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Brain connectivity methods have tremendous potential to expand our understanding of
the brain, especially when added to existing knowledge gained through more traditional
structural and functional brain imaging methods. Instead of examining isolated brain regions
performing a function or individual regions affected by a disease, a network-level approach
appreciates the complex organization and interactions of the brain. Through diffusion weighted
imaging, we can visualize the white matter pathways of the brain in vivo, thus modeling the
structural highways and roads that support efficient brain function. Understanding how these
measures of structural connectivity change with development is key for a fuller understanding of
healthy brain development, as structure, function, and connectivity all interact. Additionally, it is

necessary for determining how and when dysfunction occurs in neurodevelopmental disorders.
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As many of these disorders are genetically influenced, examining how risk genes affect brain
connectivity might shed light on the mechanisms by which these genes have their effect. Lastly,
one of the hallmarks of development is sharpening cognitive skills, which are often significantly
impaired in neurodevelopmental disorders. In order to understand both typical and atypical
development, determining how connectivity supports cognition is key. Especially with new brain
metrics, such as those in graph theory, the association between brain connectivity and cognition
is not well known, and presents exciting research potential. Altogether, determining the
development, genetic, and cognitive correlates of structural brain connectivity will integrate with
existing knowledge about brain structure and function to give us a fuller understanding of the
interrelated processes that occur throughout development. This will form a foundation from
which we can base future investigations into how connectivity is affected in neurodevelopmental

disorders.
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CHAPTER 1

Introduction

There has been tremendous growth in the field of brain connectivity, as both the technology to
assess connectivity improves, and the applications expand. Combined with existing and ever-
improving knowledge about brain structure and function, research into brain connectivity is the
third pillar necessary for a comprehensive understanding of the brain. Many psychiatric disorders
begin to surface in adolescence, highlighting the importance of studying connectivity during this
developmental stage. Traumatic brain injury during development can be especially detrimental to
later cognitive function. By defining the developmental trajectory in typically developing
individuals, we can determine how and when individuals with disorders or injury deviate from
the typical trajectory. Further, as we know that many psychiatric disorders are genetically
influenced, we can map how risk genes associated with psychiatric disorders are linked with
brain connectivity in the hopes of elucidating the mechanisms of disease. For common risk
genes, examining effects in healthy populations has some benefit in that the effect of the disorder
itself on the brain does not need to be considered. Finally, understanding the cognitive correlates
of connectivity measures is a necessary step for tying these measures, some of which can be
highly mathematical, back to measures that are more tangible and more clearly associated with
brain function.

The following section, 1.1 Mapping connectivity in the developing brain, gives an
introduction to the work that has been done mapping structural and functional connectivity
across development, both in typically developing individuals, and in individuals with

neurodevelopmental disorders. In addition, this section gives an introduction the methods used in



this dissertation, including high angular resolution diffusion imaging (HARDI), tractography,
and graph theoretical analyses. Further details of the rich club organization of the brain are
discussed in section 1.4. Background and methods for Aims 2 and 3 will be covered in sections
1.2, 1.3, and 1.4. The vast majority of these analyses have been completed on data from the
Queensland Twin Imaging study (QTIM), a 5-year project collecting neuroimaging, genetic, and
cognitive measures on healthy twins. Most of the twins are between 20-30 years old, with
additional cohorts collected at 12 years old and 16 years old. The demographics for this study are

shown in Table 1.

Zygosity
N (m/f) Age (Mz/Dz/sib)
12 year old cohort 53 (26/27) 12.31(0.18) 16/37/0
16 year old cohort 63 (35/28) 16.17 (0.36) 17/46/0
20-30 year old
cohort 1051 (404/647) 22.86 (2.84) 389/556/106
Total 1167 (459/708) 21.97 (3.85) 422/639/106

Table 1. Demographic summary of the QTIM dataset. The dataset is broken into 3 main cohorts.
Total number, male/female ratio, average age and standard deviation, and the number of
monozygotic, dizygotic, and siblings are given for each cohort, and in total.



1.1 Mapping connectivity in the developing brain

This section is adapted from:

Dennis EL. & Thompson PM (2013). Mapping Connectivity in the Developing Brain.

International Journal of Developmental Neuroscience, 31(1), 525-542.
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1. Introduction

After birth, the brain undergoes remarkable changes as it adapts
and learns in a new environment. Over a century of neuroanato-
mical research has revealed how the brain changes structurally
and functionally throughout development; the last thirty years
have also seen the widespread use of brain imaging to probe func-
tional activation and coherence, as well as other dynamic brain
changes (reviewed by Casey et al., 2000). In addition to understand-
ing these changes, it is equally important to understand how the
underlying structural and functional connectivity of the mature
adult brain are set up and refined in childhood and adolescence.
With novel variants of MRI - such as diffusion imaging and rest-
ing state functional MRI — we now have the technology to image
neural pathways reliably, and to assess relationships between the
activity of different brain regions, opening up new avenues for
research.

Diffusion weighted imaging (DWI) is a method that allows us
to visualize the diffusion of water along axons and thus visual-
ize axonal pathways. Originally based on the observation that the
MRI signal is reduced when water is diffusing (Stejskal and Tanner,
1965), increasingly elaborate scanning methods were developed to
assess the primary directions in which water is diffusing, at each
location in the living brain. By modeling the directional diffusion of
water as an ellipsoidal shape, or “tensor”, at each voxel in the brain,
diffusion tensor imaging (or DTI) may be used to follow the major
fiber bundles of the white matter, and map smooth tracts running
from one brain region to another. More recently, high angular res-
olution diffusion imaging (HARDI) has been developed, offering
some advantages over DTI, as it can better map tracts in regions
with crossing fibers (Jahanshad et al., 2011). Fractional anisotropy
(FA), the degree to which water tends to diffusein one concentrated
direction (along the axon), is one of the most common measures
used to assess axon integrity. Apparent diffusion coefficient (ADC)
or mean diffusivity (MD) measures the overall magnitude of diffu-
sion, regardless of the directions; low values for mean diffusivity
indicate greater organization. As a general rule of thumb - which
has many exceptions - higher FA and lower MD tend to reflect more
highly developed, more strongly myelinated tracts, with a higher
axonal conduction speed. Many comparisons of diseased versus
normal subjects find lower FA and higher MD in disease—this is
also a general trend in the studies below, but is not universally the
case.

The improved ability to disentangle fibers that mix and cross
results from collecting more diffusion-weighted images at more
angles, in conjunction with mathematical models that can resolve
more than one dominant fiber direction in any given voxel (Cetingul
et al., 2012a, 2012b). HARDI - essentially a more advanced form of
diffusion imaging than DTI - differs from DTI in collecting diffu-
sion data in more directions. It models the overall diffusion profile
at each point in the brain using orientation distribution functions
(ODFs)instead of tensors. ODFs estimate the probability of diffusion
in each direction at each voxel, instead of assigning a single dom-
inant diffusion direction to a given voxel (Tournier et al., 2004).
For these reasons, HARDI is better at resolving crossing fibers (such
as the corpus callosum and the long association fibers), a major
issue for DTI (Tuch et al., 2002). These can then be separated and
individually analyzed, giving a more accurate view of the brain’s
anatomical connections (Zhan etal., 2009a; Jin et al., 2012). As more
directional scans are collected, longer scan times are needed, and

this has provoked major efforts to speed up diffusion imaging (Zhan
etal., 2011).

Resting-state fMRI (rsfMRI) is a branch of research based on the
idea that distant brain regions can be functionally coupled, whether
ornot theyare structurally connected. Rs-fMRIdata can be collected
either in the presence or absence of a task. This coupling can be
measured through the blood oxygenation level dependent (BOLD)
time-courses of these distant regions. The phenomenon of syn-
chronized low-frequency fluctuations (~0.01-0.1 Hz) in the BOLD
signal of known functional networks was first found by Biswal et al.
(1995), and led to the discovery of a number of temporally coher-
ent networks (Damoiseaux et al., 2006; Fox et al., 2005) that have
beenreplicated across individuals (Beckmann et al., 2005) and have
high test-retest reliability, even in children (Thomason et al.,2011).
There are three main methods to assess functional connectivity that
we will consider here: seed-based, ICA (i.e., independent compo-
nents analysis), and graph theory. In the seed-based approach, the
researcher extracts the time course of a seed (region of interest) and
then correlates that time course with the time courses of the rest
of the voxels in the brain, to search for matches (Fox and Raichle,
2007). Brain regions with a high degree of positive correlation with
the seed - i.e., those with a very similar time course - are thought
to be functionally coupled. ICA (independent components analysis)
is model-free, meaning that the researcher does not select a seed or
ROL Rather, the four-dimensional resting-state data can be decom-
posed into time courses and associated spatial maps, describing
the temporal and spatial characteristics of the components making
up the data (Beckmann et al., 2005). The same intrinsic connec-
tivity networks (ICNs) can be seen with both seed-based and ICA
approaches, and each method offers some advantages and dis-
advantages. Many possible roles have been attributed to ICNs,
including memory functions, organization and coordination of neu-
ronal activity, and priming the brain for coordinated activity (Fox
and Raichle, 2007; Seeley et al., 2007). ICNs are altered in a wide
range of psychiatric and developmental disorders, further motivat-
ing the need to establish how they develop in healthy individuals
(Greicius, 2008), as well as metrics of normal brain function based
on resting state data.

More pragmatically, there is also a major effort to under-
stand how quickly information on brain connectivity can be
collected, with techniques available today. When young children
are assessed, scan times should be as short as possible without sac-
rificing important information, to avoid placing undue burden on
the participants (Jahanshad et al., 2010; Zhan et al., 2008, 2009b,
2012a).Ongoing work is also determining how the chosen scanning
protocols affect the maps of brain connectivity that are recovered
(Zhan et al., 2012b). Clearly, the ability to pool and compare data
collected worldwide on brain connectivity — including changes
across development — depends on understanding how connectiv-
ity measures might depend on the scanners, protocols and methods
used to extract maps of the brain’s connections.

In this review, we will cover developmental changes in func-
tional and structural connectivity in healthy, typically developing
individuals (Table 1), along with a few illustrative examples of
how connectivity may be disrupted in developmental disorders
(Table 2). There is a much wider body of research covering how
functional and structural connectivity are affected in individuals
withneurological or psychiatric disorders, but those are beyond the
scope of thisreview (Greicius, 2008; Lim and Helpern, 2002 ; Sexton
etal., 2009; Seyffert and Silva, 2005; Uddin et al., 2010; please also
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Table 1
Studies of age effects on structural and functional connectivity in typically developing subjects covered in this review.
Authors Ages studied Fund(tional) or Struct(ural) Analyses
Morriss et al. (1999) 30 subjects, 1 day-17y Struct DTI
Mukherjee et al. (2001) 153 subjects, 1 day-11y Struct DTI
Zhai et al. (2003) 20 neonates, 8 adults (mean age 28 y) Struct DTI
Gilmore et al. (2004) 20 neonates Struct DTI
Ben Bashatetal. (2005) 36 subjects, 4mo-23y Struct DTI, DWI
Barnea-Goraly et al. (2005) 30 subjects, 6-19y Struct DTI
Schneider et al. (2004) 52 subjects, 1 day-16y Struct DTI (high angular resolution)
McLaughlin et al. (2007) 10 subjects, 7-12 y; 36 sub 13-18 y, 25 sub 25-40y, Struct DTI
11 sub 60-80y
Hasan et al. (2009a,b) 36 subjects, 6-19y; 63 subjects, 20-59y Struct DTI, tractography
Giorgio et al. (2008) 42 subjects, 13-21; 20 subjects, 23-42 y Struct DTI (high angular resolution)
Gaoetal. (2009a) 60 subjects, 3 weeks-2 y Struct DTI
Kochunov et al. (2010) 831 subjects, 11-90y Struct DTI
Asato etal. (2010) 114 subjects, 8-28 y Struct DTI
Chiang et al. (2011) 705 subjects, 12-29y Struct DTI

Supekaret al. (2010)

Taki et al. (2012)
Jahanshad etal. (2012)
Gong et al. (2009)
Hagmann et al. (2010)
Fanetal (2011)
Dennis etal. (2013)
Redcay et al. (2007)
Lin et al. (2008)
Fairetal. (2008)

Kelly et al. (2009)
Dosenbach etal. (2010)
Fransson et al. (2007)
Liu et al. (2008)
Thomasonetal. (2008)
Gaoetal (2009b)
Stevens et al. (2009)
Thomasonetal. (2011)
Fairetal. (2007)
Supekar et al. (2009)
Fair et al. (2009)

In total: 23 sub 7-9y, 22 sub 19-22 y, for DTL: 18 sub
7-9y,15sub 19-22 y

246 subjects 5-19y

615 subjects 20-30y

95 subjects 19-85y

30 subjects 18 mo-18y

28 subjects 1 mo-2 y (longitudinal)
439 subjects 12-30y

13 subjects 30-50 mo
38sub2-4w(261y,212y

66 sub7-9y,53 10-15y,9119-31y
14 sub 8-13, 12 13-17, 14 19-24
61sub7-11y,6124-30y

12 premature 24-27 w GA

11 sub 11-14 mo

16sub9-12y

20 neonates, 24 1y, 27 2 y, 15 adults (mean age 30)
100sub 12-30y

65 sub 9-15 y (longitudinal)
49sub7-9y,43 10-15y,4721-31y
23sub7-9y,2219-22y

66 sub7-9y,5310-15y,9119-31y

Struct and Func

DTI, tractography, ICA

Struct DTI

Struct DTI

Struct graph theory
Struct graph theory
Struct graph theory
Struct graph theory
Func seed-based

Func seed-based

Func seed-based

Func seed-based

Func seed-based

Func ICA

Func ICA

Func ICA

Func ICA, graph theory
Func ICA, Granger causality
Func seed-based/ICA
Func graph theory
Func graph theory
Func graph theory

Y indicates years, mo indicates months when referring to age of subjects. GA: gestational age, func: functional, struct: structural.

see our previous review: Thomason and Thompson, 2011). Here
we consider a few developmental disorders that have been linked
to alterations in structural and/or functional connectivity: autism,
fragile X syndrome, 22q11.2 DS (deletion syndrome), Williams syn-
drome, ADHD (attention deficit hyperactivity disorder), and Turner
syndrome. A few other recent reviews focus on the development of
functional connectivity (Power et al., 2010; Uddin et al., 2010) or
structural connectivity (Cascio et al., 2007; Schmithorst and Yuan,
2010) either in typically developing or atypically developing indi-
viduals (Uddin et al., 2010; Walter et al., 2009). Here we consider
how structural and functional connectivity develop in typically
developing subjects and subjects with developmental disorders.
Measures of structural and functional connectivity are related,
and the patterns of coherent activity depend on the anatomical
scaffolding where they take place. Establishing the developmental
trajectory of these measures in typically developing individuals is
critical to a thorough understanding of disorders that may affect
themn.

2. Structural brain development in healthy subjects

2.1. Developmental studies using structural MRI in typically
developing individuals

Before we launch into our review of brain connectivity, first
we give a brief background on brain structural development to
put the subsequent sections in context. Changes in brain struc-
ture after birth are well established, from both post mortem and
in vivo neuroimaging studies: the cerebrum increases in size into

early adulthood (Giedd et al., 1999; Sowell et al., 2002; Gilmore
et al., 2007; Knickmeyer et al., 2008), gray matter (GM) volume
rises in infancy and then later decreases at different rates across
the brain (Fig. 1; Giedd et al., 1999; Sowell et al., 1999, 2003a,b;
Gogtay et al., 2004; Gilmore et al., 2007), and white matter (WM)
volume increases well beyond adolescence into middle age (Giedd
et al., 1999; Sowell et al., 2002; Gilmore et al., 2007; Knickmeyer
et al., 2008). Rates of growth for different brain regions have even
been mapped in neonates and infants, based on anatomical MRI
(Gilmore et al., 2007; Knickmeyer et al., 2008). Building on early
work by Gogtay et al. (2004), Shaw et al. (2008) found that corti-
cal thickness follows different trajectories depending on the brain
region. Intriguingly, the complexity of the growth trajectory of
the brain region (linear vs. quadratic vs. cubic) seemed to corre-
spond to the complexity of the laminar architecture. As a general
principle, many of the last cortical areas to mature - those with
the most protracted period of development - are typically those
that are phylogenetically most recent and responsible for higher
order cognitive processes, such as the frontal and prefrontal cor-
tices (Gogtay et al., 2004). A great deal of work in developmental
neuroscience has focused on studying the relatively late matura-
tion and remodeling of the frontal lobe gray matter, which shows
detectable changes on MRI well into late adolescence, long after
the maturation of primary sensorimotor and visual cortices. It has
been argued that the natural process of gray matter reduction in
adolescence is abnormally intensified or derailed in some forms of
psychosis, including schizophrenia. “Time-lapse maps” of abnor-
mal cortical development show a dynamically spreading wave of
adolescent gray matter loss in schizophrenia (Thompson et al.,
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Fig. 1. Decreases in regional gray matter volume, in normal children, between age 5 and age 20. As a general principle of development, cortical regions that are concerned
with more low-level, primary functions - such as vision and sensation — mature more quickly than the regions subserving higher order cognition. Here the loss of gray matter
volume is thought to be due to greater myelination of the cortex, rather than solely due to synaptic and dendritic pruning. Vascular and glial changes many also play a role.

Reprinted with permission from Gogtay et al. (2004).

2001; Vidal et al,, 2006), which may even be partially opposed
by some antipsychotics (Thompson et al, 2009). As the cellu-
lar basis of these cortical changes has remained enigmatic and
hotly debated, there is renewed interest in whether new meth-
ods to probe brain connectivity will reveal more about normal
changes in the frontal circuitry—whether connections are elim-
inated or “pruned”, and to what extent aberrant myelination is
implicated.

Zielinski et al. (2010) examined the structural covariance of
regions known to be “seeds” for functional connectivity networks
and found different trajectories for different networks. Some con-
tinuously grew in extent, while others peaked in adolescence
and were then pruned. On a much smaller scale, Huttenlocher
found that the number and density of synapses peaks within the
first few years after birth, then steadily declines over the lifespan
(Huttenlocher, 1990). The age at which synaptic number and den-
sity peaks differs for different brain regions (Huttenlocher and
Dabholkar, 1997).

2.2. Developmental studies using diffusion weighted imaging in
typically developing individuals

Changes in structural brain connectivity (i.e., anatomical con-
nections) have been mapped using diffusion tensor imaging (DTI),
and more recently with high angular resolution diffusion imaging
(HARDI). Both HARDI and DTI allow us to non-invasively visualize
axonal pathways in vivo by modeling the diffusion of water along
axons. Fromthe set of diffusion tensors at each point in the brain, we
can determine vectors along which the diffusion is greatest and line
them up to create smooth tracts (Fig. 2). A vast range of methods
are available to perform fiber tracking—also known as tractogra-
phy; the methods vary in terms of whether any manual interaction
is needed, and whether they extract a specific tract in the brain

(such as the arcuate fasciculus, which is involved in language) or
whether they extract all the fibers in the brain at once. Whole-brain
tractography can extract all the fibers in the brain at once. The vast
number of resulting curves can be clustered or grouped into bun-
dles that an anatomist would recognize, prior to further analysis or
cross-subject comparison. The integrity and geometry of the tracts
can also be measured.

Morriss et al. (1999) scanned 30 subjects between 1 day old
and 17 years old with DTI, and found a decrease in ADC across a
number of WM areas with age. In cellular terms, the growth of
myelin sheaths tends to restrict water diffusion, and the overall
amount of diffusion (the ADC) tends to fall as the brain devel-
ops. In a retrospective analysis, Mukherjee et al. (2001) examined
DTI data from 153 subjects between 1 day old and 11 years old
and found increases in apparent anisotropy (AA; a measure simi-
lar to FA) in the corpus callosum (CC), basal ganglia and thalamus.
Again, this is in line with a general pattern where higher FA values
reflect more directionally constrained diffusion, which increases as
children grow older, largely because of myelin sheaths hindering
water diffusion across axons. Zhai et al. (2003) examined healthy
adults and neonates with DTI and found higher ADC and lower FA
in the CC, internal capsule (IC), and WM of the frontal and occipi-
tal cortex of neonates compared to adults, as expected. In another
study of neonates, Gilmore et al. (2004) saw an increase in FA
in the splenium of the CC with age. Gao et al. (2009a) scanned
60 subjects between 3 weeks and 2 years old and found that FA
increased between 3 weeks and 1 year while axial and radial diffu-
sivity decreased. Between 1 and 2 years old, however, only radial
diffusivity showed a significant age effect, which makes sense as the
primary barrier to diffusion, myelin, is hindering diffusion ortho-
gonal to the axon. These were averaged over ROIs (regions of
interest) across the CC, internal capsule, corticospinal tract, optic
radiations, frontal peripheral and posterior peripheral WM.
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Fig. 2. Diffusion tensor imaging and tractography. In whole brain tractography, a set of diffusion weighted images (left) are collected to show how rapidly water is diffusing
in a range of different directions. By sampling a large number of directions, a diffusion function (little crosses in the middle panel) can be reconstructed—the peaks in this
function tend to point along axons and major tracts. Tract tracing algorithms can sew together the paths of maximal diffusion into curves and fiber bundles. The right panel
shows the set of recovered fibers—red, green, and blue colors show the directions of the fibers. These can be grouped into meaningful anatomical bundles and their integrity

and connectivity can be assessed. Adapted with permission from Aganj et al. (2011).

Covering a wider age range, Ben Bashat et al. (2005) scanned
36 subjects between 4 months and 23 years old with DTI and also
found FAincreasing in the CC, IC, and subcortical WM, leveling offin
early adulthood. Similarly, Taki et al. (2012) examined the develop-
mental trajectories of FA in 30 WM ROIs in 246 subjects aged 6-18
and found that FA increased with age across all ROIs. Covering the
same age range, Barnea-Goraly et al. (2005) examined age-related

Table 2
Studies of age effects on structural and functional connectivity in subjects with
developmental disorders covered in this review.

Func or
Struct

Authors Disorder Analyses

Autism Struct DTI
Autism Struct DTI (high b value)
Autism Struct DTI
Autism Struct DTI
Fragile X  Struct DTI
Fragile X  Struct DTI, tractography
22q DS Struct DTI
22q DS Struct DTI
22q DS Struct DTI
22q DS Struct DTI, tractography
Williams ~ Struct DTI, tractography
Williams ~ Struct DTI
Williams ~ Struct DTI, tractography
Williams ~ Struct DTI, tractography
Turner Struct DTI
Turner Struct DTI
Turner Struct DTI, tractography
ADHD Struct DTI
ADHD Struct DTI
ADHD Struct DTI
ADHD Struct DT], tractography
ADHD Struct DTI

Barnea-Goraly et al. (2004)
Ben Bashat et al. (2007)
Barnea-Goraly et al. (2010)
Shukla et al. (2010)
Barnea-Goraly et al. (2003)
Haas et al. (2009)

Simon et al. (2005)

Simon et al. (2008)
Sundram et al. (2010)
Villalon et al. (2013)

Hoeft et al. (2007)
Arlinghaus et al. (2011)
Haas et al. (2011)

Jabbi et al. (2012)

Molko (2004)

Holzapfel (2006)
Yamagata et al. (2012)
Ashtari et al. (2005)
Hamilton et al. (2008)
Pavuluri et al. (2009)

Silk et al. (2009)

Lietal. (2011)

Cherkassky et al. (2006) Autism Func seed-based
Just et al. (2007) Autism Func seed-based
Kennedy and Courchesne (2008) Autism Func seed-based
Monk et al. (2009) Autism Func seed-based
Noonan et al. (2009) Autism Func seed-based
Weng et al. (2010) Autism Func seed-based
Rudie et al. (2012b) Autism Func seed-based

Debbané et al. (2012) 22q DS Func ICA

Kesler (2007) Turner Func unknown

Bray et al. (2011) Turner Func seed-based

Bray et al. (2012) Turner Func seed-based

Cao et al. (2006) ADHD Func Voxel-wise seed-based
Tian et al. (2006) ADHD Func seed-based
Castellanos et al. (2008) ADHD Func seed-based

Wang et al. (2009) ADHD Func Graph theory

Func: functional, struct: structural.

effects on FA on avoxel-by-voxel basis in 34 subjects between 6 and
19 years old. FA increased with age in prefrontal regions as well as
a number of subcortical regions. This is the general trend across
adolescence (review by Schmithorst and Yuan, 2010). Two studies
examining the corpus callosum across almost the entire lifespan
found that both CC volume and FA increased from childhood into
adulthood, then declined in the elderly (McLaughlin et al., 2007;
Hasan et al., 2009a). Just like the rest of the brain, different regions
of the CC follow different developmental trajectories (Thompson
et al.,, 1999, 2000). Using a protocol with higher angular resolution,
Schneider et al. (2004) examined WM regions of interest, includ-
ing several across the corpus callosum, and found an exponential
increase in FA between birth and age 12, leveling off around age 2.
In contrast, they found that the FA of deep WM areas continued to
increase throughout the age range of their participants, suggesting
continuing maturationin these areas. Also using higher angular res-
olution, Giorgio et al. (2008) compared 42 adolescents to 20 young
adults and found age-related increases in FA in the body of the
corpus callosum and the right superior corona radiata.

In one of the largest DTI studies to date, Kochunov et al. (2010)
examined the trajectory of FA across subjects aged 11-90, find-
ing that FA, when averaged across nine major WM tracts, peaked
around 32 years of age. The ‘age at peak’ for the FA of the nine tracts
they studied varied widely, from 23 years for the sagittal stratum,
which connects subcortical, temporal, and occipital regions, to 39
for the cingulum, connecting the cingulate gyrus and the entorhi-
nal cortex. The only tract showing no significant age trends was the
cortico-spinal tract (Kochunov et al., 2010); this fundamental tract
for sensation and primary motor function develops so early that it is
fully mature before the age range studied. In a similarly large study,
Chiang et al. (2011) found that FA increased by as much as 10%
between adolescence and adulthood. They also examined how the
heritability of FA changes with age (i.e., how much of the observed
variation in a population is due to genetic factors). Roughly twice
as much of the variance in FA was explained by genetic factors in
adolescents as was explained by genetic factors in adults (Chiang
et al,, 2011). Environmental factors (such as education and diet)
also play an important role in shaping tract development as we age
(Jahanshad et al., 2013a).

Asato et al. (2010) also examined this period of development,
scanning 114 subjects between 8 and 28 years with DTI. Instead
of FA, however, they looked at radial diffusivity (RD), a measure of
the degree of restriction due to membranes, which is thought to
be more closely related to demyelination than other DTI measures
(Asato et al., 2010). The last tracts to reach maturity were those
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Fig. 4. Regions that show age-related effects in regional efficiency in 95 subjects 19-85 years old. Red indicates increases in efficiency with age, blue indicates decreases in
efficiency with age. Reprinted with permission from Gong et al. (2009). See Gong et al. (2009) supplemental material for abbreviations of cortical regions.

where the most active connections are maintained, while others
die off, leading to a more clearly defined network with hubs and
clusters.

Another network measure, Gamma, is MCC normalized to what
its value would be in artificially created random networks, with
the same numbers of nodes and connections. Global efficiency is
the inverse of CPL—networks with a lower CPL are more efficient.
Another popular concept - “small-worldness” - represents the bal-
ance between network differentiation and integration. Modularity
is the degree to which a system may be subdivided into smaller
networks. Degree is the number of nodes to which a given node is
connected; strength is the degree in a weighted (instead of bina-
rized) network. Regional efficiency is efficiency calculated on nodal
neighborhoods. Graph theory can be applied to structural or func-
tional networks (Rubinov and Sporns, 2010).

There are still relatively few studies examining how graph
theory metrics of structural brain connectivity change with devel-
opment. Gong et al. (2009) examined the standard network
measures calculated from connectivity probability matrices gen-
erated from diffusion images in 95 subjects between ages 19 and
85. Overall connectivity and local efficiency decreased with age,
and there was a shift in regional efficiency from some brain regions
to others (Fig. 4). Hagmann et al. (2010) studied changes in con-
nection density matrices from the diffusion images of 30 subjects
aged 18 months to 18 years old. They examined these matrices
with two parcellations with different numbers of nodes, and found
increases in node strength and global efficiency as well as decreases
in clustering coefficient. Fan et al. (2011) studied these measures
longitudinally in very young subjects, between 1 month and 2 years
old. They found increases in network efficiency and modularity
with age.

Our group has investigated these questions as well, generating
fiber density matrices from HARDI data in 439 subjects aged 12-30
(Dennis et al., 2013). Path length, mean clustering coefficient,
gamma (normalized clustering), small-worldness, and modularity
all decreased with age, suggesting that this period of development
is marked by an increase in network integration. Interestingly, the

left and right intrahemispheric networks, when analyzed sepa-
rately, showed opposing age trends, with a number of parameters
increasing with age in the left hemisphere while they decreased in
the right. If this is corroborated in future studies, it could point to
different developmental processes occurring in each hemisphere,
perhaps due to the known structural asymmetry of the brain. We
also found age effects in the fiber density matrices, with more
connections decreasing in fiber density than increasing. In these
analyses, for a connection between two regions of interest, the fiber
density isdefined as the proportion of the total number of recovered
fibers in the brain that pass between those two regions. However,
these increases and decreases were not distributed evenly around
the brain, consistent with prior research pointing to different
developmental trajectories for various brain regions (Fig. 5).

3. Functional brain development in healthy subjects

In functional connectivity analyses, the activity of several differ-
ent brain regions is assessed, and the relationship between them is
studied and modeled. This may be done in several different ways,
depending on whether the researcher is interested in the corre-
lations in the time courses of activation between a given pair (or
all pairs) of brain regions. The statistical coherence of activity mea-
sured from different parts of the brain can also be studied, including
more complex measures such as mutual information. The coor-
dination of distant regions during rest is thought to be involved
in coordinating and organizing neuronal activity (Fox and Raichle,
2007).

3.1. Developmental studies using seed-based or ICA rsfMRI
approaches in typically developing individuals

Studies of functional connectivity using resting-state functional
MRI have also yielded substantial data on typical brain changes dur-
ing development. Supekar et al. (2010) examined developmental
changes inthe structural and functional connectivity of the nodes of
the “default mode network” (DMN). The DMN is a generally thought
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Age 30

Fig. 5. Age-related increases and decreases in nodal degree and edge fiber density in 439 subjects aged 12-30. This study is based on HARD], a form of diffusion imaging that
can be used to recover anatomical connections. Colors correspond to the fiber density, with red indicating greater values and blue indicating smaller values. The diameter of

nodes corresponds to their degree. Reprinted with permission from Dennis et al. (2013).

to include the posterior cingulate cortex (PCC), medial prefrontal
cortex (mPFC), inferior parietal lobules, lateral temporal cortices,
and hippocampal formation (Buckner et al., 2008; Raichle et al.,
2001). These regions tend to be more active during rest than dur-
ing atask, hence the name ‘default mode’, or ‘task negative’ network
(Foxetal., 2005). Supekar et al. (2010) also found that the fiber den-
sity and FA of the connection between the PCC and the mPFC was
greater in young adults than in children (Fig. 6).

Using the seed-based approach, Redcay et al. (2007) examined
functional connectivity in 13 subjects between 30 and 50 months
old with seeds from tasks completed in the same scan session.
They detected functional connectivity between the auditory system
and the prefrontal cortex (PFC) but not between the visual system
and PFC. Looking at a similar age group, Lin et al. (2008) exam-
ined the visual and sensorimotor networks of 38 subjects. Both the
strength of the connectivity, and the percentage of the brain vol-
ume participating in the networks, increased with age. In a study
of 12 premature infants between 24 and 27 weeks gestational age,
Fransson et al. (2007) used ICA and were able to identify networks
in the visual, auditory, motor and somatosensory, and prefrontal
cortices, as well as one including areas of the parietal cortex and
cerebellum. Networks were largely characterized by short-range
connections, and they did not detect a DMN. Liu et al. (2008) also
used ICA to examine connectivity in very young subjects (11 sub
11-14 months) while asleep, and found a midline parietal network
and a sensorimotor network (that separated into two lateralized
networks in most subjects), suggesting greater intrahemispheric
than interhemispheric connectivity. Similarly, Gao et al. (2009a,b)
scanned 71 subjects ranging from neonates to 2 years old and used
[CAtodetect the DMN.They found a primitive DMN in neonates that
grew through age 2 to include some ofthe same regions found in the
adult DMN. They also identified some additional regions not typi-
cally seen in the adult DMN. The PCC and MPFC were the two adult
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DMN regions that were present throughout all three developing
groups as well.

Examining later stages of development, Fair et al. (2008)
scanned 210 subjects between 7 and 31 years old and compared
connectivity within the DMN. Children had sparser connections
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Fig. 6. Maturation of the connection between the PCC (posterior cingulate cortex)
and mPFC (medial prefrontal cortex), two main hubs of the DMN (default mode
network) between 18 7-9 year olds and 15 19-22 year olds. DTl tractography depict-
ing developmental effects in fibers between PCC and mPFC. Bar graph showing
significant difference in fiber density (p «0.0001, indicated by **). Reprinted with
permission from Supekar et al. (2010).
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Fig. 7. Differences in the connectivity of the DMN between children (7-9 y) and
adults (21-31 y). Graph visualization of DMN regions in children and adults gen-
erated by correlating the time series’ of 13 regions, including hubs of the DMN. In
children (7-9 years old), DMN regions are sparsely connected, while they appear
highly integrated in adults (21-31 years old). Reprinted with permission from Fair
et al. (2008).

between DMN seeds than did adults (Fig. 7). Kelly et al. (2009)
looked at ICNs generated by using 5 seeds for 40 subjects in
the cingulate cortex and found that children had more diffuse
patterns of connectivity in voxels proximal to the seed, while over
adolescence and into adulthood there were more focal patterns of
local connectivity. Adults also had a greater number of long-range
connections than did children. This was most apparent in networks
that included areas responsible for conflict monitoring, emotion
regulation, and mentalizing. Providing strong support for using
rsfMRI measures as biomarkers, Dosenbach et al. (2010) were
able to classify individuals as either children (7-11 y) or adults
(24-30 y) with 91% accuracy using multivariate pattern analysis
and an SVM (support vector machine) algorithm. They scanned
238 subjects and generated time courses for 160 ROIs for use in
their algorithm. Impressively, they were able to replicate these
results with a different data set.

Using ICA, Thomason et al. (2008) studied the DMN in 16 sub-
jects aged 9-12 years to verify that the regions of the DMN in
children are indeed those that deactivate during cognitive tasks.
They also found evidence of greater integration between the DMN
and sensory regions in children. Stevens et al. (2009) scanned 100
subjects between 12 and 30 years and examined the relationships
between networks using ICA and ‘Granger causality’—a statistical
hypothesis test for deciding when one time-series is useful for fore-
casting another. Where there were age effects, they were decreases
in connection strength between networks with age, reflecting a
trend towards differentiated networks. Specifically, they found
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decreases in the influence that some networks had on the DMN.
Supekar et al. (2010) used ICA to investigate age-related effects on
the DMN in 45 subjectsintwo age cohorts. The DMN in children had
weaker connectivity and included a smaller portion of the mPFC.
This resulted in lower functional connectivity between the mPFC
and the PCC, a central node of the DMN. Using seeds motivated by
ICA analysis, Thomason et al. (2011) detailed the ICNs of 65 chil-
dren/adolescents between 9 and 15 years old (Fig. 8). 21 of the 65
subjects were scanned a second or third time, allowing for longi-
tudinal analyses. They found that the within-session Kendall’'s W
concordance ranged between 0.71 and 0.78 across the whole brain,
while between sessions it was 0.60-0.65, supporting the notion
that rsfMRI can be reliably assessed in children.

3.2. Developmental studies using functional graph theory
analyses in typically developing individuals

Graph theory may also be applied to study functional connectiv-
ity, using any measure of functional coupling between nodes that
can be expressed in a connectivity matrix—correlation, coherence,
or mutual information (Bullmore and Sporns, 2009). So far, devel-
opmental studies of functional connectivity with graph theory are
few. Fair et al. (2007) examined 210 subjects in three different age
cohorts between 7 and 31 years old and extracted the time courses
for 39 ROIs. In graph analyses of the connectivity matrices, adults
had both greater integration within networks and greater segrega-
tion between networks than did children. Both of these processes
are important for establishing mature networks that can support
specific functions, while also efficiently participating in the brain
network as a whole. In a larger sample including the same subjects,
Fair et al. (2009) found that the pattern of functional connectiv-
ity matures from being more anatomically based to being more
functionally based. Initially, functional networks are organized by
lobe, but across development connections within the lobe weaken
as networks segregate. Concurrently, in childhood, networks such
as the DMN are initially segregated, and they consist of many spa-
tially distributed regions. Across development, however, functional
networks such as the DMN become more cohesive (Fig. 9). In a
similar age group, Supekar et al. (2009) also examined ICNs and
whole brain connectivity using graph theory in 45 subjects in two
age groups (7-9 years and 19-22 years). Results did depend on the
frequency range examined, so the authors chose to focus on one.
Children had lower levels of hierarchical organization than adults,
as well as stronger subcortical-cortical connectivity and weaker
cortico-cortical connectivity. Additionally, the authors saw a shift
from stronger short-range connections in children to stronger long-
range connections in adults, consistent with many other studies on
this topic.

4. Structural and functional connectivity in atypical brain
development

4.1. Autism

Autism is a prevalent neurodevelopmental disorder marked by
deficits in communication and social interaction, and by repetitive
behavior. It has some genetic basis, but the large and increasing
number of genes linked to autism indicates a rather complicated
mechanism (Szatmari et al., 2007). Diffusion imaging studies show
widespread disruption of white matter tracts, especially between
regions implicated in social behavior (Barnea-Goraly et al., 2004,
2010; Shukla et al,, 2010). Ben Bashat et al. (2007) found evidence
to support abnormally accelerated maturation of white matter in
children with autism, consistent with earlier morphometric work
that showed accelerated brain growth in infancy, for at least one
subgroup of children with autism.
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Fig. 8. Spatial renderings of components corresponding to the default (red), left executive (pink), right executive (green) and salience networks (blue) generated from group
ICA analysis of 65 children aged 9-15 years. Reprinted with permission from Thomason et al. (2011).

A number of studies have examined ICNs (intrinsic connec-
tivity networks) in individuals with autism. They have largely
found evidence for reduced network integration in autism, espe-
cially in areas important for social cognition (Cherkassky et al.,
2006; Just et al., 2007; Kennedy and Courchesne, 2008; Weng
et al, 2010), but some found results in the opposite direction
(Monk et al,, 2009; Noonan et al., 2009). Additionally, some have
reported reduced segregation between networks, suggesting that
both within- and between-network dynamics may be affected
(Rudie et al., 2012b).

4.2. Fragile-X

A related syndrome, fragile X, accounts for around 5% of autism
cases, making it the most common known single-gene cause of
autism (Budimirovic and Kaufmann, 2011). Haas et al. (2009) found
an increased density in the fibers of the left ventral fronto-striatal
pathway in young boys with fragile X. Barnea-Goraly et al. (2003)
scanned girls with fragile X and found that they had lower FA in
fronto-striatal pathways — usually a sign of poorer myelination -
relative to healthy controls. To date, we know of no studies examin-
ing the development of functional connectivity in individuals with
fragile X.
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4.3. 22q11.2 deletion syndrome

22q11.2 deletion syndrome (22q DS) is a developmental syn-
drome resulting from a deletion of genetic material on chromosome
22, and is associated with cognitive deficits, differences in appear-
ance, and other physiological changes. DTI studies in people with
22q DS report a number of abnormalities, including reduced inter-
hemispheric FA, increased FA in frontal and parietal regions,
and reduced FA in some anterior-posterior projecting tracts
(Simon et al,, 2005, 2008; Sundram et al., 2010; Villalon et al.,
2013).

