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Nociceptin/Orphanin FQ Decreases Glutamate
Transmission and Blocks Ethanol-Induced Effects in the

Central Amygdala of Naive and Ethanol-Dependent Rats

Marsida Kallupi'?, Florence P Varodayan', Christopher S Oleata', Diego Correia'®, George Luu' and
Marisa Roberto*'

'Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA; “School of Pharmacy, Pharmacology
Unit, University of Camerino, Camerino, Italy; *Department of Pharmacology, Universidade Federal do Parand, Jardim das Américas, Curitiba,
Parand, Brazil

The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates
ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and
contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol
exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological
techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with
acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100—1000nM) diminished basal-evoked compound
glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly
decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and
ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated
(ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats.
Application of [Nphe I INociceptin(I—13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked
CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic
responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role
for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.

INTRODUCTION

Many studies, conducted using a variety of experimental
techniques, indicate that the amygdala has a crucial role in
drug dependence and ethanol-reinforcing actions (Koob
and Le Moal, 2001; Koob et al, 1998). Specifically, the
central nucleus of the amygdala (CeA) is considered critical
in mediating the behavioral effects of ethanol (Eckardt et al,
1998; Pich et al, 1995; Rassnick et al, 1993; Roberts et al,
1996). In particular, alcohol dependence is defined by the
emergence of a negative emotional state mediated in part by
the recruitment of pro- and antistress peptides in the
amygdala (Koob, 2008; Koob and Le Moal, 2008; Roberto
et al, 2012).
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Nociceptin/orphanin FQ (nociceptin) is a 17-amino-acid
opioid-like peptide structurally related to the opioid peptide
dynorphin A (Meunier, 1997; Reinscheid et al, 1995) that
acts at the receptor opioid receptor-like 1 now named
nociceptin receptors (NOP). Despite its structural homology
with opioid peptides, nociceptin does not bind to y, J, and
Kk opioid receptors nor do opioid peptides activate the NOP
receptor. Activation of membrane NOP receptors by
nociceptin results in the same sequence of intracellular
events induced by opioid receptors, namely negative
coupling with adenylyl cyclase, activation of inwardly
rectifying K* channels, and inhibition of Ca** current in
a pertussis toxin-sensitive manner (Ciccocioppo et al, 2000;
Meunier, 1997; Reinscheid et al, 1995). However, these
cellular responses to nociceptin are insensitive to naloxone
(Darland et al, 1998; Henderson and McKnight, 1997),
confirming that the pharmacological actions of this peptide
are not mediated by the classic opioid receptors. Despite
being opioid-like, nociceptin acts in the brain to produce
functional antiopioid effects (for a review see Martin-Fardon
et al, 2010; Ubaldi et al, 2013). NOP receptor expression
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and binding are widespread throughout the rodent and
primate brain, supporting the role of the N/OFQ-NOP
system in the modulation of central functions, such as
sensory nociceptive processing, learning and memory,
reward, mood, feeding, stress, and drug addiction
(Lambert, 2008; Mogil and Pasternak, 2001; Schank et al,
2012). Nociceptin has an anxiolytic-like effect (Jenck et al,
1997), decreases ethanol drinking, and prevents relapse-like
behavior in rats (Ciccocioppo et al, 2004; Kuzmin et al,
2007). Our laboratory has extensively studied the synaptic
effects of nociceptin on GABAergic transmission in the CeA,
where we observed a nociceptin-induced decrease in
GABAergic transmission and a blockade of the ethanol-
induced increase of GABA release (Roberto and Siggins,
2006b). It has been shown that nociceptin inhibits glutamate
release in various preparations, due to a reduction in the
excitability of the presynaptic terminals and/or a reduction
in transmitter secretion (Calo et al, 2000; Neal et al, 1999).
For instance, nociceptin reduced glutamatergic transmission
in the rat periaqueductal gray (Vaughan et al, 1997),
hippocampus (Tallent et al, 2001; Yu et al, 1997), dorsal
horn of the rat spinal cord (Liebel et al, 1997; Zeilhofer et al,
2000), arcuate nucleus (Emmerson and Miller, 1999),
suprachiasmatic nucleus (Gompf et al, 2005), lateral
amygdala (Meis and Pape, 2001), and rat thalamic reticular
nucleus (Meis et al, 2002). However, there are no studies on
the action of nociceptin on glutamatergic transmission in rat
CeA.

Although the majority (95%) of CeA neurons are
GABAergic, the CeA receives numerous glutamatergic
terminals from the basolateral amygdala (BLA) (Krettek
and Price, 1978; Pitkanen et al, 1995; Savander et al, 1995).
Glutamate is the major excitatory neurotransmitter and its
modulation by ethanol contributes to ethanol reinforcement,
tolerance, and dependence (Lovinger and Roberto, 2013).
Ethanol has consistent inhibitory actions on ionotropic
glutamate receptors, including the AMPA and NMDA
receptors (AMPARs and NMDARs) throughout the brain
(Lovinger et al, 2013). We have demonstrated that in most
CeA neurons from naive rats, superfusion of 5-66 mM
ethanol significantly decreased evoked compound glutama-
tergic excitatory postsynaptic potentials or currents (EPSP/
Cs), as well as pharmacologically isolated NMDAR- and non-
NMDAR-mediated EPSP/Cs (Roberto et al, 2004b). However,
these ethanol effects were not associated with presynaptic
actions on glutamate release in naive rats. In CeA slices
taken from chronic ethanol-treated rats, the acute ethanol-
induced depression of NMDAR-EPSP/Cs was enhanced via
both pre- and postsynaptic actions (Roberto et al, 2004b).

