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Abstract

The solvation free energy of organic molecules is a critical parameter in determining

emergent properties such as solubility, liquid-phase equilibrium constants, and pKa

and redox potentials in an organic redox flow battery. In this work, we present a

machine learning (ML) model that can learn and predict the aqueous solvation free

energy of an organic molecule using Gaussian process regression method based on a new

molecular graph kernel. To investigate the performance of the ML model on electrostatic

interaction, the nonpolar interaction contribution of solvent and the conformational

entropy of solute in solvation free energy, three data sets with implicit or explicit water

solvent models, and contribution of conformational entropy of solute are tested. We

demonstrate that our ML model can predict the solvation free energy of molecules at
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chemical accuracy with a mean absolute error of less than 1 kcal/mol for subsets of the

QM9 dataset and the Freesolv database. To solve the general data scarcity problem

for a graph-based ML model, we propose a dimension reduction algorithm based on

the distance between molecular graphs, which can be used to examine the diversity of

the molecular data set. It provides a promising way to build a minimum training set

to improve prediction for certain test sets where the space of molecular structures is

predetermined.

Introduction

Redox flow batteries (RFBs), particularly the aqueous organic RFBs (ORFBs), have gained

significant interest for grid scale energy storage due to their inherent safety, flexible de-

sign, modular scale-up, and potential low cost. Critical functionalities of ORFBs such as

energy density, cycling stability, and rate capability are largely impacted by the properties

of the active organic species.1,2 For example, the solubility of the active organic molecule

dictates the energy density of an organic RFB. Therefore, the search for highly soluble

(>1M) and chemically stable redox active organic materials has recently become a critical

research endeavor.3 The solubility, as well as the reactivity, viscosity, and redox potential of

the active organic molecules depend on intricate interactions between the solute and solvent

molecules, for which the free energy of solvation is often a critical parameter.4,5 Evidently, sol-

vation free energy has often been identified as a critical descriptor in quantitative structure-

property/activity relationships (QSPR/QSAR) analysis. Yet there have been comparatively

few experimental values (<2000) reported despite the millions of organic molecules synthe-

sized to date. Density functional theory (DFT) and molecular dynamics (MD) simulation

methods have been widely utilized for determining this prominent chemical descriptor.6–12

With recent advancements in implicit solvation models13–16 and operating functionals, the

DFT and MD methodologies17–20 provide a reliable estimate of solvation free energy with

the mean-absolute-error approaching the chemical accuracy level of 1 kcal/mol. However,



approximations are often used to lower computational time at the cost of accuracy.21,22 Fur-

thermore, large-scale calculation of solvation free energy with high precision method through

DFT and MD is computationally intractable. In view of this challenge, an artificial intelli-

gence (AI) based prediction is needed because their computational strategies automatically

improve through experience.21,22 Machine learning (ML) methods are capable to predict a

very broad range of properties. Recently, neural network model (NN) has received new

attention for predicting solvation free energy prediction.23–26 Some of these architectures

operate over fixed molecular fingerprints common akin to traditional QSPR models.27–29

However, due to the incomplete physical understanding of the structure of molecule and

emergent properties, the features provided by domain experts may not include all critical

design parameters in the material design. The graphical approach is a powerful tool to

complement the domain experts knowledge because many features selected by domain ex-

perts are based on the computations which use the molecular structures.30–35 Moreover, as

molecules have arbitrary chemical composition and highly variable connectivity, useful infor-

mation is difficult to be extracted from a molecule into a fixed dimensional representation.

Thus, incorporating graphical approach can add important features that could be inadvert-

edly neglected by domain experts when designing an ML model. Naturally, a molecular

structure can be represented by an undirected labeled graph that encodes both structural

and functional information. The graph contains an initial feature vector and a neighbor

list for each atom. The feature vector summarizes the atom’s local chemical environment,

including atom-types, hybridization types, and valence structures. Neighbor lists represent

connectivity of the whole molecule. Another key question for molecular properties predic-

tion using ML methods is lack of data, namely the data sparsity. Molecular properties data

sets are different from the data sets in other applications as image recognition or natural

language processing. Usually, the size of molecular properties data set that can be found

is much smaller than those available for the aforementioned conventional machine learning

tasks, as accurate results for molecular properties typically requires specialized instruments
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and measurements. Therefore, the measurement cost of a small data set is rather expensive

and time-consuming. Even for some molecular properties which can be obtained by com-

puter simulation, e.g., solvation free energy in explicit solvent, the calculations are also not

cost-effective. So the amount of training data remains a challenge in the property prediction

of molecules.

