J2 plasticity model and (b) M-

P (R0 = 20) constitutive model, respectively.  
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Figure 21 shows the limit-state surfaces and the design points for the three 

constitutive models considered and for the threshold ulim = -33mm. For each constitutive 

model, computation of the  mean out-crossing rate at a prescribed time t requires two 

design point searches corresponding to the limit-state surfaces at times t and t+δt, 

respectively (here δt = 10-4s). 

For this dynamic example, no closed-form expression is available for the response of 

the structure with the J2 plasticity model. Therefore, no closed-form solutions are 

available for the limit-state surface and its kinks, the design point (shown in Figure 21) 

and mean out-crossing rate. As for the quasi-static case in previous section, the modified 

HL-RF (gradient-based) algorithm is not able to provide a converged numerical estimate 

of the design points. However, no difficulties are encountered in the design point search 

for the M-P constitutive models, for which the FORM approximation of the mean down-

crossing rate 
3uν  of the roof displacement u3 below the threshold ulim = -33mm at time t 

= 1.66s is 21.07s-1 (R0 = 20) and 57.72s-1 (R0 = 80), respectively. The high values 

obtained for the instantaneous mean down-crossing rates are due to the deterministic 

shape of the input ground motion. In fact, crossings of a deterministic threshold are more 

likely to occur in correspondence with peaks and valleys in the time history of the 

response quantity considered, while they have a very low probability of occurrence 

elsewhere. Thus, the time history of the mean up/down/out-crossing rate consists of a 

sequence of very narrow peaks, usually well spaced along the time axis. 

In general, for both quasi-static and dynamic analysis, gradient-based optimization 

algorithms do not ensure convergence to a (local) optimum of the objective function 

subject to the given constraints (expressed in terms of structural response quantities) if 
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response sensitivities are discontinuous. Typically, non-convergence to an existing 

optimum happens if discontinuities in the gradient of the limit-state function (i.e., 

response sensitivity discontinuities) occur in a neighborhood of the optimum itself. Even 

in cases when convergence can be achieved, gradient discontinuities could be detrimental 

to the convergence rate of the optimization procedure. In theory, gradient-based 

optimization algorithms can reach (locally) a quadratic convergence rate, when the 

Lagrangian function associated with the given problem is second-order differentiable and 

its exact Hessian is available (Gill et al., 1981). However, this is not the case for 

structural reliability problems, for which at most first-order response sensitivities are 

available. It can thus be concluded that, for general/practical purposes in finite element 

reliability analysis, requiring at least continuous finite element response sensitivities is a 

good compromise between convergence rate and computational cost. 

5 CONCLUSIONS 

Insight is gained into the analytical behavior of finite element response sensitivities 

obtained from smooth (Menegotto-Pinto) and non-smooth (J2 plasticity) material 

constitutive models. The response sensitivity computation algorithm for the Menegotto-

Pinto uni-axial material constitutive model is developed and presented. Focus is on 

continuity (or discontinuity) of finite element response sensitivities. In particular, 

important response sensitivity discontinuities are observed along the axes of both pseudo-

time and sensitivity parameters when using non-smooth material models in quasi-static 

finite element analysis. A sufficient condition is stated and proved on the smoothness 

properties of material constitutive laws for obtaining continuous response sensitivities in 

the quasi-static analysis case. These results about response sensitivity continuity are 



 31

illustrated using the Menegotto-Pinto material constitutive law to model a simple 

inelastic steel shear-frame. Comparisons are made between response and response 

sensitivities obtained using the smooth Menegotto-Pinto and the non-smooth uni-axial J2 

plasticity material constitutive law to model the same example structure. Response and 

response sensitivity computations are also examined in the dynamic analysis case using 

both the Menegotto-Pinto and J2 plasticity models. It is found that the linear inertia and 

damping terms in the equations of motion have significant smoothing effects on the 

response sensitivity results along the time axis. Nevertheless, discontinuities along the 

parameter axes are observed for both non-smooth and smooth constitutive models, if the 

time discretization of the equations of motion is not sufficiently refined. Important 

remarks and observations are made about the dynamic analysis case, which suggest that 

response sensitivity discontinuities can be eliminated by using smooth material 

constitutive models and refining the time discretization of the equations of motion. Some 

of the discontinuities in dynamic response sensitivities obtained using non-smooth 

material constitutive models are inherent to the constitutive models themselves and 

cannot be eliminated by reducing the integration time step. Response sensitivity results 

are presented in support of these conclusions. 