Therefore, in this study, we used an in vitro slice
preparation to assess the effects of nociceptin on both
evoked and spontaneous glutamatergic transmission in the
CeA of naive and ethanol-dependent rats and the interac-
tion of nociceptin with acute ethanol at these synapses.

MATERIALS AND METHODS
Animals and Slice Preparation

We used adult male Wistar rats (435.2+ 26 g; n=68) from
Charles River (Raleigh, NC). We used the standard ethanol
inhalation method of The Scripps Research Institute
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Alcohol Research Center to induce ethanol dependence
(Rogers et al, 1979). Rats were placed into ethanol vapor
chambers and intermittently exposed (14h on, 10h off) to
ethanol vapors for 4 weeks. On experiment days, chronic
ethanol-exposed rats were maintained in the ethanol vapor
chamber until preparation of the CeA slices (under ethanol-
free conditions). The blood alcohol level target range in the
rats during vapor exposure was 150-200mg%. Naive/
control rats were exposed to air 24 h per day. We prepared
CeA slices as detailed in the Supplementary Information
and as described previously (Cruz et al, 2012; Roberto et al,
2004b; Roberto and Siggins, 2006b).

Intracellular Recording of Evoked Responses

We recorded from CeA neurons (from the medial subdivi-
sion of the CeA) with sharp micropipettes filled with 3 M
KClI using discontinuous current-clamp mode, as described
previously (for details see the Supplementary Information
and Cruz et al, 2012; Roberto et al, 2004b). We evoked
EPSPs by stimulating locally within the CeA using a bipolar
stimulating electrode and pharmacologically isolated the
potentials using GABA, and GABAjp receptor blockers
(30 pM bicuculline and 1 pM CGP 55845A, respectively). We
examined paired-pulse facilitation (PPF) in each neuron
using paired stimuli at 50 and 100 ms interstimulus interval
(for details see Supplementary Information and Roberto
et al, 2004b). To determine the synaptic response para-
meters for each cell, we performed an input-output (I-O)
protocol (Cruz et al, 2012; Roberto et al, 2003, 2004a, 2010)
consisting of a range of five current stimulations (typically
between 50 and 250 nA), starting at the threshold current
required to elicit an EPSP. From this threshold, the stimulus
strength is increased in 3-5 steps of 30-50nA (rate of 1
pulse per 8s) until the voltage required to elicit the
maximum amplitude is reached. To show drug effect, we
normalized the three middle (omitting threshold and
maximal) stimulus intensities of five equal steps as 1-3 x .

Whole-Cell Patch-Clamp Recording of s/mEPSCs

We visualized CeA neurons in brain slices using infrared
differential interference contrast optics and a CCD camera
and made whole-cell voltage-clamp recordings with a Multi-
clamp 700B amplifier (Molecular Devices, Sunnyvale, CA), as
described previously (Cruz et al, 2012; Herman et al, 2013).
Glutamatergic sEPSCs were recorded in the presence of
GABA receptor blockers and mEPSCs in the presence of 1 uM
tetrodotoxin (TTX) (for details see Supplementary Informa-
tion). All 35 cells were clamped at —60mV for the duration
of the recording. In all experiments, series resistance
(<10MQ) was continuously monitored with a 10mV
hyperpolarizing pulse and experiments with >20% change
in series resistance were not included in the final analysis.

Drugs

We purchased picrotoxin and bicuculline from Sigma (St
Louis, MO), TTX from Biotum (Hayward, CA), CGP
55845A, DNQX, DL-AP5, [Nphel]Nociceptin(1-13)NH2,
and nociceptin from Tocris (Ellisville, MO), and ethanol
from Remet (La Mirada, CA). All other chemical reagents



were purchased from Sigma-Aldrich (St Louis, MO).
DNQX and bicuculline were dissolved in DMSO (0.01%),
and CGP 55845A, pr-AP5, [Nphel]Nociceptin(1-13)NH2,
and nociceptin were dissolved in distilled water and then
added to aCSF.

Data Analysis and Statistics

To analyze data acquired from intracellular and whole-cell
recordings, we used Clampfit 10.2 (Molecular Devices) and
MiniAnalysis 5.1 software (Synaptosoft), respectively. We
used GraphPad Prism 5.0 software (GraphPad Software, San
Diego, CA) and Statistica 7 Package (StatSoft, Tulsa, OK) for
all statistical analysis of results. The s/mEPSC results were
evaluated with cumulative probability analysis, and statis-
tical significance was determined using the Kolmogorov-
Smirnov, non-parametric two-sample test (Van der Kloot,
1991). The pooled data for each experimental condition
were then analyzed by paired #-test analyses for individual
means comparisons to evaluate single drug (nociceptin and
[Nphel]Nociceptin(1-13)NH2) effect within the same group
(naive or ethanol-exposed rats) or within-subject one-way
repeated-measures (RM) ANOVA to evaluate multiple drugs
(nociceptin, nociceptin + ethanol) effects. We used t-test
analyses to evaluate differences in individual means of
evoked EPSPs between two treatments (eg, when the effect
of each dose of nociceptin or the NOP receptor antagonist,
[Nphel]Nociceptin(1-13)NH2, was compared with the
respective baseline values). We also used within-subject
one-way RM ANOVA to compare EPSPs in the same group
of cells (naive vs dependent rats) after application of
different drugs (nociceptin, nociceptin+ ethanol). When
appropriate, the Student-Newman-Keuls post hoc test was
used to assess significance between treatments. To assess
differences resulting from ethanol exposure (naive-control
vs ethanol-dependent rats) and drug interaction between
groups, we used a two-way RM ANOVA. When appropriate,
the Student-Newman-Keuls post hoc test was used to assess
significance between treatments. We accepted statistical
significance at the P<0.05. All averaged values are
presented as mean £ SEM. We measured the EPSP ampli-
tudes before (control=baseline=predrug), during drug
application, and after (washout) drug application, and we
determined the percent change in EPSP amplitude at each
stimulus intensity using the equation: (value drug/value
control) x 100.

