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Abstract

Motivated by the simplicity and direct phenomenological applicability of field-theoretic orbifold
constructions in the context of grand unification, we set out to survey the immensely rich group-
theoretical possibilities open to this type of model building. In particular, we show how every
maximal-rank, regular subgroup of a simple Lie group can be obtained by orbifolding and determine
under which conditions rank reduction is possible. We investigate how standard model matter can
arise from the higher-dimensional SUSY gauge multiplet. New model building options arise if, giving
up the global orbifold construction, generic conical singularities and generic gauge twists associated
with these singularities are considered. Viewed from the purely field-theoretic perspective, such
models, which one might call conifold GUTS, require only a very mild relaxation of the constraints
of orbifold model building. Our most interesting concrete examples include the breakifig tof
SU(5) and of Eg to SU4) x SU(2) x SU(2) (with extra factor groups), where three generations of
standard model matter come from the gauge sector and the families are interrelated eithé8)by SU
R-symmetry or by an S(B) flavour subgroup of the original gauge group.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction

Arguably, the way in which fermion quantum numbers are explained hipstélated
grand unified theories (GUTSs) represents one of the most profound hints at fundamental
physics beyond the standard model (SM) [1,2] (also [3]). In this context supersymmetry
(SUSY), usually invoked to solve the hierarchy problem and to achieve gauge coupling
unification, receives a further and maybe even more fundamental motivation: if the
underlying gauge group contains gauge bosons with the quantum numbers of SM matter,

E-mail address: mratz@mail.desy.de (M. Ratz).

0550-3213/$ — see front mattéi 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.nuclphysb.2003.07.021


http://www.elsevier.com/locate/npe

4 A. Hebecker, M. Ratz/ Nuclear Physics B 670 (2003) 3-26

SUSY enforces the existence of the corresponding fermions. This is very naturally realized
in a higher-dimensional setting, where the extra-dimensional gauge field components and
their fermionic partners can be light even though the gauge group is broken at a high scale
(see, e.q., [4-7]).

Thus, we adopt the point of view that, at very high energies, we are faced with a
super-Yang—Mills (SYM) theory inl > 4 dimensions which is compactified in such a
way that the resulting 4d effective theory has smaller gauge symmetry (ideally that of
the SM) and contains the light SM matter and Higgs fields. In the simplest models the
compactification space is flat except for a finite number of singularities. Although this
situation arises naturally in heterotic string orbifolds [8,9] and has thus been extensively
studied in string model building, it has only recently been widely recognized that many
interesting phenomenological implications do not depend on the underlying quantum
gravity model and can be studied directly in higher-dimensional field theory [10] (also [11-
15]).

In the purely field-theoretic context, one has an enormous freedom in choosing the
underlying gauge group, the number of extra dimensions and their geometry, the way
in which the compactification reduces the gauge symmetry (e.g., the type of orbifold
breaking), the possible extra field content and couplings in the bulk and at the singularities.
Although, using all this freedom, realistic models can easily be constructed, there is so
far no model which, by its simplicity and direct relation to the observed field content and
couplings, appears to be as convincing as, say, the generic SU(5) unification idea. However,
we feel that the search for such a model in the framework of higher-dimensional SYM
theory is promising and that a thorough understanding of the group-theoretical possibilities
of orbifold-breaking (without the restrictions of string theory) will be valuable in this
context. The present paper is aimed at the exploration of these possibilities and their
application to orbifold GUT model building. In particular, we are interested in methods
for breaking larger gauge groups to the SM, in possibilities for rank reduction, and in the
derivation of matter fields from the adjoint representation.

In Section 2, we collect some of the most relevant facts and methods of group theory,
which serves in particular to fix our notation and conventions for the rest of the paper.

In Section 3, we begin by recalling the generic features of field theoretic orbifold
models. It is then shown how orbifolding can break a simple Lie group to any of its
maximal regular subgroups. This implies, in particular, that any regular subgroup (possibly
times extra simple groups and U(1) factors) can be obtained by orbifold-breaking and opens
up an enormous variety of model building possibilities.

We continue in Section 4 by exploring rank reduction by non-Abelian orbifolding.
We show that simple group factors can always be broken completely. In cases where a
maximal subgroup contains an extra U(1) factor, this factor can only be broken under
certain conditions. We give a criterion specifying when the extra U(1) cannot be removed.
As an interesting observation, we note that under special circumstances rank reduction
based on inner automorphisms is also possible on Abelian orbifolds.

In Section 5, we discuss manifolds with conical singularities which cannot be obtained
by orbifolding. In particular, such ‘conifolds’ can have conical singularities with arbitrary
deficit angle. In addition, we consider the possibility of having Wilson lines with
unrestricted values wrapped around the singularities of orbifolds or conifolds. All this gives
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rise to many new possibilities for gauge symmetry breaking and for the generation of three
families of chiral matter from the field content of the SYM theory.

Finally, Section 6 discusses three specific models, one ®ittbroken to SU(5) and
two with Eg broken to SW4) x SU(2) x SU(2) (with extra factor groups). In all cases,
three generations of SM matter come from the gauge sector. In one Bgtinodels, the
families are interrelated by an SU(B}ysymmetry, while in the two other models an SU(3)
flavour subgroup of the original gauge group appears.

Section 7 contains our conclusions and outlines future perspectives and open questions.

2. Basicsof group theory

This section is not meant as an introduction to group theory, but merely serves to remind
the reader of some crucial facts and to fix our notation. Relevant references include the
classic papers of Dynkin [16—18] (partially collected in [19]), various textbooks (e.g.,
[20-22]), and the review article [23].

For each finite-dimensional, complex Lie algeprahe maximal Abelian subalgebla
which is unique up to automorphisms, is called Cartan subalgebra. Its dimension defines
the rankr of the Lie algebra and its generators will be denoted{Hy};_,. They are
orthonormal with respect to the Killing metric, i.e., they fulfill the relation

tr(H; H j) = A5;;, (2.2)

where the trace is taken in the adjoint representatiomaisdome constant.
The remaining generators can be chosen such that

[HiaEOt]:aiEOta (22)

and are called roots. They are normalized as in Eq. (2.1). EachEgas determined
uniquely by the root vectax, which is an element of anrdimensional Euclidean space,
called the root space. The set of all roots will be denotedshyThe E, obey the
commutation relations

[Eo, Egl=NopgEqip, (2.3)

where theN, g are normalization constants, aig g =0 means thax + 8 ¢ X.
We introduce an order in the root space by

a—pB>0 <« first non-vanishing component af— g > 0. (2.4)

Correspondingly, we will call a root ‘positive’ if the first non-vanishing component in the
root basis is positive. The smallespositive roots are called simple and will be denoted
by {a@)};_;. They are linearly independent, and any root can be expressed by a linear
combination

o ZZkia(i) (25)
i=1
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Table 1

The classical Lie algebras and the corresponding extended Dynkin diagrams. The shorter
roots are hatched. If the simple roatg) andc ;) enclose an angle of 9012C¢°or 135,

they are connected by 0, 1 or 2 lines, respectively

Name Real algebra Extended Dynkin diagram

Ap su(n+1)

Q(2) An-2) Xn-1) Xn)

Bp so(2n 4+ 1) g X O_( ). @

0 Q1) Q(2) Q(n-2) A(n-1) C(n)
Cn sp(2n) O— ....... O
(1) Q(n-1)
D,  so(2n) (2) Q(n-2)
g KO a(n)

with integer coefficients’. Motivated by this, a basis

2

ei) = Ioz(i)lz%)’ (2.6)
is introduced. The normalization factor will be justified later.