The importance of the continuity of response sensitivities for the design point search 

using gradient based optimization algorithms is highlighted with an example of 

probabilistic pushover analysis and an example of mean out-crossing rate computation 

performed on a simple inelastic steel shear-frame. It is observed that, when 

discontinuities are present in the response sensitivities, convergence to a (local) design 

point cannot be ensured by gradient based optimization techniques.  



 32

The limit-state function visualization provided for the relatively simple example with 

a two-dimensional random parameter space considered in this paper needs to be 

generalized to higher dimensional parameter spaces in which “kink-points” (observed in 

the example herein) generalize to “kink-hypersurfaces”. More insight about the topology 

of the failure domains for both quasi-static and dynamic problems (with 

uncertain/random loading and system parameters) may lead to new, more robust and 

more efficient algorithmic approaches for finite element reliability analysis.  
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APPENDIX 

Continuity is a very desirable property of finite element response sensitivities for 

applications involving the use of gradient-based optimization algorithms. Herein, a 

theorem giving a sufficient condition for continuity to hold is stated and proved for the 

case of quasi-static finite element analysis. Remarks and observations are made for the 

more complicated dynamic analysis case. In the sequel, the symbol ba  indicates that the 

quantity “a” has been computed considering the quantity “b” as a constant (i.e., b fixed), 

and the symbol b ba =  indicates that the quantity “a” is evaluated for variable “b” equal to 

the value “ b ”. 

Theorem: 

Given a finite element model of a structural system, the sensitivities ν  of the response 

quantities r to sensitivity parameter θ, d (t, )(t, )
d

θ
θ =

θ
r

ν , are continuous everywhere as 

functions of both the ordering parameter t (pseudo-time) of a quasi-static analysis and 

the sensitivity parameter θ, if the following conditions are satisfied: 

(a) All the material constitutive models used for representing the structural behavior are 

uni-axial constitutive laws, i.e., ( )σ = σ ε , in which σ  and ε  denote a scalar stress 

or stress resultant quantity and a scalar strain or strain resultant quantity, 

respectively. 

(b) All the branches of the material constitutive models can be expanded in Taylor series 

about any of their points, i.e., 
j

j
d
d ε=ε

σ

ε
 exists and is finite for any ε  and j 1, 2,...= . 
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(c) The material constitutive models are continuously differentiable with respect to the 

sensitivity parameter θ , i.e., 
( ),

ε

∂σ ε θ

∂θ
 exists and is a continuous function of θ . 

(d) The components of the external nodal loading vector, (t, )θF , are continuous in terms 

of the ordering parameter t and continuously differentiable with respect to the 

sensitivity parameter θ . 

Proof: 

Without lack of generality, the proof will be presented for r = u, where u denotes the 

nodal displacement vector, and will refer to a single analysis step (i.e., load or 

displacement increment) after convergence (within a small specified tolerance) is 

achieved for response calculation. 

For quasi-static analysis, the equilibrium equation for the space-discretized system at t = 

tn+1 is expressed as 

 n 1 n 1 n 1( ( ), ) ( )+ + +θ θ = θR u F  (34) 

in which ( ( ), )= θ θR R u  and ( )θF  denote the internal and external nodal force vectors, 

respectively, and where their dependence on the sensitivity parameter θ  is shown 

explicitly; the subscript n+1 indicates the load/time step number (i.e., the quantity to 

which it is attached is computed at t = tn+1). 

