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ABSTRACT OF THE DISSERTATION

Efficient, Affordable, and Scalable Deep Learning Systems

by

John Thorpe
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2022
Professor Harry Guoqing Xu, Chair

Deep Learning has become one of the most important tools in computer science in the last
decade because of its ability to perform tasks that involve complex reasoning. Researchers
have been pushing forward the state of the art in many ways, but we focus on two major
trends that have shown promise. The first is creating models which can change based on
the inputs to better learn patterns in the data. For example, with Graph Neural Networks,
training the same model over two different graphs will result in models which have been spe-
cialized to the structure of the particular graph. This specialization results in the same model
architectures having very different computation patterns depending on the input graph. The
second is the rapidly increasing size of models, measured by the number of parameters. This
increase leads to much more general and accurate machine learning agents, but requires a
large amount of hardware to train efficiently. Because of these complexities, these trends
result in state of the art models requiring massive amounts of computational and financial

resources, limiting them to larger well-funded companies that have the funds to experiment.

Lowering the financial barrier to entry for experimentation with these models will allow many
more small businesses and research labs to experiment with them. The current paradigm of
machine learning focuses on throwing high-end computational power at the Deep Learning
problem as the resource requirements grow. However, a key observation for addressing
this problem lies in the increasingly heterogenous offering made by cloud providers. Cloud

platforms offer a much more diverse set of resources than would be available to most on-
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site clusters allowing for a more fine-grained approach to the problem. By combining the
heterogeneous offers of cloud providers with in-depth knowledge of the compute profile of
deep learning models, we can achieve better value compared to most existing systems. Here,

value is defined as the performance per dollar we can achieve.

My first system, Dorylus, a Graph Neural Network framework, provides up to 3.86x more
value than its GPU based variant running on large graphs by employing serverless threads
to do asynchronous computation. My next work, Bamboo, focuses on reducing the cost

of training massive pipeline-parallel models by making preemptible instances resilient and
performant by intelligently introducing computation redundancy into the pipelines. Bamboo
was able to provide almost 2x the performance-per-dollar of training with full-priced non-
preemptible instances, and provide 1.5x the performance-per-dollar of existing systems

designed to run on spot instances.
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CHAPTER 1

Introduction

Over the past decade, Deep Learning has quickly become one of the most important work-
loads in both industry and academia. It has shown unparalleled performance on tasks that
require complex reasoning, such as object detection which involves drawing bounding boxes
on objects or contextual question answering in which an agent has to answer questions about
a passage it just “read”. This ability to tackle tasks typically thought of as requiring human
intelligence has lead to its application in many different areas. Object detection models such
as YOLO are currently deployed to analyze footage from traffic cameras [3], transformer
based NLP models such as BERT are currently used for improved language understanding
in search [2], and certain networks called Graph Neural Networks have been applied for

product recommendation systems using edge prediction on graphs [161].

Given their current success across a wide range of domains, there is a huge demand to
increase their accuracy, generality, and efficiency. Companies and academic institutions
are trying to build models that can handle even more complex tasks with better accuracy
which has to lead models becoming larger and more complicated. Two of the trends that
have emerged to achieve this goal are the incorporation of the structural dependencies of
data into the NN computation, such as in Tree-LSTMs [132] or Graph Neural Networks
(GNNs) [60, 65, 83, 85, 116], and the exponential increase in the number of parameters

networks use.



Chapter 1. Introduction

1.1 Background and Motivation

Including data dependencies into the model itself increases the expressiveness of the models,
however it changes a lot of the assumptions typically made about model training. Using
most neural networks, the computation remains the same regardless of the input data which
leads to homogeneous computation that can be partitioned more easily and distributed
among workers as the scale of the data or model increases. In the case of networks such
as Mixture-of-Experts models [47], only subsets of the network are run depending on the
specific input sample, leading to different computation patterns throughout the course of
training. In the case of networks that incorporate dependencies of the input data, such
as Graph Neural Networks or Tree-LSTMs, the structure of the graph or of a sentence
can change the distribution of the workload. For Graph Neural Networks specifically this
becomes problematic as they can have graphs with billions of edges [158] that are unevenly
distributed among the vertices, requiring more complicated techniques to partition and scale

effectively.

Number of Parameters per Model

1600 1

1200 1

800

400 +

Billions of Parameters

BERT GPT-2  Megatron Turing-NLG  GPT-3 Switch
Transformer

Figure 1.1: Exponentially increasing models sizes

The size of networks has also been increasing exponentially which presents a problem for
the limited memory capacity of modern accelerators. AlexNet, the neural network that cat-
alyzed the modern age of deep neural networks had 60 million parameters [70]. Modern
models dwarf this with recent networks like GPT-3 having a version with 175 billion pa-

rameters [17], a work which was shortly surpassed by Google’s Switch Transformer, with a
2



Chapter 1. Introduction

massive 1.6 trillion parameters [35]. GPT-3 demonstrates the effect of these larger models,
demonstrating that they are able to generalize very well, performing near the fine-tuned
state of the art models while only using zero, one, or few-shot learning. Likewise, Switch
Transformer shows improved top-accuracy results for many NLP tasks, such as GLUE and
SQuAD among others. The massive number of parameters leads to scalability problems
however, as a typical modern GPU with 32GB of memory will be out of memory at 1.4B

parameters [109)].

The mainstream approach to addressing the growing computational and memory cost of
models is to scale clusters horizontally and vertically, i.e. to give each worker in a cluster
more resources and to simply add more workers to the cluster. This however adds a huge
financial cost. Using V100 machines and using conservative estimates of the hourly cost to
run these machines, the cost to train the GPT-3 model was predicted to be around $4.6
million [1]. This makes experimenting with and improving upon such state of the art models
infeasible for many smaller companies and academic research groups. Bringing down this
barrier to allow more researchers and groups to use state of the art models is beneficial in
many ways. First, as experimenting with models becomes accessible to more people, they are
more likely to discover new domains in which it could be applied and new applications that
have not been previously though of. In addition, a well-known problem with these models is
bias that can lead to unwanted and sometimes harmful results of a model [38, 126, 127]. If
the financial barriers are decreased, a larger group of researchers would be able to focus on
finding ways to introduce bias-reduction or model correction into pretraining, rather than

having to rely on large companies to fix and audit the models themselves.

1.2 Key Approach

While there exists a body of work aiming to improve the scalability and resource utilization
of GPU clusters [59, 85, 94, 109], the increasing financial burden of state of the art models
motivates the need to focus on a metric which we call value. Here, value is defined as a

system’s performance per dollar. Value is an important metric to consider as users cannot
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always take the cheapest option if a job has to be done within a time constraint. Similarly,

they cannot always choose the fastest option if it becomes prohibitively expensive.

The main observation that motivates this line of work is that the increasing heterogeneity of
cloud resources makes it possible for us to make judicious selection of resources for tasks on
which they offer the best value. Prior work has shown that the dollar normalized through-
put of some workloads changes depending on the accelerator used. For example, running a
transformer based model on a V100 GPU can bring a 3.3 increase in throughput compared
to the K80 GPU. However, despite the speed up, doing so results in 0.8 x dollar-normalized
throughput [95]. Another example is the emergence of smart-networking hardware which is
becoming more widely available. This has the potential to speed up network bound work-
loads [74, 115] such as federated learning if done carefully, especially in network constrained
environments. In addition to choosing between the many accelerators available, clouds also
offer variations of traditional resources which have different trade-offs. Serverless threads
provide CPUs in a serverless abstraction to allow easy and efficient scaling of compute re-
sources as well as fine grained billing [9]. However, these benefits come at the expense of
weaker compute and slower network [68]. Clouds also all offer some instances on a volatile
spot market, subjecting them to dynamic pricing based on demand. While these instances
can often be used at a discount to their full-priced counterparts, they can be preepmted if a

higher priority user needs the resources.

My work aims to build systems that combine in-depth knowledge of the characteristics of
model training with careful selection of compute resources to mask any potential drawbacks
while maintaining accurate and performant training. By understanding the compute profiles
of different models, affects of asynchrony on convergence, and other factors we can make more
informed decisions about resource use, rather than simply using the highest-end accelerator
and incurring unnecessarily high cost. In this thesis I will present two systems developed

along this line of reasoning.
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1.3 Graph Neural Networks

The first system, Dorylus, is a Graph Neural Network framework for scaling to billion-
edge graphs. As mentioned above, a GNN is a type of neural network in which the graph
structure is considered during the training. This structural information is incorporated
through an added aggregation step which aggregates data across edges in the graph. The de
facto approach for training such networks is GPUs due to their high degree of parallelism.
However, GPUs, are also costly and can cause scalability bottlenecks for training. While
realistic graph workloads would ideally incorporate graphs with billions of edges, existing
systems struggle to scale to graphs with even millions of edges while using GPUs. In addition
they can be expensive. Recent works such as NeuGraph and Roc train only million-edge

graphs using several high-end HPC machines.

To solve the problems of expense and poor scalability our first insight was to separate the
graph and tensor processing components of a GNN system. Given that GNNs can be modeled
using a computation model similar to that of the GAS model from graph processing, we note
that we can leverage well studied graph processing techniques to increase scalability. Given
our initial insight, we noticed that the tensor computation now existed as small, bursty
computations interspersed with graph computations. The short, bursty nature of the tensor
computation coupled with the fact that GNN models tend to be rather small lead us to the
serverless paradigm. Given that serverless computation has very low prices and a scalable
infrastructure, we saw the potential for a massive reduction in cost while maintaining good

efficiency compared to GPUs.

Our results show that we are able to increase the value available to users, especially as graphs
grow larger. Dorylus offers 2.75x more performance-per-dollar than CPUs only. In addition,

it is 1.22x faster and 4.83x cheaper than GPUs on large, sparse graphs.

1.4 Very Large Models

While we found serverless to be a good fit for out initial target of GNNs due to the smaller,
shallower models and interspersed tensor computation, this does not hold for all models,

>



Chapter 1. Introduction

especially for very large models. Models that use billions of parameters are becoming more
common, and are epitomized by the transfer-based models such as GPT-3. These models
consist of repeated blocks of homogeneous and dense tensor computation which requires
accelerators for acceptable performance. In order to enable the use of accelerators for good
performance while reducing costs, we found the right cloud resource to be spot instances.
Spot instances allow a user to use cloud servers at significantly reduced prices that perform
equivalently to their full-priced counterparts, except that they can be preempted when the

cloud needs to free up capacity for higher priority users (people paying full price).

There are existing works which attempt to allow users to use spot instances by performing
checkpointing, a common approach in environments where failures can occur. However, we
found that failures can occur too often in a spot environment to be efficiently handled by
checkpointing. In addition, attempts that try to allow training to continue in the case of
failures by simply dropping some training samples have a similar problem. When failure
rates are low they lead to an acceptable trade-off, but when failures are frequent and bulky,

as happens with spot instances, they can lead to unacceptable decreases in model accuracy.

Our approach, called Bamboo, is to closely investigate one of the most common paralleliza-
tion strategies for training large models, pipeline-parallelism. We intelligently introduce
computation redundancy into the pipeline to allow workers to quickly recover from any fail-
ures without long pauses. We also utilize aspects of pipeline-parallelism, such as small stalls

while waiting for dependencies from other workers, to minimze the overhead of redundancy.

Overall, with Bamboo we were able to provide nearly 2x as much value as the full-priced
non-preemptible baseline and 1.5x as much value as checkpointing techniques that were

designed to use spot instances.



CHAPTER 2

Dorylus: Affordable, Scalable, and Accurate GNN
Training with Distributed CPU Servers and Serverless

Threads

2.1 Introduction

Graph Neural Networks (GNN) [60, 65, 79, 83, 85, 116] are a family of NNs designed for deep
learning on graph structured data [153, 169]. The most well-known model in this family is the
graph convolutional network (GCN) [65], which uses the connectivity structure of the graph
as the filter to perform neighborhood mixing. Other models include graph recursive network
(GRN) [80, 104], graph attention network (GAT) [16, 137, 164], and graph transformer
network (GTN) [159]. Due to the prevalence of graph datasets, GNNs have gained increasing
popularity across diverse domains such as drug discovery [144], chemistry [33], program
analysis [8, 14], and recommendation systems [151, 158]. In fact, GNN is one of the most

popular topics in recent AI/ML conferences [55, 71].

GPUs are the de facto platform to train a GNN due to their ability to provide highly-
parallel computations. While GPUs offer great efficiency for training, they (and their host
machines) are expensive to use. To train a (small) million-edge graph, recent works such
as NeuGraph [85] and Roc [59] need at least four such machines. A public cloud offers
flexible pricing options, but cloud GPU instances still incur a non-trivial cost — the lowest-

configured p3 instance type on AWS has a price of $3.06/h; training realistic models requires
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dozens/hundreds of such machines to work 24/7. While cost is not a concern for big tech

firms, it can place a heavy financial burden on small businesses and organizations.

In addition to being expensive, GPUs have limited memory, hindering scalability. For con-
text, real-world graphs are routinely billion-edge scale [112] and continue to grow [158].
NeuGraph and Roc enable coordinated use of multiple GPUs to improve scalability (at
higher costs), but they remain unable to handle the billion-edge graphs that are common-
place today. Two main approaches exist for reducing the costs and improving the scalability

of GNN training, but they each introduce new drawbacks:

e CPUs face far looser memory restrictions than GPUs, and operate at significantly
lower costs. However, CPUs are unable to provide the parallelism in computations

that GPUs can, and thus deliver far inferior efficiency (or speed).

e Graph sampling techniques select certain vertices and sample their neighbors when
gathering data [43, 158]. Sampling techniques improve scalability by considering less
graph data, and it is a generic technique that can be used on either GPU or CPU
platforms. However, our experiments (§2.7.5) and prior work [59] highlight two limita-
tions with graph sampling: (1) sampling must be done repeatedly per epoch, incurring
time overheads and (2) sampling typically reduces accuracy of the trained GNNs. Fur-
thermore, although sampling-based training converges often in practice, there is no

convergence guarantee for trivial sampling methods [20].

Affordable, Scalable, and Accurate GNIN Training. This paper devises a low-cost
training framework for GNNs on billion-edge graphs. Our goal is to simultaneously deliver
high efficiency (e.g., close to GPUs) and high accuracy (e.g., higher than sampling). Scaling
to billion-edge graphs is crucial for applicability to real-world use cases. Ensuring low costs
and practical performance improves the accessibility for small organizations and domain

experts to make the most out of their rich graph data.

To achieve these goals, we turn to the serverless computing paradigm, which has gained

increasing traction [36, 62, 68] in recent years through platforms such as AWS Lambda,
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Google Cloud Functions, or Azure Functions. Serverless computing provides large numbers
of parallel “cloud function” threads, or Lambdas, at an extremely low price (i.e., $0.20 for
launching one million threads on AWS [9]). Furthermore, Lambda presents a pay-only-for-
what-you-use model, which is much more appealing than dedicated servers for applications

that need only massive parallelism.

Although it appears that serverless threads could be used to complement CPU servers with-
out significantly increasing costs, they were built to execute light asynchronous tasks, pre-

senting two challenges for NN training:
o Limited compute resources (e.g., 2 weak vCPUs)

e Restricted network resources (e.g., 200 Mbps between Lambda servers and standard

EC2 servers [67])

A neural network makes heavy use of (linear algebra based) tensor kernels. A Lambda!
thread is often too weak to execute a tensor kernel on large data; breaking the data to tiny
minibatches mitigates the compute problem at the cost of higher data-transfer overheads.
Consequently, using Lambdas naively for training an NN could result in significant slowdowns
(e.g., 21x slowdowns for training of multi-layer perceptron NNs [51], even compared to

CPUs).

Dorylus. To overcome these weaknesses, we developed Dorylus?, a distributed system
that uses cheap CPU servers and serverless threads to achieve the aforementioned goals for
GNN training. Dorylus leverages GNN’s special computation model to overcome the two

challenges associated with the use of Lambdas. Details are elaborated below:

The first challenge is how to make computation fit into Lambda’s weak compute profile?
We observed: not all operations in GNN training need Lambda’s parallelism. GNN training

comprises of two classes of tasks [85] — neighbor propagations (e.g., Gather and Scatter) over

'We use “Lambda” in this paper due to our AWS-based implementation while our idea is generally
applicable to all types of serverless threads.

2Dorylus is a genus of army ants that form large marching columns.

9
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the input graph and per-vertex/edge NN operations (such as Apply) over the tensor data
(e.g., features and parameters). Training a GNN over a large graph is dominated by graph
computation (see §2.7.6), not tensor computation that exhibits strong SIMD behaviors and

benefits the most from massive parallelism.

Based on this observation, we divide a training pipeline into a set of fine-grained tasks
(Figure 2.3, §2.4) based on the type of data they process. Tasks that operate over the
graph structure belong to a graph-parallel path, executed by CPU instances, while those that
process tensor data are in a tensor-parallel path, executed by Lambdas. Since the graph
structure is taken out of tensors (i.e., it is no longer represented as a matrix), the amount
of tensor data and computation can be significantly reduced, providing an opportunity for
each tensor-parallel task to run a lightweight linear algebra operation on a data chunk of a

small size — a granularity that a Lambda is capable of executing quickly.

Note that Lambdas are a perfect fit to GNNs’ tensor computations. While one could also
employ regular CPU instances for compute, using such instances would incur a much higher
monetary cost to provide the same level of burst parallelism (e.g., 2.2X in our experiments)

since users not only pay for the compute but also other unneeded resources (e.g., storage).

The second challenge is how to minimize the negative impact of Lambda’s network latency?
Our experiments show that Lambdas can spend one-third of their time on communication.
To not let communication bottleneck training, Dorylus employs a novel parallel computation
model, referred to as bounded pipeline asynchronous computation (BPAC). BPAC makes
full use of pipelining where different fine-grained tasks overlap with each other, e.g., when
graph-parallel tasks process graph data on CPUs, tensor-parallel tasks process tensor data,
simultaneously, with Lambdas. Although pipelining has been used in prior work [59, 94],
in the setting of GNN training, pipelining would be impossible without fine-grained tasks,

which are, in turn, enabled by computation separation.

To further reduce the wait time between tasks, BPAC incorporates asynchrony into the

pipeline so that a fast task does not have to wait until a slow task finishes even if data

10
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dependencies exist between them. Although asynchronous processing has been widely used
in the past, Dorylus faces a unique technical difficulty that no other systems have dealt with:

as Dorylus has two computation paths, where exactly should asynchrony be introduced?

Dorylus uses asynchrony in a novel way at two distinct locations where staleness can be
tolerated: parameter updates (in the tensor-parallel path) and data gathering from neighbor
vertices (in the graph-parallel path). To not let asynchrony slow down the convergence,
Dorylus bounds the degree of asynchrony at each location using different approaches (§2.5):
weight stashing [94] at parameter updates and bounded staleness at data gathering. We have

formally proved the convergence of our asynchronous model in §2.5.

Results. We have implemented two popular GNNs — GCN and GAT — on Dorylus and
trained them over four real-world graphs: Friendster (3.6B edges), Reddit-full (1.3B),
Amazon (313.9M), and Reddit-small (114.8M). With the help of 32 graph servers and thou-
sands of Lambda threads, Dorylus was able to train a GCN, for the first time without

sampling, over billion-edge graphs such as Friendster.