In this basis, the Euclidean metric of the root space is characterizeg bye(;) - e(;).
It is useful to consider also the vector space dual to the root space which, given the
existence of a metric in the root space, can be identified with the root space by the canonical
isomorphism. It is spanned by the so-called fundamental wejgftg1 < i < r) which
are defined by

/L(i) C€(j) 233 (27)

The components with respect to th€’ basis are called Dynkin labels. Correspondingly,
the ¥ are frequently referred to as the Dynkin basis, in which casethare called the

dual basis. The constahtin Eq. (2.1) is chosen such thiat; |2 = 2 for the longest of the
simple roots. Then the normalization factor in Eq. (2.6) ensures that the Dynkin label of
any weight (weights being the analogues of the vectdrsan arbitrary representation) is
integer valued.



A. Hebecker, M. Ratz/ Nuclear Physics B 670 (2003) 3-26 7

Table 2
The five exceptional Lie algebras. 1G5, the two simple roots
enclose 159, which is indicated by a triple line

Name Extended Dynkin diagram
0 (1) (2)
O O ==\
Q1) Q(2) Q(3) Q(4)
Fy4 C C C_® @
0
a(6)
Eg

Q) X2) X3) A4) A5)
A7)
E7
0 1) X2 AE) A Xs) Xe6)
()
Eg

Q) Q) A3) Q) As) Q) A7)

The Dynkin labels of each simple root are given by the corresponding row of the Cartan-
matrix

ap oGy _ ol
Ajj=2 o 82 (2.8)

which encodes the metric of the root space.

It is well-known that there exist four infinite series of simple grodpsB,, C, andD,,
corresponding to the classical groups, and the exceptional g@xp&, Es, E7 and Es.
The scalar products of the simple roots determine the Dynkin diagrams (cf. the captions of
Tables 1, 2).

For later convenience, we introduce the most negative #oathich leads us to the
extended Dynkin diagrams as listed in Tables 1 and 2.

3. Obtaining all regular subgroupsby orbifolding

Orbifold GUTs [10—-15] are based on a gauge theoriRdx M, whereM is a manifold
with some discrete symmetry group. In addition to the action oK on M, an action
in internal space can be chosen using a homomorphism ffoto the automorphism
group of the Lie algebra of the gauge theory. If the classical field space is restricted by
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the requirement oK invariance, a gauge theory on a manifold with singularitids K,
results in general. We assume thdy K, though not necessarily/, is compact. At the
singularities, which correspond to the fixed points of the space—time actidntok gauge
symmetry may be restricted (orbifold breaking). An early review of the structure of such
models is contained in [24] (for more recent reviews see, e.g., [25,26]).

One of the main features of orbifold GUTs is the possibility of breaking a gauge group
without the use of Higgs fields. The orbifold field theory possesses the full (unified) gauge
symmetry everywhere except for certain fixed points. Although this fixed-point breaking
is ‘hard’, in the sense that the action does not possess the full gauge symmetry, gauge
coupling unification is not lost due to the numerical dominance of the bulk. Furthermore, it
is attractive for model building purposes that the symmetry—and hence the field content—
is characterized by different groups at different geometric locations, such as the various
fixed points and the bulk.

In this paper, we focus on inner-automorphism breaking, i.e., a homomorphism from
K to the gauge groups together with the adjoint action of; on itself is used to
define the transformation of gauge fields underOnly gauge fields invariant undef
have zero modes. The corresponding generators define the symmetry of the low-energy
effective theory, which is a subgroup 6f. We will assume thaG is simple since it is
straightforward to extend our analysis to the product of simple groups éhdattors.

To discuss the breaking in more detail, consider a group elemevttich is the image
of some element oK. Any P € G can be written as an exponential of some Lie algebra
element and is therefore contained in some U(1) subgroup. @onstructing a maximal
torus starting from this U(1) and using the fact that the maximal torus in a compact Lie
group is unique up to isomorphism [27], it becomes clear that one can always write

P =exp(—2riV - H), (3.1)

with some real vectoV . Hence, the action of the gauge twist on the Lie algebra is given
by

PE, P ' =exp(—2rnia- V)E,, (3.2a)
PH;P™'=H;. (3.2b)

We can also choose to write = exp(—27iéT), whereT is a normalized Lie algebra
elementé € R, andéT =V - H. For generics, P commutes with precisely those Lie
algebra elements with whichi commutes. Thus, the breaking is the same as would follow
from a Higgs VEV in the adjoint representation.

However, it is clear from Eq. (3.2a) that, for certain valueg p§ome of theE, may
pick up phases which are an integer multiple af@nd are thus left invariant. In this case,
the surviving subgroup is larger than the one obtained from an adjoint VEV proportional
to T. This possibility is of particular interest since, in certain cases, such as the breaking
of SO(10) to SU4) x SU(2) x SU(2), the relevant subgroup cannot be realized by using
Higgs VEVs in the adjoint or any smaller representation.
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3.1. Orhifold-breaking to any maximal regular subgroup

We now show that, given a simple grogpand a maximal regulasubgroupH, there
exists aP € G such that

H:{geG; Pnglzg}. (3.3)

In other words, every maximal regular subgroup can be generated by an orbifold twist.

In order to prove this statement, we first recall Dynkin's prescription for generating
semi-simple subgroups. It starts with the Dynkin diagram, extends it by adding the most
negative root, and then removes one of the simple roots, the resulting Dynkin diagram
being that of a semi-simple subgroup. As demonstrated in [18] (cf. Theorem 5.3), any
maximal-rank, semi-simple subgroup of a given group can be obtained by successive
application of this prescription. Maximal subgroups can always be obtained in the first
application.

To implement Dynkin’s prescription and remove the simple k@, one can use the
fundamental weigh. > and choose

2 2 :
P = exp| o 2“([)'H . (3.4)
n ol

Obviously, P commutes with all simple rootE
andé, recall first that

aj Wherej # i. To discuss the rootg)

r

0=— cha(k) (3.5)

k=1

with thec; being known as Coxeter labels. They can be read off from Table 3. Such group-
theoretical methods were used in [29] in the contexEgbreaking in string theory.
Thus, we can write the orbifold action on the two rofitg,, andEy as

PEa(i)P_l — eZJTi/nE
PE(;P_l = e—27ric,-/nE0,

Q)

which shows that, folEy to be invariant an(Eo,(i) to be projected out, we neeg #~ 1.
Using Table 3 and the corresponding Dynkin diagrams, it is easy to convince oneself that
¢i =1 occurs only for thoseé where the Dynkin-prescription with removal @f; returns
the original diagram. Thus, all non-trivial subgroups accessible by the Dynkin-prescription
can be obtained b¥,, orbifolding withn =¢;.