The response sensitivity equation at the structure level is obtained from Eq. (34) using the 

chain rule of differentiation as 

 
n 1

n 1 n 1 n 1
n 1

d d
d d

+

+ + +
+

∂
= −

θ θ ∂θ u

u F R
K  (35) 
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where K denotes the structure (consistent) tangent stiffness matrix. From Eq. (35), it 

follows that 

 
n

n

n 1
n 1

1n n n

1n 1 n 1 n 1

d d
d d

d d
d d+

+

−

−+ + +

⎧ ⎛ ⎞∂⎪ ⎜ ⎟= −
⎜ ⎟θ θ ∂θ⎪⎪ ⎝ ⎠

⎨
⎛ ⎞⎪ ∂
⎜ ⎟= −⎪ ⎜ ⎟θ θ ∂θ⎪ ⎝ ⎠⎩

u

u

u F RK

u F RK

 (36) 

Three different cases must be considered: 

(i) Continuity of response sensitivity, d
dθ
u , with respect to the ordering parameter t for a 

load step [tn, tn+1] in which the strain rate does not change sign, with θ  kept fixed and 

equal to its nominal value 0θ . 

We need to prove that 

 
n 1 n

n 1 n
t t

d d
lim

d d+

+

→

⎛ ⎞− =⎜ ⎟θ θ⎝ ⎠

u u
0  (37) 

The assumed smoothness/continuity properties of the material constitutive models and 

the external loading functions (assumptions (b), (c) and (d) above) together with Eq. (34)

imply that 

 

n 1 n

n 1 n

n 1 n n 1 n

n 1 n

n 1 nt t

n 1 nt t

n 1 n
t t

n 1 n
t t

lim

lim

lim

d dlim
d d

+

+

+ +

+

+
→

+
→

+
→

+
→

=⎧
⎪
⎪ =
⎪
⎪ ∂ ∂⎨ =⎪ ∂θ ∂θ
⎪
⎪

=⎪ θ θ⎩

u u

u u

K K

R R

F F

 (38) 
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Thus Eq. (37) is proved by substituting Eqs. (36)1,2 in its left-hand-side and using Eqs. 

(38)2,3,4.  

(ii) Continuity of response sensitivity, d
dθ
u , with respect to ordering parameter t for a 

load step  [tn, tn+1] in which the strain rate changes sign (i.e., tn corresponds exactly to 

an unloading point), with θ  kept fixed and equal to its nominal value 0θ . 

We need to prove Eq. (37) again. In this sub-case, Eq. (38)2 is not satisfied since, in 

general, 
n 1 n

n 1 n,unloading n,loadingt t
lim
+

+
→

= ≠K K K  (see Figure 6b). The internal and external 

nodal force vectors at t = tn+1 can be written in incremental form as 

 n 1 n n 1

n 1 n n 1

+ +

+ +

= + ∆⎧
⎨ = + ∆⎩

R R R
F F F

 (39) 

Equilibrium as expressed in Eq. (34) requires also that 

 n n

n 1 n 1+ +

=⎧
⎨∆ = ∆⎩

R F
R F

 (40) 

Taylor series expansion of the internal nodal force vector R  (considered as function of 

the nodal displacement vector u) about u = un+1 is expressed at n=u u  as 

 ( )
n 1

pT
n n 1 n n 1

p 1

1( ) ( ) ( )
p!

+

∞

+ +
= =

⎧ ⎫⎡ ⎤= + − ⋅∇⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ u

u u

R u R u u u R u  (41) 

in which 
T

1 Nu u
⎡ ⎤∂ ∂

∇ = ⎢ ⎥∂ ∂⎣ ⎦
u L , N denotes the number of degrees of freedom of the 

system, and the superscript T represents the vector/matrix transpose operator. 

Considering that n n( ) =R u R  and n 1 n 1( )+ +=R u R , we can also write 
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( ) ( )

n 1

p pT
n 1 n n 1 n

p 1

1
( )

p!
+

∞

+ +
= =

− ⎧ ⎫⎡ ⎤= − − ⋅∇⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ u

u u

R R u u R u  (42) 

Differentiating Eq. (42) with respect to parameter θ  at 0θ = θ , and recognizing that 