Gaussian process (GP) is one of the most well studied stochastic processes in proba-

bility and statistics. Given the flexible form of data representation, GP is a powerful tool

for classification and regression, and it is widely used in probabilistic scientific computing,

engineering design, geostatistics, data assimilation, machine learning, etc.36–38 In particular,

given a data set comprising input/output pairs of locations and quantity of interest (QoI),

GP regression (GPR), also known as Kriging, can provide a prediction along with a mean

squared error (MSE) estimate of the QoI at any location. Alternatively, from the Bayesian

perspective, GPR identifies a Gaussian random variable at any location with posterior mean

(corresponding to the prediction) and variance (corresponding to the MSE). In other words,

a GP model not only provides point predictions in the form of posterior means but also

estimates the uncertainty of the prediction using posterior variances. Generally speaking,

the larger the given data set size is, the closer the GPR’s posterior mean is to the ground

truth and the smaller the posterior variance is. While for small data set, the performance of

GPR model is also good compared with deep neural network which typically requires a large

training set.39 Therefore, GP method is a good candidate for the machine leaning works

when large data sets are difficult to be obtained.

In this work, we propose a machine learning model to predict the solvation free energy

of organic molecules in water. We implement a graphical-kernel-based GP method40,41 to

construct surrogate models for solvation free energy prediction. In contrast to previous stud-

ies,30–35 a weighted and labeled graph with labels on both nodes and edges in this work is

used to give a more accurate representation for the inner structure of a molecule. Further-

more, to investigate the capability of our machine learning model on different components
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of solvation free energy in thermodynamics as electrostatic interaction energy, the nonpolar

interaction contribution of solvent and the contribution of conformational entropy of solute,

we build and test three solvation free energy data sets, namely our own Pacific Northewest

National Laboratory (PNNL) organic molecule data set, the QM9 data set, and the Freesolv

data set. The solvation energy data in the three data sets include either the conformational

entropy contribution or the effect of explicit solvent, or both of them. Our results are bench-

marked against the three data sets. We demonstrate that our ML model can predict the

solvation free energy of molecules at chemical accuracy (<1 kcal/mol) and 1000-10000 times

faster than DFT/MD methods. Additionally, we try to elucidate the relationship between

the molecular graph and molecular property using the model reduction method and provide

a possible way on how to build a minimum training set to better predict the corresponding

molecular property with ML model.

Method

GPR framework

We present a brief review of the GPR method adopted from Reference .42,43 We denote the

observation locations as X = {x(i)}Ni=1 (x(i) ∈ D,D ⊆ R
d) and the observed values of the

QoI at these locations as y = (y(1), y(2), . . . , y(N))⊤ (y(i) ∈ R). For simplicity, we assume

that y(i) are scalars. The GPR method aims to identify a GP Y (x, ω) : D × Ω → R based

on the input/output data set {(x(i), y(i))}Ni=1, where Ω is the sample space of a probability

triple. Here, x can be considered as parameters for this GP, such that Y (x, ·) : Ω → R is a

Gaussian random variable for any x in the set D. A GP Y (x, ω) is usually denoted as

Y (x) ∼ GP (µ(x), k(x,x′)) , (1)
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where ω is not explicitly listed for brevity, µ(·) : D → R and k(·, ·) : D × D → R are the

mean and covariance functions (also called kernel function), respectively:

µ(x) = E {Y (x)} , (2)

k(x,x′) = Cov {Y (x), Y (x′)} = E {(Y (x)− µ(x))(Y (x′)− µ(x′))} . (3)

The variance of Y (x) is k(x,x), and its standard deviation is σ(x) =
√

k(x,x). The

covariance matrix, denoted as C, is defined as Cij = k(x(i),x(j)). For any x∗ ∈ D, the GPR

prediction and variance are

ŷ(x∗) = µ(x∗) + c(x∗)⊤C−1(y − µ), (4)

ŝ2(x∗) = σ2(x∗)− c(x∗)⊤C−1c(x∗), (5)

where c(x∗) is a vector of covariance: (c(x∗))i = k(x(i),x∗). Here ŝ2(x∗) is also called

the mean squared error (MSE) of the prediction because ŝ2(x∗) = E {(ŷ(x∗)− Y (x∗))2}.43

Consequently, ŝ(x∗) is called the root mean squared error (RMSE).

In practice, it is common to assume that µ(x) is a constant function, i.e., µ(x) ≡ µ. Also,

the most widely used kernels in scientific computing are the Matérn functions, especially its

two special cases, i.e., exponential and squared-exponential (Gaussian) kernels. For example,

the Gaussian kernel can be written as k(τ ) = σ2 exp
(

−1
2
‖x− x′‖2w

)

, where the weighted

norm is defined as ‖x − x′‖2w =
d
∑

i=1

(

xi − x′i
li

)2

. Here, li (i = 1, . . . , d), the correlation

lengths in the i direction, are constants. More details are provided in the support material.

Graph kernel

Using a graph kernel, the physical location x in the aforementioned conventional GP can

take the form of a graph. In this work, we use each graph to represent a molecule. Therefore,

each x can be considered as a molecule. We use the graph kernel to define notation of the
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inner product between molecules and use it as the GP kernel k(x,x′). Following the notation

in graph theory, we slightly modify the notation and use G to replace x in the GPR method.