To enable direct comparisons among different platforms, we built new GPU- and CPU-based
training backends based on Dorylus’ distributed architecture (with computation separation).
Across our graphs, Dorylus’s performance is 2.05x and 1.83x higher than that of GPU-only
and CPU-only servers under the same monetary budget. Sampling is surprisingly slow — to
reach the same accuracy target, it is 2.62x slower than Dorylus due to its slow accuracy
climbing. In terms of accuracy, Dorylus can train a model with an accuracy 1.05x higher

than sampling-based techniques.

Key Takeaway. Prior work has demonstrated that Lambdas can only achieve suboptimal
performance for DNN training due to the limited compute resources on a Lambda and
the extra overheads to transfer model parameters/gradients between Lambdas. Through
computation separation, Dorylus makes it possible, for the first time, for Lambdas to provide

a scalable, efficient, and low-cost distributed computing scheme for GNN training.

11
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Dorylus is useful in two scenarios. First, for small organizations that have tight cost con-
straints, Dorylus provides an affordable solution by exploiting Lambdas at an extremely low
price. Second, for those who need to train GNNs on very large graphs, Dorylus provides a

scalable solution that supports fast and accurate GNN training on billion-edge graphs.

2.2 Background

A GNN takes graph-structured data as input, where each vertex is associated with a feature
vector, and outputs a feature vector for each individual vertex or the whole graph. The
output feature vectors can then be used by various downstream tasks, such as, graph or
vertex classification. By combining the feature vectors and the graph structure, GNNs are
able to learn the patterns and relationships among the data, rather than relying solely on

the features of a single data point.

GNN training combines graph propagation (e.g., Gather and Scatter) and NN computations.
Prior work [30, 148] discovered that GNN development can be made much easier with a
programming model that provides a graph-parallel interface, which allows programmers to
develop the NN with familiar graph operations. A typical example is the deep graph library
(DGL) [30], which unifies a variety of GNN models with a common GAS-like interface.

Forward Pass. To illustrate, consider graph convolutional network (GCN) as an exam-
ple. GCN is the simplest and yet most popular model in the GNN family, with the following
forward propagation rule for the L-th layer [65]:

(Rl) HL+1 = U(AHLWL)

A is the adjacency matrix of the input graph, and A = A + Iy is the adjacency matrix with
self-loops constructed by adding A with Iy, the identity matrix. D is a diagonal matrix such
that D;; = ijlij. With D, we can construct a normalized adjacency matriz, represented
by A= D~3AD 2. Wy is a layer-specific trainable weight matrix. o(.) denotes a non-linear
activation function, such as ReLU. Hj is the activations matriz of the L-th layer; Hy = X

is the input feature matrix for all vertices.
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Figure 2.1: A graphical illustration of GCN’s computation model and dataflow graph in
each forward layer. In (a), edges in red represent those along which information is be-

ing propagated; solid edges represent standard Gather /Scatter operations while dashed
edges represent NN operations. (b) shows a mapping between the SAGA-NN programming
model and the rule R1.

Mapping R1 to the vertex-centric computation model is familiar to the systems commu-
nity [85] — each forward layer has four components: Gather (GA), ApplyVertex (AV),
Scatter (SC), and ApplyEdge (AE), as shown in Figure 2.1(a). One can think of layer
L’s activations matrix Hy as a group of activations vectors, each associated with a vertex
(as analogous to vertez value in the graph system’s terminology). The goal of each forward
layer is to compute a new activations vector for each vertex based on the vertex’s previous
activations vector (which, initially, is its feature vector) and the information received from
its in-neighbors. Different from traditional graph processing, the computation of the new
activations matrix Hp ;1 is based on computationally intensive NN operations rather than a

numerical function.

Figure 2.1(b) illustrates how these vertex-centric graph operations correspond to various
components in R1. First, GA retrieves a vector from each in-edge of a vertex and aggregates
these vectors into a new vector v. In essence, applying GA on all vertices can be implemented
as a matrix multiplication AH;, where A is the normalized adjacency matrix and Hp, is the
input activations matrix. Second, (AH.) is fed to AV, which performs neural network
operations to obtain a new activations matrix Hy ;. For GCN, AV multiplies (AH 1) with

a trainable weight matrix Wy and applies a non-linear activation function ¢. Third, the

13



Chapter 2. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed
CPU Servers and Serverless Threads

output of AV goes to SC, which propagates the new activations vector of each vertex along
all out-edges of the vertex. Finally, the new activations vector of each vertex goes into an
edge-level NN architecture to compute an activations vector for each edge. For GCN, the
edge-level NN is not needed, and hence, AE is an identity function. We leave AE in the
figure for generality as it is needed by other GNN models.

The output of AE is fed to GA in the next layer. Repeating this process k times (i.e., k
layers) allows the vertex to consider features of vertices k£ hops away. Other GNNs such as
GGNNs and GATs have similar computation models, but each varies the method used for

aggregation and the NN.

Backward Pass. A GNN’s backward pass computes the gradients for all trainable weights
in the vertex- and edge-level NN architectures (i.e., AV and AE). The backward pass is per-
formed following the chain rule of back propagation. For example, the following rule specifies

how to compute the gradients in the first layer for a 2-layer GCN:
o T ~
(R2) VL = <AX> [a’ (in1) ® AT(Z — Y)WT }

Here Z is the output of the GCN, Y is the label matrix (i.e., ground truth), X is the input
features matrix, W; is the weight matrix for layer ¢, and in; = AXW,. AT and WTI are the

transpose of A and W}, respectively.

A training epoch consists of a forward and a backward pass, followed by weights update,
which uses the gradients computed in the backward pass to update the trainable weights
in the vertex- and edge-level NN architectures in a GNN. The training process runs epochs

repeatedly until reaching acceptable accuracy.

2.3 Design Overview

This section provides an overview of the Dorylus architecture. The next three sections discuss

technical details including how to split training into fine-grained tasks and connect them in
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a deep pipeline (§2.4), and how Dorylus bounds the degree of asynchrony (§2.5), manages
and autotunes Lambdas (§2.6).

Figure 2.2 depicts Dorylus’s architecture, which is comprised of three major components:
EC2 graph servers, Lambda threads for tensor computation, and EC2 parameter servers.
An input graph is first partitioned using an edge-cut algorithm [170] that takes care of load

balancing across partitions. Each partition is hosted by a graph server (GS).

GSes communicate with each other to execute graph computations by sending/receiving data
along cross-partition edges. GSes also communicate with Lambda threads to execute tensor
computations. Graph computation is done in a conventional way, breaking a vertex program

into vertex-parallel (e.g., Gather) and edge-parallel stages (e.g., Scatter).

Each vertex carries a vector of float values and each edge carries a value of a user-defined type
specific to the model. For example, for a GCN, edges do not carry values and ApplyEdge is
an identity function; for a GGNN, each edge has an integer-represented type, with different
weights for different edge types. After partitioning, each GS hosts a graph partition where
vertex data are represented as a two-dimension array and edge data are represented as a
single array. Edges are stored in the compressed sparse rows (CSR) format; inverse edges

are also maintained for the backpropagation.

Each GS maintains a ghost buffer, storing data that are scattered in from remote servers.
Communication between GSes is needed only during Scatter in both (1) forward pass where
activation values are propagated along cross-partition edges and (2) backward pass where

gradients are propagated along the same edges in the reverse direction.

Tensor operations such as AV and AE, performed by Lambdas, interleave with graph opera-
tions. Once a graph operation finishes, it passes data to a Lambda thread, which employs a
high-performance linear algebra kernel for tensor computation. Both the forward and back-
ward passes use Lambdas, which communicate frequently with parameter servers (PS) —
the forward-pass Lambdas retrieve weights from PSes to compute layer outputs, while the

backward-pass Lambdas compute updated weights.
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Figure 2.2: Dorylus’s architecture.

2.4 Tasks and Pipelining

Fine-grained Tasks. As discussed in §2.1, the first challenge in using Lambdas for training
is to decompose the process into a set of fine-grained tasks that can (1) overlap with each
other and (2) be processed by Lambdas’ weak compute. In Dorylus, task decomposition is
done based on both data type and computation type. In general, computations that involve
the adjacency matrix of the input graph (i.e., any computation that multiplies any form of
the adjacency matrix A with other matrices) are formulated as graph operations performed
on GSes, while computations that involve only tensor data can benefit the most from massive
parallelism and hence run in Lambdas. Next, we discuss specific tasks over each training
epoch, which consists of a forward pass that computes the output using current weights,

followed by a backward pass that uses a loss function to compute weight updates.

A forward pass can be naturally divided into four tasks, as shown in Figure 2.1(a). Gather
(GA) and scatter (SC) perform computation over the graph structure; they are thus graph-
parallel tasks for execution on GSes. ApplyVertex (AV) and ApplyEdge (AE) multiply matri-
ces involving only features and weights and apply activation functions such as ReLU. Hence,

they are executed by Lambdas.
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For AV, Lambda threads retrieve vertex data (Hy in §2.2) from GSes and weight data (Wp)
from PSes, compute their product, apply ReLU, and send the result back to GSes as the
input for Scatter. When AV returns, SC sends data, along cross-partition edges, to the

machines that host their destination vertices.

AE immediately follows SC. To execute AE on an edge, each Lambda thread retrieves (1)
vertex data from the source and destination vertices of the edge (i.e., activations vectors),
and (2) edge data (such as edge weights) from GSes. It computes a per-edge update by
performing model-specific tensor operations. These updates are streamed back to GSes and

become the inputs of the next layer’s GA task.

p———— Llayer 1forward ——— 4 Layer 2, ..., N forward+

—> GA —> AV SC —> AE — + —>
Gxt Epoéh v Flow Ba%
€ { VSC = VAV ‘1 {VGA € VAE € - &

p—————— Layer 1 backward —— - Layer 2, ..., N backward+

Figure 2.3: Dorylus’s forward and backward dataflow with nine tasks: Gather (GA)

and Scatter (SC) and their corresponding backward tasks VGA and VSC; ApplyVertex
(AV), ApplyEdge (AE), and their backward tasks VAV and VAE; the weight update task
WeightUpdate (WU).

A backward pass involves GSes, Lambdas, and PSes that coordinate to run a graph-
augmented SGD algorithm, as specified by R2 in §2.2. For each task in the forward pass,
there is a corresponding backward task that either propagates information in the reverse
direction of edges on the graph or computes the gradients of its trainable weights with respect
to a given loss function. Additionally, a backward pass includes WeightUpdate (WU), which
aggregates the gradients across PSes. Figure 2.3 shows their dataflow. VGA and VSC are the
same as GA and SC except that they propagate information in the reverse direction. VAE
and VAV are the backward tasks for AE and AV, respectively. AE and AV apply weights to
compute the output of the edge and vertex NN. Conversely, VAE and VAV compute weight
updates for the NNs, which are the inputs to WU.
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VAE and VAV perform tensor-only computation and are executed by Lambdas. Similar to
the forward pass, GA and SC in the backward pass are executed on GSes. WU performs
weights updates and is conducted by PSes.

Pipelining. In the beginning, vertex and weight data take their initial values (i.e., Hy
and Wy), which will change as the training progresses. GSes kick off training by running
parallel graph tasks. To establish a full pipeline, Dorylus divides vertices in each partition
into intervals (i.e., minibatches). For each interval, the amount of tensor computation (done
by a Lambda) depends on both the numbers of vertices (i.e., AV) and edges (i.e., AE) in
the interval, while the amount of graph computation (on a GS) depends primarily on the
number of edges (i.e., GA, and SC). To balance work across intervals, our division uses a
simple algorithm to ensure that different intervals have the same numbers of vertices and
vertices in each interval have similar numbers of inter-interval edges. These edges incur

cross-minibatch dependencies that our asynchronous pipeline needs to handle (see §2.5).

Each interval is processed by a task. When the pipeline is saturated, different tasks will be
executed on distinct intervals of vertices. Each GS maintains a task queue and enqueues a
task once it is ready to execute (i.e., its input is available). To fully utilize CPU resources,
the GS uses a thread pool where the number of threads equals the number of vCPUs. When
the pool has an available thread, the thread retrieves a task from the task queue and executes

it. The output of a GS task is fed to a Lambda for tensor computation.
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Figure 2.4: A Dorylus pipeline for an epoch: the number range (e.g., 71-80) in each box
represents a particular vertex interval (i.e., minibatch); different intervals are at different
locations of the pipeline and processed by different processing units: GS, Lambda, or PS.
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Figure 2.4 shows a typical training pipeline under Dorylus. Initially, Dorylus enqueues a
set of GA tasks, each processing a vertex interval. Since the number of threads on each GS
is often much smaller than the number of tasks, some tasks finish earlier than others and
their results are pushed immediately to Lambda threads for AV. Once they are done, their
outputs are sent back to the GS for Scatter. During a backward phase, both VAE and VAV

compute gradients and send them to PSes for weight updates.

Through effective pipelining, Dorylus overlaps the graph-parallel and tensor-parallel compu-
tations so as to hide Lambdas’ communication latency. Note that although pipelining is not
a new idea, enabling pipelining in GNN training requires fine-grained tasks and the insight

of computation separation, which are our unique contributions.

2.5 Bounded Asynchrony

To unleash the full power of pipelining, Dorylus performs a unique form of bounded asyn-
chronous training so that workers do not need to wait for updates to proceed in most cases.
This is paramount for the pipeline’s performance especially because Lambdas run in an
extremely dynamic environment and stragglers almost always exist. On the other hand,
a great deal of evidence [25, 94, 163] shows that asynchrony slows down convergence —

fast-progressing minibatches may use out-of-date weights, prolonging the training time.

Bounded staleness [27, 99] is an effective technique for mitigating the convergence problem
by employing lightweight synchronization. However, Dorylus faces a unique challenge that
does not exist in any existing system, that is, there are two synchronization points in a
Dorylus pipeline: (1) weight synchronization at each WU task and (2) synchronization of

(vertex) activations data from neighbors at each GA.
2.5.1 Bounded Asynchrony at Weight Updates

To bound the degree of asynchrony for weight updates, we use weight stashing proposed in
PipeDream [94]. A major reason for slow convergence is that, under full asynchrony, different
vertex intervals are at their own training pace; some intervals may use a particular version

vo of weights during a forward pass to compute gradients while applying these gradients on
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another version v; of weights on their way back in the backward pass. In this case, the
weights on which gradients are computed are not those on which they are applied, leading
to statistical inefficiency. Weight stashing is a simple technique that allows any interval to
use the latest version of weights available in a forward pass and stashes (i.e., caches) this

version for use during the corresponding backward pass.

Although weight stashing is not new, applying it in Dorylus poses unique challenges in the
PS design. Weight stashing occurs at PSes, which host weight matrices and perform updates.
To balance loads and bandwidth usage, Dorylus supports multiple PSes and always directs
a Lambda to a PS that has the lightest load. Since Lambdas can be in different stages of
an epoch (e.g., the forward and backward passes, and different layers), Dorylus lets each PS
host a replication of weight matrices of all layers, making load balancing much easier to do
since any Lambda can use any PS in any stage. Note that this design is different from that
of traditional PSes [78], each of which hosts parameters for a layer. Since a GNN often has
very few layers, replicating all weights would not take much memory and is thus feasible to

do at each PS. Clearly, this approach does not work for regular DNNs with many layers.

However, weight stashing significantly complicates this design. A vertex interval can be
processed by different Lambdas when it flows to different tasks — e.g., its AV and AE are
executed by different Labmdas, which can retrieve weights from different PSes. Hence, if we
allow any Lambda to use any PS, each PS has to maintain not only the latest weight matrices
but also their stashed versions for all intervals in the graph; this is practically impossible

due to its prohibitively high memory requirement.

To overcome this challenge, we do not replicate all weight stashes across PSes. Instead,
each PS still contains a replication of all the latest weights but weight stashes only for a
subset of vertex intervals. For each interval in a given epoch, the interval’s weight stashes
are only maintained on the first PS it interacts with in the epoch. In particular, once a
Lambda is launched for an AV task, which is the first task that uses weights in the pipeline,
its launching GS picks the PS with the lightest load and notifies the Lambda of its address.

Furthermore, the GS remembers this choice for the interval — when this interval flows to
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subsequent tensor tasks (i.e., AE, VAV, VAE, and WU), the GS assigns the same PS to
their executing Lambdas because the stashed version for this interval only exists on that

particular PS in this epoch.

PSes periodically broadcast their latest weight matrices.
2.5.2 Bounded Asynchrony at Gather

Asynchronous Gather allows vertex intervals to progress independently using stale vertex
values (i.e., activations vectors) from their neighbors without waiting for their updates. Al-
though asynchrony has been used in a number of graph systems [27, 141], these systems
perform iterative processing with the assumption that with more iterations they will even-
tually reach convergence. Different from these systems, the number of layers in a GNN is
determined statically and an n-layer GNN aims to propagate the impact of a vertex’s n-hop
neighborhood to the vertex. Since the number of layers cannot change during training, an
important question that needs be answered is: can asynchrony change the semantics of the
GNN? This boils down to two sub-questions: (1) Can vertices eventually receive the effect of
their n-hop neighborhood? (2) Is it possible for any vertex to receive the effect of its m-hop
neighbor where m > n after many epochs? We provide informal correctness/convergence

arguments in this subsection and turn to a formal approach in §2.5.3.

The answer to the first question is yes. This is because the GNN computation is driven by

the accuracy of the computed weights, which is, in turn, based on the effects of n-hop
neighborhoods. To illustrate, consider a simple 2-layer GNN and a vertex v that moves
faster in the pipeline than all its neighbors. Assume that by the time v enters the GA of
the second layer, none of its neighbors have finished their first-layer SC yet. In this case, the
GA task of v uses stale values from its neighbors (i.e., the same as what were used in the
previous epoch). This would clearly generate large errors at the end of the epoch. However,
in subsequent epochs, the slow-moving neighbors update their values, which are gradually
propagated to v. Hence, the vertex eventually receives the effects of its n-hop neighborhood
(collectively) across different epochs depending on its neighbors’ progress. After each vertex

observes the required values from the n-hop neighborhood, the target accuracy is reached.
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The answer to the second question is no. This is because the number of layers determines

the farthest distance the impact of a vertex can travel despite that training may execute
many epochs. When a vertex interval finishes an epoch, it comes back to the initial state
where their values are reset to their initial feature vectors (i.e., the accumulative effect is
cleared). Hence, even though a vertex v progresses asynchronously relative to its neighbors,
the neighbors’ activation vectors are scattered out in the previous SC and carry the effects
of their at most {n—1}-hop neighbors (after which the next GA will cycle back to effects
of 1-hop neighbors), which, for vertex v, belong strictly in its n-hop neighborhood. This
means, it is impossible for any vertex to receive the impact of any other vertex that is more

than n-hops away.