RESULTS

Nociceptin Reduces Glutamatergic Transmission in CeA
Neurons

We recorded intracellularly with sharp pipettes from 109
CeA neurons. The mean resting membrane potential (RMP)
was —78+1.7mV and mean input resistance was 125+
5.8 MQ.

We first generated a dose-response curve testing the
effects of four concentrations of nociceptin (100, 250, 500,
and 1000 nM) on evoked compound glutamatergic EPSPs in
naive-control rat CeA. Overall ANOVA demonstrated that
15min of nociceptin superfusion significantly (F(3,34) =
5.36, P<0.001) decreased the mean amplitude of evoked
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EPSPs. The histograms in Figure 1 express percent peak
decrease in evoked EPSP amplitudes at half-max stimulus
intensity obtained from the I-O relationship during
nociceptin superfusion. The lowest concentration of noci-
ceptin tested (100nM) did not significantly affect EPSPs
(86.9 £ 6.5% of control; P>0.05, n=6), whereas 250, 500,
and 1000nM nociceptin decreased EPSP amplitude to
73.81+4.6% (P<0.001, n=9), 749+4.1% (P<0.001,
n=18), and 81.5+6.0% (P<0.05, n=5), respectively
(Figure la). Because 250 and 500 nM nociceptin induced
similar and maximal inhibitions of the evoked EPSPs, we
used these concentrations throughout the rest of the study,
unless specified otherwise. We found that nociceptin, at
all the concentrations applied, did not significantly alter
neuronal RMPs and input resistance. Current-voltage
(I-V) relationship analysis also showed that 500nM
nociceptin had no significant effect on membrane potential,
conductance (Figure 1b and Supplementary Figure 1A and
B), or the number of action potentials upon depolarization
across the CeA cell types (Supplementary Figure 1C and D).

Nociceptin could alter pre- and/or postsynaptic sites to
decrease evoked EPSP amplitudes. To determine where
nociceptin acts to decrease glutamate transmission, we
examined PPF, a phenomenon whereby a secondary
synaptic response is influenced by a preceding primary
stimulus of equal intensity (Andreasen and Hablitz, 1994;
Manabe et al, 1993). Generally, changes in the PPF ratio
(second EPSP/first EPSP) are inversely related to transmit-
ter release such that a reduction of the PPF ratio is
associated with an increased probability of transmitter
release (Roberto et al, 2004b). We found that 250 and
500 nM nociceptin significantly (P<0.05 by paired t-test;
Figure 1c and d) increased the PPF ratios of EPSPs in CeA
neurons, suggesting decreased evoked glutamate release.
Specifically, 250nM nociceptin significantly (P <0.05)
increased the 50ms PPF ratio from 0.99+0.1 to
1.31+0.15, and 500nM nociceptin significantly (P<0.05)
increased 50 and 100ms PPF ratios from 1.32+0.09 to
1.94+0.19 and from 1.23 £0.09 to 1.45+ 0.07, respectively
(Figure 1c). The lowest and the highest nociceptin
concentrations used did not alter the PPF ratios (Figure 1c).

Nociceptin Blocks the Ethanol-Induced Decrease of
Glutamatergic Transmission in CeA Neurons

Here, we recapitulated the finding that ethanol significantly
decreases evoked glutamatergic responses in 11 CeA
neurons (Figure 2), as reported previously (Roberto et al,
2004b). Ethanol (44 mM, a dose producing maximal effects)
significantly (P<0.05 by paired t-test) decreased the mean
amplitude of evoked EPSPs to 81 +3% of control over the
three stimulus intensities (Figure 2a), with recovery on
washout. Ethanol did not alter the PPF ratios of EPSPs
(Figure 2b) and the I-V relationships (Figure 2c).

We previously reported that nociceptin strongly blocked
the ethanol-induced increase in GABA release at CeA
synapses (Roberto and Siggins, 2006b), so here we
investigated whether CeA NOP activation by nociceptin
alters the effects of ethanol on glutamatergic transmission.
To test the influence of NOP activation on the ethanol-
induced decrease of EPSPs, we first superfused a maximal
concentration of nociceptin (500 nM) for 12-15min and
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Figure |

Nociceptin decreases evoked excitatory postsynaptic potential (EPSP) amplitudes in the central nucleus of the amygdala (CeA) of naive rats.

(a, left panel) Histograms representing percent peak decrease in evoked (at half-max stimulus intensity) EPSP amplitudes during superfusion of different
concentrations (100, 250, 500, and 1000 nM) of nociceptin and washout. (Right panel) Representative recordings of evoked EPSPs in CeA neurons from
naive rats recorded before, during, and after washout from nociceptin application. Statistical significance of nociceptin’s effect compared with baseline by
paired t-test is indicated by *P<0.05 and **P<0.001. (b) |-V curve showing that superfusion of nociceptin (500 nM) does not change the RMP in rat CeA
neurons (n=15). (c) Nociceptin (250 and 500 nM) significantly increases the paired-pulse facilitation (PPF) ratio of evoked EPSPs using 50 and 100 ms
interstimulus intervals. Significance of the effect of nociceptin compared with baseline by paired t-test (*P <0.05). (d) Representative recordings of PPF at
both 50 (left traces) and 100 (right traces) ms in a CeA neuron from a naive rat before and during superfusion of 500 nM nociceptin.