The practice of using labeled graphs, with the exemplary ball-and-stick model, to represent

molecules gained popularity well before the era of machine learning.44,45 In this work, we

represent a molecule of n atoms as an undirected graph G = {V = {vi}, E = {eij}, i, j ∈

{1, · · · , n}, where each atom i is represented by a vertices vi that are labeled by chemical

elements, charge, hybridization state, conjugacy, aromaticity, and hydrogen count.46 Each

edge eij ∈ R between vertices i and j represents the bond between between the atoms and

is labeled by bond order, aromaticity, conjugacy, and ring membership. Its weight wij is set

by a spatial adjacency rule A(ri, rj), which will be introduced later. Thus, the adjacency

matrix A of a molecular graph is given as Aij = A(ri, rj). Note that the edges are often

supersets of the collection of covalent bonds in a molecule.

To implement the graph in a GP, we use the marginalized graph kernel K(G,G′),40 which

defines an inner product between two graphs, i.e., in our case, two molecules. The main

idea is to perform random walks simultaneously on two given graphs and then calculate

the expectation of the “similarity” between all pairs of the paths in such random walks.

Specifically, each path, denoted as h on a graph, is the route from one atom to a certain one

via chemical bonds in a molecule, and an inner product between the paths can be defined

recursively using an element-wise inner products formula. Each h is a sequence consisting

of vertices and edges:

vh1
eh1h2

vh2
eh2h3

vh3
· · · ,

where vhk
is the kth atom traversed by this path, and ehk−1hk

is the chemical bond connection

between the (k − 1)th and the kth atoms in this path. Figure 1 shows an example of path

between two nodes.

7



C

O

Hs

d

C

C

C

C

C

H

H

H

O

s

dd

d

dd

dd

s
s

s
s s

s
s

s

s

s

s

s
s

s

C

C

C

C

C

C

O

O

H

H

H

H

s s

s s

d

d

s s

s s

d d

Figure 1: Demo of random walk on 1,4-benzoquinone molecule

The expectation of the path similarity in the simultaneous random walk is given as

K(G,G′) =

∞
∑

ℓ=1

∑

h

∑

h

(

ps(h1)

ℓ
∏

i=2

pt(hi|hi−1)pq(hℓ)

)

×
(

p′s(h
′

1)

ℓ
∏

i=2

p′t(h
′

j |h′j−1)p
′

q(h
′

l)

)

×Kv(vh1
, v′h′

1

)
ℓ
∏

k=2

Kv(vhk
, v′h′

k

)Ke(ehk−1hk
, e′h′

k−1
h′

k

).

(6)

Here, ℓ is the length of the path, h and h′ are paths on the graphs represented by length-l

vectors of vertex labels, s(·) is the starting probability of the random walk on each vertex,

pq(·) is the stopping probability of the random walk on each vertex at any given step, pt(·|·) is

the transition probability between a pair of vertices, Kv(·, ·) is a microkernel that computes

the similarity between two vertices (i.e., atoms), and Ke(·, ·) is another microkernel that

computes the similarity between pairs of edges (i.e., bonds).

Following the setup in,41 we set the vertex elementary kernel as

Kv(v, v
′) =















1, ifv = v′

ν ∈ (0, 1), otherwise.

(7)

Here ν is a hyperparameter that will be learned using the training data set. The edge

elementary kernel is a square exponential kernel (i.e., Gaussian kernel) function on edge
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lengths, which is 1 if two edges are of the same length, and it smoothly changes to 0 as the

difference in lengths grows:

Ke(e, e
′) = exp

[

−1

2

(e− e′)2

λ2

]

. (8)

The adjacency rule that computes the weights for each edge also assumes a square exponential

form

A(ri, rj) = exp

[

−1

2

‖ri − rj‖2
(ζσij)

]

(9)

where σij , are element-wise length scale parameters derived from typical bonding lengths. A

uniform starting probability ps(·) ≡ s and a uniform stopping probability pq(·) ≡ q are used

across all vertices.

Given a training setD ofmmolecules and their associated solvation free energy {(M1, · · · ,Mm)},

{(E1, · · · , Em)}, as well as a marginalized graph kernel K(·, ·), the GPR prediction for the

energy {E∗
1 , · · · , E∗

n} of a test set of n unknown molecules {M∗
1 , · · · ,M∗

n} can be derived

analytically as

E∗ := [E∗

1 , · · · , E∗

n]
⊤ =KD∗K−1

DDyD, (10)

and the uncertainty in the prediction is given as:

Σ∗ :=K∗∗ −K⊤

D∗K
−1
DDKD∗. (11)