We use bounded staleness at Gather — a fast-moving vertex interval is allowed to be at
most S epochs away from the slowest-moving interval. This means vertices in a given epoch
are allowed to use stale vectors from their neighbors only if these vectors are within S
epochs away from the current epoch. Bounded staleness allows fast-moving intervals to
make quick progress when recent updates are available (for efficiency), but makes them wait

when updates are too stale (to avoid launching Lambdas for useless computation).
2.5.3 Convergence Guarantee

Asynchronous weight updates with bounded staleness has been well studied, and its con-
vergence has been proved by [52]. The convergence of asynchronous Gather with bounded

staleness S is guaranteed by the following theorem:

Theorem 1. Suppose that (1) the activation o(-) is p-Lipschitz, (2) the gradient of the
cost function V., f(y, z) is p-Lipschitz and bounded, (3) the gradients for weight updates
945Vl (W)l and [V£(W)
X, and W, (4) the loss L(W) is p-smooth®. Then given the local minimizer W*, there exists

are all bounded by some constant G > 0 for all A,

oo

3L is p-Lipschitz smooth if YWy, Wa, |L(Wa) — L(Wy) — (VL (Wy), Wy — Wy) | < 5 ||[Wa — Wl“i‘w where
(A,B) = tr(AT B) is the inner product of matrix A and matrix B, and ||A|| is the Frobenius norm of
matrix A.
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a constant K > 0, s.t., VN > L x S where L is the number of layers of the GNN model
and S is the staleness bound; if we train a GNN with asynchronous Gather under a bounded

staleness for R < N iterations where R is chosen uniformly from [1, N|, we will have

LWy)—L(W*)+ K+ pK
\/N 9

Er[|VL (Wg)|[3 < 2
for the updates W11 = W; — vgas(W;) and the step size v = min {/1;, \/LN} In particu-
lar, we have limy_, Eg |[VL (Wg)|* = 0, indicating that asynchronous GNN training will
eventually converge to a local minimum. The full-blown proof can be found in appendix §A.
It mostly follows the convergence proof of the variance reduction (VR) algorithm in [20].
However, our proof differs from [20] in two major aspects: (1) Dorylus performs whole-graph
training and updates weights only once per layer per epoch, while VR samples the graph and
trains on mini-batches and thus it updates weights multiple times per layer per epoch; (2)
Dorylus’s asynchronous GNN training can use neighbor activations that are up to S-epoch
stale, while VR can take only 1-epoch-stale neighbor activations. Since S is always bounded

in Dorylus, the convergence is guaranteed regardless of the value of S.

Note that compared to a sampling-based approach, our asynchronous computation is guar-
anteed to converge. On the contrary, although sampling-based training converges often in
practice, there is no guarantee for trivial sampling methods [20], not to mention that sam-

pling incurs a per-epoch overhead and reduces accuracy.

2.6 Lambda Management

Each GS runs a Lambda controller, which launches Lambdas, batches data to be sent to

each Lambda, monitors each Lambda’s health, and routes its result back to the GS.

Lambda threads are launched by the controller for a task ¢ at the time t’s previous task starts
executing. For example, Dorylus launches n Lambda threads, preparing them for AV when
n GA tasks start to run. Each Lambda runs with OpenBLAS library [167] that is optimized
to use AVX instructions for efficient linear algebra operations. Lambdas communicate with

GSes and PSes using ZeroMQ [160].
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All of our Lambdas are deployed inside the virtual private cloud (VPC) rather than public
networks to maximize Lambdas’ bandwidth when communicating with EC2 instances. When
a Lambda is launched, it is given the addresses of its launching GS and a PS. Once initialized,
the Lambda initiates communication with the GS and the PS, pulling vertex, edge and weight
data from these servers. Since Lambda threads are used throughout the training process,
these Lambdas quickly become “warm” (i.e., the AWS reuses a container that already has
our code deployed instead of cold-starting a new container) and efficient. Our controller also

times each Lambda execution and relaunches it after timeout.

Lambda Optimizations. One significant challenge to overcome is Lambdas’ limited net-
work bandwidth [51, 67]. Although AWS has considerably improved Lambdas’ network
performance [12], the per-Lambda bandwidth goes down as the number of Lambdas in-
creases. For example, for each GS, when the number of Lambdas it launches reaches 100,
the per-Lambda bandwidth drops to ~200Mbps, which is more than 3x lower than the peak
bandwidth we have observed (~800Mbps). We suspect that this is because many Lambdas

created by the same user get scheduled on the same machine and share a network link.
Dorylus provides three optimizations for Lambdas:

The first optimization is task fusion. Since AV of the last layer in a forward pass is connected
directly to VAV of the last layer in the next backward pass (see Figure 2.4), we merge them
into a single Lambda-based task, reducing invocations of thousands of Lambdas for each

epoch and saving a round-trip communication between Lambdas and GSes.

The second optimization is tensor rematerialization [57, 66]. Existing frameworks cache
intermediate results during the forward pass as these results can be reused in the backward
pass. For GNN training, for instance, AHW is such a computation whose result needs to be
cached. Here tensor computation is performed by Lambdas while caching has to be done on
GSes. Since a Lambda’s bandwidth is limited and network communication is a bottleneck,
it is more profitable to rematerialize these intermediate tensors by launching more Lambdas

rather than retrieving them from GSes.
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The third optimization is Lambda-internal streaming. In particular, if a Lambda is created
to process a data chunk, we let the Lambda retrieve the first half of the data, with which it
proceeds to computation while simultaneously retrieving the second half. This optimization
overlaps computation with communication from within each Lambda, leading to reduced

Lambda response time.

Autotuning Numbers of Lambdas. Due to inherent dynamism in Lambda executions,
it is not feasible to statically determine the number of Lambdas to be used. On the perfor-
mance side, the effectiveness of Lambdas depends on whether the pipeline can be saturated.
In particular, since certain graph tasks (such as SC) rely on results from tensor tasks (such as
AV), too few Lambdas would not generate enough task instances for the graph computation
G to saturate CPU cores. On the cost side, too many Lambdas overstaturate the pipeline
— they can generate too many CPU tasks for the GS to handle. The optimal number of
Lambdas is also related to the pace of the graph computation, which, in turn, depends on

the graph structure (e.g., density) and partitioning that are hard to predict before execution.

To solve the problem, we develop an autotuner that starts the pipeline by using min(#intervals,
100) as the number of Lambdas where intervals represents the number of vertex intervals
on each GS. Our autotuner auto-adjusts this number by periodically checking the size of the
CPU’s task queue — if the size of the queue constantly grows, this indicates that CPU cores
have too many tasks to process, and hence we scale down the number of Lambdas; if the
queue quickly shrinks, we scale up the number of Lambdas. The goal here is to stabilize the

size of the queue so that the number of Lambdas matches the pace of graph tasks.

2.7 Evaluation

We wrote a total of 11629 SLOC in C++ and CUDA. There are 10877 of the lines of C++
code: 5393 for graph servers, 2840 for Lambda management (and communication), 1353 for
parameter servers, and 1291 for common libraries and utilities. There are 752 lines of CUDA
code for GPU kernels including common graph operations like GCN and mean-aggregators
with cuSPARSE [100]. Our CUDA code includes deep learning operations such as dense layer
and activation layer with cuDNN [24]. Dorylus supports common stochastic optimizations
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including Xawvier initialization [39], He initialization [48], a vanilla SGD optimizer [63], and

an Adam optimizer [64], which help training converge smoothly.

Graph Size (|V|, |E|) # features # labels Avg. degree
Reddit-small [43] (232.9K, 114.8M) 602 a1 192.9
Reddit-large [43] (1.1M, 1.3B) 301 50 645.4
Amazon [50, 91] (9.2M, 313.9M) 300 25 35.1
Friendster [77] (65.6M, 3.6B) 32 50 275

Table 2.1: We use 4 graphs, 2 with billions of edges.

2.7.1 Experiment Setup

We experimented with four graphs, as shown in Table 2.1. Reddit-small and Reddit-large
are both generated from the Reddit dataset [111]. Amazon is the largest graph in RoC’s [59]
evaluation. We added a larger 1.8 billion (undirected) edge Friendster social network graph
to our experiments. For GNN training, we turned undirected edges into two directed edges,
effectively doubling the number of edges (which is consistent with how edge numbers are
reported in prior GNN work [59, 85]). The first three graphs come with features and labels
while Friendster does not. For scalability evaluation we generated random features and

labels for Friendster.

We implemented two GNN models on top of Dorylus: graph convolutional network (GCN) [65]
and graph attention network (GAT) [159] with 279 and 324 lines of code. GCN is a popular
network that has AV but not AE, while GAT is a recently-developed recurrent network with
both AV and AE. Their development is straightforward and other GNN models can be easily
implemented on Dorylus as well. Each model has 2 layers, consistent with those used in prior

work [59, 85].

Value is the major benefit Dorylus brings to training GNNs. We define value as a system’s
performance per dollar, computed as V = 1/(T x C') where T is the training time and C'is
the monetary cost. For example: if system A trains a network twice as fast as system B, and
yet costs the same to train, we say A has twice the value of B. If one has a time constraint,
the most inexpensive option to train a GNN is to pick the system/configuration that meets
the time requirement with the best value. In particular, value is important for training since

users cannot take the cheapest option if it takes too long to train; neither can they take the
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fastest option if it is extremely expensive in practice. Throughout the evaluation, we use

both value and performance (runtime) as our metrics.

We evaluated several aspects of Dorylus. First, we compared several different instance types
to determine the configurations that give us the optimal value for each backend. Second, we
compared several synchronous and asynchronous variants of Dorylus. In later subsections, we
use our best variant (which is asynchronous with a staleness value of 0) in comparisons with
other existing systems. Third, we compared the effects of Lambdas using Dorylus against
more traditional CPU- and GPU-only implementations in terms of value, performance, and
scalability. Next, we evaluate Dorylus against existing systems. Finally, we break down our

performance and costs to illustrate our system’s benefits.

Backend Graph Instance Type Relative Value

. r5.2xlarge (4) 1

CPU Reddit-large chn.2xlarge (12) 4.46
Amazon rb.xlarge (4) 1

azo chn.2xlarge (8) 2.72
p2.xlarge (8) 1

GPU Amazon p3.2xlarge (8) 4.93

Table 2.2: Comparison of the values provided by different instance types. rb and p2 in-
stances provided significantly lower values than the (¢5 and p3) instances we chose.

2.7.2 Instance Selection

To choose the instance types for our evaluation, we ran a set of experiments to determine the
types that gave us the best value for each backend. We compared across memory optimized
(r5) and compute optimized (c5) instances, as well as the p2 and p3 GPU instances, which
have K80 and V100 GPUs, respectively. As rb offers high memory, we were able to fit
the graph in a smaller number of instances, lowering costs in some cases. However, due
to the smaller amount of computational resources available, training on the rb instances
typically took nearly 3x as long as computation on ¢5. Therefore, as shown in Table 2.2 the
average increases in value c¢b instances provided relative to r5 instances are 4.46 and 2.72,
respectively, for Reddit-large and Amazon. We therefore selected c¢b as our choice for any

CPU based computation.
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Similarly, for GPU instances, training on Amazon with 8 K80s took 1578 seconds and had a
total cost of $3.16. Using 8 V100s took 385 seconds and cost $2.62—it improves both costs
and performance, resulting in a value increase of 4.93x compared to training on K80 GPUs.
As value is the main metric which we use to evaluate our system, we choose the instance

type which gives the best value to each different backend to ensure a fair comparison.

Given these results, we selected the following instances to run our evaluation: (1) c5,
compute-optimized instances, and (2) ¢5n, compute and network optimized instances. chn
instances have more memory and faster networking, but their CPUs have slightly lower fre-
quency than those in ¢5. The base ¢5 instance has 2 vCPU, 4 GB RAM, and 10 Gbps
per-instance network bandwidth costing $0.085/h*. The base c5n instance has 2 vCPU, 5.25
GB RAM (33% more), and 25 Gbps per-instance network bandwidth, costing $0.108/h. We
used the base p3 instance, p3.2xlarge, with Telsa V100 GPUs. Each p3 base instance has 1
GPU (with 16 GB memory), 8 vCPUs, and 61 GB memory, costing $3.06/h.

Each Lambda is a container with 0.11 vCPUs and 192 MB memory. Lambdas have a static
cost of $0.20 per 1 M requests, and a compute cost of $0.01125/h (billed per 100 ms). This
billing granularity enables serverless threads to handle short bursts of massive parallelism

much better than CPU instances.

Model Graph CPU cluster GPU cluster
Reddit-small  ¢5.2xlarge (2) p3.2xlarge (2)
Reddit-large chn.2xlarge (12) p3.2xlarge (12)

GCN Amazon chn.2xlarge (8)  p3.2xlarge (8)
Friendster  c5n.4xlarge (32) p3.2xlarge (32)
GAT Reddit-small ~ ¢5.2xlarge (10) p3.2xlarge (10)

Amazon chn.2xlarge (12) p3.2xlarge (12)

Table 2.3: We used (mostly) chn instances for CPU clusters, and equivalent numbers of p3
instances for GPU clusters.

Table 2.3 shows our CPU and GPU clusters for each pair of model and graph we evaluated.
For each graph, we picked the number of servers such that they have just enough memory to
hold the graph data and their tensors. For example, Amazon needs 8 c¢5n.2xlarge servers (with

16 GB memory) provide enough memory. For Friendster we need 32 chn.4xlarge instances

4These prices are from the Northern Virginia region.
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Figure 2.5: Asynchronous progress for GCN: All three versions of Dorylus achieve the final
accuracy i.e., 94.96%, 64.08%, 60.07% for the three graphs). Friendster is not included
because it does not come with meaningful features and labels.

(with a total of 1344 GB memory). Our goal is to train a model with the minimum amount
of resources. Of course, using more servers will lead to better performance and higher costs
(discussed in §2.7.4). For all experiments (except Reddit-small), cbn instances offered the

best value.

TPU has become an important type of computation accelerator for machine learning. This
paper focuses on AWS and its serverless platform, and hence we did not implement Dorylus
on TPUs. Although we did not compare directly with TPUs, we note several important
features of GNNs that make the limitations of TPUs comparable to GPUs. First, GNNs
are unlike conventional DNNs in that they require large amounts of data movement for
neighborhood aggregation. As a result, GNN performance is mainly bottlenecked by memory
constraints and the resulting communication overheads (e.g., between GPUs or TPUs), not
computation efficiency [59]. Second, GNN training involves computation on large sparse
tensors that incur irregular data accesses, resulting in sub-optimal performance on TPUs

which are optimized for dense matrix operations over regularly structured data.
2.7.3 Asynchrony

We compare three versions of Dorylus: a synchronous version with full intra-layer pipelining
(pipe), and two asynchronous versions using s = 0 and s = 1 as the staleness values over all

four graphs. Pipe synchronizes at each Gather — a vertex cannot go into the next layer until
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Figure 2.6: Per-epoch GCN time for async (s=0) and async (s=1) normalized to that of
pipe.

all its neighbors have their latest values scattered. As a result, all vertex intervals have to be
in the same layer in the same epoch. However, inside each layer, pipelining is enabled, and
hence different tasks are fully overlapped. Async enables both pipelining and asynchrony
(i.e., stashing weights and using stale values at GA). When the staleness value is s = 0,
Dorylus allows a vertex to use a stale value from a neighbor as long as the neighbor is in
the same epoch (e.g., can be in a previous layer). In other words, Async (s=0) enables fully
pipelining across different layers in the same epoch, but pipelining tasks in different epochs
are not allowed and synchronization is needed every epoch. Similarly, async (s=1) enables

a deeper pipeline across two consecutive epochs.

Training Progress. Due to the use of asynchrony, it may take the asynchronous version
of Dorylus more epochs to reach the same accuracy as pipe. To enable a fair comparison, we
first ran Dorylus-pipe until convergence (i.e., the difference of the model accuracy between
consecutive epochs is within 0.001, unless otherwise stated) and then used this accuracy
as the target accuracy to run async when collecting training time. However, this approach
does not work for Friendster, because it uses randomly generated features/labels and hence
accuracy is not a meaningful target. To solve this problem, we computed an average ratio,
across the other three graphs, between the numbers of epochs needed for async and pipe, and
used this ratio to estimate the training time for Friendster. For example, this ratio is 1.08

for s=0 and 1.41 for s=1. As such, we let async (s=0) run Nx1.08 epochs and async (s=1)
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run Nx1.41 epochs when measuring performance for Friendster where N is the number of

epochs pipe runs.

Figure 2.5 reports the GCN training progress for each variant, that is, how many epochs it
took for a version to reach the target accuracy. Annotated with each figure are two ratios:
R[s=0] and R[s=1], representing the ratio between the number of epochs needed by async
(s=0/1) and that by Dorylus-pipe to reach the same target accuracy. On average, async

(s=0/1) increases the number of epochs by 8%/41%.

Figure 2.6 compares the per-epoch running time for each version of Dorylus, normalized to
that of pipe. As expected, async has lower per-epoch time; in fact, async (s=0) achieves
almost the same reduction (~15%) in per-epoch time as s=1. This indicates that choosing
a large staleness value has little usefulness — it cannot further reduce per-epoch time and

yet the number of epochs grows significantly.

To conclude, asynchrony can provide overall performance benefits in general but too large
a staleness value leads to slow convergence and poor performance, although the per-epoch
time reduces. This explains why async (s=0) outperforms async (s=1) by a large margin.
Overall, async (s=0) is 1.234x faster than pipe and 1.233x than async (s=1). It also
provides 1.288x and 1.494x higher value than pipe and async (s=1) respectively. Thus
we choose it as the default Lambda variant in our following experiments unless otherwise

specified. From this point on, Dorylus refers to this particular version.
2.7.4 Effects of Lambdas

We developed two traditional variants of Dorylus to isolate the effects of serverless com-
puting using Lambdas, one using CPU-only servers for computations, and the other using
GPU-only servers (both without Lambdas). These variants perform all tensor and graph
computations directly on the graph server. They both use Dorylus’ (tensor and graph) com-
putation separation for scalability. Note that without computation separation, no existing

GPU-based training system has been shown to scale to a billion-edge graph.
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Since Lambdas have weak compute that we cannot find in regular EC2 instances, it is not
possible for us to translate Lambda resources directly into equivalent EC2 resources, keeping
the total amount of compute constant when selecting the number of servers for each variant.
To address this concern, we compared the value of different systems in addition to their

absolute times and costs.

Model Graph Mode Time (s) Cost ($)
Dorylus 860.6 0.20

Reddit-small CPU only 1005.4 0.19

GPU only 162.9 0.28

Dorylus (pipe) 1020.1 1.69

Reddit-large CPU only 1290.5 1.85

GPU only 324.9 3.31

GCN Dorylus 512.7 0.79
Amazon CPU only 710.2 0.68

GPU only 385.3 2.62

Dorylus 1133.3 13.8

Friendster CPU only 1990.8 15.3

GPU only 1490.4 40.5

Dorylus 496.3 1.15

Reddit-small CPU only 1270.4 1.20

GPU only 130.9 1.11

GAT Dorylus 853.4 2.67
Amazon CPU only 2092.7 3.01

GPU only 1039.2 10.60

Table 2.4: We ran Dorylus in 3 different modes: “Dorylus”, our best Lambda variant using
async(s=0) (except in one case), the “CPU only” variant, and the “GPU only” variant.
For each mode we used multiple combinations of models and graphs. For each run we re-
port the total end-to-end running time and the total cost.

We ran GCN and GAT on our graphs (Table 2.4). We only ran the GAT model on one small
and large graph because it was simply too monetarily expensive (even for our system!). GAT
has an intensive AE computation, which adds cost. Note that this is not a limitation of our

system—our system can scale GAT to graphs larger than Amazon if cost is not a concern.

Performance and cost by themselves do not properly illustrate the value of Dorylus. For
example, training GAT on Amazon with Dorylus is both more efficient and cheaper than the
CPU- and GPU-only variants. Hence, we report the value results as well. Recall that to

compute the value, we take the reciprocal of the total runtime (i.e., the performance or rate
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of completion) and divide it by the cost. In this case Dorylus with Lambdas provides a
2.75% higher value than CPU-only (i.e., 1/(853.4 x 2.67) compared to 1/(2092.7 x 3.01)).