Only one group so far has investigated resting state connectiv-
ity in 22q DS. Debbané et al. (2012) used ICA to compare the ICNs
of individuals with 22q DS, finding both increased and decreased
connectivity in individuals with 22q DS, depending on the brain
regions assessed. Individuals with 22q DS had decreased con-
nectivity in the visual network. They had greater connectivity in
the sensorimotor network and visuospatial processing network.
Additionally, they had altered connectivity in the default mode
network, with decreased connectivity between a number of mid-
line frontal regions and the precuneus, and increased connectivity
between more lateral frontal regions and the inferior parietal
lobule.
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Fig. 9. Maturation from “local” organization to “distributed” organization, as measured by functional graph theoretical measures, Frontal regions are highlighted in blue in
A; notice they are closely connected in children and less so in adults. The DMN, a collection of anatomically distributed regions, is highlighted in red in B. Notice they are
segregated in children and highly integrated in adults. Reprinted with permission from Fair et al. (2009).

4.4. Williams syndrome

Williams syndrome is another neurodevelopmental disorder
caused by a deletion, this time on chromosome 7q11.23. Hall-
marks of Williams syndrome (WS) include hypersociability and
decreased social inhibition. Structural connectivity studies of WS
have found increased FA in the right superior longitudinal fasci-
culus, an increase that was associated with visuospatial deficits
(Hoeft et al., 2007). Similarly, Jabbi et al. (2012) linked decreases
in uncinate integrity to the severity of the WS personality profile.
Researchers have also found increased fiber volume, density, and FA
in the fusiform gyrus, an area important for facial processing and
thus social interaction (Haas et al., 2011). Still others have found
scattered increases and decreases in FA across tracts connecting
regions implicated in the syndrome (Arlinghaus et al., 2011). This
very complex picture is in line with morphometric work on WS,
which tends to show a pattern of relative excesses and deficits in
cortical gray matter thickness, and even differences in the gyral
complexity of the cortical surface (Thompson et al., 2005). Earlier
studies with MRI found imbalances in the distribution of white
matter in the WS brain (Chiang et al., 2007), making tract trac-
ing studies of particular interest in these regions. In cases where
the fissuration pattern of the cortex is very different from that
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seen in typically developing children, one must be somewhat cau-
tiousinapplying the standard cortical parcellation schemes derived
from normal subjects, to define the network nodes in connectivity
studies. Clearly, tractography and connectivity analysis will shed
considerable light on the unusual sulcal, gyral and corpus callosum
abnormalities that have long been known to be characteristic of
WS (Eckert et al., 2006; Gaser et al., 2006; Luders et al., 2007). As
yet, we do not know of any studies examining the development of
functional connectivity in individuals with Williams syndrome.

4.5. Turner syndronie

Turner syndrome results from partial or complete absence of
one X chromosome in females, and is associated with a number
of physical and physiological abnormalities. Molko (2004) was the
first to examine white matter integrity with DTI in girls with Turner
syndrome (TS), finding disruptions in anterior-posterior running
temporal tracts. Holzapfel (2006) found lower FA in the bilat-
eral internal capsule as well as in the left parieto-occipital region,
extending along the superior longitudinal fasciculus. Yamagata
et al. (2012) found widespread reductions in FA in girls with TS
in a number of tracts connecting regions implicated in the cogni-
tive deficits characteristic of TS. Turner syndrome (TS) is marked
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by widespread deficits in white matter pathways, especially in
anterior—posterior tracts, soit is not surprising that functional con-
nectivity is altered as well. Kesler (2007) report unpublished data
in which they found negative correlations between the time series
of frontal and parietal regions in girls with TS, while controls had
positive correlations between those regions’ time series. Bray et al.
(2011) found decreased functional connectivity to a seed in the
right intraparietal sulcus (rIPS), an area shown to differ structurally
in TS, in girls with TS during a working memory task. Later, Bray
et al. (2012) found alterations in the functional connectivity of the
posterior parietal cortex of girls with TS.

4.6. Attention deficit/hyperactivity disorder

As one of the most prevalent developmental disorders
(Froehlich et al., 2007), ADHD (attention-deficit/hyperactivity dis-
order) is also one of the most commonly studied. ADHD is
disproportionately diagnosed in boys (Anderson et al., 1987). Itis a
heterogeneous disorder, with a strong familial factor (Biederman,
2005). As such, we will only summarize a sample of the work on
altered connectivity in ADHD. Some studies report lower FA in chil-
drenwith ADHD (Ashtari et al., 2005; Hamilton et al., 2008 ; Pavuluri
et al., 2009), which is typically interpreted as evidence of disrup-
tion of the motor and attentional circuits. Others find higher FA
in children with ADHD (Li et al., 2011; Silk et al., 2009), perhaps
due to decreased neuronal branching. Additionally, Li et al. (2011)
were able to correlate FA in the right frontal region with scores
on the Stroop test, a test of inhibition and interference control. A
line of interesting work will be to relate these patterns of aberrant
connectivity to the last decade of work on structural brain abnor-
malities in ADHD, including, for example, the reported anomalies
in callosal thickness (Luders et al., 2008) and cortical gray matter
thickness (Sowell et al., 2003a,b).

A number of studies have examined functional connectiv-
ity in ADHD (attention-deficit/hyperactivity disorder), with some
conflicting results. Part of this may lie in the heterogeneity of ADHD
(Wahlstedt et al., 2009). Cao et al. (2006) found increased temporal
synchrony between a number of visual regions and the parahip-
pocampal gyrus, while they found decreased synchrony between a
number of frontal regions, the caudate, and precuneus. Examining
the DMN, Castellanos et al. (2008) found decreased connectivity
between the anterior cingulate (ACC) and the precuneus/posterior
cingulate. Tian et al. (2006) also studied the connectivity of the
ACC and found increased connectivity with the thalamus, cerebel-
lum, insula, and pons. Taking a graph theoretical approach, Wang
et al. (2009) found increased local efficiency and decreased global
efficiency in children with ADHD, suggesting a disruption in the
balance of small-world characteristics. There were also differences
in nodal efficiency in prefrontal, temporal, and occipital regions
implicated in previous studies.

5. Common themes

A number of themes have been common in investigations of
structural and functional connectivity networks. Brain asymme-
try has interested researchers for years (Hellige, 1993; Toga and
Thompson, 2003), and sex differences in the brain are a contro-
versial topic that has generated much research that is occasionally
conflicting, partly due to the nonlinear scaling of brain structures
as brain size increases (Gur et al., 1999; Kimura, 2000; Sowell
et al., 2006; Brun et al., 2009; Luders et al., 2013). Even sex differ-
ences in the degree of brain asymmetry have been investigated in
some depth (McGlone, 1978, 1980; Shaywitz et al., 1995; Toga and
Thompson, 2003). Examining how these each change over devel-
opment is an important part of understanding development and
the factors that give rise to asymmetry or sex differences in the
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brain. Because asymmetry and sex differencesin the brain are broad
enough topics to be a review or book in themselves (Dimond and
Beaumont, 1974; Hellige, 1993; Kimura, 2000), here we will limit
our review to the asymmetry and sex difference findings in studies
we have already discussed here.

5.1. Asymmetry

Giedd et al. (1996) detailed the developmental changes in
regional tissue volumes across different lobes, noted aright greater
than left asymmetry in the temporal lobe, amygdala, and hip-
pocampus. They did not see any changes in this asymmetry with
age, however. In their study of 20 neonates, Gilmore et al. (2004)
found a significant asymmetry in the lateral ventricles with the
left being greater than the right; this asymmetry involves the
left occipital horn projecting further back in the brain than its
counterpart on the right, and it is almost universally found in
studies of brain morphometry, regardless of the age and diagno-
sis of the subjects. In a more in-depth study, Gilmore et al. (2007)
assessed 74 infants between 38 and 48 weeks gestational age.
The left hemisphere was larger in volume than the right, which
is opposite to typical findings in older children and adults (even
the literature on this overall asymmetry in hemispheric volume is
somewhat mixed, see Toga and Thompson, 1997). This left-greater-
than-right asymmetry was detected in the GM, WM, subcortical
GM, and lateral ventricles. Examining diffusion-weighted images
in 108 subjects aged 7-68, Hasan et al. (2009b) found a left-
ward asymmetry in the FA of the uncinate fasciculus. They found
this to be due to a leftward asymmetry in the axial diffusivity
and a lack of asymmetry in the radial diffusivity. Jahanshad et al.
(2010) even found that asymmetry in the FA of major WM tracts
had a genetic basis. Our group found an unexpected asymmetry
in the developmental trends for graph theoretical measures of
structural connectivity, with measures increasing with age in the
left hemisphere and decreasing in the right hemisphere (Dennis
et al., 2013). Ongoing studies are revealing complex differences
in the wiring patterns of each brain hemisphere, some of them in
language-related regions, in line with the well-known morphome-
tric asymmetries of the planum temporale and perisylvian cortices
(Daianu et al., 2012).

5.2. Sex differences

Sex differences in the brain are a controversial topic, and
research in this area can be conflicting, but there are sex differences
in vulnerability to various neuropsychiatric disorders or recovery
from brain injury (Turkheimer and Farace, 1992). As such, inves-
tigating sex differences in the brain will hopefully shed light on
key health issues and their determinants. Giedd et al. (1996) found
greater overall cerebral volumes in males, even when controlling
for height and weight. In a later study, Giedd et al. (1999) simi-
larly found greater overall GM volumes in males, as well as sex
differences in the age at which cortical GM volume peaked. Sowell
et al. (2002) found a few structures for which females had greater
relative volume, including the temporal cortex, thalamus, caudate,
and basomesial diencephalic structures. Finding differences evenin
neonates, Gilmore et al. (2004) recorded larger lateral ventricular
volume infemales than males. Later, Gilmore et al. (2007 ) found sig-
nificantly greater intracranial volume (ICV) in males than females,
even controlling for body weight.

Turning to structural connectivity, Gong et al. (2009) found
a number of graph theoretical measures of structural brain con-
nectivity that showed sex differences. Regional efficiency differed
between sexes across many nodes, with some showing greater effi-
ciency infemales and somein males. Men had greater efficiency ina
few frontal nodes while females had greater efficiency in anumber
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of temporal, parietal, and occipital nodes. Dennis et al. (2013) found
sex differences in a number of global and nodal measures in graph
theoretical measures of structural brain connectivity. We found
greater clustering in females, who may have more segregated
networks. We also found differences in the regional efficiency and
degree (number of connections) in a few nodes. As the brain’s
components do not scale proportionately to the overall size of the
brain, some care is needed when interpreting sex differences.

In functional connectivity, Schmithorst and Holland (2007)
found a sex difference in correlations between intelligence and
functional connectivity, with males and females showing intelli-
gence scores correlated with functional connectivity of different
regions. They also found an age by sex interaction in this effect.
Kilpatrick et al. (2006) found that the functional connectivity of
the amygdala demonstrated a sex effect, with males showing more
expansive connectivity of the right amygdala and females showing
more expansive connectivity of the left amygdala. Examining func-
tional connectivity using graph theoretical methods, Wang et al.
(2008) found a sex effect on nodal efficiency. Females had greater
nodal efficiency in frontal and temporal regions, but males had
greater efficiency in limbic and paralimbic regions. A review by
Gong et al. (2011) provides greater detail on sex differences found
across these various neuroimaging methods.

6. Future directions

Connectivity is a popular research topic now and has been for a
few years. This growing popularity has led to major advances in the
methods we use to assess connectivity. No doubt these improve-
ments will continue as we search the human connectome in more
depth and in new ways (see Toga and Thompson, 2013; Engel et al.,
2013, foruptodatereviews). Another topic that we expect to attract
more attention is the relationship between structural and func-
tional connectivity. Some studies are beginning to examine changes
in function-structure relationships during development, and there
are still many intriguing questions on how the two interact.

6.1. Imaging genetics

Imaging genetics (reviewed in Glahn et al., 2007; Thompson
et al., 2010) is another topic that is gaining momentum and has
already amassed asizeable body of research. With the advent of bet-
ter genomic methods and cooperative groups that can collectlarger
datasets, genetic analysis of variations in brain images can be pur-
sued to discover specific genetic variants that affect brain integrity
and connectivity (Jahanshad et al., 2013b). Several autism risk
genes, for example, may be associated with consistent differences
in brain “wiring”, in both anatomical and functional connectivity
analyses (Dennis et al., 2011; Rudie et al., 2012a). Also, new meth-
ods have recently been developed to screen connectivity maps and
genomic data at the same time, to discover new genes that affect
brain organization and disease risk (see Jahanshad et al., 2013c;
Thompson et al., 2013).

One of the main issues with imaging genetics is sample size.
Well over a million commonly-carried variants in the genome -
including, for example, single nucleotide polymorphisms, or SNPs
- can be assessed using widely available technology for perform-
ing genome-wide scans. For many years, vast studies have searched
for SNPs that are over-represented in patients with certain types of
disease. These genome-wide association scans (GWAS) need noto-
riously large samples because the effect of any one SNP is usually
small (Jahanshad et al., 2013d).

The high risk of false positives when scouring the genome
makes it necessary to amass huge samples to confirm any promis-
ing results, or to use complex methods to reduce the dimension
of the search space (Silver et al., 2012; Hibar et al., 2013a,b). In
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the past few years, very large imaging genetics consortia have
been formed with sample sizes numbering tens of thousands of
subjects—enough subjects to pick up the effects of single letter
changes in the genome on features derived from brain images. In
these consortium efforts, multiple sites pool their data to increase
the chances of finding significant associations between genetic
variants and brain measures. One of the largest imaging genet-
ics networks is the ENIGMA Consortium ( Enhancing Neuroimaging
Genetics through Meta-Analysis). This is an effort between 125
institutions across 12 countries, analyzing over 26,000 scans at the
time of writing. This dataset has already been used to discover genes
that affect brain structure, for example in the hippocampus (Stein
et al., 2011), and jointly analyzing DTI data from thousands of sub-
jects (Kochunovetal., 2012; Jahanshad et al., 2013b). The advantage
of these efforts for studies of brain connectivity is that many con-
nectivity measures are still poorly understood, so even the most
general statements about changes in network efficiency must be
confirmed and tested across developmental samples worldwide.
This is particularly important in genetics, as a huge number of can-
didate genes have been asserted to affect brain maturation but
findings are not always consistent.

Many studies have related specific genetic variants to indi-
vidual differences in white matter integrity, as measured by FA
(Braskie et al., 2011; Kohannim et al., 2012; McIntosh et al., 2008;
Winterer et al., 2008). With greater subject numbers, consortia such
as ENIGMA are beginning to offer the sample sizes needed to dis-
cover specific genes influencing brain connectivity. Studies in both
healthy subjects (Buckholtz et al., 2007, 2008 ; Pezawas et al., 2005;
Thomason et al., 2009) and those with neurodevelopmental or
neuropsychiatric disorders (Meyer-Lindenberg et al., 2007; Scott-
Van Zeeland et al., 2010) have found associations between specific
genetic variants and changes in functional connectivity; clearly,
large samples are needed to allow meta-analysis and corroboration
of these subtle effects.

6.2. Functional and structural connectivity

Some researchers have begun to investigate the link between
functional and structural connectivity, but only one study that the
authors are aware of has examined the joint effects age hason struc-
tural and functional connectivity. In addition to the age effects seen
in functional and structural connectivity separately that are dis-
cussed above, Supekar et al. (2010) also found an age difference
in the relationship between functional and structural connectiv-
ity. When examining the connection between the PCC and mPFC,
Supekar et al. (2010) found a significantly positive partial cor-
relation between the functional time courses and fiber densities
between the ROIs. There was no significant relationship between
partial correlation strength and fiber density in the PCC-mPFC
connection in children. Structural and functional connectivity are
closely related, but one does not imply the other—regions that
are structurally connected are also functionally correlated, but two
regions that are functionally connected are not necessarily directly
structurally linked (Greicius et al., 2008; Bullmore and Sporns,
2009; Honey et al., 2009). Very little work has been done on the
question of how alterations of the structural network are correlated
with alterations in the functional networks (Rudie et al., 2013).
As functional connectivity may arise between areas with no direct
structural connection, further investigation is necessary into how
these complementary systems interact.

6.3. Other methods
In this review, space limitations meant that we did not cover

the literature addressing development using MEG (magnetoen-
cephalography) or EEG (electroencephalography). A number of



E.L Dennis, PM. Thompson / Int. J. Devl Neuroscience 31 (2013) 525-542

studies have examined developmental changes in MEG or EEG sig-
nals (Meyer-Lindenberg, 1996; Polonnikov et al., 2003; Eswaran
et al., 2004). These data can also be used to examine brain connec-
tivity. By examining the coherence between MEG or EEG signals
across the brain, connectivity can be assessed (Bullmore and
Sporns, 2009). One study has even linked EEG-based networks to
intelligence (Langer et al., 2012). As several studies have reported
developmental effects on MEG and EEG signals, and the link
between EEG network measures and cognition, examining the
developmental trajectory of MEG- and EEG-based networks would
be of great interest.

7. Conclusions

Dramatic changes occur in the structural and functional con-
nectivity of the brain, as it matures into adulthood. Structural
and functional connectivity both support healthy brain function—a
disruption in either can lead to a neurodevelopmental or neuropsy-
chiatric disorder. Characterizing the developmental trajectory of
these measures in healthy subjects serves an important function
in understanding disease and in understanding the fundamen-
tal processes by which the brain matures. Here we have detailed
a number of studies that examined the developmental trajec-
tory of various measures of structural or functional connectivity
in typically developing subjects. We also discussed a few exam-
ples of research into how structural and functional connectivity
can be affected in developmental disorders. We also discussed
a few of the themes commonly considered in connectivity, from
developmental point of view—the structure-function relationship,
asymmetry, and sex differences, and some future directions for the
field.
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1.2 Genetic underpinnings of structural connectivity

Many aspects of brain structure are under moderately strong genetic control, including
total brain volume [Posthuma et al., 2000], cortical thickness [Schmitt et al., 2008; Thompson et
al., 2001], and DTI-derived measures of white matter integrity [Chiang et al., 2009, 2011;
Pfefferbaum et al., 2001]. While genome-wide approaches can perform unbiased searches, which
are especially useful in uncovering associations when no prior hypotheses exist [Thompson et
al., 2010], these approaches require very large numbers of subjects (tens of thousands).
Candidate gene approaches, such as testing SNPs (single nucleotide polymorphisms) of interest,
can be appropriate when a prior hypothesis exists, and are more practical with smaller subject
numbers. Using this approach, Braskie et al. (2011) found that healthy young adults who carry
the risk allele of an Alzheimer’s risk gene (CLU-C) had lower white matter integrity. Jahanshad
et al. (2012) found associations between white matter integrity and a gene key in iron regulation
(HFE). In the first study to link graph theoretical measures of structural connectivity to genetics,
Brown et al. (2011) found that healthy APOE-4 carriers had accelerated decline of measures of
interconnectivity with age. As will be discussed in Chapter 3, we have also examined genetic
associations with both graph theoretical measures of connectivity and HARDI-based measures of
white matter integrity. Results such as these can reveal information about the mechanisms by
which these disease risk genes confer vulnerability.

For the vast majority of the studies presented, we have used a large dataset of twins
scanned in Australia. In addition to examining associations between SNPs and brain measures,
with this dataset we can also examine the heritability of brain measures. By examining the

similarity between dizygotic twins vs. monozygotic twins, we can get an estimate of the
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proportions of variance in the brain measures that are due to genetics, shared environment, and
unique environment (or the unexplained remainder). This is based on the assumption that
monozygotic twins share 100% of their genetics, while dizygotic twins share 50% of their
genetics, but both share environments with their twins. Thus, if a brain measure is significantly
more correlated between monozygotic twins than between dizygotic twins, it has a significant
genetic component. Our lab has used this method to determine the heritability of brain
asymmetry [Jahanshad et al., 2010] and the influence of transferrin (iron transporter) on brain
structure [Jahanshad et al., 2012]. We have used this modeling to determine the heritability of

graph theoretical measures of structural connectivity [Dennis et al., SFN 2011].

1.3 Cognitive correlates of structural connectivity

There have been a number of investigations into the cognitive correlates of diffusion
weighted imaging measures, finding that it is associated with reading ability [Deutsch et al.,
2005], working memory [Takeuchi et al., 2010], and IQ [Schmithorst et al., 2005]. Studies of
cognitive correlates of graph theoretical measures of structural connectivity, however, are far
fewer. In fact, at this time I only am aware of one published study linking 1Q and graph
theoretical measures of structural connectivity [Li et al., 2009]. As will be discussed in Chapter
4, we have examined the association between 1Q and one set of parameters from graph theory,
describing the “rich club” organization of the brain.

Cognitive development is a dynamic process that requires development of the underlying
brain structure, activity in a coordinated manner, and enough input from the environment to

stimulate development and learning. There are many studies showing that some of the latest
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regions to develop structurally are those responsible for higher-level cognitive function [Gogtay
et al., 2004]. In additional to showing immature recruitment of brain regions typically used by
adults for cognitive tasks, studies have shown children also use different brain regions altogether
in fMRI studies [Bunge et al., 2002; Durston et al., 2002; Monk et al., 2003]. Lastly, the
developmental environment, and how much stimuli-rich the surroundings are, can also play a
significant role in the development of a child’s cognitive abilities [Burchinal et al., 1996;
Rijlaarsdam et al., 2013].

Structural graph theoretical measures of connectivity are highly mathematical, and
perhaps a little more removed from the biology than other measures of connectivity. Given that
there is a lack of research examining the link between cognition and these measures, it would
seem prudent to examine in order to determine their utility in this domain. Linking these
mathematical measures back to cognitive measures, which are more obviously related to

neurological function, will give them a firmer biological grounding.

1.4 Graph theory and the rich club

Graph theory is a branch of mathematics concerned with the description and analysis of
graphs. It has recently been applied to brain networks to describe network topology. Graph
theory represents the brain as a set of nodes (brain regions) and edges (the connections between
them). A number of standard parameters such as path length and modularity, to name a few, are
used to describe network topology [Sporns et al., 2004]. Characteristic path length measures the
average path length in a network. It does not refer to the physical length of the tracts, but the

number of edges, or individual ‘jumps’, between nodes in the network. Modularity is the degree
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to which a system may be subdivided into smaller networks. Graph theory can quantify both
local and global features in brain connectivity patterns.

Van den Heuvel and Sporns (2011) first discussed the existence of “rich-club”
organization in the human connectome, building on previous network analysis of a “rich-club”
phenomenon [Colizza et al., 2006]. The rich club coefficient assesses the presence and
interconnectedness of a “rich club” of nodes within a network — nodes that are highly central and
densely interconnected with each other and participate as hub nodes in multiple sub-networks. It
is given by the following:

2E.;
N>k(N>k - 1)

¢(k) =
Where £ is the degree of the nodes, £~ is the number of links between nodes with degree & or
greater, and N is the total number of possible connections if those nodes of degree k& were to be
fully connected. They also introduced @.m(k), which is ¢(k) divided by the rich club coefficient
calculated in a series of random networks (@random(k)) of the same size with a similar distribution
of edges. A ¢uorm(k) value greater than 1 indicates the presence of rich-club organization in the
network. In additional to investigating the density of connections between rich club nodes, which
nodes are included in the rich club can be informative as well. These highly central, highly
interconnected nodes are crucial for efficient network function [Van den Heuvel & Sporns,

2011], so differences in which nodes are included in the rich club can point to substantial

structural differences between groups or remodeling with age.

1.5 Organization of the dissertation
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All of the studies in this dissertation are unified by the use of structural connectivity
measures as the neuroimaging phenotype. Each of the aims attempts to address an area of
research where significant gaps in knowledge exist regarding structural connectivity. The aims
are additionally linked by hopefully serving future research efforts into neurodevelopmental
disorders, which I intend to pursue following completion of my doctoral degree. In Chapter 2 we
discuss efforts to determine the developmental trajectory of graph theoretical measures of
structural connectivity, including basic measures such as characteristic path length and
clustering, as well as more complex measures such as rich club organization. In addition, we
discuss work to define how the connectivity of the insula changes between adolescence and early
adulthood, which a critical region for many psychiatric disorders. In Chapter 3 we detail studies
of the genetic associations of measures of connectivity, starting with a study finding altered
graph theoretical measures of connectivity in healthy individuals carrying the risk allele of an
autism risk gene (CNTNAP2). We also detail results linking an obesity risk gene (NVEGRI) to
changes in white matter integrity, in an age-dependent fashion. In Chapter 4 we examine work
investigating the cognitive correlates of structural connectivity, beginning with a study finding
associations between IQ and both rich club organization and voxel-wise FA. Additionally, we
detail work linking educational attainment to differences in fiber density and nodal graph
theoretical measures of structural connectivity. In Chapter 5 we offer a summary of these works.

In Chapter 6 we detail our plans for future work and ongoing studies.
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CHAPTER 2

Developmental trajectory of structural brain connectivity
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2.1 Development of brain structural connectivity between ages 12 and 30

This section is adapted from:

Dennis EL, Jahanshad N, Toga AW, McMahon KL, de Zubicaray GI, Martin NG, Hickie IB,

Wright MJ, Thompson PM. (2013). Development of Brain Structural Connectivity

between Ages 12 and 30: A 4-Tesla HARDI Study in 439 Adolescents and Adults.

Neurolmage, 64(1), 671-684.

27



Neurolmage 64 (2013) 161-684

Contents lists available at SciVerse ScienceDirect

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg

Development of brain structural connectivity between ages 12 and 30: A 4-Tesla
diffusion imaging study in 439 adolescents and adults

Emily L. Dennis ¢, Neda Jahanshad ?, Katie L. McMahon °, Greig 1. de Zubicaray ¢, Nicholas G. Martin ¢,
Ian B. Hickie ¢, Arthur W. Toga ¢, Margaret ]. Wright ¢4, Paul M. Thompson **

* Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA School of Medicine, Los Angeles, CA, USA
b Center for Advanced Imaging, University of Queensiand, Brisbane, Australia

¢ School of Psychology, University of Queensiand, Brisbane, Australia

9 Queensland Institute of Medical Research, Brisbane, Australia

® Brain and Mind Research Institute, University of Sydney, Australia

ARTICLE INFO ABSTRACT

Article history:
Accepted 3 September 2012
Available online 14 September 2012

Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal
development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are pro-
foundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented
power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural con-
nectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults,
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diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based
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ment, showing increased network integration, with some connections pruned and others strengthened. The
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Introduction

The human brain changes profoundly, both functionally and struc-
turally, between childhood and adulthood (Dosenbach et al.,, 2010;
Gogtay et al,, 2004; Lenroot et al., 2007; Shaw et al,, 2008; Sowell et
al., 2003). Following the massive growth in the number of synapses
after birth, anatomical studies show a decline in synaptic density, as
short-range connections are pruned in favor of long-range ones
(Huttenlocher, 1979, 1990). Studies of structural connectivity using
diffusion imaging show that the fractional anisotropy of water along
white matter tracts - an index of myelination and axonal coherence -
increases in childhood, plateaus in adulthood, and declines in old age
(Kochunov et al, 2010). Studies of functional connectivity have
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employed resting-state fMRI data to estimate the “developmental
ages” or relative maturity of participants, finding that chronological
age accounts for over half of the variance in functional brain connectiv-
ity in developmental samples (Dosenbach et al,, 2010). Defining the
developmental trajectory for various measures of brain structure and
function is critical for understanding the general principles of neural
network development. Determining the normal developmental
trajectory will also help to identify deviations in structural circuitry im-
plicated in neuropsychiatric disorders such as autism or schizophrenia
(Scott-Van Zeeland et al, 2010).

Graph theory is a branch of mathematics developed to describe and
analyze networks, offering a variety of metrics that have become
popular for characterizing networks in the brain. By modeling the
brain as a collection of nodes (hubs) and edges (connections between
them), graph theory quantifies network topology through a number
of standard parameters (Sporns et al, 2004). One of these is path
length, a measure of the distance, in edges, between one brain region
(node) and another (Rubinov and Sporns, 2010). Global efficiency is
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the inverse of path length — networks with shorter average path
lengths are generally more efficient in transferring information. These
metrics are genetically influenced (Dennis et al., 2011} and their prop-
erties are known to depend on specific genetic variants in normal
adults and cognitively impaired adults (Brown et al,, 2011; Dennis et
al,, 2012a}.

To date, a few studies have begun to assess how graph theory met-
rics of structural connectivity change during development. Gong et al.
{2009} examined anatomical connectivity in 95 subjects aged 19-85.
Hagmann et al. (2010} tracked white matter maturation in 30 sub-
jects between 18 months and 18 years of age. We were particularly
interested in the developmental period from early adolescence to
early adulthood, when the brain fully matures. The pioneering study
by Hagmann and colleagues was limited by small sample size (30
subjects), so we set out to chart the developmental trajectory of net-
work metrics in a much larger cross-sectional sample (439 subjects).

To map structural brain connectivity between childhood and adult-
hood, we scanned 439 subjects between ages 12 and 30, with high-
field (4-Tesla) high angular resolution diffusion imaging (HARDI). We
computed standard graph theory metrics from 70x70 connectivity
matrices of fiber density. These connection matrices were probed for
linear and non-linear relationships with age. We hypothesized that
we would find evidence of decreased path length with age, reflecting
a developmental process of pruning short-range connections and
strengthening long-range connections (Casey et al,, 2000; Hagmann
et al., 2010; Thomason et al., 2011).

Material and methods
Participants

Participants were recruited as part of a 5-year research project ex-
amining healthy Australian twins with structural MRI and diffusion
weighted imaging, with a projected sample size of approximately
1150 at completion (de Zubicaray et al., 2008). Our analysis included
439 right-handed subjects (adult sample: 211 females/126 males,
mean age=23.6, SD=2.19; 12 year old sample: 31 females/24
males, mean age=12.3, SD=0.18; 16 year old sample: 25 females/
22 males, mean age=16.2, SD=0.37). This population included 146
monozygotic (MZ) twins, 259 dizygotic (DZ) twins, and 34 non-twin
siblings, from 275 families. 337 were adults, 55 were adolescents, and
47 were children, as shown in Table 1. Since our current focus is on
the description of network growth trajectories, the present analyses
make no use of twin relatedness to estimate genetic and environmental
components.

The population was racially homogeneous: 100% of subjects were
Caucasian. Subjects were screened to exclude those with a history of
significant head injury, neurological or psychiatric illness, substance
abuse or dependence, or had a first-degree relative with a psychiatric
disorder. All participants were right-handed, as assessed by 12 items
on the Annett's Handedness Questionnaire (Annett, 1970). The adult
cohort and the 16 year old cohort both completed the Multi-
dimensional Aptitude Battery Il {(MAB-II} IQ test (Jackson, 1998). Most
participants who completed the MAB-II did so at age 16 (92%); the
others completed the MAB-II at a later session, some at the scan session
(4% were between 17 and 20 years, 3% were between 20 and 23 years,

Table 1
Demographics of study sample. IQ was not collected for the 12-year-old cohort. yo=years
old.

Group N Mean age M/F FIQ PIQ VvIQ
(SD)

Adults 337 236 (2.19) 126/211 112 115 115

Kids 102 144 (1.95) 48/53 112 119 117

12 yo 55 12.3 (0.18) 24/31 NA NA NA

16 yo 47 16.2 (0.37) 25/22 112 119 117
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1% was between 25 and 29 years). The 12-year-old cohort did not
complete the MAB IQ scale. Study participants gave informed consent;
institutional ethics committees at the Queensland Institute of Medical
Research, the University of Queensland, the Wesley Hospital, and at
UCLA approved the study. The adult subjects in this sample partially
overlap with a sample examined in prior studies (Braskie et al,, 2011;
Braskie et al, 2012), which revealed single-gene effects on measures
of brain integrity and connectivity, but did not assess children.

Scan acquisition

Whole-brain anatomical and high angular resolution diffusion images
(HARDI} were collected with a 4 T Bruker Medspec MRI scanner.
T1-weighted anatomical images were acquired with an inversion recov-
ery rapid gradient echo sequence. Acquisition parameters were: TI/TR/
TE=700/1500/3.35 ms; flip angle=28"; slice thickness=0.9 mm, with
a 256x256 acquisition matrix. HARDI was also acquired using
single-shot echo planar imaging with a twice-refocused spin echo
sequence to reduce eddy-current induced distortions. Imaging
parameters were: 23 cm FOV, TR/TE 6090/91.7 ms, with a 128 x 128 ac-
quisition matrix. Each 3D volume consisted of 55 2-mm thick axial slices
with no gap and 1.79x 1.79 mm? in-plane resolution. 105 images were
acquired per subject: 11 with no diffusion sensitization (ie., T2-
weighted by images) and 94 diffusion-weighted (DW) images (b=
1159 s/ymm?) with gradient directions evenly distributed on a hemi-
sphere in the g-space. Some subjects’ HARDI scans were acquired with a
77-gradient protocol (h=1177 s/mm?), as the 105-gradient protocol
was too long for some adolescents to sit through. We have previously
undertaken several detailed studies (Zhan et al., 2009a, 2012a,b} to deter-
mine how angular and spatial resolution affects brain connectivity maps,
and the results and stability at high numbers of diffusion gradients are
reported in those papers. The number of gradients affects the accuracy
of reconstruction of the diffusion profile, but by the time 50-60 gradients
are reached, the primary measures of diffusion, including the principal ei-
genvector, have converged (Zhan et al., 2008, 2009a,b). The connectivity
matrix has been found to depend more on the voxel size than the number
of gradients, and the voxel size was kept the same in the adolescents. Scan
time for the 105-gradient HARDI scan was 14.2 min. Scan time for the 77-
gradient HARDI scan was 10.8 min.

Cortical extraction and HARDI tractography

Connectivity analysis was performed exactly as in Jahanshad et al.
(2011). Briefly, non-brain regions were automatically removed from
each T1-weighted MRI scan using ROBEX (JE Iglesias, TMI 2011}, and
from a T2-weighted image from the DWI set, using the FSL tool “BET”
(FMRIB Software Library, http://fsL.fmrib.ox.ac.ul¢/fsl/). Intracranial vol-
ume estimates were obtained from the full brain mask, and included
cerebral, cerebellar, and brain stem regions. All T1-weighted images
were linearly aligned using FSL (with 9 DOF} to a common space
(Holmes et al, 1998} with 1 mm isotropic voxels and a 220x220x
220 voxel matrix. Raw diffusion-weighted images were corrected for
eddy current distortions using the FSL tool, “eddy_correct”. For each
subject, the 11 eddy-corrected images with no diffusion sensitization
were averaged, linearly aligned and resampled to a downsampled ver-
sion of their corresponding T1 image (110x110x 110, 2x 2 x2 mm).
Averaged by maps were elastically registered to the structural scan
using a mutual information cost function (Leow et al., 2005) to compen-
sate for EPI-induced susceptibility artifacts.

35 cortical labels per hemisphere, as listed in the Desikan—Killiany
atlas (Desikan et al., 2006), were automatically extracted from all
aligned T1-weighted structural MRI scans using FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/). As a linear registration is performed
by the software, the resulting T1-weighted images and cortical
models were aligned to the original T1-weighted input image space
and down-sampled using nearest neighbor interpolation (to avoid
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intermixing of labels} to the space of the DWIs. To ensure tracts
would intersect cortical labeled boundaries, labels were dilated with
an isotropic box kernel of width 5 voxels.

The transformation matrix from the linear alignment of the mean by
image to the T1-weighted volume was applied to each of the 94 gradient
directions to properly re-orient the orientation distribution functions
(ODFs). At each HARDI voxel, ODFs were computed using the normalized
and dimensionless ODF estimator, derived for g-ball imaging (QBI) in
Aganj et al. (2010). We performed HARDI tractography on the linearly
aligned sets of DWI volumes using these ODFs. Tractography was
performed using the Hough transform method as described in Aganj et
al. (2011).

Elastic deformations obtained from the EPI distortion correction,
mapping the average by image to the T1-weighted image, were then
applied to the tracts’ 3D coordinates for accurate alignment of the
anatomy. Each subject’s dataset contained 5,000-10,000 useable fi-
bers (3D curves). Fibers were filtered to eliminate those that may
have arbitrarily been drawn on the brain-boundary due to noise and
high FA. All duplicate fibers were removed.

For each subject, a full 70x70 connectivity matrix was created.
Each element described the proportion of the total number of fibers
connecting each of the labels; diagonal elements of the matrix de-
scribe the total number of fibers passing through a certain cortical re-
gion of interest. These values were calculated as a proportion - they
were normalized to the total number of fibers traced for each person
in the study - so that results were not skewed by raw fiber count.

Graph theory analyses

On the 70 x 70 matrices generated above, we used the Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010; https://sites.google.
comy/a/brain-connectivity-toolbox.net/bct/Home)} to compute seven
standard measures of global brain connectivity — characteristic path
length (CPL}, mean clustering coefficient (MCC), global efficiency
(EGLOB), small-worldness (SW), and modularity (MOD}, as well as
normalized path length (lambda) and normalized clustering coeffi-
cient (gamma). CPL measures the average path length in a network,
where the path length is defined as the minimum number of edges
that must be traversed to get from one node to another (note this de-
pends on the number of nodes traversed, and does not depend on the
physical length of axons or how they are organized spatially in the
brain). MCC is a measure of how many neighbors of a given node
are also connected to each other, in proportion to the maximum num-
ber of connections in the network. EGLOB is inversely related to CPL:
networks with a small average CPL are generally more efficient than
those with large average CPL. SW represents the balance between
network differentiation and network integration, calculated as a
ratio of local clustering and characteristic path length of a node rela-
tive to the same ratio in a randomized network. We created 15 simu-
lated random networks. The ratio of clustering in our network to the
average clustering in a simulated random network - with the same
number of nodes and connections - is gamma, while the ratio of char-
acteristic path length in our network to the average path length in a
simulated random network is lambda. MOD is the degree to which a
system may be subdivided into smaller networks (Bullmore and
Bassett, 2010). We also calculated 4 standard nodal measures of con-
nectivity — regional efficiency (EREG), “betweenness centrality” (BC),
degree, and clustering coefficient (CC). EREG is the global efficiency
computed for each node and is related to the clustering coefficient
(Latora and Marchiori, 2001). BC is the fraction of all of the shortest
paths in a network that contain a given node with higher numbers in-
dicating participation in a large number of shortest paths (Kintali,
2008). Degree is the number of links (edges) connected to a node
(Sporns, 2002). Equations to calculate these measures may be found
in Rubinov and Sporns (2010).

30

One possible step in graph theory analyses is selecting a sparsity,
which is related to thresholding the network (removing nodes and
edges based on their weightings). The sparsity is the fraction of con-
nections retained from the full network: setting a sparsity level of
0.2 means that only the top 20% of connections are retained for calcu-
lations. Selecting a single sparsity level may arbitrarily affect the net-
work measures, so we computed measures at multiple sparsities, and
integrated the measures across that range to generate more stable
scores. As noted in Dennis et al. (2012b), the sparsity (threshold} de-
termines which nodes remain in a network and is typically defined
with the goal of eliminating noisy or unreliable connections. To min-
imize any effects of arbitrary thresholding, we calculated our network
measures over a range of thresholds (Achard and Bullmore, 2007;
Bassett et al., 2008; He et al., 2008; Khundrakpam et al., 2012} and in-
tegrated over that range. We have shown that this can improve their
robustness and test-retest reliability (Dennis et al., 2012c¢}. We se-
lected the range 0.2-0.3 to calculate and integrate these measures,
as that range is biologically plausible (Sporns, 2011} and more stable
(Dennis et al.,, 2012a). We calculated these measures for the whole
brain over a range of sparsities (0.2-0.3, in 0.01 increments}, and cal-
culated the area under the curve of those 11 data points to generate
an integrated score for each measure. We also computed network
measures for the left and right hemispheres independently.