then added 44 mM ethanol in the continued presence of
nociceptin (Figure 2d and e). The time course of Figure 2d
expresses the percent of control using the middle stimulus
intensity obtained from the I-O relationship of Figure 2e.
We observed the effects of nociceptin within 5-7 min of
superfusion (Figure 2d). One-way RM ANOVA showed
significant drug effect (F(2,23) =23.90, P<0.001). Specifi-
cally, nociceptin (500nM) significantly (P<0.05 by
Newman-Keuls test) decreased EPSP amplitudes (averaged
across all stimulus strengths) to 77.2 £ 8% of control, and
subsequent ethanol coapplication did not significantly alter
the EPSPs (70.1 £ 9% of control; P>0.05; Figure 2e). The
EPSP inhibition was partially reversible upon 30 min drug
washout. In another two neurons, ethanol further decreased
the amplitude of the EPSP, indicating that nociceptin did
not block the ethanol-induced depression of EPSPs.
Nociceptin also significantly (P<0.05 by paired ¢-test)
increased 50 and 100 ms PPF ratios from 1.25+0.2 to 1.85 £
0.2 and from 1.25%0.1 to 1.55 £ 0.2, respectively, whereas

Neuropsychopharmacology

the addition of ethanol did not further alter these PPF ratios
(50 ms, 1.67 +0.2; 100 ms, 1.45 £ 0.2). Similar to the 500 nM
nociceptin concentration, one-way RM ANOVA showed
significant drug effect of 250nM nociceptin (F(2,14)
=27.31, P<0.001), with a significant (P<0.05 by
Newman-Keuls test) decrease in EPSPs to 74.8+6% of
baseline and no further effect from ethanol coapplication
(73.7 £ 8% of baseline; n=>5).

In a second set of experiments, we inverted the order of
drug applications. Overall ANOVA showed a significant
drug effect (F(2,34) =30.18, P<0.001), whereby ethanol
significantly (P<0.05 by Newman-Keuls test) decreased
EPSPs to 84.0t£2.7% of control (averaged across all
stimulus strengths; n=6; Figure 2f) and nociceptin
coapplication had no further effect (79.4 £ 4.8% of control).
Neither ethanol nor nociceptin altered the 50 and 100 ms
PPF ratios (control: 1.27+0.18 and 1.31 +0.21; ethanol:
1.29£0.09 and 1.53+0.22; nociceptin: 1.22%0.17 and
1.4510.15; n=6).
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Figure 2 Ethanol decreases evoked excitatory postsynaptic potential (EPSP) amplitude in central nucleus of the amygdala (CeA) neurons of naive rats and
nociceptin blocks this effect. (a) Ethanol (44 mM) significantly (P<0.05; n= || by paired t-test) and reversibly decreases EPSP amplitudes to ~80% of control.
(Inset) Representative EPSP recordings in a CeA neuron during baseline, ethanol, and washout. (b) Ethanol had no effect on 50 or |00 ms paired-pulse facilitation
(PPF) ratios of EPSPs. (c) -V curve showing that superfusion of ethanol (44 mM) does not change the RMP in rat CeA neurons (n=11). (d) Time course of
changes in evoked EPSP amplitude induced by nociceptin (500 nM), concurrent application of ethanol, and washout (n = 8). (Inset) Representative CeA EPSP
recordings during baseline, nociceptin, nociceptin 4 ethanol, and washout. (e) Nociceptin significantly decreases the mean amplitudes of evoked EPSPs over the
middle three stimulus strength intensities tested. *Significance for P<0.05 of nociceptin effect compared with baseline. Subsequent application of ethanol (44 mM)
did not alter the EPSP amplitudes (n = 8). (f) Time course of changes in EPSP amplitude evoked by ethanol, concurrent application of nociceptin (250 nM), and
washout (n=6). (Inset) Representative CeA EPSP recordings during baseline, ethanol, ethanol + nociceptin, and washout. (g) Application of a NOP antagonist
([Nphelnociceptin(1—13)NH2) (N-Phe, | pM) does not alter the basal-evoked EPSP amplitudes (stimulus intensity equal to half-maximal EPSP amplitude) in | |
CeA neurons of control rats (left histogram). The NOP antagonist prevents the nociceptin-induced decrease of EPSP amplitudes (n = 4, middle histograms), but
does not prevent the ethanol-induced decrease of EPSP amplitudes (n =5, right histograms). *Significance P<0.05 of ethanol and NOP antagonist effects.
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To determine whether NOP receptors regulate baseline-
evoked glutamatergic transmission, and to test their
involvement in ethanol effects in the CeA, we tested
[Nphel]Nociceptin(1-13)NH2, a putative selective NOP
receptor antagonist (Cruz et al, 2012; Roberto and Siggins,
2006b). [Nphel]Nociceptin(1-13)NH2 (1 uM) did not alter
evoked EPSPs (106.7 +2.4% of control at half-maximal
stimulus intensity; n=11; by paired t-test; Figure 2g). To
verify that nociceptin decreased EPSPs in the CeA by
activating NOPs, we applied nociceptin (250 nM) in the
presence of the antagonist and found that nociceptin no
longer decreased the EPSP amplitude (Figure 2g). We also
tested whether NOP blockade affects ethanol-induced
decreases in EPSPs. One-way RM ANOVA showed a
significant drug effect (F(2,8) =29.86, P<0.001). Applica-
tion of the NOP antagonist did not alter ethanol’s ability to
significantly (P<0.05 by Newman-Keuls test) decrease
EPSPs (from 104.0 £ 5.2% to 87.2 £ 4.3% of control at half-
maximal stimulus intensity; n=>5; Figure 2g), ruling out
mediation of the ethanol effects by the NOP receptors.