Here, KDD is an n× n matrix with KDD(i, j) = K(Mi,Mj), KD∗ is an n×m matrix with

KD∗(i, j) = K(Mi,M
∗
j ) and K∗∗ is an m×m matrix with K∗∗(i, j) = K(M∗

i ,M
∗
j ).
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Details of GPR

In the GPR method, the mean and covariance functions µ(x) and k(x,x′) are obtained by

identifying their hyperparameters via maximizing the log marginal likelihood:47

lnL = −1

2
(y − µ)⊤C−1(y − µ)− 1

2
ln |C| − N

2
ln 2π. (12)

Moreover, to account for the observation noise, one can assume that the noise is inde-

pendent and identically distributed (i.i.d.) Gaussian random variables with zero mean and

variance δ2, and replace C with C + δ2I. In this study, we assume that observations y

are noiseless. If C is not invertible or its condition number is very large, one can add a

small regularization term αI (α is a small positive real number) to C, which is equivalent

to assuming there is an observation noise. In addition, ŝ can be used in global optimization,

or in the greedy algorithm to identify locations of additional observations.

Given a stationary covariance function, the covariance matrix C can be written as C =

σ2Ψ, where Ψij = exp(−1
2
‖x(i) −x(j)‖2w). The estimators of µ and σ2, denoted as µ̂ and σ̂2,

are

µ̂ =
1⊤Ψ−1y

1⊤Ψ−11
, σ̂2 =

(y − 1µ̂)⊤Ψ−1(y − 1µ̂)

N
, (13)

where 1 is a constant vector consisting of 1s.43 It is also common to set µ = 0.47 The

hyperparameters σ and li are identified by maximizing the log marginal likelihood in Eq. (12).

The terms ŷ(x∗) and ŝ2(x∗) in Eq. (4) take the following form:

ŷ(x∗) = µ̂+ψ⊤Ψ−1(y − 1µ̂), (14)

ŝ2(x∗) = σ̂2
(

1−ψ⊤Ψ−1ψ
)

, (15)

where ψ = ψ(x∗) is a (column) vector consisting of correlations between the observed data

and the prediction, i.e., ψi =
1
σ2k(x

(i),x∗).

10



Details of GPR using graph kernel

In Eq. (6), the straightforward enumeration is impossible, because ℓ spans from 1 to ∞.

Nevertheless, Eq. (6) can be reformulated under the spirit of dynamic programming as

follows:

K(G,G′) =
∑

h1∈V,h
′

1
∈V ′

ps(h1)p
′

s(h
′

1)Kv(h1, h
′

1)R∞(h1, h
′

1), (16)

where R∞ is the solution to the following (linear) equilibrium equation

R∞(h1, h
′

1) = pq(h1)p
′

q(h
′

1) +
∑

i∈V,j∈V ′

t(i, j, h1, h
′

1)R∞(i, j), (17)

where

t(i, j, h1, h
′

1) := pt(i|h1)p′t(j|h′1)Kv(vi, vj)Ke(eih1
, ejh′

1
). (18)

Equation 17 exhibits a Kronecker product structure, which can be readily recognized in

matrix form:41

r∞ = q⊗ q′ +
[(

P⊗P′

)

⊙
(

E
κe

⊗ E′

)]

· diag
(

v
κv

⊗ v′

)

· r∞, (19)

where

v is the vertex label vector of G with vi = vi;

p is the starting probability vector of G with pi = ps(vi);

q is the stopping probability vector of G with qi = pq(vi);

P is the transition probability matrix of G defined as D−1A;

E is the edge label matrix of G with Eij = eij ;

v′, p′, q′, P′, E′ are the corresponding vectors and matrices for G′;
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κv

⊗ is the generalized Kronecker product between v and v′ with respect to

microkernel κv;

κe

⊗ is the generalized Kronecker product between E and E′ with respect to

microkernel κe.

Machine learning model

Figure 2 presents a scheme of the predictive machine learning model framework by Gaussian

process regression with graph kernel. First, the SMILES string of molecules in the data

set are converted to graph, where the atoms are the nodes and the bonds are the edges.

The graph kernel is then applied to average over the similarities of all paths generated from

simultaneous random walks on each pair of graphs. A predictive model with Gaussian process

regression can be built by the pairwise similarity matrix among the training molecules and

the cross-similarity matrix between the new molecule and the training molecules.

Figure 2: Scheme of the machine learning model pipeline

Metrics

In order to compare with the results, in this paper, mean absolute error (MAE) and root

mean square error (RMSE) are applied to evaluate the performance of the ML model on the

regression tasks.

MAE =
1

n

n
∑

n=1

|ŷi − yi|. (20)
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RMSE =

√

1

n
Σn

i=1

(

ŷi − yi

)2

. (21)

where n is the number of molecules, yi is the solvation free energy value in database, ŷi is

the prediction solvation free energy by the ML model.