Age regression

Age-related effects on graph theory metrics of structural brain con-
nectivity were estimated using a general linear model including mixed
effects, as well as a simpler linear mixed effects model, as follows:

Graph theory metrics ~ A+ P,y Age + Py SeX + Py ICY
+PgeAge’ +ate 1)

Graph theory metrics ~ A+ B, Age + PeeySeX + PioyICV + at + 8. (2)

Here, “graph theory metrics” could be any of CPL, MCC, EGLOB,
SW, MOD, lambda, or gamma. A is the constant graph theory metric
term, the s are the covariate regression coefficients, and « is a coef-
ficient that accounts for random effects. Random effects were used to
account for familial relatedness. Both age and age? were included as
variables to model both linear and non-linear age effects. We
modeled these variables (age, sex, ICV, age®) as fixed effects. We ini-
tially included an interaction term, age=sex, as well, but it was not
kept in the model as it did not fit. ICV denotes intracranial volume,
in mm?3. We additionally tested the raw 70 x 70 fiber density matrices
on an element-by-element basis to test for any effects of age and age?,
using the same models as above.

Results
Whole brain analyses

The model that included age and age? together, with sex and ICV as
additional covariates (as shown in Eq. (1)), revealed significant linear
trends of decreasing CPL, lambda (normalized path length), gamma
(normalized clustering coefficient), SW, and MOD with age. Most of
these also had a significant age? term in the opposite direction, indicat-
ing an age effect that leveled off. This slowing down of the age effect
would be expected, in early adulthood. Scatterplots of these results,
and those for the left and right hemispheres treated separately, are
shown in Fig. 1. Studies of sex differences in graph theoretical measures
of structural brain connectivity are few (Gong et al, 2011; Yan et al,
2011). From these few studies we expected females to have higher
global efficiency and higher regional efficiency in temporal nodes. We
also expected males to have higher regional efficiency in frontal
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Fig. 1. Scatterplots showing significant associations between global graph theory connectivity scores and age in whole brain, left, and right hemispheres. Linear trendlines added
with slopes and b values (regression coefficients) corresponding to results from Tables 2-4. Slopes taken from b values from Eq. (2) results, no linear trendline is included for mod-

ularity (whole brain), as that analysis was not significant.

Table 2

Effects of age and age?, both modeled together (Eq. (1)) and just age (Eq. (2)) on global
connectivity metrics for the whole brain. FDR corrected within model, with left and
right hemisphere analyses FDR corrected separately from whole brain analyses.

Age and Age? combined (Eq. (1))

Age Age®
Characteristic path length/lambda —0.11 (0.0043)/—0.038 0.050 (0.022)/0.024
(0.0073) (0.033)
Mean clustering coefficient/gamma ns/—0.38 (C.00018) ns/0.18 (0.0018)
Global efficiency ns ns
Small-worldness —0.26 (0.00053) 0.13 (0.0034)

Modularity —0.077 (0.013) 0.044 (0.013)

Sex

0.018 (0.011)
0.022 (0.020)

Small-worldness
Gamma

Age (Eq. (2))

Age

—0.023 (1.0x107%)/—0.011 (1.8x 107%)
ns/— 0.066 (8.0x107%)

Characteristic path length/lambda
Mean clustering coefficient/

gamma
Global efficiency ns
Small-worldness —0.043 (3.1x107°)
Modularity ns

Sex
Small-worldness 0.014 (0.034)

nodes. We found significant sex effects for SW and gamma. For both,
females tended to have greater values than males. The model described
by Eq. (2), modeling age, sex, and ICV yielded significant age effects for
CPL, gamma, and SW, with all of them decreasing with age, as hypoth-
esized. The beta coefficients and corresponding p-values for these
whole brain analyses are shown in Table 2. We also found a borderline

Table 3
Effects of age and age?, both modeled together (Eq. (1)) and just age (Eq. (2)) on global con-
nectivity metrics for the left hemisphere. FDR corrected as described for Table 2 (g<0.05).

Age and Age? combined (Eq. (1))

Age Age?
Characteristic path length/lambda ns/ns ns/ns
Mean clustering coefficient/gamma ns/ns ns/ns
Global efficiency ns ns
Small-worldness ns ns
Modularity ns ns
Age (Eq. (2))
Age

Characteristic path length/lambda
Mean clustering coefficient/gamma
Global efficiency

Small-worldness

Modularity

ns/—0.0054 (0.021)

0.0082 (0.0036)/— 0.024 (0.027)
0.0082 (3.6x107%)

ns

0.013 (0.0043)

31

Bolded entries are those passing FDR.
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Table 4

Effects of age and age?, both modeled together (Eq. (1)) and just age (Eq. (2)) on global
connectivity metrics for the right hemisphere. FDR corrected as described for Table 2
(g=0.05).

Age and Age? combined (Eq. (1))

Age Age?
Characteristic path length/lambda ns/ns ns/ms
Mean clustering coefficient/gamma —0.054 (0.033)/—0.28 ns/mns
(c.0041)
Global efficiency ns ns
Small-worldness —0.27 (0.0022) 0.10 (0.041)
Modularity —0.086 (0.025) ns
Sex
Global efficiency 0.0050 (0.0079)
Age (Eq. (2))
Age
Characteristic path length/lambda ns/ns
Mean clustering coefficient/gamma  —0.012 (5.7x 10~ %)/ —0.095 (4.2x1075)
Global efficiency —0.012 (19x1077)
Small-worldness —0.095 (3.7x107 %)
Modularity —0.028 (14x1079)
Sex.
Global efficiency 0.0050 (0.01)

Bolded entries are those passing FDR.

significant sex effect (it did not survive multiple comparison correction
for the number of whole brain global measures tested within this
model, FDR correction) for SW for this model. Results were all
corrected for multiple comparisons using the false discovery rate

Table 5

method (FDR; Benjamini and Hochberg, 1995). Linear best-fit lines
are charted in Fig. 1, with their regression coefficients, or estimated
slopes. These linear trend lines and b values come from the regression
model including sex and ICV as covariates, not simply age and the BCT
measure of interest. The regression coefficients (b values) for age and
age? are often of opposite sign, meaning that as we adjust for one co-
variate, the other tends to fit in the opposite direction. This indicates
a plateau in adulthood, in line with intuition and empirical data on de-
velopmental trajectories for other anatomical measures (Thompson et
al,, 2005).

Left hemisphere analyses

When restricted to the intra-hemispheric connections within the
left hemisphere (meaning those that began and terminated at left
hemisphere nodes), the simpler linear model with only age described
by Eq. (2) yielded significant results for MCC, EGLOB, and MOD, as
well as borderline significant results for lambda and gamma. FDR
correction for multiple comparisons was applied across the left and
right hemisphere analyses together, within model (g=0.05). The
beta coefficients and corresponding p-values for the whole-brain anal-
yses are presented in Table 3 and Fig. 1. There were no significant sex
effects for the left hemisphere analyses.

Right hemisphere analyses

The model with age and age? together (Eq. (1)), when restricted to
only intra-hemispheric connections within the right hemisphere,
yielded borderline significant results for MCC, gamnma, SW, and MOD
(p<0.05) but not FDR correction. The simpler model with only age de-
scribed by Eq. (2) yielded significant results for MCC, gamma, EGLOB,

Effects of age and age? together on nodal graph theory metrics, as modeled by Eq. (1). ‘ns’ corresponds to non-significant effect. FDR corrected within model across all nodal metrics
tested (g<0.05). Bolded entries survive FDR across all metrics and all nodes within model. Non-bolded entries survive FDR within metric but did not survive FDR across all metrics

tested.
Betweenness centrality Clustering Degree Regional efficiency

Age
L cuneus ns ns 10 (0.0035) ns
L entorhinal ns ns 13 (0.00024) ns
L inferior parietal —72 (46x107F) 0.24 (0.00052) —12 (1.2x107F) —0.10 (4.5x107%)
L lat occipital —54 (3.7x107%) 0.25 (0.0021) —7.2(0.0058) ns
L parahippocampal ns —050 (9.6x107%) 14 (0.00043) 0.16 (0.00020)
L paracentral —130 (0.0011) ns ns ns
L postcentral — 24 (0.0069) ns —9.1 (0.0025) —0.072 (0.0088)
L post cingulate 220 (0.00044) —022 (3.4x107%) 19 (6.4x107°%) 0.14 (69x107°)
L precentral — 120 (0.00088) ns —8.5 (0.0099) —0.082 (0.0051)
L rostral ant cingulate ns ns 10 (0.0096) ns
L rostral mid frontal —95 (0.0012) 0.26 (0.0020) —10 (0.0017) —0.091 (0.0040)
L sup frontal ns ns 11(0.0085) 0.086 (0.0055)
L supra-marginal ns ns —5.9 (0.010) ns
L frontal pole ns ns —8.2 (0.0020) —0.34 (0.0053)
R caudal ant cingulate —44 (0.0086) 0.21(0.0029) —11(0.0026) —0.091(0.0075)
R isthmus of the cingulate —100 (0.011) ns ns ns
R parahippocampal ns ns ns 0.12 (0.0056)
R paracentral -54 (0.0049) ns ns ns
R postcentral ns —0.34 (5.1x107%) 12 (0.00065) 0.10 (0.0014)
R precuneus — 190 (0.0026) ns ns ns
R rostral ant cingulate —63 (0.0052) ns —7.7 (0.005.4) ns
R rostral mid frontal ns ns —7.2 (0.0021) ns
R sup temporal —50 (0.0012) ns —95 (2.1x1079%) —0.091 (2.9x1075)
R supra-marginal ns ns ns 0.077 (0.0066)
Age?
L entorhinal ns ns —6.3 (0.0010) ns
L inferior parietal 32 (0.00033) ns 5.0 (0.00020) 0.050 (0.00023)
L parahippocampal ns 0.22 (0.0021) ns ns
L post cingulate ns 0.95 (0.00047) —8.2 (0.00088) —0.054 (0.0011)

R postcentral
R sup temporal

ns
ns

0.17 (69x1075)
ns

ns
5.0 (25x1075)

ns
0.045 (0.00019)

32
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Table 6

Effects of age alone on nodal graph theory metrics, as modeled by Eq. (2). All 70 connections were tested but only those significant in one of the analyses are included in the table in
the interest of space. ‘ns’ corresponds to non-significant effect. FDR corrected (g<0.05). All entries included survive FDR within model across all four metrics tested and all nodes

tested.
Betweenness centrality Clustering Degree Regional efficiency
Age
L caudal ant cingulate ns —0.032 (74x107%) 2.7 (0.0054) 0.022 (0.0031)
L caudal mid frontal ns —0.022 (0.024) —1.4(0.025) ns

L cuneus

L entorhinal

L fusiform

L inferior parietal

L isthmus of the cingulate
L lat occipital

L lat orbitofrontal

ns

ns

16 (0.0022)

—17 (2.0x10718)
35 (0.00033)
—14 (54x10717)
ns

L lingual ns
L mid temporal —4.4(0.00023)
L parahippocampal 8.2 (0.0038)

L paracentral
L pars opercularis

—27 (3.2x 107 %)
ns

—0.037 (0.0029)
0.10 (0.0039)
—0.037 (0.00036)
0.059 (8.3x107'%)
—0.028 (9.7x107%7)
0.072 (3.1x1071%)
0.042 (0.00050)
—0.031 (0.00080)
0.031 (0.0020)
—0.11(24x10712)
ns

ns

L pars orbitalis —0.50 (0.021) ns
L pars triangularis ns ns
L peri-calcarine 11 (0.0030)

L postcentral

L post cingulate

L precentral

L precuneus

L rostral ant cingulate
L rostral mid frontal
L sup frontal

L sup parietal

L supra-marginal

L frontal pole

L transverse temporal
L insula

R caudal ant cingulate
R caudal mid frontal
R entorhinal

—7.7 (7.8x1071%)
59 (3.1x 10714
—23 (3.6x107%)
—23 (0.0056)

54 (2.8x 10~ )
—26 (2.7x10712)
42 (8.2x107%)
—28 (1.2x107 ")
—7.7 (8.8x107%)
ns

ns

ns

—12 (2.2x 107 %)
—6.8 (0.00081)

ns

—0.045 (3.1x 107 %)
0.063 (43x1071)
—0.059 (1.7x 107%)
0.023 (0.011)

ns

—0.063 (3.8x 10~ ™)
0.063 (4.0x1071°)
—0.028 (7.1x107%7)
0.034 (1.7x107°7)
ns

ns

—0.072 (65x 107 1%)
—0.015 (0.0018)
0.033 (8.8x107%)
ns

0.14 (6.5x107%%)

0.039 (8.8x107%%)

R isthmus of the cingulate —15(0.0012) ns
R lat occipital —20 (1.4x107%)
R lingual 15 (0.011)

R med orbitofrontal
R mid temporal

R paracentral

R pars opercularis
R postcentral

R post cingulate

R precentral

R precuneus

ns

11 (3.1x10799)
—7.7 (0.00048)
3.9 (45x107%)
8.2 (49x107%)
—12 (0.00065)
—18 (0.00024)
—38 (1.1x107%)

—0.034 (0.00014)

ns

—0.054 (1.4x10~%7)
0.038 (0.00014)
—0.042 (1.2x10%)
—0.045 (1.6x107%7)
0.015 (0.022)

ns

0.022 (3.9%107%%)

0.032 (5.2x107%)

R rostral ant cingulate —6.3(0.014) ns
R rostral mid frontal —20 (2.2x107%)
R sup temporal —6.3 (0.0010)

R supra-marginal
R transverse temporal

15 (1.2x 10~ 19)
ns

0.026 (0.0080)
—0.041 (2.0 10-%)
ns

26 (7.5x107%°)
1.5 (0.00025)

1.6 (6.8x107%%)
—28(3.0x1072")
36 (3.0x1071%)
—22(1.6x10™1)
—1.6(0.011)

1.6 (5.0x107°%)
— 1.4 (0.00016)
42 (5.7x10717)
ns

—0.95 (0.0017)
—0.82 (0.00041)
—0.51 (0.0065)
2.1 (3.8x107%)
—3.1(1.3x107 1)
5.4 (6.5%10721)
—2.0(7.2x107°%)
1.1 (0.0020)

33 (1.6x1071)
—4.0(22x10719)
3.0 (47x107%)
—1.9(2.9x107%)
—1.5(7.8x107%8)
—25(8.9x10"1)
1.6 (24x107%)
0.68 (0.015)
—2.1(63%x107%)
ns

ns

ns

—1.1 (0.00020)
1.0 (0.0060)
—1.8(0.0020)

1.8 (1.0x10798)
—1.3 (0.0025)

1.6 (3.2x107°%)
2.6 (2.2x107°%)
ns

ns

—1.1(0.0017)
—1.4(8.2x107%)
—1.8(3.8x107")
—1.2(6.2x107°%)
2.3 (5.5x107°%)
1.1 (0.00060)

0.027 (8.7x10™%)
0.050 (0.00012)
0.018 (1.8x10™%7)
—0.023 (1.5x107'%)
0.027 (26x10712)
—0.020 (65x107%)
ns

0.014 (65x 107 %)
—0.013 (0.0013)
0.044 (25x10719)
ns

ns

—0.0086 (0.025)

ns

0.018 (5.34x 107 %)
—0.025 (8.0x10713)
0.040 (62x 10~ %)
—0.014 (49%107%)
0.0086 (0.0017)
0.028 (1.2x 107 19)
—0.034 (1.6x10717)
0.024 (53x107 ")
—0.016 (3.4x107%)
—0.0082 (0.00057)
—0.054 (0.00014)
0.020 (3.7x 107 %)
0.0082 (0.00093)
—0.014 (0.00025)

ns

ns

ns

—0.010 (0.00095)
0.011 (0.0026)
—0.014 (0.0085)
0.018 (4.7x107%8)
—0.0086 (0.021)
0.020 (25x107%7)
0.022 (63x 107 %)
ns

ns

—0.0077 (0.0070)
—0.010 (0.0014)
—0.013 (44x107°%7)
—0.011 (1.9%x107%)
0.027 (5.6x 10~ 1)
0.012 (0.0021)

SW, and MOD. The beta coefficients and corresponding p-values for

Nodal analyses

whole brain analyses are shown in Table 4 and Fig. 1. Results are FDR

corrected across left and right hemisphere analyses within model for

multiple comparisons (q=0.05}. There were sex effects for SW in the
right hemisphere, but they only survived FDR for the model described

by Eq. (2).

Table 7

Analyses of nodal measures of connectivity (regional efficiency —
EREG, degree, clustering coefficient — CC, and betweenness centrality
— BC) yielded a number of significant results for the model described
by Eq. (1), which are shown in Table 5. When age was assessed alone

Distribution of significant age-related effects on 4 nodal measures tested, with increases and decreases separated.

Betweenness Clustering coefficient Degree Regional efficiency Number of nodes
centrality belonging to each
Incr. Decr. Incr. Decr. Incr. Decr. Incr. Decr. lobe

Frontal 4 10 6 6 5 13 5 9 26

Temporal 3 2 4 5 7 2 7 2 20

Parietal 3 8 5 3 4 5 4 5 14

Occipital 2 2 2 4 4 2 4 2 8
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R Postcentral

L Post cingulate

L Sup Frontal

L Rostral Ant Cingulate
L Entorhinal

L Parahippocampal

L Cuneus

Sup Temporal
Caudal Mid Frontal
Caudal Ant Cingulate
Rostral Ant Cingulate
Inf Parietal

Frontal Pole

Rostral Mid Frontal
Precental
Postcentral,
Supramarginal

Lat Occipital

s s v g o o 3 B o

Fig. 2. Image depicting developmental effects, comparing children (12 and 16 year olds) to adults (20-30 year olds). The diameter of each node is inversely proportional to the
p-value for the degree analyses — large diameter means node was significantly different in degree between children and adults. Non-significant nodes are colored black. Nodes
numbered in blue increase in degree with age, while those numbered with red decrease in degree with age. Blue connections are those that changed with age, corresponding to
significant boxes in Fig. 4. For this image we looked only at connections present in at least 85% of subjects. Author NJ is the creator of this image.

(EqQ. (2}), age showed effects on several nodal measures (Table 6).
Results are FDR corrected for multiple comparisons within model
across all nodes and across all four metrics tested (g=0.05). Details
of how the significant changes break down by lobe can be found in
Table 7. Fig. 2 summarizes the developmental results, showing the
differences in paths between groups and the differences in degree

at certain nodes. Additionally, Supplementary Video 1 and Supple-
mentary Video 2 online and Fig. 3 display the increases and decreases,
respectively, in degree and fiber density across ages 12-30. While we
lack scan data for some parts of the age range, we used the regression
coefficients from our analysis to estimate network metrics at each
year.

Age 30

Fig. 3. Still images from Supplementary Video 1 and Supplementary Video 2 displaying the increases and decreases in degree and fiber density between age 12 and age 30. While
we lack scan data for some parts of this age range, we used the regression coefficients from our analysis to estimate network metrics at each year. For this image, node size is pro-
portional to the degree (number of connections), and connection thickness is proportional to relative fiber density. The connection color is simulated to make the connections easier
to see. The rate of increase or decrease for each node and connection was the regression coefficients from our age analyses for those nodes and connections. Small blue dots indicate
nodes for which there was no significant age-related increase or decrease in degree. Only connections that had a significant age-related increase or decrease in fiber density are
included in this image, other connections exist but are not drawn in for clarity. In this image are both weighted (fiber density) and binary (degree) measures. These images are
created from the results when analyses were restricted to only connections existing in at least 95% of subjects.
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70 x70 fiber density matrices

As we found significant results at the hierarchical levels, we also ex-
amined the original 70x 70 fiber density matrices, from which these
metrics were calculated, for age effects to focus on specific
connections. When modeled together (Eq. (1)}, we found 112 connec-
tions with a significant association with age and 50 connections with a
significant association with age?, out of 1280 connections tested. We
ran our analyses in two different ways — the first analysis examined
connections existing in at least 95% of subjects, designed to reveal con-
nections that exist in all age groups but change in fiber density. The
second kind of analysis examined connections existing in at least 5%
of subjects, designed to reveal connections that are gained or lost
with age. Out of 2485 possible connections (70x70, symmetrical),
we tested only those where at least 5% of subjects had a connection,

NxN age association - >5% subjects X 10

NxN age association - >95% subjects

0.025

0.015

0.00s

Fig. 4. P map of age effects, when modeled alone (Eq. (2)), with 70x70 fiber density
matrix from which graph theory metrics were calculated. Colors correspond to
strength of p value as indicated by color bar. Gray boxes were not tested as those con-
nections were not present. For the top p map connections that were present in at least
5% of subjects were tested, for the bottom p map, connections that were present in at
least 85% of subjects were tested. Black boxes were tested but not significant. FDR
corrected (g<0.05). See Table 9 for region key.

35

Table 8

List of 10 most significant age-related increases and 10 most significant age-related de-
creases in proportional fiber density when age is examined alone. When only one re-
gion is listed, an age-related increase or decrease in the proportion of fibers going
through that node was found.

Connection b-val

Top 10 increases in fiber density

L supramarginalx L inferior parietal —0.000358
R caudal middle frontal —0.000347
L lateral orbitofrontal x L rostral mid frontal —0.000255
L med orbitofrontalx L rostral mid frontal —0.000314
L postcentral xL insula —0.000276
L insulaxL supramarginal —0.000428
L inferior parietal —0.00108
L supramarginalx L posterior cingulate —0.000296
L sup frontalx L rostral mid frontal —0.000483
R sup frontal xR rostral ant cingulate —0.000308
Top 10 decreases in fiber density

L posterior cingulate 0.00337
L paracentralx L posterior cingulate 0.00143
L posterior cingulatex L precuneus 0.000967
L posterior cingulatexL sup frontal 0.000999
R postcentral xR insula 0.000593
L isthmus of the cingulate 0.00277
R postcentral 0.000956
L sup frontalx R prefrontal 0.000168
L isthmus of the cingulate x L precuneus 0.00176
L caudal ant cingulatex L sup frontal 0.00101

resulting in 1280 connections tested. When effects of age were
modeled alone (Eq. (2}), we found 483 connections with a significant
association with age, as shown in Fig. 4. Results are FDR-corrected
across all tested connections (q=0.05). When age was modeled
alone, and analyses were restricted to only connections present in at
least 95% of subjects, there were 309 connections tested, 213 of
which survived FDR, also shown in Fig. 4. Table 8 shows the top 10 in-
creases and top 10 decreases — i.e. those with the most significant age
association (based on lowest p-value) when age was modeled alone
and analyses were restricted to connections present in at least 95% of
subjects. The left hemisphere is over-represented in these most signif-
icant results, perhaps due to the greater effect sizes in the left hemi-
sphere than in the right. There were more connections that decreased
in proportional fiber density than increased. The overall number of
connections did not change with age; changes were seen in the propor-
tional fiber density of specific connections. Fiber decreases were
disproportionally seen in the frontal cortex, while the temporal cortex
had disproportionally more fiber density increases.

These analyses were all performed on matrices than had been
normalized by the number of fibers tracked, meaning that the results
depict changes in proportional fiber density rather than absolute fiber
density. However, when analyses were run on the absolute fiber densi-
ty data, the results were generally unchanged. Compared to the 213
connections found to have a significant age effect on the proportional
fiber density data, the absolute fiber density age analysis revealed
220 significant connections. 203 of the 220 significant connections
from the absolute fiber density analysis were the same ones that
showed significance in the proportional fiber density analysis. 17 new
connections were found in the absolute analysis and 10 connections
that had been significant in the proportional fiber density analysis
were no longer significant in the absolute fiber density analysis. Impor-
tantly, however, all significant results were in the same direction, so
decreases in proportional fiber density are in fact true decreases in
absolute fiber density, and do not simply imply that some connections
are increasing to a lesser degree than the average. Fig. 5 shows the
developmental trajectory for 70x70 connections and degree, with
an average network shown for each group. Supplementary Video 1
and Supplementary Video 2 online, and Fig. 3 display these changes
as well.
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Age-related increases in degree and fiber density

6
Degree

Age 30

Fig. 5. Image depicting developmental trajectory, with averaged networks shown for four groups (12 year olds, 16 year olds, 20-24 year olds, 24-30 year olds). The color of each
connection is proportional to the average fiber density within group with red signifying the thickest connections and blue the thinnest connections; the color of the node is pro-
portional to the average degree of that node within group. For this image we looked only at connections present in at least 85% of subjects. Author NJ is the creator of this image.

Cross-hemisphere connections

Of the 213 connections that survived FDR correction above, 9 were
interhemispheric connections. We decided to further examine cross-
hemisphere connections by restricting our 70x 70 matrices to just
assess interhemispheric connections. Of the 20 connections tested, 7
connections showed an age effect — those between the left isthmus
of the cingulate and the right posterior cingulate, the left posterior
cingulate and right paracentral gyrus, the left and right posterior cin-
gulate, the left posterior cingulate and right precuneus, the left poste-
rior cingulate and right superior frontal gyrus, the left precuneus and
the right posterior cingulate, and the left superior frontal gyrus and
right precuneus. All of these increased in fiber density with age

(Fig. 6).

Sex differences

In addition to the sex differences found above, there were also a
few differences in nodal measures of EREG and degree. While few,
these results do fit with previous ones from Gong et al. (2009).
These are shown in Table 10 and Fig. 7. Results are FDR corrected
{q=0.05) with respect to the total number of nodes and measures
tested.
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Discussion

The current study sought to characterize the developmental trajec-
tory of graph theory metrics of structural connectivity from early ado-
lescence to early adulthood. Although our study was cross-sectional, its
sample size was much larger than most prior studies of the developing
structural connectome, offering greater power to detect age effects. The
brain continues to mature into the twenties (Gogtay et al, 2004)
and myelination and network remodeling continue throughout life
(Bartzokis, 2004). Between ages 12 and 30, we found a number of lin-
ear and nonlinear age effects across the whole brain, for left and right
hemispheres, and for specific nodes. These age effects were also seen
in the connectivity matrices that served as the basis to compute the
graph theory metrics, with significant age effects on fiber density. We
also found significant sex differences in a few nodal measures.

For the whole-brain graph theory measures, we found significant ef-
fects of decreasing path length, clustering, small-worldness, and
modularity with age, and all of these plateaued in early adulthood.
Changes in “small-worldness” reflect a network property that itself de-
pends on changes in either normalized clustering coefficient (gamma),
normalized path length (lambda}, or the ratio between those two. In
our results it appears that it was the ratio between these two that
changed, as gamma decreased at a faster rate than did lambda. These
results are mostly in line with those of Hagmann et al. (2010), who
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Fig. 6. P maps of age effects, when modeled alone (Eq. (2)), with 3535 interhemispheric
fiber density matrix. Colors correspond to strength of p value as indicated by color bar.
Blue highlighting on regions indicate significance. Gray boxes were not tested as those
connections were not present. Black boxes were tested but not significant. FDR corrected
(g=<0.05). See Table § for region key.

also reported decreased clustering and small-worldness in a much
smaller sample of 30 subjects. The global results of decreasing path
length, clustering, and modularity suggest that structural network inte-
gration increases during the teenage years. All subjects, regardless of
age, showed a small-world topology in their brain networks. Adoles-
cence is marked by parallel decreases in gray matter density, due in
part to synaptic pruning (Gogtay et al., 2004}, and increases in intra-
cortical myelination through young adulthood (Giedd et al., 1999). As
some short-range connections are pruned and other long-range ones

Degree - L temporal pole

are strengthened (Casey et al,, 2000; Hagmann et al,, 2010; Thomason
et al, 2011), we might expect the anatomical network as a whole to
have a shorter path length, and this is indeed what we found. The
fiber density of connections where an age effect was detectable
decreased in many connections, disproportionately in the frontal cor-
tex, while it increased in some connections, disproportionately in the
temporal and parietal cortices (Fig. 5).

In the left hemisphere analyses, we found linear effects of increasing
clustering, global efficiency and modularity with age. In the right hemi-
sphere, we found opposite trends of linear decreases in clustering,
global efficiency, small-worldness, and modularity with age. It is curi-
ous that the left hemisphere shows trends opposite to the right, and
to the network as a whole; this may point to different developmental
processes occurring within each hemisphere (Paus et al, 1999;
Scheibel et al., 1985; Shaw et al,, 2009; Sowell et al., 2003). It appears
that these results are driven by asymmetries in the adults for global
efficiency and modularity, as both were higher in the left hemisphere
than the right for adults, but roughly the same for the 12 year olds.
Trends for the clustering coefficient may also be due to anatomical
asymmetries for both age groups. Recent work from our laboratory
studied asymmetry of these measures in the same sample, finding
greater small-worldness in the right hemisphere (Daianu et al,
2012a). Our results are contrary to those of Iturria-Medina et al
(2011}, who found greater global efficiency in the right hemisphere,
but these were from a relatively small sample of 11 subjects, and our
sample is over 40 times larger. One possible explanation is the consis-
tent finding of right/left asymmetry in overall cerebral hemispheric vol-
ume, with the right hemisphere being larger on average (Bilder et al,
1994; Giedd et al,, 1996). The asymmetry of the many structural and
functional features of the brain has long been noted (Dimond and
Beaumont, 1974; Hellige, 1993; Toga and Thompson, 2003}, with re-
searchers finding asymmetry in FA (Biichel et al., 2004} and regional
volumes (Good et al, 2001}, as well as finding that the level of asymme-
try in fiber integrity was heritable (Jahanshad et al., 2010).

For the nodal analyses, we found many linear and non-linear age
effects, for all four of the nodal metrics tested. For betweenness

Degree - R pars orbitalis

85

Males Females

Regional Efficiency - L
precuneus

7.17

7.15

7.13

7.11
7.09
7.07
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Females

Males

95

Males Females

Regional Efficiency - R pars
orbitalis

Males Females

Fig. 7. Bar graphs of nodes showing significant sex effects for degree (integrated over range of sparsities). FDR corrected (g=<0.05).
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centrality, there were more decreases with age than increases, per-
haps demonstrating network refinement as fibers are pruned from
some connections. Betweenness centrality shows how “central” a
node is to the network, based on how many of the shortest paths go
through that node. The clustering coefficient increased in about the
same number of nodes as it decreased with age — this network mea-
sure refers to how many of a node’s neighbors are also connected to
each other. For both betweenness centrality and the clustering coeffi-
cient, we could not discern any obvious pattern in the nodal locations
of the increases or decreases. The nodal degree reflects the number of
nodes a given node is connected to, and we found roughly equal rep-
resentations of statistically significant increases in degree and de-
creases in degree with age. However, in the frontal cortex, many
more nodes decreased in degree than increased. Conversely, of the
nodes in the temporal cortex showing an age effect, more increased
in degree than decreased. Similarly, we found roughly equal increases
and decreases in regional efficiency with age, but there were more
frontal nodes that decreased in efficiency than increased, and more
temporal nodes that increased in efficiency than decreased. This
may be a manifestation of the more protracted developmental trajec-
tory of the frontal lobe compared to other lobes (Gogtay et al., 2004},
or it may point to different processes occurring in different regions of
the brain. A few of these nodes also had significant age? terms that fit
in the opposite direction, suggesting that these age effects plateaued
in early adulthood. Gong et al. (2009} also reported more increases
in regional efficiency in the temporal cortex with age, but they were
examining a different age range (19-85). Regional efficiency is a

Table 9
Region key.

Abbreviation Region Abbreviation Region

L-BSTS L Banks of the Superior ~ R-BSTS R Banks of the Superior
Temporal Sulcus Temporal Sulcus

L-CAC L Caudal Anterior R-CAC R Caudal Anterior
Cingulate Cingulate

L-CMF L Caudal Middle Frontal ~R-CMF R Caudal Middle Frontal

L-CC L Corpus Callosum R-CC R Corpus Callosum

L-Cun L Cuneus R-Cun R Cuneus

L-Ento L Entorhinal R-Ento R Entorhinal

L-Fus L Fusiform R-Fus R Fusiform

L-InfP L inferior Parietal R-InfP R Inferior Parietal

L-InfT L inferior Temporal R-InfT R Inferior Temporal

L-IsC L Isthmus of the R-IsC R Isthmus of the
Cingulate Cingulate

L-LOcc L Lateral Occipital R-LOcc R Lateral Occipital

L-LOrb L Lateral Orbitofrontal R-LOrb R Lateral Orbitofrontal

L-Ling L Lingual R-Ling R Lingual

L-MOrb L Medial Orbitofrontal R-MOrb R Medial Orbitofrontal

L-MidT L Middle Temporal R-MidT R Middle Temporal

L-ParaH L Parahippocampal R-ParaH R Parahippocampal

L-ParaC L Paracentral R-ParaC R Paracentral

L-ParsOp L Pars opercularis R-ParsOp R Pars opercularis

L-ParsOr L Pars orbitalis R-ParsOr R Pars orbitalis

L-ParsTri L Pars triangularis R-ParsTri R Pars triangularis

L-PeriCal L Peri-calcarine R-PeriCal R Peri-calcarine

L-PCen L Postcentral R-PCen R Postcentral

L-PCing L Posterior Cingulate R-PCing R Posterior Cingulate

L-PreC L Precentral R-PreC R Precentral

L-Prec L Precuneus R-Prec R Precuneus

L-RAC L Rostral Anterior R-RAC R Rostral Anterior
Cingulate Cingulate

L-RMF L Rostral Middle Frontal ~R-RMF R Rostral Middle Frontal

L-SupF L Superior Frontal R-SupF R Superior Frontal

L-SupP L Superior Parietal R-SupP R Superior Parietal

L-SupT L Superior Temporal R-SupT R Superior Temporal

L-SuprM L Supra-marginal R-SuprM R Supra-marginal

L-Fpole L Frontal Pole R-Fpole R Frontal Pole

L-Tpole L Temporal Pole R-Tpole R Temporal Pole

L-TiT L Transverse Temporal R-TiT R Transverse Temporal

L-1 L Insula R-1 R Insula
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Table 10
Sex differences in nodal measures of connectivity. Males were coded as ‘1’ and females
as ‘2’, thus a positive b value indicates greater nodal scores in females. FDR corrected
(g=0.05).

Degree Regional efficiency
L precuneus ns —0.0082 (0.00057)
L temporal pole 1.3 (0.00038) ns

R pars orbitalis —0.81 (0.00049) —0.019 (85x107°)

nodal measure related to global efficiency, computed on node
neighborhoods.

Tests of age effects on the 70 x 70 connectivity matrices revealed
that fiber density decreased in more connections than it increased,
but these decreases were distributed disproportionately around the
brain. Follow-up analyses on the absolute fiber density data confirm
that a decrease in proportional fiber density truly reflects a decrease
in absolute fiber density, rather than just a more modest increase
than average. Connections to and from the frontal cortex dispropor-
tionately decreased with age, relative to the changes detected in
other brain regions (Figs. 3 and 5, Supplementary Video 2). This was
partially due to lower overall variance in the frontal cortex relative
to both the temporal or parietal cortices, and also due to the greater
effect sizes detected in the frontal cortex (and parietal cortex) than
in the temporal cortex. Conversely, those connections leading to and
from regions in the temporal cortex showed disproportionately
more fiber density increases with age (Figs. 3 and 5, Supplementary
Video 1). Of all the significant age-related changes in fiber density,
57% were decreases and 43% were increases. Within the significant
changes in connections that terminate in the frontal cortex, however,
70% were decreases and 30% were increases. Of the significant
changes in the temporal cortex, 43% were decreases and 57% were in-
creases. In the occipital cortex, 55% were decreases and 45% were in-
creases. In the parietal cortex, 52% were decreases and 48% were
increases. This mirrors the distribution of our nodal results assessing
regional efficiency: the nodal degree is likely a driving factor behind
these nodal results.

Prior work has revealed different developmental trajectories for
the volumes of different cortical gray matter regions as well as lobar
volumes that include white matter as well (Gogtay et al,, 2004;
Sowell et al, 2003). Giedd et al. (1999) found that the temporal
cortex tended to achieve its peak for both gray and white matter
volume at a later age than other lobar brain regions. Sowell et al
(2003) found that gray matter density (GMD) in the superior frontal
sulcus steadily declined from age 7 on, but it increased in the superior
temporal sulcus until age 30, after which it steadily declined. They
found this same inverted U-shaped trajectory for a number of temporal
regions, but the frontal regions all showed a steady decline in GMD
from age 7 on. These findings were supported by similar results from
a previous study (Sowell et al, 2002a). Several processes are active
throughout development, and if they occur at different rates across
the cortex, they could lead to these different trajectories and patterns
of differences. Huttenlocher (1979, 1990} found different rates of syn-
aptic pruning across the cortex. Additionally, continuing myelination
(Bartzokis, 2004; Bartzokis et al., 2010}, and the addition of new
neurons (reviewed by Gould, 2007) may contribute to the changes
we report here.

Studies of callosal development during adolescence show develop-
mental increases in volume or cross-sectional area for the splenium
and isthmus (Chung et al., 2001; Thompson et al., 1999; Thompson et
al., 2000), suggesting an increase with age in the level of myelination
and/or axon count for interhemispheric connections traveling through
those regions. The splenium and isthmus connect the temporal, parie-
tal, and occipital cortices with their counterparts on the opposite hemi-
sphere, as well as with some other cortical regions (Hofer and Frahm,
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2006; Witelson, 1989). All of our 7 interhemispheric connections with
detectable age effects had a terminus in the parietal lobe or posterior
cingulate. This is perhaps most likely to be due to increased
myelination (Bartzokis et al., 2010).

We found a few sex differences in global and nodal connectivity as
well. Females had greater small-worldness and gamma (which are
related measures) in whole brain parameters. Gamma (normalized
clustering coefficient) is a measure of network segregation as it mea-
sures how many of a node’s neighbors are interconnected. This result
suggests that females have more clustered, highly segregated net-
works than males do. Females also had greater degree in the left tem-
poral pole, while males had greater degree in the right pars orbitalis
and greater efficiency in the left precuneus and right pars orbitalis.
While there are both consistent and conflicting results when it
comes to sex differences in the brain (Kimura, 2000}, a number of
previous studies have noted proportionally larger temporal lobes in
females than in males (Harasty et al., 1997; Sowell et al., 2002b;
Luders et al., 2009) with thicker cortices (Sowell et al., 2007}, possibly
contributing to this effect on degree and efficiency. Gong et al. (2009),
found greater global and local efficiency in females, which we did not,
but they did find greater regional efficiency in females in temporal
nodes and greater regional efficiency in males in frontal nodes,
which overlaps with our results. Yan et al. (2011}, found similar re-
sults, also revealing a sex by brain size interaction, where smaller
brains showed higher local efficiency in women but not on men.
Studies of sex differences in brain structural networks are important
for possibly explaining the differences in susceptibility to disease or
outcome after brain injury (Turkheimer and Farace, 1992). Future
work should investigate whether these differences have any conse-
quences for sex differences in cognition or vulnerability to disease,
or if they are simply due to allometry (non-proportional scaling of
brain structures relative to body size; Brun et al., 2009).