Chronic Ethanol Exposure Does not Alter Nociceptin
Signaling in CeA Neurons

Next, we determined whether our chronic ethanol treatment
that induces ethanol dependence could alter the nociceptin/
NOP system and its interaction with acute ethanol in the
CeA. As reported previously, we did not observe a
significant difference between the baseline compound EPSP
I-O curves in slices from naive and ethanol-dependent
animals (recorded at early withdrawal 2-8h after ethanol
exposure; Figure 3a). We then tested two maximal
concentrations of nociceptin (250 and 500 nM) and overall
ANOVA showed a significant nociceptin effect (F(1,17)
=21.43; P<0.001) and (F(1,25) = 32.86; P<0.001) for both
concentrations in ethanol-dependent rats, but no chronic
ethanol treatment effects (compared with 11 and 18 cells
from naive rats). Similar to naive rats, 250 and 500 nM
nociceptin significantly (P<0.05) decreased EPSP ampli-
tudes to 77.3+2.8% (n=8) and 84.2+2.6% (n=9) of
control (averaged across all stimulus strengths; Figure 3b)
in the ethanol-dependent rats, suggesting that ethanol
dependence does not alter the nociceptin-induced decrease
in glutamatergic transmission in the CeA. We found that
250 nM nociceptin significantly (P<0.05 by paired t-test)
increased the 50 ms PPF ratio from 1.11 £ 0.15 to 1.76 + 0.21,
without altering the 100 ms PPF (1.46 £ 0.15 to 2.02 + 0.36)
and 500nM nociceptin significantly (P<0.05 by paired
t-test) increased the 50 and 100ms PPF ratios from
0.98 £ 0.09 to 1.22 £ 0.1 and from 0.96 = 0.07 to 1.16 + 0.09,
respectively (Figure 3c). Although the magnitude of the
500 nM nociceptin-induced increase in 50 and 100 ms PPF
ratios showed a tendency to be smaller in ethanol-
dependent rats (Figure 3c) compared with naive rats
(Figure 1c), overall two-way RM ANOVA did not reveal
any significance difference ((F(1,21) =2.39, P=0.1363) and
(F(1,21) =0.84, P=0.3691), respectively). To determine
whether NOPs regulate baseline-evoked glutamatergic
transmission in CeA neurons of ethanol-dependent rats,
we tested 1puM [Nphel]Nociceptin(1-13)NH2. Overall
ANOVA showed a significant drug effect (F(1,16) =28.79;
P<0.0001). Specifically, the NOP antagonist significantly
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(P<0.001) increased the EPSP amplitude to 114.5 £ 1.9% of
control (at half-maximal stimulus intensity; n=7;
Figure 3d), suggesting a significant tonic activation of
nociceptin/NOP signaling in the CeA of ethanol-dependent
rats. The NOP antagonist also significantly (P<0.05 by
paired t-test) decreased 50 and 100 ms PPF ratios from
1.28 £ 0.2 to 0.91 £0.09 and from 1.34+0.1 to 1.00 £ 0.03,
respectively.

In the CeA of ethanol-dependent rats, overall ANOVA
(F(1,18) = 89.45; P<0.0001) revealed that 44 mM ethanol
significantly (P<0.001) decreased the evoked compound
EPSPs (Figure 3e) to 83.7 £ 3.2 of control (averaged across
all stimulus strengths; n=9), similar to the ethanol effect in
naive rats (compare Figure 2a). Although acute ethanol had
no effect on PPF ratios in naive rats (Figure 2b), it
significantly (P<0.05 by paired t-test) decreased the 50
and 100 ms PPF ratios by 15-20% in ethanol-dependent rats
(Figure 3f and Roberto et al, 2004b).

Thus, we examined the interaction of nociceptin and
ethanol in the CeA of ethanol-dependent rats. One-way RM
ANOVA showed significant drug effect (F(2,20) =32.40,
P<0.001); specifically nociceptin (500 nM) significantly
(P<0.05 by Newman-Keuls test) decreased evoked EPSPs
and subsequent application of 44mM ethanol did not
further alter EPSP amplitude (it remained at about 80% of
control; n=7; Figure 4a and b). These results were similar
to those obtained from naive rats (compare Figure 2d and
e). Nociceptin significantly (P<0.05) increased 50 and
100 ms PPF ratios (baseline: 0.99 +0.08 and 0.97 £+ 0.09;
nociceptin: 1.3 +£0.1 and 1.21 £0.1) and ethanol coapplica-
tion did not further alter these PPF ratios (ethanol:
1.26 £0.13 and 1.18 £0.09; Figure 4c). Thus, in ethanol-
dependent rats, the nociceptin-induced inhibition of
glutamatergic transmission completely pre-empted the
effect of ethanol.

Nociceptin Decreases Spontaneous Glutamatergic
Transmission in the CeA of Naive and
Ethanol-Dependent rats