An interesting and subtle observation can be made in those casesovien®t prime
(only ¢; = 4 andc; = 6 occur). Ifc; =n =m - k, aZ,, twist generated by* is sufficient
to project outE,,, while keepingEjy, yet the surviving subgroup is larger than for the
correspondindgZ, twist P and its Dynkin diagram is not the one obtained by Dynkin’s
prescription. These are the famous five cases where Dynkin’s prescription produces a

1In this paper, we concentrate on the breaking to regular subgroups. For a discussion of non-regular
embeddings (in the string theory context) see, e.g., [28].
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Table 3
Highest weights of the adjoint representations, denoted fy of the
simple groups in the Dynkin basis and their Coxeter labels

Group Dynkin labels ofi;qg  Coxeter labels

Ap ~SU(n +1) (1,0,...,0,1) 1,1,...,1)

B, ~SO2n+1) (0,10,...) 1,2,2,...,2,2)
Cp > Sp(2n) 2,0,0,...) 2,2,...,2,1)

Dy, >~ SQ(2n) 0,1,0,...) 1,22,...,21,1
G2 1.0 2.3

Fy (1,0,0,0) (2,3,4,2

Eg (0,0,0,0,0,1) 1,2,3,2,1,2)

E7 (1,0,0,0,0,0,0 (2,3,4,3,2,1,2)
Eg (0,0,0,0,0,0,1,0 (2,4,6,5,4,3,2,3)

subgroup that is not maximal [30]. They occur when removing the 3rd rodtypthe
3rd root of E7, and the 2nd, 3rd or 5th root dfg.

It is easy to see that far; prime the produced subgroup is maximal. Indeed, the roots
of G which are not roots of the subgroup can be classified according to their ‘level’
relative tow;, i.e., according to the coefficient of;) in their decomposition in terms
of simple roots. If a subgroupl’ with H C H' C G exists, one of the levels belowy
(which is the highest level) and above 1 must be occupied (i.e., its roots beldiif).to
Let ¢ be the smallest of those levels. All multiplesére also occupied and, sinceis
not a multiple, the difference betweenand one of those multiples must be smaller than
£. However, by the way in which the commutation relations are realized in root space, the
level corresponding to this difference must also be occupied. This is in contradiction to
being the smallest occupied level A .

Having dealt with all semi-simple maximal subgroups, we now come to maximal
subgroups containing (@) factors. Given a maximal subgroup with U(1) factor, i.e.,

G D H x U(1), we can always break to a subgroff) by an adjoint VEV along this

U(1) direction or a corresponding orbifold twist. It is obvious tiatc H’ since, by the
definition of H, all its elements commute with the generator of the aboy® .UThus,

H = H' and our analysis of orbifold breaking to all maximal-rank regular subgroups
is complete. The maximal regular subgroups and the corresponding twists are listed in
Table 4. We would also like to mention that the maximal subgroups witt) factors can

be obtained by removing one node of the original Dynkin diagram which carries Coxeter
label 1, and adding the @) factor.

Now that it is clear how a given maximal regular subgroup can be generated by
an orbifold twist, we can take the opposite point of view and ask to which subgroups
an arbitrary given gauge twisP = exp(—2xiéT) can lead. Since an adjoint VEV
proportional toT breaks to a maximal rank subgroup x U(1), where the 1) is
generated byl', we can classify alll'’'s by such maximal subgroups. These are given
in various tables (see, in particular, [23]) together with the branching rules for the adjoint
representation

adG — adH & 1(0) ® R1(q1) @ R2(g2) ® - (3.7)
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Table 4

Maximal subgroups of the simple groups and the correspondjpgrbifold
twists. The five non-maximal subgroups which can be obtained by removing one
node of the extended Dynkin diagram are listed for the sake of completeness

Group Twist Symmetric subgroup Comment
SUN + M) Zo SU(N) x SUM) x U(1)

SO(N + M) Zy SO(N) x SO(M) N or M even
SO(2N) Zy SU(N) x U(D)

Sp(2N +2M) Zy Sp(2N) x Sp2M)

Sp(2N) Zo SU(N) x U()

Go Zy SU(2) x SU2)

Go Z3 SU(3)

Fy Zo Sp6) x SU2)

Fy Z3 SU3) x SU3)

Fy Za SU4) x SU2) not maximal
Fy Zy SO(9)

Eg Zy SO(10) x U(1)

Eg Zy SU(6) x SU2)

Eg 73 SU(3) x SU(3) x SU)

E7 Zo SO(12) x SU(2)

E7 Z3 SU(6) x SU(3)

E7 Za SU(4) x SU4) x SU(2) not maximal
E7 Zo Eg x U(D

E7 Zo SU(8)

Eg Zo SO((16)

Eg Zag SU(8) x SU(2) not maximal
Eg Zg SU(6) x SU3) x SU(2) not maximal
Eg Zs SU(5) x SU(5)

Eg Za SO(10) x SU4) not maximal
Eg Z3 Eg x SUQ3)

Eg Zo E7 x SU2)

Eg Z3 SU9)

Here theR; are representations undér andg; the corresponding (1) charges. Under
the gauge twist, th®; transform ask; — e2m&4i R This allows us to determine which
particular sets of generatols survive for specific values df, i.e., to identify thoseR;
for which £¢; = 0 modZ. Together with the generators &f x U(1), they form the Lie
algebra of the new surviving subgro@f > H x U(1). Thus, by analyzing all subgroups
H x U(1) and all values o€, our classification is complete.

Finally, we would like to comment on the minimal order of the twist required to achieve
the breakings — H. A very useful approximate rule is that under.atwist

dimG —r

dimH > r + (3.8)

The reason is that theCartan generators survive the twist anyway, and the phases of the
roots are proportional to a level relative to a simple g, or linear combination of such
levels. Due to the symmetries of the root lattice, the phases are therefore almost evenly
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0 Q(s) als QOsu(2) )
o_o_i_o ) ® o—o—g 2

aq) a@E) aE) a@) afyy iy SUE@) afyy Mgy Ya)

(a) Extended (b) Breaking to (c) Breaking to
Dynkin diagram Glps. Gaa.

of SO(10).

Fig. 1. The breaking to the Pati—-Salam and Georgi—Glashow subgroupg d®)Sfan be illustrated by removing
the «(3) (or a(p)) node of the extended Dynkin diagram (a) as shown in (b) or by remayigg(or «(4)) as
shown in (c).

distributed amondO, 2 /n, 4n/n, ..., (n — 1)27w/n} where an excess at 0 is possible if
the twist acts trivially on a certain part of the algebra. An inspection of Table 4 confirms
our rule which becomes the more accurate the larger the group is.

3.2. Some examples fromthe series SO(10) C Es C E7 C Eg

At this point, some examples are in order. Let us start with th¢180GUT which
contains the Georgi—Glashow grodpsg = SU(5) ® U(1) and the Pati—Salam group
Gps= SU(4) x SU(2) x SU(2) as subgroups. These properties are nicely illustrated by
using Dynkin’s prescription: starting from the extended Dynkin diagram (cf. Fig. 1), the
diagram ofGpsis obtained by deleting the third (or second) node. Deleting the fourth (or
fifth) node of the original diagram, we arrive @tgg. According to Section 3.1, twists
which break toGgg andGps, respectively, can be written as

Pps=exp(rin® - H), (3.9a)
Poc=exp(zin® - H), (3.9b)

where we exploited the fact thai; |2 = 2 in simply-laced groups.