Figure 2.7 shows the value results for all our runs, normalized to GPU-only servers.
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Figure 2.7: Dorylus, with Lambdas, provides up to 2.75x performance-per-dollar than us-
ing the CPU-only variant.

Dorylus adds value for large, sparse graphs (i.e., Amazon and Friendster) for both GCN and
GAT, compared to CPU- and GPU-only variants. Sparsity of each graph can be seen from
the average vertex degree reported in Table 2.1. As shown, Amazon and Friendster are much
more sparse than Reddit-small and Reddit-large. For these graphs, the GPU-only variant
has the lowest value, even compared to the CPU-only variant. In most cases, the CPU-
only variant provides twice as much value (i.e., performance per dollar) than the GPU-only

variant. Dorylus adds another leap in value over the CPU-only variant.

However, for small dense graphs (i.e., Reddit-small and Reddit-large), both Dorylus and
the CPU-only variant have a value lower that that of the GPU-only variant (i.e., below 1 in
Figure 2.7). Dorylus always provides more value than the CPU-only variant. These results
suggest that GPUs may be better suited to process small, dense graphs rather than large,

sparse graphs.

Scaling Out. Dorylus can gain even more value by scaling out to more servers, due to the
burst parallelism provided by Lambdas and deep pipelining. To understand the impact of

the number of servers on performance/costs, we varied the number of GSes when training a
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Figure 2.8: Normalized GCN training performance and value over Amazon with varying
numbers of graph servers.

GCN over Amazon. In particular, we ran Dorylus and the CPU-only variant with 4, 8, and 16
cbn.4dxlarge servers, and the GPU-only variant with the same numbers of p3.xlarge servers.
Figure 2.8 reports their performance and values, normalized to those of Dorylus under 4

Servers.

In general, Dorylus scales well in terms of both performance and value. Dorylus gains a
2.82x speedup with only 5% more cost when the number of servers increases from 4 to 16,
leading to a 2.68x gain in its value. As shown in Figure 2.8(b), Dorylus’s value curve is
always above that of the CPU-only variant. Furthermore, Dorylus can roughly provide the
same value as the CPU-only variant with only half of the number of servers. For example,
Dorylus with 4 servers provides a comparable value to the CPU-only variant with 8 servers;
Dorylus with 8 servers provides more value to the CPU-only variant with 16 servers. These
results suggest that as more servers are added, the value provided by Dorylus increases, at
a rate much higher than the value increase of the CPU-only variant. As such, Dorylus is

always a better choice than the CPU-only variant under the same monetary budget.

Other Observations. In addition to the results discussed above, we make three other

observations on performance.
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Our first observation is that the more sparse the graph, the more useful Dorylus is. For

Amazon and Friendster, Dorylus even outperforms the GPU-only version for two reasons:

First, for all the three variants, the fraction of time on Scatter is significantly larger when
training over Friendster and Amazon than Reddit-small and Reddit-large. This is, at first
sight, counter-intuitive because one would naturally expect less efforts on inter-partition
communications for sparse graphs than dense graphs. A thorough inspection discovered
that the Scatter time actually depends on a combination of the number of ghost vertices
and inter-partition edges. For the two Reddit graphs, they have many inter-partition edges,
but very few ghost vertices, because (1) their |V|is small and (2) many inter-partition edges

come from/go to the same ghost vertices due to their high vertex degrees.

Second, Scatter takes much longer time in GPU clusters. Moving ghost data between GPU
memories on different nodes is much slower than data transferring between CPU memories.
As a result, the poor performance of the GPU-only variant is due to a combinatorial effect
of these two factors: Dorylus scatters significantly more data for Friendster and Amazon,
which amplifies the negative impact of poor scatter performance in a GPU cluster. Note that
p3 also offers multi-GPU servers, which may potentially reduce scatter time. We have also
experimented with these servers, but we still observed long scatter time due to extensive
communication between between servers and GPUs. Reducing such communication costs
requires fundamentally different techniques such as those proposed by NeuGraph [85]. We

leave the incorporation of such techniques to future work.

Our second observation is that Lambda threads are more effective in boosting performance

for GAT than GCN. This is because GAT includes an additional AE task, which performs

intensive per-edge tensor computation and thus benefits significantly from a high degree of

parallelism.

Our third observation is that Dorylus achieves comparable performance with the CPU-only

variant that uses twice as many servers. For example, the training time of Dorylus under

4 servers is only 1.1x longer than that of the CPU only variant with 8 servers. Similarly,
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Dorylus under 8 servers is only 1.05x slower than the CPU only variant with 16 servers.

These results demonstrate our efficient use of Lambdas.
2.7.5 Comparisons with Existing Systems

Our goal was to compare Dorylus with all existing GNN tools. However, NeuGraph [85]
and AGL [161] are not publicly available; neither did their authors respond to our requests.
Roc [59] is available but we could not run it in our environment due to various CUDA errors;
we were not able to resolve these errors after multiple email exchanges with the authors.
Roc was not built for scalability because each server needs to load the entire graph into its
memory during processing. This is not possible when processing billion-edge graphs. This
subsection focuses on the comparison of Dorylus, DGL [30], which is a popular GNN library
with support for sampling, as well as AliGraph [157], which is also a sampling-based system
that trains GNNs only with CPU servers. All experiments use the cluster configuration

specified above for each graph unless otherwise stated.

DGL represents an input graph as a (sparse) matrix; both graph and tensor computations
are executed by PyTorch or MXNet as matrix multiplications. We experimented with two
versions of DGL, one with sampling and one without. DGL-non-sampling does full-graph
training on a single machine. DGL-sampling partitions the graph and distributes partitions
to different machines. Each machine performs sampling on its partition and trains a GNN

on sampled subgraphs.

AliGraph runs in a distributed setting with a server that stores the graph information. A set
of clients query the server to obtain graph samples and use them as minibatches for training.
Similar to DGL, AliGraph uses a traditional ML framework as a backend and performs all

of its computation as tensor operations.

Accuracy Comparison with Sampling. Figure 2.9 reports the accuracy-time curve for
five configurations: Dorylus, Dorylus (GPU-only), DGL (sampling), DGL (non-sampling),
and AliGraph, over Reddit-small and Amazon. When run enough epochs to fully converge,

Dorylus can reach an accuracy of 95.44% and 67.01%, respectively, for the two graphs.
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Figure 2.9: Accuracy comparisons between Dorylus, Dorylus (GPU only), AliGraph, DGL
(sampling), and DGL (non-sampling). DGL (non-sampling) uses a single V100 GPU and
could not scale to Amazon. Each dot indicates five epochs for Dorylus and DGL (non-
sampling), and one epoch for DGL (sampling) and AliGraph.

Graph System Time (s) Cost ($)
Dorylus 165.77 0.045
Dorylus (GPU only) 28.06 0.052
Reddit-small DGL (sampling) 566.33 0.480
DGL (non-sampling) 33.64 0.028
AliGraph — -
Dorylus 415.23 0.654
Dorylus (GPU only) 308.27 2.096
Amazon DGL (sampling) 842.49 5.728
DGL (non-sampling) - -
AliGraph 1560.66 1.498

Table 2.5: Evaluation of end-to-end performance and costs of Dorylus and other GNN
training systems. Each time reported is the time to reach the target accuracy.

DGL (non-sampling) can run only on the Reddit-small graph, reaching 94.01% as the highest
accuracy. DGL (sampling) is able to scale to both graphs, and its accuracy reaches 93.90%
and 65.78%, respectively, for Reddit-small and Amazon. AliGraph is able to scale to both
Reddit-small and Amazon. On Reddit-small it reaches a maximum accuracy of 91.12% and

65.23% on Amazon.

Performance. To enable meaningful performance comparisons and make training finish
in a reasonable amount of time, we set 93.90% and 63.00% as our target accuracy for the two
graphs. As shown in Figure 2.9(a), Dorylus (GPU only) has the best performance, followed

by DGL (non-sampling). Since Reddit-small is a small graph that fits into the memory
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of a single (V100) GPU, DGL (non-sampling) performs much better than DGL (sampling),
which incurs per-epoch sampling overheads. To reach the same accuracy (93.90%), Dorylus
is 3.25x faster than DGL (sampling), but 5.9 slower than Dorylus (GPU only). AliGraph

is unable to reach our target accuracy after many epochs.

For the Amazon graph, DGL cannot scale without sampling. As shown in Figure 2.9(b), to
reach the same target accuracy, Dorylus is 1.99x faster than DGL (sampling), and 1.37x
slower than Dorylus (GPU only). AliGraph is able to reach the target accuracy for Amazon.
However, Dorylus is significantly faster. As these results show, graph sampling improves

scalability at the cost of increased overheads and reduced accuracy.

The times reported for Dorylus and its GPU-only variant in Table 2.5 are smaller than those

reported in Table 2.4. This is due to the lower target accuracy we set for these experiments.

Value Comparison. To demonstrate the promise of Dorylus, we compared these systems
using the value metric. As expected, given the small size of the Reddit-small graph, the
GPU-based systems perform quite well. In fact, in this case the normalized value of DGL
(non-sampling) is 1.48, providing a higher value than Dorylus (GPU only). However, as
mentioned earlier, DGL cannot scale without sampling; hence, this benefit is limited only to
small graphs. As we process Amazon, the value of Dorylus quickly improves as is consistent
with our findings earlier (on large, sparse graphs). With this dataset, Dorylus provides
a higher performance-per-dollar rate than all the other systems—17.7x the value of DGL
(sampling) and 8.6x the value of AliGraph.

2.7.6 Breakdown of Performance and Costs

Figure 2.10 shows a breakdown in task time (a) and costs (b) for training a GCN over the
Amazon graph. In Figure 2.10(a), to understand the time each task spends, we disabled
pipelining and asynchrony in Dorylus, producing a version referred to as no-pipe, in which
different tasks never overlap. This makes it possible for us to collect each task’s running time.

Note that no-pipe represents a version that uses Lambdas naively to train a DNN. Without
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Figure 2.10: Time and cost breakdown for the Amazon graph.

pipelining and overlapping Lambdas with CPU-based tasks, we saw a 1.9x degradation,
making no-pipe lose to both CPU and GPU in training time.

As shown, the tasks GA, AV, and VAV take the majority of the time. Another observation is
that to execute the tensor computation AV, GPU is the most efficient backend and Lambda
is the least efficient one. This is expected — Lambdas have less powerful compute (much
less than CPUs in the ¢5 family) and high communication overheads. Nevertheless, these
results also demonstrate that when CPUs on graph servers are fully saturated with the graph

computation, large gains can be obtained by running tensor computation in Lambdas that

fully overlap with CPU tasks!

To compute the cost breakdown in Figure 2.10(b), we simply calculated the total amounts
of time for Lambdas and GSes for each of the five Dorylus variants and used these times to
compute the costs of Lambdas and servers. Due to Dorylus’ effective use of Lambdas, we
were able to run a large number of Lambdas for the forward and backward pass. As such,

the cost of Lambdas is about the same as the cost of CPU servers.

2.8 Summary

Recall the central premise of this thesis: to reduce the cost of training while maintaining
performance and accuracy by utilizing in-depth knowledge of ML workloads to choose the
best cheap resources for the job while minimizing their drawbacks. With Dorylus, we took

advantage of several characteristics of Graph Neural Networks, specifcally that they tend
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to be shallow and small and that they consist of interleaved graph and tensor workloads,
to make effective use of serverless. We also closely analyzed the effects of asynchrony to
develop our Bounded Pipeline Asynchrnous Computation while ensuring that it would not
significantly degrade the accuracy of the model. We found that our combination of CPU
servers with serverless threads was able to offer 2.75x more performance-per-dollar than
CPU only servers, and 4.83x more than GPU only servers. Dorylus is also 3.8x faster
and 10.7x cheaper than the existing sampling-based approaches. Based on the trends we
observed, Dorylus can scale to even larger graphs than we evaluated, offering even higher

values.

Dorylus’s are well-suited to the properties of Graph Neural Networks and have increased the
value to the user significantly for training. However, there are still other ML trends which
need to be addressed and we need to carefully consider which resource would be an appro-
priate fit depending on the workload. Next, we look into the exponentially increasing size
of traditional Neural Networks and try to understand how to continue this line of reasoning

with new types of networks.
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CHAPTER 3

Bamboo: Making Preemptible Instances Resilient for

Affordable Training of Large DNNs

3.1 Introduction

DNNs are becoming progressively larger to deliver improved predictive performance across
a variety of tasks, including computer vision and natural language processing. For instance,
recent language models such as BERT [136] and GPT [108] already have a massive number
of parameters, and their newer variants continue to grow at a rapid pace. For example,
BERT-large has 340 million parameters, GPT-2 has 1.5 billion, and GPT-3 increases to 175

billion; the next generation of models embed upwards of trillions of parameters [35].

Of course, model growth also entails larger training costs. For instance, GPT-3 consumes
several thousand petaflop/s-days, costing over $12 million to train on a public cloud (needing
hundreds of GPU servers) [17]. Unfortunately, such costs are prohibitive for small organiza-
tions. Even for large tech firms, training today’s models incurs an exceedingly high monetary
cost that eventually gets billed to the training department. While pretrained models may
be reused and fine-tuned for different applications, training new models is often required to

keep pace with changing or emerging workloads and datasets.

Although there exists a body of work on improving the training of large models [19, 24,
26, 28, 41, 54, 57, 61, 69, 94, 95, 117, 118, 133, 163|, existing techniques focus primarily
on scalability and efficiency, with monetary costs often being neglected. However, when

affordability and accessibility are considered, resource usage becomes a key concern and none

41



Chapter 3. Bamboo: Making Preemptible Instances Resilient for Affordable Training of
Large DNNs

of these techniques were targeted at improving cost-efficiency (e.g., performance-per-dollar)

for training.

Preemptible Instances. This paper explores the possibility of using preemptible in-
stances—a popular class of cheap cloud resources—to reduce the cost of training large models.
There are several kinds of preemptible instances. For example, major public clouds provide
spot instances with a price much cheaper than on-demand instances—e.g., the hourly rate of
a GPU-based spot instance is only ~30% of that for its on-demand counterpart on Amazon
EC2 [11]. As another example, large datacenters often maintain certain amounts of compute
resources that can be allocated for any non-urgent tasks but will be preempted as urgent
tasks arise [15, 97]. Similarly, recent ML systems [13, 58, 154] allow training jobs to use
inference-dedicated machines to fully utilize GPU resources but preempts those machines
when high-priority inference jobs arrive. The presentation of this paper focuses on spot in-
stances, but we note that our techniques are generally applicable to any type of preemptible

resources.

Despite their substantial cost benefits, preemptible instances pose major challenges in relia-
bility and efficiency due the frequent and unpredictable nature of their preemptions. When
and how many instances get preempted depends primarily on the number of priority job-
s/users in a cluster. In a public spot market, preemption can also result from the market
price exceeding the user’s bid price. While price-based preemption can be avoided via a high
bid price (e.g., the on-demand price), capacity-based preemption is unavoidable. Preemp-

tion patterns vary drastically across clouds and even across families/zones on the same cloud

(§3.3).

Given the unpredictable nature of spot instances, users can often only run short, stateless
jobs and simply restart these jobs if they get preempted. Model training, on the contrary, is
stateful and time-consuming. Discarding the state (e.g., learned weights) upon each instance
preemption not only wastes computation but also prevents training from making progress.
Checkpointing-based techniques can reduce wasted computation to a degree, but still spend

a significant fraction of the training time (e.g., 77% when training GPT-2 with 64 EC2
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spot instances, see §3.3) on restarting and redoing prior work in the presence of frequent
preemptions [45, 46]—a largely different scenario compared to conventional clusters where

failures are rare.

Bamboo. This paper presents Bamboo, a distributed system that provides resilience and
efficiency for DNN training over preemptible instances. Bamboo supports both pipeline
parallelism and (pure) data parallelism with the same approach. Since pipeline parallelism
is a more complex and general approach (for training large models), our discussion focuses
on pipeline parallelism; we briefly discuss our support for pure data parallelism in Section

§3.8. Bamboo currently does not support model parallelism.

Redundant Computation. Key to the success of Bamboo is a set of novel techniques
centered around redundant computation (RC), inspired by how disk redundancies such as
RAID [103] provide resilience in the presence of disk failures. A training system that uses
pipeline parallelism runs a set of data-parallel pipelines, each training on a partition of the
dataset. Each node! in a data-parallel pipeline performs (forward and backward) compu-
tations over a shard of NN layers with a microbatch of data items [54]. Bamboo lets each
node in each data-parallel pipeline carry its own shard of layers as well as its successor’s
shard. Each node performs normal computation over its own layers and redundant compu-
tation over its successor’s layers. The reason why we use a neighbor node (as opposed to a
random node) to run RC is to exploit data locality in pipeline parallelism (see §3.5). Upon
a node preemption, its predecessor has all the information (e.g., layers, activations) needed
for the training to progress; continuing training requires running a failover schedule on the

predecessor node without wasting prior computations.

At first glance, running RC on every node appears infeasible due to concerns with both
time and memory. Bamboo overcomes these challenges by taking into account pipeline

characteristics to carefully reduce/hide these overheads.

'In this paper, “instance” and “node” both refer to a spot instance.
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First, to minimize the time overhead from RC, Bamboo leverages a key insight that bub-
bles [54, 109] inherently exist in systems using synchronous pipeline parallelism (§3.2). Bub-
bles are idle times on each node due to the gaps between the forward and backward processing
of microbatches (Figure 3.1). Bamboo schedules the forward redundant computation (FRC)
on each node asynchronously into the bubble. For the part of FRC that cannot fit into
the bubble, Bamboo overlaps it with the normal computation. As a result, FRC incurs a
tolerable overhead (i.e., no extra communication is needed due to locality, and it can overlap
with normal computation), and hence Bamboo performs it eagerly in each epoch. If a node
is preempted during a forward pass, the pipeline continues after a node rerouting step whose

overhead is negligible.

Unfortunately, for backward redundant computation (BRC), such a bubble does not exist.
Eager BRC would require much extra work and data-dense communication on the critical
path, which could delay training significantly (§3.5). As such, Bamboo runs BRC lazily only
when a preemption actually occurs. If a node is preempted in a backward pass, continuing
the pipeline requires a pause for the node’s predecessor to perform BRC to restore the lost
state. However, since FRC is performed eagerly, when BRC runs, much of what it needs is

already in memory, keeping pauses short.

Second, performing RC increases each node’s GPU memory usage. Note that the major
source of the memory overhead is storing intermediate results (activations and optimizer
state) from FRC, not the redundant layers, which take only little extra memory. To mitigate
the memory issue, we leverage Bamboo’s unique way of performing RC described above. Note
that the purpose of saving intermediate results of a forward pass is that these results are
used by its backward computation. However, in Bamboo, BRC is performed lazily upon
preemptions and the intermediate results of FRC are thus not needed in normal backward
passes. Hence, Bamboo swaps out the intermediate results of each node’s FRC into the
node’s CPU memory, leading to substantial reduction in GPU memory usage. These results

are swapped back into GPU memory for BRC only upon preemptions.
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Figure 3.1: Tllustration of pipeline parallelism on a 4-node cluster: (a) the model is divided
into 4 shards, each with 2 layers; (b) and (c) show the scheduling of two recent systems
GPipe [54] and PipeDream [94].