Cross-Validation and Hyperparameter Optimization

We use the standard cross-validation approach to help identify the hyperparameters in the

ML model, i.e., to perform model selection. For consistency, we maintain the same approach

for all of our data sets. Specifically, for each data set, we split the data into training-

validation and testing parts as described in Section . We employ 10-fold cross-validation

(CV) for secure representation of the test data because the data set has a limited number

of measurements. The molecules in the training-validation set of each data set is further

split into 10 subsets following the sequence (InChIKey) of molecules. We choose one of the

subsets as a validation set iteratively. The training set is the sum of the remaining 9 subsets.

Consequentially, a 10-fold CV task performs 10 independent training and validation runs,

and relative sizes of the training and validation sets are 9 to 1. We use Scikit-Learn library

to implement the CV task and perform an extensive grid search for tuning hyperparameters.

The hyperparameter set is determined by the result which has the minimum averaged MAE

in the 10-fold CV. All the training is performed using our GPU-accelerated graph-kernel

GPR tool.41

Results and Discussion

Database

In order to test the performance of the model on the prediction of solvation free energy,

three data sets are built. Data set A1 is the solvation energy data obtained from DFT
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calculation with implicit water model. The molecules are selected from our own database.

This solvation energy data set has 3626 molecules. All the molecules in the data set are

neutral organic molecules. These molecules in the data set include ten types of elements,

i.e., C, H, O, N, P, S, F, Cl, Br and I. All the solvation energy data in the data set are obtained

from DFT calculation by PBE0 functional48 at 6-31G** level49 at 298.15K with NWChem

code.50 An effect of implicit water solvent with a dielectric constant of 78.4 is included via

the COnductor like Screening MOdel for Real Solvents (COSMO) model.16 These molecules

are split into two sets as the training-validation set and test set following the sequence of

their International Chemical Identifier key (InChIkey). Finally, 3200 molecules are selected

in the training-validation set and 426 molecules are in the test set. Data set B1 is the

solvation free energy data calculated by MD simulation in implicit water model. These data

are obtained from a recently published paper.51 The original molecules are chosen from the

QM9 database. QM9 consists of 134k molecules with up to nine heavy atoms, including

chemical elements C, H, O, N, and F. In this data set, molecules containing fluorine are

removed by the authors. They randomly selected 4000 compounds from the QM9 database

and calculated their solvation free energy by MD simulation with implicit water model.

However, after carefully examining the InChikey of these molecules, we find 24 duplicates

in the database. Therefore, we only select data from 3976 molecules from this database.

Finally, 3600 molecules are used in the training-validation set and 376 molecules are in the

test set. Data set C1 is obtained from the Freesolv database, which includes the solvation

free energy both in experiment and MD simulation with explicit water model as solvent.8

The experimental solvation free energy data are selected as our target in this work. To keep

consistent with the other two databases, we do not use the solvation free energy data of

chiral molecules in the Freesolv database. After excluding the chiral molecules, we select

588 molecules. The molecules in this database also include ten elements, i.e., C, H, O, N,

P, S, F, Cl, Br and I. The 588 molecules are divided into two sets. The training-validation

set includes 550 molecules and the test set has 38 molecules. Figure 1 shows the probability
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distribution function (PDF) of the training-validation set and test set for the three data

sets. We can see that the train-validation set and test set in each data set have similar PDFs

of solvation free energy. As the size of data set C1 is smaller, the fluctuation in the PDF

is stronger than the other two databases. Overall, Figure 1 indicates that it is reasonable

using the identifier InChIkey for random splitting data, especially when the data set is not

very small, e.g., larger than one hundred molecules. In the ML model building, We use a

Simplified Molecular Input Line Entry System (SMILES) string as initial input identifier

in this work. The SMILES strings of molecules are converted to a graph with our graphic

kernel when building ML models.

Solvation free energy prediction

Solvation energies prediction results of the three data sets are displayed in Figure 4. With the

help of optimized hyperparameters, the results of the three data sets show good performance

for our ML model in general. The Pearson correlation coefficients R2 between the truth and

the prediction for the training set in the three data sets are 0.97, 0.98 and 0.95, respectively.

The R2 of the test set in these three cases are 0.91, 0.95 and 0.94, respectively. We can

see the Pearson correlation coefficients are in good agreement for training data and test

data in each data set, implying our ML model is not overfitted. The results in Figure 4

show that the predication accuracy for data sets B1 and C1 are better than for A1. The

results are interesting, since in fact the measurement uncertainties of solvation free energy

for the three data sets are increasing from A1 to C1. For DFT calculation, the measurement

uncertainty for fixed functional and basis should be very small, as during the calculation

the molecular conformation is fixed, and there is no thermal fluctuation. Therefore, the

uncertainty should be <0.01 kcal/mol. In MD simulation with implicit solvent model, due

to the conformational change in MD simulation, the fluctuation of calculated solvation free

energy is larger than the DFT calculation, which increases measurement uncertainty. In

experiments, the uncertainty can be even larger than the MD simulation, which has been

15



0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15
PD

F

Solvation energy (kcal/mol)

