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Bacteroides salanitronis Lan et al. 2006 is a species of the genus Bacteroides, which belongs 
to the family Bacteroidaceae. The species is of interest because it was isolated from the gut of 
a chicken and the growing awareness that the anaerobic microflora of the cecum is of benefit 
for the host and may impact poultry farming. The 4,308,663 bp long genome consists of a 
4.24 Mbp chromosome and three plasmids (6 kbp, 19 kbp, 40 kbp) containing 3,737 protein-
coding and 101 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Arc-
haea project. 

Introduction 
Strain BL78T (= DSM 18170 = CCUG 54637 = JCM 
13657) is the type strain of Bacteroides salanitro-
nis which belongs to the large genus Bacteroides 
[1,2]. Currently, there are 88 species placed in the 
genus Bacteroides. The species epithet is derived 
from the name of Joseph P. Salanitro, an American 
microbiologist. B. salanitronis strain BL78T was 
isolated among other Bacteroides strains from the 
cecum of a healthy chicken. No other strain be-
longing to the same species has been identified 
[2]. Many Bacteroides species are common inhabi-
tants of the intestine where they help to degrade 
complex molecules such as polysaccharides or 
transform steroids [3,4]. They also play a role as 
beneficent protectors of the gut against pathogen-
ic microorganisms [5]. Here we present a sum-

mary classification and a set of features for B. sa-
lanitronis BL78T, together with the description of 
the complete genomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain BL78T was compared using NCBI BLAST un-
der default settings (e.g., considering only the high-
scoring segment pairs (HSPs) from the best 250 hits) 
with the most recent release of the Greengenes da-
tabase [6] and the relative frequencies, weighted by 
BLAST scores, of taxa and keywords (reduced to 
their stem [7]) were determined. The single most 
frequent genus was Bacteroides (100.0%) (1 hit in 
total). Regarding the single hit to sequences from 
members of the species, the average identity within 
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HSPs was 99.7%, whereas the average coverage by 
HSPs was 96.2%. No hits to sequences with (other) 
species names were found. The highest-scoring en-
vironmental sequence was DQ456041 ('pre-
adolescent turkey cecum clone CFT112F11'), which 
showed an identity of 96.8% and an HSP coverage of 
63.9%. The five most frequent keywords within the 
labels of environmental samples which yielded hits 
were 'fecal' (9.3%), 'microbiota' (7.5%), 'human' 
(7.1%), 'antibiot, effect, gut, pervas' (7.1%) and 
'anim, beef, cattl, coli, escherichia, feedlot, habitat, 
synecolog' (2.2%) (249 hits in total). 
Figure 1 shows the phylogenetic neighborhood of B. 
salanitronis in a 16S rRNA based tree. The sequences 
of the six 16S rRNA gene copies in the genome differ 
from each other by up to 26 nucleotides, and differ 
by up to 26 nucleotides from the previously pub-
lished 16S rRNA sequence (AB253731). 
The cells of B. salanitronis are generally rod-shaped 
(0.4-0.7 × 0.8-5.6 µm) with rounded ends (Figure 2). 
The cells are usually arranged singly or in pairs [2]. 
B. salanitronis is a Gram-negative, non-spore-
forming bacterium (Table 1) that is described as 
non-motile, with only five genes associated with mo-
tility having been found in the genome (see below). 

The temperature optimum for strain BL78T is 37°C. 
B. salanitronis is a strictly anaerobic chemoorgano-
troph and is able to ferment glucose, mannose, su-
crose, maltose, arabinose, cellobiose, lactose, xylose 
and raffinose [2]. The organism hydrolyzes esculin 
but does not liquefy gelatin, and neither reduces ni-
trate nor produces indole from tryptophan [2]. B. 
salanitronis does not utilize trehalose, glycerol, 
mannitol, sorbitol or melezitose; rhamnose and sali-
cin are fermented weakly [2]. Growth is possible in 
the presence of bile [2]. Major fermentation prod-
ucts from broth (1% peptone, 1% yeast extract, and 
1% glucose each (w/v)) are acetic acid and succinic 
acid, whereas isovaleric acid is produced in small 
amounts [2]. B. salanitronis shows activity for alka-
line phosphatase, α- and β-galactosidases, α- and β-
glucosidases, α-arabinosidase, leucyl glycine aryla-
midase, alanine arylamidase and glutamyl glutamic 
acid arylamidase but no activity for urease, catalase, 
glutamic acid decarboxylase, arginine dihydrolase, 
β-galactosidase 6-phosphate, β-glucuronidase, N-
acetyl-β-glucosaminidase, α-fucosidase and arginine, 
proline, leucine, phenylalanine, pyroglutamic acid, 
tyrosine, glycine, histidine and serine arylamidase 
[2]. 