Bamboo continues normal training with the help of RC in the presence of non-consecutive
preemptions, i.e., preempted instances are not neighbors in the same data-parallel pipeline.
Once consecutive instances are preempted, RC can no longer provide resilience. More re-
dundancies could be added to provide stronger resilience, but this would incur (compute and
communication) overheads that are too significant to hide. Instead, based on our empirical
observation that most concurrent preemptions come from the same allocation group (e.g., a
zone), Bamboo takes care to ensure that consecutive nodes in each pipeline come from dif-
ferent zones, minimizing the chance of consecutive preemptions at a small (<5%) overhead

(see §3.9.2).

Reconfiguration. In cases where consecutive preemptions do happen, we must reconfigure
the pipelines (§3.7). Further, even if preemptions are non-consecutive, continuing training
with RC after many preemptions is a “spare-tire” approach, which is vulnerable to future
preemptions. To solve these problems, Bamboo provides a Kubernetes-based framework that
monitors preemptions and reconfigures the pipelines by dynamically adding instances and
adjusting pipeline configurations (e.g., the number of pipelines). Bamboo checkpoints the
model state periodically. If no allocations can be made (i.e., a rare situation where the cluster
is exhausted) and the remaining nodes are too few to sustain the training, Bamboo suspends
the training until enough new instances can be obtained and the training can restart from

the checkpoint.

Results. We built Bamboo atop DeepSpeed [109] and evaluated it by training 6 repre-
sentative DNN models using EC2 spot clusters comprised of p3 instances. Compared to a

baseline using on-demand instances, Bamboo delivers a 3.6x cost reduction. Bamboo also
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outperforms a checkpointing approach by 3.7x. We developed a simulation framework that
takes preemption traces from real spot clusters and training parameters to simulate how
training progresses with larger numbers of nodes. A deep-dive with BERT across a wide
range of preemption probabilities shows that the value (i.e., performance-per-dollar) Bam-
boo provides stays constant and is much higher (2.48x) than that of on-demand instances.

Bamboo will be open-sourced.

3.2 Background

This section discusses necessary background for parallelism strategies. Data parallelism keeps
a replica of an entire DNN on each device, which processes a subset of training samples and
iteratively synchronizes model parameters with other devices. Data parallelism is often com-
bined with pipeline and/or model parallelism to train large models that do not fit on a single
device. Model parallelism [29] partitions model operators across training devices. However,
efficient model parallelism algorithms are extremely hard to design, requiring difficult choices
among scaling capacity, flexibility, and training efficiency. As such, model-parallel algorithms

are often architecture- and task-specific.

Pipeline parallelism [54, 94, 156] has gained much traction recently due to its flexibility and
applicability to a variety of neural networks. Pipeline parallelism divides a model at the
granularity of layers and assigns a shard of layers to each device. Figure 3.1(a) shows an
example where the model is partitioned into four shards and each worker hosts one shard
(with two layers). Each worker defines a computation stage and the number of stages is
referred to as the pipeline depth (e.g., 4 in the example). One worker only communicates
with nodes holding its previous stage or next stage. Each input batch is further divided
into microbatches. In each iteration, each microbatch goes through all stages in a forward
pass and then returns in an opposite direction in a backward pass. There are often multiple
microbatches residing in the pipeline and different nodes can process different microbatches

in parallel to improve utilization.
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A key challenge in efficient pipeline parallelism is how to schedule microbatches. GPipe [54]
schedules forward passes of all microbatches before any backward pass, as shown in Fig-
ure 3.1(b) where each node processes four microbatches. This approach leaves a "bubble”
(i.e., white cells) in the middle of the pipeline, leading to inefficient use of compute devices.
PipeDream [94] proposes the one-forward-one-backward (1F1B) schedule to interleave the
backward and forward passes, as shown in Figure 3.1(c). 1F1B can reduce the bubble size

and the peak memory usage.

However, even with carefully-designed schedules, the pipeline bubble is still hard to eliminate.
A fundamental reason is that it is extremely difficult to find the optimal layer partitioning
to have each stage processed at the same rate. There exists a body of algorithms proposed
recently to optimize layer partitioning and most of them are model- and hardware-specific [34,
94]. These algorithms are often time-consuming for large models, unsuitable for preemptible

instances where the number of nodes keeps changing [10].

PipeDream [94] proposes asynchronous pipelining to eliminate the bubble—a node is allowed
to work with stale weights to reduce the wait time. However, asynchronous microbatching
introduces uncertainty in model convergence. In general, the effectiveness of synchronous v.s.
asynchronous training is still open to debate. Furthermore, asynchronous training introduces
inconsistencies in model state, which can create a more significant convergence issue when
training occurs on preemptible instances, due to the need of frequent reconfigurations. For
example, under synchronous microbatching, a reconfiguration can be performed at the end of
each optimizer step (i.e., parameter update), and hence the reconfigured pipelines can start

with the up-to-date parameters. This is impossible to do under asynchronous microbatching.

As a result, we built Bamboo atop synchronous microbatching where model state is always
consistent. Instead of attempting to reduce the bubble, we explore an orthogonal direc-

tion—how to leverage the bubble to run RC efficiently.
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Figure 3.2: Preemptions traces for a target cluster of size 64 instances on EC2 and 80 in-
stances on GCP. Each graph shows a full-day trace for a GPU family in a cloud.

3.3 Motivation

This section motivates Bamboo from two aspects: (1) high preemption rates and unpre-

dictability of spot instances, and (2) high performance overheads of strawman approaches.

Preemptions of Spot Instances. We first studied failure models with on major public
clouds. Figure 3.2 shows a set of real preemption traces collected from running spot instances
in two public clouds: Amazon EC2 and Google Cloud Platform (GCP). For EC2, we used
two GPU families: P3 (NVIDIA V100 GPUs with 32GB of memory) and G4dn (NVIDIA
T4 GPUs with 16GB of memory). For GCP, we used ni-standard-8 (NVIDIA V100 GPUs
with 16GB GRAM) and a2-highgpu-1g (NVIDIA A100 GPUs with 40GB GRAM). For each
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Figure 3.3: Training GPT-2 using checkpointing/restart with an autoscaling group of 64
P3 spot instances. Each color represents time spent in a distinct state,including Blue:
training actively made progress; Orange: the cluster made progress that was then wasted;
and Red: cluster restarting.

family, we collected traces for a 24-hour window. In each experiment, we used an autoscaling
group to maintain a cluster of 64 with an exception of us-east1-c in GCP, whose cluster size
is 80. The autoscaling group, provided by each cloud, automatically allocates new instances

upon preemptions to maintain the size (though without any guarantee).

From both families, node preemptions and additions are frequent and bulky (i.e., many
nodes get preempted at each time). This can make a checkpointing-based approach restart
many times in a short window of time, leading to large inefficiencies (discussed shortly).
Furthermore, both preemptions and allocations are unpredictable. While the autoscaling
group attempts to allocate new nodes to maintain the user-specified size, allocations are
committed incrementally; new allocations are mixed with preemptions of existing instances,

making the spot cluster an extremely dynamic environment.

To understand the nature of the nodes that are preempted at the same time, we carefully
analyzed two 24-hour preemption traces collected respectively from EC2 and GCP. For the
EC2 trace, preemptions occur at 127 distinct timestamps, each of which see many preempted

nodes. Of these 127 timestamps, only 7 see preemptions from multiple zones; at each of the
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remaining 120 timestamps, all nodes preempted come from the same zone. A similar obser-
vation was made on the GCP trace (12 out of 328 timestamps see cross-zone preemptions).
These results confirmed the observations made by existing works [45, 46]: preemptions tend
to be independent based on each individual spot market and each availability zone has a
different and independent spot market—this is because each availability zone maintains ca-
pacity separately and therefore capacity preemptions in one zone are not associated with

capacity preemptions in another.

These observations motivate our design—even with 1-node redundancies, Bamboo can re-
cover from a majority of preemptions if consecutive nodes are not preempted at the same
time; we maximize this possibility with a best-effort approach that makes consecutive nodes
in each pipeline come from different zones. Although this may increase communication
costs, it does not lead to visible performance impacts for Bamboo because Bamboo only

sends (small amounts of) activations data between nodes.

Strawman #1: Checkpointing. We next show why a technique based on checkpoint-
ing and restarting does not work. We developed a new checkpointing system on top of
DeepSpeed [109], providing checkpointing and restarting functionalities similar to TorchElas-
tic [106]. We modified DeepSpeed to checkpoint continuously and asynchronously. In par-
ticular, each worker moves a copy of any relevant model state to CPU memory whenever the
state is generated; the CPU then asynchronously writes it to remote storage so that training
and checkpointing can fully overlap. During restarting, our system automatically adapts the

prior checkpoints to the new pipeline configurations.

To understand how well this technique performs, we used it to train GPT-2 over 64 p3.2xlarge
GPU spot instances on EC2. We profiled the training process and collected the checkpointing
times, reconfiguration overheads, and total execution time. Figure 3.3 reports these results.
The blue sections represent the times the system spent making actual progress for training.
The red sections represent the times on reconfiguring (i.e., restarting) while the orange
sections show the times for wasted work—the computation that was done but not saved

in checkpoints; the system ended up redoing these computations after restarting. This is
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Figure 3.4: Effects of sample dropping under different rates.

because preemptions often occur during checkpointing, and hence, the system must roll
back to a previous checkpoint. Frequent rollbacks slows down the training significantly. As
shown, although checkpointing itself can be done efficiently, the restarting overheads (i.e., for
adapting existing checkpoints to new pipeline configurations) and the wasted computations

take 77% of the training time.

Strawman #2: Sample Dropping. An alternative approach that has shown promise
is to take advantage of the statistical robustness of DNN training and allow some samples
to be dropped so that training can continue without significant loss of accuracy [81, 149].
These techniques are also known as elastic batching because dropping samples is equivalent
to changing the effective batch size at a training iteration (with the learning rate dynamically

adjusted).

In the case of pipeline parallelism, we implemented sample dropping by suspending a pipeline
upon losing an instance while letting other data-parallel pipelines continue to run. The
system performs optimizer steps with the gradients of whichever data-parallel pipelines are
able to complete that training step. Learning rate was adapted linearly with respect to the
effective batch size to make sure that the only effect on the accuracy is the lost samples,
but not a mismatch between hyperparameters and training configurations. In doing so,
the training can continue for sometime without a reconfiguration (which is needed upon

allocations).
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We conducted a set of experiments to simulate the effect of sample dropping on model
accuracy with a range of drop rates. Note that we could not obtain these results with the
actual spot instances because we could not control the preemption rate. We ran a pre-
training benchmark with GPT-2 using 16 on-demand instances from the same EC2 family,
which form four data-parallel pipelines, each with four stages. To consider a range of different
failure models, we used different rates of preemption to generate preemption events. Upon
a preemption event, we randomly selected a pipeline and zero out the pipeline’s gradients in
that iteration. We measured the model’s evaluation accuracy every 5 training steps. These
results are shown in 3.4 where each curve represents the function of the number of steps

needed to reach a given loss for a particular drop rate.

Similarly to checkpointing, sample dropping works well for low preemption rates, but when
frequent preemptions occur, many samples can be lost quickly and its impact on model accu-
racy quickly grows to be too significant to overlook. While this experiment was not an exact
recreation of a sample dropping scenario, these results represent an under-approximation of
the effect of the actual sample dropping (which can lose more accuracy than reported by
Figure 3.4). This is because the actual sample dropping rate should be higher than the
instance preemption rate—a preempted instance would likely be down for some time and
consecutive samples would be dropped in a real setting. Note that training samples are
shuffled before loading; hence, the effects of randomly dropping consecutive samples (i.e.,
the actual scenario) and dropping random samples sporadically (i.e., our experiment) should

be similar.

Strawman #3: Live Migration in Grace Periods. Another potential approach is to
use the grace period before each preemption to migrate data from the preempted node to a
live node. However, this approach suffers from significant drawbacks. First, grace periods
vary from cloud to cloud. While AWS spot instances have 2 minutes before preemption,
GCP and Azure provide only 30 seconds, with GCP not even guaranteeing such a warning.
For large models, this can be too short of a warning and may not leave sufficient time to

save model updates into a checkpoint.
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A more important issue is that this approach depends on always maintaining enough idle
nodes as migration targets. There is no way to guarantee that, unfortunately, with the
current spot market. Even if we could over-provision and reserve a certain number of standby
nodes, these nodes can also be preempted and it is impossible to ensure when a set of nodes
in the pipeline are preempted, there are enough standby nodes for data migration. In fact,
during our experiments, for each preemption event, the number of new allocations we could

obtain was always less than the number of preempted nodes (as shown in Figure 3.2).

3.4 Overview

Goal and Non-Goal. Our goal is not to automatically determine the cheapest way to
train a given model (e.g., which parallelism model can lead to the largest cost savings).
Instead, Bamboo aims to enable efficient and preemption-safe training over cheap spot in-

stances.

User Interface. To use Bamboo, a user specifies two system parameters D and P, as
they normal would to use other pipeline-parallel systems, where D is the number of data-
parallel pipelines and P is the pipeline depth. Due to the need of storing redundant layers,
Bamboo requires a larger pipeline depth P than a normal pipeline-parallel system such as
PipeDream [94]. We observed, empirically, that to avoid swapping data between CPU and
GPU memory on the critical path, Bamboo’s pipeline should be ~1.5x (see §3.6.4) longer
than an on-demand pipeline due to the extra memory needed to (1) hold the redundant
layers and (2) accommodate potential pipeline adjustments. Given that spot instances are
much cheaper (e.g., 3-4x on EC2) than on-demand instances, training with 1.5x more nodes
still leads to significantly reduced costs. While we recommend 1.5 more nodes, the number
of active instances in a cluster is often much smaller due to preemptions and incremental

allocations.

P x D will be the size of the spot cluster Bamboo attempts to maintain throughout training.
Preemptions can cause Bamboo to reduce the pipeline depth and/or the number of pipelines;
in such cases, Bamboo would request more instances to bring the size of the cluster back to
P x D. However, Bamboo would never try to scale the training beyond P x D. In other
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Figure 3.5: Bamboo runs one agent process per node (i.e., spot instance). An agent mon-
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All workers and agents coordinate through etcd [5].
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Figure 3.6: Bamboo worker.

words, P and D are the upper bound of the pipeline depth and number of pipelines. It is
important to note that the goal of the autoscaling framework we build for Bamboo is to
adjust the pipelines passively in response to node preemptions and additions that we cannot
control, rather than proactively finding an optimal cluster configuration to achieve better
performance. This distinguishes Bamboo from existing works on autoscaling distributed

training [10, 56, 101], whose goal was to find better configurations.

System Overview. Figure 3.5 shows an overview of our system. We built Bamboo on
TorchElastic [106] and DeepSpeed [109]. In particular, we built the Bamboo agent, which
runs on each node to kill/add a data-parallel pipeline, on top of TorchElastic. The agent
monitors a Bamboo worker process on the same node, which is a DeepSpeed application
enhanced with our support for redundant computation. Bamboo workers run D data-parallel
pipelines that use an all-reduce phase to synchronize weights at the end of each iteration.
Our spot instances are managed by Kubernetes [4], which is configured to automatically
scale by launching a Bamboo agent on each new allocation. Our agents communicate and

store cluster state on etcd [5], a distributed key-value store.
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Each Bamboo worker uses a runtime to interpret the schedule, which produces a sequence of
instructions, as shown in Figure 3.6. The schedule is generated statically based on the stage
ID of the current worker and pipeline configurations, including the depth of pipeline and
total number of microbatches. The instructions consist of a computation component (i.e.,
forward, backward, and apply gradient), and a communication component (i.e., send/receive
activation, send/receive gradient, and all-reduce). The Bamboo runtime interprets these
instructions by launching their corresponding kernels on GPU. Communication instructions
can fail due to preemptions. Upon a failure, the runtime throws an exception and falls back

to use a failover schedule.

3.5 Redundant Computation

For ease of presentation, our discussion focuses on one node running one stage in the pipeline.

Support for multi-GPU nodes will be discussed shortly.

Preemption of a node is detected by its neighboring nodes in the same pipeline during
the execution of communication instructions. If a node on one side of the communication
is preempted, the node on another side will catch an IO exception due to broken socket
and update cluster state on etcd. Bamboo detects preemptions based on socket timeout.
Although we could let a node to be preempted actively notify its neighbors in the grace
period before the preemption, the length of this period varies across different clouds and

hence Bamboo does not use it currently.

Since the victim node communicates with two nodes in the pipeline, both of its neighbors
can catch the exception. The observed exception will be shared between these two nodes
through etcd. This two-side detection is necessary for Bamboo to understand which node
fails and generate the failover schedule. In addition to the two neighbors, nodes in other
pipelines involved in the all-reduce operation also need to be informed. To safely perform
all-reduce, each node participating in all-reduce reads the up-to-date cluster state on etcd

and, if another pipeline has a failure, waits until the failure is handled.
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3.5.1 Redundant Layers and Computation

To quickly recover from preemptions, Bamboo replicates the model partition on each worker
node in each data-parallel pipeline. Instead of saving these replicas to a centralized remote
storage (like checkpointing), Bamboo takes a decentralized approach by letting each node
replicate its own model partition (i.e., layer shard) on its predecessor node in the same
pipeline. The first node has its layer replica stored on the last node in the pipeline. Con-
ceptually, the last node is considered the “predecessor” of the first node. For simplicity
of presentation, we use forward stage IDs to identify nodes, that is, a node that runs the
forward stage n + 1 is always considered as a successor of a node running the forward stage

n (although in the backward pass, n + 1 is a stage before n).

Our key idea is to let each node run normal (forward and backward) computation over its
own layers and redundant (forward and backward) computation over the replica layers for
its successor node. Let FRC!"/BRC!" denote the forward/backward redundant computation
that is performed on node m for node n, respectively. In Bamboo, n = (m+1) mod P where P
is the pipeline depth. Let FNC,,/BNC,, denote the forward/backward normal computation
on node n. In Bamboo’s pipeline, FRC} ,/BRC? ;| is exactly the same computation as
FNC,.+1/BNC,,+1, working with the same model parameters and optimizer states. To enable

the last node to perform RC for the first node, we let it fetch input samples directly.

Input
—> FNC1 —> FNC2 —> FNC3 —> FNC4

Lol

BNC1 €<— BNC2 <— BNC3 <— BNC4

Figure 3.7: Dependencies between normal pipeline stages.

Why Neighboring Nodes? Due to our focus on pipeline parallelism, Bamboo performs
RC on predecessor nodes to exploit locality for increased efficiency. To see this, we first need
to understand the dependencies between different (backward and forward) pipeline stages
that a microbatch goes through, as illustrated in Figure 3.7. For each forward stage FNC,,, it

depends only on the output of its previous stage FNC,,_;. However, for each backward stage
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Figure 3.8: Dependencies between RC-enabled pipeline stages: solid/dashed arrows rep-
resent inter/intra-node dependencies; for simplicity, FRC,,/BRC,, in the figure represents
FRC"~1/BRC L.

BNC,,, it has two dependencies: one on the output of stage BNC,,,; and a second on its cor-
responding forward stage FNC,,. The first is a hard dependency without which BNC,, cannot
be done, while the second is a soft dependency primarily for efficiency—intermediate results
produced by FNC,, can be reused to accelerate BNC,,. Without such cached results, BNC,

has to recompute many tensors (i.e., tensor rematerialization [23]), leading to inefficiencies.