In [14,15], it was shown that by identifying these two twists as generatdfs of Z,,
the gauge symmetry on8/(Z x Z,) orbifold is reduced taGgy,, = SU(3) x SU(2) x
Uy x U@), € SO(10). The resulting geometry can be visualized as a ‘pillow’ with the
corners corresponding to the fixed points.

The relevant group theory can be understood as follgw®: - H and ¥ - H are
the U(1) generators appearing ii),. The corresponding decomposition of the adjoint
representation of SQO) reads

45— (1, 1) 6.4 D B3, a4 ® 3,214 ® 3,250
&L 6-4DGB Du-4®3 2143 250
® (8,1)0,00® (1,3)(0,00® (1, V0,0 ® (L. 1)(0,0), (3.10)

where the SI@3) x SU(2) representations are given in boldface and the U(1) charges
(gv,q,) appear as index. The twist which is responsible for this breaking is generated
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by a linear combination of the generators of the tw@ll’s, and rotates the charged
representations by a phase@qy + x g, ). For some combinations gfandy, the orbifold
breaking preserves a larger symmetry than adjoint breaking. For example ljfs 4,
(1, 1)(—6.-4),(3, 1)(—4.4)) and(3, 1) 4, _4y SUrvive (e.g., by taking = 0 andy = 1/2), the
resulting gauge group iSps. If, on the other hand3, 2)_s, g, and(3, 2)(s,0) SUrvive (e.g.,
by takingx = 1/8 andy = 0), the resulting gauge groupéce. It is then clear thaGg,,
results as an intersection of gauge fields survivieg and Pcc. The breaking tasg,, can
also be realized on a singl, fixed point, e.g., by using = 1/16 andy = 1/4.

As a side-remark, let us restate the above discussion in terms of matrices: Consider the
adjoint VEV

v:diag(a,a,a,b,b)@(_ol (1)) (3.11)

which breaks SQLO) to Gy, [22]. For the special case= +b, the remaining symmetry

is larger and equal t6¢'c. Alternatively, these breakings can be realized by a gauge twist
P =exp2riv] at an orbifold fixed point. In this case, taking= 0 andb = 1/2 yields Pps
anda = b = 1/4 yields Pgg.

Let us now turn to the task of extending the ‘pillow’ of Asaka, Buchmiiller and Covi[31]
along the chain of exceptional groups @0) C Eg C E7 C Es. A related discussion has
already appeared in [32]. However, as will become clear below, we disagree with some of
the results of that paper.

The obvious generalizations of (3.9) for the exceptional groups read

PEL = exp(min" V. H), (3.12a)
P = exp(nin’ 2. H). (3.12b)

In other words, the generalizations Bfs and Ppsto higher groups along the above chain
remove the nodes_1y ande,_p) respectively. This is illustrated in Table 5.

The breaking patterns of S00), Es¢ and E7 are easily determined by the use of
Dynkin’s prescription because the Coxeter label corresponding to the nodes removed by
Pg()3 and Pé’s) are 1 and 2, respectively. In the caseRy it is also easy to see th (Eg
breaks toE7 x SU(2). ForPF(,SS), the pattern is not so obvious: Since the 6th Coxeter label

is 3 (cf. Table 3), and we useZp twist, the second level in terms afg) survivesPF(,%),

buté is projected out. We see that the subgroup must coigiand SU?2), and it cannot

be Es x SU(3) because this is not a symmetric subgroupFgf Hence, it must be also

E7 x SU(2).2 We checked this statement by using a computer algebra system. In [15], an
interesting property of the S@O) twists was pointed outP;; = Psg - Pps breaks to a
different SU5) x U(1) subgroup of SQLO), where the simple factor is often called ‘flipped

SU(5)’. This property is maintained for all three exceptional grou@é&- PF(,rs) = ng’.

2 This is in contradiction to the breaking pattern given in [32]. Assigning negative parig7t®) and(27, 3)
is inconsistent since, as can be seen from the commut@ar3), (27, 3)] C (27, 3), it does not correspond to
an algebra automorphism. This commutator does not vanish €iic8) @ (27, 3) contains two positive levels
with respect tax g, linked by the raising operatdiy g, .



14 A. Hebecker, M. Ratz/ Nuclear Physics B 670 (2003) 3-26

Table 5
Breaking patterns to the Georgi—Glashow and Pati—Salam like subgroups(9)Sfd the three exceptional

groupsEg, E7 andEg

g 6

s Jgele]
(100 —= SUB) x U
Pps

SO(100 ——= SU@4) x SU2) x SU(2)

so10) 2eePS sysy < uay

GagN Gps=SU®) x SU2) x U(1)2

Eg -8 sO(10) x U)
Eg —> SU®) x SUQ2)
Eg =SS s0(10) x U1y’

G&.nG6E = suE) x U2

50
E; S8 Egx U

Pps
E7 -2 s0(12) x SU®2)
2D pD
7 22 P8 pLxu@

7 7
GILn G =s010) x U(1)2

aq) aE) aE A A6 e

E — E7xSU2)

« (8) p(8) 8
(8) Pes Pog . P /
8 —> E,xSUQ

»® p®
GG ' PS
8 —_—

EY x SU2)”

Q1) Yoy Qyay gy 5y gy Q7 6
(1) 2) X3) “4) “(5) (6) HT) GgéﬂGgs):ngU(l)z

Here ng’ breaks to a subgroup linked by an inner automorphism to the subgroup left
invariant by PSX. The reason is thaPy' = explzi(u’ Y + 12) . H] commutes

with Eq,_; +a,_, Which then becomes a simple root of the subgroup, and projects out
Ey. This root encloses an angle of P20ith «(._3) so that the resulting Dynkin diagram
coincides with the one obtained by employiAgc. In the simple root system arising from
the substitution(c-—2), @(-—1)) = (¢—2) + a(—1), —2(—1)), Pg();/ acts in the same way

angé in the original root system.

4. Rank reduction and non-Abelian twists

Itis obvious from the discussion so far that using only one inner-automorphism orbifold
twist can never result in rank reduction. We therefore investigate the possibilities which
arise when two (or more) twists are applied. Rank reduction of the gauge group was
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proposed in the context of string theory in [33]. Here, we will discuss this issue in the
context of field theory, where one has fewer group-theoretic and geometric constraints.
We assume that we have an additional orbifold symmetry,

P'=exg—2ni&(Eg+ E_p)] or P =expg2rn&(Eg— E_p)]. (4.1)

where (Eg + E_p) andEg — E_g are real generators outside the Cartan subalgebra. For
simplicity, let us focus on the case thats a simple root, i.e.,

P} =exp[—27i&(Eoy) + E o). (4.2)

Then the raising and lowering operatas.,;, form an SU2) group together with
h =a(;- H. Clearly, this linear combination of Cartan generators ‘rotates’ under the action
of P’ like

PJ’.’thJ’- = Cog4n£)h — isin(4mE)(Eq., — E—q), (4.3)

where we restricted ourselves to the case tgf has lengthy/2. Since a linear
combination of Cartan generators transforms non-trivially, it is obvious that rank reduction
is possible. Note also that these rotations yield an extension of the well-known Weyl
reflections, i.e., the reflections with respect to a plane perpendicular to a simple root.