 
Figure 1. Phylogenetic tree highlighting the position of B. salanitronis relative to a selection of other type strains within 
the genus. The tree was inferred from 1,412 aligned characters [8,9] of the 16S rRNA gene sequence under the maximum 
likelihood criterion [10] and rooted in accordance with the current taxonomy. The branches are scaled in terms of the 
expected number of substitutions per site. Numbers to the right of bifurcations are support values from 1,000 bootstrap 
replicates [11] if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [12] but un-
published are labeled with one asterisk, published genomes with two asterisks [13-15]. 
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Figure 2. Scanning electron micrograph of B. salanitronis BL78T 

Table 1. Classification and general features of B. salanitronis BL78T according to the MIGS recommendations [16]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [17] 
Phylum 'Bacteroidetes' TAS [18] 
Class 'Bacteroidia' TAS [19] 
Order 'Bacteroidales' TAS [20] 
Family Bacteroidaceae TAS [21,22] 
Genus Bacteroides TAS [21,23-26] 
Species Bacteroides salanitronis TAS [2] 
Type strain BL78 TAS [2] 

 Gram stain negative TAS [2] 
 Cell shape rod-shaped TAS [2] 
 Motility non-motile TAS [2] 
 Sporulation none TAS [2] 
 Temperature range mesophile TAS [2] 
 Optimum temperature 37°C TAS [2] 
 Salinity normal NAS 
MIGS-22 Oxygen requirement strictly anaerobic TAS [2] 
 Carbon source carbohydrates TAS [2] 
 Energy metabolism chemoorganotroph TAS [2] 
MIGS-6 Habitat chicken TAS [2] 
MIGS-15 Biotic relationship free-living NAS 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [27] 
 Isolation chicken cecum TAS [2] 
MIGS-4 Geographic location Japan TAS [2] 
MIGS-5 Sample collection time November 2005 IDA 
MIGS-4.1 Latitude not reported  
MIGS-4.2 Longitude not reported  
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from of the Gene Ontology project [28]. If the evidence code is IDA, then the proper-
ty was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

http://standardsingenomics.org/�
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Chemotaxonomy 
B. salanitronis strain BL78T contains menaqui-
nones MK-11 and MK-12 as principal respiratory 
quinones (43% each), small amounts of MK-10 
(5%) and MK-13 (7%) are found as minor compo-
nents [2]. The major fatty acids found were antei-
so-C15:0 (32%), iso-C15:0 (14%), 3-hydroxy C16:0 
(12%) and 3-hydroxy iso-C17:0 (10%). Fatty acids 
C14:0 (4%), C15:0 (2%), C16:0 (8%), C18:1 (2%), C18:2 
(2%) and iso-C14:0 (2%) were found in minor 
amounts [2]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [29], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [30]. The genome project is depo-
sited in the Genomes On Line Database [31] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (7 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 283.0 × Illumina; 37.7 × pyrosequence 

MIGS-30 Assemblers 
Newbler version 2.3-PreRelease-09-14-2009-bin, Velvet, phrap 
version SPS 4.24 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 
INSDC ID 

CP002530 (chromosome) 
CP002531 (plasmid 1) 
CP002532 (plasmid 2) 
CP002533 (plasmid 3) 

 Genbank Date of Release February 28, 2011 
 GOLD ID Gc001665 
 NCBI project ID 40066 
 Database: IMG-GEBA 2503754023 
MIGS-13 Source material identifier DSM 18170 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
B. salanitronis BL78T, DSM 18170, was grown 
anaerobically in DSMZ medium 104 (Peptone-
Yeast extract-Glucose broth) [32] at 37°C. DNA 
was isolated from 0.5-1 g of cell paste using Mas-
terPure Gram-positive DNA purification kit (Epi-
centre MGP04100) following the standard proto-
col as recommended by the manufacturer, adding 
20 µL lysozyme (100mg/µl), and 10 µL mutanoly-
sin, achromopeptidase, and lysostaphine, each, for 
40 min lysis at 37ºC followed by one hour incuba-
tion on ice. DNA is available through the DNA 
Bank Network [33]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-