To further pursue the site of nociceptin action, we used
whole-cell voltage-clamp recording to study sEPSCs and
then mEPSCs in CeA neurons of naive rats. Generally, a
change in s/mEPSC frequency indicates an altered prob-
ability of transmitter release, and a change in s/mEPSC
amplitude reflects alterations in the sensitivity of post-
synaptic glutamate receptors (De Koninck and Mody, 1994;
Otis et al, 1994). Interestingly, the baseline frequency
(0.98£0.16 Hz, n=17) and amplitudes (15.23 £0.95pA,
n=17) of sEPSCs were not significantly (P>0.05, by
unpaired t-test) different from the baseline frequency
(1.13+0.18 Hz, n=16) and amplitude (13.17 £0.82pA,
n=16) of mEPSCs. In addition, 250 nM nociceptin sig-
nificantly (P<0.05 by paired ¢-test, n=>5) decreased sEPSC
frequency to 73.7+54% of control, and decreased
(P<0.05) sEPSC amplitude to 90.9%+2.2% of control
(Figure 5a and b), suggesting decreased presynaptic
glutamate release and postsynaptic alterations. The rise
time (control: 2.53 £ 0.3 ms; nociceptin: 2.46 + 0.3 ms) and
decay time (control: 5.4 + 1.4 ms; nociceptin: 5.3 + 1.6 ms) of
sEPSCs were unaffected by nociceptin (Figure 5b). Simi-
larly, nociceptin significantly decreased mEPSC frequency
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Figure 3 The effects of nociceptin on evoked EPSPs are unchanged in ethanol-dependent rats. (a) Central nucleus of the amygdala (CeA) baseline
compound glutamatergic transmission is equivalent in ethanol-dependent rats compared with control naive rats. Input/output curves of mean evoked EPSP
amplitudes. Note that the EPSPs are superimposable in the two groups using five equivalent stimulus intensities. (b) In the CeA of ethanol-dependent rats,
both 250 and 500 nM nociceptin significantly decreased the mean amplitudes of evoked EPSP over the middle three stimulus strength intensities tested.
*Significance of the nociceptin effect compared with baseline for P<0.05. (Inset) Representative evoked CeA EPSPs from ethanol-dependent rats during the
control, nociceptin application, and washout. (c) Nociceptin (250 and 500 nM) significantly increased the paired-pulse facilitation (PPF) ratio of evoked EPSPs
using 50 and 100 ms interstimulus intervals. *Significance of nociceptin compared with baseline for P<0.05 by paired t-test. (d) Application of the NOP
antagonist ([NphelJnociceptin(1—13)NH2) (I uM) significantly increases basal-evoked EPSP amplitudes (stimulus intensity equal to half-maximal EPSP
amplitude) in seven CeA neurons of ethanol-dependent rats. **Significance for P<0.001 of NOP antagonist compared with baseline. (e) Ethanol (44 mM)
significantly (P<0.05; n=9) and reversibly decreases EPSP amplitudes to ~80% of control over the stimulus intensities in CeA of ethanol-dependent rats.
(Inset) Representative EPSP recordings in a CeA neuron during baseline, ethanol (44 mM), and washout. (f) Ethanol significantly decreases the 50 and 100 ms
PPF ratio of EPSPs. *Significance for P<0.05.

to 80.5 £ 7.2% of control (P<0.05, n=7; Figure 5a and b),
suggesting nociceptin decreased presynaptic vesicular
glutamate release (action potential-independent release).
However, nociceptin did not alter mEPSC amplitude (93.25
+3.7% of control; Figure 5a and b), rise time (control:
2.49 + 0.4 ms; nociceptin: 2.52+0.3ms) and decay time
(control: 5.8 £ 2.0 ms; nociceptin: 5.9 = 1.7 ms; Figure 5b).
To assess whether NOPs regulate baseline spontaneous
glutamatergic transmission, we also tested the effect of the
receptor antagonist. Application of [Nphel]Nociceptin
(1-13)NH2 increased significantly (P<0.05), and to a
similar extent, both sEPSC and mEPSC frequency
(133.4+9.2% and 118.7+6.2% of control; n=6 and 5,
respectively) without altering amplitude or rise and decay

times; Figure 5c and d). Taken together, these results
indicate that nociceptin/NOP may tonically regulate basal
spontaneous CeA glutamatergic activity.

Although we did not find significant differences in the
nociceptin effects on evoked EPSPs in CeA of ethanol-
dependent rats, we performed whole-cell voltage-clamp
recordings in CeA neurons of ethanol-dependent rats.
Nociceptin (250 nM) significantly (P <0.05, n=5) decreases
sEPSCs frequency to 77.0 £ 6.2% of control similar to naive
rats (73.7 £ 5.4%). Nociceptin did not alter sEPSC amplitude
(97.9 £ 6.7% of control) or kinetics (Figure 5e). Similar to
naive rats (Figure 5d), [Nphel]Nociceptin(1-13)NH2 in-
creased (P<0.05) sEPSC frequency (137.0£12.3% of
control; n=7) in ethanol-dependent rats, without altering

Neuropsychopharmacology
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Figure 4 Nociceptin prevents the ethanol-induced decrease in evoked EPSPs in ethanol-dependent rats. (a) Time course of changes in evoked EPSP
amplitude induced by nociceptin (500 nM), concurrent application of ethanol, and washout in seven central nucleus of the amygdala (CeA) neurons of
ethanol-dependent rats. (Inset) Representative CeA EPSP recordings during baseline, nociceptin, nociceptin + ethanol, and washout. (b) Nociceptin
(500 nM) significantly decreases the mean amplitudes of evoked EPSPs compared with baseline over the middle three stimulus strength intensities tested
(*significance for P<0.05). Subsequent application of 44 mM ethanol did not alter the EPSPs (n=7). (c, Inset) Representative recordings of paired-pulse
facilitation (PPF) at 50ms in a CeA neuron from an ethanol-dependent rat during baseline, nociceptin, nociceptin 4 ethanol, and washout. In ethanol-
dependent rats, 500 nM nociceptin significantly increases the 50 and 100 ms PPF ratios of evoked CeA EPSPs (*significance at P<0.05). Ethanol in the

presence of nociceptin does not alter these PPF ratios.

amplitude or rise and decay times (Figure 5e), suggesting
that ethanol dependence does not alter basal nociceptin
signaling at the glutamatergic CeA synapses.