( )

n 1
iu

+=

⎛ ⎞∂∂ ⎜ ⎟ =
⎜ ⎟∂θ ∂
⎝ ⎠u u

R u
0 , i = 1, …, N (since ( )

iu
∂

∂
R u

 depends on θ  only implicity through 

( )θu  and the operation ( )
n 1+=u u

L  removes any dependence on θ  since n 1+u  has been 

computed for 0θ = θ ), we obtain 

( )
( ) ( )

n 1

p 1 Tp 1Tn 1 n n 1 n
n 1 n

p 1

1d d d d ( )
d d p 1 ! d d

+

+∞ −
+ +

+
=

=

⎧ ⎫⎧ ⎫− ⎪⎪ ⎪ ⎪⎛ ⎞⎡ ⎤= + − ⋅∇ − ⋅∇⎨⎨ ⎬ ⎬⎜ ⎟⎢ ⎥⎣ ⎦θ θ − θ θ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∑ u u

u u

R R u uu u R u  (43) 

From Eq. (43), we obtain the conditional derivative 
n 1

n 1

+

+∂
∂θ u

R  as  

( )
( ) ( )

n 1
n 1

p Tp 1Tn 1 n n
n 1 n

p 1

1d d ( )
d p 1 ! d

+
+

∞ −
+

+
=

=

⎧ ⎫⎧ ⎫−∂ ⎪⎪ ⎪ ⎪⎛ ⎞⎡ ⎤= + − ⋅∇ ⋅ ⋅∇⎨⎨ ⎬ ⎬⎜ ⎟⎢ ⎥⎣ ⎦∂θ θ − θ⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∑ u u

u
u u

R R uu u R u  (44) 

recognizing that 
n 1

n nd
d

+

∂
=

∂θ θu

R R
 (since nd

dθ
R  is independent of the response n 1+u  

computed at a subsequent analysis step) and 
n 1

n 1

+

+∂
=

∂θ u

u
0 . For n 1+u  sufficiently close 

to nu , the terms in Eq. (44) that are multiplied by ( ) j
i,n 1 i,nu u+ −  ( i 1, , N; j 1= ≥K ) are 

negligibly small (i.e., infinitesimal quantities) due to assumption (b) which implies that 
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the quantities ( )
N1

n 1

j

jj
N1u u

+=

∂

∂ ∂ u u

R u

K
 ( j 1,2,...=  and 

N

k
k 1

j j
=

=∑ ) exist and are finite. Thus, 

discarding infinitesimal quantities in Eq. (44), we obtain that  

 ( )
n 1 n

n 1
n 1

T
n 1 n n n n

n 1
d d d dlim
d d d d+

+
+

+
+→

=

⎧ ⎫⎡ ⎤∂ ⎪ ⎪⎛ ⎞= − ⋅∇ = −⎢ ⎥⎨ ⎬⎜ ⎟∂θ θ θ θ θ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
uu u u

u u

R R u R uR u K  (45) 

in which the equivalence between consistent tangent moduli and continuum tangent 

moduli for uni-axial material constitutive models is used (assumption (a); Simo and 

Hughes, 1998; Conte et al., 2003). Finally, substituting Eq. (36)2 in Eq. (37) and making 

use of Eqs. (44), (38)1, and (45) (in this order), we obtain 

 
n 1

n 1 n n 1 n n 1

n 1
n 1 n

1n 1 n n 1 n 1 n
t t t t

1 n 1 n n n
t t

d d d d
lim lim

d d d d

d d d d
lim

d d d d

+
+ + +

+
+

−+ + +

→ →

− +

→

⎡ ⎤⎛ ⎞∂⎛ ⎞ ⎢ ⎥⎜ ⎟− = − −⎜ ⎟ ⎜ ⎟θ θ θ ∂θ θ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= − + − =⎢ ⎥⎜ ⎟θ θ θ θ⎝ ⎠⎣ ⎦

u

u u F R u
K

F R u u
K 0

 (46) 

in which we used the relation 
n 1 n

n 1 n n
t t

d d d
lim

d d d+

+

→
= =

θ θ θ
F F R

, obtained by differentiating 

Eq. (40)1  and combining the result with Eq. (38)4.  

(iii) Continuity of response sensitivity, d
dθ
u , with respect to sensitivity parameter θ  (for 

n 1t t +=  fixed) . 