One limitation of the current study is the uneven sampling of the
different age ranges, due to the availability of cohorts assessed at 12
and 16 but not in between. Nonparametric regression models may
therefore be more appropriate for deriving p-values for the fitted
regression coefficients. Obviously, the specific parcellation scheme
chosen will affect graph theory metrics. Zalesky et al. (2010} found
that graph theory metrics were sensitive to parcellation resolution
(i.e., the number of nodes), but Hagmann et al. (2010} found very
similar developmental trajectories at two different parcellation reso-
lutions. Other future parcellation schemes may be more sensitive to
developmental effects, but the Desikan-Killiany atlas has been
shown by our laboratory to yield connectivity measures that are ge-
netically influenced (Jahanshad et al., 2011; Jahanshad et al., 2012};
it was one of the atlases used by Hagmann et al. (2010).

Conclusions

In summary, we found that structural brain networks decrease in
path length, clustering, small-worldness, and modularity with age,
although this effect may differ by hemisphere. We found significant
sex differences in nodal measures of connectivity, but it remains to
be seen whether these differences are related to any sex differences
in cognitive function or in resilience to disease. Graph theory metrics
have been associated with disease and cognitive function (Brown et
al,, 2011; Daianu et al., 2012b; Langer et al., 2012; Li et al., 2009}, so
investigating this difference further may shed light on sex differ-
ences in aspects of cognition or disease vulnerability. Defining the
expected developmental trajectory of structural connectivity mea-
sures in healthy individuals is critical for gauging the effect of neuro-
psychiatric disorders, and ultimately of interventional factors, on
development.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.09.004.
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ABSTRACT

The ‘rich club’ coefficient describes a phenomenon where a
network’s hubs (high-degree nodes) are on average more
intensely interconnected than lower-degree nodes. Networks
with rich clubs often have an efficient, higher-order
organization, but we do not yet know how the rich club
emerges in the living brain, or how it changes as our brain
networks develop. Here we chart the developmental
trajectory of the rich club in anatomical brain networks from
438 subjects aged 12-30. Cortical networks were
constructed from 68x68 connectivity matrices of fiber
density, using whole-brain tractography in 4-Tesla 105-
gradient high angular resolution diffusion images (HARDI).
The adult and younger cohorts had rich clubs that included
different nodes; the rich club effect intensified with age.
Rich-club organization is a sign of a network’s efficiency
and robustness. These concepts and findings may be
advantageous for studying brain maturation and abnormal
brain development.

Index Terms — rich club coefficient, high angular resolution
diffusion imaging (HARDI), tractography, network
analyses, development, structural connectivity

1. INTRODUCTION
First reported for brain networks by Van den Heuval and
Sporns in 2011 [1] and described in 2006 by Colizza et al.
[2] for other complex networks, the ‘rich club’ coefficient is
a metric that can inform us about the fundamental
organization of the brain’s networks, structural or
functional. A rich club exists in a network, if there is a core
of nodes with a high degree (k) — that is, rich in connections
— that are more densely interconnected among themselves
than lower-degree nodes in the network. In other words, the
high-degree nodes form a club. The rich club coefficient
d(k) is a ratio of the number of connections among nodes of
degree k or higher versus the total possible number of
connections if those nodes were fully connected. It is
defined as:
2Esk

®(k) = N>z (N>g-1)

(Eq. D
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As higher-degree nodes have a higher probability of
being interconnected with each other simply by chance,®(k)
is typically normalized relative to @ calculated on a set of
simulated random networks with the same degree
distribution, and the same edge distribution, as a function of
the nodal degree £. If ©pom>1 (i.e., k) >Dpanq, for some k),
then there is evidence of rich club organization (formal
statistical testing of the rich club effect uses a null model
based on randomized networks as a reference distribution).

Across development, the brain changes tremendously as
we mature into adults. Ideally, networks adapt and become
highly efficient. Short-range connections are pruned in favor
of long-range ones [3], myelination continues [4], and the
connectome continually changes. Through in vive diffusion
imaging and tractography, we can visualize and analyze
fiber pathways. Graph theory has been applied to networks
of anatomical fibers to model the brain as a set of nodes and
edges and analyze the network topology and dynamics [5].
We previously showed how some graph theory metrics
change over development [6]; here we set out to detect
developmental changes in the rich club.

2. METHODS

2.1. Subjects and Image Acquisition

Participants were recruited as part of a 5-year research
project scanning healthy young adult Australian twins with
structural brain MRI and DTI [7]. We analyzed scans from
438 right-handed subjects (adult cohort: 210 female/126
male, average age=23.6 years, SD=2.2, 16-year-old cohort:
30 female/25 male, average age=16.2 years, SD=0.37, 12-
year-old cohort: 23 female/24 male, average age=12.3 years,
SD=0.18). This population included 145 monozygotic (MZ)
twins, 260 dizygotic (DZ) twins, and 33 non-twin siblings,
from 275 families. 336 were adults, 55 were adolescents,
and 47 were children. Whole-brain anatomical and high
angular resolution diffusion images (HARDI) were
collected with a 4T Bruker Medspec MRI scanner. T1-
weighted anatomical images were acquired with an
inversion recovery rapid gradient echo sequence, with
parameters: TI/TR/TE = 700/1500/3.35ms; flip angle = 8
degrees; slice thickness = 0.9mm, and a 256x256 acquisition



matrix. HARDI was also acquired using single-shot echo
planar imaging with a twice-refocused spin echo sequence
to reduce eddy-current induced distortions. Imaging
parameters were: 23cm FOV, TR/TE 6090/91.7ms, with a
128x128 acquisition matrix. Each 3D volume consisted of
55 2-mm thick axial slices with no gap and 1.79x1.79 mm?*
in-plane resolution. 105 images were acquired per subject:
11 with no diffusion sensitization (i.e., T2-weighted by
images) and 94 diffusion-weighted (DW) images (b = 1159
s/mm?) with gradient directions evenly distributed on a
hemisphere in the g-space. Some subjects” HARDI scans
were acquired with a 77-gradient protocol (b = 1177
s/mm®), as the 105-gradient protocol was too long for some
adolescents to sit through. For a fuller explanation of how
the connectivity maps, and orientation density functions, are
stable when such relatively high numbers of gradients are
collected, please see [6]. Scan time was 14.2 min for the
105-gradient HARDI scan, and 10.8 min for the 77-gradient
HARDI scan.

2.2. Cortical Extraction and HARDI Tractography
Connectivity analysis was performed as in [8]. Briefly, non-
brain regions were automatically removed from each T1-
weighted MRI scan, and from a T2-weighted image from
the DWI set, using the FSL tool “BET” (FMRIB Software
Library, http:/fsl fmrib.ox.ac.uk/fsl). A neuroanatomical
expert manually edited the T1-weighted scans to refine the
brain extraction. All T1l-weighted images were linearly
aligned using FSL (with 9 DOF) to a common space with
1mm isotropic voxels and a 220x220x220 voxel matrix. For
each subject, the 11 eddy-corrected images (using FSL tool
“eddy correct”) with no diffusion sensitization were
averaged, linearly aligned and resampled to a downsampled
version of their corresponding T1 image (110x110x110,
2x2x2mm). Averaged by maps were elastically registered to
the structural scan using a mutual information cost function
to compensate for EPI-induced susceptibility artifacts. 34
cortical labels per hemisphere, as listed in the Desikan-
Killiany atlas [9], were automatically extracted from all
aligned T1-weighted structural MRI scans using FreeSurfer
(http://surfer nmr.mgh harvard.edu/). T1-weighted images
and cortical models were aligned to the original T1 input
image space and down-sampled to the space of the DWIs,
using nearest neighbor interpolation (to avoid intermixing of
labels). To ensure tracts would intersect cortical labeled
boundaries, labels were dilated with an isotropic box kernel
of size 5x5%5 voxels.

The matrix transforming the mean by image to the T1-
weighted volume was applied to each of the 94 gradient
directions to properly re-orient the orientation distribution
functions (ODFs). At each HARDI voxel, ODFs were
computed using the normalized and dimensionless ODF
estimator derived for g-ball imaging (QBI) [10]. We
performed HARDI tractography on the linearly aligned sets
of DWI volumes using these ODFs, using the Hough
transform method [11]. Elastic deformations obtained from
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the EPI distortion correction, mapping the average b, image
to the T1-weighted image, were then applied to the tracts’
3D coordinates to accurately align the anatomy. Each
subject’s dataset contained 5000-10000 useable fibers (3D
curves). For each subject, a full 68x68 connectivity matrix
was created. Each element described the proportion of the
total number of fibers connecting each of the labels;
diagonal elements describe the total number of fibers
passing through a certain cortical region of interest. Values
were calculated as a proportion - normalized to the total
number of fibers traced for each individual participant, to
avoid skewing results by the raw fiber count.

2.3. Rich Club Analyses

On the 68x68 matrices generated above, we used the Brain
Connectivity Toolbox (12, https://sites. google.
com/site/betnet/) to compute the rich club coefficient (D).
The fiber count matrices were first binarized for each
subject. We normalized our rich club coefficient based on
coefficients calculated from 50 random networks to generate
a normalized rich club coefficient (®,,,,). Below we use the
same symbols as the original paper on this topic [1].

2.4. Age Regression

Age effects on rich club coefficient were estimated using the
general linear mixed effects model, as well as two simpler
linear mixed effects models, as follows:

Rich club coefficient ~ A + B, Age + (Eq.2)
Bscxsex + B’I’BVTBV + Bage-squz\rediqge2 T
Rich club coefficient ~ A + B, Age + (Eq. 3)

BeexeX + BreyIBV +

Here, “rich club coefficient” could be either the
normalized or non-normalized version; both were assessed.
A 1s a constant for each regression model, the Ps are the
covariate regression coefficients, and a is a coefficient that
accounts for random effects. Random effects were used to
account for family relatedness. We modeled the other
variables (age, sex, TBV, age’) as fixed effects. TBV
denotes total brain volume.

2.5. Null Model of Change

To test whether changes in node degree distribution that
determined rich club membership could be attributed to
sampling, we split the adults into 2 random groups and
examined differences between them. We did this 20 times to
generate a distribution of the change due to sampling.
Degree was quite stable for each node, and the average
change in which nodes were in the rich club was 1.05 nodes,
SD 0.67.

3. RESULTS
We found a significant linear age effect on ® across the &-
range 13-22; adults had a higher @ across that whole range
(Eq. 3). All groups had rich club organization (meaning



; & Adults
¥12 and 16 Year Olds

wiabadll .I"n.‘h L

28 27 26 2524 23 222120 1918 17 16 1514 13 121110 9 8 7 6 5 4 3 2 1
Degree

«w

Frequency
&

Figure 1. Histogram of degree distribution for adults (blue) and
young cohort (ved, 12 and 16 year olds combined).

DOporm Was significantly >1) until k-level 26. Figure 1 shows
the degree distribution for the adults and the young cohort.
This histogram was made by generating a mean matrix for
the 2 groups, thresholding them to only include connections
found in at least 75% of the subjects, and then finding the
degree of that average group network. The ranges of @ and
Dpom for all 3 cohorts are shown in Figure 2, along with a
zoomed-in view of the significant differences across k-range
13-22. There were no significant non-linear age effects (Eq.
2). These plots were made by taking the mean of @ and
Dy Within each group.
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Figure 2. Range of @ and D,y for all three groups, 12 year olds
(voung) in blue, 16 year olds (teen) in red, 20-30 year olds (adult)

in green. Zoomed in blue box highlights the range of @ showing
significant age effects.

Perhaps more interesting than the quantitative analysis
of the rich club coefficients is differences in which nodes
constitute the rich club. When examining the nodes that
were included in the rich club, we found a difference
between the adult cohort and the younger cohort (12 and 16
year olds; to simplify testing we combined the two younger
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Young Rich Club

Adult Rich Club

Figure 3. Rich club networks in young (12 and 16 year old) and
adult (20-30 year old) cohorts. Blue nodes were present in the rich
clubs of both groups; red nodes were unique to one of the groups.
Black edges were present in both groups, green edges were unique
to one of the groups as they involved unique nodes, magenta edges
were unique to one of the groups among nodes common to both
groups. Edges are thresholded to only show those present in >75%
of subjects in either group.

groups) (Figure 3). We examined these differences at k& =
17, because at this degree threshold both groups had rich
club organization and both groups had the same number of
nodes included in the trimmed network, making comparison
more appropriate. At this level there were 18 nodes in the
rich club. Of these, 14 were in common between the adult
and younger cohorts, and 4 were unique to each group. Both
groups’ rich clubs included the bilateral insula, bilateral
superior frontal gyrus, bilateral precuneus, bilateral superior
parietal gyrus, left fusiform gyrus, left isthmus of the
cingulate, left posterior cingulate gyrus, right inferior
parietal gyrus, right lateral occipital gyrus, and right
precentral gyrus. The adult-unique rich club nodes were the
left caudal anterior cingulate gyrus, left lingual gyrus, right
fusiform gyrus, and right supramarginal gyrus. The young-
unique rich club nodes were the left inferior parietal gyrus,
right rostral middle frontal gyrus, left paracentral gyrus, and
left supramarginal gyrus.

As for the connections within the rich club, there were
many differences, most stemming from differences in the
nodes included in each group’s rich clubs. Among the
connections of the nodes common to both groups’ rich



clubs, there were a few differences as well. The young
cohort had connections between the left isthmus of the
cingulate and the right inferior parietal gyrus, and the left
isthmus and the right lateral occipital gyrus, which the
adults did not have. This connection did not completely
vanish, but it was not present in enough adults (>75%) to
warrant inclusion in this analysis.

4. DISCUSSION

We found a linear increase in the non-normalized rich
club coefficient between ages 12 and 30 in 438 subjects.
The rich club coefficient represents the density of
connections between rich club nodes. As our subjects aged,
their rich club nodes became more closely integrated as the
core of the connectome. This fits with prior reports of
increased integration as brain networks develop [6]. We
previously found shorter path length as subjects age; path
length is the average distance, in edges, between all pairs of
nodes in a network. A more densely connected rich club -
the core of the connectome through which many network
paths pass - would most likely lead to a shorter path length
overall.

Among the nodes making up the rich club, we saw
some differences between young and adult groups. With
only 4 unique nodes to look at in each group, it is difficult to
find a pattern, but it is interesting that they are changing,
more than could be due to sampling (p<00.05). As rich club
nodes, these nodes are central and highly important as hub
nodes. For rich club membership to change in adolescence
suggests that there are still significant maturational
processes at work with non-trivial effects on the
connectome as a whole.

The nodes that we found to make up the rich club
overlap with the previous description [1], although here we
considered only cortical nodes while Van den Heuval and
Sporns also included subcortical nodes, and their sample
was much smaller (N=21). The rich club nodes had
members from both hemispheres across the frontal, parietal,
temporal and occipital lobes, and many were included
bilaterally. The rich club nodes overlapped largely with
previously identified structural hub nodes [13]. Some nodes
in our rich clubs had not been previously identified as hub
nodes, such as the insula and the fusiform gyrus. This could
be a result of our looking at binarized matrices, rather than
matrices with the full weight. It may be that we were better
able to recover fibers reaching those nodes with our 105-
gradient HARDI scans and Hough-based tractography.

One recognized limitation of this study is the uneven
sampling of different age groups; subjects aged 12 or 16
were available for scanning, but not in between.
Nonparametric regression models may therefore be
advantageous to derive empirical p-values for the fitted
regression coefficients, but are unlikely to materially affect
the conclusions as the age effects here are relatively strong.
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5. CONCLUSION

This is the first study to our knowledge to investigate
the developmental trajectory of the rich club across
adolescence into early adulthood. The rich club coefficient
increased with age, implying increasing integration of the
rich club nodes as the brain develops. We also saw some
changes in which nodes make up the rich club, evidence of
significant re-modeling of the structural connectome
through adolescence. Establishing the developmental
trajectory of these brain connectivity metrics in healthy
individuals is a first step towards determining how and
when children with neurodevelopmental disorders may
deviate from this trajectory.
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Abstract: The insula, hidden deep within the Sylvian fissures, has proven difficult to study from a
connectivity perspective. Most of our current information on the anatomical connectivity of the insula
comes from studies of nonhuman primates and post mortem human dissections. To date, only two
neuroimaging studies have successfully examined the connectivity of the insula. Here we examine
how the connectivity of the insula develops between ages 12 and 30, in 307 young adolescent and
adult subjects scanned with 4-Tesla high angular resolution diffusion imaging (HARDI). The density
of fiber connections between the insula and the frontal and parietal cortex decreased with age, but the
connection density between the insula and the temporal cortex generally increased with age. This tra-
jectory is in line with well-known patterns of cortical development in these regions. In addition, males
and females showed different developmental trajectories for the connection between the left insula
and the left precentral gyrus. The insula plays many different roles, some of them affected in
neuropsychiatric disorders; this information on the insula’s connectivity may help efforts to
elucidate mechanisms of brain disorders in which it is implicated. Hum Brain Mapp 00:000-000,
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INTRODUCTION

The insula, located deep in the lateral sulcus of the Syl-
vian fissure and spanning Brodmann areas 13 through 16
[Augustine, 1996], is a relatively old structure evolutionar-
ily [Mega et al,, 1997] and develops earlier than the frontal
cortex [Benes, 1994]. The structure of the insula differenti-
ates early [Benes, 1994; Chi et al,, 1977] and its fibers are
some of the earliest to form [Huang et al., 2006], but its
structure has a protracted development, like many other
cortical areas [Hasan et al, 2009; Herting et al., 2012;
Kalani et al., 2009; Muftuler et al., 2011; Paus et al., 1999].
Our current understanding of the structural connectivity
of the insula comes primarily from studies of non-human
primates and post mortem human studies. Only two studies
have detailed the structural connectivity of the insula in
humans in wvivo [Cerliani et al, 2011; Cloutman et al,
2012].

In humans, the insula is perhaps best known for its role
in emotional processing and anxiety [Etkin and Wager,
2007; Stein et al, 2007]. It is a heterogeneous structure
with many other functions, including interoception, moni-
toring external sensory processes, and autonomic regula-
tion [Augustine, 1996; Craig, 2008]. This diverse range of
functions derives from the many sub-regions of the insula,
distinguished from each other by cytoarchitectonics and
connectivity with other brain regions [Kurth et al, 2010;
Mesulam and Mufson, 1982; Wager and Barrett, 2004]. By
analyzing prior anatomical studies, Wager and Barrett
[2004] divided the insula into an anterior ventral region
involved in emotion, a dorsal anterior region involved in
motivation and goal directed behavior, a posterior region
involved in pain perception, and a mid-insula region for
which they did not assign a specific role. Kurth et al
[2010] conducted a meta-analysis of functional neuroimag-
ing data and developed a similar parcellation: a dorsal an-
terior aspect involved in cognitive tasks, an anterior
ventral aspect involved in social-emotional tasks, a mid-
insula aspect involved in smell and taste, and a mid-poste-
rior insular aspect involved in sensorimotor tasks.

Research using functional connectivity suggests that the
insula is involved in modulating resting-state functional
network dynamics [Hamilton et al., 2011; Sridharan et al.,
2008]. Sridharan et al. proposed that the insula was re-
sponsible for switching between the default mode and ex-
ecutive control networks. The default mode network, or
‘task-negative” network, is a collection of brain regions
that are more active during rest than during a task. It has
been assigned many roles, ranging from monitoring the
external environment to supporting mind wandering
[Buckner et al., 2008; Fransson, 2005; Gusnard and Raichle,
2001]. The executive control networks, or ‘task-positive’
network, includes a number of prefrontal and parietal
regions and is thought to support executive functions such
as memory and goal-directed behavior [Seeley et al., 2007].
A recent paper by Cauda et al. [2011] details the functional
connectivity of the insular cortex. By dividing the insula

into 10 ‘seeds” — loci where they assessed functional coher-
ence with activation in other brain regions - they parsed
out separate networks for the ventral-anterior and the dor-
sal-posterior insula. The ventral-anterior insula was func-
tionally linked to the middle and inferior temporal cortex
and to the anterior cingulate cortex, while the dorsal-pos-
terior insula was linked to the premotor, sensorimotor,
supplementary motor and middle-posterior cingulate
cortex.

There have not been many in vivo investigations of
structural connectivity in humans that report results for
the insula [Cerliani et al., 2011; Cloutman et al., 2012;
Uddin et al., 2010; van den Heuvel et al., 2009]. Tract trac-
ing in nonhuman primates shows that the insula is exten-
sively connected to the surrounding cortex, basal ganglia,
amygdala, limbic areas, and thalami [Augustine, 1996]. In
the frontal lobe, the frontal operculum, orbital, orbitofron-
tal, and prefrontal cortices all have reciprocal connections
with the insula. The premotor cortex, inferior frontal
gyrus, and ventral granular frontal cortex all receive effer-
ents from the insula but do not send afferents to the
insula. In the parietal lobe, the anterior inferior parietal
cortex, parietal operculum, somatosensory cortex, and ret-
roinsular cortex all have reciprocal connections with the
insula. In the temporal lobe, the temporal pole and supe-
rior temporal sulcus have reciprocal connections with the
insula. The insula receives fibers from the auditory cortices
and temporal operculum and sends to the supratemporal
plane and temporopolar cortex. In the cingulate cortex,
Brodmann areas 23 and 24 both have reciprocal connec-
tions with the insula. In addition, the insula also has many
local connections with itself. Among subcortical regions,
the insula also has connections with the basal nuclei,
amygdala, hippocampus, entorhinal cortex, and thalamus
[Augustine, 1996]. Post mortem gross dissection in humans
reveals a variety of connections between the insula and
the rest of cerebral cortex, as well as numerous subcortical
structures [Angevine et al., 1962; Le Gros Clark et al,
1939; Klinger and Gloor, 1960; Yakovlev et al., 1960]. These
known connections and those discussed below are sum-
marized in Figure 1.

To date, only two studies have successfully imaged the
structural connectivity of the insula in humans in vivo.
Cerliani et al. [2011] examined the voxel-wise structural
connectivity of the insula in 10 adult males using 3-Tesla
15-gradient diffusion-weighted imaging and probabilistic
tractography, and found two separate networks. The ante-
rior insula was primarily connected to limbic and paralim-
bic regions, and the inferior frontal gyrus, while the
caudal insula was primarily connected to the parietal and
posterior temporal cortices. Cloutman et al. [2012] exam-
ined the connectivity of the insula in 24 adult participants
using 3-Tesla 61-gradient diffusion-weighted imaging and
probabilistic tractography from seven anatomically defined
insular ROIs (regions of interest). Similarly, they were able
to define two separate networks that the insula partici-
pated in: anterior portions of the insula were connected
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Figure 1.
Connections of the insula discovered by previous researchers. Connections in blue have been
identified with diffusion-weighted imaging [Cerliani et al,, 20! |; Cloutman et al.,, 2012]. Those in
red are known through either tract tracing [Augustine, 1996] or gross dissection [Angevine
et al, 1962; Le Gros Clark et al,, 1939; Klinger and Gloor, |1960; Yakovlev et al., 1960]. Arrow-
heads convey directionality of the connection; where there is no arrowhead, no directional infor-

mation was known.

with orbital frontal, inferior frontal, and temporal regions
via a ventral pathway, while posterior portions of the
insula were connected with mostly posterior temporal
regions via both dorsal and ventral pathways. Both Cer-
liani et al. [2011] and Cloutman et al. [2012] found a transi-
tional area of the insula, possibly the dysgranular insula,
which showed a more heterogeneous, hybrid connectivity
pattern. Both of these studies were limited in sample size
(N = 10 males; N = 24 adults), so we set out to look at a
larger, cross sectional cohort (N = 307) with a high angu-
lar resolution diffusion-weighted scan (4-Tesla, 94-gra-
dients) with a greater ability to resolve crossing fibers.

In this study, we characterize how the structural connec-
tivity of the insula changes over adolescence using high
angular resolution diffusion imaging (HARDI) in three
separate age cohorts—12 year olds, 16 year olds, and 20-
30 year olds. We expected to identify many of the same
connections observed in prior studies, but expected that
we might also find some cortical connections that have not
yet been characterized. The insula develops relatively
early, earlier than the frontal cortex [Benes, 1994; Chi
et al, 1977, Huang et al, 2006], but has a protracted
maturational period [Kalani et al., 2009; Hasan et al., 2009;
Herting et al., 2012; Muftuler et al., 2011; Paus et al.,, 1999].

Thus, we hypothesized that we would be able to detect
age effects in the age range studied here. During this stage
of development, the connections to and from the frontal
cortex tend to decrease in fiber density, while those of the
temporal cortex tend to increase in fiber density [Dennis
et al., 2012]. Given this, we expected to see reductions in
the density of the connections between the insula and the
frontal cortex, and increases in the density of the connec-
tions between the insula and the temporal cortex.

MATERIALS AND METHODS
Participants

Participants were recruited as part of a large-scale imag-
ing genetics project in Australia involving twins. Our anal-
ysis included 307 subjects (adult cohort: 150 females/90
males, average age= 23.9, SD = 1.9; 16 year old cohort: 21
females/16 males, average age = 16.2, SD = 0.35; 12-year-
old cohort: 14 females/16 males, average age =1 2.4, SD =
0.19). While we refer to them as different age cohorts, this
is only because of sparse sampling; age was treated as a
continuous variable in our statistical analyses. Our popula-
tion included 109 monozygotic (MZ) twins, 174 dizygotic
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TABLE I. Demographic information listing the number
of subjects in each age group, sex breakdown, and
zygosity breakdown

N M/F MZ DZ SIB
Adults (20-30 yo) 240 90/150 93 123 24
16 yo 37 16/21 9 28 0
12 yo 30 16/14 7 23 0

MZ, monozygotic; DZ, dizygotic; SIB, sibling; yo, year olds. In
some cases, singleton twins may be included, leading to an odd
number of subjects in the MZ and DZ groups.

(DZ) twins, and 24 nontwin siblings from 204 families.
This information is sumimarized in Table I. The population
was homogeneous ethnically; 100% of the sample was
Caucasian. In genetic analyses, for which the cohort was
originally recruited, a homogeneous population is pre-
ferred as common alleles can have different frequencies in
different racial/ethnic groups. No subject had a history of
significant head injury, neurological or psychiatric illness,
substance abuse or dependence, or had a first-degree rela-
tive with a psychiatric disorder. Subjects also completed a
neurocognitive exam to screen for possible brain pathology
[de Zubicaray et al., 2008]. All participants were right-
handed, as assessed by 12 items on Annett’s Handedness
Questionnaire [Annett, 1970].

Scan Acquisition

Whole-brain anatomical and high angular resolution dif-
fusion images (HARDI) were collected with a 4T Bruker
Medspec MRI scanner. T1-weighted whole-brain anatomi-
cal images were acquired with an inversion recovery rapid
gradient echo sequence. Acquisition parameters were: TI/
TR/TE = 700/1500/3.35 ms; flip angle = 8 degrees; slice
thickness = 0.9 mm, with a 256x256 acquisition matrix.
Diffusion-weighted images (DWI) were acquired using sin-
gle-shot echo planar imaging with a twice-refocused spin
echo sequence to reduce eddy-current induced distortions.
Imaging parameters were: 23cm FOV, TR/TE 6090/91.7
ms, with a 128x128 acquisition matrix. Each 3D volume
consisted of 55 2-mm thick axial slices with no gap and
1.79x.1.79 mm® in-plane resolution. 105 images were
acquired per subject: 11 with no diffusion sensitization
(ie., T2-weighted b, images) and 94 diffusion-weighted
(DW) images (b = 1159 s/mm?) with gradient directions
evenly distributed on the hemisphere. The younger sub-
jects” HARDI scans were acquired with a 77-gradient pro-
tocol (69 DWI; 8 by; b = 1177 s/mm?), as the 105-gradient
protocol was too long them to sit through. We have previ-
ously undertaken several detailed studies [Zhan et al,
2009a, 2012a,b] verifying that we can reliably reconstruct
crossing ODFs (orientation distribution functions) with
these parameters, and to determine how angular and spa-
tial resolution affect brain connectivity maps; the results

and the stability of connectivity maps at high numbers of
diffusion gradients are reported in those papers. The num-
ber of gradients affects the accuracy of reconstruction of
the diffusion profile, but by the time 50-60 gradients are
reached, the primary measures of diffusion, including the
principal eigenvector, have converged [Zhan et al., 2008,
2009b,c]. The connectivity matrix depends more on the
voxel size than the number of gradients [Zhan et al,
2012a], and the voxel size was kept the same in the adoles-
cents. Scan time for the 105-gradient HARDI scan was 14.2
min. Scan time for the 77-gradient HARDI scan was 10.8
min. Motion artifacts were assessed through detailed vis-
ual inspection of all the DWI scans, which occurred in
addition to the standard motion correction of the diffu-
sion-weighted image series via registration. The DWT data
were pre-processed and visually inspected prior to this
study, so the number of subjects discarded for motion arti-
facts was not mentioned as they were never considered
for this analysis.

Cortical Extraction and HARDI Tractography

Connectivity analysis was performed exactly as in Jahan-
shad et al. [2011]. Briefly, non-brain regions were automati-
cally removed from each Tl-weighted MRI scan using
ROBEX [Iglesias et al, 2011], and from a T2-weighted
image from the DWI set, using the FSL tool “BET” (FMRIB
Software Library, http://fslfmrib.ox.ac.uk/fsl/). Intracra-
nial volume estimates were obtained from the full brain
mask, and included cerebral, cerebellar, and brain stem
regions. All Tl-weighted images were linearly aligned
using FSL (with 9 DOF) to a common space [Holmes et al.,
1998] with 1 mm isotropic voxels and a 220x220x220
voxel matrix. Raw diffusion-weighted images were cor-
rected for eddy current distortions using the FSL tool,
“eddy_correct”. For each subject, the 11 eddy-corrected
images with no diffusion sensitization were averaged, line-
arly aligned and resampled to a downsampled version of
their corresponding T1 image (110x110x110, 2x2x2mm).
Averaged by maps were elastically registered to the struc-
tural scan using a mutual information cost function [Leow
et al., 2005] to compensate for EPI-induced susceptibility
artifacts. Higher field strength DWI images are susceptible
to EPl-induced artifacts. We have been studying this in
detail as we recently published a study of a sample of nor-
mal subject scanned at both 7-Tesla and 3-Tesla with DTI
[Zhan et al, 2012]. In that study, the connectivity pattern
was largely similar at higher field.

Thirty-four cortical labels per hemisphere, as listed in
the Desikan-Killiany atlas [Desikan et al., 2006], were auto-
matically extracted from all aligned T1-weighted structural
MRI scans using FreeSurfer (http://surfer.nmr.mgh.har-
vard.edu/). As a linear registration is performed by the
software, the resulting Tl-weighted images and cortical
models were aligned to the original Tl-weighted input
image space and down-sampled using nearest neighbor
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interpolation (to avoid intermixing of labels) to the space
of the DWIs. To ensure tracts would intersect cortical la-
beled boundaries, labels were dilated with an isotropic
box kernel of width 5 voxels. Since we were interested
only in fibers with at least one terminus in the insula for
the current study, we thresholded each subject’s cortical
models to only include left and right insula (kept as sepa-
rate cortical labels). At this step, the insula masks were
visually inspected for quality. Masks were included only if
they had complete coverage of the insula (with no areas of
the mask with gaps in coverage). Additional reasons for
exclusion were failed tractography or very sparse tractog-
raphy. This resulted in 125 scans (from a total of 432 origi-
nal subjects) being excluded, all of which were of adults.

The transformation matrix from the linear alignment of
the mean b, image to the Tl-weighted volume was applied
to each of the 94 gradient directions to properly reorient the
orientation distribution functions (ODFs). At each HARDI
voxel, ODFs were computed using the normalized and
dimensionless ODF estimator, derived for g-ball imaging
(QBI) in [Aganj et al., 2010]. We performed HARDI tractog-
raphy on the linearly aligned sets of DWI volumes using
these ODFs. Tractography was performed using the Hough
transform method as described in [Aganj et al., 2011].

Elastic deformations obtained from the EPI distortion
correction, mapping the average by image to the TI-
weighted image, were then applied to the tracts’” 3D
coordinates for accurate alignment of the anatomy. Each
subject’s dataset contained 3,500-5,000 wuseable fibers
(3D curves). At this stage, all 68 cortical labels were used
to determine the targets of the tracts originating in the
insula. Fibers were filtered to eliminate those that may
have arbitrarily been drawn on the brain-boundary due to
noise and high FA. All duplicate fibers were removed.
Tracts with fewer than 2 points were filtered out, as they
were considered to be noise.

After tractography, the left and right outputs were com-
bined to create one 2 x 68 connectivity matrix for each
subject. Each element described the proportion of the total
number of fibers connecting the left or right insula to each
of the 34 labels per hemisphere. These values were calcu-
lated as a proportion—they were normalized to the total
number of fibers traced for each person in the study—so
that results were not skewed by raw fiber count.

Age Regression

Age-related effects on insular structural connectivity
were estimated using a general linear mixed model, as
some related subjects were included in our analysis:

2 x 68 matrix elements ~ A + B, Age + B, Sex
+ By ICV +a+e 1)

Here, “2x68 matrix elements” is the 2x68 matrix describing
the proportional fiber density between the left and right

insula and all 68 cortical labels. These matrices were tested
on an element-by-element basis. Any statistical effects on
the fiber connection matrices were corrected for multiple
comparisons using the conventional FDR method [false
discovery rate, Benjamini and Hochberg, 1995]. In the
regression equation, A is the constant fiber density term,
the fis are the covariate regression coefficients, and « is a
coefficient that accounts for random effects. Random effects
were used to account for familial relatedness. We modeled
these variables (age, sex, ICV) as fixed effects. We also
tested age2 to check for any nonlinear age effects, and an
interaction term, age*sex, as well. ICV denotes intracranial
volume, in mm?® The analysis was implemented in the R
statistical package (version 2.9.2; http://www.r-project.
org/) using the ‘nlme’ library [Pinheiro and Bates, 2000].

Permutation Testing

As we have sparse sampling of certain ages, nonpara-
metric methods may be considered more appropriate that
statistical methods described above. Accordingly, we ran
1,000 permutations, permuting age but maintaining the
twin structure of our subject pool. This was done by per-
muting families together—twins were permuted together,
family groups of three were permuted together, and Indi-
viduals were permuted with other individuals. To gener-
ate permutation corrected P values, we then used the
following formula: P = (b + 1)/(m + 1), where b is the
number of test statistics fperm more significant than the
observed statistic f.,,, and m is the number of permuta-
tions performed. With 1,000 permutations, the minimum P
value possible is 0.000999, or 0.0010, if none of the f oy, is
more significant than the f,, [Smyth and Phipson, 2010].
We then used FDR to test which connections survived cor-
rection for multiple comparisons.

RESULTS

To assess developmental effects on insula connectivity,
we tested connections for which in at least one of the
groups (adults or adolescents), 75% of subjects had con-
nections. For example, a connection that existed in 95% of
adolescents but only in 50% of adults would be included.
This is not 75% averaged across both groups. We chose a
threshold of 75% because we wanted to be able to assess
both connections that were present in both groups but
changed in density, as well as those that were detected
more in one group than the other. We thought the results
of both of these questions would interest researchers and
chose 75% as a threshold that could both assess change,
while still being rigorous enough to not include connec-
tions existing in only a small subset of subjects. This
resulted in 21 of 136 possible connections being tested,
with being 14 significant with the original FDR threshold
(when modeled by Eq. 1). There were significant age-
related decreases in proportional fiber density between the
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left insula and the left postcentral gyrus (b=-0.0011,
p:4,9x10'8), the left insula and the left precentral gyrus
(b=-0.0012, p:3.6x10'12), the left insula and the left tempo-
ral pole (b=-0.0020, p=4.2x10%), the left insula and the left
supramarginal gyrus (b=-0.0020, p:l.lxlO’S), the right
insula and the right supramarginal gyrus (b=-0.0036,
p:5.8x10'5), the right insula and the right postcentral
gyrus (b=-0.0013, p=0.0047), and the right insula and the
right precentral gyrus (b=-0.0018, p=0.00031), the right
insula and the right medial orbitofrontal gyrus (b=-0.0011,
p:7,0x10'12), the right insula and the right pars opercularis
(b=-0.0026, p=0.0020), and the right insula and the right
pars triangularis (b=-0.0035, p:2.0x]0'6). There was an age-
related increase in proportional fiber density between the
left insula and the left superior temporal gyrus (b=0.0041,
p=0.0054), the left insula and the left transverse temporal
gyrus (b=0.0039, p:1.4x10'9), the right insula and the right
superior temporal gyrus (b=0.0041, p=0.0098), and the
right insula and the right inferior temporal gyrus
(b=0.0019, p=0.00050). These results are summarized in
Table II. All results were corrected for multiple compari-
sons across all connections tested within the model
(9<0.05). In other words, because many connections are
tested for age effects, we only reported age effects strong
enough to overcome the correction for multiple testing
that is implicit when analyzing an entire connectivity ma-
trix. After permutation testing, all connections listed above
were still significant. Additionally, one connection that
was suggestively significant using the parametric model

TABLE Il. Linear age effects on insular connectivity,
when analyses were restricted to connections
detectable in at least 75% of subjects in at least one of
the two groups (adults and/or children)

Linear age effects

Left Insula
perm. corr.
b P P value

Left postcentral -0.0011  49x10°® 0.0010
Left precentral -00012  36x107% 0.0010
Left pars opercularis® —0.00062 0.035 0.035

Left temporal pole -00020  42x107° 0.0010
Left superior temporal 0.0041 0.0054 0.0030
Left supramarginal —-00020 11x107° 0.0020
Left transverse temporal 00039  14x107° 0.0010

Right Insula

Right postcentral —0.0013 0.0047 0.011

Right precentral —0.0018 0.00031 0.0020
Right inferior temporal 0.0019 0.00050 0.0010
Right medial orbitofrontal ~ —0.0011  7.0x 107" 0.0010
Right pars opercularis —0.0026 0.0020 0.0040
Right pars triangularis —0.0035 2.0x107° 0.0010
Right superior temporal 0.0041 0.0098 0.015

Right supramarginal -00036  58x107° 0.0010

“Indicates connection that was suggestively significant with initial
parametric model, but passed FDR after nonparametric tests.

passed FDR after nonparametric tests — we also saw an
age related decrease in fiber density between the left
insula and left pars opercularis (b=-0.00062, p=0.035). All
age-related results are presented in Figure 2. We also
examined the raw fiber count matrices to determine if
these were in fact increases and decreases in fiber density,
or if perhaps a decrease found above was in fact an
increase whose rate was slower than the overall changes
in the rest of the brain. We found that most of our
increases and decreases were in fact true increases or
decreases in fiber count. When examining the fiber den-
sities, the age effect on the connection between the left
insula and the left superior temporal gyrus now registered
as a decrease (b = —9.8, P = 0.020). A few of our signifi-
cant connections no longer were significant when examin-
ing the raw fiber density matrices.

We found one connection with a significant age-by-sex
interaction. The connection between the left insula and the
left precentral gyrus existed in 84% of adolescents and
31% of adults and showed a sharper age-related decrease
in proportional fiber density in females than in males (b =
—0.0012, P =28 x 10_6) (Fig. 3). This appeared to be due
to a sex difference in adolescents that was no longer de-
tectable in adults.

DISCUSSION

Here, we examined how the structural connectivity of
the insula changes between ages 12 and 30, in 307 subjects
scanned with HARDIL The insula and its fibers develop
relatively early [Benes, 1994; Chi et al., 1977; Huang et al,
2006], but have a protracted maturational period [Kalani
et al., 2009; Hasan et al,, 2009; Herting et al., 2012; Muftu-
ler et al., 2011; Paus et al., 1999]. Both adults and adoles-
cents show activation in the insula when anxious [Shah
et al.,, 2009; Strawn et al., 2012]. Our prior study examining
functional connectivity of the default mode network
(DMN) in a different cohort found that the left insula was
the only area of overlap between children and adults
when self-reported anxiety during the resting-state scan
was used as a regressor [Dennis et al., 2011].