DISCUSSION

To our knowledge, this is the first electrophysiological study
on the interaction between nociceptin and ethanol on CeA
glutamatergic transmission and the influence of ethanol
dependence on this interaction. In brief, we demonstrate that
nociceptin decreases evoked glutamatergic responses and
blocks the acute ethanol-induced inhibition of these synapses
in naive and ethanol-dependent animals. Nociceptin also
decreases glutamatergic transmission mainly via inhibiting
spontaneous and vesicular release of glutamate in the CeA.
Nociceptin and its receptors represent a neuropeptide
system bearing structural and functional analogies with
classical opioid systems, but with a unique pharmacological
profile (Calo et al, 2000) and a critical role in drug addiction
and stress-related behaviors (Lambert, 2008; Mogil and
Pasternak, 2001; Schank et al, 2012). Several studies have
demonstrated that NOP activation blunts the reinforcing
and motivational effects of alcohol across a range of
behavioral measures (Ciccocioppo et al, 2000, 2003, 2004;
Kuzmin et al, 2003; Martin-Fardon et al, 2000, 2010),
suggesting that selective NOP agonists may represent a
promising strategy to treat alcoholism. Interestingly, non-
peptidergic, orally available, and brain-penetrant NOP
agonists may soon be ready for clinical evaluation
(Schank et al, 2012). Our laboratory has extensively studied
the effects of nociceptin and ethanol on CeA GABAergic
transmission. Given the possible clinical implications of this
neuropeptide with alcohol-related behaviors, we wanted to
assess the interaction between nociceptin and ethanol at
CeA glutamatergic synapses as well. Nociceptin decreases
glutamate release in many brain regions (Emmerson and
Miller, 1999; Meis et al, 2002; Meis and Pape, 2001; Vaughan
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et al, 1997). Similarly, here we found that nociceptin
decreases both evoked and spontaneous glutamatergic
transmission via both pre- and postsynaptic mechanisms
in CeA neurons of naive and ethanol-dependent rats. We
found that nociceptin significantly decreased the evoked
EPSP amplitudes and increased the PPF ratios of EPSPs,
suggesting a presynaptic site of action. Nociceptin also
reduced both the frequency and amplitude of sEPSCs,
suggesting that the peptide inhibits action-potential-depen-
dent glutamate release and postsynaptic functions. Further-
more, nociceptin decreased the frequency, but not the
amplitude, of action potential-independent mEPSCs, sug-
gesting that nociceptin acts at NOPs located at or near the
presynaptic terminal, but does not modulate postsynaptic
functions. Possible mechanisms of altered transmitter
release include Ca®* channels inhibition within the nerve
terminal and/or direct modulation of the release apparatus
(Miller, 1998). As mEPSCs are usually thought to result
from the spontaneous exocytosis of transmitter-containing
vesicles in the absence of Ca®™ influx (Miller, 1998; Yu and
Shinnick-Gallagher, 1998), our observation of quantitatively
equivalent inhibition induced by the same nociceptin
concentration of sEPSCs (73.7%), mEPSCs (80%), and
evoked EPSCs (73.8%) argues in favor of mechanisms
operating downstream of Ca’" entry (Wu and Saggau,
1994, 1997). Thus, in the CeA, like in the lateral amygdala
(Meis and Pape, 2001), hippocampus (Tallent et al, 2001),
and thalamus (Meis and Pape, 2001), nociceptin inhibition
of glutamate release is likely to involve Ca’* entry-
independent mechanisms (Meis and Pape, 2001). Future
studies into the cellular mechanism by which NOPs, which
are Gi/Go-coupled receptors, mediate this presynaptic
inhibition need to be performed. For instance, as these
receptors can inhibit adenylyl cyclase, which decreases
synaptic release, this could be a common mechanism
(Tallent, 2008). In summary, it seems feasible to conclude
that the effects of nociceptin on evoked and sEPSP/Cs
reflect predominantly presynaptic effects, although some
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Figure 5 Nociceptin decreases spontaneous glutamatergic transmission mainly via decrease in glutamate release. (a) Representative spontaneous EPSCs
(sEPSCs) and miniature EPSCs (mEPSCs) recordings in rat central nucleus of the amygdala (CeA) neurons before and during 250 nM nociceptin application.
(b) Mean + SEM frequency, amplitude, rise, and decay time of SEPSCs and mEPSCs for CeA neurons from control-naive rats. Nociceptin significantly decreased
the sEPSC and mEPSC frequencies indicating presynaptic inhibition of both spontaneous and vesicular release of glutamate in CeA. *#Significance of nociceptin
effect compared with baseline by paired t-test for P<0.05. Nociceptin also significantly decreased the sEPSC amplitude (*significance at P<0.05), suggesting
also postsynaptic effects. (c) Representative sEPSC and mEPSC recordings in rat CeA neurons before and during | pM [Nphe | nociceptin(1—13)NH2 in CeA
neurons of control rats. (d) Mean = SEM frequency, amplitude, rise, and decay time of SEPSCs and mEPSCs for CeA neurons from control-naive rats. The NOP
antagonist significantly increased the mean sEPSC and mEPSC frequencies (*significance at P<0.05), indicating presynaptic enhancement of both spontaneous
and vesicular release of basal glutamate in CeA. (e) Mean £ SEM frequency, amplitude, rise, and decay of sEPSCs for CeA neurons from ethanol-dependent rats.
Nociceptin significantly decreased (*significance at P<0.05) and the NOP antagonist significantly increased (*significance at P<0.05) the mean sEPSC
frequencies, indicating presynaptic actions of the nociceptin system on spontaneous glutamate release in CeA.

postsynaptic sites of action are also observed. Given our
recording conditions (recording at RMP, no modified
magnesium concentration), our CeA excitatory synaptic
responses are mediated primarily by non-NMDA receptors
(Roberto et al, 2004b).