Let us consider a perturbed value θ%  of the sensitivity parameter, i.e., 0θ = θ + ∆θ% , in 

which 0θ  denotes the nominal value of the parameter and ∆θ  is a small but finite 

perturbation of it. Let ( )t,= θf f  denote a response or response sensitivity vector 
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quantity as function of both the ordering parameter t and sensitivity parameter θ  and let 

( )
0

t,
θ=θ

= θf f  and ( )t,
θ=θ

= θf %
% f , respectively. We need to prove that 

 
0

n 1 n 1 n 1 n 1
0

d d d d
lim lim

d d d d
+ + + +

θ→θ ∆θ→

⎛ ⎞ ⎛ ⎞− = − =⎜ ⎟ ⎜ ⎟θ θ θ θ⎝ ⎠ ⎝ ⎠

u u u u
0

%

% %
 (47) 

From the continuity of the response and the loading function(s) with respect to the 

sensitivity parameter θ  (assumptions (c) and (d)), it follows that 

 

n 1 n 10

n 1 n 10

n 1 n 10

n 1 n 10

lim

lim

lim

lim

+ +
∆θ→

+ +
∆θ→

+ +
∆θ→

+ +
∆θ→

=⎧
⎪
⎪ =
⎪
⎨ =⎪
⎪

=⎪⎩

u u

K K

R R

F F

%

%

%

%

 (48) 

Making use of the static equilibrium equation (34) and assumption (d), we have 

 n 1 n 1 n 1 n 1
0 0

d d d d
lim lim

d d d d
+ + + +

∆θ→ ∆θ→
= = =

θ θ θ θ
R F F R% %

 (49) 

From the chain rule of differentiation applied to the internal force vector R expressed as 

function of parameter θ  (i.e., ( )( ),= θ θR R u ), we also have 

 n 1

n 1

n 1 n 1 n 1
n 1

n 1 n 1 n 1
n 1

d d
d d

d d
d d

+

+

+ + +
+

+ + +
+

⎧ ∂
= +⎪

θ θ ∂θ⎪
⎨

∂⎪ = +⎪ θ θ ∂θ⎩

u

u

R u R
K

R u R
K

%

% %%%

 (50) 

Furthermore, from assumption (c), it follows that 
0

lim
∆θ→

∂ ∂
=

∂θ ∂θ uu

R R%
, which when 

combined with Eq. (48)1 gives 

 



 45

 
n 1n 1

n 1 n 1
0

lim
++

+ +
∆θ→

∂ ∂
=

∂θ ∂θ uu

R R

%

%
 (51) 

From Eq. (50) and using Eqs. (49), (48)2, and (51), it follows that 

 n 1 n 1
0

d dlim
d d

+ +
∆θ→

=
θ θ

u u%
 (52) 

Remarks on the Sufficient Conditions for Response Sensitivity Continuity: 

The sufficient conditions required by the above theorem are easy to satisfy. In particular, 

condition (b) (requiring that all branches of the material constitutive models used be 

expandable in Taylor series) is in general satisfied by common smooth material models, 

provided that branches with infinite stiffness are avoided. 

The only condition that actually restricts the application of the above theorem is 

condition (a) (all material constitutive models need to be uni-axial), which is required by 

Eq. (45), where the identity between continuum and consistent tangent moduli for uni-

axial constitutive models is used. Other researchers (Haukaas and Der Kiureghian, 2004) 

found that continuity of finite element response sensitivities can be obtained by using 

smooth multi-axial constitutive models. Thus, it appears that the above theorem may be 

extendable to multi-axial material constitutive models. 

Remarks and Observations for the Dynamic Analysis Case: 

The proof of the above theorem for quasi-static analysis cannot be easily extended to the 

case of dynamic analysis. The space and time discretized equations of motion of a 

structural system subjected to dynamic loads can be written as 

 [ ]1 n 1 5 n 1 n 1 n 1 n 1a ( ) ( ) a ( ) ( ) ( ( ), ) ( )+ + + + +θ θ + θ θ + θ θ = θM u C u R u F  (53) 
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in which 

 
( )

( )
n 1 n 1 2 n 3 n 4 n

6 n 7 n 8 n

( ) ( ) ( ) a ( ) a ( ) a ( )

( ) a ( ) a ( ) a ( )
+ +θ = θ − θ ⋅ θ + θ + θ

− θ ⋅ θ + θ + θ

F F M u u u

C u u u

& &&

& &&
 (54) 

and the following general one-step time integration scheme is used (Conte et al., 1995; 