Here we were able to determine a number of age-related
effects on insular connectivity. These were largely
decreases in fiber density for connections to or from the
insula,’ as both the left and right insula showed a decrease
in the proportion of fibers passing through them. These
were in fact absolute decreases in the number of fibers
tracked to or from the insula, as found by examining the
raw fiber density matrices. The main exception was con-
nections with the temporal cortex. This is consistent with
prior studies finding age-related decreases in the volume

'Unlike TMS and EEG, diffusion imaging can pick up a fiber connec-
tion, but not its direction. Both afferent and efferent connections are
identified but not differentiated.
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1 Left Sup Temporal
2 Left Precentral

3 Left Temp Pole

4 Left Supramarginal
5 Left Postcentral

6 Left Transverse Temp
7 Right Postcentral

8 Right Precentral

9 Right Supramarginal
10 Right Sup Temporal

11 Right Inf Temporal

12 Right Med Orbitofrontal
13 Right pars triangularis
14 Right pars opercularis
15 Left pars opercularis*

Figure 2.

Summary figure of age-related effects in proportional fiber den-
sity between left and right insula and other nodes. Connections
shown are those from Table Il. Nodes are numbered as indi-
cated in the figure. The two largest nodes are the left and right
insula. Paths in blue decreased in density across development,

of the insula bilaterally, albeit across a larger age range
[20-95 years; Takahashi et al., 2011].

Out of 15 connections showing developmental effects, 11
showed significant decreases in proportional fiber density
and 4 showed significant increases (Fig. 2). Decreases in

those in red increased in density across development. A legend
is included below. *Indicates connection that was suggestively
significant with initial parametric model, but passed FDR after
nonparametric tests. In the center image, left in the image is left
in the brain.

fiber density with age could reflect synaptic pruning [Hut-
tenlocher, 1979] or continued myelination [Bartzokis et al.,
2010]. All age-related increases in fiber density were found
in the temporal cortex. One of these, upon examination of
the raw fiber density matrices, switched directions. Of the
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Figure 3.
Scatter plot showing the age by sex (male = |, female = 2) density are normalized by ICV (intracranial volume). A value of

interaction in the proportional fiber density of the connection
between the left insula and the left precentral gyrus, indicating
steeper decline with age in girls; includes image with precentral
gyrus in blue and insula in green. Values for proportional fiber

“0” does not necessarily indicate absence of that connection.
Most likely, it indicates that we are unable to trace that connec-
tion in those subjects, perhaps because other fibers predomi-
nate, making it harder to resolve.
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five significant developmental effects in the temporal cor-
tex, four were increases in fiber density, and one was a
decrease in fiber density. Prior work has shown different
developmental trajectories across the cortex [Sowell et al.,
2003; Gogtay et al., 2004] and these results of more age-
related increases in connections of the temporal cortex and
decreases in connections of the frontal cortex are consistent
with previous results found in a larger, overlapping cohort
when the whole connectome was examined [Dennis et al.,
2012]. The differences we found could be partly due to dif-
ferences in the developmental trajectories of the frontal
and temporal cortex and their connections. Giedd et al
[1999] found the temporal cortex had a later age of peak
when measuring gray matter volume than other cortices.
In Sowell et al. [2003], we found the gray matter density
(GMD) of the superior frontal sulcus decreased from age 7
on, but the GMD of the superior temporal sulcus increased
until age 30. Sowell et al. [2002] also found that the poste-
rior-superior temporal and inferior parietal cortices
increased the most in gray matter density between ages
7-30. The insula is one of the first cortical structures to de-
velop [Chi et al,, 1977], but it continues to mature through-
out childhood, with continued cortical thinning across
ages 6-10 [Muftuler et al., 2011]. Similarly, the limbic fibers
are among the first to develop [Huang et al., 2006], but the
afferent and efferent connections of the insula also con-
tinue to develop into adulthood. These include the unci-
nate fasciculus [Hasan et al., 2009; Kalani et al.,, 2009],
internal capsule fibers, and the arcuate fasciculus [Paus
et al., 1999]. Additionally, the white matter of the insula
itself changes with age; as Herting et al. [2012], for exam-
ple, found the FA of the right insula increased with puber-
tal status.

As the insular connections develop, so too do the roles
the insula plays functionally. In trying to find differences
in the brains of adolescents that may influence their risk-
taking behavior, Van Leijenhorst et al. [2010] found that
the anterior insula was more active during anticipation in
adolescents than adults. Similarly, Smith et al. [2011]
found age-related decreases in insula activation during a
sustained attention task. It could be that the maturation of
this activity is due in part to the maturation of fibers con-
necting the insula and the frontal cortex, of which we
found five significant age-related trends. As the frontal
cortex controls many aspects of higher order cognition
such as executive control, sustained attention, and risk
analysis [Buchsbaum, 2004], maturation of these connec-
tions would likely affect the functional circuits involving
both.

We found one connection that showed a significant age
x sex interaction effect. The proportional fiber density of
the connection between the left insula and the left precen-
tral gyrus showed a steeper decline in females than in
males (Fig. 3). Abe et al. [2010] found males had a steeper
decline with age than females in the FA of the white mat-
ter of the left precentral gyrus, which is contrary to our
finding, although we were concerned with the fiber den-

sity of this connection rather than its FA. We were examin-
ing a different age group, however - Abe et al. [2010]
examined a cohort of 245 healthy subjects, aged 21-71. The
fact that we could detect this connection in 84% of our
young subjects and 31% of our adult subjects could either
be due to an actual developmental change in the fiber den-
sity of this path, or could be due to it being traced more
accurately in one sample than the other. As the scan pa-
rameters for both samples were almost identical and data
were analyzed in the same way, the first explanation is
perhaps more likely. It remains to be seen whether these
sex differences have any functional consequences, such as
differences in vulnerability to insula-involved neuro-
psychiatric disorders, such as anxiety. An alternative ex-
planation is non-proportional scaling of brain sub-
structures relative to overall brain size [Brun et al., 2009].
Men generally have larger brains as they are, on average,
larger overall. There is an implicit assumption in aligning
data to a template, namely that brain structures in each
sex occupy the same proportion relative to overall brain
size. Even so, it is possible that substructures scale nonli-
nearly to total brain volume (TBV), rather than proportion-
ally. For example, in a study of 100 young adults, Brun
et al. [2009] found that the occipital cortex and the frontal
cortex scaled nonlinearly, such that individuals with large
TBVs tended to have proportionally larger occipital corti-
ces, while those with small TBVs tended to have propor-
tionally larger frontal cortices.

The insula is involved in a wide variety of functions
[Augustine, 1996; Craig, 2008] and has been implicated in
a number of neuropsychiatric disorders [Etkin and Wager,
2007; Hamilton et al., 2011; Kubicki et al., 2002; Stein et al.,
2007; Uddin and Menon, 2009]. A number of the roles of
the insula, such as pain perception and taste, are fairly ba-
sic and early to develop, but others, such as emotion and
cognitive tasks, are higher order [Kurth et al., 2010; Wager
and Barrett, 2004]. Given its many roles, researchers have
proposed that the insula is an integrative structure, com-
bining sensory awareness with higher cognition [Craig,
2008; Kurth et al., 2010]. Research on the functional con-
nectivity of the insula suggests that it plays a key role in
regulating network dynamics by switching the dominant
pattern of brain activity between different intrinsic connec-
tivity networks (ICNs) [Hamilton et al, 2011; Sridharan
et al.,, 2008]. Given its purportedly unique role in integrat-
ing disparate functions, investigating the development of
insular connectivity is important in understanding how
the brain develops. The insular cortex develops quite early
in utero, before the frontal and temporal cortices [Chi
et al., 1977] yet its connections with other cortical targets
are still changing throughout adolescence. A number of
neuropsychiatric disorders involve the insula [Etkin and
Wager, 2007; Hamilton et al., 2011; Kubicki et al., 2002;
Stein et al., 2007; Uddin and Menon, 2009], and many of
these disorders have a typical age of onset in adolescence
or later. A number of neurodevelopmental disorders also
involve the insula, including autism [Cheng et al., 2010]
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and ADHD [Durston, 2003]. Aberrant development of in-
sular connectivity, still maturing into early adulthood,
may be a contributing factor.

This study has several limitations. One of the issues
with our study design is the sparse sampling of the ages
due to the availability of subjects at specific ages (12 and
16) but not ages in between these. To address this, we fol-
lowed up our initial analyses with nonparametric permu-
tation testing, which did not affect the conclusions, but
did give permutation corrected P-values. While we discuss
our subjects in terms of distinct age cohorts, we treated
age as a continuous variable in our statistical analyses,
and the adults had a wide range of variation. Nonetheless,
there were some gaps in subject availability for specific
ages (13-14, 17-19). We followed up our initial analyses
with nonparametric permutation testing, which did not
change the results, but did give permutation corrected P-
values. Another limitation is the fact that we did not par-
cellate the insula into sub-regions, which could have given
us finer detail on insular connectivity, especially as prior
studies show that it participates in multiple networks. The
atlas we used (Desikan-Killiany) did not parcellate the
insula further. At this time, there do not seem to be any
widely used automated methods to parcellate the insula
into smaller subregions, but they could be developed.
However, if we included them here, we would be
expected to validate them, and it would be difficult to find
any independent data that could provide an objective cri-
terion for ground truth to determine if the partition was
correct. In the future, the insula might be subdivided effec-
tively based on its connectivity to other regions. Some
studies have advocated the use of connection patterns to
refine segmentation of nuclei, but doing so is challenging
as the large variation in connection patterns across subjects
may require the development of complex rules to assign
all insular regions to appropriate bundles. Obtaining even
higher angular and spatial detail tends to lead to prohibi-
tively long scan times. Ongoing efforts to refine and accel-
erate hybrid diffusion imaging [Zhan et al, 2011] and
diffusion spectrum imaging [van Wedeen et al, 2012],
especially at higher field strengths [Zhan et al., 2012¢],
may allow progressively finer resolution of anatomical
connectivity in vivo.

CONCLUSIONS

In this study we detailed developmental changes in the
structural connectivity of the insula between ages 12-30.
We found that the proportion of fibers that pass through
either insula decreases with age. In general, connections to
the frontal and parietal cortex decreased with age, while
connections to the temporal cortex mostly increased with
age. This is likely due to both developmental changes in
the insula itself and well-documented changes in the fron-
tal, parietal, and temporal targets. Last, we found an age
by sex interaction effect in the connectivity of the insula. It

remains to be seen if this is associated with any differences
in vulnerability to insula-involved neuropsychiatric dis-
ease or simply nonproportional scaling of brain sub-struc-
tures relative to the overall brain size [Brun et al., 2009].
With the insula’s heterogeneous collection of roles—some
of which are emotion-related—determining the develop-
mental trajectory of the insula and its connections will pro-
vide useful normative data and assist efforts to define the
mechanisms of various neurodevelopmental and neuro-
psychiatric diseases.
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3.1 Altered structural brain connectivity in healthy carriers of the autism risk gene,

CNTNAP2

This section is adapted from:

Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K, McMahon KL, de Zubicaray GI,

Montgomery G, Martin NG, Wright MJ, Bookheimer SY, Dapretto M, Toga AW,

Thompson PM. (2011). Altered Structural Brain Connectivity in Healthy Carriers of the

Autism Risk Gene, CNTNAPZ2. Brain Connectivity, 1(6), 447-459.
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Abstract

Recently, carriers of a common variant in the autism risk gene, CNTNAP2, were found to have altered functional
brain connectivity using functional MRI. Here, we scanned 328 young adults with high-field (4-Tesla) diffusion
imaging, to test the hypothesis that carriers of this gene variant would have altered structural brain connectivity.
All participants (209 women, 119 men, age: 23.4+2.17 SD years) were scanned with 105-gradient high-angular-
resolution diffusion imaging (HARDI) at 4 Tesla. After performing a whole-brain fiber tractography using the full
angular resolution of the diffusion scans, 70 cortical surface-based regions of interest were created from each in-
dividual’s co-registered anatomical data to compute graph metrics for all pairs of cortical regions. In graph theory
analyses, subjects homozygous for the risk allele (CC) had lower characteristic path length, greater small-worldness
and global efficiency in whole-brain analyses, and lower eccentricity (maximum path length) in 60 of the 70 nodes
in regional analyses. These results were not reducible to differences in more commonly studied traits such as fiber
density or fractional anisotropy. This is the first study that links graph theory metrics of brain structural connec-
tivity to a common genetic variant linked with autism and will help us understand the neurobiology of the circuits

implicated in the risk for autism.

Key words: autism; CNTNAP2; graph theory; HARDIL structural connectivity; twins

Introduction

ANY NEUROPSYCHIATRIC DISORDERS are thought to

involve disrupted brain connectivity, but very little
is known about what causes brain connectivity to vary in
human populations. Total brain volume (Posthuma et al,,
2000), cortical thickness (Schmitt et al,, 2008; Thompson
et al., 2001), and measures of white matter integrity derived
from diffusion tensor imaging (DTI) (Chiang et al., 2009,
2011a; Pfefferbaum et al., 2001) are all under moderately
strong genetic control. By analyzing very large cohorts (on
the order of 20,000 subjects) with MRI and genome-wide
scans (Stein et al., 2012), we recently discovered commonly
carried genetic variants that are associated with differences
in brain structure. Since these studies searched the genome
for effects of up to a million single nucleotide polymor-

phisms (SNPs), very large samples were needed to reduce
the risk of false-positive associations. An alternative ap-
proach is to study the candidate genes already associated
with disease risk. For instance, young adults who carry the
Alzheimer’s risk allele CLU-C have lower white matter in-
tegrity in DTI scans of the brain, as measured by fractional
anisotropy (FA) (Braskie et al., 2011). In addition, common
variants in the growth factor genes, BDNF and NTRK1, are
also associated with altered white matter integrity, making
it possible to predict a small proportion of individual differ-
ences in brain integrity by genotyping multiple common
variants (Kohannim et al., 2011). These early DTI genetics
studies have generally mapped brain integrity using maps
of FA, either broadly across the brain (Braskie et al., 2011),
or in specific brain regions (Chiang et al., 2009; McIntosh
et al, 2008; Winterer et al., 2008). Methods that assess brain
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connectivity may be useful in gauging how these variants af-
fect white matter organization overall. Even so, no studies
have yet linked the graph metrics of structural brain connec-
tivity to any specific genetic variants. The power to detect
gene effects is limited in small samples, so we scanned a fairly
large cohort of twins (118 identical twins, 183 fraternal twins,
and 27 nontwin siblings) with high angular resolution diffu-
sion imaging (HARDI), at a relatively high magnetic field
(4 Tesla).

The recently discovered autism risk gene, CNTNAP2, en-
codes CASPR2, or contactin-associated protein-like 2, a
member of the neurexin superfamily of transmembrane pro-
teins. CASPR2 is involved in clustering voltage-gated potas-
sium channels (K, 1.1) at the nodes of Ranvier (Strauss et al,,
2006; Vernes et al., 2008). CASPR2 has a suggested develop-
mental role as a cell adhesion molecule responsible for neu-
roblast migration and laminar organization (Arking et al.,
2008; Bakkaloglu et al., 2008; Vernes et al., 2008). In a
study of an Amish family, a deletion mutation in CNTNAP2
was linked with a disorder with many hallmarks of autism,
involving seizures, language difficulties, and impaired so-
cial abilities (Strauss et al, 2006). Subsequent research in
both autistic and language-impaired (but nonautistic) popu-
lations has discovered further support that CNTNAP2 is as-
sociated with autism (Alarcén et al, 2008; Arking et al,
2008; Bakkaloglu et al., 2008) and language ability (Alarcén
etal., 2008; Vernes et al., 2008). A recent study characterizing
CNTNAP2 knockout mice found behavioral deficits charac-
teristic of autism—namely, seizures—as well as neuronal
migration abnormalities, reduced interneuron density, and
abnormal neuronal network activity (Pefiagarikano et al.,
2011). CNTNAP2 expression is highest in the frontal and
temporal lobes (Abrahams et al., 2007; Arking et al., 2008;
Bakkaloglu et al., 2008; Vernes et al., 2008), areas responsible
for language abilities, particularly in the left hemisphere
(Baynes et al., 1998), supporting the link between CNTNAP2
and language function. Stein et al. (2011) found that a
CNTNAP2 SNP (rs2710102) was associated with increased
risk for selective mutism, an anxiety disorder in which a
child is unable or unwilling to speak in certain situations,
despite having normal language abilities in other situations.
This disorder is similar, in some respects, to autism; they
both involve characteristic deficits in language and social
interactions.

In a recent analysis of functional brain connectivity using
functional MRI, Scott-Van Zeeland et al. (2010) compared
risk and nonrisk allele carriers of CNTNAP2 (rs2710102) in
a cohort consisting of both autistic and typically developing
children. Children with the genetic risk allele did not show
the same left-lateralized pattern of medial prefrontal cortex
connectivity as noncarriers. This association was consistent
with previous research linking CNTNAP2 to language abil-
ity. Scott-Van Zeeland et al. also found stronger long-
range anterior-posterior connections in the nonrisk subjects
and stronger short-range frontal lobe connectivity in the at-
risk subjects. Since short-range connections are typically
pruned and long-range ones are strengthened over the
course of development (Dosenbach et al, 2010; Hutten-
locher, 1990), this may be evidence of delayed development
in those at risk.

The graph theory can quantify brain connectivity at the
network level. This branch of mathematics—for describing
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and analyzing graphs—examines brain networks as collec-
tions of nodes (i.e., specific brain regions) and edges (connec-
tions between those regions) (Sporns et al, 2004). The
complex web of brain structural or functional connectivity
may be quantified using a number of key parameters that
summarize network characteristics. Path length, for example,
is a measure of the distance (i.e., number of edges) between
one brain region and another (Rubinov and Sporns, 2010).
A network with a shorter average path length is considered
more efficient in terms of information transfer (Bullmore
and Sporns, 2009). We recently found these metrics to be her-
itable in this same sample (Dennis et al., 2011).

Here, we set out to investigate how variations in a
CNTNAP2 SNP (rs2710102) might relate to graph theoretical
measures from diffusion-weighted MRI. Further impetus for
this work came from a recent report that found an associa-
tion between a different CNTNAP2 SNP (rs7794745) and
FA (Tan et al., 2010). Tan et al. (2010) found lower FA in in-
dividuals homozygous for the risk allele in a number of re-
gions implicated in autism, including the cerebellum,
fusiform gyrus, occipital, and frontal cortices. Given this
previous success in linking a different CNTNAP2 SNP
with structural connectivity, we decided that this might be
a promising method for understanding the results of Scott-
Van Zeeland et al., who found an association between our
CNTNAP2 SNP (rs2710102) and alterations in functional
connectivity. Functional and structural connectivity are
closely related, with functional connectivity existing be-
tween areas that are structurally connected; yet functional
connections may exist where no structural connections
exist (Honey et al., 2009). Results from these different mo-
dalities may assess different types of connectivity, but they
are complementary and together generate a more complete
picture of brain networks. In some cases but not others, dif-
ferences in functional synchronization may be explained by
detectable differences in structural connections. Addition-
ally, findings from different modalities may discover the
general principles of neural organization from multiple
very different modalities, such as network hubs, small-
world properties, as well as metrics of efficiency and resil-
ience to disruption. Previous research associating CNTNAP2
with cognitive or behavioral traits focused on autistic popu-
lations or people with known language difficulties. To test
whether this very common genetic variant leads to detect-
able brain differences outside of populations with language
or developmental disorders, we focused on healthy adults
with normal variations in language ability. Since Scott-Van
Zeeland et al. (2010) were able to find and replicate
CNTNAP2’s association with brain connectivity in a popula-
tion of both autistic and typically developing children, we
hypothesized that we might be able to detect differences in
the structural networks of healthy normal carriers of the
CNTNAP? risk allele (rs2710102). In this study, we assessed
both global and hemisphere-specific brain network proper-
ties. We recently reported on genetically influenced left-
right asymmetries in white matter tracts (Jahanshad et al.,
2010). Given those asymmetries, we expected that the rela-
tionship between CNTNAP2 and network measures might
differ by hemisphere, as CNTNAP2 is linked with language
ability (Alarcén et al., 2008; Vernes et al., 2008)—a generally
left-lateralized function (Baynes et al, 1998). As such, we
tested for the effects on each hemisphere independently.
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Materials and Methods
Participants

Participants were recruited as part of a 5-year research pro-
ject examining healthy young adult Australian twins using
stractural MRI and DTI with a projected sample size of
~1150 at completion (de Zubicaray et al., 2008). Our analysis
included 328 right-handed subjects (209 women/119 men,
average age=23.4, SD=2.17). This population included 118
monozygotic (MZ) twins, 183 dizygotic (DZ) twins, and 27
nontwin siblings, from 189 families. The population was ra-
cially homogenous: 100% of subjects were Caucasian. In stud-
ies of genetic variations, a genetically homogenous
population is preferable to avoid incorrectly ascribing effects
to alleles that have different frequencies in different racial/
ethnic groups. The subjects were screened to exclude those
with a history of significant head injury, neurological or psy-
chiatric illness, substance abuse or dependence, or who had a
first-degree relative with a psychiatric disorder. All the partic-
ipants were right handed, as assessed by 12 items on the
Annett’s Handedness Questionnaire (Annett, 1970). The
study participants gave informed consent; the institutional
ethics committees at the Queensland Institute of Medical
Research, the University of Queensland, the Wesley Hospital,
and at UCLA approved the study.

Establishing zygosity and genotyping

Zygosity was established objectively by typing nine inde-
pendent DNA microsatellite polymorphisms (polymorphism
information content>0.7), using standard polymerase chain
reaction methods and genotyping. Results were cross-
checked with blood group (ABO, MNS, and Rh), and pheno-
typic data (hair, skin, and eye color), giving an overall
probability of correct zygosity assignment >99.99%. Genomic
DNA samples were analyzed on the Human610-Quad Bead-
Chip (Illumina) according to the manufacturer’s protocols
(Infinftum HD Assay; Super Protocol Guide; Rev. A, May
2008). For our SNP of interest, rs2710102, 47 (20.1%) were ho-
mozygous for the nonrisk allele (TT), 111 (47.4%) subjects
were heterozygous for the risk allele (TC), and 76 (32.5%) sub-
jects were homozygous for the risk allele (CC).

Scan acquisition

Whole-brain anatomical and HARDI were collected with a
4T Bruker Medspec MRI scanner. Tl-weighted anatomical
images were acquired with an inversion recovery rapid gradi-
ent echo sequence. The acquisition parameters were as fol-
lows: TI/TR/TE=700/1500/3.35 ms; flip angle=8°; slice
thickness=0.9 mm, with an acquisition matrix of 256 x256.
Diffusion-weighted images (DWIs) were also acquired
using single-shot echo planar imaging with a twice-refocused
spin echo sequence to reduce eddy-current induced distor-
tions. The acquisition parameters were optimized to provide
the best signal-to-noise ratio (SNR) for estimation of diffusion
tensors (Jones et al.,, 1999). The imaging parameters were as
follows: 23 em FOV, TR/TE 6090/91.7 ms, with a 128 X128 ac-
quisition matrix. Each three-dimensional (3D) volume con-
sisted of fifty-five 2-mm-thick axial slices with no gap and
1.79 x 1.79 mm? in-plane resolution. One hundred five images
were acquired per subject: 11 with no diffusion sensitization
(i.e., T2-weighted by images) and 94 DWIs (b=1159 s/mm?)
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with gradient directions evenly distributed on the hemi-
sphere. The scan time for the HARDI scan was 14.2 min.

Cortical extraction and HARDI! tractography

Connectivity analysis was performed as in Jahanshad et al.
(2011). Briefly, nonbrain regions were automatically removed
from each Tl-weighted MRI scan, and from a T2-weighted
image from the DWI set, using the FSL tool “BET” (FMRIB
Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). A trained
neuroanatomical expert manually edited the Tl-weighted
scans to further refine the brain extraction. Total brain
volume estimates were obtained from the manually edited
full-brain mask, including cerebral, cerebellar, and brainstem
regions. All the Tl-weighted images were linearly aligned
using FSL (with 9 DOF) to a common space (Holmes et al.,
1998) with 1 mm isotropic voxels and a 220x220x220 voxel
matrix. Raw DWIs were corrected for eddy current distor-
tions using the FSL tool, “eddy_correct” (http: //fsl.fmrib.ox
.ac.uk/fsl/). For each subject, the 11 eddy-corrected images
with no diffusion sensitization were averaged, linearly
aligned, and resampled to a downsampled version of their
corresponding T1 image (110x110x110, 2X2 x2mm). Aver-
aged by maps were elastically registered to the structural scan
using a mutual information cost function (Leow et al., 2005)
to compensate for echo planar imaging (EPT)-induced suscep-
tibility artifacts.

Thirty-five cortical labels per hemisphere, as listed in the
Desikan-Killiany atlas (Desikan et al., 2006), were automati-
cally extracted from all alighed T1-weighted structural MRI
scans using FreeSurfer (http://surfer.nmr.mghharvard
.edu/). The Desikan—Killiany atlas lists 34 cortical regions
per hemisphere that are based on the main cortical gyri,
and FreeSurfer adds the insula to make a total of 35 cortical
regions for each hemisphere. A complete list of the regions in-
cluded is found in Jahanshad et al. (2011). Other parcellations
are possible, and some may be more sensitive in principle to
picking up gene effects. Previous work by our lab found that
connectivity maps based on these 70 regions can be used to
detect genetic influences on brain connections (in terms of
gross heritability rather than SNP effects); so, we planned
our SNP analyses based on this parcellation (Jahanshad
et al, 2011; Joshi et al, 2010). The Desikan-Killiany atlas
has been widely used for structural connectivity analysis
(Hagmann et al., 2010; Honey et al,, 2009). Even so, there is
ongoing work in the field aiming at optimizing the cortical
parcellation for network analyses, and at understanding
how different parcellation schemes may influence different
kinds of network measures (Bassett et al, 2011; Zalesky
et al., 2010). Since a linear registration is performed by the
software, the resulting T1-weighted images and cortical mod-
els were aligned to the original T1 input image space and
down-sampled wusing nearest-neighbor interpolation (to
avoid intermixing of labels) to the space of the DWIs. To en-
sure the tracts intersect cortical labeled boundaries, the labels
were dilated with an isotropic box kernel of five voxels.

The transformation matrix from the linear alighment of the
mean by image to the Tl-weighted volume was applied to
each of the 94 gradient directions to properly re-orient the ori-
entation distribution functions (ODFs). At each HARDI voxel,
the ODFs were computed using the normalized and dimen-
sionless ODF estimator, derived for g-ball imaging in
(Aganj et al., 2010). We performed HARDI tractography on



the linearly aligned sets of DWI volumes using these ODFs.
Tractography was performed using the Hough transform
method as described in (Aganj et al., 2011). Briefly, tractogra-
phy was performed after linearly alighing and scaling the
DWI data to anatomical (T1-weighted) image space. Since a
linear transform was applied to the diffusion-weighted im-
ages, we also reoriented the gradient table so that the tract
tracing algorithm could correctly follow the dominant direc-
tion of diffusion. The table of gradient vectors was corrected
to reflect the nonrigid transformation by applying the same
transformation to each directional gradient vector. Running
tractography after re-orienting the images, as we did here,
might slightly affect the SNR of the diffusion signals, as it
would act as a very mild spatial filter on the data.

Elastic deformations obtained from the EPI distortion cor-
rection, mapping the average by image to the Tl-weighted
image, were then applied to the tracts” 3D coordinates for ac-
curate alignment of the anatomy. Each subject’s dataset con-
tained 2,000-10,000 useable fibers (3D curves). Fibers were
filtered to eliminate those likely to be erroneous. All duplicate
fibers were removed; those with a very small number of
points {<5) were considered unreliable and were also re-
moved.

For each subject, a full 70 X 70 connectivity matrix was cre-
ated. Each element described the proportion of the total num-
ber of fibers connecting each of the labels; the diagonal
elements of the matrix describe the total number of fibers
passing through a certain cortical region of interest. Since
these values were calculated as a proportion, they were nor-
malized to the total number of fibers traced for each individ-
ual participant, so that the results could not be skewed by raw
fiber count.

Graph theory analyses

On the 70x 70 matrices just generated, we used the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010; https://
sites.google.com/a/brain-connectivity-toolbox.net/bct/Home)
to compute two standard measures of nodal brain connectivity—
regional efficiency (EREG) and eccentricity (ECC). EREG is
the global efficiency (EGLOB) computed for each node and
is related to the clustering coefficient (Latora and Marchiori,
2001). ECC is the longest characteristic path length (CPL)
for any given node (Sporns, 2002). We also computed five
standard measures of global brain connectivity—CPL, mean
clustering coefficient (MCC), EGLOB, small-worldness
(SW), and modularity (MOD) (Rubinov and Sporns, 2010).
CPL is a measure of the average path length in a network,
with path length being the minimum number of edges that
should be traversed to get from one node to another. MCC
is a measure of how many neighbors of a given node are
also connected to each other, in proportion with the maxi-
mum number of connections in the network. EGLOB is in-
versely related to CPL; networks with a small, average CPL
are generally more efficient than those with a large, average
CPL. SW represents the balance between network differenti-
ation and network integration, calculated as a ratio of local
clustering and CPL of a node relative to the same ratio in a
randomized network. We created 10 simulated random net-
works. The ratio of the clustering coefficient in our network
to the clustering coefficient in the simulated random net-
works was denoted by y (gamma). The ratio of the CPL in
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our network to the CPL in the simulated random network
was denoted by 1 (lambda). These measures were generated
in the same way as the others, integrated across a range, and
are listed in the results tables alongside MCC and CPL but
were not entered into any association analyses. MOD is the
degree to which a system can be subdivided into smaller net-
works (Bullmore and Bassett, 2011). The equations to calcu-
late each of these measures can be found in Rubinov and
Sporns (2010).

One step in graph theory analysis is selecting a threshold
for the network, termed the sparsity. Networks with a spar-
sity of 0.2 retain only 20% of the connections of the “full-
sparsity” network. Selecting a single sparsity level may
arbitrarily affect the network measures, so we computed
measures at multiple sparsities, and integrated across that
range to generate more stable scores. We calculated these
measures for the whole brain over a range of sparsities
(0.2-0.3, in 0.01 increments), and calculated the area under
the curve of those 11 data points to generate an integrated
score for each measure. Twenty-three participants completed
two separate scanning sessions 3 months apart in which DTI
data were collected. The measures were calculated for both
scans for each of these participants over the whole range of
sparsities, and we found that the range 0.2-0.3 gave the
most stable network measures. Supplementary Figure S1
(Supplementary Data are available online at www lieberton-
line.com/brain) shows the calculations of all five network
measures plotted for both groups across the sparsity range
0-0.5. These graphs show that at very low sparsities, the
graphs are not stable, while we know that higher sparsities
are less biologically plausible (Sporns, 2011). We also calcu-
lated the network measures for the left and right hemispheres
independently. We hypothesized that we would find evi-
dence of altered structural connectivity between the two
groups and, thus, started with global graph theory measures
of connectivity. We calculated efficiency at a regional level by
considering these measures at each node, to see whether our
results were attributable to differences in certain brain re-
gions. For these regional measures, we calculated the mea-
sures over the same range of sparsities and integrated them
over that range. We calculated ECC at a regional level as
well. We not only ran post hoc association analyses on the
raw fiber density matrices to see whether there were overall
differences in connectivity but also ran the analyses on a sub-
set of connections, just those with one terminus in the frontal,
parietal, or temporal cortex.

Association controlling for relatedness

We performed a mixed-model regression for each network
measure to find the association of the SNP while incorporat-
ing a model accounting for family relatedness (Kang et al.,
2008). When family members are analyzed, the relatedness
among members of the sample should be taken into account,
and each individual cannot be treated as independent as
some share part (in the case of siblings and DZ twins) or all
(MZ twins) of their genome. This analysis was performed
using Efficient Mixed-Model Association (EMMA; http://
mouse.cs.ucla.edu/emma/) within the R statistical package
(version 2.9.2; www.r-project.org). A symmetric nxn kinship
matrix was constructed to describe the relationship of every
subject to all others. A kinship matrix coefficient of 1 denoted
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the relationship of each subject to himself/herself; the coeffi-
cient for MZ twins within the same family was 1; the coeffi-
cient for DZ twins and siblings within the same family was
0.5; and the coefficient for subjects not in the same family
was 0. Ancestry outliers were removed, so no additional
modeling was used in the kinship matrix to adjust for popu-
lation genetic structure between families. The association of
SNP rs2710102 was tested for all network measures just de-
scribed according to the following formula:

y=XB+Zu+e

Here, y is a vector representing the network property; X is a
matrix of fixed effects containing the genetic effect of the
SNP for each subject (coded additively or using other models
that combine genotype groups; see above) and a constant
term; f§ is a vector representing the fixed-effect regression co-
efficients; Z is an identity matrix; u is the random effect with
Var(u)= 62K, where K is the kinship matrix; and e is a matrix
of residual effects with Var(e)=¢2l. Age and sex were in-
cluded as covariates.

False discovery rate correction for multiple comparisons

All results were controlled for multiple comparisons using
the standard false discovery rate (FDR) method (Benjamini
and Hochberg, 1995). The FDR is the expected proportion
of false positives among results that are declared significant.
Simply setting the alpha at a value of 0.05 implies that 5% of
the results are expected to be false positives. An FDR g value
of 0.05, as used in this article, implies that, on average across
experiments, 5% of the results declared significant are
expected to be false positives.

Results

Carriers of two (CC) but not just one (CT) risk allele have
a higher risk of speech development delay and/or impair-
ment (see SNPedia, at www.snpedia.com/index.php/
Rs2710102). Thus, we coded our analyses in a recessive fash-
ion (with regard to the major risk allele), where individuals
homozygous for the risk allele formed one group, and those
heterozygous for the risk allele or carrying no copies of the
risk allele formed the other group. Graph theory measures
depend on a choice of threshold on the strength of connec-
tivity, which may be thought of as a sparsity level: pruning
away weaker connections leads to a sparser network model.
To avoid this dependency, which could lead to arbitrary
thresholding effects in the results, connectivity measures
were integrated across a range of sparsities (0.2-0.3), as
this range was the most stable in an initial analysis (see
Methods section for definitions, and Supplementary Fig. 51).
This range of sparsities also makes sense biologically, as dem-
onstrated in a number of studies (Sporns, 2011). All the ana-
lyses given next were run on integrated scores calculated in
this way.

Results—whole brain measures

We tested associations of the rs2710102 CNTNAP2 SNP
with five commonly studied network measures: CPL, MCC,
EGLOB, SW, and MOD. The allele dose at the SNP (i.e., the
number of risk alleles) was significantly associated with the
CPL in the whole-brain structural network (b=0.17,
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p=0.0069), as well as SW (b=—0.6, p=0.00068) and EGLOB
(b=-0.09, p=0.00099) in the left hemisphere and the
EGLOB in the right hemisphere (b=-0.077, p=0.0056).
Here, b represents the unnormalized slope of the regression
coefficient, where the at-risk group is coded as 0, and the
non-at-risk group is coded as 1. These results remained signif-
icant after correcting for multiple comparisons using the FDR
procedure (Benjamini and Hochberg, 1995) across all 15 tests
performed (5 in the left hemisphere, 5 in the right hemisphere,
and 5 for whole brain, 4 <0.05). Individuals homozygous for
the risk allele (N=99) had greater EGLOB in both hemi-
spheres and greater SW in the left hemisphere. Individuals
carrying one or no copies of the risk allele (N=229) had a
greater CPL in the whole-brain structural network. The
whole-brain results, with significant results bolded, along
with average values for each group, are shown in Table 1.
They are visualized in Figures 1 and 2.

Results—EREG

Our association analysis of the rs2710102 CNTNAP2 SNP
with the EREG of each node, integrated across sparsities .2—
.3, yielded results in 11 of the 70 nodes that passed p<0.05
but did not pass the more stringent FDR correction. These re-
sults, along with average values for each group, are shown in
Table 2. To preserve space, only nodes passing p<0.05 are
presented in Table 2.

TaABLE 1. GLOBAL RESULTS FROM CNTNAP2 ASSOCIATION
ANALYSIS FOR INTEGRATED GRAPH THEORY METRICS
FOR WHOLE BRAIN AND LEFT AND RiGHT
HEMISPHERES SEPARATELY

Global measures—recessive model

Risk Nonrisk
average average P

Measure (CC) (CT and TT) b value
Whole brain

CPL/A 17.5/10.09 17.67/10.16 0.17 0.0069

MCC/y 8.57/13.74 8.35/14.27 0.2 0.21

EGLOB 6.16 6.1 —0.049 0.032

SW 13.52 14 0.51 0.021

MOD 5.64 5.53 —0.09 0.12
Left hemisphere

CPL/A  19.16/10.67 19.04/10.69 —0.11 0.17

MCC/y 6.13/17.64 6.16/17.10 0.038 0.54

EGLOB 5.6 5.51 —0.09 0.00099

SW 16.57 15.96 —0.6 0.00068

MOD 4.54 4.44 —0.098 0.16
Right hemisphere

CPL/A  19.02/10.62 18.95/10.66 —0.084 0.3

MCC/y 6.35/17.37 6.36/17.24 0.02 0.79

EGLOB 5.64 5.56 —0.077 0.0056

SW 16.33 16.14 —-0.17 0.31

MOD 4.39 4.28 —0.11 0.079

Significant results are bolded. Results pass FDR correction for mul-
tiple comparisons across all 15 p values.

Whole-brain results showing CNTNAP2 SNP associations with
graph theory measures of structural connectivity. Results are sepa-
rated by hemisphere and are shown for the recessive model’s SNP
effect.

CPL, characteristic path length; MCC, mean clustering coefficient;
EGLOB, global efficiency; SW, small-worldness, MOD, modularity;
FDR, false discovery rate; SNP, single nucleotide polymorphism.



Resufts—ECC

To more fully examine the distribution of path lengths in
the network, we tested the effect of CNTNAP2 on ECC, a
nodal measure of the maximal shortest path length for each
node, meaning the length computed between that node and
the farthest node it is connected to. Given the significant re-
sults in CPL, EGLOB, and SW, all of which are related to
path length, we decided to look further into other measures
related to path length. Of course, these are not entirely inde-
pendent analyses, and should be considered post hioc and ex-
ploratory. Our analyses of the associations between the
152710102 CNTNAP2 SNP and the ECC of each node, inte-
grated across sparsiies .2-.3, yielded significant results for
60 of the 70 nodes, 30 in the left hemisphere and 30 in the
right hemisphere, as seen in Figure 3 (7<0.05). These results
are displayed in Figure 3 along with averages and resultant
b and p values in Table 3. To preserve space, only nodes pass-
ing g<0.05 are presented in Table 3.