In the context of nociceptin-ethanol interactions on
evoked glutamatergic responses, acute ethanol also de-
creases CeA glutamatergic transmission (Roberto et al,
2004b). Although the nociceptin-induced decrease in
evoked EPSP amplitudes was associated with a significant

increase in PPF ratio, the ethanol-induced inhibition of
EPSPs was not, indicating a presynaptic site of action for the
peptide, but not for ethanol. Notably, in naive rats when
nociceptin is applied first, it prevents the ethanol-induced
inhibition, and when ethanol is applied first, it occludes the
nociceptin-induced decrease in glutamatergic transmission.
Thus, the occlusion effects observed with the combined
drugs are likely due to nociceptin-induced presynaptic
inhibition of glutamate release, which consequently impairs
postsynaptic responses and ethanol’s ability to modulate

Neuropsychopharmacology
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them. Conversely, ethanol-induced postsynaptic inhibition
of EPSPs likely masks the ability to detect nociceptin’s
presynaptic effects on glutamate release. However, we
cannot rule out that these drugs target common mechan-
isms at postsynaptic sites, because the order of drug
(ethanol and nociceptin) application does not affect the
reciprocal blockade of glutamate transmission and the
magnitude of the ethanol-induced glutamatergic inhibition
is comparable to that of nociceptin. In this case, it is
possible that ethanol and/or nociceptin (whichever is
applied first) blocks postsynaptic glutamate receptors,
preventing channel opening upon ligand binding and
masking changes in presynaptic glutamate release.
Although nociceptin-induced increases in PPF ratios
suggest a decreased probability of transmitter release
(Mennerick and Zorumski, 1995; Salin et al, 1996), these
effects may be concurrent with postsynaptic mechanisms
under some conditions (Wang and Kelly, 1997).

In the ethanol-dependent rats, ethanol postsynaptically
decreases evoked EPSPs (Roberto et al, 2004b), and also
decreases PPF ratios (suggesting increased glutamate
release) and nociceptin still prevented the ethanol-induced
inhibition of these evoked responses. Thus, owing to the
occlusive interaction between nociceptin and ethanol, we
speculate that the target mechanisms between these two
agents in CeA neurons of ethanol-dependent rats are likely
at a presynaptic site. These combined results indicate a
complex cellular mechanism that underlies the effects of
ethanol and nociceptin on evoked EPSPs.

Finally, application of the NOP antagonist revealed tonic
NOP facilitatory activity on spontaneous glutamate release,
but not evoked glutamatergic activity in the CeA of naive
rats, suggesting tonic activity of endogenous nociceptin
signaling only on spontaneous transmission. Pretreatment
of CeA neurons with the NOP antagonist blocked the
nociceptin-induced inhibition of evoked EPSP amplitudes,
indicating that nociceptin exerts its effect through NOPs.
Notably, NOP antagonism did not alter ethanol effects on
evoked EPSPs, suggesting that these receptors do not
mediate ethanol inhibition of glutamatergic transmission
in the CeA.

Impaired glutamatergic neurotransmission represents a
primary molecular mechanism underlying long-term effects
of chronic alcohol consumption (Lovinger et al, 2013;
Roberto et al, 2004b, 2006a). Thus, we also investigated the
effects of chronic ethanol on the nociceptin/NOP system and
glutamatergic transmission within the CeA. Here, we report
that in ethanol-dependent rats, the nociceptin inhibitory
effects on both evoked and spontaneous glutamate transmis-
sion were similar to those observed in naive animals.

Although counterintuitive, the lack of overall difference of
exogenously applied nociceptin on glutamatergic transmis-
sion in ethanol-dependent animals, compared with naive
animals, suggests a fundamental functional role of the
nociceptin system in the maintenance of homeostasis. On
the basis of our data of evoked glutamatergic responses,
the NOP antagonist significantly increased glutamatergic
responses only in ethanol-dependent rats, suggesting
increased NOP levels/functions after chronic ethanol and
revealing a tonic inhibitory action at the CeA glutamatergic
synapses. We hypothesize that basal NOP activity in
the CeA is generated by endogenous nociceptin tone

Neuropsychopharmacology

that diminishes local glutamate release to dampen local
excitation and local inhibition as reported previously (Cruz
et al, 2012; Roberto and Siggins, 2006b). Importantly, NOP
mRNA expression and NOP binding sites are highly
enriched in the amygdala (Andero et al, 2013). Nociceptin
reduces GABAergic transmission in the CeA via decreased
presynaptic GABA release, and prevents and totally reverses
the acute ethanol-induced increases in GABA release
(Roberto and Siggins, 2006b). In the CeA from alcohol-
dependent rats, the depressant effect of nociceptin is signi-
ficantly stronger than in those from naive rats, suggesting
that the nociceptin system regulating GABAergic synapses
adapts during chronic alcohol exposure (Roberto and
Siggins, 2006b; see Supplementary Figure 2B). Nociceptin
also blocks the CRF-induced increase of GABA release via
the presynaptic PKA pathway, a common signaling pathway
that is targeted in opposing directions by nociceptin and
CRF to regulate GABA release (Cruz et al, 2012). On the
basis of these data on glutamate and our previous work on
nociceptin effects on GABAergic transmission, it seems
reasonable to assume a functional ‘fine tuning’ role of
nociceptin/NOP system in the amygdala in the development
of ethanol dependence and other anxiety disorders (Andero
et al, 2013).

Alcoholism represents a significant health and economic
burden with a limited number of effective therapeutic
options. One currently available clinical treatment is
acamprosate (Campral) (De Witte et al, 2005; Koob et al,
2002; Mann et al, 2008), which is thought to stabilize the
disrupted chemical balance in the alcoholic brain, possibly
by antagonizing glutamatergic receptors. Thus, the devel-
opment of additional therapeutics such as an NOP agonist
may represent a novel potential target for treating alcohol
dependence.
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