Conte 2001; Conte et al., 2003, 2004; Haukaas and Der Kiureghian, 2004; Barbato and 

Conte, 2005) 

 n 1 1 n 1 2 n 3 n 4 n

n 1 5 n 1 6 n 7 n 8 n

a a a a
a a a a

+ +

+ +

= + + +⎧
⎨ = + + +⎩

u u u u u
u u u u u
&& & &&

& & &&
 (55) 

The above family of time stepping schemes includes well-known algorithms such as the 

Newmark-beta family of methods (e.g, constant average acceleration method, linear 

acceleration method, Fox-Goodwin method, central difference method) and the Wilson-

theta method (Hughes, 1987). 

Differentiating Eq. (53) with respect to the sensitivity parameter θ  yields the following 

sensitivity equation:  

 
n 1

dyn
dyn n 1 n 1
n 1

n 1

d d
d d

+

+ +
+

+

∂⎛ ⎞= −⎜ ⎟θ θ ∂θ⎝ ⎠ u

u RFK  (56) 

in which the terms 
dyn

n 1

d
d +

⎛ ⎞
⎜ ⎟θ⎝ ⎠

F  and dyn
n 1+K  are defined as  
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 dyn
1 5 n 1n 1 a a ++ = + +K M C K  (58) 

Eq. (56) is formally identical to Eq. (35). Therefore, if we assume (in addition to the 

hypotheses of the theorem presented above) that (1) the mass matrix, M, and the damping 

matrix, C, are time-invariant, and (2) the term 
dyn

n 1

d
d +

⎛ ⎞
⎜ ⎟θ⎝ ⎠

F  is continuous as a function of θ , 

we could prove the continuity of the response sensitivities d
dθ
u , d

dθ
u& , and d

dθ
u&&  in a way 

that is similar to the one used for the quasi-static case. 

Unfortunally, while assumption (1) is generally satisfied for civil structures (i.e., inertial 

properties remain usually constant within a dynamic load event, and damping properties 

are typically modeled through a time-invariant viscous damping mechanism), it was 

found through application examples such as the one shown in Figure 15 that assumption 

(2) is not true in general. 

Assuming the same smoothness hypotheses (i.e., assumptions (b), (c), and (d)) used in the 

above theorem for quasi-static problems, intuition would suggest that response 

sensitivities are also continuous in the dynamic case that further benefits from the 

“linearization” (and smoothing) effects of the linear inertial and damping terms (Haukaas 

and Der Kiureghian, 2004). The fact that discontinuities are hard to detect in response 

sensitivity histories (i.e., along the time axis for θ  fixed), as illustrated by Figures 8 and 

9, further reinforces this intuitive argument. However, finite element response 

sensitivities computed from the space and time discretized equations of motion, Eq. (53), 

and the corresponding sensitivity equations, Eq. (56), are not continuous in general. This 

statement is clealry illustrated in Figure 15 which clearly shows, for the example 

structure presented in this paper and modeled using the smooth M-P (R0 = 20) material 
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constitutive law, discontinuities in the response sensitivities along the parameter (Fy0) 

axis, even though discontinuities cannot be visually observed along the time axis (for a 

given value of Fy0). Discontinuities in the response sensitivities along the parameter axes 

are of highest interest, since they can have detrimental effects on the convergence of 

gradient-based optimization algorithms such as the ones used for the design point search 

in structural reliability analysis (see Section 4.3). 

Analytical treatment of the observed discontinuities along the parameter axes for the 

dynamic analysis case and for a smooth material constitutive model (such as the M-P 

model) is very challenging and is outside the scope of this paper. There are some 

fundamental differences between the quasi-static case (treated in the above theorem) and 

the dynamic case discussed here.  By comparing the response sensitivity equations for the 

quasi-static case, Eq. (35), and the dynamic case, Eq. (56), we notice the following two 

significant changes. (1) In the dynamic case, the term 
dyn

n 1

d
d +

⎛ ⎞
⎜ ⎟θ⎝ ⎠

F  on the right-hand-side of 

the sensitivity equation (56) depends on both the response and response sensitivity 

histories up to the current time step as shown in Eq. (57), which is not the case for the 

corresponding term n 1d
d

+

θ
F  on the righ-hand-side of the sensitivity equation (35) for the 

quasi-static case. (2) The term 
dyn

n 1

d
d +

⎛ ⎞
⎜ ⎟θ⎝ ⎠

F  and the dynamic tangent stiffness matrix, dyn
n 1+K , 

depend explicitly on the time step length t∆  as shown by Eqs. (57) and (58). Indeed, the 

time stepping algorithm in Eq. (55) assumes a finite (and fixed) t∆  and coefficients ia  