Post hoc analysis—additive and dorminant models

Based on evidence that only carriers of two risk alleles
(CC) are affected (see SNPedia, at www.snpedia.com/in-
dex.php /Rs2710102), we started with a recessive model,
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with carriers of the CC genotype forming one group and
those with CT or TT forming the other. However, we also
ran post hoc analyses with the other two possible models: ad-
ditive, in which each genotype forms one group, and domi-
nant, in which the CC and CT genotypes form one group
and participants with the TT genotype form the other
group. In the additive model, we detected significant associ-
ations between allele dose and CPL in the whole-brain net-
work (b=0.10, p=0.0096), and EGLOB (b=-0.062,
p=0.00041) and SW (b=—-0.34, p=0.0030) in the left hemi-
sphere. The global post hoc results that survive multiple com-
parisons correction are presented in Table 4 (7 <0.05). For the
whole-brain measures in the dominant model, none of the
measures were significantly associated with the allele dose
at the SNP. For the EREG analyses, the additive model
yielded results in 14 nodes (p<0.05), as shown in Supple-
mentary Table S1. The dominant model yielded results in
five nodes as well (p<0.05). Neither of these passed FDR
correction. These results can be seen in Supplementary
Table S2. For the analysis of nodal eccentricities, in the addi-
tive model, there were results in 64 of the 70 nodes that
passed FDR correction. Six nodes were found to be signifi-
cant here that had not been originally found in the recessive
model, and two were not found in the additive model

FIG. 1.

Global results of CNTNAP2 association with graph theory metrics for the whole brain. The radius of each node is

proportional to the inverse of the p value for the comparison between risk (CC) and nonrisk (CT, TT) subjects in the measure
of eccentricity. Thus, larger radii indicate nodes showing significant differences between the two groups. Significant nodes are
in blue, and nonsignificant nodes are in white. Nodes are labeled with numbers: the legend on the figure lists numbers as they
correspond to regions in each hemisphere. Additionally, differences in paths are shown in this figure. Paths that both risk and
nonrisk groups have are in gray, those only present in the risk group are inred, and those only present in the nonrisk group are
in green. Nodes are labeled with numbers; the legend in the figure lists numbers in each hemisphere as they correspond to
regions. Figures 1 and 2 were generated at sparsity =0.25, using the UCLA Multimodal Connectivity Package (https: // github

.com/jbrown81 /umep).
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FIG. 2. Global results of
CNTNAP? association with
graph theory metrics for each
hemisphere separately. Asin
Figure 1, larger radii indicate
nodes showing significant
differences between the two
groups in the measure of
eccentricity. Significant nodes
are in blue, and
nonsignificant nodes are in
white. Gray paths are present
in both groups, red in risk
only, and green in nonrisk
only. Nodes are labeled with
numbers; the legend in the
figure lists numbers in each
hemisphere as they
correspond to regions.

that had been found with the recessive. The two nodes that  there were no significant associations with group member-

were significant in the recessive model but not in the addi- ship.
tive model were the left fusiform and right insula. The six
nodes that were significant in the additive model but not
in the recessive model were the left inferior parietal lobule,
left isthmus of the cingulate, left supramarginal gyrus,

Post hoc analysis—fiber density in frontal,
parietal, and temporal fobes and FA

right bank of the superior temporal sulcus, right cuneus, We had inifially analyzed whether our two groups differed
and right pericalcarine cortex. In the dominant model, in their whole fiber density matrices, that is, the number of
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TABLE 2. RESULTS FROM INTEGRATED REGIONAL
EFFICIENCY ANALYSIS IN RECESSIVE MODEL

Regional efficiency—recessive model

Risk Nonrisk
avergge  averge P

Node (CC) (CTand TT) b value
L caudal anterior 9.20 8.77 —-0.44 0.0061

cingulate
L caudal middle frontal 8.24 7.78 —045 0.0062
L pars triangularis 5.63 5.56 —0.060 0.048
L superior frontal 6.63 6.72 0.094 0.0034
L superior parietal 6.32 6.40 0.080 0.0046
L frontal pole 5.36 5.04 -0.27 0.016
R inferior frontal 6.11 6.02 —0.078 0.013
R pars trigngularis 5.75 5.66 —0.097 0.017
R rostral anterior 6.00 5.90 —0.11 0.0074

cingulate
R superior temporal 6.02 5.97 —0.056 0.036
R frontal pole 5.33 493 -0.3¢4 0.012

Nonrisk {CT and TT) coded as “1” and risk {CC} coded as “0” such
that positive b value indicates greater average in nonrisk participants.
Only results passing p<{0.05 are presented.

Regional efficiency results showing CNTNAPZ SN associations
with graph theory measures according to recessive maodel.

L, left; R, right.

fibers per unit volume connecting each node, and found no sig-
nificant differences. Given the promising findings suggesting
associations with global and nodal network measures, we
ran post hoc tests on the fiber density in the frontal and tempo-
ral lobes, where CNTNAP? gene expression is enriched (Abra-
hams et al., 2007; Arking et al., 2008; Strauss et al., 2006; Vernes
etal., 2008). In addition, Scott-Van Zeeland et al. had found as-
sociations between this gene and measures of functional con-
nectivity in the frontal and parietal lobes; so, we included
parietal nodes in this analysis as well. The nodes counted in
this subset are listed in Supplementary Table S3. There was a
trend for greater fiber density in the nonrisk subjects in all
three lobes, but these results did not pass FDR correction.
We also checked whether our two groups differed in FA or ap-
parent diffusion coefficient (ADC) along the tracts connecting
each node and found no assodation for any of the connections.
One reason we focused our genetic analysis on FA was that we
had completed a series of earlier papers that aimed at finding
out which DTI-derived measures were most highly heritable.
In a twin sample scanned with DTI, it is possible to estimate
the proportion of variance in a measure that is attributable to
genetic variation, by examining covariances between different
types of twins (MZ and DZ). In these early analyses, FA was
found to be highly heritable (Lepore et al, 2008) and so were
the three diffusion eigenvalues when treated as a multivariate
vector (Lee et al., 2009a). The full tensor was also highly heri-
table, so long as the meaning of heritability was appropriately
redefined using a Lie group metric to measure tensor differ-
ences (Lee et al., 2009b, 2010). Since FA was more highly her-
itable than mean diffusivity, we preferred to use it as the
target for our subsequent genetic association analyses (Braskie
et al., 2011, Jahanshad et al, 2012). In addition, we weighted
our fiber density matrices to emphasize those tracts that are
expected to be more heavily myelinated by multiplying our
fiber density and FA matrices element wise; even so, we
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FIG. 3. Image of nodes showing association between eccen-
tricity and the CNTNAP2 allele dose in the recessive model.
Results pass false discovery rate correction for multiple com-
parisons across all 70 nodes. Colors differentiate each node,
with the same color representing one node bilaterally. See
Table 3 for color code. From top to bottom, left to right, slices
are as follows: Z=46, Z=60,Y =41, Y=52,Y =70, X=36, and
X=72.

found no associations between the CNTNAP?2 dose and those
values. Thus, the global and nodal network differences in car-
riers of the risk gene were not readily reducible to the effects on
more common network properties, such as fiber density.

Post hoc analysis—interhemispheric connections

Given evidence that individuals with autism may have ab-
normalities in interhemispheric connectivity (Just et al., 2007),
we generated 35x 35 matrices of interhemispheric connec-
tons for all participants. We analyzed these for differences
in fiber density for these interhemispheric connections be-
tween the two groups, and found no significant differences
that passed FDR correction. We also analyzed whether the
number of interhemispheric connections present differed be-
tween the groups, meaning the number of elements in the
35x 35 matrix where >95% of the subjects had nonzero
entries, again finding no significant differences.

Discussion

In this study, we found that carriers of a common variantin
the autism risk gene, CNTNAP2, had differences in structural
brain connectivity computed from high-field DTL Graph the-
ory measures differed in individuals homozygous for the risk
allele. This higher-risk group had shorter CPL in the whole-
brain network, greater SW and greater EGLOB in the left



TABLE 3. SIGNIFICANT RESULTS FROM INTEGRATED ECCENTRICITY ANALYSIS IN RECESSIVE MODEL

Eccentricity

Node Risk average (CC)  Nonrisk average (CT and TT) b p value
L banks of the superior temporal sulcus (lime green) 12.81 15.33 24 0.013
L caudal anterior cingulate (purple) 14.21 16.28 21 0.011
L caudal middle frontal (dark blue) 16.66 18.79 21 0.0078
L cuneus (magenta) 20.96 2240 15 0.026
L entorhinal (green) 21.17 22.38 1.3 0.011
L fusiform (dark magenta) 21.30 22.34 1.0 0.014
L inferior temporal (magenta) 21.66 22.89 13 0.012
L lateral occipital (light blue) 21.66 22.95 13 0.013
L lateral orbitofrontal (dark blue) 21.16 22.37 1.3 0.0017
L lingual (magenta) 21.63 22.69 11 0.023
L medial orbitofrontal (gold) 21.09 22.05 1.0 0.0072
L middle temporal (red) 21.72 23.06 1.3 0.012
L parahippocampal (pale yellow) 21.53 22.79 13 0.011
L paracentral (gold) 21.25 22.30 11 0.0046
L pars opercularis (dark blue) 21.93 23.18 13 0.017
L pars orbitalis (orange) 22.00 23.41 14 0.026
L pars trigngularis (red) 21.78 23.15 14 0.013
L peri-calcarine (pink) 21.67 22.77 11 0.025
L postcentral (gold) 21.70 22.83 11 0.025
L posterior cingulate (blue) 21.23 22.20 093 0014
L pre-central (blue) 21.41 22.45 1.0 0.013
L precuneus (yellow-green) 21.38 22.28 0.9 0.026
L rostral anterior cingulate (dark purple) 21.36 22.38 1.0 0.018
L rostral middle frontal (orange) 21.50 22.73 1.2 0.0075
L superior frontal (red}) 21.29 2223 093 0.017
L superior parietal (green) 21.50 2248 1.0 0.024
L superior temporal (forest green) 21.71 2291 12 0.015
L temporal pole (dark blue) 21.85 23.17 13 0.017
L transverse temporal (dark blue) 21.98 23.53 1.4 0.032
L insula (lime green) 21.53 22.45 0.9 0.038
R caudal anterior cingulate (purple) 21.46 22.58 1.0 0.021
R caudal middle frontal (dark blue) 21.37 22.42 1.0 0.013
R cuneus (magenta) 21.77 23.10 1.3 0.017
R fusiform (dark magenta) 21.19 22.22 1.0 0.011
R inferior parietal (yellow) 21.44 22.46 1.0 0.023
R inferior temporal (magenta) 21.55 2272 1.1 0.031
R isthmus of the cingulate (lime green) 21.28 22.39 1.0 0.017
R lateral occipital (light blue) 21.45 22.47 1.0 0.02

R lateral orbitofrontal (dark blue) 21.17 22.25 1.0 0.013
R lingual (magenta) 21.42 22.47 1.0 0.025
R medial orbitofrontal (gold) 21.02 22.03 11 0.0034
R middle temporal (red) 21.80 23.01 1.2 0.034
R parahippocampal (pale yellow) 21.41 22.70 13 0.0078
R paracentral (gold) 21.35 22.36 1.0 0.017
R pars opercularis (dark blue) 21.83 23.21 1.3 0.025
R pars orbitalis (orange) 21.80 23.44 1.8 0.0093
R pars triangularis (red) 21.83 23.09 13 0.03

R postcentral (gold) 21.46 22.59 11 0.015
R posterior cingulate (blue) 21.36 22.26 087  0.026
R pre-central (blue) 21.34 22.29 0.92 0.022
R precuneus (yellow-green) 21.33 22.29 091  0.024
R rostral anterior cingulate (dark purple) 21.41 2254 11 0.013
R rostral middle frontal (orange) 21.46 22.55 1.1 0.019
R superior frontal (red) 21.29 22.25 0.93 0.019
R superior parietal (green) 21.39 22.35 092  0.024
R superior temporal (forest green) 21.79 23.04 13 0.021
R supra-marginal (green) 21.61 22.74 11 0.019
R temporal pole (dark blue) 21.45 23.19 1.8 0.0027
R transverse temporal (dark blue) 22.24 23.57 1.3 0.042
R insula (lime green) 21.45 22.40 0.93 0.027

Nonrisk coded as “1” and risk coded as “0”; b value represents gain in eccentricity for nonrisk group (CT and TT) compared with risk group

(CC). All passing FDR corrected across all 70 nodes tested (¢ <0.05). Only significant results are presented. Colors refer to Figure 3.
Regional results showing CNTNAP2 SNP associations with node eccentricity.

L, left; R, right.
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TasBLE 4. RESULTS FROM POST HOC ANALYSES OF ADDITIVE
MODELS FOR INTEGRATED GLOBAL MEASURES THAT
Pass FALSE DISCOVERY RATE

Global measures—additive model

Measure ccC cr T b p value
Whole Brain

CPL 17.47 17.68 17.7 010 0.0096
Left Hemisphere

EGLOB 5.56 5.52 5.53 —0.062 0.00041

SwW 16.32 16.04 16.14 —0.34 0.003

Post hoc analyses of the additive model passing FDR.

hemisphere, and greater EGLOB in the right hemisphere.
These results may seem counter-intuitive given findings of
higher efficiency, but higher efficiency in structural networks
may reflect more random connections in the risk-group’s
brain networks, as random networks have high levels of
EGLOB (Bullmore and Sporns, 2009). Further analysis at the
nodallevel revealed that the homozygous at-risk participants
had lower ECC across 60 of the 70 network nodes in the non-
risk participants, and borderline significant results (passed
p<0.05 but not FDR correction) in EREG in 11 of the 70
nodes. A final analysis attempted to further simplify the re-
sults by assessing FA and fiber density differences, but did
not detect associations with these more common fiber mea-
sures. In other words, several global and nodal properties
of the structural network were different in carriers of the
risk gene, but they were not attributable to more common
characteristics of fibers, such as fiber density or FA. A larger
sample size might detect differences in FA in carriers of the
risk gene, but our findings suggest that differences are more
prominent at the network level.

In their recent study, Scott-Van Zeeland et al. (2010) found
that a CNTNAP2 SNP was associated with differences in the
functional connectivity of frontal and parietal cortical net-
works, including effects on the strength of short- and long-
range connections to the frontal and parietal cortex. In this
case, the range reflected the physical distance between two re-
gions, while in graph theory, distance instead reflects the
number of paths between one node and another. While
path distance and physical distance are not the same, they
both indicate distance between one brain region and another.
Since this is the property measured by CPL and EGLOB using
graph theoretical methods, we hypothesized that we could
assess corresponding measures from structural networks
using DTI, and that these measures might be altered in carri-
ers of the CNTNAP? risk allele. We found that carriers have
altered structural connectivity—as measured by a number
of graph theory metrics—which may partly underlie the alter-
ations in functional connectivity.

SW is a well-developed concept from graph theory (Watts
and Strogatz, 1998) that has more recently been applied to
brain networks (Sporns et al, 2004). A network with high
SW has high local clustering and a short CPL. Subjects homo-
zygous for the risk allele had greater SW and greater EGLOB in
their left hemispheres, which are both driven in part or wholly
by shorter CPLs. Risk subjects also had higher EGLOB in
the right hemisphere as well as shorter CPL at a whole-brain
level. Since there were no significant differences in clustering,
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differences in path length may drive the observed differences
in SW. Greater efficiency in those at risk is unexpected, as Hag-
mann et al. 2010) found greater efficiency as development pro-
gressed, and Pollonini et al. (2010) found decreased EGLOB in
autistic subjects. However, Hagmann et al. based their calcula-
tions on 1/ADC, while we based ours on fiber density, and
Pollonini et al. was a magnetoencephalography (MEG) study
with Granger causality, so the comparison is not direct. A ran-
dom network has high efficiency (Bullmore and Sporns, 2009),
but it may not be functionally advantageous if the proper con-
nections are not made. Neural network complexity is typically
achieved by a balance of randomness and regularity—at either
extreme, you have a system less able to learn, because it is ei-
ther never stable enough to remember or never flexible enough
to adapt (Sporns, 2011). A more random network, while hav-
ing a shorter average path length, will be less complex, and ar-
guably farther from ideal in terms of brain function. A more
random network, while having a shorter average path length,
will be less complex, and may not reflect the organization
found in real functional brain networks. Individuals differ
widely in brain structure and function, but complete “random-
ness” of connections is not typical of functional circuitry in the
brain. A random network, with no stability in time or logical
set up, does not tend to make the most efficient use of the
brain’s resources (Chialvo, 2010). While additional studies
are required, higher EGLOB may reflect more random connec-
tions in the structural networks of the at-risk participants, as
random networks have low path lengths.

Based on our global results, we decided to look further into
various nodal measures of connectivity. In these post hoc tests,
we found a significant association between CNTNAP2 allele
dose and the ECC at 60 of the 70 nodes, with nonrisk carriers
having greater ECC across all nodes. ECC is the distance, in
paths traversed, between a given node and the node farthest
from it (Sporns, 2002). Nonrisk participants had greater ECC
across most of the brain. Studies of ECC in brain networks
are few (Pollonini et al., 2010) and have not generated any sig-
nificant results so far; so, we have little context for these results.
However, given that they are across a majority of nodes in the
brain, they could underlie the global trends we found as well.
We found 11 nodes with borderline significant differences
(passed p <0.05 but not FDR correction) in EREG, 8 of which
were in the frontal lobe, 2 in the temporal lobe, and 1 in the pa-
rietal lobe. These are the areas where CNTNAP2 expression is
especially enriched (Abrahams et al, 2007; Arking et al., 2008;
Strauss et al., 2006; Vernes et al., 2008) and where Scott-Van
Zeeland found differences in functional connectivity.

In attempting to discover a simpler underlying cause of
these results, we looked into possible differences in the fiber
density matrices of the two groups. We had initially ruled
out differences in overall connectivity by running our analysis
of CNTNAP2 on the whole fiber density matrices. However, in
trying to understand our results of greater EGLOB and shorter
CPL in the risk allele carriers, we decided to look only at those
connections with at least one terminus in the frontal, parietal,
or temporal lobes. While we found a trend for greater fiber
density in the nonrisk subjects in a large number of frontal, pa-
rietal, and temporal connections, these results did not pass
FDR correction. Tan et al. (2010) conducted a study of a differ-
ent CNTNAP2 SNP, rs7794745, in a large cohort of healthy sub-
jects as well. Regional gray and white matter volumes were
lower in those homozygous for the risk allele. We will continue
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to search for an explanation for our unexpected findings, but
currently they do not appear to be reducible to more simple
measures of structural connectivity.

Our findings relating a common risk variant in CNTNAP2
with structural connectivity suggests that the protein it codes
for, CASPR2, may be involved in white matter tract structure.
This seems likely, as CASPR2 has a role in neuroblast migra-
tion (Strauss et al., 2006) and in stabilizing K™ channels in
the juxtaparanodal region (Poliak et al,, 1999, 2003). CNTNAP2
risk allele carriers may have aberrant neuroblast migration or
K* channel clustering early in development; this may even un-
derlie the differences we see in structural connectivity. Abnor-
mal neuronal migration early in development could lead to
altered development of white matter, leading to the changes
we see. Abnormal K* channel clustering could affect axonal
physiology for developing tracts, perhaps even affecting over-
all tract structure. The recent study characterizing the
CNTNAP2 knockout found, along with various behavioral
hallmarks of autism, neuronal migration abnormalities, includ-
ing abnormal clustering of neurons in the deep layers of the
cortex (Pefiagarikano et al., 2011). CNTNAP2 is a risk gene
for autism, but it also has effects in nonautistic populations
with language disorders. It may be more appropriate to con-
sider it as a risk gene for language difficulties—a key compo-
nent of autism. A disorder as complex and varied as autism
most likely results from a constellation of genetic variations
interacting with environmental influences (Szatmari et al.,
2007). The SNP rs2710102 in CNTNAP2 may be one of these
polymorphisms that, when combined with others, could in-
crease te risk for autism by increasing the susceptibility to lan-
guage difficulties. In this article, our focus was the effects of
CNTNAP2 on brain structural connectivity. Understanding
why a gene increases risk for a disorder is as crucial as deter-
mining that it increases risk in the first place, as a more mech-
anistic understanding is necessary for ultimately developing
interventions. Here, we discovered a mechanistic clue that
might explain the association between CNTNAP2 and autism
and language disorders. This altered connectivity may repre-
sent an intermediate phenotype for one source of language dif-
ficulties. Our participants were a large cohort of twins screened
for psychiatric disorders and developmental conditions; thus,
they fall within the normal range of language ability.

Of the three different models, the recessive model yielded
the strongest results. We chose this model based on informa-
tion that individuals with the CC genotype have an increased
risk of language impairment (www.snpedia.com/in-
dex.php/Rs2710102). However, Scott-Van Zeeland’s study
supports a dominant effect of the CNTNAP2 SNP. Vernes
et al. (2008) found that a haplotype of nine SNPs, including
this CNTNAP2 SNP, had a dominant effect, but no other stud-
ies have produced evidence on the dominance of CNTNAP2
rs2710102 by itself. Our analyses were based on healthy sub-
jects, while previous studies have been conducted on autistic
or language-impaired participants, so we followed our analy-
ses with post hoc tests to check the other two models in case
the effect differed from that in our healthy population.

Conclusions

In this study, the first to link graph theory measures of
brain structural connectivity with a specific genetic variant
associated with autism, we searched for structural differences
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that might contribute to the reported effects of CNTNAP2 on
functional networks. In our large cohort of healthy adults, the
same CNTNAP2 SNP was also associated with detectable dif-
ferences in structural connectivity. In comparing findings
from different imaging modalities, these efforts lead to a bet-
ter understanding of genetic liability for autism and related
disorders. Our results not only add to previous work on the
effects of CNTNAP2 on brain structure but also raise new
questions regarding the underlying difference. A new ap-
proach to neuroimaging genetics is combining multiple poly-
morphisms—in the same or different genes—when testing for
associations with phenotypes, leading to increased predictive
accuracy (Chiang et al,, 2011b; Hibar et al,, 2011). Studies
using this method have already been conducted on another
autism risk gene (Kohannim et al., in review) that was a top
hit in a genome-wide scan for risk alleles (Anney et al.,
2010). CNTNAP?2 is classified as an autism risk gene, but we
have shown that it has effects in a healthy population as
well. These results will further our understanding of how vul-
nerabilities for various genetically influenced disorders are
displayed in the brain.
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Abstract (241 words; 250 max.)

Obesity is a crucial public health issue in developed countries, with implications for
cardiovascular and brain health as we age. A number of commonly-carried genetic variants are
associated with obesity. Elderly carriers of one of these variants, in the F70O gene, show different
patterns of brain structure, on average. Here we aim to see whether variants in other obesity-
associated genes - NEGRI1, FTO, MTCH?2, and 11 others - are associated with white matter
integrity, measured through HARDI (high angular resolution diffusion imaging) in young
healthy adults between 20-30 years old from the Queensland Twin Imaging study (QTIM). We
began with a multi-locus approach testing how a number of SNPs (single nucleotide
polymorphisms) that have been associated with obesity may jointly influence voxel-wise FA
(fractional anisotropy). Risk allele dosage of rs2815752 in NEGRI was associated with lower
white matter integrity across a substantial portion of the brain in young adults. Across the area of
significance, each risk allele was associated with a 2.2% decrease in average FA. In a subsequent
study of elderly people from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), NEGR!
variants were associated with FA in the same areas but in the opposite direction. Effects of the
NEGRI risk allele appear to be age-dependent. These results are consistent with prior findings
that obesity in midlife is cognitively detrimental, while late-life obesity may be cognitively
protective. The effects of obesity to cognition across the lifespan may be in part genetically

influenced.
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1. Introduction

Obesity is a major public health issue facing developed countries. In the United States
over a third of adults are classified as obese, and another third are considered to be overweight
(Ogden et al., 2012). Obesity has well-established links to serious health issues such as diabetes,
heart disease, and premature death (Must et al., 1999). High body mass index (BMI)' in midlife
is linked to poorer cognitive functioning in old age (Fitzpatrick et al., 2009; Walther et al., 2009).
Greater BMI is associated with lower brain volume (Walther et al., 2009; Ward et al., 2005; Taki
et al., 2008), brain atrophy (Gustafson et al., 2004), and lower gray matter density (Pannacciulli
et al., 2006), and neuronal and myelin abnormalities (Gazdzinski et al., 2010). Obese people
have abnormalities in white matter volume (Haltia et al., 2007; Raji et al., 2009), diffusivity
(Alkan et al., 2008) and integrity across many brain regions (Stanek et al., 2009; Verstynen et al.,
2012; Xu et al., 2013). These brain differences in obese people may be attributable to a less
healthy diet and lifestyle, which negatively affect brain health (Molteni et al., 2002; Northstone
et al., 2012; Ars, 2012). They may be partly due to genetic variants with joint effects on the brain
and obesity risk. A gene may directly affect the brain, and its effects on appetite and physical
activity could affect obesity. Alternatively, a gene could affect vascular health, reducing cerebral
blood flow, and therefore delivery of oxygen and nutrients to the brain, with concomitant effects
on brain function.

Diet and lifestyle are the most readily identifiable causes of obesity, yet it is highly
heritable (Wardle et al., 2008), and genetic vulnerabilities interact with lifestyle factors. A

number of genes have been repeatedly associated with obesity in cohorts worldwide (Frayling et

' Body mass index is a ratio of weight to height, intended as an approximate but readily
computed assessment of fat mass. The equation to calculate BMI (in SI units) is BMI=mass
(kg)/(height (m))>.
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al., 2007; Loos et al., 2008; Ng et al., 2012; Okada et al., 2012; Wen et al., 2012). We previously
found that elderly carriers of the F7O risk allele had lower frontal and occipital lobe volumes
(Ho et al., 2010). Recent genome-wide association studies (GWAS) identified a number of loci
associated with BMI (Speliotes et al., 2010; Thorleifsson et al., 2008; Willer et al., 2008).

Here we investigated whether 16 common variants in obesity-related genes relate to the
brain’s white matter integrity. Using a multi-locus approach to assess their combined effect, we
tested whether obesity-related variants might predict differences in white matter integrity
assessed using high angular resolution diffusion imaging (HARDI) (Kohannim et al., 2012). As a
post hoc test, we evaluated the most promising SNP (single nucleotide polymorphism) driving
the effects in the multi-locus model. Initial analyses were completed in 499 young adults (aged
20-30), to test if there was any evidence of a link between obesity-related genetic variants and
brain integrity. We followed up with an exploratory sample of 78 elderly subjects aged 55-90
years to examine effects of the obesity-related SNPs in an older cohort. We did not expect the
older sample (ADNI) to replicate results from the younger cohort; rather, we were interested in
examining whether these effects might differ in a much older population.

2. Materials and Methods
2.1 Participants

We examined two different cohorts — young Australian twins (the Queensland Twin
Imaging study; QTIM) and elderly people in the United States (the Alzheimer’s Disease
Neuroimaging Initiative; ADNI). These cohorts were selected because of the large amount of
high quality neuroimaging and genome-wide genetic data.

2.2 QTIM Cohort

78



For the QTIM cohort, participants were recruited as part of a 5-year project research
project examining healthy Australian twins with structural MRI and diffusion-weighted imaging
(de Zubicaray et al., 2008). Our analysis included 499 right-handed subjects (326 females/173
males, mean age=23.8, SD=2.5 years, range=20-30 years). This sample included 163
monozygotic (MZ) twins, 274 dizygotic (DZ) twins, and 62 non-twin siblings, from 309
families. This information is summarized in Table 2, along with BMI information for each
group. A histogram of BMI for the QTIM cohort is shown in Figure 1. All QTIM subjects were
Caucasian, and ancestry outliers, defined as individuals more than 6 SD from the PC1/PC2
centroid after principal components analyses of the GWAS data (Medland et al., 2009), were
excluded. Gene allele frequencies can differ between ethnicities, as can the risks associated with
various alleles, so ethnically homogenous groups are generally preferred in genetic studies.
Additionally, the three published studies (Speliotes et al., 2010; Thorleifsson et al., 2008; Willer
et al., 2008) — which we used to select our SNPs of interest — were analyses of sampled
populations that were 99.7% Caucasian (one of the studies [Thorleifsson et al., 2008] included a
very small number of African American subjects as well).

2.2.1 Scan Acquisition

Whole-brain anatomical and high angular resolution diffusion images (HARDI) were
collected with a 4T Bruker Medspec MRI scanner. T1-weighted anatomical images were
acquired with an inversion recovery rapid gradient echo sequence. Acquisition parameters were:
TI/TR/TE = 700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 0.9mm, with a 256x256
acquisition matrix. HARDI was also acquired using single-shot echo planar imaging with a
twice-refocused spin echo sequence to reduce eddy-current induced distortions. Imaging

parameters were: 23cm FOV, TR/TE 6090/91.7ms, with a 128x128 acquisition matrix. Each 3D
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volume consisted of 55 2-mm thick axial slices with no gap, and 1.79 x 1.79 mm? in-plane
resolution. 105 images were acquired per subject: 11 with no diffusion sensitization (i.e., T2-
weighted by images) and 94 diffusion-weighted (DW) images (b = 1159 s/mm?) with gradient
directions evenly distributed on a hemisphere in the g-space. Scan time for the 105-gradient
HARDI scan was 14.2 min.
2.2.2 Establishing Zygosity and Genotyping

Zygosity was objectively established by typing nine independent DNA microsatellite
polymorphisms (polymorphism information content > 0.7), using standard PCR methods and
genotyping. Results were crosschecked with blood group (ABO, MNS, and Rh), and phenotypic
data (hair, skin, and eye color), giving an overall probability of correct zygosity assignment >
99.99%, and these were subsequently confirmed by GWAS. Genomic DNA samples were
analyzed on the Human610-Quad BeadChip (Illumina) according to the manufacturers protocols
(Infinium HD Assay; Super Protocol Guide; Rev. A, May 2008).
2.3 Follow-up sample - Participants

We found one SNP that individually appeared to show a significant association with FA
(rs2815752). We also evaluated how this SNP related to DTI measures of white matter integrity
in an independent sample from the second phase of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). The ADNI2 sample included 78 individuals (29 female/49 male; average
age=74.3, SD=7.28 years, range=55-90) scanned from 14 sites across North America. This
information is also included in Table 2, along with the BMI data for each group. We only
included the subgroup of ADNI subjects who were Caucasian, as our initial subject group was
100% Caucasian and gene allele frequencies and the risks they confer can differ by ethnicity. A

histogram of BMI of subjects can be seen in Figure 1. For this sample we used MDS
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(multidimensional scaling) parameters as covariates to control for any remaining genetic
variability. The ADNI sample is more ethnically heterogenous than the QTIM sample, and while
we limited our analyses to individuals who self-identified as “Caucasian”, we wanted to control
for any remaining genetic variability. Ancestry outliers had already been removed from the
QTIM sample in previous analyses, so this was not a concern in the QTIM sample.
2.3.1 Follow-up sample — Scan Acquisition

All ADNI2 subjects underwent whole-brain MRI scans on 3 tesla GE Medical Systems
scanners at 14 acquisition sites across North America. Anatomical T1-weighted SPGR (spoiled
gradient echo) sequences were collected (256x256 display matrix; acquired voxel size =
1.2x1.0x1.0 mm’; TI=400 ms; TR = 6.98 ms; TE = 2.85 ms; flip angle=11°), as were diffusion-
weighted images (DWI; 256x256 matrix; voxel size: 2.7x2.7x2.7 mm’; TR=9000ms; scan time =
9 min; more imaging details may be found at http://adni.loni.ucla.edu/wp-
content/uploads/2010/05/ADNI2_GE 3T 22.0 T2.pdf). 46 separate images were acquired for
each DTI scan: 5 T2-weighted images with no diffusion sensitization (b, images) and 41
diffusion-weighted images (b=1000 s/mm?). This protocol was chosen after we conducted a
detailed comparison of several different DTI protocols, to optimize the signal-to-noise ratio in a
fixed scan time (Zhan et al., 2012). All T1-weighted MR and DWI images were checked visually
for quality assurance to exclude scans with excessive motion and/or artifacts; none was excluded
for quality reasons.
2.3.2 Follow-up sample — Genotyping

DNA samples were genotyped using the Illumina (San Diego, CA, USA) OmniExpress
genotyping array; note that this chip was used for the from 434 ADNI-GO/ADNI-2 participants,

and differs from the Illumina Human 610-Quad BeadChip used for the QTIM cohort and for the
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818 participants in the first phase of ADNI, ADNI-1. Because these genotyping chips do not
contain APOE biomarkers, ADNI researchers collected separate blood samples for DNA
analysis, and APOE genotyping was done via PCR amplification and Hhal restriction enzyme
digestion (Potkin et al., 2009).
2.4 Diffusion Tensor Image (DTI) Processing

For both cohorts, non-brain regions were automatically removed from each T1-weighted
MRI scan using ROBEX (Iglesias et al., 2011) a robust brain extraction program trained on
manually “skull-stripped” MRI data and FreeSurfer (Fischl et al., 2004), and from a T2-weighted
image from the DWI set, using the FSL tool “BET” (Smith, 2002; FMRIB Software Library,

http://fsl.fmrib.ox.ac.uk/fsl/).. Intracranial volume estimates were obtained from the full brain

mask, and included cerebral, cerebellar, and brain stem regions. All T1-weighted images were
linearly aligned using FSL f7irt (with 9 DOF) (Jenkinson et al., 2002) to a common space
(Holmes et al., 1998) with Imm isotropic voxels and a 220x220%220 voxel matrix. Raw
diffusion-weighted images were corrected for eddy current distortions using the FSL tool,
“eddy_correct”. For each subject, the eddy-corrected images with no diffusion sensitization
were averaged (QTIM: 11 images, ADNI: 5 images), linearly aligned and resampled to a
downsampled version of their corresponding T1-weighted image (110x110x110 matrix,
2x2x2mm’ voxel size). Averaged by maps were elastically registered to the structural scan using
a mutual information cost function (Leow et al., 2005) to compensate for EPI-induced
susceptibility artifacts. The resulting 3D deformation fields were then applied to the remaining
94 DWI volumes (QTIM) or 41 DWI volumes (ADNI).

We compared fractional anisotropy (FA) values at each voxel across NEGRI genotypes.

Diffusion tensors were computed at each voxel using FSL software (http://fsl.fmrib.ox.ac.uk/fsl/).
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From the tensor eigenvalues (A, A2, A3), FA was calculated according to the following formula:

iae BVG =D+ e — D+ (s — A’
2 JA2 +22 + A2

Eq. 1

- A +A+A
=" 32 3

We also analyzed radial diffusivity (D, = the average of A, and A3), mean diffusivity (Dmean =4)
and axial diffusivity (A;) to clarify the extent to which each might be contributing to the changes
in FA.

We used nonlinear fluid registration to create a minimal deformation target (MDT) from
the FA images (calculated after by susceptibility correction) (Jahanshad et al., 2010a) for both the
QTIM and ADNI cohorts. Further details on the MDT can be found in the Supplementary
Methods. Using a customized template from subjects in the study (rather than a standard atlas or
a single optimally chosen subject) can reduce bias in the registrations. Thresholded FA maps
were then re-registered to the thresholded MDT and smoothed with a Gaussian kernel (7 mm full
width at half-maximum). In this way, the outlines of the major white matter structures are stable
and have been normalized to a very fine degree of matching across subjects, greatly reducing the
neuroanatomical variations in these structures across subjects.

2.5 QTIM MDT

The MDT (minimal deformation template) is the template that deviates least from the
anatomy of the subjects, and, in some circumstances, it can improve statistical power (Lepor¢ et
al., 2007). Included in the MDT were 32 randomly selected unrelated subjects (16 female/16
male). The N 3D vector fields that fluidly registered a specific individual to all other N subjects

were averaged and applied to that subject, preserving the image intensities and anatomical
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features of the template subject. Susceptibility-corrected FA maps were registered to the final
population-averaged FA-based MDT using a 3D elastic warping technique with a mutual
information cost function (Leow et al., 2005). To better align white matter regions of interest, the
MDT and all whole- brain registered FA maps were thresholded at 0.25 (excluding contributions
from non-white matter).
2.6 ADNI MDT

A study-specific MDT was created using 29 cognitively healthy elderly control (CTL)
subjects’ baseline spatially-aligned corrected anatomical volumes. The MDT was generated by
creating an initial affine mean template from all 29 subjects, then registering all the aligned
individual scans to that mean using a fluid registration (Leow et al., 2007) while regularizing the
Jacobians (Hua et al., 2008). A new mean was created from the registered scans; this process was
iterated several times.
2.7 MultiSNP Analysis

Linear mixed-effects models were used to study the joint associations of SNPs with
imaging measures, while taking into account any relatedness among the subjects. For N subjects
and p independent predictors (SNPs or other covariates), regression coefficients (f) were

obtained, using the efficient mixed-model association (EMMA; http://mouse.cs.ucla.edu/emma/)

software with restricted maximum likelihood estimation (Kang et al., 2008), according to the
formula:

Eq. 2 y=XB +27Zb + ¢

Here, y represents an n-component vector of voxelwise FA measures, X is a matrix of
SNP genotypes (coded additively as 0, 1, or 2 for the number of minor alleles) and/ or covariates

(sex and age), Z is the identity matrix, b is a vector of random effects with a variance of ¢’ K,
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where K is the N x N kinship matrix for the twins and siblings, and ¢ is a matrix of residual
effects with a variance of o7/, where [ is identity matrix. A kinship matrix coefficient of 1
denoted the relationship of each subject to him/herself; the coefficient for MZ twins within the
same family was 1; the coefficient for DZ twins and siblings within the same family was 0.5; and
the coefficient for subjects not in the same family was 0, corresponding to the expected
proportion of their shared genetic polymorphisms, respectively. Ancestry outliers were removed,
so no additional modeling was used in the kinship matrix to adjust for population genetic
structure between families. € is a matrix of residual effects with a variance of ./, and I is an
identity matrix. P-values for the significance of individual and joint SNP associations with FA

were assessed using a partial F-test, according to the formula:

Eq 3 (Rsscavariates_Rssfull)/
(P full=Pcovariates)

RSSfull

(n=Prun)
Where RSS represents the residual sum-of-squares, a reduced model includes only covariates,
and a full model contains both SNPs and covariates. Further details can be seen in (Kohannim et
al., 2012). For all statistical analyses, the LONI pipeline (http://pipeline.loni.ucla.edu/) was used
for voxelwise parallelization on a multi-CPU grid computer. The searchlight false discovery rate
method (Langers et al., 2007) was used for multiple comparisons correction across all voxels. As
described in further detail in Kohannim et al., 2012, we do correct for the number of SNPs input
into the model, and for each statistical test performed. However as is the case with all voxelwise
neuroimaging studies, the number of tests is far greater than the number of subjects, so multiple

comparisons correction across all voxels is necessary and often involves controlling the false

85



discovery rate at a stringent threshold (Hibar et al., 2011; Jahanshad et al., 2013). We also ran the
multiSNP analysis covarying for BMI, which resulted in somewhat reduced areas of significance.
2.8 Candidate gene follow-up

Of the SNPs in our multiSNP model, one appeared to be driving the association
(rs2815752), so we ran a follow-up analysis again examining voxel-wise measures of
microstructural integrity, but focusing on just the rs2815752 (NEGRI) SNP. The statistical
model is that listed in Eq. 2, again co-varying for age and sex, and correcting for multiple
comparisons using searchlight FDR (Langers et al., 2007). We additionally ran the same analysis
also co-varying for BMI, to assess whether BMI was responsible for out results. BMI was not
significantly associated with rs2815752 risk allele dosage (p=0.30), and in our cohort, BMI was
not associated with FA.
2.9 Follow-up sample — Statistical Analysis

Using the statistical model shown in Eq. 2, we tested the voxelwise association between
measures of microstructural integrity (FA, Diad, Dmean, Dax) and rs2815752 risk allele dosage in
our ADNI sample, using age and sex as covariates. We also ran this analysis with BMI as a
covariate, which decreased the extent of the significant areas slightly. We ran this analysis both
co-varying for disease status (AD, MCI, HC) and not co-varying for disease status, and also
examined this association in just the healthy controls. We did this by adding a dummy variable
for AD or MCI. Again we corrected for multiple comparisons using searchlight FDR (Langers et
al., 2007). We also only ran statistics on voxels of the thresholded MDT present in all subject
scans, as some scans had a slightly cropped FOV (field of view). As such we did not consider
the inferior parts of the cerebellum and brain stem.