Figure 3.8 shows dependencies on an RC-enable pipeline where each node performs both
normal and redundant (backward and forward) computation. Here solid/dashed arrows rep-
resent inter/intra-node dependencies. By running FRC for node n + 1 on node n, locality
benefit can be clearly seen because FRC only creates intra-node dependencies, which do
not incur any extra communication overhead. However, in a backward pass, such a locality
benefit does not exist for BRC}, ;, which requires the output of BNC,,;» and incurs much
extra communication. This motivates our eager-FRC-lazy-BRC design which does not per-
form BRC until a preemption occurs and hence eliminates the extra communication cost in

normal executions.

Note that we could also perform FRC lazily, but this would significantly increase the pause
time for recovery. This is because (1) recovering from preemptions at both forward and
backward pass now require a pause; and (2) lazy FRC would not produce intermediate
results that can be used to speed up BRC and hence BRC’s pause would be much longer.
Since FRC can be scheduled in the pipeline bubble and overlap with FNC, performing it

eagerly is a better choice.
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The careful reader may think of an alternative approach that places node n’s layer replica
on node n+ 1 as opposed to node n — 1 (i.e., its successor rather than its predecessor). This
approach is symmetric to our design in that it turns inter-node dependencies for BRC into
intra-node dependencies, but intra-node dependencies for FRC into inter-node dependencies.
As a result, it eliminates the extra backward communication at the cost of increased for-
ward communication. However, unlike Bamboo’s design that can use lazy BRC to eliminate
the extra backward communication, it is not as easy to eliminate the extra forward com-
munication with lazy FRC—if FRC is not done eagerly in each iteration, BRC (regardless
of whether it is eager or lazy) must perform tensor re-materialization, which incurs a long

delay.

Level of Redundancy. As with any redundancy-based systems, the more redundancies,
the higher level of resilience. For example, since Bamboo performs redundant computations
only for one node, it cannot provide resilience when preemptions occur on consecutive nodes
in a pipeline, in which case a reconfiguration is needed (see §3.7). However, enabling RC
for multiple nodes can significantly increase the FRC time, making it much longer than
what the bubbles can accommodate. Furthermore, the locality benefit (i.e., FRC only incurs
intra-node dependency) does not hold anymore, because FRC now depends on the outputs

of multiple nodes. This can slow down the training substantially.

Takeaway. Storing each node’s replica layers on its predecessor and running eager-FRC-
lazy-BRC achieves low-overhead RC for pipeline parallelism. While this design does not
support consecutive preemptions, Bamboo takes care to make consecutive nodes come from
different zones. As discussed in §3.3, if multiple preemptions occur at the same time, the
preempted nodes are highly likely to be from the same zone. As a result, our node assignment
reduces the chance of consecutive preemptions, making RC effective for most preemptions.
Although cross-zone data transfer can incur an overhead, this overhead is negligible (e.g.,
<3%), as reported in Section §3.9.2, because in pipeline-parallel training, each node only

passes a small amount of activation data to its neighbors.
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Figure 3.9: A closer examination of the pipeline bubble. Here we assume the forward pass
on node ¢ and i+ 1 takes time t and 1.2¢, respectively. Hence, a bubble of 0.6t exists before
each communication barrier.

We refer to the preempted node as the victim node, and the node saving the replica of the

victim as its shadow node.
3.5.2 Schedule Redundant Computation

It is straightforward to see that RC incurs an overhead in both time and memory. We propose
to (1) schedule FRC into the pipeline bubble to reduce forward computation overhead,
(2) perform BRC lazily to reduce backward computation/communication overhead, and (3)

offload unnecessary tensors to CPU memory to reduce memory overhead.

Eager FRC. As discussed in §3.2, the pipeline bubble can come from either imperfect
scheduling or unbalanced pipeline partitioning. To illustrate, consider Figure 3.9 with
PipeDream’s 1F1B schedule. Suppose there are two consecutive nodes in the pipeline where
both the forward and the backward computation of node i 4 1 run 1.2x slower than those of
node i. The communication between these two nodes serves as a barrier. Since node 7 runs
faster, it always reaches the barrier earlier and waits there until node i + 1 arrives. This wait

period is where we should schedule FRC.

Bamboo builds on the 1F1B schedule (Figure 3.1(a)) due to its additional efficiency compared
to GPipe’s schedule (Figure 3.1(b)). However, even for 1F1B, bubbles widely exist in a

pipeline—as a microbatch passes different pipeline stages, the later a stage, the longer the
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(backward and forward) computation takes. This is because for the 1F1B schedule, the
number of active microbatches in a later stage is always smaller than that in an earlier stage.
In Figure 3.1 (c¢), for example, node 1 has 3 active microbatches while node 2 only has 2.
Consequently, later stages often consume less memory. To balance memory usage, the layer
partition on a later node is often larger that that on an earlier node in the pipeline, and

hence a later stage runs slower.

Based on this observation, we schedule FRC on a node before the node starts communicating
with its successor node. This is where a bubble exists. The bubble size is often large enough
to run FRC for most microbatches (shown in the §3.9.1). In cases where the FRC cannot
fit entirely into the bubble, we overlap FRC and FNC as much as we can. However, for the
same microbatch, FRC} | depends on FNC,, and they cannot run in parallel. To resolve this
dependency issue, we focus on different microbatches for FNC and FRC. That is, Bamboo

schedules FNC,, for the k-th microbatch and FRC , for its previous (k — 1)-th microbatch

to run in parallel. Since there is no dependency between them, their executions can overlap.

To reduce memory overhead, Bamboo follows a well-known principle to offload less frequently
used tensors to CPU memory. Specially, since BRC is not performed in normal training
passes, FRC’s outputs and intermediate results are not needed until a preemption occurs
and BRC is triggered. As a result, we swap out these data after FRC is done for each
microbatch on each node. These data take the majority of FRC’s memory consumption;
swapping them out significantly reduces FRC’s GPU memory usage [110]. However, we
leave the redundant weights in GPU memory for efficient FRC because these weights are

needed for FRC on each microbatch.

Lazy BRC and Recovery. BRC is executed by a failover schedule which a node runs
when detecting its successor node fails. In particular, for the current iteration, all the lost
gradients must be re-computed, while for the following iterations, all instructions of the
victim node must be executed by its shadow node (until a reconfiguration occurs). Nodes
that originally communicate with the victim node are transparently rerouted to the shadow

node. The failover schedule is generated by merging the schedules of the victim and shadow
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Figure 3.10: A example of merged instruction sequences in failover schedule. We use
PipeDream’s 1F1B schedule as shown Figure 3.1(c), and assume node 2 is the victim node
and node 1 is the shadow node.

node. In particular, a schedule consists of a sequence of instructions and we divide it into two
groups—(1) continuous communication instructions, which is placed at the head of a group

and (2) computation instructions that can be executed without remote data dependencies.

When the two instruction groups (from the victim and shadow nodes) are merged, the
instructions are interleaved with the following rules. (1) Communication instructions are
still placed in the beginning of the merged groups. (2) Communications that used to be
inter-node between the victim and the shadow are removed. (3) External communications
from the victim node are first performed. (4) Computation instructions are ordered such
that backward computation is always executed earlier; after the backward computation is
done, the memory occupied by intermediate results is freed. Figure 3.10 shows an example

of merged instruction sequences if node 2 is the victim node and node 1 is the shadow node.

Support for Multi-GPU Nodes. Bamboo’s RC works for multi-GPU settings—this
requires replicating all layers that belong to the GPUs of one node in the GPUs of its
predecessor node. In other words, we use “group replicas” as opposed to individual replicas.
However, in the presence of frequent preemptions, using multi-GPU would yield poorer
performance—losing one node (with multiple GPUs) is equivalent to losing multiple nodes
in the single-GPU setting. Our evaluation (§3.6) shows that it is much harder to allocate
new multi-GPU nodes during training than single-GPU nodes.
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Model Dataset D P
ResNet-152 [49]  ImageNet [70] 4 8x1.5(12)
VGG-19 [131] ImageNet [70] 4 4x1.5 (6)
AlexNet [70] Synthetic data 4 4x1.5 (6)
GNMT-16 [152] WMT16 EN-De 4  4x1.5 (6)
BERT-Large [32] Wikicorpus En [32] 4 8x1.5 (12)
GPT-2 [108] Wikicorpus En [32] 4  8x1.5 (12)

Table 3.1: Our models, datasets, pipeline configurations.

Once Bamboo loses too many nodes or there are many idle nodes (i.e., new allocations) wait-
ing to join the pipelines, Bamboo launches a reconfiguration. Details of the reconfiguration

process can be found in Section §3.7.

3.6 Evaluation

Bamboo is implemented in ~7K LoC as a standard Python library. We evaluated Bamboo
by pretraining a range of popular vision and language models, as shown in Table 3.1. We
used two tasks and four datasets in our experiments: (1) image classification, using the
ImageNet-1K (ILSVRC12) [114] dataset and (2) translation, using the WMT16 English to
German dataset for GNMT-16 and the Wikicorpus dataset [32] for BERT and GPT-2. For
the first four (smaller) models that were also used in PipeDream [94] (which actually used
smaller versions of these models), we took the values of D (the number of data-parallel

pipelines) and Pjemana (pipeline depth) from PipeDream [94]’s configurations.

As discussed earlier in §3.4, to avoid swapping Bamboo needs 1.5x more instances for each
pipeline and hence each P reported in Table 3.1 equals 1.5X Pyemang. For BERT and GPT2,

we used 4 and 8x1.5=12 as D and P. We have also evaluated with another pipeline depth

P’rlcedemand .
Pricespot ’

P, = Piemand X these results can be found in §3.6.2.

We trained these models on a spot cluster from EC2’s p3 family where each instance has V100
GPU(s) with 16GB GPU memory and 61GB CPU memory. Each on-demand instance costs
$3.06/hr per GPU while the price of its spot counter-part (at the time of our experiments)
is $0.918/hr. Our evaluation uses two on-demand baselines: (1) p3 instances each with four

V100 GPUs (Demand-M) and (2) p3 instances each with a single GPU (Demand-S). For
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both baselines, the pipeline configuration was the same and all nodes were obtained from

one availability zone.

For all experiments, we trained each model to a target validation accuracy, which is a partic-
ular number of samples for the model. We did not train them to higher accuracies because
large models take a huge amount of time to train (e.g., weeks) to reasonable accuracies; using
such a large amount of resources (even spot instances) goes beyond our financial capabilities.
Furthermore, Bamboo uses synchronous training where the time per iteration is fixed; hence,

training for extended time would not change our results.

For on-demand instances, we used the largest per-GPU minibatch that fits in one GPU’s
memory—anything larger yields out-of-memory exceptions. This ensures that we hit peak
achievable FLLOPs on a single device. For data-parallel runs with n workers, the global mini-
batch size is n x g where g is the minibatch size. The global minibatch sizes we used are
consistent with those used by the ML community and reported in the literature for these
models. We used a per-GPU minibatch size of 256 per GPU for VGG-19, 512 for AlexNet,
2048 for ResNet-152, 32 for GNMT-16, 256 for BERT-Large, and 256 for GPT-2. For micro-
batch size, we always selected a small value and tuned it for different models/configurations.
We trained the vision models with an initial learning rate of 0.001, respectively, with a vanilla
SGD optimizer [63]. For language models, we used the Adam optimizer [64] with an initial

learning rate of 6e=3. We used half (fp16) precision in all our experiments.
3.6.1 Training Throughput and Costs

Overall Performance. To thoroughly and deterministically evaluate Bamboo’s perfor-
mance over spot instances under different preemption rates, we first ran a 48-node cluster
(i.e., the configuration for ResNet, BERT, and GPT) and a 32-node cluster (i.e., for VGG,
AlexNet, and GNMT) on AWS and collected a 24-hour preemption trace for each. On these
traces, the hourly preemption rate varies significantly, ranging from no preemption all the
way to 16 nodes preempted (33%), with an average rate of 4-6 nodes per hour (8-12%). To
account for such changes, we extracted from each trace three segments, each with a differ-

ent hourly preemption rate: 10%, 16%, and 33%. We used AWS’ fleet manager to trigger
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Model System Throughput Cost ($/hr) Value
ResNet Demand-M 30 97.92 0.31
SN Demand-S 32 97.92 0.33
Bamboo-M [19.35, 15.69, 8.22] [44.33, 40.01, 37.21] [0.43, 0.39, 0.22]
Bamboo-S [21.67, 19.41, 12.13]  [42.23, 40.39, 36.72] 0.51, 0.48, 0.33]
Demand-M 197 48.96 4.02

VGG Demand-S 167 48.96 3.41
Bamboo-M [03.34, 75.75, 64.22]  [21.31, 19.55, 18.43] [4.38, 4.11, 3.48]
Bamboo-S | [153.31, 124.88, 98.21] [20.19, 19.28, 18.36] [7.59, 6.48, 5.35]
Demand-M 359 48.96 7.33

AlexNet  py  and-S 336 48.96 6.86

Bamboo-M | [271.06, 207.43, 143.57]  [21.31, 19.55, 18.43]  [12.72, 10.61, 7.79]
Bamboo-S | [340.32, 321.65, 280.42] [20.19, 19.28, 18.36] [16.86, 16.68, 15.27]

Demand-M 27 48.96 0.55
GNMT Demand-S 24 48.96 0.49
Bamboo-M [13.95, 10.82, 6.33]  [21.31, 19.55, 18.43] [0.65, 0.55, 0.34]
Bamboo-S [18.92, 16.31, 8.8] [20.19, 19.28, 18.36] [0.94, 0.85, 0.48]
Demand-M 118 97.92 1.21
BERT Demand-S 108 97.92 1.10
Bamboo-M [71.22, 56.41, 41.68]  [44.33, 40.01, 37.21] [1.61, 1.41, 1.12]
Bamboo-S [98.87, 83.70, 60.59] [42.23, 40.39, 36.72] [2.34, 2.07, 1.65]
GPT Demand-M 32 97.92 0.32
Demand-S 30 97.92 0.30
Bamboo-M [17.73, 14.00, 11.54]  [44.33, 40.01, 37.21] [0.40, 0.35, 0.31]
Bamboo-S [29.92, 22.68, 13.78] [42.23, 40.39, 36.72] [0.71, 0.56, 0.38]

Table 3.2: Comparisons between training with DeepSpeed over on-demand instances and
Bamboo over spot instances; throughput is defined as the number of samples per second.
For Bamboo, we train each model three times, and their results are explicitly listed in the
form of [a, b, c] for the 10% (average), 16%, and 33% preemption rates, respectively.

preemptions by replaying these segments. Note that if we were to run Bamboo over the

uncontrolled spot cluster, there would be no way to enable a direct comparison.

We trained ResNet, BERT, and GPT by replaying the three segments from the 48-node
trace, and VGG, AlexNet, and GNMT by using the segements from the 32-node trace.
These results are reported in Table 3.2. In addition to the time and monetary costs, we used
a metric called value, which measures performance-per-dollar. Value is computed as V = g
where T' is the training throughput, measured in terms of the number of samples per second,

and C' is the monetary cost per hour. Throughout the evaluation, we used both value and

throughput as our metrics.
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Our first observation is Demand-M slightly outperforms Demand-S due to reduced cross-node
communication. However, the difference is marginal as the amount of data (i.e., only activa-
tions) transferred over the network is small. Bamboo-S significantly outperforms Bamboo-M
(i.e., 1.4x higher throughput and 1.5x higher value) because (1) multi-GPU nodes are sub-
ject to more GPU failures with the same number of preemptions and (2) it is much harder

to to allocate new nodes in a timely fashion.

For Bamboo-S, the results in each bracket of the form [a, b, ¢] show Bamboo’s performance
under the three preemption rates. The higher the preemption rate, the worse Bamboo’s
throughput and value. Given that the average preemption rate is ~10%, the first number
in each bracket (highlighted) represents Bamboo’s performance on the used spot cluster.
On average, Bamboo’s throughput (under the 10% preemption rate) is 15% lower than

DeepSpeed running over D X Pjenang instances. There are three major reasons.

First, the number of active instances in the spot cluster is actually lower than the requested
size D x P. For ResNet, for example, the average number of instances throughout the
training is only 25.58 although the requested cluster size is 48 (and the on-demand cluster
always has 32 nodes). The autoscaling group keeps attempting to add new instances but the

total number of active instances only reaches the requested size for a small period of time.

Second, Bamboo’s reconfiguration contributes to reduced throughput—these overheads vary

with environments and take an average of 7% of the total training time.

Third, the time for each iteration increases due to eager FRC. This is the major source of
overhead for language models such as GPT-2. A detailed evaluation of RC’s overhead can

be found in §3.6.4.

Despite the small throughput reduction, Bamboo delivers an overall of 1.95x higher value

compared to training with on-demand instances. The benefit in value remains clear for
five models (ResNet, VGG, AlexNet, BERT and GPUT) even when the preemption rate

increases to 33% (i.e., the worst-case segment of the collected trace).
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Figure 3.11: Bamboo’s training performance for BERT (left) and VGG (right), compared

to on-demand instances (red lines).
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Prob. Prmt (#) Inter. (hr) Life (hr) Fatal Fail. (#) Nodes (#) Thruput Cost ($/hr) Value

0.01 8.50 2.08 15.20 0.06 45.18 87.99 41.11 2.10
0.05 48.15 0.44 10.14 0.23 43.65 76.35 39.73 1.90
0.10 99.77 0.23 6.71 0.29 41.69 72.12 37.94 1.88
0.25 276.52 0.10 3.13 1.04 35.80 60.12 32.58 1.82
0.50 709.83 0.06 1.49 5.98 26.96 40.37 24.53 1.59

Table 3.3: Results of simulating training BERT until completion; each preemption proba-
bility ran 1,000 times.

Prob. Thruput Cost ($/hr) Value

0.01 54.87 90.73 0.60
0.05 50.66 87.43 0.58
0.10 49.18 83.23 0.59
0.25 40.59 71.24 0.57
0.50 26.24 53.05 0.49

Table 3.4: Simulation results of training BERT-large with pipeline depth B, (which is
S-SXPdemand)~

To have a closer examination of Bamboo-S’ training, we showed the traces for BERT-large
and VGG-19, and plotted them in Figure 3.11. The two rows show (a) preemption traces
(under the 10% rate), (b) training throughputs, (¢) monetary costs, and (d) values, for
BERT-large and VGG-19, respectively. Since Bamboo-M underperforms Bamboo-S, we focus

on Bamboo-S in the rest of the evaluation.
3.6.2 Different Failure Models

The previous section demonstrated Bamboo running on real spot instances. This section
demonstrates Bamboo’s ability to affordably train large models across a wide range of failure
models. To this end, we developed an offline simulation framework that takes as input (1)
the preemption probability (including preemption frequency and the number of preemptions
in each bulk), (2) per-iteration training time, and (3) Bamboo’s recovery and reconfiguration
time, automatically calculating training performance, costs, and values. Here we focus on

BERT-large and simulated its training until completion.

We experimented using 5 different preemption probabilities (i.e., preemption rate per hour),
and kept the preemption probability constant throughout the entire run (as opposed to re-
playing traces). To mimic realistic spot instance creation and preemption, we randomly

generated different creation probabilities per hour and also randomly picked zones for allo-
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cations. For each preemption probability, Table 3.3 reports the average numbers of preemp-
tions, intervals (i.e., average time, in hours, between preemption events), average lifetime
of an instance (in hours), average numbers of fatal failures (which require a restart from
a checkpoint), average numbers of instances in the cluster, throughput (i.e., #samples per

second), costs, and values, across 1,000 simulations.