It is straightforward, but somewhat tedious to derive the action on arbitrary Kyats
In simply-laced gauge groups, the root chains have at most length two unless they contain
Cartan generators. ThuSy, 14, # 0 iImplies Ny x«;, = 0. For the upper sign, we obtain

(fora # a@)
P Eq P} = COS27 Ny, &) E +1SIN(27 Nt &) B (4.4)

where we use the normalization constangss as defined in Eq. (2.3) with the convention
to choose them positive.

From the discussion so far, it is clear that we can break any simple group factor com-
pletely by non-Abelian twists: the roots can always be removed by suitable exponentials of
the Cartan generators, and tHe can be projected out by using Eqg. (4.3). This observation
has an obvious application: 1& C G be the subgroup that we want to obtain by orbifold-
ing. LetH’ C G be the maximal subgroup that commutes witland the Cartan generators
of which are orthogonal to the Cartan generatorgfofif H' is semi-simple, an orbifold
breaking toH is always possible. In this context, it is interesting to observe figas the
only simple group containing a maximal regular subgroup of the forrgbgid H’ with H’
semi-simple, namely &> SU(5) x SU(5). Thus, one could say thal is the smallest GUT
group larger than S(&) which can be orbifolded to the SM without additiongllyfactors.

A further example is in order: It is clear that we can break anZ3thctor completely
by the methods described above. Thus, siBge SU(6) x SU(2), we can achievé&g —

SU(6) by taking P = expiwia(y) - H] and P/ = expri(Eq,, + E—qq)/2]. In addition,
we can modifyP in a way so that the breaking is stronger, efg— SU(5) x U(1).

However, if extra Y1) factors are contained ifd’, the story becomes more compli-
cated. One is tempted to conclude that such extra factors cannot be removed, given that
this is obviously not possible by adjoint VEV breaking. However, in the case of orb-
ifold breaking this is not true. Consider, for example, (50Owhich can be broken to
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SU(2) x U(1) by usingP =diag(—1, —1, 1,1, 1). The extra Y1) can be destroyed by in-
voking P’ =diag(1, —1, —1, —1, —1). This example is particularly interesting since here

P and P’ commute although the rank is reduced (which is possible because the corre-
sponding generators do not commute). The above SO(5) example is special bBGause
which maps the U(1) generator to minus itself, acts on the other (real) representations in
a way consistent with SU(2) symmetry. If we deal with complex representations, i.e., the
adjoint of G branches as

adG - adH ®1(0) P R(@) D R(—q) D -, (4.5)

whereR(g) and R(—g) are conjugate to each other, a flip of th¢lYcharge carrie
andR into each other. The flip then acts non-trivially éhso that flipping the (1) factor
without affectingH is impossible.

We emphasize that this excludes the possibility of orbifold breaking of the U(1) factor in
a large class of cases. Namely, létx U(1) C G such that the U(1) is the maximal group
commuting withH . Clearly, any automorphism @ leaving H invariant has to map the
U(1) onto itself. Since the only non-trivial automorphism of U(1) is the above sign flip,
the presence of complex representatiéhs the adjoint ofG (cf. Eq. (4.5)) excludes the
requiredH -preserving automorphism @f. The extension tdf x H' C G, whereH’ is a
product group containing U(1) factors, is straightforward.

The above S@) scenario withP and P’ can, for example, be realized in-442
dimensions with compact spa&/(Z» x Z4). The Z, generator acts on the torus as
a rotation by 180, the Z/, generator acts as a shift by half of one of the original torus
translations (cf. Fig. 2(a)).

It turns out that the elements @f x Z/, comply with the multiplication law of the
dihedral groupD; of order 43 While the dihedral group of order 4 is Abelian, higher order
dihedral groups are not. We illustrate a possible way of using the order 6 grgupan
orbifold construction in Fig. 2(b). It follows th&2/(Z, x Z4,) construction up to the fact
that we now divide the cell into three parts instead of two. Embedding it into a gauge group
then allows for realizing non-Abelian twists.

These examples can be generalized in the following way: the orbifold can be interpreted
asO = T"/R whereR is a symmetry of the lattice, and the torus arises by modding out
flat space by discrete translatiofi, = R" /A. By embedding the full symmetry group,
containing the operations @f as well as the translations, into the gauge group, it is then
possible to achieve that the tori¥, which arises as intermediate step in this picture,
carries Wilson lines [34]. Since the generators associated with the Wilson lines do not
necessarily commute with the twists corresponding to embedding the operati®ristof
the gauge group, rank reduction is possible [33]. We believe that similar constructions will
be important for model building.

Let us briefly comment on non-regular embeddings. Consider the grou@d)SU
which contains S) (the subgroup of real matrices) as an S-subgroup (in Dynkin’s

3 Recall that the dihedral group of order,ZalledD,,, can be envisaged as the group generated by the rotation
of a regulam-polygon by 2r/n and the flip over one of its edges [35]. Clearly, the dihedral group always can be
embedded in an S@) ~ SU(2). Anomalies of dihedral orbifolds are discussed in [36].
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(a) T2/ D, (b) T2/Dj

Fig. 2. Examples of (a) 3"2/02 and (b) aTz/Dg, orbifold where rank reduction is possible. The action of the
dihedral group consists in a rotation by 28@round the origin, and in a translation by in case (a), and a
translation by} or 2/ in case (b).

terminology). Let us pick two generators of the embedde@$dor instance

0O 1 0 0 0 -1
L= (—1 0 O) and T»= (0 0 O ) . (4.6)
0O 0O 1 0 O

It is then straightforward to convince oneself that imposing the twists exp(27iT1/4)

and P, = exp(2riT2/4) breaks SW3) completely. Similar constructions can be used to
break larger groups with only a few twists. For instanEg has a maximal S-subalgebra
su(2) and can therefore be broken completely by only two twists, e.g., by embedding a
suitable dihedral group in the $B).

5. Conifold GUTs

We now want to continue the discussion of the generic structure of orbifold GUTs
given at the beginning of Section 3 and show that a mild generalization of the construction
principles leads to a much larger freedom in model building. Our main focus will be on 6d
models.

5.1. Geometry and gauge symmetry breaking

In 5 dimensions, the geometry is very constraining. Up to isomorphism, the only smooth
compact manifold isSt, where one has the familiar problems of obtaining chiral matter
and of fixing the Wilson line, the value of which represents a modulus which, in the
SUSY setting, cannot be stabilized by perturbative effects. The only compact orbifold is
the interval, which can always be viewed $/(Z> x Z)) (with S'/Z being a special
case). The gauge breaking at each boundary is determine@pwnatomorphism and can
be interpreted as explicit breaking by boundary conditions. One may try to generalize the
setting by considering breaking by a boundary localized Higgs (in the limit where the VEV
becomes large) [37] or ascribing Dirichlet and Neumann boundary conditions to different
gauge fields (without th&, automorphism restriction) [24]. Furthermore, it is possible
to ascribe the breaking to a singular Wilson line crossing the boundary [24]. However, it
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Fig. 3. Construction of a compact manifold with singularities from two triangles.

appears to be unavoidable that geometry is used only in a fairly trivial way and that the
breaking is confined entirely to the small-scale physics near the brane, outside the validity
range of effective field theory.