 Training set
 Test set

(a) A1

-35 -30 -25 -20 -15 -10 -5 0 5
0.00

0.05

0.10

0.15

0.20

0.25

 Training set
 Test set

PD
F

Solvation energy (kcal/mol)

(b) B1

-20 -15 -10 -5 0 5
0.00

0.05

0.10

0.15

0.20

0.25

0.30

PD
F

Solvation energy (kcal/mol)

 Training set
 Test set

(c) C1

Figure 3: Probability distribution function of solvation free energy in training data set and
test data set of the three data sets.(a) A1. (b) B1. (c) C1.

demonstrated in the Freesolv database. In the Freesolv database, the average error is about

0.06 kcal/mol for MD simulation data of solvation free energy, but for the experiment data

it is 0.3 kcal/mol. However, by adding appropriate strength of white noise in the training

process, we find that the uncertainty does not affect the accuracy of our ML models. Note

that in general, it is necessary to include an appropriate level of measurement error, i.e.,

noise, to avoid overfitting when training ML models. In the GPR model, as indicated in

Section , the noise is included in the covariance matrix. If the noise level included in the ML

model is too small, the model is prone to overfitting. If it is too large, the error in prediction
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Figure 4: Parity plots, MAE and RMSE of training data and test data in data sets A1, B1
and C1.
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would be also large. So noise is an important hyperparameter in the model parameterization.

Figure 4, parts d-f present the MAE and RMSE in training set and test set for the three

data sets. For MAE results in both training set and test set in each data set, the results are

very close, indicating our ML model is not overfitted. The RMSE results also show the same

trend as MAE in each data set, which verifies our conclusion. For the training set in data set

A1, the MAE is 0.78 kcal/mol and the RMSE is 1.28 kcal/mol. With regard to the test set

in data set A1, the MAE and RMSE are close to the training set results but a little higher.

The results are 1.58 kcal/mol and 2.37 kcal/mol, respectively. For the data set B1, the MAE

and RMSE are 0.47 kcal/mol and 0.66 kcal/mol for training set. The test set follows the

same trend. The MAE and RMSE are 0.69 kcal/mol and 0.98 kcal/mol. For data set C1,

the MAE and RMSE result are close to the result obtained in data set B1. The MAE and

RMSE in the training set are only a little higher than in B1. They are 0.62 kcal/mol and

0.83 kcal/mol. The test set results are similar, 0.72 kcal/mol and 1.03 kcal/mol, respectively.

It is a bit difficult to directly compare our results with other ML models because we either

have different data sets or use a different split method for the data set. While we know that

the error of energy in a DFT calculation with different functional/basis would be several kilo

calories, from the above results We can see that our ML model has yield chemical accuracy

(1 kcal/mol) for the QM9 database subset and Freesolv database. Therefore, the mean

absolute error in our ML model is actually close or even better than the DFT calculation.

For the QM9 database subset, the authors previously obtained MAE = 0.7 kcal/mol with

2500 molecules in the training set,51 while the MAE of our training set is 0.47 kcal/mol

with 3600 training data. For Freesolv database, Wu et al. provided a benchmark study

of 642 molecules with different QSPR/ML models.52 The range of RMSE obtained with

different ML methods is from 1.15 to 2.05 kcal/mol. In Lim and Jung’s paper they obtained

RMSE = 1.19 kcal/mol.53 Our RMSE result is 1.03 kcal/mol with the same but even smaller

training set. These results suggest that our graphic GP model guarantees considerably good

performance.
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The data set A1 has a large training set (3200 molecules), and theoretically the uncer-

tainty of the data set A1 should be small. However, the performance of our model on data

set A1 is not the best among the three data sets. For example, its R2 is not the highest one

of the data sets. One possible reason is that the complexity of this data set is higher. In data

set A1 it involves ten types of elements. That means the converted molecular graph in data

set A1 may have more types of nodes. In the view of graph theory, more types of nodes do

not affect the topology, but they do increase the complexity of the molecular graph. Here,

we use the Bertz complexity index to further characterize the complexity of the data set.

The Bertz complexity index (BCI)54 is defined as following

BCI = 2n log2 n−
∑

l

ni log2 ni, (22)

where n is the number of pairs of adjacent edges in a graph G and ni is the number of pairs of

adjacent edges in the i-th class by symmetry. The term n log2 n is used to prevent BCI = 0

when all pairs of adjacent edges in G are equivalent. We can see that the first part takes into

account structural characteristics of G, such as size, branching, and cyclicity, and the second

part deals with the symmetry of G in terms of equivalent pairs of adjacent edges. In other

words, one represents the complexity of the bonding, the other represents the complexity

of the distribution of heteroatoms. BCI has been used in analysis of synthetic strategies

in organic chemistry,55 but it has not been connected to physical properties with the ML

model. Figure 5a shows the average BCI values of the three data sets. It is found that the

average BCI of the training set and the average BCI of test set in each data sets are very

similar. The average BCIs obtained from training set and test set in data set A1 are 207.0

and 220.5, respectively. For the other two data sets the BCI values are 157.9 and 158.9 in

data set B1, and 145.9 and 168.1 in data set C1 for training set and test set, respectively.