quencing can be found at the JGI website [34]. Py-
rosequencing reads were assembled using the 
Newbler assembler version 2.3-PreRelease-09-14-
2009-bin (Roche). The initial Newbler assembly 
consisting of 100 contigs in two scaffolds was 
converted into a phrap assembly [35] by making 
fake reads from the consensus, to collect the read 
pairs in the 454 paired-end library. Illumina GAii 
sequencing data (920.8 Mb) was assembled with 
Velvet, version 0.7.63 [36] and the consensus se-
quences were shredded into 1.5 kb overlapped 
fake reads and assembled together with the 454 
data. The 454 draft assembly was based on 109.0 
Mb of 454 standard data and all of the 454 paired 
end data. Newbler parameters are -consed -a 50 -l 
350 -g -m -ml 20. The Phred/Phrap/Consed soft-
ware package [35] was used for sequence assem-
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bly and quality assessment in the subsequent fi-
nishing process. After the shotgun stage, reads 
were assembled with parallel phrap (High Per-
formance Software, LLC). Possible mis-assemblies 
were corrected with gapResolution [34], Dupfi-
nisher [37], or sequencing cloned bridging PCR 
fragments with subcloning or transposon bomb-
ing (Epicentre Biotechnologies, Madison, WI). 
Gaps between contigs were closed by editing in 
Consed, by PCR and by Bubble PCR primer walks 
(J.-F.Chang, unpublished). A total of 193 additional 
reactions and four shatter libraries were neces-
sary to close gaps and to raise the quality of the 
finished sequence. Illumina reads were also used 
to correct potential base errors and increase con-
sensus quality using a software Polisher devel-
oped at JGI [38]. The error rate of the completed 
genome sequence is less than 1 in 100,000. To-
gether, the combination of the Illumina and 454 
sequencing platforms provided 320.7 × coverage 
of the genome. The final assembly contained 
393,135 pyrosequence and 25,576,764 Illumina 
reads. 

Genome annotation 
Genes were identified using Prodigal [39] as part 
of the Oak Ridge National Laboratory genome an-

notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [40]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [41]. 

Genome properties 
The genome consists of a 4,242,803 bp long chro-
mosome with a G+C content of 47%, as well as 
three plasmids of 6,277 bp, 18,280 bp and 40,303 
bp length (Table 3 and Figure 3). Of the 3,838 
genes predicted, 3,737 were protein-coding genes, 
and 101 RNAs; 96 pseudogenes were also identi-
fied. The majority of the protein-coding genes 
(57.3%) were assigned with a putative function 
while the remaining ones were annotated as hypo-
thetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 4,308,663 100.00% 
DNA coding region (bp) 3,759,354 87.25% 
DNA G+C content (bp) 2,003,128 46.49% 
Number of replicons 4  
Extrachromosomal elements 3  
Total genes 3,838 100.00% 
RNA genes 101 2.63% 
rRNA operons 6  
Protein-coding genes 3,737 97.37% 
Pseudo genes 96 2.50% 
Genes with function prediction 2,200 57.32% 
Genes in paralog clusters 876 22.82% 
Genes assigned to COGs 2,013 52.45% 
Genes assigned Pfam domains 2,269 59.12% 
Genes with signal peptides 918 23.92% 
Genes with transmembrane helices 794 20.69% 
CRISPR repeats 0  
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Figure 3. Graphical circular map of the chromosome (plasmid maps not shown). From outside to the center: 
Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA 
genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 147 6.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 143 6.6 Transcription 

L 194 9.0 Replication, recombination and repair 

B 0 0.0 Chromatin structure and dynamics 

D 31 1.4 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 63 2.9 Defense mechanisms 

T 85 3.9 Signal transduction mechanisms 

M 193 8.9 Cell wall/membrane/envelope biogenesis 

N 5 0.2 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 61 2.8 Intracellular trafficking, secretion, and vesicular transport 

O 61 2.8 Posttranslational modification, protein turnover, chaperones 

C 105 4.9 Energy production and conversion 

G 174 8.0 Carbohydrate transport and metabolism 

E 134 6.2 Amino acid transport and metabolism 

F 68 3.1 Nucleotide transport and metabolism 

H 98 4.5 Coenzyme transport and metabolism 

I 62 2.9 Lipid transport and metabolism 

P 104 4.8 Inorganic ion transport and metabolism 

Q 29 1.3 Secondary metabolites biosynthesis, transport and catabolism 

R 285 13.2 General function prediction only 

S 125 5.8 Function unknown 

- 1,825 47.6 Not in COGs 
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