Our simulations show that Bamboo’s values match our real-world runs as just reported in
§3.6.1. Further, regardless of the preemption probability, the value of Bamboo remains stable
and is constantly higher than that of training with on-demand instances (which is 1.1). This
is because most preemptions can be quickly recovered without introducing much overhead.
The higher the preemption probability, the less the active instances running training jobs;
this is the major source of the performance slowdown. However, the cost is reduced also
proportionally, leading to stable values.

Simulation for F,. To understand the tradeoff in choosing P, we experimented with

another value of P for BERT-large: Py, which is % X Pgemand- This configuration represents
the upper-bound of the spot training resources that can be obtained within the cost of training
with Piemana on-demand instances (while D remains unchanged). Note that in practice the
number of active instances can barely reach the requested size and hence the cost of using a
spot cluster of size P, x D is often still much lower than training with an on-demand cluster

of size Pdemand x D.

To avoid incurring a large monetary cost, we used the same simulator to run this experi-
ment. These results are reported in Table 3.4. As shown, using P, actually decreases both
throughput (compared to 84 under P in Table 3.2) and value (due to significantly increased
costs). This is because using too a large pipeline leads to poorer partitioning, underutilized

resources and inferior performance.
3.6.3 Comparisons with Other Systems

We have reported the performance of training GPT-2 with asynchronous checkpointing and

restart in Figure 3.3—the checkpointing-based approach spent only 23% on actual training,
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while Bamboo increases this percentage to 84%. In fact, as shown in Table 3.3, even for
the preemption rate of 0.5, there are only 5.98 fatal failures that would require checkpoint-
ing/restart under Bamboo. On the contrary, a checkpointing-based approach would need
to restart the pipeline for every one of the 709.83 preemptions. Similarly, sample drop-
ping significantly slows down the training when the preemption rate increases, as shown in

Figure 3.4.

Varuna. Varuna [10] is a system developed concurrently with Bamboo to enable training
on spot instances. As with other existing techniques, Varuna provides resilience with check-
pointing. We set up Varuna on the same spot cluster on AWS EC2 as we used in § 3.6.1. We
ran Varuna with a D x P pipeline (i.e., the same as on-demand instances) because Varuna

does not use redundancies and hence not need to over-provision resources.

We trained BERT on Varuna with the same configurations, including the same datasets,
model architectures, float precision, preemption rates, and hyperparameters. Varuna hang
under the 33% preemption rate. For the 10% and 16% preemption rates, comparisons be-
tween Varuna and Bamboo-S are reported in Figure 3.12. As shown, Bamboo-S outperforms
Varuna by 2.5x and 2.7x in throughput, respectively, under the 10% and 16% rates; and
by 1.67x and 1.64x, in value, under these two rates. Note that value benefits are lower

than throughput benefits due to Varuna’s use of fewer instances.
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Figure 3.12: Throughput and value for Bamboo-S and Varuna running BERT at different
preemption levels. Varuna hangs at the 33% preemption rate.
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3.6.4 Microbenchmarks of Redundant Computation

To fully understand the overhead introduced by RC, we compared time and memory among
three versions of RC: eager-FRC-lazy-BRC (EFLB, Bamboo’s approach), eager-FRC-eager-
BRC (EFEB), and lazy-FRC-lazy-BRC (LFLB), when training BERT and ResNet. Since

the focus here is the RC overhead, we ran this experiment over on-demand instances.

RC Setting BERT ResNet
Lazy-FRC-Lazy-BRC 701%  7.65%
Eager-FRC-Lazy-BRC (Bamboo) 19.77% 9.51%
Eager-FRC-Eager-BRC 71.51% 64.24%

Table 3.5: Time overhead with different RC settings.

Table 3.5 reports RC’s time overheads for the three RC settings. As expected, LFLB incurs
the lowest per-iteration overhead because neither FRC nor BRC is performed with normal
training iterations. The ~7% overhead comes primarily from the extra code executed to
prepare for a failover schedule. However, the recovery time is much longer under LFLB
than the other two settings (discussed shortly). On the contrary, EFEB has the highest per-
iteration overhead due to the eager execution of both FRC and BRC. The overhead incurred
by EFLB, as used in Bamboo, is slightly higher than LFLB but much lower than EFEB.
This is because eager FRC does not incur extra communication overhead and much its com-
putation overhead can be hidden by scheduling it into the pipeline bubble and overlapping
it with FNC.

Another interesting observation is the overhead for ResNet is lower than for BERT. This is
because ResNet’s layer partitioning is much more imbalanced than that of BERT (which is a
transformer model where most the middle layers are equivalent). As a result, the bubble in

ResNet’s pipeline is much larger and hence it can accommodate a more significant fraction

of FRC.

Eager FRC incurs an overall ~1.5x overhead in GPU memory (that is why Bamboo recom-
mends creating pipelines with 1.5x more nodes) while lazy FRC does not incur any memory

overhead.
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Figure 3.13: Relative pause time for BERT and ResNet under different RC settings. Bam-
boo runs into a pause when a pipeline stops training and waits for the shadow node to re-
cover the lost state on the victim node.

To understand the pause time under these different RC settings, Figure 3.13 shows the
relative pause time (i.e., the actual pause time relative to the time of each training iteration
without preemptions). As shown, lazy FRC reduces pause time by ~35% despite the slightly
higher per-iteration overhead it introduces. In summary, eager-FRC-lazy-BRC strikes the

right balance between overhead and pause time.

3.7 Pipeline Reconfiguration

Reconfiguration introduces a much longer pause to the training process than recovering
using RC. The goal of reconfiguration is to rebalance pipelines so they can withstand more
failures as training progresses and continue to yield good performance. Reconfiguration
also attempts to allocate more instances to maintain the cluster size. As shown in §3.3,
asynchronous checkpointing is very efficient (but frequent restarting is not), and hence,
Bamboo periodically checkpoints the model state. These checkpoints will not be used unless
Bamboo restarts the training from a rare fatal failure (i.e., too many nodes are preempted

so that training cannot continue).

Reconfiguration Triggering. Reconfiguration is triggered immediately when (1) consec-
utive preemptions occur simultaneously and (2) Bamboo determines that there is an urgent
need to rebalance the pipelines at the end of an optimizer step. To do (2), the workers

retrieve the cluster state from etcd, allowing them to see how many preemptions have oc-
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curred and in which pipeline they have occurred. They can also see how many workers are

currently waiting to join the next rendezvous.

There are two main conditions for triggering reconfiguration at the end of an optimizer step:
(a) the cluster has gained enough new nodes to reconstruct a new pipeline, and (b) Bamboo
has encountered many preemptions and is close to a critical failure in the next step (e.g.,
encountering another preemption would cause us to suspend training), in which case we must

pause the training to allocate more nodes.

Reconfiguration Policy. Bamboo attempts to maintain the pipeline depth P specified
by the user. Therefore, our top priority at a reconfiguration is to reestablish a full pipeline
of depth P. In this case, if we have had F failures and J (> F') nodes are waiting to join
the cluster (i.e., new allocations arrive as Bamboo runs on the “spare tire”), we can fully
recover all pipelines to depth P. The remaining (J — F) nodes are placed in a standby
queue to provide quick replacement upon future failures. However, if the number of nodes
joining is smaller than F', we may end up having a number of N nodes such that N%P # 0.
In this case, instead of creating asymmetric pipelines (which complicates many operations),
we move some nodes into the standby queue and decrease the total number of data-parallel
pipelines. A final case is that the number of nodes joining, together with those in the standby
queue, can form a new pipeline, and in this case we add a new pipeline to the system. In all
these cases, the redundant layers are redistributed among the set of nodes participating in

the updated pipelines.

How to Reconfigure. Once a reconfiguration is triggered, each node must be assigned
a new stage (with new layers, state, and redundancies); it also needs to figure out if it will
need to send or receive model and optimizer state from other nodes. Whichever nodes hits
the rendezvous barrier first decides the new cluster configuration and puts the decision on
etcd for all other nodes to read. To minimize the amount of data sent in layer transfer,
Bamboo transfers layers in such a way that each node can reuse its old model and optimizer

state as much as possible.
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3.8 Support for Pure Data Parallelism

Bamboo supports pure data parallelism (without model partitioning). Due to space con-
straints, here we briefly discuss how it is supported. We use the same redundant compu-
tation strategy—Bamboo replicates the parameter and optimizer state of each node on a
different node and uses these replicas as redundancies to provide quick recovery. For pure
data parallelism, there is no bubble time to schedule RC. Eager FRC would be equivalent to
overbatching (i.e., each node processes its original minibatch plus a redundant minibatch).
To reduce the FRC overhead and make RC fit into the GPU memory constraints, we over-
provision spot instances (by 1.5%, in the same way as discussed in §3.5) to make each node

process a smaller batch.

Enabling eager FRC doubles the batch size. However, it results only in a ~1.5X increase
in the computation time due to the parallelism provided by GPUs. This overhead can be
effectively reduced by slightly over-provisioning (1.5 x D) nodes, increasing the degree of
parallelism and decreasing the impact of overbatching. This enables us to run FRC eagerly

without incurring much overhead (i.e., <10%).
3.9 Additional Experiments
3.9.1 Bubble Size

B Forward
I Bubble

Time (ms)
O N b O

1 2 3 4 5 6 7 8
Stage

Figure 3.14: Comparison between bubble size and forward computation.

We measured the sizes of the pipeline bubble and forward computation of BERT with the
same configuration as mentioned in Section 3.6, running on on-demand instances each with

a single GPU. We manually inserted a barrier before each peer-to-peer communication,
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treating the time spent on the corresponding NCCL kernel as the bubble size. These results

are reported in Figure 3.14.

To make memory evenly distributed across stages, more layers are placed on the last few
stages. This explains the growth of forward computation. In this pipeline, for the first 4
stages, the bubble time is long enough to fit the entire FRC (i.e., the buble at stage 1 should
run the forward computation for stage 2). For the last 4 stages, the bubble time is shorter
than the forward computation time—it can still cover ~60% of its FRC. The rest of the
FRC on these nodes is run in parallel with their regular forward computation, as discussed

in §3.5.2.

3.9.2 Cross-Zone Communication

Model Config Throughput Total Transferred Bytes

BERT  Spread 148.923 16.39 GiB
BERT  Cluster 151.124 16.39 GiB
VGG19 Spread 160.12 11.213 GiB
VGG19 Cluster 165.77 11.213 GiB

Table 3.6: Comparison of throughput when running across availability zones compared to
running within a single zone.

Because Bamboo allocates workers across availability zones to minimize the probability
of reconfigurations, we measured We ran Bamboo in two configurations: (1) with nodes
distributed across all zones (i.e., Spread) and (2) in a single availability zone with AWS’
“Placement Group” option set to “Cluster” (i.e., Cluster), and measured their performance
differences. As reported in Table 3.6, the differences between these two configurations are
quite low (i.e., usually less than 5%). This demonstrates Bamboo’s choice of assigning nodes
from different availability zones as consecutive nodes in each pipeline has little impact on

training performance.
3.9.3 Bamboo for Pure Data Parallelism

We ran two relatively small models such as VGG and ResNet using pure data parallelism with
8 workers (i.e., we partition the data but not the model). For Bamboo, we similarly over-
provisioned 1.5x additional workers. We implemented another baseline Checkpoint, which

periodically checkpoints model state for each worker and restarts the worker on another node
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when its original node is preemption. We used the same global batch size for these models as
reported in §3.6. The comparisons between Bamboo, Checkpoint, and on-demand training

are shown in Table 3.7.

Note that our implementation of Checkpoint assumes that there is always a standby node
that is ready to join and load the checkpoint (which is a unrealistic over-approximation of
the allocation model on any spot market); as such, the training cost remains unchanged and

its throughput is reduced as the preemption rate increases.

Model System Throughput Cost ($/hr) Value
ResNet Demand 24.51 24.48 1.01
Checkpoint [12.26, 8.42, 5.03]  [7.34,7.34, 7.34]  [1.67, 1.15, 0.68]
Bamboo [21.22, 18.31, 12.31] [10.56, 10.09, 9.18] [2.01, 1.84, 1.34]
Nele Demand 144.28 24.48 5.89
Checkpoint [83.21, 67.21, 45.31] [7.34, 7.34, 7.34]  [11.33, 9.15, 6.17]
Bamboo [125.59, 96.51, 73.73] [10.56, 10.09, 9.18] [11.89, 9.56, 8.03]

Table 3.7: Comparison between pure data-parallel training over on-demand instances, a
checkpoint-based approach on spot instances, Bamboo on spot instances. For Checkpoint
and Bamboo, we trained each model three times, and their results are explicitly listed in
the form of [a, b, ¢| for the 10% (average), 16%, and 33% preemption rates, respectively.

As shown, Bamboo outperforms Checkpoint by 1.64x and 1.22x in throughput and value.

Both Checkpoint and Bamboo deliver a higher value than on-demand training (by 2x and
1.79x%).

We make two observations on these numbers. First, Bamboo incurs a higher cost than
Checkpoint due to resource over-provisioning. However, as discussed above, Checkpoint as-
sumes the availability of standby nodes. In practice, guaranteeing such availability requires
over-provisioning as well, but we did not take this into account when calculating costs (be-
cause it is hard to know exactly how many nodes we should over-provision). Hence, the cost
and value reported for Checkpoint are the lowerbound and upperbound of those that can be

achieved by any practical implementation of a checkpoint-based approach.

Second, Checkpoint works much better for pure data parallelism than for pipeline parallelism

(as discussed in §3.3). This is because recovering from a checkpoint in pure data-parallel
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training is much easier than pipeline-parallel training where a pipeline reconfiguration process

is needed for each restart.

3.10 Summary

With Bamboo, we have continued our look at how knowledge of ML workloads can be
combined with understanding of heterogeneous cloud resources to increase the value provided
by the system. By intelligently introducing computation redundancy into the system and
exploiting the characteristics of pipeline parallelism, we were able to provide recovery for
training in high failure environments that would otherwise be unusable. Specifically, we
were able to provide nearly 2x the value of a full-priced on-demand baseline and 1.5 as

much value as a checkpointing based approach designed to work with spot instances.
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Related Work

4.1 Parallel Computation for Model Training

How to exploit parallelism in model training is a topic that has been extensively studied.
There are two major dimensions in how to effectively parallelize the training work: (1) what

to partition and (2) how to synchronize between workers.

What to Partition. The most straightforward parallelism model is data parallelism [19,
26, 28, 41, 117, 118, 133, 163], where inputs are partitioned and processed by individual work-
ers. Each worker learns parameters (weights) from its own portion of inputs and periodically
shares its parameters with other workers to obtain a global view. Both share-memory sys-
tems [19, 41, 118] and distributed systems [25, 78, 163] have been developed for data-parallel
training. Another parallelization strategy is to partition the work, often referred to as model
parallelism [92] where the operators in a model are partitioned and each worker evaluates

and updates only a subset of parameters w.r.t. its model partition for all inputs.

A recent line of work develops techniques for hybrid parallelism [54, 61, 69, 94]. PipeDream [94]
adds pipelining into model parallelism to fully utilize compute without introducing signif-
icant stalls. Although Dorylus also uses pipelining, tasks on a Dorylus pipeline are much
finer-grained. For example, instead of splitting a model into layers, we construct graph and
tensor tasks in such a way that graph tasks can be parallelized on graph servers, while each
tensor task is small enough to fit into a Lambda’s resource profile. Dorylus uses pipelining
to overlap graph and tensor computations specifically to mitigate Lambdas’ network latency.

FlexFlow [61] automatically splits an iteration along four dimensions.
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How Workers Synchronize. When workers work on different portions of inputs (i.e.,
data parallelism), they need to share their learned parameters with other workers. Parameter
updating requires synchronization between workers. For share-memory systems, they often
rely on primitives such as all_reduce [19] that broadcasts each worker’s parameters to all
other workers. Distributed systems including Dorylus use parameter servers [25, 78, 163],
which periodically communicate with workers for updating parameters. The most commonly-
used approach for synchronization is the bulk synchronous parallel (BSP) model, which poses
a barrier at the end of each epoch. All workers need to wait for gradients from other workers

at the barrier. Wait-free backpropagation [163] is an optimization of the BSP model.

Since synchronous training often introduces computation stalls, asynchronous training [19,
28] has been proposed to reduce such stalls — each worker proceeds with the next input
minibatch before receiving the gradients from the previous epoch. An asynchronous approach
reduces time needed for each epoch at the cost of increased epochs to reach particular target
accuracy. This is because allowing workers to use parameters learned in epoch m to perform
forward computations in epoch n (n # m) leads to statistical inefficiency. This problem can

be mitigated with a hybrid approach such as bounded staleness [27, 94, 99, 141].

4.2 GNN Training and Graph Systems

As the GNN family keeps growing [31, 60, 75, 80, 151, 157-159, 161, 169], developing efficient
and scalable GNN training systems becomes popular. GraphSage [43] uses graph sampling,
NeuGraph [85] extends GNN training to multiple GPUs, and RoC [59] uses dynamic graph
partitioning to achieve efficiency. Other systems that can scale to large graphs are all based

on sampling [157, 161].

Programming frameworks such as DGL [30] have been proposed to create a graph-parallel
interface (i.e., GAS) for developers to easily mix graph operations with NNs. However,
such frameworks still represent the graph as a matrix and push it to an underlying training

framework such as TensorFlow for training. We solve this fundamental scalability problem
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with a ground-up system redesign that separates the graph computation from the tensor

computation.

4.3 Graph-Parallel Systems

There exists a body of work on scalable and efficient graph systems of many kinds: single-
machine share-memory systems [37, 89, 90, 98, 130], disk-based out-of-core systems [7, 44,
72, 82, 86, 113, 138, 143, 145-147, 168, 171], and distributed systems [18, 21, 22, 40, 84, 88,
93, 112, 128, 139, 140, 142, 150, 165, 170]. These systems were built on top of a graph-parallel
computation model, whether it is vertex-centric or edge-centric. Inspired by these systems,
Dorylus formulates operations involving the graph structure as graph-parallel computation

and runs it on CPU servers for scalability.

4.4 Parallel Training of Large Models

There is a body of work on parallel training. Data parallelism [19, 28, 29, 61, 70, 78, 163, 163]
is the most common parallelism model that partitions the dataset and trains on each par-
tition. The learned weights are synchronized via either an all-reduce approach [19] or pa-
rameter servers 25, 78]. Model parallelism [29, 69, 101, 124, 129] partitions the operators
in a DNN model across multiple GPU devices, with each worker evaluating and performing
updates for only a subset of the model’s parameters for all inputs. Recently, pipeline paral-
lelism [54, 94, 134, 156] has been proposed to train large models by partitioning layers across
workers and uses microbatches to saturate the pipeline. Popular DL training libraries such
as DeepSpeed [109] and Megatron [96] support 3D parallelism, which combines data paral-
lelism, model parallelism, and pipeline parallelism to train models at extremely large scale
with improved compute and memory efficiency. Furthermore, DeepSpeed offers ZeRO-style
data parallelism [110], which partitions model states across GPUs and uses communication
collectives to gather individual parameters when needed during the training process, which

offers better compute efficiency and scalability.
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4.5 Elastic Training

Distributed training experiences frequent resource changes. There is a number of sys-
tems [46, 53, 56, 101, 106, 107] built to provide elasticity for training over changing resources.
TorchElastic [106] is a PyTorch [102]-based tool that can dynamically kill or add data-parallel
workers. Huang et al. [53] considers elasticity for declarative ML on MapReduce, which does
not work for modern deep learning workloads. Litz [107] is a system that provides elas-
ticity in the context of CPU-based machine learning using the parameter servers. Or at
al. [101] presents an autoscaling system built on top of TensorFlow [6] and Horovod [119],
which dynamically adapts the batch size and reuses existing processes upon resource changes.