The data set A1 has the largest BCI. It implies that on average, the converted molecular

graph in data set A1 is the most complicated. Therefore, more training data may be needed
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in order to reduce the MAE of the ML model on data set A1. The BCIs in data set B1 and

C1 are close, although the type of elements in the two databases are not the same. It seems

like the topological complexity in data set B1 and diversity of nodes in data set C1 have a

complementary effect on BCI.
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Figure 5: The average Bertz complexity index and PDFs of Bertz complexity index for
datasets A1, B1, and C1. blue bar, training set. green bar, test set.

To further investigate the effect of BCI on performance of the ML model, we calculated

the PDFs of BCI for each data set. Figure 5 parts b to d present the PDFs of BCIs in each

data set. It reveals more details of the data sets. In all three data sets, the PDFs of BCI for

training set and test set are very close, which is similar to the PDFs of solvation free energy.
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That validates the split method of data set with InChikey is effective again. In addition,

we identify that the shape of the PDFs for data set A1 and C1 are similar. They are both

long-tailed distributions, like a Poisson distribution. That may be because more types of

elements are included in these two data sets, as they both have ten elements. The peaks

of these two PDFs are both between 0 to 50, which means the small molecules are main

components in BCI, but the contribution of large molecules to the average BCI cannot be

neglected. In data set A1, the contribution of large or complicated molecules in the tail part

is higher than data set C1. That makes the final BCI larger in data set A1 than data set

C1. For data set B1, its distribution is close to a Gaussian distribution. It does not include

more molecules with high BCI as in the other two data sets. Thus, eventually, the data sets

B1 and C1 have similar averaged BCIs. Also, as shown above, the predictions of our ML

model on these two data sets are consistent with their complexity. Based on these results,

we can infer that for a complicated data set like the molecular data set, the performance of

a graphic ML model is not only related to the absolute amount of training data, but also

the data complexity. As the dimension of molecular data may be quite high, that infers the

data sparsity problem in high dimensional space for training data.

For this reason, We do some tests with lower-dimensional subsets. We further evaluate

the performance of our ML model with subsets in the test sets, which only include certain

types of elements, e.g., C and H elements or C, H, and O elements. As shown in Figure 6, we

see that all three data sets have the same trend. The MAE values increases with the element

type complexity in these data sets. In these subsets, the simplest subset, which only includes

the C and H elements, has the smallest MAE value. The MAE values are 0.24 kcal/mol, 0.14

kcal/mol, and 0.44 kcal/mol in data set A1, B1, and C1, respectively. These MAE values

are much smaller than the MAE for the whole test set in these data sets. This is consistent

with group contribution theory of solvation free energy, although the "groups" here are in

high dimensional space. On the other hand, it indicates the ML model has relatively learned

"more" information for compounds which only contain C and H elements from the training
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data. Additionally, we notice that the MAE value of the test group with C, H, O, and N

elements in data set C1 is already higher than average in data set C1 test set (0.83 kcal/mol

vs 0.72 kcal/mol), which implies the training data set is lacking molecules consisting of C,

H, O, and N elements. The RMSE for the small test (1.37 kcal/mol) is also higher than the

average value 1.24 kcal/mol.
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Figure 6: MAE and RMSE of different subsets in test data of data sets A1, B1 and C1. (a)
A1. (b) B1. (c) C1.

Additionally, we provide a method to qualitatively estimate performance of the ML model

on predicting properties of new molecules via comparing the distances between molecular

graphs in the test set and training set. Here we show an example of a subset with 200
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molecules in data set A1 and select two molecules as the illustrative test set. We calculate

average pairwise distances between molecules in the training set, and between the training

set and each test molecule. The average distances in training set and each test molecule are

displayed in Figure 7(a). The PDFs of the distances are shown in Figure 7(b), which provides

more details. We can find that the peak of PDF for molecule B is higher than molecule A,

indicating the distance between the training set and B is farther than the distance between

the training set and A in general. More importantly, the distances between molecule B and

almost all training molecules are larger than 1.0, while there are some training molecules

within the distance range of [0.6, 0.8] from molecule A. Obviously, the distance for molecule

A is much smaller than molecule B. In Figure 7(c) we can also see the solvation energy

prediction of molecule A is much better than molecule B. An important reason is that there

are a sufficient number of training molecules that are close to molecule A, which results in a

prediction with greater accuracy.