Group-theoretically, the 5d setting is also fairly constrained since the relative orien-
tation of the gauge twists at the two boundaries is a modulus. To be more specific, let
P =exp(T1) and P, = exp(T2) be the two relevant twists. Even though this makes rank
reduction possible in principle, we are faced with the problem that, if the Wilson line con-
necting the boundaries develops an appropriate VEV, the situation becomes equivalent to
bothT1 and T being in the Cartan subalgebra, in which case the symmetry is enhanced
to a maximal-rank subgroup. SUSY prevents the modulus from being fixed by loop cor-
rections?

In 6 dimensions, the situation is much more complicated and interesting. Clearly, the
smooth torus has the same problems asSthdiscussed above. However, there is a large
number of compact manifolds with conical singularities. A simple way to envisage such
singular manifolds or, more precisely, conifolds is given in Fig. 3. The fundamental space
consists of two identical triangles. The geometry is determined by gluing together the edges
of the depicted triangles, thus leading to a triangle with a front and a back, a triangular
‘pillow’. It is flat everywhere except for the three conical singularities corresponding to
the three corners of the basic triangle. Each deficit anglgsis—2¢), whereg is the
corresponding angle of the triangle. Obviously, in this construction the basic triangle can
be replaced by any polygon. If the polygon is hon-convex, negative deficit angles appear.

Four specific polygons deserve a separate discussion. These are the rectangle, the
equilateral triangle, the isosceles triangle with & @@gle, and the triangle with angles
30°, 6(°, and 90. The conifolds constructed in the above manner from these polygons
can alternatively be derived from the torus aéxa Z3, Z4 andZg orbifold, respectively.
Given thatZ, cannot be a symmetry of a 2-dimensional latticer/for 6, it is clear that
this last method of constructing conifolds is highly constrained when compared to the
generic conifold of Fig. 3 with an arbitrary polygon. However, from the perspective of
effective field theory model building, there appears to be no fundamental reason to discard
the multitude of possibilities arising in the more general framework.

Clearly, even more possibilities open up if, in addition to conical singularities one
allows for 1-dimensional boundaries. These arise in orbifoldin@i eeflection symmetry
(in contrast to theZ, rotation symmetries above) of the torus is modded out [15] (see
also [39]). However, in what follows we will concentrate on construction with conical
singularities only.

4 For more details and a discussion of the non-supersymmetric case see [38] and [25], respectively.
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We now turn to the possibilities of geometric gauge symmetry breaking on conifolds.
Recall first that, if a given conifold can be constructed from a smooth manifold by modding
out a discrete symmetry group, i.e., as an orbifold, then an appropriate embedding of
this discrete group into the automorphism group of the gauge Lie algebra will lead to a
gauge symmetry reduction. Working directly on the fundamental space (as opposed to the
covering space) this gauge breaking can be ascribed to non-trivial values of Wilson lines
encircling each of the conical singularities.

Itis now fairly obvious how to introduce this type of breaking in the generic construction
of Fig. 3 (possibly with the triangle replaced by an arbitrary polygon). First, we identify
one edge of the front polygon with the corresponding edge of the back polygon. Next,
when identifying along the two adjacent edges, one uses the freedom of introducing a
relative gauge twisP € G. In more detalil, if(x, y) and(x’, y") parametrize front and back
polygon near the relevant edge (such that the edge ys=ab or y’ = 0), one demands
A'(x’ =x,y' =0)= PA(x,y = 0)P~1 for the gauge potentiald and A’ on the two
polygons. Continuing with the identifications, one finds that there is a freedom of choosing
n — 1 gauge twistsP; in the presence af conical singularities. Technically, this is due
to the fact that the identification along one of the edges can always be made trivial using
global gauge rotations of one of the polygons. A geometric understanding follows from
the fact that the global topology is that of a sphere, in which case the Wilson lines around
n — 1 singularities fix the last Wilson line (we always assume the vacuum configuration,
i.e., A is locally pure gauge).

Clearly, we want to obtain a smooth manifold (except for the singularities) in the end so
that, to be more precise, thie have to be introduced in the appropriate transition functions
of the defining atlas. However, we believe that it is not necessary to spell out this familiar
construction in detail.

Instead of using only inner automorphisms describe@hyve could have allowed for
outer automorphisms in the transition functions. In this case, which we will not pursue in
this paper, the corresponding vacua are clearly disconnected from those defined only by
inner automorphisms. The theory can then be thought of as defined on a generalization
of a principal bundle (in the commonly used definition of principal bundles the transition
functions involve only inner automorphisms).

We now want to analyze the gauge fields in a small open subset including one conical
singularity. A convenient parametrization is given by polar coordinatgs) with 0 <
r < € and 0< ¢ < B, where the singularity is at= 0 and the deficit angle is2— 8. As
familiar from the Hosotani mechanism on smooth manifolds [40], we can trade the gauge
twist in the matching fronp = 8 to ¢ = 0 for a background gauge field which, for a twist
P =exp(T), can be chosen aé = e, T /(Br). Heree,, is the unit-vector ing,, direction
so thatA is a Lie-algebra-valued vector. This simple exercise demonstrates explicitly that,
at least locally, the breaking can be attributed to a non-vanishing gauge field VEV in a flat
direction. However, in contrast to the Hosotani mechanism, the corresponding modulus can
be fixed without violating the locality assumption (which we consider as fairly fundamental
in effective field theory). Namely, the value of the Wilson line described by the aboam
be determined by some unspecified small-distance physics directly at the singularity. This
is similar to the boundary breaking in 5 dimensions. In contrast to the 5d case, however,
the breaking at the conical singularity is visible to the bulk observer, who can encircle the
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singularity and measure the Wilson line without coming close to the singularity. Thus, one
might be tempted to conclude that this type of breaking has a better definition in terms of
low-energy effective field theory.

To conclude this subsection, we want to collect the generalizations of 6d field theoretic
orbifold models discussed above. First, one can work on conifolds, i.e., use deficit angles
that cannot result from modding out on the basis of a smooth manifold. The gauge twist at
each singularity may, however, be still required to be consistent with the geometric twist.
Second, one can insist on conventional orbifolds as far as the geometry is concerned but use
arbitrary gauge twists at each conical singularity, i.e., give up the connection between the
rotation angles in tangent and gauge space. Third, one may drop both constraints and work
on conifolds with arbitrary deficit angles and gauge twists. Obviously, such constructions
can also be carried out in more than 6 dimensions. The detailed discussion of those is
beyond the scope of the present paper.