2.10 Additional NEGR1 Analyses
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To examine the effects NEGRI has on white matter integrity in more depth, we next ran
a gene-based test, PCReg (principal components regression) (Hibar et al., 2011). In PCReg, the
entire list of genotyped SNPs within a gene can be assessed for joint association with a brain
measure (here, voxelwise FA). It is similar to the multiSNP method (Kohannim et al., 2012), but
can be run on SNPs that are in LD, and thus can be used as a gene-based test. PCReg works by
first running a principal components analysis on the SNPs, to reduce the dimensions of the
analysis, and avoid the complications of collinearity. Components with the highest eigenvalues
(higher proportions of explained variance) were included until 80% of the SNP variance was
explained, and the rest were discarded. This was followed by a multiple partial-F test, similar to
Eq. 3. As this is a gene-based test encompassing the effects of possibly hundreds of SNPs, it
does not suggest a directionality for the association; it tests whether a model containing SNPs
that explain at least 80% of the variance in NEGR] are a better predictor of voxelwise FA than a
reduced model containing only age and sex. We generated a list of SNPs within 100kb of
NEGRI and filtered out those with an MAF<0.2236 leaving us with 275 NEGRI SNPs input into
PCReg. In this method, the number of degrees of freedom of the F statistic accounts for the
number of predictors, and corrects for the number of SNPs input into the model. Further details
of this method may be found in Hibar et al., 2011.
3. Results

Axonal integrity is vital for efficient brain function; well-myelinated tracts propagate
signals quickly, but poor or impaired myelination can decrease the speed or reliability of
neuronal transmission (Purves et al., 2001). FA is a widely accepted measure of white matter
integrity, and evaluates the degree to which water diffuses along the primary direction of the

axon rather than across it. Lower FA has been found in many diseases, such as Alzheimer’s
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disease, multiple sclerosis, epilepsy, and many neuropsychiatric diseases (Ciccarelli et al., 2008).
Genetic variants have also been discovered that may affect white matter integrity as measured by
FA. Associations have been reported between FA and number of genetic variants, including
polymorphisms in CLU, HFE, NTRK 1, and many other genes (Braskie et al., 2011; Jahanshad et
al., 2012; Braskie et al., 2012). These are genes that are already closely tied to cognitive function
or neuropsychiatric disorders.

For our initial analyses in the young adult sample (QTIM — Queensland Twin Imaging
study), we selected our SNPs of interest based on the following 3 reports: Speliotes et al.
conducted a genome-wide association study (GWAS) across nearly 250,000 individuals to find
loci associated with BMI. Willer et al. ran a meta-analysis of 15 genome-wide association studies
searching for loci reliably associated with BMI, giving them a total N>32,000, with a follow-up
analysis in another dataset of around 59,000 individuals. Thorleifsson et al. also conducted a
GWAS of nearly 35,000 individuals to find loci associated with weight and BMI. We imputed to
Hapmap3. Information on the imputation protocols and quality control steps may be found at

http://enigma.loni.ucla.edu/wp-content/uploads/2010/09/ImputationProtocolsvl.2.pdf. Some of

the SNPs in the 3 GWAS papers (Speliotes et al., 2010; Thorleifsson et al., 2008; Willer et al.,
2008) were not in Hapmap3 so we could not include them on our list. We further narrowed the
list down to those with a minor allele frequency (MAF) >0.2236 (to make sure that at least 5% of
our subject pool of 499 were homozygous carriers of the minor allele). We additionally excluded
3 SNPs that were in high linkage disequilibrium (LD) with another SNP we were evaluating
(LD>0.4) to reduce data redundancy and remove multicollinearity for the multiSNP analysis.
This left us with 16 SNPs, listed in Table 1. All genetic analyses — multiSNP and individual SNP

— used an additive genetic model that assessed the effect of each additional risk allele. No SNPs
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deviated significantly from Hardy-Weinberg equilibrium, as shown in Supplementary Table 1.
3.1 MultiSNP Analysis — FA

Using FA images from 499 healthy young adults (mean age = 23.8 years, SD = 2.5,
Table 2), we jointly assessed the effect of 16 SNPs (Table 1) that have been recently associated
with BMI. We started with the multiSNP analysis, as none of these SNPs had yet been associated
with brain imaging measures so there was no reason to prioritize any one specifically. This
analysis yielded associations between our SNPs and FA in the bilateral corona radiata, corpus
callosum, fornix, arcuate, and an area corresponding to both the uncinate and IFOF (inferior
fronto-occipital fasciculus), as shown in Figure 1. The multiSNP analysis yields an R
coefficient, which is the predictability of our model; in Figure 1, R* is shown only in areas
where the association was declared significant after multiple comparisons correction across all
voxels in the image considering all the SNPs tested (see Methods). The maximum R2 value
(predictability) in these regions was 0.115. The voxelwise multiSNP method allowed us to
determine where in the brain joint information on all 16 SNPs was significantly better able to
predict FA than just age and sex alone by establishing significance maps from the partial F-test.
We additionally explored submodels to determine if any single one of the 16 SNPs was better at
predicting FA when added to the model than sex, age and the remaining 15 SNPs all together;
this implies that the SNP is able to predict FA even when covarying for sex, age and all other
SNPs. We found several SNPs showed borderline significant associations on their own even
when covarying for the other 15 SNPs. While it is not necessary to correct across the number of
SNPs tested in the multiSNP model, it is necessary to correct for this when examining the effect
of these individual SNPs, if a post hoc inference is made about whether any one of them is

explaining variance in the model. While their joint effect, did survive voxelwise multiple
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comparisons corrections across the whole brain, when covarying for all additional 15 SNPs
included, none of the individual SNPs passed a multiple comparisons corrections threshold
controlling the false positive rate at g<0.003125 (0.05/16). This underscores the utility of the
multiSNP method. Rs2815752 (NEGRI) had by far the largest cluster of borderline significant
voxels (p<0.05), and so likely was the main driving factor behind the multiSNP results. While
for this analysis, we covaried for age and sex, we also ran a model also covarying for BMI,
which reduced the area of significance somewhat, but showed similar results. The searchlight
FDR critical p-values and minimum p-values for each SNP tested within the model, and the
whole model, are shown in Table 3.
3.1 Candidate Gene Analysis — NEGRI

As the multiSNP results were strongly driven by NEGRI (rs2815752), we examined the
effect of this SNP alone across the whole brain in the young adult sample. 188 subjects were
homozygous risk (AA), 233 were heterozygous (AG), and 78 were homozygous non-risk (GG).
The minor allele (G) frequency for rs2815752 is 0.301. NEGRI risk allele dosage was not
significantly associated with BMI in our sample (p=0.30). We examined voxel-wise FA, Dyyq,
Dinean, and Dax. NEGRI risk allele dosage (A) was widely negatively associated with FA, as
shown in Figure 2. The posterior body of the corpus callosum and nearby corona radiata
showed strongest associations with NEGRI risk allele dosage (in terms of lowest p-value), but
the area of association covered the entire corpus callosum, large areas of the corona radiata,
arcuate fasciculus, fornix, internal capsule, and areas that could be the inferior fronto-occipital
fasciculus, inferior longitudinal fasciculus, and/or uncinate fasciculus. Across a mask of the areas
of significance, each risk allele was associated with a 2.2% decrease in average FA. These last

tracts overlap in these areas so we cannot say with confidence that one specific fasciculus is
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selectively affected. Dyag, Dmean, and D,y were also widely positively associated with NEGRI risk
allele dosage, across the same area, as shown in Figure 3. Again, we covaried for age and sex.
3.2 Additional NEGRI Analyses

Our gene-based test, PCReg, yielded significant associations between NEGRI and voxel-
wise FA in the young adults (QTIM) in the corpus callosum, anterior commissure, corona
radiata, inferior frontal gyrus, arcuate fasciculus, superior temporal gyrus, and regions
corresponding to the inferior fronto-occipital fasciculus or uncinate (Figure 6). Like the
multiSNP analysis, PCReg does not yield information on the direction of the association, just the
p-value. Additionally, like the multiSNP analysis, there is an implicit correction for the effective
number of genetic predictors included in the model, but we avoid the need to correct for the
number of SNPs included, as PCA performs data reduction and compaction (see Methods section
and Hibar et al., 2011).

3.3 Follow-up Analysis (ADNI)

We next examined our ADNI cohort (Alzheimer’s Disease Neuroimaging Initiative) to
see if the association between NEGR! and alterations in white matter integrity were also
significant there. NEGRI was indeed associated with FA, in overlapping brain regions, but in the
opposite direction to that of the young adult sample. Of our subjects 20 were healthy controls, 47
had mild cognitive impairment, and 10 had Alzheimer’s disease. 33 subjects were homozygous
risk (AA), 36 were heterozygous (AG), and 9 were homozygous non-risk (GG) (Table 2).
NEGRI risk allele dosage was associated with increased FA and decreased Drad, Dmean, and Dax
in the ADNI follow-up cohort across the corona radiata, arcuate fasciculus, middle frontal gyral
WM, and superior longitudinal fasciculus (Figure 4 and 5). For this analysis we covaried for age

and sex. When covarying for BMI, the area of association was reduced, but still significant.
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Directionality was not influenced when we additionally covaried for APOE4 status
(apolipoprotein E (APOE) allele 4, is the genetic variant that confers the highest known odds
ratio for late-onset Alzheimer’s disease, Corder et al., 1993).

4. Discussion

Many genes have been linked to obesity, yet thus far only one study has examined the
effect these obesity genes may have on the brain (Ho et al., 2010). Here, we revealed a joint
effect of a set of obesity-associated SNPs on the brain in young adults, using a multiSNP
approach we recently developed for screening brain images (Kohannim et al., 2012). The
predictive power of these SNPs overlapped in the bilateral posterior corona radiata, arcuate,
corpus callosum, fornix, and uncinate or IFOF (Figure 1). A post hoc analysis of the SNP
contributing most to this effect yielded widespread negative associations between FA and
NEGRI risk allele dosage in our young adult sample. In contrast, we detected associations
between FA and NEGRI risk allele dosage in the same areas in an older, independent sample
(ADNI), but in the opposite direction. To our knowledge this is the first paper to report an
association between an obesity-related gene and a brain effect in humans in two populations.
While our results overlapped in our second sample, they were in the opposite direction, which
suggests an age-dependent effect of the NEGRI gene.

We began with the multiSNP analysis because it is a way to search for joint effects of a
set of genetic variants on brain measures (Kohannim et al., 2012). F7O is the only obesity-
related gene previously associated with brain differences, so we did not have prior evidence to
supported prioritizing a particular gene initially (besides £70). Of our 16 SNPs associated with
obesity, a number of them converged in effect in the posterior corona radiata. Again, this

analysis results in a summed R? value across the SNPs input into the model, without beta values,
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and because only one statistical test is performed, there is no further correction for the number of
SNPs included in the model, apart from the implicit correction made for the number of covariates
in the null distribution of the statistic. Effects were driven primarily by one SNP, rs2815752
(NEGRI). The rs2815752 SNP is just upstream of the NEGRI gene, and the A risk allele tags a
45kb deletion (Jarick et al., 2011). NEGRI codes for the protein NEGR1 or neurotractin - a
member of the neural IgLON subgroup of the immunoglobin superfamily. Neurotractin is a cell
adhesion molecule that plays a key role in neural development (Marg et al., 1999). In mice,
NEGRI is widely expressed in the brain. Mutations causing NEGRI loss of function led to
decreased body mass in mice in vivo, and decreases in cell adhesion and neurite growth in vitro
(Lee et al., 2012). The NEGRI risk allele (A) is associated with higher BMI (per allele change
0.10-0.13 kg/mz; Speliotes et al., 2010; Willer et al., 2008).

No prior studies have linked NEGR] risk allele dosage to brain differences in humans.
However, its role in mouse brain neural development makes it a plausible candidate. Adults
carrying the risk allele had decreased FA across a wide swath of central white matter (Figure 2).
Combined with the results of increased Dyag, Dimean, and Day in risk allele carriers, our results
point to lower white matter integrity with NEGRI risk allele dosage. Across the area of
significance, the decrease in mean FA per risk allele was 2.2%. Alzheimer’s disease has been
associated with decreases up to 33% in FA (Nir et al., 2013), so this is a modest but perhaps
eventually significant difference among young, healthy individuals. Future studies will hopefully
be able to test this association in independent samples. For example, we recently created a
worldwide consortium dedicated to replicating genetic effects on the brain (Stein et al., 2012;
Hibar et al., 2013; Thompson et al., 2013), and a multi-site GWAS of diffusion images is

underway (Jahanshad et al., 2013). Obese individuals have significantly decreased volume in the
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corona radiata, where we detected significant associations (Alkan et al., 2008). Although there
are exceptions, lower FA and higher MD are usually signs of decreased myelination or fiber
coherence (Thomason & Thompson et al., 2011; Dennis & Thompson et al., 2013). Middle-aged
obese patients show widespread increases in ADC (apparent diffusion coefficient, equivalent to
mean diffusivity — Dyean) in middle-aged obese patients (Alkan et al., 2008). As NEGRI plays a
role in neural development, we could be detecting effects of lower myelination in NEGRI risk
allele carriers. We did not find any significant associations between BMI and FA in the QTIM
cohort, and those subjects were aged 20-30, so it is less likely that these results are chronic
effects of obesity and lifestyle factors. We did have some overweight and obese subjects in our
population, as noted in Figure 7, but did not find any significant differences in overweight or
obese groups. We believe this is a strength of our paper, as it demonstrates that our results are
more gene-related, rather than a consequence of obesity. A more likely scenario is that these
decreases in white matter integrity point to a precursor effect of the obesity gene, and that lower
white matter integrity in these areas is somehow related to the risk of becoming obese.
Investigating this is beyond the scope of the current paper, but future studies may reveal whether
these effects are linked.

We also conducted a second NEGRI analysis, running a gene-based test (called ‘PCReg’)
on 275 SNPs in NEGRI (Hibar et al., 2011). We found a large cluster of significant association
in the bilateral posterior corona radiata, where we found associations in our multiSNP analysis
and in our analysis of rs2815752. PCReg does not output a beta value summed across SNPs used
in the model, it shows areas where the effects on a brain measure within a gene aggregate. In
other smaller clusters, voxel-wise FA was significantly associated with NEGR1. The fact that we

found a large association in the same area as the rs2815752 analysis suggests that there are other
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variations within NEGR1 that are associated with FA in the posterior corona radiata. PCReg
shows the associations of the SNPs in aggregate; many may have effects too small to detect
individually, and rs2815752 may not be the main effect SNP within NEGRI. PCReg allows us to
see small effects summed, and gives us greater confidence in our rs2815752 results.

Our initial NEGRI results in 499 young adult subjects largely overlapped in our second
sample of 78 elderly subjects from the ADNI cohort. These associations overlapped with the
QTIM sample in the corona radiata and arcuate fasciculus (Figures 2 and 4), with additional
associations in the right middle frontal gyral WM, and superior longitudinal fasciculus. These
associations were in the opposite direction in the ADNI sample. Another study of the QTIM
sample found a genotype*age interaction, examining skin cancer genetics in the cohort
participants and their parents (Duffy et al., 2010). The NEGRI risk allele may have changing
effects with age - detrimental effects of the rs2815752 A allele in younger life may not be
detrimental in older age. The NEGRI risk allele may be protective against degeneration later in
life, as older individuals carrying the A allele had increased FA and decreased Drad, Dmean, and
D.x (Figure 4 and Figure 6). With a small sample of elderly subjects and a cross-sectional
design, we cannot answer these questions, but they deserve further investigation, and offer future
hypotheses for testing by worldwide imaging genetics consortia.

One consideration is where our results are localized. Our results are largely in tracts with
a high density of parallel-organized fiber bundles, which some suggest may tend to favor
overlapping results as we are more likely to find associations in these regions anyway. To
investigate this, we examined the overlap between the average FA from our MDT with areas of
significant association with NEGR] allele dosage (Supplementary Figure 1). As is evident,

there are many regions of high FA (meaning high density of parallel-organized fibers) where we
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did not find associations with NEGRI risk allele dosage, such as the highest FA region, the main
aspect of the splenium. This supports that our overlapping results are not simply because of an
increased ability of pick up genetic effects in these areas, and are true genetic associations.
Obesity (BMI > 30 kg/m?) in midlife is associated with an increased risk of dementia
later in life (Fitzpatrick et al., 2009). However, this association is reversed for late-life BMI and
dementia risk, as being underweight (BMI < 20) is associated with an increased dementia risk,
while obesity is associated with decreased dementia risk, compared to people with a normal BMI
(20-25) (Fitzpatrick et al., 2009). The boundary between obesity being a risk factor and a
potential protective factor for dementia is not well defined in the literature. Our two cohorts had
an average age of 23.8 and 74.3, a gap too large to help in defining this boundary. Many factors
can promote an association that changes with age, and the NEGRI gene may be part of this
mechanism. Our young adults did not show any associations between BMI and FA, and NEGR1
risk allele dosage was not associated with BMI. Our young adults may not have had a chance for
NEGRI to have an effect, and we only had 499 subjects, which is very large for a brain imaging
study, but small for a genetics study. The original studies finding an effect of NEGRI on obesity
did so in sample sizes >30,000 with an average age around 50. We are examining a younger
cohort, so brain changes may pre-date any clinical effects on BMI. The three GWAS studies
(Speliotes et al., 2010; Thorleifsson et al., 2008; Willer et al., 2008) all included cohorts with
average ages largely between 30-80, and were heavily weighted towards middle-aged subjects
(~50 years old). In our elderly cohort, we found a trend indicating greater BMI in risk allele (A)
carriers, but it was not significant. Obese subjects may have lower white matter integrity in the
corpus callosum (Mueller et al., 2011; Xu et al., 2013; Marks et al., 2011) and fornix (Marks et

al., 2011). We did not find any areas of significant association between FA and BMI, but these
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areas are generally those where we found our NEGR/ associations. NEGR1 genotype may be one
of many factors contributing to the association between BMI and white matter integrity of the
corpus callosum and fornix. Further, we propose that the NEGRI gene effect on FA is age-
dependent, and much like the association between BMI and dementia risk, factors that confer
risk in young adulthood may even be protective in old age.
5. Conclusions

In this study we used an innovative multi-locus approach to examine the joint effect of
obesity-associated SNPs on white matter integrity in young healthy adults. We found the effects
were largely driven by a variant in one gene, NEGR1, which was associated with a decrease in
FA of 2.2% per allele across the area of significance. We then examined elderly members of the
ADNI (Alzheimer’s Disease Neuroimaging Initiative) cohort, and found associations in the same
regions, however in the opposite direction. Obesity has an age-dependent effect on cognitive

function, which we propose has a partially genetic basis.
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Table 1. SNPs included in the multiSNP model.

Nearest Risk
SNP Gene MAF Allele GWAS Study
rs10913469 | SEC16B 0.234 | C Thorleifsson et al., 2009
rs7647305 | ETVS 0.2248 | C Thorleifsson et al., 2009
rs925946 BDNF-AS | 0.2285 | T Thorleifsson et al., 2009
rs10501087 | BDNF-AS | 0.2436 | T Thorleifsson et al., 2009
rs8049439 | ATXN2L 0.359 | C Thorleifsson et al., 2009
rs6499640 | FTO 0.4835 | A Thorleifsson et al., 2009
rs3751812 | FTO 0.2413 | T Thorleifsson et al., 2009
rs9931989 | ATP2A1 0.2514 | G Willer et al., 2008
rs2815752 | NEGR1 0.3008 | A Willer et al., 2008
rs10838738 | MTCH?2 0.2834 | G Willer et al., 2008
rs571312 MC4R 0.2372 | A Speliotes et al., 2010
Speliotes et al., 2010,
rs29941 KCTD15 03965 C Thorleifsson et al., 2009
Speliotes et al., 2010,
rs7138803 | FAIM2 02921 A Thorleifsson et al., 2009
rs2241423 | MAP2K5 | 0.4006 | G Speliotes et al., 2010
rs1514175 | TNN13K | 0.3864 | A Speliotes et al., 2010
rs10968576 | LRRN6C 0.2422 | G Speliotes et al., 2010
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Table 2. Subject demographics for the QTIM and ADNI cohorts.

Genetic
group
AA
AG
GG

QTIM Cohort ADNI follow-up cohort
F/M BMI N F/M BMI HC MCI AD
188 125/63 23.1 |33 10/23 275 11 21
233 154/79 23.4 |36 13/23 27.0 8 22
78 47/31 2369 6/3 24.5 1 5
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Figure 1. MultiSNP results: Associations between FA and SNPs linked with BMI.
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Table 3. Individual results of SNPs included in multiSNP model, as well as the results of the

multiSNP model as a whole.

Nearest | FDR critical Voxc-.:ls: Minimum
SNP Gene p-value surviving p-value
p<0.05

MultiSNP model 6.80E-05 8027 1.60E-06
rs10913469 | SEC16B NA 3358 0.0005
rs7647305 | ETVS NA 536 0.0012
rs925946 BDNF-AS | NA 6419 0.00019
rs10501087 | BDNF-AS | NA 1130 0.00079
rs8049439 | ATXN2L NA 315 0.004
rs6499640 | FTO NA 497 0.0025
rs3751812 | FTO NA 1757 0.00029
rs9931989 | ATP2A1 NA 369 0.0044
rs2815752 | NEGR1 NA 13433 0.00012
rs10838738 | MTCH2 NA 1295 0.00081
rs571312 MC4R NA 8118 3.50E-05
rs29941 KCTD15 NA 569 0.00072
rs7138803 | FAIM2 NA 485 0.00048
rs2241423 | MAP2K5 | NA 7574 3.20E-05
rs1514175 | TNN13K NA 2247 0.001
rs10968576 | LRRN6C NA 2528 1.90E-05
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Figure 2. Association between FA and NEGRI risk allele dosage in the QTIM sample.
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Figure 3. Voxelwise associations between NEGRI risk allele dosage and Dy, Dyad, and Diyean in
the QTIM cohort.
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Figure 4. Association between FA and NEGRI risk allele dosage in the ADNI follow-up sample.
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Figure 5. Voxelwise associations between NEGRI risk allele dosage and Dy, Drad, and Dyean in
the ADNI cohort.
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Figure 6. Voxelwise associations from NEGRI whole gene principal components regression in
the QTIM cohort.
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Figure 7. Histogram of BMIs in the QTIM and ADNI cohorts.
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Figure and Table Legends

Table 1. SNPs included in the multiSNP model. The gene (nearest when SNP is intergenic),
minor allele frequency (as listed in dbSNP), risk allele associated with obesity for each SNP, and
the GWAS study each SNP was taken from.

Table 2. Subject demographics for the QTIM and ADNI cohorts. Number of subjects,
female/male, mean BMI (body mass index), genetic group, and in the case of ADNI, how many
subjects had Alzheimer’s disease (AD), mild cognitive impairment (MCI), or were healthy
controls (HC).

Figure 1. MultiSNP results: Associations between FA and SNPs linked with BMI. R” values
are combined predictive value of our SNPs, white areas are areas with higher R? values, as
shown by the color bar. CR=corona radiata, IFOF=inferior fronto-occipital fasciculus,
CC=corpus callosum, AF=arcuate fasciculus, UNC=uncinate, SP=splenium. Left in the image is
right in the brain, coordinates are in MNI space.

Table 3. Individual results of SNPs included in multiSNP model, as well as the results of the
multiSNP model as a whole. The FDR critical p-value (when applicable), minimum p-value,
and number of voxels below p<0.05 are shown for each SNP. These values are for each SNP
controlling for the effect of all the other SNPs, thus, the output is a different that if the SNPs
were each run individually, with no other SNPs in the model. Bold entries are those that survived
FDR.

Figure 2. Association between FA and NEGRI risk allele dosage in the QTIM sample. Pink
corresponds to stronger h-values (more negative); only areas surviving FDR across the brain are
shown. CR=corona radiata, CC=corpus callosum, IC=internal capsule, AF=arcuate fasciculus,
SP=splenium, FX=fornix, UNC=uncinate. Left in the image is right in the brain, coordinates are
in MNI space.

Figure 3. Voxelwise associations between NEGRI risk allele dosage and D,y, Dyag, and Dyean
in the QTIM cohort. Yellow corresponds to stronger b-values (more positive); only areas
surviving FDR across the brain are shown. Left in the image is right in the brain, coordinates are
in MNI space.

Figure 4. Association between FA and NEGRI risk allele dosage in the ADNI follow-up
sample. Yellow corresponds to stronger b-values (more positive); only areas surviving FDR
across the brain are shown. CR=corona radiata, CC=corpus callosum, G=genu, SP=splenium,
AF=arcuate fasciculus, FX=fornix (or ILF), SLF=superior longitudinal fasciculus, MFG=middle
frontal gyrus, IFG=inferior frontal gyrus, IFOF=inferior fronto-occipital fasciculus,
UNC=uncinate. Left in the image is right in the brain, coordinates are in MNI space.

Figure 5. Voxelwise associations between NEGRI risk allele dosage and D,y, Dyag, and Dpean
in the ADNI cohort. Pink corresponds to stronger b-values (more negative); only areas
surviving FDR across the brain are shown. Left in the image is right in the brain, coordinates are
in MNI space.

Figure 6. Voxelwise associations from NEGR1 whole gene principal components regression
in the QTIM cohort. Dark red corresponds to more significant p-values; only areas surviving
FDR across the brain are shown. CR=corona radiata, AF=arcuate fasciculus, CC=corpus
callosum, IFG=inferior frontal gyrus, ILF=inferior longitudinal fasciculus, STG=superior
temporal gyrus, [IFOF=inferior fronto-occipital fasciculus, UNC=uncinate, AC=anterior
commissure. Left in the image is right in the brain, coordinates are in MNI space.

Figure 7. Histogram of BMIs in the QTIM and ADNI cohorts. Green=underweight,
blue=normal weight, orange=overweight, red=obese.
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Supplementary Table 1. Results of %’ test of deviation from Hardy-Weinburg.

SNP %’ p-value

rs10913469 2.52 0.11
rs7647305 0.13 0.72
rs925946 4.08 0.0433
rs10501087 3.38 0.066
rs8049439 1.19 0.28
rs6499640 0.17 0.68
rs3751812 4,13 0.042
rs9931989 0.05 0.82
rs2815752 0.57 0.45
rs10838738 0.27 0.6
rs571312 0.34 0.56
rs29941 0.2 0.65
rs7138803 0.18 0.67
rs2241423 0.6 0.44
rs1514175 2.41 0.12
rs10968576 0.09 0.76
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Supplementary Figure 1. Overlap of QTIM NEGRI results and FA.
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Supplementary Figure and Table Legends

Supplementary Table 1. Results of % test of deviation from Hardy-Weinburg. The SNPs
included in the multiSNP model are listed, along with the * values from the goodness of fit test
and the corresponding p-values. No SNPs deviate from the distribution expected by Hardy-
Weinburg.

Supplementary Figure 1. Overlap of QTIM NEGRI results and FA. The FA from the QTIM
MDT (creation detailed in the methods) is mapped, with a skeleton of only high FA areas
(FA>0.6) shown in red-yellow, and the beta-values from the QTIM NEGR! analysis shown in
blue-purple. As is evident, there are many high FA areas where we did not find effects, including
the highest FA region, the main aspect of the splenium. This supports that our overlapping
results are not simply because of an increased ability of pick up genetic effects in these areas.
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CHAPTER 4

Cognitive correlates of structural brain connectivity
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4.1 Differences in rich club organization based on IQ measures

The rich club was first applied to brain networks by Van den Heuvel & Sporns (2011). The
rich club is the high degree, densely interconnected core of the brain. An attack on a rich club
node has a highly detrimental effect on the efficiency of the network. The rich club coefficient
[see Chapter 1.4] describes the density of connections among the rich club nodes. The
normalized rich club coefficient is calculated by comparing the rich club coefficient in our
network to that averaged across a series of randomly generated networks of the same size and
degree distribution. This step is necessary for determining at what point rich club organization
exists, as a network is only said to have rich club organization when the normalized coefficient is
greater than 1.

Since the initial paper by Van den Heuvel & Sporns, we have charted the developmental
trajectory of rich club organization [See Chapter 2.2], and shown that it is altered in
Alzheimer’s disease [Daianu et al., 2013 submitted]. We do not know, however, how the rich
club supports cognition. As a new measure of brain connectivity, there are many unknowns
about the rich club, and one of the most important of these is how it impacts cognitive function.
The rich club is a fairly costly arrangement, from a network perspective, so we would not expect
the brain to keep such a costly organization if it did not confer some benefit, perhaps cognitive
benefits. We have shown that rich club organization is stable among healthy adults [See Chapter
2.2]. In this study we sought to examine what differences there may be in rich club organization
between high and low IQ individuals. For this we examined FIQ (full scale), PIQ (performance)
and VIQ (verbal) in individuals scoring more than one standard deviation away from the mean

for each of those measures. Given the central role the rich club is suggested to play in brain
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efficiency, and the regions it includes, we might expect individual differences in rich club
organization to be related to individual differences in cognition.

The Parieto-Frontal Integration Theory (P-FIT) of intelligence postulates that cognitive
abilities are supported by a distributed set of brain regions primarily in the parietal and frontal
cortex [Jung & Haier, 2007]. This theory was generated based on findings from 37 neuroimaging
studies across various functional and structural paradigms. There are a number of subsequent
studies validating this model [Colom et al., 2009; Glascher et al., 2010; Langer et al., 2012].
Given this, we expected to find differences in which frontal and parietal nodes make up the rich
club.

Materials and Methods

Participants were recruited as part of a 5-year research project scanning healthy young
adult Australian twins with structural brain MRI and DTI [de Zubicaray et al., 2008]. We
analyzed scans from 201 right-handed subjects (119 female/82 male, average age=23.9 years,
SD=2.5). This population included 66 monozygotic (MZ) twins, 118 dizygotic (DZ) twins, and
17 non-twin siblings, from 179 families. For the sake of valid comparison, two members from
the same family were not included in a comparison (high vs. low). If two siblings satisfied
criteria for inclusion in the high or low IQ groups, one was randomly chosen to be included.
Between comparisons, however (high PIQ vs. high VIQ), siblings may be included. Whole-brain
anatomical and high angular resolution diffusion images (HARDI) were collected with a 4T
Bruker Medspec MRI scanner. T1-weighted anatomical images were acquired with an inversion
recovery rapid gradient echo sequence, with parameters: TU/TR/TE = 700/1500/3.35ms; flip
angle = 8 degrees; slice thickness = 0.9mm, and a 256x256 acquisition matrix. HARDI was also

acquired using single-shot echo planar imaging with a twice-refocused spin echo sequence to
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reduce eddy-current induced distortions. Imaging parameters were: 23cm FOV, TR/TE
6090/91.7ms, with a 128x128 acquisition matrix. Each 3D volume consisted of 55 2-mm thick
axial slices with no gap and 1.79x1.79 mm” in-plane resolution. 105 images were acquired per
subject: 11 with no diffusion sensitization (i.e., T2-weighted by images) and 94 diffusion-
weighted (DW) images (b = 1159 s/mm?) with gradient directions evenly distributed on a
hemisphere in the g-space. Scan time was 14.2 min for the 105-gradient HARDI scan. Subjects
completed the Multidimensional Aptitude Battery II (MAB-II) 1Q test [Jackson, 1998]. 84% of
subjects completed the MAB-II at age 16, 10% completed it between age 17-22, and the
remainder completed it at their scan session (between age 21-30).
Cortical Extraction and HARDI Tractography

Connectivity analysis was performed as in [Jahanshad et al., 2011]. Briefly, non-brain
regions were automatically removed from each T1-weighted MRI scan, and from a T2-weighted
image from the DWI set, using the FSL tool “BET” (FMRIB Software Library,

http://fsl.fmrib.ox.ac.uk/fsl). A neuroanatomical expert manually edited the T1-weighted scans to

refine the brain extraction. All T1-weighted images were linearly aligned using FSL (with 9
DOF) to a common space with 1mm isotropic voxels and a 220x220x220 voxel matrix. For each
subject, the 11 eddy-corrected images (using FSL tool “eddy correct”) with no diffusion
sensitization were averaged, linearly aligned and resampled to a downsampled version of their
corresponding T1 image (110x110x110, 2x2x2mm). Averaged b, maps were elastically
registered to the structural scan using a mutual information cost function to compensate for EPI-
induced susceptibility artifacts. 34 cortical labels per hemisphere, as listed in the Desikan-
Killiany atlas [Desikan et al., 2006], were automatically extracted from all aligned T1-weighted

structural MRI scans using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). T1-weighted images
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and cortical models were aligned to the original T1 input image space and down-sampled to the
space of the DWIs, using nearest neighbor interpolation (to avoid intermixing of labels). To
ensure tracts would intersect cortical labeled boundaries, labels were dilated with an isotropic
box kernel of size 5x5%5 voxels.

The matrix transforming the mean by image to the T1-weighted volume was applied to
each of the 94 gradient directions to properly re-orient the orientation distribution functions
(ODFs). At each HARDI voxel, ODFs were computed using the normalized and dimensionless
ODF estimator derived for g-ball imaging (QBI) [Agan;j et al., 2010]. We performed HARDI
tractography on the linearly aligned sets of DWI volumes using these ODFs, using the Hough
transform method [Aganj et al., 2011]. Elastic deformations obtained from the EPI distortion
correction, mapping the average by image to the T1-weighted image, were then applied to the
tracts’ 3D coordinates to accurately align the anatomy. Each subject’s dataset contained 5000-
10000 useable fibers (3D curves). For each subject, a full 68x68 connectivity matrix was created.
Each element described the proportion of the total number of fibers connecting each of the
labels; diagonal elements describe the total number of fibers passing through a certain cortical
region of interest. Values were calculated as a proportion - normalized to the total number of
fibers traced for each individual participant, to avoid skewing results by the raw fiber count.

Rich Club Analyses

On the 68x68 matrices generated above, we used the Brain Connectivity Toolbox

(Rubinov & Sporns, 2010, https://sites.google.com/site/betnet/) to compute the rich club
coefficient (®) across the whole range of nodal degree levels (k), 0-68. The fiber count matrices
were first binarized for each subject. We normalized our rich club coefficient based on

coefficients calculated from 50 random networks to generate a normalized rich club coefficient
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(®Pporm). Below we use the same symbols as the original paper on this topic [Van den Heuvel &
Sporns, 2011]. We tested the high vs. low groups for differences in @ and ®,m using the
following
Eq. 1 D or Dyorm~ A + PageAge + PsexSex + PiolQ + PicvICV + o + €
A is the constant graph theory metric term, the s are the covariate regression coefficients, and o
is a coefficient that accounts for random effects. /Q can represent any of the three 1Q tests — FIQ,
PIQ, or VIQ. Random effects were used to account for familial relatedness. We modeled these
variables (age, sex, IQ) as fixed effects. ICV is intracranial volume, in mm’. ¢ is a matrix of
residual effects with a variance of o°./, and / is an identity matrix. Results were corrected for
multiple comparisons using the false discovery rate method across all 68 levels of & tested [FDR;
Benjamini & Hochberg, 1995].
Group Analyses

For FIQ, PIQ and VIQ analyses, we created groups of high and low 1Q by determining
which subjects were more than 1 SD above or below the average 1Q of the sample. Among those
groups formed, we made sure only one member of a family was represented both within a group
(e.g. high PIQ) and between groups (e.g. high PIQ vs. low PIQ) to ensure no additional similarity
between subjects would obscure or artificially amplify results. Between comparisons, however
(e.g. high PIQ vs. high FIQ vs high VIQ) there were some siblings included. For the FIQ
comparison, there were 62 individuals in the high group, and 63 in the low group. For the PIQ
comparison, there were 64 individuals in the high group, and 61 in the low group. For the VIQ
group, there were 57 individuals in the high group, and 53 in the low group.

Within these groups, we created averaged connectivity matrices. These were thresholded

to only include connections present in at least 75% of subjects. We then calculated the degree of
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these networks, and used the criteria set forth by Van den Heuvel & Sporns, 2011, to determine
which nodes were included in the rich club in each group.

We followed up on these analyses by examining the 105-direction HARDI data that these
matrices were computed from. We examined these for voxel-wise differences between the high
and low groups across FIQ, PIQ and VIQ. We used a linear mixed effects model to study the
voxel-wise association of each IQ test with fractional anisotropy (FA), while taking into account
any relatedness among the subjects. We used the same basic model as above:

Eq. 2 Voxelwise FA~ 4 + BaeAge + PiolQ + PicvICV + o + &

Random effects were again used to account for familial relatedness. For all statistical analyses,
the LONI pipeline (http://pipeline.loni.usc.edu/) was used for voxel-wise parallelization on a
multi-CPU grid computer. These results were FDR corrected for multiple comparisons across all
voxels tested, and across the two subtests (¢<0.025) (as PIQ and VIQ are sub-measures of FIQ,
and therefore not independent) [searchlight FDR, Langers et al., 2007].

Results

When comparing high and low groups, we found no differences in ® or ®yom, across all
68 levels of k. When examining rich club organization, however, we found a number of
differences in which nodes were included in the rich club. In both the FIQ and PIQ groups, the
average degree was higher in the high 1Q groups (this was flipped in VIQ). This was not a
significant difference, however it did affect what the degree cutoff was for rich club membership.
The low FIQ group did have a slightly lower average degree (25.7 vs. 25.0), leading to a lower
degree cutoff, but these groups were the most similar of our three comparisons. In the high vs.
low VIQ comparison, we saw an opposite trend. The low VIQ group had a slightly higher

average degree (25.3 vs. 25.7), leading to a higher degree cutoff, and yet a larger rich club in the
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low VIQ group. In comparable networks, we would expect a lower degree cutoff to lead to a
larger rich club, unless there was a difference in degree overall. There were two nodes unique to
the low VIQ rich club, while the high VIQ rich club only had one unique node. In the high PIQ
vs. low PIQ comparison, we found the most differences. The low PIQ group had a lower average
degree (26.0 vs. 25.2), leading to a lower degree cutoff, and yet a smaller rich club. The high PIQ
rich club had an additional four nodes, 3 parietal nodes and 1 frontal node.

When comparing unrelated subjects more than 1 SD above or below the average FIQ, the
RC threshold for the high group was 26, while the RC threshold for the low group was 25. This
resulted in 14 nodes in the high FIQ RC, and 15 nodes in the low FIQ RC. The only difference
was in the one additional node in the low FIQ RC, which was the right supra-marginal gyrus. We
additionally examined group differences in connections between RC nodes. This was a binary
analysis — simply done on a basis of whether one group possessed a connection and the other did
not. These results can be seen in Figure 4.1.1.

When comparing unrelated subjects more than 1 SD above or below the average PIQ, the
RC threshold was 26 for both groups. This resulted in 14 nodes in the high PIQ RC, and 10
nodes in the low PIQ RC. The differences were in the additional 4 nodes seen in the high PIQ
RC, which were the right posterior cingulate, right precuneus, left paracentral, and left precentral
gyri. These results can also be seen in Figure 4.1.1.