(i 1, ,8)= K  are, in general, dependent on t∆ , i.e., ( )i ia a t= ∆  (i 1, ,8)= K . For example, 
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if the Newmark-beta algorithm is used, we have 
( )1 22

1a a
t

= = −
β ⋅ ∆

, 3
1a

t
= −

β ⋅ ∆
, 

4
1a 1
2

= −
β

, 5 6a a
t

α
= = −

β ⋅ ∆
, 7a 1 α

= −
β

, 8a 1 t
2

⎛ ⎞α
= − ⋅ ∆⎜ ⎟β⎝ ⎠

, in which α  and β  are 

parameters controlling the accuracy  and stability of the numerical integration scheme 

(for the constant average acceleration method used in this paper, 1
2

α =  and 1
4

β = ). It 

has been found through application examples that for some values of the sensitivity 

parameter θ ,  

 n 1 n 1
0 t t

d d
lim

d d
+ +

∆θ→ ∆ ∆

⎛ ⎞
≠⎜ ⎟⎜ ⎟θ θ⎝ ⎠

u u%
 (59) 

Convergence studies of response sensitivities suggest that such discontinuities expressed 

in Eq. (59) tend to spread (reduce in size and increase in number) for decreasing t∆ . A 

comparison between the results presented in Figure 15 (large discontinuities) and the 

results shown in Figure 13 (small discontinuities, not visible at the given scale) shows 

clearly the effect of reducing the time step length t∆  from 0.02s to 0.001s upon the 

computed response sensitivities for the smooth M-P (R0 = 20) material constitutive law. 

Based on the application examples performed, it can be safely concluded that the 

response sensitivity discontinuities shown in Figure 15 are largely due to the 

discretization in time of the equations of motion, Eq. (53). The solution of the time-

continuous problem for smooth material constitutive models (satisfying the hypotheses of 

the theorem presented above) appears to have continuous response sensitivities, as 

suggested by intuition, i.e., 
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 n 1 n 1
0 t 0 t 0

d d
lim lim lim

d d
+ +

∆θ→ ∆ → ∆ →

⎡ ⎤⎛ ⎞ ⎛ ⎞=⎢ ⎥⎜ ⎟ ⎜ ⎟θ θ⎝ ⎠ ⎝ ⎠⎣ ⎦

u u%
 (60) 

For practical purposes and finite element applications, the result expressed by Eq. (60) 

requires a fine time discretization in integrating the equation of motion in order to obtain 

continuous (and therefore converged with respect to t∆ ) response sensitivities (see 

Figure 13 for converged results and Figure 15 for non-converged results). Previous 

studies show that convergence requirements (with respect to t∆ ) for response sensitivity 

computation are stricter than those for response computation only (Gu and Conte, 2003). 

It is noteworthy that non-smooth material constitutive models (such as the J2 plasticity 

model considered in this paper) present discontinuities along the parameter axes that are 

due to the physics of the problem (material state transition from elastic to plastic at 

integration point(s)), and thus cannot be eliminated through reducing t∆  (see Figure 14).  
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Figure 1. Cyclic stress-strain response behavior of structural steel modeled using Menegotto-
Pinto model. 

 

 

 
Figure 2. Shear-frame structure: geometry, floor displacements and quasi-static horizontal loads. 
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Figure 3. Total base shear, Ptot, versus roof displacement, u3, for quasi-static cyclic loading and 
different constitutive models.  
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Figure 4. Normalized sensitivity of roof displacement u3 to initial yield force Fy0 (quasi-static 
cyclic loading). 
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Figure 5. Normalized sensitivity of roof displacement u3 to loading parameter Pmax (quasi-static 
cyclic loading).  