Dimension reduction

To address the molecular data sparsity issue in high dimensional space and gain a deep

understanding of the relationship between the training set and the ML model prediction, we

analyze the training set with a model reduction approach. The covariance matrix that is used

in the GP method plays a key role in the GPR, and it provides a possible way of exploring

low-dimensional structures of the training data set that are critical to predict solvation free

energy. In other words, it provides a possible way to identify critical functional groups

(molecular fragments) that can be used as fundamental building blocks of real molecules,

and the solvation free energy of a molecule can be predicted based on examining which

groups are included in this molecule. To achieve this goal, we propose to associate molecules

with points Q1, Q2, · · · , Qm in Euclidean space R
d, where d is the dimension to be identified.

We aim to use the distance matrix of the aforementioned points in R
d to approximate the

covariance matrix, as such to identify an appropriate d. This d is the number of the critical
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Figure 7: Distances, PDF and prediction of two example molecules A and B. (a) Average
distances between the training set and test molecules A and B. (b) PDF of pairwise distances
between training molecules, distances between the training molecules and molecules A, and
B, respectively. (c) The actual number and prediction for solvation energy of molecule A
and B with the ML model.

functional groups (or molecular fragments). Given a trained GP model and training data

set, we have a covariance matrix C. For a fixed d, we generate points in R
d based on this

C as follows. We first define a matrix T as

Tij =
C2

1j + C2
i1 − C2

ij

2
. (23)
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Then we compute the eigenvalue decomposition of T :

T = USU⊤. (24)

Finally, let X = U
√
S, and the first d columns of X are the desired d-dimensional points in

R
d. Of note, the distance matrix of Qi, i = 1, 2, · · · , m generated in this way, denoted as C̃,

is an approximation of the covariance matrix C when d < m. Although it is possible that

C̃ = C, we can set a threshold for the difference ‖C̃ −C‖F to examine the accuracy of the

approximation. Here ‖ · ‖F is the Frobenius norm of a matrix.

Figure 8 illustrates the relative error ‖C̃ − C‖F/‖C‖F of the training data sets of A1,

B1, and C1. In all cases, the relative error is smaller than 10%. This indicates that we

only need to identify 8 critical functional groups to characterize the data sets B1 and C1

when predicting solvation free energy, which implies that these data sets have very good low

dimension structure. We also notice that for data set A1, we need d = 25. This is consistent

with the previous BCI analysis. As in data set A1, there are more types of elements (nodes).

When we try to identify the critical functional groups/molecular fragments of the data set

with model reduction approach, the effect of nodes (elements) on the number of critical

groups is stronger than the topology of a molecule. Even though we do not have a strategy
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Figure 8: Relative error ‖C̃ −C‖F/‖C‖F with respect to different d for different datasets.
The dash line corresponds to 10% relative error. (a)A1. (b)B1. (c)C1.

to identify specific functional groups at the moment, the data analysis above shows potential
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for achieving effective dimension reduction for molecules on solvation free energy prediction.

We also note that, because the distance matrix of points in R
d is invariant under drift or

rotation, identifying the map between basis in R
d and the critical functional groups requires

comprehensive investigation and delicate design, which will be a target of our future work.

In this work, we only show this potential via providing an abstract proof of concept in

mathematics. This method is also valuable for predicting other properties.

Conclusion

In this work, we introduced a GPR model for solvation free energy prediction. The proposed

GPR model used a marginalized graph kernel. A new similarity metric between molecules is

defined in the marginalized graph kernel by both molecular topology and geometry. There-

fore, the kernel can naturally adapt to molecules containing topological diversity and various

types of elements. We benchmarked the performance of the GPR model on solvation free

energy prediction across three data sets. To investigate the effect of different components

in solvation free energy calculation as the effect solvent and contribution of conformational

entropy, three solvation free energy data sets of our DFT calculations with implicit water

model, a subset of QM9 database of MD simulation with implicit water model and a subset

of experiment data in Freesolv database were built. We demonstrated that by tuning the

hyperparameters, the uncertainty that was generated by explicit solvent and/or conforma-

tion change does not affect the accuracy of our GPR model. And we found that our GPR

model with the marginalized graph kernel can predict solvation free energy at chemical ac-

curacy (<1 kcal/mol) for the subsets of QM9 database and Freesolv database while using

significantly small training data set (3% of QM9 database). Wu et al. have noticed that

generally, the performance of graph-based model is better than other methods, but is not

robust enough on complex tasks under data scarcity. We also identified the same issue for

our ML model on data set A1. The complexity of these data sets were further analyzed
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by model reduction method. We also found that the Bertz complexity index can be used

to describe the data scarcity in high dimensional space to some extent. Finally, we showed

a new method to evaluate the similarity between molecule in new test set and training set

as well as the property prediction, which based on the distance between molecular graphs.

This method provides a possible way on which to build a minimum training set to improve

prediction for certain test sets. The current results show good performance of our GP model

with graph kernel. Next step we will combine the current ML model with more descriptors

to provide effective guidance for the inverse molecule design of organic molecules in a redox

flow battery.

Data and Software Availability
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