5.2. Generating chiral matter

In general, compactification on a non-flat manifold can provide chiral matter if the
holonomy group of the compact manifold fulfills certain criteria. For example, it is well-
known that compactification of a 10d SYM theory on Calabi—Yau manifolds wit(3sU
holonomy [41] or on orbifolds [9] leads tv = 1 SUSY in 4d. Both constructions are not
unrelated as many orbifolds can be regarded as singular limits of manifolds in which the
curvature is concentrated at the fixed points. Since the reduction of SUSY is a matter of
geometry, compactification of a higher-dimensional field theory on a conifold can also lead
to N = 1 supersymmetric models in 4d.

Interesting models have been constructed using the fact that the vector multiplet of
(1,1) SUSY in 6d corresponds to one vector and three chiral multiplets in 4d language,
A = (V,¢1, d2, ¢3). The fact that three copies of chiral multiplets appear automatically
may be an explanation of the observed number of generations [4]. The above 6d theory can
be interpreted as arising from a 10d SYM, in which case the scalars of the chiral multiplets
are the extra components of gauge fields [42], for exangple, As +iAs, ¢2 > A7 +iAs
and¢s > Ag + iA10 (Ay denote the components of the 10d vector). When defining our
6d models, we require the field transformations associated with going around a conical
singularity to be an element of an SU(3) subgroup of the full3& SU(4) symmetry of
the underlying 10d SYM theory. Under this subgroup, which we cal3WR&-symmetry,
the chiral superfields; transform as 8.5 The appealing feature of such a construction
is that matter multiplets are not put in ‘by hand’ but arise in a natural way from a higher-
dimensional SYM theory [4-7].

The action of the SKB) R-symmetry transformation on the chiral superfields is not
completely arbitrary. For example,dfi > As + iAg, the transformation o1 is fixed by
geometry, e.g., when modding out a rotation symmetry, a corresponding rotation has to be
applied to thep; superfield. Thus, when going around a conical singulagityreceives
a phase which is given byg2 whereg is the corresponding angle of the polygon. Since

5 For more details see, e.g., [42] as well as [4,43].
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multiplying by the phase'?? corresponds to a rotation in the complex plane, we will call
2¢ ‘rotation angle’ in what follows. Clearly, the rotation angle sums up with the deficit
angleto z.

6. Specific models

Let us now discuss three models in which some of the main features of the last sections
are exemplified. All these models are based on a SYM theoryi dimensions endowed
with (N1, N2) = (1, 1) SUSY. In 4d we then deal with three chiral superfiglds¢, and
¢3 where we assume thah = As + iAg SO that the action of th&-symmetry ong; is
fixed (cf. Section 5.2).

6.1. E7 — SU(5) x SUR)E x U(1)

Consider a SYM theory based on &k gauge groupEz7 contains SW5) x SU(3)g x
U(1), and the adjoint representation decomposes as

133 (24,10 @ (L, D)o@ (1,.8)o® (5. 1) D (5,1) 6
®(10,3)_2® (5,3)_4® (10,3)2® (5,3)a4, (6.1)

where we use a notation analogous to Eq. (3.10).

As explained in Section 3, the twigt which causes the desired breaking can be
understood as exponential of thélly generator. Under this twist, the multiplets appearing
in Eq. (6.1) acquire phases which are proportional to thi#)dharge. By taking the
proportionality constant to be1/12, we arrive at the phases listed in Table 6 where here
and below phases are given in units af.2

The smallest phase present i§1so thatP is aZg twist. Therefore, theR-symmetry
acts ong; as a—60° rotation in the 5-6 plane, and thus tt0, 3)_, possesses a zero-
mode. We choose the transformatiorgefsuch that thes, 3)_4 survives as well, and the
phase ofps is then fixed by the determinant condition. More explicitly, by taking

R = exp[2ridiag(—1/6,2/3, —1/2)] € SU®), (6.2)

we can achieve that 3 generationsl6fand5 survive without any mirrors, indicated by
boldface phases in Table 6, and&r=1 SUSY in 4d is preserved. It is also interesting to
observe that the only additional surviving superfields, nan&l)s and (5, 1) _g which
acquire phases/2 and therefore have zero-modes due to the third diagonal entRy of
carry the quantum numbers of the light Higgs fields in the supersymmetiis) Skeory.
Thus, the SIg5) part of this model looks relevant for reality, and is in particular anomaly-
free.

The geometry of this model, which can be constructed as a standard off#ftid, is
given by two triangles with angles 3060° and 90 (cf. Fig. 4). TheZg twist P (Ps = P in

6 The twist can be thought of a8 = diag(w, », w, v, ®, —w), with » defined as the 12th root of 1, acting
on the SW6) embedded irE7. Although the action of? on a fundamental representation of GYwould be
the one of &1 twist, its action onE7 is Zg since the adjoint o7 only contains antisymmetric and adjoint
representations of S8).
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Table 6

Phases (in units of2) for the different multiplets of S(b) x
SUR)E x U(1) C E7. Zeros correspond to the surviving gauge
bosons, other phases which are compensated bR-thygmmetry
transformations are written in boldface

(24,1)p: O (5, De: 1/2 (5.3)_4: 1/3
Lo O B, D_g 1/2 (10,3),: 5/6
1,8y O (10,3)_»: 1/6 (5,3)4: 2/3
Ps
Py Ps

Fig. 4. Example of &4 + 2)-dimensional orbifold allowing foZg twists. The fundamental space consists of two
triangles. The geometry can be illustrated by gluing together the edges of the depicted triangles, thus leading to a
triangle with a front- and a backside.

Fig. 4) is associated with the first of these fixed points; the twigtand P3 are associated
with the remaining two fixed points. By construction, the order of rotation in the two extra
dimensions coincides with the order of the twist in the gauge group. It is then straight-
forward to determine the gauge groups which survive at these fixed points. In the actual
example, they turn out to be $6) x SU(3)r and SU8), respectively. The content of non-
vanishing fields at these fixed points is also found to be anomaly-free under the relevant sur-
viving gauge group in both cases, which implies the absence of localized anomalies [44].
The complete model is, however, not free of anomalies. This is due to localized
anomalies at thePs fixed points, where the gauge group is GUx U(1) x SUR)k.
However, the SU(5) part by itself is free of localized anomalies even at this fixed point.
Thus, if SU3)r x U(1) is broken, as it has to be in order to describe reality, there are no
anomalies. The desired breaking of the unwanted symmetries may be due to fields which
live on the fixed points, however, discussing such possibilities is beyond the scope of this
study. Note also that if we were to break the additional symmetry by rank-reducing twists,
fewer matter fields would survive. That is also the reason why we do not use rank-reducing
twists in the next two models.