 

 
 

Figure 6. Examples of branches of material constitutive models: (a) loading branch with elastic-
to-plastic material state transition (discontinuous response sensitivities), and (b) smooth loading 
and unloading branches at unloading event (continuous response sensitivities). 
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Figure 7. Response histories of roof displacement u3 for different constitutive models (dynamic 
analysis). 
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Figure 8. Normalized sensitivity of roof displacement u3 to initial yield force Fy0 (dynamic 
analysis). 
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Figure 9. Normalized sensitivity of roof displacement u3 to peak ground acceleration g,maxa  
(dynamic analysis). 
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Figure 10. Normalized sensitivity of roof displacement u3 to initial yield force Fy0 at time t = 1.66s 
with fixed peak ground acceleration g,maxa . 
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Figure 11. Time histories (for 0 t 5s≤ ≤ ) of displacement u3 for fixed peak ground acceleration 
g,maxa  and variable initial yield force Fy0: dynamic analysis using the M-P (R0 = 20) model and ∆t 

= 0.001s. 

 

 

Figure 12. Time histories (for 0 t 5s≤ ≤ ) of displacement u3 for fixed peak ground acceleration 
g,maxa  and variable initial yield force Fy0: dynamic analysis using the J2 plasticity model and ∆t = 

0.001s. 
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Figure 13. Time histories (for 0 t 5s≤ ≤ ) of normalized sensitivities of the displacement u3 to 
initial yield force Fy0 for fixed peak ground acceleration g,maxa  and variable initial yield force 
Fy0: dynamic analysis using the M-P (R0 = 20) model and ∆t = 0.001s. 

 

 

Figure 14. Time histories (for 0 t 5s≤ ≤ ) of normalized sensitivities of the displacement u3 to 
initial yield force Fy0 for fixed peak ground acceleration g,maxa  and variable initial yield force Fy0: 
dynamic analysis using the J2 plasticity model and ∆t = 0.001s. 
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Figure 15. Time histories (for 0 t 5s≤ ≤ ) of normalized sensitivities of the displacement u3 to 
initial yield force Fy0 for fixed peak ground acceleration g,maxa  and variable initial yield force Fy0: 
dynamic analysis using the M-P (R0 = 20) model and ∆t = 0.02s. 
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Figure 16. Response surfaces for quasi-static pushover analysis of example structure modeled 
using: (a) J2 plasticity model, and (b) M-P (R0 = 20) model. 

 

 

 
 

Figure 17. Locus of the design points for varying ulim, when the example structure is modeled using the 
J2 plasticity model (probabilistic pushover analysis).   
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Figure 18. Normalized sensitivities of roof displacement u3 to initial yield force Fy0 for varying 
Fy0: (a) J2 plasticity model, and (b) M-P (R0 = 20) model. 
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Figure 19. Limit-state surfaces (l-s. s.) and design points (d. p.) for ulim = 42.5mm  (probabilistic 
pushover analysis).  
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Figure 20. Response surfaces at time t = 1.66s for dynamic analysis of example structure 
modeled with: (a) J2 plasticity model, and (b) M-P (R0 = 20) model. 
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Figure 21. Limit-state surfaces (l-s. s.) and design points (d. p.) for ulim = -33mm at time t = 
1.66s (dynamic analysis). 
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Table 1. Modal analysis results for the linear elastic undamped three-story one-bay shear-frame. 

Mode # Natural circular frequency 
 ω (rad/s) 

Natural period  
T (s) 

Effective  
modal mass ratio (%) 

1 16.70 0.38 91.41 
2 46.80 0.13 7.49 
3 67.62 0.09 1.10 

 

 

 

Table 2. Reliability analysis results for quasi-static pushover with ulim = 42.5mm. 

 J2 plasticity model 
 Exact solution 

M-P (R0 = 20) model 
FORM 

M-P (R0 = 80) model 
FORM 

β -1.2943 -1.4415 -1.3224 
Pf 0.9101 0.9253 0.9070 

Pmax* (kN) 369.41 362.88 367.93 
Fy0* (kN) 738.81 741.51 740.42 

# of iterations - 7 11 

 

 

 