However, none of these works provide resilience for training over preemptible instances.

4.6 Exploiting Spot Instances

Proteus [46] exploits dynamic pricing on public clouds in order to lower costs for machine
learning workloads through elasticity. Since Proteus does not explicitly consider modern deep
learning workloads, Proteus simply reprocesses the input of a preempted node with another
node. Varuna [10] is a system built concurrently with Bamboo for distributed training over
spot instances. However, Varuna focuses on elasticity, not quick recovery from preemptions,
based on an assumption that preemptions are not frequent. Bamboo, on the contrary, is

designed specifically to deal with frequent preemptions.

There exists a body of work on enabling low latency and/or SLO guarantees when us-
ing preemptible spot instances. Tributary [45] is an elastic control system that exploits
preemptible resources to reduce cost with SLO guarantees. Kingfisher [123] proposes a
cost-aware resource acquisition scheme that uses integer linear programming to determine
a service’s resource footprint among a heterogeneous set of non-preemptible instances with
fixed prices. Flint [120] is a system that runs batch-based data-intensive jobs on transient
servers. SpotCheck [122] selects spot markets to acquire instances in while always bidding at
a configurable multiple of the spot instance’s corresponding on-demand price. BOSS [155]

hosts key-value stores on spot instances by exploiting price differences across pools in differ-
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ent data-centers. ExoSphere [121] is a virtual cluster framework for spot instances. These

systems are all orthogonal to Bamboo that is built specifically for deep learning training.

4.7 GPU Scheduling

There is also a large body of work on GPU scheduling [42, 76, 87, 95, 96, 105, 125, 154,
162, 166] for ML workloads. These techniques are orthogonal to Bamboo—they all focus on
efficiency and throughput while Bamboo aims to perform redundant computation at a low

cost.
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Future Directions and Conclusion

As the era of Machine Learning continues to progress and push into new and unforeseen areas,
there is no doubt that new techniques will be developed to drive it forward. Unprecedented
scale and new model architectures will allow ML researchers to push the boundaries of
what applications are possible. These will lead to many new breakthroughs in artificial
assistants, medical diagnosis, and many other fields, but they will also lead to continuously
increasing costs, pushing the state of the art further and further out of reach of average
users. Concurrently, the cloud appears to be increasingly heterogeneous in terms of both the
hardware offered to users as well as the pricing schemes for that hardware, leading to new
considerations and trade-offs for renting compute from the cloud. Already, we can see many
companies offering customized silicon to improve the efficiency of computation, as well as
advanced networking resource to speed up network bound workloads. Each of these comes

with its own trade-off in terms of cost and the benefit to performance.

Many current and emerging workloads have the potential to benefit from this line of rea-
soning, to ensure that access to state of the art ML remains accessible and affordable while

remaining performant and accurate.

e Sparsely Gated Mixture of Experts are an emerging type of network in which
the input samples themselves can influence the computation of the model [47]. Specif-
ically, a gating network learns which subset of ”experts” or sub-networks should be
activated based on the particular input sample. This allows for specialization but has

dynamic and changing computation at every training step depending on which inputs
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are sampled, potentially leaving some subset of the experts idle. This can lead to over-
provisioning, which seems to be a good fit for dynamically allocated compute resources,

such as serverless, which can scale to the exact amount of computation needed.

e Federated Learning allows millions of clients to participate in training a model
together over a very wide area [73]. For example, training a phone keyboard to better
predict which word a user meant to type so that it can accurately correct them trains
over millions of phones in a highly dynamic and uncertain environment. As they use
LTE or 5G, these can be network constrained environments with constrained or variable
network resources. The emerging smart-networking technologies have the potential to
help accelerate this workload [74, 115] For example, switches have the ability to drop
packets. By thoroughly understanding some notion of gradient utility (the importance
of a gradient to the convergence of the model) we can drop certain gradients and

prioritize others to help decongest the network while maintaining accurate training.

As we have seen, cost is becoming an increasingly important consideration in Machine Learn-
ing as the state of the art moves to a scale that is only achievable by companies with massive
amounts of financial resources. This negatively impacts the field as a whole. In addition
to fewer people being able to experiment with machine learning in new ways, there are also
fewer researchers able to experiment with important problems like bias correction and assess-
ing the potential harm machine learning can cause as it becomes more integrated into our
daily lives. This dissertation took one step towards addressing this increasingly important
issue, tackling the cost issue with both emerging types of neural networks as well as networks
that have grown to be massive in size, in both cases leading to huge resource requirements

for users.

With Dorylus, we were able to use cheap, scalable resources while taking advantage of specific
model characteristic to hide any drawbacks of the cheaper resources. By utilizng the inter-
leaving of graph and tensor workloads, we allowed for resource specialization and broke the
workload up into discrete tasks for each resource used. In addition, we introduced asynchrony

into the system to fully maximize the benefits of resource specialization and pipelining,
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allowing the system to fully overlap computation and communication. We also provided
a theoretical analysis of the convergence guarantees this provides, as previous analyses of
asynchronous ML did not consider feature staleness introduced by the Gather step in GNNs.
We were able to increase the value compared to CPU-only and GPU-only backends for

training GNNs by orders of magnitude on large, sparse graphs.

With Bamboo, we focused on bringing the benefits of cheap spot instances to training mas-
sive models with pipeline parallelism. By focusing on providing quick recovery through
redundancy, we were able to overcome limitations that exist for checkpointing and approx-
imation in high failure rate environments. We provided already existing backups in the
pipeline to quickly recover in the event of a failure, reducing recovery time significantly. To
overcome the overhead this could potentially add, we hid the redundant computation in the
stalls inherent during pipeline parallel training. By combining these techniques, Bamboo
decreased cost while maintaining performance, leading to an overall increase in value over
both a full-priced, non-preemptible baseline and an existing system designed to work on spot

instances.
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APPENDIX A

Full Proof

To simplify the proof without introducing ambiguity, we refer to running asynchronous SGD
on GNNs with asynchronous Gather as asynchronous GNN training, while running normal

SGD with synchronous Gather as synchronous GNN training.

A.1 Proof of Theorem 1

Similar to the proof of Theorem 2 in [20], we prove Theorem 1 in 3 steps:

1. Lemma 1: Given a sequence of weights matrices WM ... W ®) which are close to each
other, approximate activations in asynchronous GNN training are close to the exact

activations.

2. Lemma 2: Given a sequence of weights matrices WM ... W®) which are close to
each other, approximate gradients in asynchronous GNN training are close to the

exact gradients.

3. Theorem 1: Asynchronous GNN training generates weights that change slow enough

for the gradient bias goes to zero, and thus the algorithm converges.
Let ||A]l« = max; ; |A(7, j)|, we first state the following propositions:
Proposition 1.
e ||AB||x < col(A)||A||ool|Bl|oo, where col(A) is the number of columns of matrix A.

o |A® Bl < ||A]|sol||Blloos where ® is element-wise product.
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o [[A+ Blloo < [Alloc + [1Bloo-

Let

C := max {col(fl),col (H(O)) ,...,col (H(L)) ,
col (W(O)) ,...,col (W(L))}
be the largest number of columns of matrices we have in the proof, we have
* [|[ABlloc < C|Alloc|| Bllos-

The proof can be found in Appendix C in [20].

Definition 1. (Mixed Matrix) We say matrix A is a mixed matrix with N source matrices
{Ay,... Ay} iff. Vi, j, 3k € [1, N] s.t. A(i,5) = Ap(i, ).
Conceptually, every element in a mixed matrix corresponds to one of the source matrices.

And we also have the following proposition:

Proposition 2. Suppose that A is a mixed matrices with A, ..., Ay as its sources, then

~ N
4], < e .
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Proof. By Definition 1:

| 4]l =max| 4G, )|
< max miax |Ay(i, )|
i, k=1

= miax max | Ay (4, j)|
k=1 i,

N
=max {|[ A/l -

A.1.1 A single layer in GCN

As a base case, we first consider a single layer in a GCN model. In this case, at epoch i, the
output activations H depends on weights W and input activations X only.

Under synchronous GNN training, we have
Zi=AX;W,, H,=0(Z).
While under asynchronous GNN training with staleness bound S, we have
Zas; = AXAs,iWi, Hysi = 0 (Zasa),

where Zas;, Xas;, and Hag,; are corresponding approximate matrices of Z;, X;, and H,.

Xag,i is a mixed matrix of S stale activations Xag;—g41,--., Xas,-

Now we show that the approximate output activations under asynchronous GNN training

are close to the exact ones when the weights change slowly during the training.

Proposition 3. Suppose that the activation o(-) is p-Lipschitz, and for any series of T

input activations and weights matrices { X, Wi}iT:17 where
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1. matrices are bounded by some constant B: HAH < B, | Xill, £ B, | Xasill, < B,

and [|W;]| , < B;

2. differences are bounded by €: || Xas; — Xas,ll <€ [[Xasi — Xil| . < e and [|[W; = Wi <

€.

Then there exists K that depends on C, B, and p, s.t. for all S < 4,5 < T, where S is the

staleness bound:

1. The approximate outputs won’t change too fast: ||Zs; — Zas;||, < Ke, and

|Hasi — Has,jll,, < Ke,

2. The approximate outputs are close to the exact outputs: ||Zas; — Zi|| < Ke, and

HHAS,i — HlHoo < Ke.

Proof. After the S warm up training epochs, we know for all 7 > S, X As,; consists with

either latest neighbor activations (i.e., X 4g;) or activations from some previous epochs (i.e.,

Xasi—t1s---,Xasi-s5+1), and
HXAS,i — Xasi|| < max [ Xasi — Xass|l
oo SE€[i—S+1,)
<e.
By the triangle inequality,
HXAS”‘ x| <2evie s

HXAS,i - XAS,]’

< 3e,Vi,j € (S, T]
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By Prop. 2 and || Xg;||, < B, we have HXAS’i

< B. Thus, Vi, j € (S,T], we have

1 Zasi — Zasjll

- HAXAS,iwi — AXas,W,

oo

= HA (XAS,i — XA&]‘) Wz + AXASJ‘(WZ‘ — W])

o

<€ (A [[Fass = Xass

IWill

oo

AR

N Wi — WjHoo)
<C?*(3¢B* + eB?)

=4C?B%,
and

1Zasi = Zillo, = || A%assWi - AXW,

= HA <XAS,1‘ - Xi) Wi

oo

SC’QHAH HXAS,i—Xi Wil o

<2C%B%.
By the Lipschitz continuity of o(-),

|Hasi — Hasjlloo = l0(Zasi) — 0(Zasj)ll

<pl|Zasi — Zasjl|

<4pC?%B?,

[1Hasi — Hill, = l0(Zass) — o(Zi) ]l
<plZasi — Zill
<2pC*B%.

We set K = max {4C?B?, 4pC? B¢} thus all the differences are bounded by Ke.
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A.1.2 Lemma 1: Activations of Multi-layer GCNs

Now we generalize the conclusion to multi-layer GCNs by applying Prop. 3 layer by layer.

The forward computation of a multi-layer GCN can be expressed as follows:

Under synchronous GNN training,

ZU =AW =1,

H =0 (Zfl“)) I=1,...

Under asynchronous GNN training,

+1
2453
HY =0 (283))  1=1

)

CAR WO -,

L1
(A.1)
L1
L L—1
(A.2)
L1

The following lemma bounds the approximation error of output activations of a multi-layer

GCN under asynchronous GNN training. The Lemma shows that the approximation error

is bounded by the change rate of model weights only, regardless of the staleness bound S.

Lemma 1. Suppose that all the activations are p-Lipschitz. Given any series of T inputs

T
and weights matrices {Hi(o), Wl} , where
i=1

14| <8 ||5”|_ < B ana i, < B,

2. |[Wi = Wjll, <e

there exists some constant K that depends on C, B, and p s.t. Vi > LS,

L

l l
N A

< Ke, [=1,..

l l
2. Hzf) - 24, L.

< Ke [=1,...

)

Proof. By Prop. 3 and Eq. (A.1,A.2), for all i > LS, there exists a constant K1) s.t.

< KWe.

oo

|#0 =BG < KWeana |20 - 28,
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By applying Prop. 3 repeatedly for all L layers, we will get K, K@

e I At I
and
e s I

where K =[]/, K, for all i > LS.

A.1.3 Lemma 2: Gradients of Multi-layer GCNs

Denote f(y,z) as the cost function that takes the model prediction y and the ground truth

z. The gradients in the backpropagation can be computed as follows:

Under synchronous training,

VH(z)fZATVZ(zH)fW(l)T l=1,...,L—-1
Vyof=d(Z"YoVunf 1=1,...,L

. T
Vo f = (AH”)) Vyuf 1=0,...,[—1
Under asynchronous training,

V0 fas = ATV oo fasWO 1=1, L1
VZXQS]CAS =0 (ZX;) @ng;fAs l=1,...,L

N T
Voo fas = (AHX)S) Ve fas 1=0,..,L—1

Denote the final loss function as £(W;). Let g;(W;) = VL(W;), which is the gradient of
L with respect to W; under synchronous GNN training in epoch i. And let gas; (W;) =
VL 4s:(W;), which is the corresponding gradients of approximate £ under asynchronous
GNN training in epoch i. To simplify the proof, we construct the weight update sequences
with layer-wise weight updates instead of epoch-wise weight updates. But either of them

works for the proof. The following lemma bounds the difference between gradients under

asynchronous GNN training and exact ones.
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Lemma 2. Suppose that o(-) and V. f(y, 2) are p-Lipschitz, and || V. f(y, 2)|| ., < B. For the
given inputs matrix H® from a fixed dataset and any series of T weights matrices {W;}_ |

s.t.,

L [Wi.. <B.

A < B, and | (Zaso)l,. < B.
2. |W; =Wyl <€ Vi, g,

then there exists K that depends on C, B, and p s.t.
lgas: (Wi) — g:(Wi)ll,, < Ke,Vi > LS.

Proof. By the Lipschitz continuity of V f and Lemma 1, for the final layer L, we have

HK(L)7 S.t. HVZ(L)fAS — VZ(L)fH <p HZX;? _ Z(L)H
w > >0 (A.5)
<pKWe.

Besides, by the Lipschitz continuity of o(-) and Lemma 1,
3K, st Vi e LI o (2805) =o' (20)]| < ke

We prove by induction on [ to bound the difference of V,, fas and Vzf layer by layer in

the back-propagation order, i.e., we will prove

KD ] € [1,L],‘

vz(z) fAS - vz(z)fH S K(I)E. (AG)
AS o]

Base case: by Eq. A.5, the statement holds for [ = L, where K& = pK.
Induction Hypothesis (IH):

VI > z,‘

V _a) fas — Vza')f” < K®e.
AS o0
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Then for layer [, by Eq. (A.3,A.4) and the induction hypothesis,

HVZa) fas — Vz(l)fH
AS 0

—0' (Z0) © ATV 5y fW 07

o’ (ZX)S) O ATVZg;I)fASW(l)T

oo

<c{|p(282) ~o' O] o [AV entad|_[i0"
e et}
<cH{Jp (228) —o'@)|_A7] ¥t |0

+ o @ON AT sz s = F oot}

<C?pKeB® + C*B*pK*VeB

o

+

i

=p (K + K(l+1)> B3(C%.

Thus we set KO = p (K - K(l“)) B3C? and equation (A.6) holds.

Similarly, we can also bound the difference of Vi fas and Vy f in each layer with Kyy:

HK‘(}V),VZ € [0, L— 1], va(z)fAS — vw(z)fHOO < K](/Il/)é.
By inequalities (A.6, A.7), we have

HgAS,i (Wz‘) - gi(Wi) Hoo

< \V4 -V
< Joax IViww fas wo fll

<Ke

)

where K = max {Kélv)}
1€[0,L—1]
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A.1.4 Proof of Theorem 1

innercustomthmSuppose that (1) the activation o(-) is p-Lipschitz, (2) the gradient of the cost
function V. f(y, z) is p-Lipschitz and bounded, (3) gradients for weight updates ||gas(W)
l9(W)ll s, and [[VL(W)

”oo’

||, are all bounded by some constant G > 0 for all A, X, and W,
(4) the loss L(W) is p-smooth. Then given the local minimizer W*, there exists a constant
K >0, st., VN > L x § where L is the number of layers of the GNN model and S is the
staleness bound, if we train GCN with asynchronous Gather under a bounded staleness for

R < N iterations where R is chosen uniformly from [1, N|, we will have

LWy)—L(W*)+ K+ pK
\/N 9

E|IVL (W) < 2

for the updates W1 = W; — vgas(W;) and the step size v = min {/1), \/LN}

Proof. We assume the asynchronous GNN training has run for LS epochs with the initial
weights W as a warm up, and Lemma 2 holds. Denote 6; = gas; (W;) — VL(W;) =
gas,i (W;) — g; (W;). By the smoothness of £ we have

£ (Wisa)

SLW) + (VL (W), Wiy = W) + 592 llgass W)

=L (W) =7 (VL (W), gass (W) + 242 lgass (W)

=L (W;) =y (VL (W), 6:) =7 [ VL (W) (A.8)
+ £ (15l + VL (W)l +2 (6, V£ (W)

=L (W;) — (v — p7*) (VL(W,), 8:)

2
Y p
- (v= T ) IVE I+ SR
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We firstly bound the inner product term (VL (W;),d;). For all ¢, consider the sequence of
LS + 1 WeightS: {Wi—L37 ceey Wl}

max |[|[W; — Wil

i—LS<j.k<i
i—1

<> IW = Wil
j=i—LS
i—1

= Z Y lgas: (Wi)ll
j=i—LS
i—1
< Y 4G =LSGy.

j=i—LS

By Lemma 2, there exists K >0, s.t.

10illoc = llga5i(Wi) = gi(Wi)ll, < KLSG,¥i > 0.
Assume that W is D-dimensional, we have
(VLW;),8) <D* VLWl 1]l

<KLSD*G*y

<K,

and

16:]1% <D? [|gas.s(Wi) + VLW,)|1%
<D?||gas;(Wi)|I%, + D* [V LW,)|12,
<2D*G?

<K

)
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where K = max {f( LSD*G?, 2D2G2}. Apply these two inequality to equation A.8, we get

L (W) <L(W) + (v — ;) Ky

(7 - —) VL (W) |2+ I /2

Summing up the above inequalities for all 7 and rearranging the the terms, we get

(v- —) > Ive

K
<L(W) - LW +EN (v - py?) 7 + %ny?.

Divide both sides of the summed inequality by N <7 -

’”—) and take v = mln{

Erepr VL (Wa)F = ZHVE ol

_LW) — £ (W) +KN(7—/07 )Y+ &N
- Nv(2—pv)

_LW) = L(W) + KN (v = py*) 7 + 5 Ny
< N

L(Wy) — L (W)

< + Kv(1 = py) + pK~y
N~
L(Wy) —L(W)
< + K~y + pK/VN
< Vi v+ pK/

L(Wy) —L(W*)+ K+ pK
N :

<

Particularly, we have Egp, [|[VL (Wg) H; — 0 when N — oo, which implies that the gradient
under asynchronous GNN training is asymptotically unbiased. For simplicity purposes, we
only prove the convergence of asynchronous GNN training for GCN here. However, the proof
can be easily generalized to many other GNN models as long as they share similar properties

in Lemma 1 and Lemma 2.
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