6.2. Eg— Gpsx U(1)3

UnderEg — SO(10) x SU(4), the adjoint representation @3 decomposes like

248 — (45,1) @ (1, 15) @ (16, 4) @ (16, 4) & (10, 6). (6.3)
SO(10) contains the Pati—Salam group [Bbs= SU(4) x SU(2) x SU(2) whereby

45— (151,113, ) (1,1,3) ®(6,2,2), (6.4a)

16— (4,2, 1)@ 4,1,2), (6.4b)

10— (6,1, 1) @ (1,2,2). (6.4¢)
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This breaking can be achieved by using the rotatidne SU(2) for the first (or the second)
SU(2). In addition, we can now impose the twist

F =exg2ridiag(1/3, —1/6, x, —1/6 — x)] € SU4), (6.5)

where, e.g.x = %1, in order to break S — [U(1)]3. The charges of thé are then given

byg; € {1/3,-1/6,x, —1/6—x}. The charges of théareq; +¢; with i # j since the5is

the antisymmetric part of thé&x 4 of SU(4), and finally the charges of tHi& areq; — g;.
Together with theR-symmetry transformation

R = exp2ridiag(—1/3, —1/3, —1/3)], (6.6)

three chiral generations of matter and three Higgs, (1€2, 2), survive. Only for certain

x, additional fields will possess zero-modes, and we will chaogeequal none of these
values. Here, the number of generations is due to dimensional reducti@vy oN,) =

(1,1) SUSY in 6d to 4d. The surviving gauge groupGss x [U(1)]3. The geometry is
given by an equilateral triangle with the three corners corresponding to three identical fixed
points.

Obviously, for such a construction, the geometric twist, i.e., the rotation in the two
extra dimensions, is of a lower order than the group theoretical twist. This requires going
beyond the usual field-theoretic orbifold constructions (although the geometry is still an
orbifold). As proposed in Section 5, we define a field theory on a manifold with three
conical singularities, each of them possessing a deficit angle (8.2I'his construction is
then an equilateral triangle. We then add Wilson lines such that the group-theoretical twist
P at two of the fixed points equals the one described above. The twist at the third fixed
point is then constrained to k&2 by the global geometry.

At each singularity of the conifold, the Pati—-Salam part of the gauge group is anomaly-
free. This is obvious for first two fixed points since the non-vanishing fields are those of
the standard model with three Higgs doublets. At the third fixed point, the gauge symmetry
is enhanced to the group $), which has no 4d anomaliésAgain, investigating mech-
anisms to break the extra(l)s as well asGpsto Gsy is beyond the scope of this paper.

Note finally that this particular model can be viewed as an extension of [4], where three
generations arise from the three chiral superfields present in the 4d description of a 10d
SYM theory, i.e., they follow from the presence of three complex extra dimen8idhs.
new points in our construction are the doublet—triplet splitting solution arising from the
breaking to the Pati—Salam group (see [48] and the recent related stringy models of [49])
and the realization of all rather than just part of the matter fields in terms of the SYM
multiplet.

7 Quite generally, the anomaly at a given conical singularity can be calculated from the zero-mode anomaly by
considering a conifold where this specific singularity appears several times (possibly together with other conical
singularities, the anomalies of which are already known) [45]. However, we do not investigate this further in the
present paper. For recent work on the explicit calculation of anomalies in 6d models see [36,44,46].

8 It has been claimed that this is related to the mechanism for obtaining three generations used in the string
theory models reviewed in [47].



24 A. Hebecker, M. Ratz/ Nuclear Physics B 670 (2003) 3-26

Table 7

Table of the phase factors for the different multiplet&igisx SU3)g x U(1) C

Eg. Zeros correspond to surviving gauge bosons; other phases which are
compensated by thR-symmetry transformation are written in boldface

(15,1,1;1g): © (L.1.5L;3_43): 2/3 (4,1,2;3_1): 11/12

(1,31;19: O (4,2,1;31): 112 (4,1,21.3): 1/4
(1,1,3;19: O (4,2,1;1_3): 3/4 (6,1,1;3;): 5/6
(1,1,1;8): O (4,1,2;39): 7/12  (6,1,1;3_7): 1/6
(1,1,1;,19: O (4,1,2; 13): 1/4 1,2,2,37)):  1/3
6,2,2;1p): 1/2 (4,2,1;3_7): 11/12 (1,2,2;3_1): 2/3
(L1,1;3473): 1/3  (4,21;13): 3/4

6.3. Es— Gpsx SUR)E x U(D)

Alternatively, we can obtairpsfrom Eg and maintain an S(B)r flavour symmetry by
breaking the extra S{4) of the decomposition (6.3) to SB)r x U(1). In order to achieve
this breaking, we take a central element of(S))

P =exg2ri(1/3,1/3,1/3,0)]. (6.7)

The phases which arise by combining this twist with @x@ri/41) € SU(4) are listed in
Table 7. Now let us simultaneously impose Rssymmetry twist

R =exp[2ridiag(—1/12, —7/12, —1/3)]. (6.8)

It is then easy to see from Table 7 that the zero modes which emerge in the matter sector
are three generations of SM matter, three Higgs and three additional neutrinos.

In order to realize such a model, we have again to relax the constraints of usual orbifold
models, and therefore consider a manifold with a conical singularity with deficit angle
27 - 5/12 instead (cf. Section 5). To be more specific, we envisage the geometry of the
model as an isosceles triangle with an angle »f 3/12. Each corner corresponds to a
fixed point, and we are free to choose batH 2 fixed points identically. By construction,
the group-theoretical twisP at the /12 fixed points generate @iy, i.e., P12 = 1.

At the remaining 2 - 5/12 ‘corner’, we choose the twistl® = P~2 for consistency.
Interestingly, a quick inspection of Table 7 reveals that the there surviving gauge symmetry
is SQO(10). Obviously, the SQLO) part of the gauge theory at this fixed point is anomaly-
free automatically.

Once more, discussing the breaking of the extra gauge symmetry is beyond the scope
of this study.

7. Conclusions

We have explored some of the group-theoretical possibilities in orbifold GUTs. In
particular, we showed that, given a simple gauge grGyghe breaking to any maximal-
rank regular subgroup can be achieved by orbifolding.
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We further studied rank reduction and found that simple group factors can always be
broken completely. This is possible when using non-Abelian twists, and also if twists
commute but the corresponding generators do not. Using such constructions in orbifolding
is made possible by embedding a non-Abelian (or even Abelian) space group into the gauge
group.

We then extended the familiar concept of orbifold GUTs by replacing the orbifolds
by manifolds with conical singularities. The possibilities we discussed include orbifold
geometries endowed with unrestricted Wilson lines wrapping the conical singularities,
manifolds with conical singularities with arbitrary deficit angles, and combinations thereof.

Finally, we presented three specific models where three generations of fields carrying
the SM quantum numbers come from a SYM theory in 6d. While the first one is a
conventional orbifold model illustrating the usefulness of our group theoretical methods,
the two others are based on the two new concepts mentioned above.

To summarize, we explored several new and interesting methods and possibilities which
can be used in orbifold GUTs and their generalizations.

As none of our models is yet completely realistic, more effort is required in order to
discuss phenomenological consequences. However, it is very appealing how easily three
generations can be obtained and the doublet-triplet splitting problem can be solved. Thus,
promoting our models to realistic ones in future studies appears to be worthwhile.

Note added

While this paper was being finalized, Ref. [50] appeared where Dynkin diagram
techniques were used as well. Aspects of our analysis not addressed by [50] include, in
particular, the breaking of any simple group to all maximal-rank regular subgroups, rank-
reduction, as well as several new field-theoretic concepts and models.
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