When comparing unrelated subjects more than 1 SD above or below the average VIQ, the
RC threshold was 26 for both groups again. This resulted in 12 nodes in the high VIQ RC, and
13 nodes in the low VIQ RC. There was one additional node in the high VIQ RC — the right
posterior cingulate — and 2 additional nodes in the low VIQ RC — the right supra-marginal and

left paracentral gyri.
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High FIQvs Low FIQ High PIQ vs Low PIQ High VIQ vs Low VIQ

@ Common nodes 1 R Supra-marginal 6 R Inf Parietal 11 R Sup Parietal
@ High IQ nodes 2 R Posterior cingulate 7 R Sup Frontal 12 L Precuneus
3 L Paracentral 8 R Precentral 13 L Isthmus of the cingulate
@ lowliQ nodes 4 R Precuneus 9 R Insula 14 L Insula
— Common edges 5 L Precentral 10 L Sup Frontal 15 L Posterior cingulate

—— High 1Q edges
— Low IQ edges

Figure 4.1.1. Differences in rich club organization between high and low 1Q individuals,
across FIQ (full scale 1Q), PIQ (performance 1Q), and VIQ (verbal 1Q). Left in the image is
left in the brain.

When analyzing differences in the voxel-wise FA between groups, we found consistent
significant differences across all comparisons. Consistency across comparisons is expected, as
many subjects who have high PIQ also have high FIQ and thus were included in both
comparisons. We found that individuals with higher 1Qs had greater FA in the left inferior
longitudinal fasciculus (ILF), and a region corresponding to both the ILF and the uncinate
(UNC), suggesting greater white matter integrity in these tracts. These results are shown in
Figure 4.1.2.

Discussion

In this study, we examined how rich club organization was associated with IQ
performance. We found that the nodes included in the rich club differed when we compared the
highest performing (>1 SD above average) and lowest performing (>1 SD below average)

subjects as measured by FIQ, and its two subtests, PIQ and VIQ. We found the most differences
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when examining the high vs. low PIQ contrast. This is the first study examining cognitive
correlates of rich club connectivity.

In the high FIQ vs. low FIQ comparison, we found very similar rich clubs, only differing
by the addition of one node in the low FIQ rich club, the right supramarginal gyrus. In the high
VIQ vs. low VIQ comparison, we found a mix. The high VIQ group had one additional node
(posterior cingulate), while the low VIQ group had two additional nodes (supramarginal and
paracentral gyri). In the high PIQ vs. low PIQ comparison, we found the most differences. The
high PIQ rich club had an additional 4 nodes — 3 parietal nodes (posterior cingulate, paracentral,
precuneus) and 1 frontal node (precentral gyrus).

Our findings provide further support for the Parieto-Frontal Integration Theory (P-FIT). The
parieto-frontal integration theory lists a number of regions, mainly in the frontal and parietal
cortex, that it suggests support cognition and may be responsible for individual differences in

intelligence [Jung & Haier, 2007]. Some of the regions it includes are the precentral gyrus,

High vs. Low FIQ High vs. Low PIQ High vs. Low VIQ

ILE/UNC ILF/UNC ILE/UNC
] [ ] '

¥

ILF

I Heta values
0.0007 0.0026

Figure 4.1.2. Voxel-wise differences in FA between individuals scoring >1 SD above or
below the average FIQ, PIQ and VIQ. Yellow indicates to greater b-values. ILF=inferior
longitudinal fasciculus, UNC=uncinate. Left in the image is right in the brain, coordinates are in
MNI space.
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inferior and superior parietal lobule, prefrontal cortex, inferior frontal gyrus, and anterior
cingulate. All subjects had a rich club made up of a distributed set of regions across the parietal,
frontal, and temporal cortices. Perhaps the rich club serves as the hub of integration between
these disparate regions supporting cognition, as they are nodes that are highly connected and
highly important for global information transfer. In the PIQ comparison, we found four nodes in
the high PIQ group in the frontal and parietal cortices that have been shown in previous papers to
be hubs in the structural network [Hagmann et al., 2008]. One of these, the precentral gyrus is
implicated as well by the P-FIT. This suggests that individuals with higher PIQ, due to their
higher degree overall, may be better able to integrate more of these key areas together. By better
integrating these regions, subjects may be able to have more efficient global information transfer.

In addition to the differences we found in the rich club, we also found differences in
fractional anisotropy between the highest and lowest IQ individuals. Across all three
comparisons (high vs. low FIQ, PIQ and VIQ) we found greater fractional anisotropy in the high
IQ individuals in the bilateral inferior longitudinal fasciculus (ILF) and the ILF/UNC (uncinate).
These two tracts join at the anterior aspect of the ILF [Catani et al., 2003]. The ILF connects the
temporal and occipital cortices, and is suggested to support visual tasks such as object
recognition [Ortibus et al., 2012]. Additionally, decreased integrity of the ILF has been
associated with schizophrenia, especially in patients with a history of visual hallucinations
[Ashtari et al., 2007]. We might expect that the integrity of circuitry responsible for recognizing
and categorizing objects would be associated with both performance and verbal 1Q. These
fundamental tasks are involved in vocabulary, spatial awareness, and other abilities assessed by

1Q tests.
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As the first study to examine cognitive correlates of the rich club, there is little context
for interpreting our results. While we may intuitively expect that more rich club nodes is
“better”, we do not truly know if this is the case, or what an optimum rich club organization may
be. From a network perspective the rich club is fairly costly, so it would not make sense for the
brain to maintain this costly arrangement without some benefit to the brain. In this study we were
attempting to determine whether this benefit comes in the form of increased cognitive abilities,
but further research is needed in this field to establish norms and the implications of individual
differences in rich club organization.

IQ is admittedly not an ideal measure of cognitive function, as its generalizability across
cultures has been challenged [Fish, 2013]. Our sample was ethnically homogeneous, however,
making this not a factor in our analysis. In the future we will investigate other measures of
cognitive function that assess specific functional domains, such as working memory.
Additionally, we used binarized matrices for these analyses, which do not use the full
information available. Future analyses in the full weighted matrices will hopefully shed more
light on these questions. Obviously, the specific parcellation scheme chosen will affect graph
theory metrics. Zalesky et al. (2010) found that graph theory metrics were sensitive to
parcellation resolution (i.e., the number of nodes), so it may be that other parcellation schemes
are more or less sensitive to differences in IQ. The Desikan-Killiany atlas has been shown by our
laboratory to yield connectivity measures that are genetically influenced [Jahanshad et al., 2011;

Jahanshad et al., 2012] and change over development [Dennis et al., 2013b].
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4.2 High school completion is associated with differences in fiber density and graph

theoretical measures of structural connectivity

Many environmental factors throughout life influence brain structure and function.
Education is an especially influential factor, playing a key role in individual differences in both
brain structure and the cognitive functions it supports. The concept of reserve suggests that some
aspect of brain structure or function enables people with more reserve to be able compensate for
greater levels of pathology or atrophy [Stern, 2002], and it has been suggested that education
increases one’s “ cognitive reserve” [Piras et al., 2010]. Level of education has been associated
with intracranial volume [Mortimer et al., 2003] and differences in diffusivity [Piras et al., 2010].
Other studies have found that even when elderly individuals with higher education levels have
more severe metabolic deficits in key brain regions, they are able to perform at the same level of
cognitive ability as less educated subjects with less severe pathology [Alexander et al., 1997],
suggesting education confers some neuroprotection. Educational attainment is a measure of time,
not a measure of intelligence, although we expect it to add cognitive benefit. This must be kept
in mind when interpreting results.

Noble et al. (2013) found that educational attainment was significantly associated with
fractional anisotropy (FA), a commonly used measure of white matter integrity, in a sample of
47 young adults. Surprisingly, they found more education was associated with decreased FA in a
number of tracts critical for cognitive control — the superior longitudinal fasciculus (SLF) and
cingulum bundle (CB). They offered no explanation for this, except that others have also found
decreased FA with increased cognitive abilities [Tuch et al., 2005]. Tuch et al. (2005) suggest

that this could be due to crossing fibers or individual differences in axonal diameter. Piras et al.
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(2010), found decreased MD (mean diffusivity, it would be expected to decrease when FA
increases, generally) with increasing education, but this was in an elderly population, specifically
examining subcortical structures, so it is minimally comparable to Noble et al. (2013). Beyond
these, there is not a thorough investigation of how education affects the brain.

In this study, we examined how educational attainment, measured by months of high
school completed, in a population of 287 young adults (20-30 years old) was associated with
fiber density and nodal graph theoretical measures of connectivity calculated on our fiber density
matrices. Despite the conflicting results from previous studies, we expected to find increased
fiber density with increasing educational attainment, as well as increased clustering coefficient,
degree, and regional efficiency.

Materials and Methods

Participants were recruited as part of a 5-year research project scanning healthy young
adult Australian twins with structural brain MRI and DTI [de Zubicaray et al., 2008]. We
analyzed scans from 287 right-handed subjects (187 female/100 male, average age=23.9 years,
SD=2.3). This population included all monozygotic (MZ) twins from 194 families. The average
months of school for the sample was 32.4 (6.8 SD) with a range of 18-48. This is not total
months of school, but months of high school completed. As the minimum age of our subject pool
was 20, all had completed high school. Education beyond high school was not measured. Whole-
brain anatomical and high angular resolution diffusion images (HARDI) were collected with a
4T Bruker Medspec MRI scanner. T1-weighted anatomical images were acquired with an
inversion recovery rapid gradient echo sequence, with parameters: TI/TR/TE =
700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 0.9mm, and a 256x256 acquisition

matrix. HARDI was also acquired using single-shot echo planar imaging with a twice-refocused
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spin echo sequence to reduce eddy-current induced distortions. Imaging parameters were: 23cm
FOV, TR/TE 6090/91.7ms, with a 128x128 acquisition matrix. Each 3D volume consisted of 55
2-mm thick axial slices with no gap and 1.79x1.79 mm® in-plane resolution. 105 images were
acquired per subject: 11 with no diffusion sensitization (i.e., T2-weighted by images) and 94
diffusion-weighted (DW) images (b = 1159 s/mm”) with gradient directions evenly distributed
on a hemisphere in the g-space. Scan time was 14.2 min for the 105-gradient HARDI scan.
Cortical Extraction and HARDI Tractography

Connectivity analysis was performed as in [Jahanshad et al., 2011]. Briefly, non-brain
regions were automatically removed from each T1-weighted MRI scan, and from a T2-weighted
image from the DWI set, using the FSL tool “BET” (FMRIB Software Library,

http://fsl.fmrib.ox.ac.uk/fsl). A neuroanatomical expert manually edited the T1-weighted scans to

refine the brain extraction. All T1-weighted images were linearly aligned using FSL (with 9
DOF) to a common space with 1mm isotropic voxels and a 220x220x220 voxel matrix. For each
subject, the 11 eddy-corrected images (using FSL tool “eddy correct”) with no diffusion
sensitization were averaged, linearly aligned and resampled to a downsampled version of their
corresponding T1 image (110x110x110, 2x2x2mm). Averaged b, maps were elastically
registered to the structural scan using a mutual information cost function to compensate for EPI-
induced susceptibility artifacts. 34 cortical labels per hemisphere, as listed in the Desikan-

Killiany atlas [Desikan et al., 2006], were automatically extracted from all aligned T1-weighted

structural MRI scans using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). T1-weighted images
and cortical models were aligned to the original T1 input image space and down-sampled to the

space of the DWIs, using nearest neighbor interpolation (to avoid intermixing of labels). To
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ensure tracts would intersect cortical labeled boundaries, labels were dilated with an isotropic
box kernel of size 5x5x5 voxels.

The matrix transforming the mean by image to the T1-weighted volume was applied to
each of the 94 gradient directions to properly re-orient the orientation distribution functions
(ODFs). At each HARDI voxel, ODFs were computed using the normalized and dimensionless
ODF estimator derived for g-ball imaging (QBI) [Aganj et al., 2010]. We performed HARDI
tractography on the linearly aligned sets of DWI volumes using these ODFs, using the Hough
transform method [Aganj et al., 2011]. Elastic deformations obtained from the EPI distortion
correction, mapping the average by image to the T1-weighted image, were then applied to the
tracts’ 3D coordinates to accurately align the anatomy. Each subject’s dataset contained 5000-
10000 useable fibers (3D curves). For each subject, a full 68x68 connectivity matrix was created.
Each element described the proportion of the total number of fibers connecting each of the
labels; diagonal elements describe the total number of fibers passing through a certain cortical
region of interest. Values were calculated as a proportion - normalized to the total number of
fibers traced for each individual participant, to avoid skewing results by the raw fiber count.
Months of School Regression

We used a linear mixed effects model to study the element-wise association of months of
school (MOS) with fiber density, while taking into account any relatedness among the subjects.
For N subjects and p independent predictors (MOS and other covariates), regression coefficients
(p) were obtained according to the formula:

Eq. 1 NxN ~ 4 + BageAge + BsexSex + PievICV + BumosMOS + a + €
Here, NxN is each of the entries in the 68x68 fiber density matrices. 4 is the constant

fiber density term, the Bs are the covariate regression coefficients, and a is a coefficient that
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accounts for random effects. Random effects were used to account for familial relatedness. We
modeled these variables (age, sex, ICV, MOS) as fixed effects. ICV denotes intracranial volume,
in mm’. ¢ is a matrix of residual effects with a variance of ¢/, and [ is an identity matrix. We
also tested a model including FIQ as a covariate, to be sure we were not measuring the effects of
cognitive  ability instead. For all statistical analyses, the LONI pipeline
(http://pipeline.loni.usc.edu/) was used for element-wise parallelization on a multi-CPU grid
computer. The false discovery rate method [Benjamini & Hochberg, 1995] was used for multiple
comparisons correction across all voxels.

We used the same model (Eq. 1) to test our graph theoretical measures of structural
connectivity. We examined three measures of nodal connectivity — clustering coefficient,
regional efficiency, and degree. Clustering coefficient, on a nodal scale, is a measure of how
“cliquish” a node’s neighbors are. Regional efficiency is the inverse of the average shortest path
connecting all neighbors of a given node. Degree is simply how many connections each node has.
We corrected for multiple comparisons across all 68 nodes and all 3 measures tested (¢<0.05)
[Benjamini & Hochberg, 1995].

Lastly, in an attempt to find some overlap with our previous study under the cognitive
aim, we also examined voxel-wise FA for any associations with months of school. This analysis
was completed with age, sex, and intracranial volume as covariates. We again used a linear
mixed effects model to study the voxel-wise association of MOS with fractional anisotropy (FA),
while taking into account any relatedness among the subjects. We used the same basic model as
above:

Eq.2 Voxelwise FA ~ 4 + BageAge + PmosMOS + BicvICV +a + ¢
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Random effects were again used to account for familial relatedness. For all statistical analyses,
the LONI pipeline (http://pipeline.loni.usc.edu/) was used for voxel-wise parallelization on a
multi-CPU grid computer. These results were FDR corrected for multiple comparisons across all
voxels tested (¢<0.05) [searchlight FDR, Langers et al., 2007].
Results
NxN Analyses

When we analyzed the 68x68 fiber density matrices, we found 2 connections whose fiber
density was significantly associated with months of school. The fiber density of the connections
between the left insula and left lingual gyrus, and between the right postcentral gyrus and right
caudal middle frontal gyrus was greater in individuals who had attended more school. This
analysis was done co-varying for age, as we know age could significantly influence fiber density
[Dennis et al., 2013b]. We additionally co-varied for sex and intracranial volume, and one model
was run co-varying for FIQ. Co-varying for FIQ did not affect the results. A p-map for this
analysis can be seen in Figure 4.2.1. In this figure, the color represents the p-value of the
association, as shown in the legend. We restricted our analyses to only connections present in
>95% of subjects, to ensure we were finding differences in reliably tracked pathways. This
resulted in 418 connections being examined, out of a possible 2,346 (68x68, symmetrical,
including diagonal), and of these, 2 survived multiple comparisons correction. The location of
these results can be seen in Figure 4.2.2.
Nodal Graph Theoretical Measures of Structural Connectivity

Given that we found significant differences in the 68x68 fiber density matrices, we

decided to examine more nodal measures of connectivity — those generated from graph

theoretical analyses. We found significant differences in all three nodal measures we examined —
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Figure 4.2.1. P-values for the NxN fiber density analysis. Two connections showed p-values
surviving FDR correction — both the connection between the left insula and left lingual gyrus,
and between the right caudal middle frontal gyrus and right postcentral gyrus had greater fiber
density in individuals who had completed more school, correcting for age (and sex and
intracranial volume). Gray boxes were not tested, black boxes were tested but not significant.

clustering coefficient (CC), regional efficiency (EREG), and degree (DG). The left pars orbitalis
had a negative association between MOS and CC, EREG, and DG. The left insula had a negative

association between MOS and CC, while the right lateral occipital gyrus had a positive

association between MOS and CC. Lastly, the left inferior temporal gyrus had a negative
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Figure 4.2.2. Differences in fiber density and nodal measures of connectivity associated
with months of school. All nodes tested (68) are shown, nodes in blue showed no significant
associations. Large nodes in black showed significant associations between nodal graph
theoretical measures of structural connectivity and months of school, as indicated in the legend.
We tested clustering coefficient, regional efficiency, and degree, and results were FDR corrected
across all nodes tested and all three nodal measures tested (¢<0.05). These were largely negative
associations. Black bars also indicate where significant associations with fiber density were
found, both positive associations. Left in the image is left in the brain.
association between MOS and EREG and DG. These can all be seen in Figure 4.2.2, along with
the differences in fiber density.
Voxel-wise FA

Our examination of associations between MOS and voxel-wise FA yielded significant

positive correlations. MOS was positively associated with FA in the isthmus of the corpus

callosum (CC — Is) and the posterior genu (CC — G). These can be seen in Figure 4.2.3. We
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Figure 4.2.3. Voxel-wise associations between months of school and FA. Yellow indicates to
greater b-values. CC — Is = isthmus of the corpus callosum, CC — G = genu of the corpus
callosum. Left in the image is right in the brain, coordinates are in MNI space.
additionally found a small area of significant positive association in the right ILF/UNC (inferior
longitudinal fasciculus/uncinate — at the anterior end of the ILF these two tracks merge; Catani et
al., 2003; this is not pictured in the figure). When we co-varied for FIQ, these results were
unchanged, including the small area of association in the ILF/UNC.
Discussion

In this study we examined associations between months of high school completed and
differences in structural brain connectivity. We found a number of significant differences in fiber
density and nodal graph theoretical measures of connectivity. We found a significant positive
association between months of school and fiber density between the left insula and left lingual
gyrus, and between the right postcentral gyrus and right caudal middle frontal gyrus. We
additionally found negative associations between months of school and degree, clustering, and

regional efficiency in the left pars orbitalis, left inferior temporal gyrus, and left insula, and a

positive association with clustering in the right lateral occipital gyrus.
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As we expected, we found greater fiber density with greater educational attainment. The
connections affected cover a wide range of brain regions — frontal, parietal, temporal, and
occipital. This suggests that education could lead to increased connectivity across distributed
brain regions. We found mostly lower nodal measures of connectivity with increased educational
attainment. Besides a positive association between MOS and the clustering coefficient of the
right lateral occipital gyrus, all other associations with clustering coefficient, regional efficiency,
and degree were negative. As highly mathematical measures, we need to consider how these
measures are actually calculated and what other factors could influence their calculation when
we try to interpret them. Clustering coefficient is calculated by examining all of the connections
of a given node and determining what proportion of those connections are also connected to each
other. It is considered a measure of local efficiency, but it is also a measure of segregation
[Rubinov & Sporns, 2010]. Thus, our results could mean that individuals who have greater
educational attainment could have decreased integrity of their nodal neighborhoods for an
unknown reason, or they could be less “cliquish” and better integrated into the whole network.
Degree is simply the number of connections of a given node, so lower degree with greater
educational attainment means these individuals have fewer connections originating from these
nodes. Regional efficiency is the inverse of the shortest path going through all of the node’s
neighbors. Perhaps because there are fewer connections for these nodes (as shown in lower
degree), the path length increases. This could occur if the nodes now missing from the
neighborhood were local hub nodes, highly connected within the neighborhood and key to local
efficiency. Over development, we have previously found both increases and decreases in
clustering coefficient, degree, and regional efficiency distributed across the brain. Given this, we

cannot categorically say that increases in degree or efficiency are “good”, for example. As there
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are no other studies investigating graph theoretical correlates of educational attainment, and very
few examining cognitive function, it is difficult to put these results in context. We are exploring
which metrics are best for detecting individual differences. These results point out the need to
investigate the correlations between graph theoretical measures of connectivity and cognition, in
order to better interpret these data.

In an attempt to find some common ground with our previous cognitive study, relating 1Q
to rich club organization and voxel-wise FA, we examined voxel-wise FA for associations with
months of school. We found that completion of more months of high school was associated with
greater FA in the isthmus of the corpus callosum, the posterior genu of the corpus callosum, and
the right ILF/UNC. These associations remained the same when we co-varied for FIQ. These
results suggest that individuals with greater educational attainment have greater white matter
integrity in a known language pathway, which connects the temporal and parietal language areas
across hemispheres. These results contrast the previous study by Noble et al. (2013) finding
decreased FA with further education. The age range of their subjects (17-23 years old) overlaps
with ours (20-30 years old), and they were similarly using a sample collected in Australia, so the
sociological factors impacting education should be similar between our samples. While we used
months of high school completed, Noble et al. (2013) used total years of school, which could
account for some differences as their sample included a larger range of educational attainment.
Additionally, while Noble et al. (2013) had data from 47 subjects, we included 287 subjects in
our study.

Our results of greater fiber density and greater FA with greater educational attainment
suggest that the cognitive enrichment of higher education has positive effects on brain structure.

However, our findings of mostly decreases in nodal clustering, efficiency, and degree are
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difficult to interpret in this context, as there are no other studies linking these factors. The
measures of fiber density and fractional anisotropy are closer to biological measures of
connectivity, while the graph theoretical measures are a little farther removed from the true
biological substrates we are attempting to assess. This does not mean these measures cannot be
used to analyze the brain — graph theory can give us a bird’s eye view of network topology that
we cannot see with other methods. But the results of the current study need further review to
determine how graph theoretical methods can accurately be used and interpreted in the case of
cognitive function.

Another factor to consider is that our variable of interest, months of school, is a measure
of time spent in school, and while we expect it to be correlated with cognitive abilities (although
in specific domains), it is not a measure of intelligence. Intelligence quotient (IQ) is expected to
be fairly stable across the lifespan, as it is not a measure of knowledge of discrete facts, and there
is research to support this [Deary et al., 2000]. Thus, we cannot extend our results to general
cognitive function; rather, they are a measure of how a specific and broadly applicable
environmental source of cognitive enrichment is associated with differences in brain structure.
With the age of our sample and cross-sectional design, we cannot say for certain whether these
differences are because of education, or if they were pre-existing differences perhaps related to a
subject’s likelihood to continue education. We ran all analyses additionally co-varying for FIQ
(which was not correlated with MOS), and found no changes, adding support to the interpretation
that these associations are in fact pointing to changes that occurs with advanced education, rather
than basic differences in cognitive ability. To conclusively determine this, we would need to
examine subjects before and after their course of education. As this is the first study linking

graph theoretical measures of connectivity with education, further research, preferably in a
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younger group, is necessary to validate and gain a deeper understanding of these associations and

how to interpret them.
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CHAPTER 5

Summary

The common thread between all of these studies is an examination of structural brain
connectivity and the various factors that influence measures of brain connectivity. Across
development, we see a transition towards increased structural integration and segregation,
demonstrated in our findings of decreased characteristic path length, clustering, and increased
modularity [Dennis et al., 2013b] and increased density among rich club nodes [Dennis et al.,
2013c]. This occurs as useful connections are potentiated, and less used connections are not. As
many studies have shown, the timeline of this process varies across brain regions [Gogtay et al.,
2004]. We found distinctly different trajectories in the frontal and temporal cortices, with
connections among the frontal cortex generally showing decreases in fiber density and degree
(number of connections), and the temporal cortex generally showing increases in fiber density
and degree between ages 12 and 30 [Dennis et al., 2013b; Dennis et al., 2013d]. This does fit
with earlier studies showing an earlier age of peak in frontal vs. temporal gray matter volume
[Giedd et al., 1999; Tanaka et al., 2012], and gray matter density (GMD) [Sowell et al., 2003].
Sowell et al., 2003, found a continuous decline in the GMD of the superior frontal sulcus
between age 10 and 90, leveling off towards the end, while the GMD of the superior temporal
sulcus increased until age 30, at which point it decreased. These together support a more
protracted development in the temporal cortex than the frontal cortex.

These studies have focused on typical development, but these trajectories are

significantly different in children with developmental disorders such as autism. Investigations
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into how functional graph theoretical measures of connectivity are altered in children with
autism have found decreased path length, possibly a sign of increased randomness [Rudie et al.,
2013]. We similarly found decreased path length, but in the structural networks of healthy risk-
allele carriers of an autism-associated gene, CNTNAP2 [Dennis et al., 2011a]. This demonstrates
the utility of examining healthy carriers of risk genes, as often the disorder itself causes changes
in the brain, making it difficult to tease apart the causes and effects. Similarly, we examined
associations between an obesity risk gene, NEGRI, and white matter integrity in our QTIM
sample, whose BMI (body mass index — an approximate assessment of fat mass) covers the range
seen in the population. This was not an exclusively obese sample, but we believe that is a
strength of the study as obesity is associated with a wide range of brain changes that are not well
understood [Stanek et al., 2011]. We found that risk allele dosage was associated with
widespread decreases in white matter integrity. When we examined this variant in our follow-up
sample from ADNI (Alzheimer’s Disease Neuroimaging Initiative), we found similar areas of
association, but in the opposite direction. Obesity has an age-dependent effect on cognition
[Fitzpatrick et al., 2009], and our results suggest that this may be genetically influenced. Both of
these studies will aid our understanding of the mechanisms by which these genes confer
vulnerability. CNTNAP?2 is associated with more random network organization, but how does
this occur? A recently characterized CNTNAP2 knockout mouse model found neuronal migration
abnormalities [Penagarikano et al., 2011]. Abnormal development and migration could
theoretically lead to the effects we found. With NEGRI, our subjects were fairly young (20-30
years old) so it is possible that they may become obese later in life. How decreased white matter
integrity is linked with obesity risk, when it is clearly not caused by already-present obesity, is

unclear. Further investigation of this topic will hopefully reveal the mechanisms by which
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NEGRI increases risk of obesity, as well as how obesity and cognitive function are linked
throughout the lifespan.

As brain structure matures towards a more organized pattern of connectivity, cognition
develops as well. These two factors influence the development of the other in a dynamic
interplay. Our two investigations into cognitive correlates of structural connectivity are quite
different, as one uses a putative measure of cognitive ability (IQ) [Dennis et al., 2013f], and the
other uses a measure of cognitive enrichment (months of school) [Dennis et al., 2013g]. In one
study, we examined rich club organization and white matter integrity [Dennis et al., 2013f],
while in the other, we examined fiber density between cortical regions and nodal graph
theoretical measures of structural connectivity [Dennis et al., 2013g]. In searching for some
overlap in effects, we examined associations with white matter integrity (as measured by FA —
fractional anisotropy) with months of school as well, with and without co-varying for FIQ. Here,
we found some common ground, as both 1Q scores and months of school were associated with
increased integrity in the right ILF/UNC (inferior longitudinal fasciculus/uncinate, at the anterior
end of the ILF these tracks merge). As might be expected, we generally found evidence of
increased neural resources or integrity with greater cognitive ability and greater cognitive
enrichment, as measured by white matter integrity, fiber density between cortical regions, or
nodes included in the “rich club”. With more neural resources (fiber density, rich club nodes)
and better integrity (white matter integrity), we would expect there to be more efficient
information transfer in the brain, which would support cognitive function. Our findings of
decreased nodal clustering, efficiency, and degree with further educational attainment are
difficult to fit into this framework, as we are only beginning to examine what they mean for brain

health and what are normal measures. As very few studies have examined these measures in
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relation to cognitive abilities, and they are more mathematical measures of connectivity, further
research is necessary to determine their utility and how to accurately interpret these results.
Graph theory has a lot to offer the field of neuroscience, but at this earlier stage we need to tread

carefully when assigning value to specific measures.
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CHAPTER 6

Future work

From the work presented here, there is a clear trend toward examining brain structural
connectivity across development and the factors that may influence it. From here, two natural
extensions are to examine functional connectivity, and to examine connectivity in atypical
development. This is exactly what I intend to do, investigating functional connectivity in the
QTIM dataset, and joining a project in progress at UCLA examining moderate-to-severe

traumatic brain injury in children and adolescent patients.

6.1 Functional connectivity

Functional connectivity is complimentary to the information gained from structural
connectivity. While an analysis of functional connectivity data was originally planned as part of
my dissertation, unforeseen factors barred me from analyzing the data. We now have access and
the data are currently being processed.

Functional connectivity assesses the integration of brain activity across distant brain
regions, regardless of their structural connectivity. Various methods may be used to measure this
type of functional synchronization or coherence, and different kinds of information can be
collected, depending on whether subjects are performing a specific task, or no task in particular.
Functional MRI methods can assess connectivity by measuring correlations in the BOLD (blood
oxygenation level dependent) time-series of activations in different brain regions; other types of

analysis focus on the mutual information between two different profiles of activation.
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Synchronized low-frequency fluctuations (~0.01-0.1 Hz) in the BOLD signal across distant brain
regions were first discovered by Biswal et al. (1995). This sparked the discovery of a number of
temporally coherent networks that are remarkably consistent across individuals [Damoiseaux et
al., 2006; Fox et al., 2005; Beckmann et al., 2005].

Many possible roles have been attributed to these ICNs (intrinsic connectivity networks):
memory functions, organization and coordination of neuronal activity, and priming the brain for
coordinated activity [Fox and Raichle, 2007; Seeley et al., 2007]. The cognitive correlates of the
networks are not fully known, but we do know that these networks are present in the descent to
sleep [Larson-Prior et al., 2009] and they are even detectable in developing fetuses [Thomason et
al., 2013]. ICN connectivity is disrupted in a wide range of psychiatric and developmental
disorders [Greicius, 2008], motivating the quest to understand how they contribute to cognitive
function, and how they decline as we age.

The ICN that has received the most attention is the default mode network (DMN): this is
a collection of brain regions whose activity increases in the absence of a task. As such, the DMN
is also called the “task negative” network, anti-correlated to the “task positive” network [Fox et
al., 2005]. The DMN is generally thought to include the posterior cingulate cortex/precuneus,
medial prefrontal cortex, inferior parietal lobules, lateral temporal cortices, and hippocampus
[Buckner et al., 2008; Raichle et al., 2001]. There has been a great deal of interest in the DMN:
many theorize that the activity of this network during rest is necessary for memory consolidation
[Fox and Raichle, 2007], making it especially interesting in the field of Alzheimer’s research
[Dennis & Thompson, 2013h]. The executive control network (ECN) seems to include regions
inversely correlated with the default mode network (DMN), and is thus dubbed part of the “task-

positive” network of the brain.
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The regions of the ECN include some of those that are last to mature; yet a
comprehensive examination of the developmental trajectory of the ECN and how it relates to
cognitive development has not been done. Based on the regions the ECN encompasses, it is
assumed to underlie executive function, but even that assumption has yet to be researched. I hope
that by investigating measures of executive function, I will be able to test new theories of the
cognitive correlates of resting connectivity and how it supports and influences function. It is vital
to relate executive connectivity and executive function - making decisions, abstract thought, and
planning ahead, as they are all central to our human experience, and highly vulnerable to
psychopathology. Research on the DMN has found altered connectivity in disease. There are
fewer studies of how psychopathology affects the ECN. Systematic investigation of the ECN will
reveal how it contributes to behavioral executive ability and how it relates to known aspects of
brain maturation. Normative data on executive network development is vital for us to understand
the basis of disorders with abnormal and characteristic fMRI responses.

With the QTIM dataset that I have used for the vast majority of my dissertation studies, I
will examine the developmental trajectory of various aspects of functional connectivity, focusing
on the ECN. For this I will use seed-based, ICA, and graph theoretical approaches, depending on
which is most appropriate for the specific question. We will additionally investigate how these
trajectories differ between males and females. Another aim of this future work is to determine
the genetic influences on functional connectivity. For this, we will use both a candidate SNP
(single nucleotide polymorphism) approach, examining SNPs that we have found to be
associated with changes in structural connectivity, and more complicated multi-locus and
genome-wide approaches. Lastly, we will investigate the association between functional

connectivity and measures of cognitive function, and how the developmental trajectory of these
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measures track together. We expect this work will both further our understanding of the role
functional connectivity serves in the healthy brain, as well as creating a foundation for

investigations into atypical development.

6.2 Pediatric traumatic brain injury

My dissertation has focused on healthy development, which serves as an ideal foundation
for investigating factors that cause deviations from the typical trajectory. TBI is a major public
health issue in children and adolescents, affecting an estimated 180 children and 660 adolescents
per 100,000 per year in the US. It is responsible for half of traumatic injury fatalities [Kraus et
al., 1995; Langlois et al., 2003]. TBI at any point in life can have long-term negative
consequences, but in children and adolescents these effects are exaggerated as the brain is
rapidly developing. Children who sustain TBI show poorer performance in school [Taylor et al.,
2002; Ewing-Cobbs et al., 1998] and are at an increased risk for psychiatric disorders [Max et al.,
1997; Max et al., 1998]. While there is clear damage to the grey matter, there are also significant
deficits in white matter (WM) connectivity, caused by Wallerian degeneration that damages
myelin and disrupts axonal ultrastructure [Wilde et al., 2008; Yuan et al., 2007]. Axonal injury is
the main pathological lesion in TBI. These differences can be seen acutely [Chu et al., 2009;
Wilde et al., 2008], years post injury [Yuan et al., 2007; Wozniak et al., 2007; Ewing-Cobbs et
al., 2008], and can be sensitive indicators of disease. Children vary in how well they can recover
from TBI, as with most injuries. If we can tell who can recover more quickly, and what factors
predict better outcomes, we can develop more effective interventions. Early interventions do

have an impact on recovery from TBI [Ponsford et al., 2001].
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Hemorrhagic and nonhemorrhagic shearing lesions associated with diffuse axonal injury
(DAI) are found in up to 40% pediatric TBI patients, especially more severe cases, and are
responsible for a wide range of impairments [Ashwal et al., 2006a]. DAI is characterized by
widespread damage to the corpus callosum, brain stem, gray-white matter junctions, and the
parasagittal white matter (dorso-medial white matter, in the frontal cortex generally) [Ashwal et
al., 2006a]. A definitive diagnosis of DAI can only be made post mortem, but sophisticated
imaging methods can provide compelling evidence of DAI. Traditional CT (computed
tomography) and MRI (magnetic resonance imaging) methods have not proven sensitive enough
to DAI [Tong et al., 2003]. Newer methods such as diffusion weighted imaging (DWI) — a
strength of our lab — and magnetic resonance spectroscopy (MRS) have recently been applied in
TBI research, and show great promise in detecting DAI and its related effects.

DWI methods such as high angular resolution diffusion imaging (HARDI) combined
with tractography allow us to visualize axonal pathways in vivo and approximate their integrity.
Fractional anisotropy (FA), the degree to which water diffuses in one direction (along axons), is
the most common measure of white matter integrity. Generally, higher FA means better
myelinated, more highly developed tracts [Thomason & Thompson, 2011]. In addition to voxel-
wise measures of white matter integrity, we can also use these data to construct matrices
describing the structural connectivity between all points in the brain (e.g., fiber density between
each region of interest - ROI). Using the framework of graph theory, we can investigate the
complex topology of the structural “connectome”. Graph theory represents the brain as a set of
nodes (brain regions) and edges (connections between them, e.g., fiber density). By representing
the data in this way, a number of standard parameters exist to investigate network metrics such

as efficiency and modularity [Rubinov & Sporns, 2010]. The benefit of graph theoretical
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methods is that they can reveal changes in global topology as well as local connectivity. MRS is
another technique to assess damage following TBI. The most widely used type of MRS is 'H-
MRS, which detects the signals from protons in neurochemicals other than water (as opposed to
MRI, which detects protons in water). 'H-MRS can measure key brain metabolites such as N-
acetylaspartate (NAA, a neuronal and axonal marker that decreases in neuronal loss), total
creatine (Cr, marker for intact brain energy metabolism), total choline (Cho, marker for
membrane repair, inflammation, or demyelination), and lactate (Lac, may be a response to
release of glutamate in TBI) [Ashwal et al., 2006b]. Metabolite ratios such as NAA/Cr or Cho/Cr
are sensitive markers of DAI and predict long-term outcomes [Holshouser et al., 2005; Sinson et
al., 2001]. Even brain regions that do not appear injured have altered metabolite ratios that are
correlated with injury [Ashwal et al., 2006b].

I will work with my mentor, our research team, and collaborators, to use multiple types of
data — MRS (magnetic resonance spectroscopy) data, HARDI (high angular resolution diffusion
imaging) data, and clinical data — that have been collected longitudinally, to examine how TBI
impacts the developmental trajectory of white matter connectivity in the brain. Data collection
for this project is on-going, but we already have a large cohort. With our range of intake ages, we
hope to discover how age of injury affects recovery. With our longitudinal design, we hope to
discover what imaging measures best predict clinical outcome. Determining the neuroimaging
differences in children with TBI, and how they change longitudinally will shed light on the
mechanisms of recovery, providing foundational knowledge for researchers developing more
effective interventions. Even in mild TBI, effects persist well after the injury, such as difficulty
in school, but they are often blamed on laziness on the part of the child, even if they are truly a

consequence of the injury. By receiving blame and punishment, when they are truly in need of
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understanding and additional help, the child’s progress may be set back [Ponsford et al., 2001].
A comprehensive understanding of what happens to the developing brain’s white matter as it
recovers from injury is necessary to know how to respond.

The specific questions of this study concern the best markers of injury in pediatric TBI
and the rate of recovery. We will look cross-sectionally to determine how various measures of
diffusivity are affected following TBI and which of these correlate best with cognitive function.
We will examine the rates of recovery of white matter and cognitive function to better
understand this process. Additionally we will examine the longitudinal data for age effects, to
determine how age of injury impacts the recovery process. Lastly, we will attempt to find a
model combining our various brain and cognitive measures from the Time 1 scans to determine
what combination is most predictive of rate of recovery between Time 1 and Time 2.

We hope that our study will aid future researchers in developing more effective
treatments for pediatric TBI. Once we have an accurate assessment of the extent of the damage,
clinicians may have a better idea of what sort of neurorehabilitation will be most effective, in the
case of moderate-to-severe TBI. In the case of mild TBI, most existing treatments center on
giving the parents information about what to expect and coping strategies, which have proven
effective [Ponsford et al., 2001]. By developing better predictors of outcome, and assessing what
methods give us the clearest picture of the damage, we can give patients and their families the
most information possible. We also hope that this will lead to a better informed public. As is the
case with combat veterans who have sustained head injuries, patients and families may think that
they are healed once the physical scars have disappeared. But the effects of TBI can last long
after this, and without being aware of that patients are not given the best recovery support.

Increased awareness of the effects of TBI will also hopefully lead to increased reporting of injury
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and more patients seeking treatment. Underreport is a major problem in TBI, for a wide range of
factors, but better information about the consequences of TBI in children should help this issue
[Meehan et al., 2011]. This project will have a broad impact in our communities. Traumatic brain
injury in children and adolescents is far too common, but we are only beginning to understand
how this damage may impact their continuing development. The information from this study will
inform development of effective treatments, and will hopefully increase public awareness about

the subtle, long-term effects of traumatic brain injury.
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